xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 21063bce)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal.h"
46 
47 /* -icount align implementation. */
48 
49 typedef struct SyncClocks {
50     int64_t diff_clk;
51     int64_t last_cpu_icount;
52     int64_t realtime_clock;
53 } SyncClocks;
54 
55 #if !defined(CONFIG_USER_ONLY)
56 /* Allow the guest to have a max 3ms advance.
57  * The difference between the 2 clocks could therefore
58  * oscillate around 0.
59  */
60 #define VM_CLOCK_ADVANCE 3000000
61 #define THRESHOLD_REDUCE 1.5
62 #define MAX_DELAY_PRINT_RATE 2000000000LL
63 #define MAX_NB_PRINTS 100
64 
65 int64_t max_delay;
66 int64_t max_advance;
67 
68 static void align_clocks(SyncClocks *sc, CPUState *cpu)
69 {
70     int64_t cpu_icount;
71 
72     if (!icount_align_option) {
73         return;
74     }
75 
76     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
77     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
78     sc->last_cpu_icount = cpu_icount;
79 
80     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
81 #ifndef _WIN32
82         struct timespec sleep_delay, rem_delay;
83         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
84         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
85         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
86             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
87         } else {
88             sc->diff_clk = 0;
89         }
90 #else
91         Sleep(sc->diff_clk / SCALE_MS);
92         sc->diff_clk = 0;
93 #endif
94     }
95 }
96 
97 static void print_delay(const SyncClocks *sc)
98 {
99     static float threshold_delay;
100     static int64_t last_realtime_clock;
101     static int nb_prints;
102 
103     if (icount_align_option &&
104         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
105         nb_prints < MAX_NB_PRINTS) {
106         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
107             (-sc->diff_clk / (float)1000000000LL <
108              (threshold_delay - THRESHOLD_REDUCE))) {
109             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
110             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
111                         threshold_delay - 1,
112                         threshold_delay);
113             nb_prints++;
114             last_realtime_clock = sc->realtime_clock;
115         }
116     }
117 }
118 
119 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
120 {
121     if (!icount_align_option) {
122         return;
123     }
124     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
125     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
126     sc->last_cpu_icount
127         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
128     if (sc->diff_clk < max_delay) {
129         max_delay = sc->diff_clk;
130     }
131     if (sc->diff_clk > max_advance) {
132         max_advance = sc->diff_clk;
133     }
134 
135     /* Print every 2s max if the guest is late. We limit the number
136        of printed messages to NB_PRINT_MAX(currently 100) */
137     print_delay(sc);
138 }
139 #else
140 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
141 {
142 }
143 
144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 {
146 }
147 #endif /* CONFIG USER ONLY */
148 
149 uint32_t curr_cflags(CPUState *cpu)
150 {
151     uint32_t cflags = cpu->tcg_cflags;
152 
153     /*
154      * Record gdb single-step.  We should be exiting the TB by raising
155      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
156      *
157      * For singlestep and -d nochain, suppress goto_tb so that
158      * we can log -d cpu,exec after every TB.
159      */
160     if (unlikely(cpu->singlestep_enabled)) {
161         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
162     } else if (singlestep) {
163         cflags |= CF_NO_GOTO_TB | 1;
164     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
165         cflags |= CF_NO_GOTO_TB;
166     }
167 
168     return cflags;
169 }
170 
171 struct tb_desc {
172     target_ulong pc;
173     target_ulong cs_base;
174     CPUArchState *env;
175     tb_page_addr_t page_addr0;
176     uint32_t flags;
177     uint32_t cflags;
178     uint32_t trace_vcpu_dstate;
179 };
180 
181 static bool tb_lookup_cmp(const void *p, const void *d)
182 {
183     const TranslationBlock *tb = p;
184     const struct tb_desc *desc = d;
185 
186     if ((TARGET_TB_PCREL || tb_pc(tb) == desc->pc) &&
187         tb_page_addr0(tb) == desc->page_addr0 &&
188         tb->cs_base == desc->cs_base &&
189         tb->flags == desc->flags &&
190         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
191         tb_cflags(tb) == desc->cflags) {
192         /* check next page if needed */
193         tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
194         if (tb_phys_page1 == -1) {
195             return true;
196         } else {
197             tb_page_addr_t phys_page1;
198             target_ulong virt_page1;
199 
200             /*
201              * We know that the first page matched, and an otherwise valid TB
202              * encountered an incomplete instruction at the end of that page,
203              * therefore we know that generating a new TB from the current PC
204              * must also require reading from the next page -- even if the
205              * second pages do not match, and therefore the resulting insn
206              * is different for the new TB.  Therefore any exception raised
207              * here by the faulting lookup is not premature.
208              */
209             virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
210             phys_page1 = get_page_addr_code(desc->env, virt_page1);
211             if (tb_phys_page1 == phys_page1) {
212                 return true;
213             }
214         }
215     }
216     return false;
217 }
218 
219 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
220                                           target_ulong cs_base, uint32_t flags,
221                                           uint32_t cflags)
222 {
223     tb_page_addr_t phys_pc;
224     struct tb_desc desc;
225     uint32_t h;
226 
227     desc.env = cpu->env_ptr;
228     desc.cs_base = cs_base;
229     desc.flags = flags;
230     desc.cflags = cflags;
231     desc.trace_vcpu_dstate = *cpu->trace_dstate;
232     desc.pc = pc;
233     phys_pc = get_page_addr_code(desc.env, pc);
234     if (phys_pc == -1) {
235         return NULL;
236     }
237     desc.page_addr0 = phys_pc;
238     h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : pc),
239                      flags, cflags, *cpu->trace_dstate);
240     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
241 }
242 
243 /* Might cause an exception, so have a longjmp destination ready */
244 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
245                                           target_ulong cs_base,
246                                           uint32_t flags, uint32_t cflags)
247 {
248     TranslationBlock *tb;
249     CPUJumpCache *jc;
250     uint32_t hash;
251 
252     /* we should never be trying to look up an INVALID tb */
253     tcg_debug_assert(!(cflags & CF_INVALID));
254 
255     hash = tb_jmp_cache_hash_func(pc);
256     jc = cpu->tb_jmp_cache;
257     tb = tb_jmp_cache_get_tb(jc, hash);
258 
259     if (likely(tb &&
260                tb_jmp_cache_get_pc(jc, hash, tb) == pc &&
261                tb->cs_base == cs_base &&
262                tb->flags == flags &&
263                tb->trace_vcpu_dstate == *cpu->trace_dstate &&
264                tb_cflags(tb) == cflags)) {
265         return tb;
266     }
267     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
268     if (tb == NULL) {
269         return NULL;
270     }
271     tb_jmp_cache_set(jc, hash, tb, pc);
272     return tb;
273 }
274 
275 static void log_cpu_exec(target_ulong pc, CPUState *cpu,
276                          const TranslationBlock *tb)
277 {
278     if (qemu_log_in_addr_range(pc)) {
279         qemu_log_mask(CPU_LOG_EXEC,
280                       "Trace %d: %p [" TARGET_FMT_lx
281                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
282                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
283                       tb->flags, tb->cflags, lookup_symbol(pc));
284 
285 #if defined(DEBUG_DISAS)
286         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
287             FILE *logfile = qemu_log_trylock();
288             if (logfile) {
289                 int flags = 0;
290 
291                 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
292                     flags |= CPU_DUMP_FPU;
293                 }
294 #if defined(TARGET_I386)
295                 flags |= CPU_DUMP_CCOP;
296 #endif
297                 cpu_dump_state(cpu, logfile, flags);
298                 qemu_log_unlock(logfile);
299             }
300         }
301 #endif /* DEBUG_DISAS */
302     }
303 }
304 
305 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
306                                        uint32_t *cflags)
307 {
308     CPUBreakpoint *bp;
309     bool match_page = false;
310 
311     /*
312      * Singlestep overrides breakpoints.
313      * This requirement is visible in the record-replay tests, where
314      * we would fail to make forward progress in reverse-continue.
315      *
316      * TODO: gdb singlestep should only override gdb breakpoints,
317      * so that one could (gdb) singlestep into the guest kernel's
318      * architectural breakpoint handler.
319      */
320     if (cpu->singlestep_enabled) {
321         return false;
322     }
323 
324     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
325         /*
326          * If we have an exact pc match, trigger the breakpoint.
327          * Otherwise, note matches within the page.
328          */
329         if (pc == bp->pc) {
330             bool match_bp = false;
331 
332             if (bp->flags & BP_GDB) {
333                 match_bp = true;
334             } else if (bp->flags & BP_CPU) {
335 #ifdef CONFIG_USER_ONLY
336                 g_assert_not_reached();
337 #else
338                 CPUClass *cc = CPU_GET_CLASS(cpu);
339                 assert(cc->tcg_ops->debug_check_breakpoint);
340                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
341 #endif
342             }
343 
344             if (match_bp) {
345                 cpu->exception_index = EXCP_DEBUG;
346                 return true;
347             }
348         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
349             match_page = true;
350         }
351     }
352 
353     /*
354      * Within the same page as a breakpoint, single-step,
355      * returning to helper_lookup_tb_ptr after each insn looking
356      * for the actual breakpoint.
357      *
358      * TODO: Perhaps better to record all of the TBs associated
359      * with a given virtual page that contains a breakpoint, and
360      * then invalidate them when a new overlapping breakpoint is
361      * set on the page.  Non-overlapping TBs would not be
362      * invalidated, nor would any TB need to be invalidated as
363      * breakpoints are removed.
364      */
365     if (match_page) {
366         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
367     }
368     return false;
369 }
370 
371 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
372                                          uint32_t *cflags)
373 {
374     return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
375         check_for_breakpoints_slow(cpu, pc, cflags);
376 }
377 
378 /**
379  * helper_lookup_tb_ptr: quick check for next tb
380  * @env: current cpu state
381  *
382  * Look for an existing TB matching the current cpu state.
383  * If found, return the code pointer.  If not found, return
384  * the tcg epilogue so that we return into cpu_tb_exec.
385  */
386 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
387 {
388     CPUState *cpu = env_cpu(env);
389     TranslationBlock *tb;
390     target_ulong cs_base, pc;
391     uint32_t flags, cflags;
392 
393     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
394 
395     cflags = curr_cflags(cpu);
396     if (check_for_breakpoints(cpu, pc, &cflags)) {
397         cpu_loop_exit(cpu);
398     }
399 
400     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
401     if (tb == NULL) {
402         return tcg_code_gen_epilogue;
403     }
404 
405     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
406         log_cpu_exec(pc, cpu, tb);
407     }
408 
409     return tb->tc.ptr;
410 }
411 
412 /* Execute a TB, and fix up the CPU state afterwards if necessary */
413 /*
414  * Disable CFI checks.
415  * TCG creates binary blobs at runtime, with the transformed code.
416  * A TB is a blob of binary code, created at runtime and called with an
417  * indirect function call. Since such function did not exist at compile time,
418  * the CFI runtime has no way to verify its signature and would fail.
419  * TCG is not considered a security-sensitive part of QEMU so this does not
420  * affect the impact of CFI in environment with high security requirements
421  */
422 static inline TranslationBlock * QEMU_DISABLE_CFI
423 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
424 {
425     CPUArchState *env = cpu->env_ptr;
426     uintptr_t ret;
427     TranslationBlock *last_tb;
428     const void *tb_ptr = itb->tc.ptr;
429 
430     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
431         log_cpu_exec(log_pc(cpu, itb), cpu, itb);
432     }
433 
434     qemu_thread_jit_execute();
435     ret = tcg_qemu_tb_exec(env, tb_ptr);
436     cpu->can_do_io = 1;
437     /*
438      * TODO: Delay swapping back to the read-write region of the TB
439      * until we actually need to modify the TB.  The read-only copy,
440      * coming from the rx region, shares the same host TLB entry as
441      * the code that executed the exit_tb opcode that arrived here.
442      * If we insist on touching both the RX and the RW pages, we
443      * double the host TLB pressure.
444      */
445     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
446     *tb_exit = ret & TB_EXIT_MASK;
447 
448     trace_exec_tb_exit(last_tb, *tb_exit);
449 
450     if (*tb_exit > TB_EXIT_IDX1) {
451         /* We didn't start executing this TB (eg because the instruction
452          * counter hit zero); we must restore the guest PC to the address
453          * of the start of the TB.
454          */
455         CPUClass *cc = CPU_GET_CLASS(cpu);
456 
457         if (cc->tcg_ops->synchronize_from_tb) {
458             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
459         } else {
460             assert(!TARGET_TB_PCREL);
461             assert(cc->set_pc);
462             cc->set_pc(cpu, tb_pc(last_tb));
463         }
464         if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
465             target_ulong pc = log_pc(cpu, last_tb);
466             if (qemu_log_in_addr_range(pc)) {
467                 qemu_log("Stopped execution of TB chain before %p ["
468                          TARGET_FMT_lx "] %s\n",
469                          last_tb->tc.ptr, pc, lookup_symbol(pc));
470             }
471         }
472     }
473 
474     /*
475      * If gdb single-step, and we haven't raised another exception,
476      * raise a debug exception.  Single-step with another exception
477      * is handled in cpu_handle_exception.
478      */
479     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
480         cpu->exception_index = EXCP_DEBUG;
481         cpu_loop_exit(cpu);
482     }
483 
484     return last_tb;
485 }
486 
487 
488 static void cpu_exec_enter(CPUState *cpu)
489 {
490     CPUClass *cc = CPU_GET_CLASS(cpu);
491 
492     if (cc->tcg_ops->cpu_exec_enter) {
493         cc->tcg_ops->cpu_exec_enter(cpu);
494     }
495 }
496 
497 static void cpu_exec_exit(CPUState *cpu)
498 {
499     CPUClass *cc = CPU_GET_CLASS(cpu);
500 
501     if (cc->tcg_ops->cpu_exec_exit) {
502         cc->tcg_ops->cpu_exec_exit(cpu);
503     }
504     QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
505 }
506 
507 void cpu_exec_step_atomic(CPUState *cpu)
508 {
509     CPUArchState *env = cpu->env_ptr;
510     TranslationBlock *tb;
511     target_ulong cs_base, pc;
512     uint32_t flags, cflags;
513     int tb_exit;
514 
515     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
516         start_exclusive();
517         g_assert(cpu == current_cpu);
518         g_assert(!cpu->running);
519         cpu->running = true;
520 
521         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
522 
523         cflags = curr_cflags(cpu);
524         /* Execute in a serial context. */
525         cflags &= ~CF_PARALLEL;
526         /* After 1 insn, return and release the exclusive lock. */
527         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
528         /*
529          * No need to check_for_breakpoints here.
530          * We only arrive in cpu_exec_step_atomic after beginning execution
531          * of an insn that includes an atomic operation we can't handle.
532          * Any breakpoint for this insn will have been recognized earlier.
533          */
534 
535         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
536         if (tb == NULL) {
537             mmap_lock();
538             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
539             mmap_unlock();
540         }
541 
542         cpu_exec_enter(cpu);
543         /* execute the generated code */
544         trace_exec_tb(tb, pc);
545         cpu_tb_exec(cpu, tb, &tb_exit);
546         cpu_exec_exit(cpu);
547     } else {
548 #ifndef CONFIG_SOFTMMU
549         clear_helper_retaddr();
550         if (have_mmap_lock()) {
551             mmap_unlock();
552         }
553 #endif
554         if (qemu_mutex_iothread_locked()) {
555             qemu_mutex_unlock_iothread();
556         }
557         assert_no_pages_locked();
558         qemu_plugin_disable_mem_helpers(cpu);
559     }
560 
561     /*
562      * As we start the exclusive region before codegen we must still
563      * be in the region if we longjump out of either the codegen or
564      * the execution.
565      */
566     g_assert(cpu_in_exclusive_context(cpu));
567     cpu->running = false;
568     end_exclusive();
569 }
570 
571 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
572 {
573     /*
574      * Get the rx view of the structure, from which we find the
575      * executable code address, and tb_target_set_jmp_target can
576      * produce a pc-relative displacement to jmp_target_addr[n].
577      */
578     const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
579     uintptr_t offset = tb->jmp_insn_offset[n];
580     uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
581     uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
582 
583     tb->jmp_target_addr[n] = addr;
584     tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
585 }
586 
587 static inline void tb_add_jump(TranslationBlock *tb, int n,
588                                TranslationBlock *tb_next)
589 {
590     uintptr_t old;
591 
592     qemu_thread_jit_write();
593     assert(n < ARRAY_SIZE(tb->jmp_list_next));
594     qemu_spin_lock(&tb_next->jmp_lock);
595 
596     /* make sure the destination TB is valid */
597     if (tb_next->cflags & CF_INVALID) {
598         goto out_unlock_next;
599     }
600     /* Atomically claim the jump destination slot only if it was NULL */
601     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
602                           (uintptr_t)tb_next);
603     if (old) {
604         goto out_unlock_next;
605     }
606 
607     /* patch the native jump address */
608     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
609 
610     /* add in TB jmp list */
611     tb->jmp_list_next[n] = tb_next->jmp_list_head;
612     tb_next->jmp_list_head = (uintptr_t)tb | n;
613 
614     qemu_spin_unlock(&tb_next->jmp_lock);
615 
616     qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
617                   tb->tc.ptr, n, tb_next->tc.ptr);
618     return;
619 
620  out_unlock_next:
621     qemu_spin_unlock(&tb_next->jmp_lock);
622     return;
623 }
624 
625 static inline bool cpu_handle_halt(CPUState *cpu)
626 {
627 #ifndef CONFIG_USER_ONLY
628     if (cpu->halted) {
629 #if defined(TARGET_I386)
630         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
631             X86CPU *x86_cpu = X86_CPU(cpu);
632             qemu_mutex_lock_iothread();
633             apic_poll_irq(x86_cpu->apic_state);
634             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
635             qemu_mutex_unlock_iothread();
636         }
637 #endif /* TARGET_I386 */
638         if (!cpu_has_work(cpu)) {
639             return true;
640         }
641 
642         cpu->halted = 0;
643     }
644 #endif /* !CONFIG_USER_ONLY */
645 
646     return false;
647 }
648 
649 static inline void cpu_handle_debug_exception(CPUState *cpu)
650 {
651     CPUClass *cc = CPU_GET_CLASS(cpu);
652     CPUWatchpoint *wp;
653 
654     if (!cpu->watchpoint_hit) {
655         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
656             wp->flags &= ~BP_WATCHPOINT_HIT;
657         }
658     }
659 
660     if (cc->tcg_ops->debug_excp_handler) {
661         cc->tcg_ops->debug_excp_handler(cpu);
662     }
663 }
664 
665 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
666 {
667     if (cpu->exception_index < 0) {
668 #ifndef CONFIG_USER_ONLY
669         if (replay_has_exception()
670             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
671             /* Execute just one insn to trigger exception pending in the log */
672             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
673                 | CF_NOIRQ | 1;
674         }
675 #endif
676         return false;
677     }
678     if (cpu->exception_index >= EXCP_INTERRUPT) {
679         /* exit request from the cpu execution loop */
680         *ret = cpu->exception_index;
681         if (*ret == EXCP_DEBUG) {
682             cpu_handle_debug_exception(cpu);
683         }
684         cpu->exception_index = -1;
685         return true;
686     } else {
687 #if defined(CONFIG_USER_ONLY)
688         /* if user mode only, we simulate a fake exception
689            which will be handled outside the cpu execution
690            loop */
691 #if defined(TARGET_I386)
692         CPUClass *cc = CPU_GET_CLASS(cpu);
693         cc->tcg_ops->fake_user_interrupt(cpu);
694 #endif /* TARGET_I386 */
695         *ret = cpu->exception_index;
696         cpu->exception_index = -1;
697         return true;
698 #else
699         if (replay_exception()) {
700             CPUClass *cc = CPU_GET_CLASS(cpu);
701             qemu_mutex_lock_iothread();
702             cc->tcg_ops->do_interrupt(cpu);
703             qemu_mutex_unlock_iothread();
704             cpu->exception_index = -1;
705 
706             if (unlikely(cpu->singlestep_enabled)) {
707                 /*
708                  * After processing the exception, ensure an EXCP_DEBUG is
709                  * raised when single-stepping so that GDB doesn't miss the
710                  * next instruction.
711                  */
712                 *ret = EXCP_DEBUG;
713                 cpu_handle_debug_exception(cpu);
714                 return true;
715             }
716         } else if (!replay_has_interrupt()) {
717             /* give a chance to iothread in replay mode */
718             *ret = EXCP_INTERRUPT;
719             return true;
720         }
721 #endif
722     }
723 
724     return false;
725 }
726 
727 #ifndef CONFIG_USER_ONLY
728 /*
729  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
730  * "real" interrupt event later. It does not need to be recorded for
731  * replay purposes.
732  */
733 static inline bool need_replay_interrupt(int interrupt_request)
734 {
735 #if defined(TARGET_I386)
736     return !(interrupt_request & CPU_INTERRUPT_POLL);
737 #else
738     return true;
739 #endif
740 }
741 #endif /* !CONFIG_USER_ONLY */
742 
743 static inline bool cpu_handle_interrupt(CPUState *cpu,
744                                         TranslationBlock **last_tb)
745 {
746     /*
747      * If we have requested custom cflags with CF_NOIRQ we should
748      * skip checking here. Any pending interrupts will get picked up
749      * by the next TB we execute under normal cflags.
750      */
751     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
752         return false;
753     }
754 
755     /* Clear the interrupt flag now since we're processing
756      * cpu->interrupt_request and cpu->exit_request.
757      * Ensure zeroing happens before reading cpu->exit_request or
758      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
759      */
760     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
761 
762     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
763         int interrupt_request;
764         qemu_mutex_lock_iothread();
765         interrupt_request = cpu->interrupt_request;
766         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
767             /* Mask out external interrupts for this step. */
768             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
769         }
770         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
771             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
772             cpu->exception_index = EXCP_DEBUG;
773             qemu_mutex_unlock_iothread();
774             return true;
775         }
776 #if !defined(CONFIG_USER_ONLY)
777         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
778             /* Do nothing */
779         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
780             replay_interrupt();
781             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
782             cpu->halted = 1;
783             cpu->exception_index = EXCP_HLT;
784             qemu_mutex_unlock_iothread();
785             return true;
786         }
787 #if defined(TARGET_I386)
788         else if (interrupt_request & CPU_INTERRUPT_INIT) {
789             X86CPU *x86_cpu = X86_CPU(cpu);
790             CPUArchState *env = &x86_cpu->env;
791             replay_interrupt();
792             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
793             do_cpu_init(x86_cpu);
794             cpu->exception_index = EXCP_HALTED;
795             qemu_mutex_unlock_iothread();
796             return true;
797         }
798 #else
799         else if (interrupt_request & CPU_INTERRUPT_RESET) {
800             replay_interrupt();
801             cpu_reset(cpu);
802             qemu_mutex_unlock_iothread();
803             return true;
804         }
805 #endif /* !TARGET_I386 */
806         /* The target hook has 3 exit conditions:
807            False when the interrupt isn't processed,
808            True when it is, and we should restart on a new TB,
809            and via longjmp via cpu_loop_exit.  */
810         else {
811             CPUClass *cc = CPU_GET_CLASS(cpu);
812 
813             if (cc->tcg_ops->cpu_exec_interrupt &&
814                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
815                 if (need_replay_interrupt(interrupt_request)) {
816                     replay_interrupt();
817                 }
818                 /*
819                  * After processing the interrupt, ensure an EXCP_DEBUG is
820                  * raised when single-stepping so that GDB doesn't miss the
821                  * next instruction.
822                  */
823                 if (unlikely(cpu->singlestep_enabled)) {
824                     cpu->exception_index = EXCP_DEBUG;
825                     qemu_mutex_unlock_iothread();
826                     return true;
827                 }
828                 cpu->exception_index = -1;
829                 *last_tb = NULL;
830             }
831             /* The target hook may have updated the 'cpu->interrupt_request';
832              * reload the 'interrupt_request' value */
833             interrupt_request = cpu->interrupt_request;
834         }
835 #endif /* !CONFIG_USER_ONLY */
836         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
837             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
838             /* ensure that no TB jump will be modified as
839                the program flow was changed */
840             *last_tb = NULL;
841         }
842 
843         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
844         qemu_mutex_unlock_iothread();
845     }
846 
847     /* Finally, check if we need to exit to the main loop.  */
848     if (unlikely(qatomic_read(&cpu->exit_request))
849         || (icount_enabled()
850             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
851             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
852         qatomic_set(&cpu->exit_request, 0);
853         if (cpu->exception_index == -1) {
854             cpu->exception_index = EXCP_INTERRUPT;
855         }
856         return true;
857     }
858 
859     return false;
860 }
861 
862 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
863                                     target_ulong pc,
864                                     TranslationBlock **last_tb, int *tb_exit)
865 {
866     int32_t insns_left;
867 
868     trace_exec_tb(tb, pc);
869     tb = cpu_tb_exec(cpu, tb, tb_exit);
870     if (*tb_exit != TB_EXIT_REQUESTED) {
871         *last_tb = tb;
872         return;
873     }
874 
875     *last_tb = NULL;
876     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
877     if (insns_left < 0) {
878         /* Something asked us to stop executing chained TBs; just
879          * continue round the main loop. Whatever requested the exit
880          * will also have set something else (eg exit_request or
881          * interrupt_request) which will be handled by
882          * cpu_handle_interrupt.  cpu_handle_interrupt will also
883          * clear cpu->icount_decr.u16.high.
884          */
885         return;
886     }
887 
888     /* Instruction counter expired.  */
889     assert(icount_enabled());
890 #ifndef CONFIG_USER_ONLY
891     /* Ensure global icount has gone forward */
892     icount_update(cpu);
893     /* Refill decrementer and continue execution.  */
894     insns_left = MIN(0xffff, cpu->icount_budget);
895     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
896     cpu->icount_extra = cpu->icount_budget - insns_left;
897 
898     /*
899      * If the next tb has more instructions than we have left to
900      * execute we need to ensure we find/generate a TB with exactly
901      * insns_left instructions in it.
902      */
903     if (insns_left > 0 && insns_left < tb->icount)  {
904         assert(insns_left <= CF_COUNT_MASK);
905         assert(cpu->icount_extra == 0);
906         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
907     }
908 #endif
909 }
910 
911 /* main execution loop */
912 
913 static int __attribute__((noinline))
914 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
915 {
916     int ret;
917 
918     /* if an exception is pending, we execute it here */
919     while (!cpu_handle_exception(cpu, &ret)) {
920         TranslationBlock *last_tb = NULL;
921         int tb_exit = 0;
922 
923         while (!cpu_handle_interrupt(cpu, &last_tb)) {
924             TranslationBlock *tb;
925             target_ulong cs_base, pc;
926             uint32_t flags, cflags;
927 
928             cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
929 
930             /*
931              * When requested, use an exact setting for cflags for the next
932              * execution.  This is used for icount, precise smc, and stop-
933              * after-access watchpoints.  Since this request should never
934              * have CF_INVALID set, -1 is a convenient invalid value that
935              * does not require tcg headers for cpu_common_reset.
936              */
937             cflags = cpu->cflags_next_tb;
938             if (cflags == -1) {
939                 cflags = curr_cflags(cpu);
940             } else {
941                 cpu->cflags_next_tb = -1;
942             }
943 
944             if (check_for_breakpoints(cpu, pc, &cflags)) {
945                 break;
946             }
947 
948             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
949             if (tb == NULL) {
950                 uint32_t h;
951 
952                 mmap_lock();
953                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
954                 mmap_unlock();
955                 /*
956                  * We add the TB in the virtual pc hash table
957                  * for the fast lookup
958                  */
959                 h = tb_jmp_cache_hash_func(pc);
960                 tb_jmp_cache_set(cpu->tb_jmp_cache, h, tb, pc);
961             }
962 
963 #ifndef CONFIG_USER_ONLY
964             /*
965              * We don't take care of direct jumps when address mapping
966              * changes in system emulation.  So it's not safe to make a
967              * direct jump to a TB spanning two pages because the mapping
968              * for the second page can change.
969              */
970             if (tb_page_addr1(tb) != -1) {
971                 last_tb = NULL;
972             }
973 #endif
974             /* See if we can patch the calling TB. */
975             if (last_tb) {
976                 tb_add_jump(last_tb, tb_exit, tb);
977             }
978 
979             cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
980 
981             QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
982             /* Try to align the host and virtual clocks
983                if the guest is in advance */
984             align_clocks(sc, cpu);
985         }
986     }
987     return ret;
988 }
989 
990 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
991 {
992     /* Prepare setjmp context for exception handling. */
993     if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
994         /* Non-buggy compilers preserve this; assert the correct value. */
995         g_assert(cpu == current_cpu);
996 
997 #ifndef CONFIG_SOFTMMU
998         clear_helper_retaddr();
999         if (have_mmap_lock()) {
1000             mmap_unlock();
1001         }
1002 #endif
1003         if (qemu_mutex_iothread_locked()) {
1004             qemu_mutex_unlock_iothread();
1005         }
1006         qemu_plugin_disable_mem_helpers(cpu);
1007 
1008         assert_no_pages_locked();
1009     }
1010 
1011     return cpu_exec_loop(cpu, sc);
1012 }
1013 
1014 int cpu_exec(CPUState *cpu)
1015 {
1016     int ret;
1017     SyncClocks sc = { 0 };
1018 
1019     /* replay_interrupt may need current_cpu */
1020     current_cpu = cpu;
1021 
1022     if (cpu_handle_halt(cpu)) {
1023         return EXCP_HALTED;
1024     }
1025 
1026     rcu_read_lock();
1027     cpu_exec_enter(cpu);
1028 
1029     /*
1030      * Calculate difference between guest clock and host clock.
1031      * This delay includes the delay of the last cycle, so
1032      * what we have to do is sleep until it is 0. As for the
1033      * advance/delay we gain here, we try to fix it next time.
1034      */
1035     init_delay_params(&sc, cpu);
1036 
1037     ret = cpu_exec_setjmp(cpu, &sc);
1038 
1039     cpu_exec_exit(cpu);
1040     rcu_read_unlock();
1041 
1042     return ret;
1043 }
1044 
1045 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1046 {
1047     static bool tcg_target_initialized;
1048     CPUClass *cc = CPU_GET_CLASS(cpu);
1049 
1050     if (!tcg_target_initialized) {
1051         cc->tcg_ops->initialize();
1052         tcg_target_initialized = true;
1053     }
1054 
1055     cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1056     tlb_init(cpu);
1057 #ifndef CONFIG_USER_ONLY
1058     tcg_iommu_init_notifier_list(cpu);
1059 #endif /* !CONFIG_USER_ONLY */
1060     /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1061 }
1062 
1063 /* undo the initializations in reverse order */
1064 void tcg_exec_unrealizefn(CPUState *cpu)
1065 {
1066 #ifndef CONFIG_USER_ONLY
1067     tcg_iommu_free_notifier_list(cpu);
1068 #endif /* !CONFIG_USER_ONLY */
1069 
1070     tlb_destroy(cpu);
1071     g_free_rcu(cpu->tb_jmp_cache, rcu);
1072 }
1073