xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 194125e3)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "qemu/rcu.h"
29 #include "exec/tb-hash.h"
30 #include "exec/tb-lookup.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "sysemu/replay.h"
38 
39 /* -icount align implementation. */
40 
41 typedef struct SyncClocks {
42     int64_t diff_clk;
43     int64_t last_cpu_icount;
44     int64_t realtime_clock;
45 } SyncClocks;
46 
47 #if !defined(CONFIG_USER_ONLY)
48 /* Allow the guest to have a max 3ms advance.
49  * The difference between the 2 clocks could therefore
50  * oscillate around 0.
51  */
52 #define VM_CLOCK_ADVANCE 3000000
53 #define THRESHOLD_REDUCE 1.5
54 #define MAX_DELAY_PRINT_RATE 2000000000LL
55 #define MAX_NB_PRINTS 100
56 
57 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
58 {
59     int64_t cpu_icount;
60 
61     if (!icount_align_option) {
62         return;
63     }
64 
65     cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
66     sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
67     sc->last_cpu_icount = cpu_icount;
68 
69     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
70 #ifndef _WIN32
71         struct timespec sleep_delay, rem_delay;
72         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
73         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
74         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
75             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
76         } else {
77             sc->diff_clk = 0;
78         }
79 #else
80         Sleep(sc->diff_clk / SCALE_MS);
81         sc->diff_clk = 0;
82 #endif
83     }
84 }
85 
86 static void print_delay(const SyncClocks *sc)
87 {
88     static float threshold_delay;
89     static int64_t last_realtime_clock;
90     static int nb_prints;
91 
92     if (icount_align_option &&
93         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
94         nb_prints < MAX_NB_PRINTS) {
95         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
96             (-sc->diff_clk / (float)1000000000LL <
97              (threshold_delay - THRESHOLD_REDUCE))) {
98             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
99             printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
100                    threshold_delay - 1,
101                    threshold_delay);
102             nb_prints++;
103             last_realtime_clock = sc->realtime_clock;
104         }
105     }
106 }
107 
108 static void init_delay_params(SyncClocks *sc,
109                               const CPUState *cpu)
110 {
111     if (!icount_align_option) {
112         return;
113     }
114     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
115     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
116     sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
117     if (sc->diff_clk < max_delay) {
118         max_delay = sc->diff_clk;
119     }
120     if (sc->diff_clk > max_advance) {
121         max_advance = sc->diff_clk;
122     }
123 
124     /* Print every 2s max if the guest is late. We limit the number
125        of printed messages to NB_PRINT_MAX(currently 100) */
126     print_delay(sc);
127 }
128 #else
129 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
130 {
131 }
132 
133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
134 {
135 }
136 #endif /* CONFIG USER ONLY */
137 
138 /* Execute a TB, and fix up the CPU state afterwards if necessary */
139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
140 {
141     CPUArchState *env = cpu->env_ptr;
142     uintptr_t ret;
143     TranslationBlock *last_tb;
144     int tb_exit;
145     uint8_t *tb_ptr = itb->tc.ptr;
146 
147     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
148                            "Trace %d: %p ["
149                            TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
150                            cpu->cpu_index, itb->tc.ptr,
151                            itb->cs_base, itb->pc, itb->flags,
152                            lookup_symbol(itb->pc));
153 
154 #if defined(DEBUG_DISAS)
155     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
156         && qemu_log_in_addr_range(itb->pc)) {
157         qemu_log_lock();
158         int flags = 0;
159         if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
160             flags |= CPU_DUMP_FPU;
161         }
162 #if defined(TARGET_I386)
163         flags |= CPU_DUMP_CCOP;
164 #endif
165         log_cpu_state(cpu, flags);
166         qemu_log_unlock();
167     }
168 #endif /* DEBUG_DISAS */
169 
170     cpu->can_do_io = !use_icount;
171     ret = tcg_qemu_tb_exec(env, tb_ptr);
172     cpu->can_do_io = 1;
173     last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
174     tb_exit = ret & TB_EXIT_MASK;
175     trace_exec_tb_exit(last_tb, tb_exit);
176 
177     if (tb_exit > TB_EXIT_IDX1) {
178         /* We didn't start executing this TB (eg because the instruction
179          * counter hit zero); we must restore the guest PC to the address
180          * of the start of the TB.
181          */
182         CPUClass *cc = CPU_GET_CLASS(cpu);
183         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
184                                "Stopped execution of TB chain before %p ["
185                                TARGET_FMT_lx "] %s\n",
186                                last_tb->tc.ptr, last_tb->pc,
187                                lookup_symbol(last_tb->pc));
188         if (cc->synchronize_from_tb) {
189             cc->synchronize_from_tb(cpu, last_tb);
190         } else {
191             assert(cc->set_pc);
192             cc->set_pc(cpu, last_tb->pc);
193         }
194     }
195     return ret;
196 }
197 
198 #ifndef CONFIG_USER_ONLY
199 /* Execute the code without caching the generated code. An interpreter
200    could be used if available. */
201 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
202                              TranslationBlock *orig_tb, bool ignore_icount)
203 {
204     TranslationBlock *tb;
205     uint32_t cflags = curr_cflags() | CF_NOCACHE;
206 
207     if (ignore_icount) {
208         cflags &= ~CF_USE_ICOUNT;
209     }
210 
211     /* Should never happen.
212        We only end up here when an existing TB is too long.  */
213     cflags |= MIN(max_cycles, CF_COUNT_MASK);
214 
215     tb_lock();
216     tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
217                      orig_tb->flags, cflags);
218     tb->orig_tb = orig_tb;
219     tb_unlock();
220 
221     /* execute the generated code */
222     trace_exec_tb_nocache(tb, tb->pc);
223     cpu_tb_exec(cpu, tb);
224 
225     tb_lock();
226     tb_phys_invalidate(tb, -1);
227     tcg_tb_remove(tb);
228     tb_unlock();
229 }
230 #endif
231 
232 void cpu_exec_step_atomic(CPUState *cpu)
233 {
234     CPUClass *cc = CPU_GET_CLASS(cpu);
235     TranslationBlock *tb;
236     target_ulong cs_base, pc;
237     uint32_t flags;
238     uint32_t cflags = 1;
239     uint32_t cf_mask = cflags & CF_HASH_MASK;
240     /* volatile because we modify it between setjmp and longjmp */
241     volatile bool in_exclusive_region = false;
242 
243     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
244         tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
245         if (tb == NULL) {
246             mmap_lock();
247             tb_lock();
248             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
249             tb_unlock();
250             mmap_unlock();
251         }
252 
253         start_exclusive();
254 
255         /* Since we got here, we know that parallel_cpus must be true.  */
256         parallel_cpus = false;
257         in_exclusive_region = true;
258         cc->cpu_exec_enter(cpu);
259         /* execute the generated code */
260         trace_exec_tb(tb, pc);
261         cpu_tb_exec(cpu, tb);
262         cc->cpu_exec_exit(cpu);
263     } else {
264         /* We may have exited due to another problem here, so we need
265          * to reset any tb_locks we may have taken but didn't release.
266          * The mmap_lock is dropped by tb_gen_code if it runs out of
267          * memory.
268          */
269 #ifndef CONFIG_SOFTMMU
270         tcg_debug_assert(!have_mmap_lock());
271 #endif
272         tb_lock_reset();
273         assert_no_pages_locked();
274     }
275 
276     if (in_exclusive_region) {
277         /* We might longjump out of either the codegen or the
278          * execution, so must make sure we only end the exclusive
279          * region if we started it.
280          */
281         parallel_cpus = true;
282         end_exclusive();
283     }
284 }
285 
286 struct tb_desc {
287     target_ulong pc;
288     target_ulong cs_base;
289     CPUArchState *env;
290     tb_page_addr_t phys_page1;
291     uint32_t flags;
292     uint32_t cf_mask;
293     uint32_t trace_vcpu_dstate;
294 };
295 
296 static bool tb_lookup_cmp(const void *p, const void *d)
297 {
298     const TranslationBlock *tb = p;
299     const struct tb_desc *desc = d;
300 
301     if (tb->pc == desc->pc &&
302         tb->page_addr[0] == desc->phys_page1 &&
303         tb->cs_base == desc->cs_base &&
304         tb->flags == desc->flags &&
305         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
306         (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
307         /* check next page if needed */
308         if (tb->page_addr[1] == -1) {
309             return true;
310         } else {
311             tb_page_addr_t phys_page2;
312             target_ulong virt_page2;
313 
314             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
315             phys_page2 = get_page_addr_code(desc->env, virt_page2);
316             if (tb->page_addr[1] == phys_page2) {
317                 return true;
318             }
319         }
320     }
321     return false;
322 }
323 
324 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
325                                    target_ulong cs_base, uint32_t flags,
326                                    uint32_t cf_mask)
327 {
328     tb_page_addr_t phys_pc;
329     struct tb_desc desc;
330     uint32_t h;
331 
332     desc.env = (CPUArchState *)cpu->env_ptr;
333     desc.cs_base = cs_base;
334     desc.flags = flags;
335     desc.cf_mask = cf_mask;
336     desc.trace_vcpu_dstate = *cpu->trace_dstate;
337     desc.pc = pc;
338     phys_pc = get_page_addr_code(desc.env, pc);
339     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
340     h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
341     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
342 }
343 
344 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
345 {
346     if (TCG_TARGET_HAS_direct_jump) {
347         uintptr_t offset = tb->jmp_target_arg[n];
348         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
349         tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
350     } else {
351         tb->jmp_target_arg[n] = addr;
352     }
353 }
354 
355 static inline void tb_add_jump(TranslationBlock *tb, int n,
356                                TranslationBlock *tb_next)
357 {
358     uintptr_t old;
359 
360     assert(n < ARRAY_SIZE(tb->jmp_list_next));
361     qemu_spin_lock(&tb_next->jmp_lock);
362 
363     /* make sure the destination TB is valid */
364     if (tb_next->cflags & CF_INVALID) {
365         goto out_unlock_next;
366     }
367     /* Atomically claim the jump destination slot only if it was NULL */
368     old = atomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next);
369     if (old) {
370         goto out_unlock_next;
371     }
372 
373     /* patch the native jump address */
374     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
375 
376     /* add in TB jmp list */
377     tb->jmp_list_next[n] = tb_next->jmp_list_head;
378     tb_next->jmp_list_head = (uintptr_t)tb | n;
379 
380     qemu_spin_unlock(&tb_next->jmp_lock);
381 
382     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
383                            "Linking TBs %p [" TARGET_FMT_lx
384                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
385                            tb->tc.ptr, tb->pc, n,
386                            tb_next->tc.ptr, tb_next->pc);
387     return;
388 
389  out_unlock_next:
390     qemu_spin_unlock(&tb_next->jmp_lock);
391     return;
392 }
393 
394 static inline TranslationBlock *tb_find(CPUState *cpu,
395                                         TranslationBlock *last_tb,
396                                         int tb_exit, uint32_t cf_mask)
397 {
398     TranslationBlock *tb;
399     target_ulong cs_base, pc;
400     uint32_t flags;
401     bool acquired_tb_lock = false;
402 
403     tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
404     if (tb == NULL) {
405         /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
406          * taken outside tb_lock. As system emulation is currently
407          * single threaded the locks are NOPs.
408          */
409         mmap_lock();
410         tb_lock();
411         acquired_tb_lock = true;
412 
413         tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
414 
415         mmap_unlock();
416         /* We add the TB in the virtual pc hash table for the fast lookup */
417         atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
418     }
419 #ifndef CONFIG_USER_ONLY
420     /* We don't take care of direct jumps when address mapping changes in
421      * system emulation. So it's not safe to make a direct jump to a TB
422      * spanning two pages because the mapping for the second page can change.
423      */
424     if (tb->page_addr[1] != -1) {
425         last_tb = NULL;
426     }
427 #endif
428     /* See if we can patch the calling TB. */
429     if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
430         if (!acquired_tb_lock) {
431             tb_lock();
432             acquired_tb_lock = true;
433         }
434         tb_add_jump(last_tb, tb_exit, tb);
435     }
436     if (acquired_tb_lock) {
437         tb_unlock();
438     }
439     return tb;
440 }
441 
442 static inline bool cpu_handle_halt(CPUState *cpu)
443 {
444     if (cpu->halted) {
445 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
446         if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
447             && replay_interrupt()) {
448             X86CPU *x86_cpu = X86_CPU(cpu);
449             qemu_mutex_lock_iothread();
450             apic_poll_irq(x86_cpu->apic_state);
451             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
452             qemu_mutex_unlock_iothread();
453         }
454 #endif
455         if (!cpu_has_work(cpu)) {
456             return true;
457         }
458 
459         cpu->halted = 0;
460     }
461 
462     return false;
463 }
464 
465 static inline void cpu_handle_debug_exception(CPUState *cpu)
466 {
467     CPUClass *cc = CPU_GET_CLASS(cpu);
468     CPUWatchpoint *wp;
469 
470     if (!cpu->watchpoint_hit) {
471         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
472             wp->flags &= ~BP_WATCHPOINT_HIT;
473         }
474     }
475 
476     cc->debug_excp_handler(cpu);
477 }
478 
479 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
480 {
481     if (cpu->exception_index < 0) {
482 #ifndef CONFIG_USER_ONLY
483         if (replay_has_exception()
484                && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
485             /* try to cause an exception pending in the log */
486             cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
487         }
488 #endif
489         if (cpu->exception_index < 0) {
490             return false;
491         }
492     }
493 
494     if (cpu->exception_index >= EXCP_INTERRUPT) {
495         /* exit request from the cpu execution loop */
496         *ret = cpu->exception_index;
497         if (*ret == EXCP_DEBUG) {
498             cpu_handle_debug_exception(cpu);
499         }
500         cpu->exception_index = -1;
501         return true;
502     } else {
503 #if defined(CONFIG_USER_ONLY)
504         /* if user mode only, we simulate a fake exception
505            which will be handled outside the cpu execution
506            loop */
507 #if defined(TARGET_I386)
508         CPUClass *cc = CPU_GET_CLASS(cpu);
509         cc->do_interrupt(cpu);
510 #endif
511         *ret = cpu->exception_index;
512         cpu->exception_index = -1;
513         return true;
514 #else
515         if (replay_exception()) {
516             CPUClass *cc = CPU_GET_CLASS(cpu);
517             qemu_mutex_lock_iothread();
518             cc->do_interrupt(cpu);
519             qemu_mutex_unlock_iothread();
520             cpu->exception_index = -1;
521         } else if (!replay_has_interrupt()) {
522             /* give a chance to iothread in replay mode */
523             *ret = EXCP_INTERRUPT;
524             return true;
525         }
526 #endif
527     }
528 
529     return false;
530 }
531 
532 static inline bool cpu_handle_interrupt(CPUState *cpu,
533                                         TranslationBlock **last_tb)
534 {
535     CPUClass *cc = CPU_GET_CLASS(cpu);
536 
537     /* Clear the interrupt flag now since we're processing
538      * cpu->interrupt_request and cpu->exit_request.
539      * Ensure zeroing happens before reading cpu->exit_request or
540      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
541      */
542     atomic_mb_set(&cpu->icount_decr.u16.high, 0);
543 
544     if (unlikely(atomic_read(&cpu->interrupt_request))) {
545         int interrupt_request;
546         qemu_mutex_lock_iothread();
547         interrupt_request = cpu->interrupt_request;
548         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
549             /* Mask out external interrupts for this step. */
550             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
551         }
552         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
553             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
554             cpu->exception_index = EXCP_DEBUG;
555             qemu_mutex_unlock_iothread();
556             return true;
557         }
558         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
559             /* Do nothing */
560         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
561             replay_interrupt();
562             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
563             cpu->halted = 1;
564             cpu->exception_index = EXCP_HLT;
565             qemu_mutex_unlock_iothread();
566             return true;
567         }
568 #if defined(TARGET_I386)
569         else if (interrupt_request & CPU_INTERRUPT_INIT) {
570             X86CPU *x86_cpu = X86_CPU(cpu);
571             CPUArchState *env = &x86_cpu->env;
572             replay_interrupt();
573             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
574             do_cpu_init(x86_cpu);
575             cpu->exception_index = EXCP_HALTED;
576             qemu_mutex_unlock_iothread();
577             return true;
578         }
579 #else
580         else if (interrupt_request & CPU_INTERRUPT_RESET) {
581             replay_interrupt();
582             cpu_reset(cpu);
583             qemu_mutex_unlock_iothread();
584             return true;
585         }
586 #endif
587         /* The target hook has 3 exit conditions:
588            False when the interrupt isn't processed,
589            True when it is, and we should restart on a new TB,
590            and via longjmp via cpu_loop_exit.  */
591         else {
592             if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
593                 replay_interrupt();
594                 cpu->exception_index = -1;
595                 *last_tb = NULL;
596             }
597             /* The target hook may have updated the 'cpu->interrupt_request';
598              * reload the 'interrupt_request' value */
599             interrupt_request = cpu->interrupt_request;
600         }
601         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
602             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
603             /* ensure that no TB jump will be modified as
604                the program flow was changed */
605             *last_tb = NULL;
606         }
607 
608         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
609         qemu_mutex_unlock_iothread();
610     }
611 
612     /* Finally, check if we need to exit to the main loop.  */
613     if (unlikely(atomic_read(&cpu->exit_request)
614         || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
615         atomic_set(&cpu->exit_request, 0);
616         if (cpu->exception_index == -1) {
617             cpu->exception_index = EXCP_INTERRUPT;
618         }
619         return true;
620     }
621 
622     return false;
623 }
624 
625 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
626                                     TranslationBlock **last_tb, int *tb_exit)
627 {
628     uintptr_t ret;
629     int32_t insns_left;
630 
631     trace_exec_tb(tb, tb->pc);
632     ret = cpu_tb_exec(cpu, tb);
633     tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
634     *tb_exit = ret & TB_EXIT_MASK;
635     if (*tb_exit != TB_EXIT_REQUESTED) {
636         *last_tb = tb;
637         return;
638     }
639 
640     *last_tb = NULL;
641     insns_left = atomic_read(&cpu->icount_decr.u32);
642     if (insns_left < 0) {
643         /* Something asked us to stop executing chained TBs; just
644          * continue round the main loop. Whatever requested the exit
645          * will also have set something else (eg exit_request or
646          * interrupt_request) which will be handled by
647          * cpu_handle_interrupt.  cpu_handle_interrupt will also
648          * clear cpu->icount_decr.u16.high.
649          */
650         return;
651     }
652 
653     /* Instruction counter expired.  */
654     assert(use_icount);
655 #ifndef CONFIG_USER_ONLY
656     /* Ensure global icount has gone forward */
657     cpu_update_icount(cpu);
658     /* Refill decrementer and continue execution.  */
659     insns_left = MIN(0xffff, cpu->icount_budget);
660     cpu->icount_decr.u16.low = insns_left;
661     cpu->icount_extra = cpu->icount_budget - insns_left;
662     if (!cpu->icount_extra) {
663         /* Execute any remaining instructions, then let the main loop
664          * handle the next event.
665          */
666         if (insns_left > 0) {
667             cpu_exec_nocache(cpu, insns_left, tb, false);
668         }
669     }
670 #endif
671 }
672 
673 /* main execution loop */
674 
675 int cpu_exec(CPUState *cpu)
676 {
677     CPUClass *cc = CPU_GET_CLASS(cpu);
678     int ret;
679     SyncClocks sc = { 0 };
680 
681     /* replay_interrupt may need current_cpu */
682     current_cpu = cpu;
683 
684     if (cpu_handle_halt(cpu)) {
685         return EXCP_HALTED;
686     }
687 
688     rcu_read_lock();
689 
690     cc->cpu_exec_enter(cpu);
691 
692     /* Calculate difference between guest clock and host clock.
693      * This delay includes the delay of the last cycle, so
694      * what we have to do is sleep until it is 0. As for the
695      * advance/delay we gain here, we try to fix it next time.
696      */
697     init_delay_params(&sc, cpu);
698 
699     /* prepare setjmp context for exception handling */
700     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
701 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
702         /* Some compilers wrongly smash all local variables after
703          * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
704          * Reload essential local variables here for those compilers.
705          * Newer versions of gcc would complain about this code (-Wclobbered). */
706         cpu = current_cpu;
707         cc = CPU_GET_CLASS(cpu);
708 #else /* buggy compiler */
709         /* Assert that the compiler does not smash local variables. */
710         g_assert(cpu == current_cpu);
711         g_assert(cc == CPU_GET_CLASS(cpu));
712 #endif /* buggy compiler */
713         tb_lock_reset();
714         if (qemu_mutex_iothread_locked()) {
715             qemu_mutex_unlock_iothread();
716         }
717     }
718 
719     /* if an exception is pending, we execute it here */
720     while (!cpu_handle_exception(cpu, &ret)) {
721         TranslationBlock *last_tb = NULL;
722         int tb_exit = 0;
723 
724         while (!cpu_handle_interrupt(cpu, &last_tb)) {
725             uint32_t cflags = cpu->cflags_next_tb;
726             TranslationBlock *tb;
727 
728             /* When requested, use an exact setting for cflags for the next
729                execution.  This is used for icount, precise smc, and stop-
730                after-access watchpoints.  Since this request should never
731                have CF_INVALID set, -1 is a convenient invalid value that
732                does not require tcg headers for cpu_common_reset.  */
733             if (cflags == -1) {
734                 cflags = curr_cflags();
735             } else {
736                 cpu->cflags_next_tb = -1;
737             }
738 
739             tb = tb_find(cpu, last_tb, tb_exit, cflags);
740             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
741             /* Try to align the host and virtual clocks
742                if the guest is in advance */
743             align_clocks(&sc, cpu);
744         }
745     }
746 
747     cc->cpu_exec_exit(cpu);
748     rcu_read_unlock();
749 
750     return ret;
751 }
752