1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/cpu.h" 25 #include "accel/tcg/cpu-ops.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/cpu-common.h" 29 #include "exec/cpu-interrupt.h" 30 #include "exec/page-protection.h" 31 #include "exec/mmap-lock.h" 32 #include "exec/translation-block.h" 33 #include "tcg/tcg.h" 34 #include "qemu/atomic.h" 35 #include "qemu/rcu.h" 36 #include "exec/log.h" 37 #include "qemu/main-loop.h" 38 #include "cpu.h" 39 #include "exec/icount.h" 40 #include "exec/replay-core.h" 41 #include "system/tcg.h" 42 #include "exec/helper-proto-common.h" 43 #include "tb-jmp-cache.h" 44 #include "tb-hash.h" 45 #include "tb-context.h" 46 #include "tb-internal.h" 47 #include "internal-common.h" 48 #include "internal-target.h" 49 50 /* -icount align implementation. */ 51 52 typedef struct SyncClocks { 53 int64_t diff_clk; 54 int64_t last_cpu_icount; 55 int64_t realtime_clock; 56 } SyncClocks; 57 58 #if !defined(CONFIG_USER_ONLY) 59 /* Allow the guest to have a max 3ms advance. 60 * The difference between the 2 clocks could therefore 61 * oscillate around 0. 62 */ 63 #define VM_CLOCK_ADVANCE 3000000 64 #define THRESHOLD_REDUCE 1.5 65 #define MAX_DELAY_PRINT_RATE 2000000000LL 66 #define MAX_NB_PRINTS 100 67 68 int64_t max_delay; 69 int64_t max_advance; 70 71 static void align_clocks(SyncClocks *sc, CPUState *cpu) 72 { 73 int64_t cpu_icount; 74 75 if (!icount_align_option) { 76 return; 77 } 78 79 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 80 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 81 sc->last_cpu_icount = cpu_icount; 82 83 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 84 #ifndef _WIN32 85 struct timespec sleep_delay, rem_delay; 86 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 87 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 88 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 89 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 90 } else { 91 sc->diff_clk = 0; 92 } 93 #else 94 Sleep(sc->diff_clk / SCALE_MS); 95 sc->diff_clk = 0; 96 #endif 97 } 98 } 99 100 static void print_delay(const SyncClocks *sc) 101 { 102 static float threshold_delay; 103 static int64_t last_realtime_clock; 104 static int nb_prints; 105 106 if (icount_align_option && 107 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 108 nb_prints < MAX_NB_PRINTS) { 109 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 110 (-sc->diff_clk / (float)1000000000LL < 111 (threshold_delay - THRESHOLD_REDUCE))) { 112 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 113 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 114 threshold_delay - 1, 115 threshold_delay); 116 nb_prints++; 117 last_realtime_clock = sc->realtime_clock; 118 } 119 } 120 } 121 122 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 123 { 124 if (!icount_align_option) { 125 return; 126 } 127 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 128 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 129 sc->last_cpu_icount 130 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 131 if (sc->diff_clk < max_delay) { 132 max_delay = sc->diff_clk; 133 } 134 if (sc->diff_clk > max_advance) { 135 max_advance = sc->diff_clk; 136 } 137 138 /* Print every 2s max if the guest is late. We limit the number 139 of printed messages to NB_PRINT_MAX(currently 100) */ 140 print_delay(sc); 141 } 142 #else 143 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 144 { 145 } 146 147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 148 { 149 } 150 #endif /* CONFIG USER ONLY */ 151 152 struct tb_desc { 153 vaddr pc; 154 uint64_t cs_base; 155 CPUArchState *env; 156 tb_page_addr_t page_addr0; 157 uint32_t flags; 158 uint32_t cflags; 159 }; 160 161 static bool tb_lookup_cmp(const void *p, const void *d) 162 { 163 const TranslationBlock *tb = p; 164 const struct tb_desc *desc = d; 165 166 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 167 tb_page_addr0(tb) == desc->page_addr0 && 168 tb->cs_base == desc->cs_base && 169 tb->flags == desc->flags && 170 tb_cflags(tb) == desc->cflags) { 171 /* check next page if needed */ 172 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 173 if (tb_phys_page1 == -1) { 174 return true; 175 } else { 176 tb_page_addr_t phys_page1; 177 vaddr virt_page1; 178 179 /* 180 * We know that the first page matched, and an otherwise valid TB 181 * encountered an incomplete instruction at the end of that page, 182 * therefore we know that generating a new TB from the current PC 183 * must also require reading from the next page -- even if the 184 * second pages do not match, and therefore the resulting insn 185 * is different for the new TB. Therefore any exception raised 186 * here by the faulting lookup is not premature. 187 */ 188 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 189 phys_page1 = get_page_addr_code(desc->env, virt_page1); 190 if (tb_phys_page1 == phys_page1) { 191 return true; 192 } 193 } 194 } 195 return false; 196 } 197 198 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 199 uint64_t cs_base, uint32_t flags, 200 uint32_t cflags) 201 { 202 tb_page_addr_t phys_pc; 203 struct tb_desc desc; 204 uint32_t h; 205 206 desc.env = cpu_env(cpu); 207 desc.cs_base = cs_base; 208 desc.flags = flags; 209 desc.cflags = cflags; 210 desc.pc = pc; 211 phys_pc = get_page_addr_code(desc.env, pc); 212 if (phys_pc == -1) { 213 return NULL; 214 } 215 desc.page_addr0 = phys_pc; 216 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 217 flags, cs_base, cflags); 218 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 219 } 220 221 /** 222 * tb_lookup: 223 * @cpu: CPU that will execute the returned translation block 224 * @pc: guest PC 225 * @cs_base: arch-specific value associated with translation block 226 * @flags: arch-specific translation block flags 227 * @cflags: CF_* flags 228 * 229 * Look up a translation block inside the QHT using @pc, @cs_base, @flags and 230 * @cflags. Uses @cpu's tb_jmp_cache. Might cause an exception, so have a 231 * longjmp destination ready. 232 * 233 * Returns: an existing translation block or NULL. 234 */ 235 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 236 uint64_t cs_base, uint32_t flags, 237 uint32_t cflags) 238 { 239 TranslationBlock *tb; 240 CPUJumpCache *jc; 241 uint32_t hash; 242 243 /* we should never be trying to look up an INVALID tb */ 244 tcg_debug_assert(!(cflags & CF_INVALID)); 245 246 hash = tb_jmp_cache_hash_func(pc); 247 jc = cpu->tb_jmp_cache; 248 249 tb = qatomic_read(&jc->array[hash].tb); 250 if (likely(tb && 251 jc->array[hash].pc == pc && 252 tb->cs_base == cs_base && 253 tb->flags == flags && 254 tb_cflags(tb) == cflags)) { 255 goto hit; 256 } 257 258 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 259 if (tb == NULL) { 260 return NULL; 261 } 262 263 jc->array[hash].pc = pc; 264 qatomic_set(&jc->array[hash].tb, tb); 265 266 hit: 267 /* 268 * As long as tb is not NULL, the contents are consistent. Therefore, 269 * the virtual PC has to match for non-CF_PCREL translations. 270 */ 271 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 272 return tb; 273 } 274 275 static void log_cpu_exec(vaddr pc, CPUState *cpu, 276 const TranslationBlock *tb) 277 { 278 if (qemu_log_in_addr_range(pc)) { 279 qemu_log_mask(CPU_LOG_EXEC, 280 "Trace %d: %p [%08" PRIx64 281 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 282 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 283 tb->flags, tb->cflags, lookup_symbol(pc)); 284 285 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 286 FILE *logfile = qemu_log_trylock(); 287 if (logfile) { 288 int flags = 0; 289 290 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 291 flags |= CPU_DUMP_FPU; 292 } 293 #if defined(TARGET_I386) 294 flags |= CPU_DUMP_CCOP; 295 #endif 296 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 297 flags |= CPU_DUMP_VPU; 298 } 299 cpu_dump_state(cpu, logfile, flags); 300 qemu_log_unlock(logfile); 301 } 302 } 303 } 304 } 305 306 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 307 uint32_t *cflags) 308 { 309 CPUBreakpoint *bp; 310 bool match_page = false; 311 312 /* 313 * Singlestep overrides breakpoints. 314 * This requirement is visible in the record-replay tests, where 315 * we would fail to make forward progress in reverse-continue. 316 * 317 * TODO: gdb singlestep should only override gdb breakpoints, 318 * so that one could (gdb) singlestep into the guest kernel's 319 * architectural breakpoint handler. 320 */ 321 if (cpu->singlestep_enabled) { 322 return false; 323 } 324 325 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 326 /* 327 * If we have an exact pc match, trigger the breakpoint. 328 * Otherwise, note matches within the page. 329 */ 330 if (pc == bp->pc) { 331 bool match_bp = false; 332 333 if (bp->flags & BP_GDB) { 334 match_bp = true; 335 } else if (bp->flags & BP_CPU) { 336 #ifdef CONFIG_USER_ONLY 337 g_assert_not_reached(); 338 #else 339 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 340 assert(tcg_ops->debug_check_breakpoint); 341 match_bp = tcg_ops->debug_check_breakpoint(cpu); 342 #endif 343 } 344 345 if (match_bp) { 346 cpu->exception_index = EXCP_DEBUG; 347 return true; 348 } 349 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 350 match_page = true; 351 } 352 } 353 354 /* 355 * Within the same page as a breakpoint, single-step, 356 * returning to helper_lookup_tb_ptr after each insn looking 357 * for the actual breakpoint. 358 * 359 * TODO: Perhaps better to record all of the TBs associated 360 * with a given virtual page that contains a breakpoint, and 361 * then invalidate them when a new overlapping breakpoint is 362 * set on the page. Non-overlapping TBs would not be 363 * invalidated, nor would any TB need to be invalidated as 364 * breakpoints are removed. 365 */ 366 if (match_page) { 367 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 368 } 369 return false; 370 } 371 372 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 373 uint32_t *cflags) 374 { 375 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 376 check_for_breakpoints_slow(cpu, pc, cflags); 377 } 378 379 /** 380 * helper_lookup_tb_ptr: quick check for next tb 381 * @env: current cpu state 382 * 383 * Look for an existing TB matching the current cpu state. 384 * If found, return the code pointer. If not found, return 385 * the tcg epilogue so that we return into cpu_tb_exec. 386 */ 387 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 388 { 389 CPUState *cpu = env_cpu(env); 390 TranslationBlock *tb; 391 vaddr pc; 392 uint64_t cs_base; 393 uint32_t flags, cflags; 394 395 /* 396 * By definition we've just finished a TB, so I/O is OK. 397 * Avoid the possibility of calling cpu_io_recompile() if 398 * a page table walk triggered by tb_lookup() calling 399 * probe_access_internal() happens to touch an MMIO device. 400 * The next TB, if we chain to it, will clear the flag again. 401 */ 402 cpu->neg.can_do_io = true; 403 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 404 405 cflags = curr_cflags(cpu); 406 if (check_for_breakpoints(cpu, pc, &cflags)) { 407 cpu_loop_exit(cpu); 408 } 409 410 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 411 if (tb == NULL) { 412 return tcg_code_gen_epilogue; 413 } 414 415 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 416 log_cpu_exec(pc, cpu, tb); 417 } 418 419 return tb->tc.ptr; 420 } 421 422 /* Return the current PC from CPU, which may be cached in TB. */ 423 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb) 424 { 425 if (tb_cflags(tb) & CF_PCREL) { 426 return cpu->cc->get_pc(cpu); 427 } else { 428 return tb->pc; 429 } 430 } 431 432 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 433 /* 434 * Disable CFI checks. 435 * TCG creates binary blobs at runtime, with the transformed code. 436 * A TB is a blob of binary code, created at runtime and called with an 437 * indirect function call. Since such function did not exist at compile time, 438 * the CFI runtime has no way to verify its signature and would fail. 439 * TCG is not considered a security-sensitive part of QEMU so this does not 440 * affect the impact of CFI in environment with high security requirements 441 */ 442 static inline TranslationBlock * QEMU_DISABLE_CFI 443 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 444 { 445 uintptr_t ret; 446 TranslationBlock *last_tb; 447 const void *tb_ptr = itb->tc.ptr; 448 449 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 450 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 451 } 452 453 qemu_thread_jit_execute(); 454 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 455 cpu->neg.can_do_io = true; 456 qemu_plugin_disable_mem_helpers(cpu); 457 /* 458 * TODO: Delay swapping back to the read-write region of the TB 459 * until we actually need to modify the TB. The read-only copy, 460 * coming from the rx region, shares the same host TLB entry as 461 * the code that executed the exit_tb opcode that arrived here. 462 * If we insist on touching both the RX and the RW pages, we 463 * double the host TLB pressure. 464 */ 465 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 466 *tb_exit = ret & TB_EXIT_MASK; 467 468 trace_exec_tb_exit(last_tb, *tb_exit); 469 470 if (*tb_exit > TB_EXIT_IDX1) { 471 /* We didn't start executing this TB (eg because the instruction 472 * counter hit zero); we must restore the guest PC to the address 473 * of the start of the TB. 474 */ 475 CPUClass *cc = cpu->cc; 476 const TCGCPUOps *tcg_ops = cc->tcg_ops; 477 478 if (tcg_ops->synchronize_from_tb) { 479 tcg_ops->synchronize_from_tb(cpu, last_tb); 480 } else { 481 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 482 assert(cc->set_pc); 483 cc->set_pc(cpu, last_tb->pc); 484 } 485 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 486 vaddr pc = log_pc(cpu, last_tb); 487 if (qemu_log_in_addr_range(pc)) { 488 qemu_log("Stopped execution of TB chain before %p [%016" 489 VADDR_PRIx "] %s\n", 490 last_tb->tc.ptr, pc, lookup_symbol(pc)); 491 } 492 } 493 } 494 495 /* 496 * If gdb single-step, and we haven't raised another exception, 497 * raise a debug exception. Single-step with another exception 498 * is handled in cpu_handle_exception. 499 */ 500 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 501 cpu->exception_index = EXCP_DEBUG; 502 cpu_loop_exit(cpu); 503 } 504 505 return last_tb; 506 } 507 508 509 static void cpu_exec_enter(CPUState *cpu) 510 { 511 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 512 513 if (tcg_ops->cpu_exec_enter) { 514 tcg_ops->cpu_exec_enter(cpu); 515 } 516 } 517 518 static void cpu_exec_exit(CPUState *cpu) 519 { 520 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 521 522 if (tcg_ops->cpu_exec_exit) { 523 tcg_ops->cpu_exec_exit(cpu); 524 } 525 } 526 527 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 528 { 529 /* Non-buggy compilers preserve this; assert the correct value. */ 530 g_assert(cpu == current_cpu); 531 532 #ifdef CONFIG_USER_ONLY 533 clear_helper_retaddr(); 534 if (have_mmap_lock()) { 535 mmap_unlock(); 536 } 537 #else 538 /* 539 * For softmmu, a tlb_fill fault during translation will land here, 540 * and we need to release any page locks held. In system mode we 541 * have one tcg_ctx per thread, so we know it was this cpu doing 542 * the translation. 543 * 544 * Alternative 1: Install a cleanup to be called via an exception 545 * handling safe longjmp. It seems plausible that all our hosts 546 * support such a thing. We'd have to properly register unwind info 547 * for the JIT for EH, rather that just for GDB. 548 * 549 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 550 * capture the cpu_loop_exit longjmp, perform the cleanup, and 551 * jump again to arrive here. 552 */ 553 if (tcg_ctx->gen_tb) { 554 tb_unlock_pages(tcg_ctx->gen_tb); 555 tcg_ctx->gen_tb = NULL; 556 } 557 #endif 558 if (bql_locked()) { 559 bql_unlock(); 560 } 561 assert_no_pages_locked(); 562 } 563 564 void cpu_exec_step_atomic(CPUState *cpu) 565 { 566 CPUArchState *env = cpu_env(cpu); 567 TranslationBlock *tb; 568 vaddr pc; 569 uint64_t cs_base; 570 uint32_t flags, cflags; 571 int tb_exit; 572 573 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 574 start_exclusive(); 575 g_assert(cpu == current_cpu); 576 g_assert(!cpu->running); 577 cpu->running = true; 578 579 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 580 581 cflags = curr_cflags(cpu); 582 /* Execute in a serial context. */ 583 cflags &= ~CF_PARALLEL; 584 /* After 1 insn, return and release the exclusive lock. */ 585 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 586 /* 587 * No need to check_for_breakpoints here. 588 * We only arrive in cpu_exec_step_atomic after beginning execution 589 * of an insn that includes an atomic operation we can't handle. 590 * Any breakpoint for this insn will have been recognized earlier. 591 */ 592 593 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 594 if (tb == NULL) { 595 mmap_lock(); 596 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 597 mmap_unlock(); 598 } 599 600 cpu_exec_enter(cpu); 601 /* execute the generated code */ 602 trace_exec_tb(tb, pc); 603 cpu_tb_exec(cpu, tb, &tb_exit); 604 cpu_exec_exit(cpu); 605 } else { 606 cpu_exec_longjmp_cleanup(cpu); 607 } 608 609 /* 610 * As we start the exclusive region before codegen we must still 611 * be in the region if we longjump out of either the codegen or 612 * the execution. 613 */ 614 g_assert(cpu_in_exclusive_context(cpu)); 615 cpu->running = false; 616 end_exclusive(); 617 } 618 619 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 620 { 621 /* 622 * Get the rx view of the structure, from which we find the 623 * executable code address, and tb_target_set_jmp_target can 624 * produce a pc-relative displacement to jmp_target_addr[n]. 625 */ 626 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 627 uintptr_t offset = tb->jmp_insn_offset[n]; 628 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 629 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 630 631 tb->jmp_target_addr[n] = addr; 632 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 633 } 634 635 static inline void tb_add_jump(TranslationBlock *tb, int n, 636 TranslationBlock *tb_next) 637 { 638 uintptr_t old; 639 640 qemu_thread_jit_write(); 641 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 642 qemu_spin_lock(&tb_next->jmp_lock); 643 644 /* make sure the destination TB is valid */ 645 if (tb_next->cflags & CF_INVALID) { 646 goto out_unlock_next; 647 } 648 /* Atomically claim the jump destination slot only if it was NULL */ 649 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 650 (uintptr_t)tb_next); 651 if (old) { 652 goto out_unlock_next; 653 } 654 655 /* patch the native jump address */ 656 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 657 658 /* add in TB jmp list */ 659 tb->jmp_list_next[n] = tb_next->jmp_list_head; 660 tb_next->jmp_list_head = (uintptr_t)tb | n; 661 662 qemu_spin_unlock(&tb_next->jmp_lock); 663 664 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 665 tb->tc.ptr, n, tb_next->tc.ptr); 666 return; 667 668 out_unlock_next: 669 qemu_spin_unlock(&tb_next->jmp_lock); 670 return; 671 } 672 673 static inline bool cpu_handle_halt(CPUState *cpu) 674 { 675 #ifndef CONFIG_USER_ONLY 676 if (cpu->halted) { 677 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 678 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 679 680 if (!leave_halt) { 681 return true; 682 } 683 684 cpu->halted = 0; 685 } 686 #endif /* !CONFIG_USER_ONLY */ 687 688 return false; 689 } 690 691 static inline void cpu_handle_debug_exception(CPUState *cpu) 692 { 693 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 694 CPUWatchpoint *wp; 695 696 if (!cpu->watchpoint_hit) { 697 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 698 wp->flags &= ~BP_WATCHPOINT_HIT; 699 } 700 } 701 702 if (tcg_ops->debug_excp_handler) { 703 tcg_ops->debug_excp_handler(cpu); 704 } 705 } 706 707 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 708 { 709 if (cpu->exception_index < 0) { 710 #ifndef CONFIG_USER_ONLY 711 if (replay_has_exception() 712 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 713 /* Execute just one insn to trigger exception pending in the log */ 714 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 715 | CF_NOIRQ | 1; 716 } 717 #endif 718 return false; 719 } 720 721 if (cpu->exception_index >= EXCP_INTERRUPT) { 722 /* exit request from the cpu execution loop */ 723 *ret = cpu->exception_index; 724 if (*ret == EXCP_DEBUG) { 725 cpu_handle_debug_exception(cpu); 726 } 727 cpu->exception_index = -1; 728 return true; 729 } 730 731 #if defined(CONFIG_USER_ONLY) 732 /* 733 * If user mode only, we simulate a fake exception which will be 734 * handled outside the cpu execution loop. 735 */ 736 #if defined(TARGET_I386) 737 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 738 tcg_ops->fake_user_interrupt(cpu); 739 #endif /* TARGET_I386 */ 740 *ret = cpu->exception_index; 741 cpu->exception_index = -1; 742 return true; 743 #else 744 if (replay_exception()) { 745 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 746 747 bql_lock(); 748 tcg_ops->do_interrupt(cpu); 749 bql_unlock(); 750 cpu->exception_index = -1; 751 752 if (unlikely(cpu->singlestep_enabled)) { 753 /* 754 * After processing the exception, ensure an EXCP_DEBUG is 755 * raised when single-stepping so that GDB doesn't miss the 756 * next instruction. 757 */ 758 *ret = EXCP_DEBUG; 759 cpu_handle_debug_exception(cpu); 760 return true; 761 } 762 } else if (!replay_has_interrupt()) { 763 /* give a chance to iothread in replay mode */ 764 *ret = EXCP_INTERRUPT; 765 return true; 766 } 767 #endif 768 769 return false; 770 } 771 772 static inline bool icount_exit_request(CPUState *cpu) 773 { 774 if (!icount_enabled()) { 775 return false; 776 } 777 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 778 return false; 779 } 780 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 781 } 782 783 static inline bool cpu_handle_interrupt(CPUState *cpu, 784 TranslationBlock **last_tb) 785 { 786 /* 787 * If we have requested custom cflags with CF_NOIRQ we should 788 * skip checking here. Any pending interrupts will get picked up 789 * by the next TB we execute under normal cflags. 790 */ 791 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 792 return false; 793 } 794 795 /* Clear the interrupt flag now since we're processing 796 * cpu->interrupt_request and cpu->exit_request. 797 * Ensure zeroing happens before reading cpu->exit_request or 798 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 799 */ 800 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 801 802 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 803 int interrupt_request; 804 bql_lock(); 805 interrupt_request = cpu->interrupt_request; 806 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 807 /* Mask out external interrupts for this step. */ 808 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 809 } 810 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 811 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 812 cpu->exception_index = EXCP_DEBUG; 813 bql_unlock(); 814 return true; 815 } 816 #if !defined(CONFIG_USER_ONLY) 817 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 818 /* Do nothing */ 819 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 820 replay_interrupt(); 821 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 822 cpu->halted = 1; 823 cpu->exception_index = EXCP_HLT; 824 bql_unlock(); 825 return true; 826 } 827 #if defined(TARGET_I386) 828 else if (interrupt_request & CPU_INTERRUPT_INIT) { 829 X86CPU *x86_cpu = X86_CPU(cpu); 830 CPUArchState *env = &x86_cpu->env; 831 replay_interrupt(); 832 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 833 do_cpu_init(x86_cpu); 834 cpu->exception_index = EXCP_HALTED; 835 bql_unlock(); 836 return true; 837 } 838 #else 839 else if (interrupt_request & CPU_INTERRUPT_RESET) { 840 replay_interrupt(); 841 cpu_reset(cpu); 842 bql_unlock(); 843 return true; 844 } 845 #endif /* !TARGET_I386 */ 846 /* The target hook has 3 exit conditions: 847 False when the interrupt isn't processed, 848 True when it is, and we should restart on a new TB, 849 and via longjmp via cpu_loop_exit. */ 850 else { 851 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 852 853 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 854 if (!tcg_ops->need_replay_interrupt || 855 tcg_ops->need_replay_interrupt(interrupt_request)) { 856 replay_interrupt(); 857 } 858 /* 859 * After processing the interrupt, ensure an EXCP_DEBUG is 860 * raised when single-stepping so that GDB doesn't miss the 861 * next instruction. 862 */ 863 if (unlikely(cpu->singlestep_enabled)) { 864 cpu->exception_index = EXCP_DEBUG; 865 bql_unlock(); 866 return true; 867 } 868 cpu->exception_index = -1; 869 *last_tb = NULL; 870 } 871 /* The target hook may have updated the 'cpu->interrupt_request'; 872 * reload the 'interrupt_request' value */ 873 interrupt_request = cpu->interrupt_request; 874 } 875 #endif /* !CONFIG_USER_ONLY */ 876 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 877 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 878 /* ensure that no TB jump will be modified as 879 the program flow was changed */ 880 *last_tb = NULL; 881 } 882 883 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 884 bql_unlock(); 885 } 886 887 /* Finally, check if we need to exit to the main loop. */ 888 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 889 qatomic_set(&cpu->exit_request, 0); 890 if (cpu->exception_index == -1) { 891 cpu->exception_index = EXCP_INTERRUPT; 892 } 893 return true; 894 } 895 896 return false; 897 } 898 899 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 900 vaddr pc, TranslationBlock **last_tb, 901 int *tb_exit) 902 { 903 trace_exec_tb(tb, pc); 904 tb = cpu_tb_exec(cpu, tb, tb_exit); 905 if (*tb_exit != TB_EXIT_REQUESTED) { 906 *last_tb = tb; 907 return; 908 } 909 910 *last_tb = NULL; 911 if (cpu_loop_exit_requested(cpu)) { 912 /* Something asked us to stop executing chained TBs; just 913 * continue round the main loop. Whatever requested the exit 914 * will also have set something else (eg exit_request or 915 * interrupt_request) which will be handled by 916 * cpu_handle_interrupt. cpu_handle_interrupt will also 917 * clear cpu->icount_decr.u16.high. 918 */ 919 return; 920 } 921 922 /* Instruction counter expired. */ 923 assert(icount_enabled()); 924 #ifndef CONFIG_USER_ONLY 925 /* Ensure global icount has gone forward */ 926 icount_update(cpu); 927 /* Refill decrementer and continue execution. */ 928 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 929 cpu->neg.icount_decr.u16.low = insns_left; 930 cpu->icount_extra = cpu->icount_budget - insns_left; 931 932 /* 933 * If the next tb has more instructions than we have left to 934 * execute we need to ensure we find/generate a TB with exactly 935 * insns_left instructions in it. 936 */ 937 if (insns_left > 0 && insns_left < tb->icount) { 938 assert(insns_left <= CF_COUNT_MASK); 939 assert(cpu->icount_extra == 0); 940 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 941 } 942 #endif 943 } 944 945 /* main execution loop */ 946 947 static int __attribute__((noinline)) 948 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 949 { 950 int ret; 951 952 /* if an exception is pending, we execute it here */ 953 while (!cpu_handle_exception(cpu, &ret)) { 954 TranslationBlock *last_tb = NULL; 955 int tb_exit = 0; 956 957 while (!cpu_handle_interrupt(cpu, &last_tb)) { 958 TranslationBlock *tb; 959 vaddr pc; 960 uint64_t cs_base; 961 uint32_t flags, cflags; 962 963 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 964 965 /* 966 * When requested, use an exact setting for cflags for the next 967 * execution. This is used for icount, precise smc, and stop- 968 * after-access watchpoints. Since this request should never 969 * have CF_INVALID set, -1 is a convenient invalid value that 970 * does not require tcg headers for cpu_common_reset. 971 */ 972 cflags = cpu->cflags_next_tb; 973 if (cflags == -1) { 974 cflags = curr_cflags(cpu); 975 } else { 976 cpu->cflags_next_tb = -1; 977 } 978 979 if (check_for_breakpoints(cpu, pc, &cflags)) { 980 break; 981 } 982 983 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 984 if (tb == NULL) { 985 CPUJumpCache *jc; 986 uint32_t h; 987 988 mmap_lock(); 989 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 990 mmap_unlock(); 991 992 /* 993 * We add the TB in the virtual pc hash table 994 * for the fast lookup 995 */ 996 h = tb_jmp_cache_hash_func(pc); 997 jc = cpu->tb_jmp_cache; 998 jc->array[h].pc = pc; 999 qatomic_set(&jc->array[h].tb, tb); 1000 } 1001 1002 #ifndef CONFIG_USER_ONLY 1003 /* 1004 * We don't take care of direct jumps when address mapping 1005 * changes in system emulation. So it's not safe to make a 1006 * direct jump to a TB spanning two pages because the mapping 1007 * for the second page can change. 1008 */ 1009 if (tb_page_addr1(tb) != -1) { 1010 last_tb = NULL; 1011 } 1012 #endif 1013 /* See if we can patch the calling TB. */ 1014 if (last_tb) { 1015 tb_add_jump(last_tb, tb_exit, tb); 1016 } 1017 1018 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1019 1020 /* Try to align the host and virtual clocks 1021 if the guest is in advance */ 1022 align_clocks(sc, cpu); 1023 } 1024 } 1025 return ret; 1026 } 1027 1028 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1029 { 1030 /* Prepare setjmp context for exception handling. */ 1031 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1032 cpu_exec_longjmp_cleanup(cpu); 1033 } 1034 1035 return cpu_exec_loop(cpu, sc); 1036 } 1037 1038 int cpu_exec(CPUState *cpu) 1039 { 1040 int ret; 1041 SyncClocks sc = { 0 }; 1042 1043 /* replay_interrupt may need current_cpu */ 1044 current_cpu = cpu; 1045 1046 if (cpu_handle_halt(cpu)) { 1047 return EXCP_HALTED; 1048 } 1049 1050 RCU_READ_LOCK_GUARD(); 1051 cpu_exec_enter(cpu); 1052 1053 /* 1054 * Calculate difference between guest clock and host clock. 1055 * This delay includes the delay of the last cycle, so 1056 * what we have to do is sleep until it is 0. As for the 1057 * advance/delay we gain here, we try to fix it next time. 1058 */ 1059 init_delay_params(&sc, cpu); 1060 1061 ret = cpu_exec_setjmp(cpu, &sc); 1062 1063 cpu_exec_exit(cpu); 1064 return ret; 1065 } 1066 1067 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1068 { 1069 static bool tcg_target_initialized; 1070 1071 if (!tcg_target_initialized) { 1072 /* Check mandatory TCGCPUOps handlers */ 1073 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 1074 #ifndef CONFIG_USER_ONLY 1075 assert(tcg_ops->cpu_exec_halt); 1076 assert(tcg_ops->cpu_exec_interrupt); 1077 #endif /* !CONFIG_USER_ONLY */ 1078 assert(tcg_ops->translate_code); 1079 assert(tcg_ops->mmu_index); 1080 tcg_ops->initialize(); 1081 tcg_target_initialized = true; 1082 } 1083 1084 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1085 tlb_init(cpu); 1086 #ifndef CONFIG_USER_ONLY 1087 tcg_iommu_init_notifier_list(cpu); 1088 #endif /* !CONFIG_USER_ONLY */ 1089 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1090 1091 return true; 1092 } 1093 1094 /* undo the initializations in reverse order */ 1095 void tcg_exec_unrealizefn(CPUState *cpu) 1096 { 1097 #ifndef CONFIG_USER_ONLY 1098 tcg_iommu_free_notifier_list(cpu); 1099 #endif /* !CONFIG_USER_ONLY */ 1100 1101 tlb_destroy(cpu); 1102 g_free_rcu(cpu->tb_jmp_cache, rcu); 1103 } 1104