1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "exec/cpu-all.h" 38 #include "sysemu/cpu-timers.h" 39 #include "exec/replay-core.h" 40 #include "sysemu/tcg.h" 41 #include "exec/helper-proto.h" 42 #include "tb-jmp-cache.h" 43 #include "tb-hash.h" 44 #include "tb-context.h" 45 #include "internal.h" 46 47 /* -icount align implementation. */ 48 49 typedef struct SyncClocks { 50 int64_t diff_clk; 51 int64_t last_cpu_icount; 52 int64_t realtime_clock; 53 } SyncClocks; 54 55 #if !defined(CONFIG_USER_ONLY) 56 /* Allow the guest to have a max 3ms advance. 57 * The difference between the 2 clocks could therefore 58 * oscillate around 0. 59 */ 60 #define VM_CLOCK_ADVANCE 3000000 61 #define THRESHOLD_REDUCE 1.5 62 #define MAX_DELAY_PRINT_RATE 2000000000LL 63 #define MAX_NB_PRINTS 100 64 65 int64_t max_delay; 66 int64_t max_advance; 67 68 static void align_clocks(SyncClocks *sc, CPUState *cpu) 69 { 70 int64_t cpu_icount; 71 72 if (!icount_align_option) { 73 return; 74 } 75 76 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 78 sc->last_cpu_icount = cpu_icount; 79 80 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 81 #ifndef _WIN32 82 struct timespec sleep_delay, rem_delay; 83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 85 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 87 } else { 88 sc->diff_clk = 0; 89 } 90 #else 91 Sleep(sc->diff_clk / SCALE_MS); 92 sc->diff_clk = 0; 93 #endif 94 } 95 } 96 97 static void print_delay(const SyncClocks *sc) 98 { 99 static float threshold_delay; 100 static int64_t last_realtime_clock; 101 static int nb_prints; 102 103 if (icount_align_option && 104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 105 nb_prints < MAX_NB_PRINTS) { 106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 107 (-sc->diff_clk / (float)1000000000LL < 108 (threshold_delay - THRESHOLD_REDUCE))) { 109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 111 threshold_delay - 1, 112 threshold_delay); 113 nb_prints++; 114 last_realtime_clock = sc->realtime_clock; 115 } 116 } 117 } 118 119 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 120 { 121 if (!icount_align_option) { 122 return; 123 } 124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 126 sc->last_cpu_icount 127 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 128 if (sc->diff_clk < max_delay) { 129 max_delay = sc->diff_clk; 130 } 131 if (sc->diff_clk > max_advance) { 132 max_advance = sc->diff_clk; 133 } 134 135 /* Print every 2s max if the guest is late. We limit the number 136 of printed messages to NB_PRINT_MAX(currently 100) */ 137 print_delay(sc); 138 } 139 #else 140 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 141 { 142 } 143 144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 145 { 146 } 147 #endif /* CONFIG USER ONLY */ 148 149 uint32_t curr_cflags(CPUState *cpu) 150 { 151 uint32_t cflags = cpu->tcg_cflags; 152 153 /* 154 * Record gdb single-step. We should be exiting the TB by raising 155 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 156 * 157 * For singlestep and -d nochain, suppress goto_tb so that 158 * we can log -d cpu,exec after every TB. 159 */ 160 if (unlikely(cpu->singlestep_enabled)) { 161 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 162 } else if (qatomic_read(&one_insn_per_tb)) { 163 cflags |= CF_NO_GOTO_TB | 1; 164 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 165 cflags |= CF_NO_GOTO_TB; 166 } 167 168 return cflags; 169 } 170 171 struct tb_desc { 172 target_ulong pc; 173 target_ulong cs_base; 174 CPUArchState *env; 175 tb_page_addr_t page_addr0; 176 uint32_t flags; 177 uint32_t cflags; 178 }; 179 180 static bool tb_lookup_cmp(const void *p, const void *d) 181 { 182 const TranslationBlock *tb = p; 183 const struct tb_desc *desc = d; 184 185 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 186 tb_page_addr0(tb) == desc->page_addr0 && 187 tb->cs_base == desc->cs_base && 188 tb->flags == desc->flags && 189 tb_cflags(tb) == desc->cflags) { 190 /* check next page if needed */ 191 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 192 if (tb_phys_page1 == -1) { 193 return true; 194 } else { 195 tb_page_addr_t phys_page1; 196 target_ulong virt_page1; 197 198 /* 199 * We know that the first page matched, and an otherwise valid TB 200 * encountered an incomplete instruction at the end of that page, 201 * therefore we know that generating a new TB from the current PC 202 * must also require reading from the next page -- even if the 203 * second pages do not match, and therefore the resulting insn 204 * is different for the new TB. Therefore any exception raised 205 * here by the faulting lookup is not premature. 206 */ 207 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 208 phys_page1 = get_page_addr_code(desc->env, virt_page1); 209 if (tb_phys_page1 == phys_page1) { 210 return true; 211 } 212 } 213 } 214 return false; 215 } 216 217 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 218 target_ulong cs_base, uint32_t flags, 219 uint32_t cflags) 220 { 221 tb_page_addr_t phys_pc; 222 struct tb_desc desc; 223 uint32_t h; 224 225 desc.env = cpu->env_ptr; 226 desc.cs_base = cs_base; 227 desc.flags = flags; 228 desc.cflags = cflags; 229 desc.pc = pc; 230 phys_pc = get_page_addr_code(desc.env, pc); 231 if (phys_pc == -1) { 232 return NULL; 233 } 234 desc.page_addr0 = phys_pc; 235 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 236 flags, cs_base, cflags); 237 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 238 } 239 240 /* Might cause an exception, so have a longjmp destination ready */ 241 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc, 242 target_ulong cs_base, 243 uint32_t flags, uint32_t cflags) 244 { 245 TranslationBlock *tb; 246 CPUJumpCache *jc; 247 uint32_t hash; 248 249 /* we should never be trying to look up an INVALID tb */ 250 tcg_debug_assert(!(cflags & CF_INVALID)); 251 252 hash = tb_jmp_cache_hash_func(pc); 253 jc = cpu->tb_jmp_cache; 254 255 if (cflags & CF_PCREL) { 256 /* Use acquire to ensure current load of pc from jc. */ 257 tb = qatomic_load_acquire(&jc->array[hash].tb); 258 259 if (likely(tb && 260 jc->array[hash].pc == pc && 261 tb->cs_base == cs_base && 262 tb->flags == flags && 263 tb_cflags(tb) == cflags)) { 264 return tb; 265 } 266 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 267 if (tb == NULL) { 268 return NULL; 269 } 270 jc->array[hash].pc = pc; 271 /* Ensure pc is written first. */ 272 qatomic_store_release(&jc->array[hash].tb, tb); 273 } else { 274 /* Use rcu_read to ensure current load of pc from *tb. */ 275 tb = qatomic_rcu_read(&jc->array[hash].tb); 276 277 if (likely(tb && 278 tb->pc == pc && 279 tb->cs_base == cs_base && 280 tb->flags == flags && 281 tb_cflags(tb) == cflags)) { 282 return tb; 283 } 284 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 285 if (tb == NULL) { 286 return NULL; 287 } 288 /* Use the pc value already stored in tb->pc. */ 289 qatomic_set(&jc->array[hash].tb, tb); 290 } 291 292 return tb; 293 } 294 295 static void log_cpu_exec(target_ulong pc, CPUState *cpu, 296 const TranslationBlock *tb) 297 { 298 if (qemu_log_in_addr_range(pc)) { 299 qemu_log_mask(CPU_LOG_EXEC, 300 "Trace %d: %p [%08" PRIx64 301 "/" TARGET_FMT_lx "/%08x/%08x] %s\n", 302 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 303 tb->flags, tb->cflags, lookup_symbol(pc)); 304 305 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 306 FILE *logfile = qemu_log_trylock(); 307 if (logfile) { 308 int flags = 0; 309 310 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 311 flags |= CPU_DUMP_FPU; 312 } 313 #if defined(TARGET_I386) 314 flags |= CPU_DUMP_CCOP; 315 #endif 316 cpu_dump_state(cpu, logfile, flags); 317 qemu_log_unlock(logfile); 318 } 319 } 320 } 321 } 322 323 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc, 324 uint32_t *cflags) 325 { 326 CPUBreakpoint *bp; 327 bool match_page = false; 328 329 /* 330 * Singlestep overrides breakpoints. 331 * This requirement is visible in the record-replay tests, where 332 * we would fail to make forward progress in reverse-continue. 333 * 334 * TODO: gdb singlestep should only override gdb breakpoints, 335 * so that one could (gdb) singlestep into the guest kernel's 336 * architectural breakpoint handler. 337 */ 338 if (cpu->singlestep_enabled) { 339 return false; 340 } 341 342 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 343 /* 344 * If we have an exact pc match, trigger the breakpoint. 345 * Otherwise, note matches within the page. 346 */ 347 if (pc == bp->pc) { 348 bool match_bp = false; 349 350 if (bp->flags & BP_GDB) { 351 match_bp = true; 352 } else if (bp->flags & BP_CPU) { 353 #ifdef CONFIG_USER_ONLY 354 g_assert_not_reached(); 355 #else 356 CPUClass *cc = CPU_GET_CLASS(cpu); 357 assert(cc->tcg_ops->debug_check_breakpoint); 358 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 359 #endif 360 } 361 362 if (match_bp) { 363 cpu->exception_index = EXCP_DEBUG; 364 return true; 365 } 366 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 367 match_page = true; 368 } 369 } 370 371 /* 372 * Within the same page as a breakpoint, single-step, 373 * returning to helper_lookup_tb_ptr after each insn looking 374 * for the actual breakpoint. 375 * 376 * TODO: Perhaps better to record all of the TBs associated 377 * with a given virtual page that contains a breakpoint, and 378 * then invalidate them when a new overlapping breakpoint is 379 * set on the page. Non-overlapping TBs would not be 380 * invalidated, nor would any TB need to be invalidated as 381 * breakpoints are removed. 382 */ 383 if (match_page) { 384 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 385 } 386 return false; 387 } 388 389 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc, 390 uint32_t *cflags) 391 { 392 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 393 check_for_breakpoints_slow(cpu, pc, cflags); 394 } 395 396 /** 397 * helper_lookup_tb_ptr: quick check for next tb 398 * @env: current cpu state 399 * 400 * Look for an existing TB matching the current cpu state. 401 * If found, return the code pointer. If not found, return 402 * the tcg epilogue so that we return into cpu_tb_exec. 403 */ 404 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 405 { 406 CPUState *cpu = env_cpu(env); 407 TranslationBlock *tb; 408 target_ulong cs_base, pc; 409 uint32_t flags, cflags; 410 411 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 412 413 cflags = curr_cflags(cpu); 414 if (check_for_breakpoints(cpu, pc, &cflags)) { 415 cpu_loop_exit(cpu); 416 } 417 418 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 419 if (tb == NULL) { 420 return tcg_code_gen_epilogue; 421 } 422 423 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 424 log_cpu_exec(pc, cpu, tb); 425 } 426 427 return tb->tc.ptr; 428 } 429 430 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 431 /* 432 * Disable CFI checks. 433 * TCG creates binary blobs at runtime, with the transformed code. 434 * A TB is a blob of binary code, created at runtime and called with an 435 * indirect function call. Since such function did not exist at compile time, 436 * the CFI runtime has no way to verify its signature and would fail. 437 * TCG is not considered a security-sensitive part of QEMU so this does not 438 * affect the impact of CFI in environment with high security requirements 439 */ 440 static inline TranslationBlock * QEMU_DISABLE_CFI 441 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 442 { 443 CPUArchState *env = cpu->env_ptr; 444 uintptr_t ret; 445 TranslationBlock *last_tb; 446 const void *tb_ptr = itb->tc.ptr; 447 448 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 449 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 450 } 451 452 qemu_thread_jit_execute(); 453 ret = tcg_qemu_tb_exec(env, tb_ptr); 454 cpu->can_do_io = 1; 455 qemu_plugin_disable_mem_helpers(cpu); 456 /* 457 * TODO: Delay swapping back to the read-write region of the TB 458 * until we actually need to modify the TB. The read-only copy, 459 * coming from the rx region, shares the same host TLB entry as 460 * the code that executed the exit_tb opcode that arrived here. 461 * If we insist on touching both the RX and the RW pages, we 462 * double the host TLB pressure. 463 */ 464 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 465 *tb_exit = ret & TB_EXIT_MASK; 466 467 trace_exec_tb_exit(last_tb, *tb_exit); 468 469 if (*tb_exit > TB_EXIT_IDX1) { 470 /* We didn't start executing this TB (eg because the instruction 471 * counter hit zero); we must restore the guest PC to the address 472 * of the start of the TB. 473 */ 474 CPUClass *cc = CPU_GET_CLASS(cpu); 475 476 if (cc->tcg_ops->synchronize_from_tb) { 477 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 478 } else { 479 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 480 assert(cc->set_pc); 481 cc->set_pc(cpu, last_tb->pc); 482 } 483 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 484 target_ulong pc = log_pc(cpu, last_tb); 485 if (qemu_log_in_addr_range(pc)) { 486 qemu_log("Stopped execution of TB chain before %p [" 487 TARGET_FMT_lx "] %s\n", 488 last_tb->tc.ptr, pc, lookup_symbol(pc)); 489 } 490 } 491 } 492 493 /* 494 * If gdb single-step, and we haven't raised another exception, 495 * raise a debug exception. Single-step with another exception 496 * is handled in cpu_handle_exception. 497 */ 498 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 499 cpu->exception_index = EXCP_DEBUG; 500 cpu_loop_exit(cpu); 501 } 502 503 return last_tb; 504 } 505 506 507 static void cpu_exec_enter(CPUState *cpu) 508 { 509 CPUClass *cc = CPU_GET_CLASS(cpu); 510 511 if (cc->tcg_ops->cpu_exec_enter) { 512 cc->tcg_ops->cpu_exec_enter(cpu); 513 } 514 } 515 516 static void cpu_exec_exit(CPUState *cpu) 517 { 518 CPUClass *cc = CPU_GET_CLASS(cpu); 519 520 if (cc->tcg_ops->cpu_exec_exit) { 521 cc->tcg_ops->cpu_exec_exit(cpu); 522 } 523 } 524 525 void cpu_exec_step_atomic(CPUState *cpu) 526 { 527 CPUArchState *env = cpu->env_ptr; 528 TranslationBlock *tb; 529 target_ulong cs_base, pc; 530 uint32_t flags, cflags; 531 int tb_exit; 532 533 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 534 start_exclusive(); 535 g_assert(cpu == current_cpu); 536 g_assert(!cpu->running); 537 cpu->running = true; 538 539 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 540 541 cflags = curr_cflags(cpu); 542 /* Execute in a serial context. */ 543 cflags &= ~CF_PARALLEL; 544 /* After 1 insn, return and release the exclusive lock. */ 545 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 546 /* 547 * No need to check_for_breakpoints here. 548 * We only arrive in cpu_exec_step_atomic after beginning execution 549 * of an insn that includes an atomic operation we can't handle. 550 * Any breakpoint for this insn will have been recognized earlier. 551 */ 552 553 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 554 if (tb == NULL) { 555 mmap_lock(); 556 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 557 mmap_unlock(); 558 } 559 560 cpu_exec_enter(cpu); 561 /* execute the generated code */ 562 trace_exec_tb(tb, pc); 563 cpu_tb_exec(cpu, tb, &tb_exit); 564 cpu_exec_exit(cpu); 565 } else { 566 #ifndef CONFIG_SOFTMMU 567 clear_helper_retaddr(); 568 if (have_mmap_lock()) { 569 mmap_unlock(); 570 } 571 #endif 572 if (qemu_mutex_iothread_locked()) { 573 qemu_mutex_unlock_iothread(); 574 } 575 assert_no_pages_locked(); 576 } 577 578 /* 579 * As we start the exclusive region before codegen we must still 580 * be in the region if we longjump out of either the codegen or 581 * the execution. 582 */ 583 g_assert(cpu_in_exclusive_context(cpu)); 584 cpu->running = false; 585 end_exclusive(); 586 } 587 588 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 589 { 590 /* 591 * Get the rx view of the structure, from which we find the 592 * executable code address, and tb_target_set_jmp_target can 593 * produce a pc-relative displacement to jmp_target_addr[n]. 594 */ 595 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 596 uintptr_t offset = tb->jmp_insn_offset[n]; 597 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 598 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 599 600 tb->jmp_target_addr[n] = addr; 601 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 602 } 603 604 static inline void tb_add_jump(TranslationBlock *tb, int n, 605 TranslationBlock *tb_next) 606 { 607 uintptr_t old; 608 609 qemu_thread_jit_write(); 610 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 611 qemu_spin_lock(&tb_next->jmp_lock); 612 613 /* make sure the destination TB is valid */ 614 if (tb_next->cflags & CF_INVALID) { 615 goto out_unlock_next; 616 } 617 /* Atomically claim the jump destination slot only if it was NULL */ 618 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 619 (uintptr_t)tb_next); 620 if (old) { 621 goto out_unlock_next; 622 } 623 624 /* patch the native jump address */ 625 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 626 627 /* add in TB jmp list */ 628 tb->jmp_list_next[n] = tb_next->jmp_list_head; 629 tb_next->jmp_list_head = (uintptr_t)tb | n; 630 631 qemu_spin_unlock(&tb_next->jmp_lock); 632 633 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 634 tb->tc.ptr, n, tb_next->tc.ptr); 635 return; 636 637 out_unlock_next: 638 qemu_spin_unlock(&tb_next->jmp_lock); 639 return; 640 } 641 642 static inline bool cpu_handle_halt(CPUState *cpu) 643 { 644 #ifndef CONFIG_USER_ONLY 645 if (cpu->halted) { 646 #if defined(TARGET_I386) 647 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 648 X86CPU *x86_cpu = X86_CPU(cpu); 649 qemu_mutex_lock_iothread(); 650 apic_poll_irq(x86_cpu->apic_state); 651 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 652 qemu_mutex_unlock_iothread(); 653 } 654 #endif /* TARGET_I386 */ 655 if (!cpu_has_work(cpu)) { 656 return true; 657 } 658 659 cpu->halted = 0; 660 } 661 #endif /* !CONFIG_USER_ONLY */ 662 663 return false; 664 } 665 666 static inline void cpu_handle_debug_exception(CPUState *cpu) 667 { 668 CPUClass *cc = CPU_GET_CLASS(cpu); 669 CPUWatchpoint *wp; 670 671 if (!cpu->watchpoint_hit) { 672 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 673 wp->flags &= ~BP_WATCHPOINT_HIT; 674 } 675 } 676 677 if (cc->tcg_ops->debug_excp_handler) { 678 cc->tcg_ops->debug_excp_handler(cpu); 679 } 680 } 681 682 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 683 { 684 if (cpu->exception_index < 0) { 685 #ifndef CONFIG_USER_ONLY 686 if (replay_has_exception() 687 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 688 /* Execute just one insn to trigger exception pending in the log */ 689 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 690 | CF_NOIRQ | 1; 691 } 692 #endif 693 return false; 694 } 695 if (cpu->exception_index >= EXCP_INTERRUPT) { 696 /* exit request from the cpu execution loop */ 697 *ret = cpu->exception_index; 698 if (*ret == EXCP_DEBUG) { 699 cpu_handle_debug_exception(cpu); 700 } 701 cpu->exception_index = -1; 702 return true; 703 } else { 704 #if defined(CONFIG_USER_ONLY) 705 /* if user mode only, we simulate a fake exception 706 which will be handled outside the cpu execution 707 loop */ 708 #if defined(TARGET_I386) 709 CPUClass *cc = CPU_GET_CLASS(cpu); 710 cc->tcg_ops->fake_user_interrupt(cpu); 711 #endif /* TARGET_I386 */ 712 *ret = cpu->exception_index; 713 cpu->exception_index = -1; 714 return true; 715 #else 716 if (replay_exception()) { 717 CPUClass *cc = CPU_GET_CLASS(cpu); 718 qemu_mutex_lock_iothread(); 719 cc->tcg_ops->do_interrupt(cpu); 720 qemu_mutex_unlock_iothread(); 721 cpu->exception_index = -1; 722 723 if (unlikely(cpu->singlestep_enabled)) { 724 /* 725 * After processing the exception, ensure an EXCP_DEBUG is 726 * raised when single-stepping so that GDB doesn't miss the 727 * next instruction. 728 */ 729 *ret = EXCP_DEBUG; 730 cpu_handle_debug_exception(cpu); 731 return true; 732 } 733 } else if (!replay_has_interrupt()) { 734 /* give a chance to iothread in replay mode */ 735 *ret = EXCP_INTERRUPT; 736 return true; 737 } 738 #endif 739 } 740 741 return false; 742 } 743 744 #ifndef CONFIG_USER_ONLY 745 /* 746 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 747 * "real" interrupt event later. It does not need to be recorded for 748 * replay purposes. 749 */ 750 static inline bool need_replay_interrupt(int interrupt_request) 751 { 752 #if defined(TARGET_I386) 753 return !(interrupt_request & CPU_INTERRUPT_POLL); 754 #else 755 return true; 756 #endif 757 } 758 #endif /* !CONFIG_USER_ONLY */ 759 760 static inline bool cpu_handle_interrupt(CPUState *cpu, 761 TranslationBlock **last_tb) 762 { 763 /* 764 * If we have requested custom cflags with CF_NOIRQ we should 765 * skip checking here. Any pending interrupts will get picked up 766 * by the next TB we execute under normal cflags. 767 */ 768 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 769 return false; 770 } 771 772 /* Clear the interrupt flag now since we're processing 773 * cpu->interrupt_request and cpu->exit_request. 774 * Ensure zeroing happens before reading cpu->exit_request or 775 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 776 */ 777 qatomic_set_mb(&cpu_neg(cpu)->icount_decr.u16.high, 0); 778 779 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 780 int interrupt_request; 781 qemu_mutex_lock_iothread(); 782 interrupt_request = cpu->interrupt_request; 783 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 784 /* Mask out external interrupts for this step. */ 785 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 786 } 787 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 788 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 789 cpu->exception_index = EXCP_DEBUG; 790 qemu_mutex_unlock_iothread(); 791 return true; 792 } 793 #if !defined(CONFIG_USER_ONLY) 794 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 795 /* Do nothing */ 796 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 797 replay_interrupt(); 798 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 799 cpu->halted = 1; 800 cpu->exception_index = EXCP_HLT; 801 qemu_mutex_unlock_iothread(); 802 return true; 803 } 804 #if defined(TARGET_I386) 805 else if (interrupt_request & CPU_INTERRUPT_INIT) { 806 X86CPU *x86_cpu = X86_CPU(cpu); 807 CPUArchState *env = &x86_cpu->env; 808 replay_interrupt(); 809 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 810 do_cpu_init(x86_cpu); 811 cpu->exception_index = EXCP_HALTED; 812 qemu_mutex_unlock_iothread(); 813 return true; 814 } 815 #else 816 else if (interrupt_request & CPU_INTERRUPT_RESET) { 817 replay_interrupt(); 818 cpu_reset(cpu); 819 qemu_mutex_unlock_iothread(); 820 return true; 821 } 822 #endif /* !TARGET_I386 */ 823 /* The target hook has 3 exit conditions: 824 False when the interrupt isn't processed, 825 True when it is, and we should restart on a new TB, 826 and via longjmp via cpu_loop_exit. */ 827 else { 828 CPUClass *cc = CPU_GET_CLASS(cpu); 829 830 if (cc->tcg_ops->cpu_exec_interrupt && 831 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 832 if (need_replay_interrupt(interrupt_request)) { 833 replay_interrupt(); 834 } 835 /* 836 * After processing the interrupt, ensure an EXCP_DEBUG is 837 * raised when single-stepping so that GDB doesn't miss the 838 * next instruction. 839 */ 840 if (unlikely(cpu->singlestep_enabled)) { 841 cpu->exception_index = EXCP_DEBUG; 842 qemu_mutex_unlock_iothread(); 843 return true; 844 } 845 cpu->exception_index = -1; 846 *last_tb = NULL; 847 } 848 /* The target hook may have updated the 'cpu->interrupt_request'; 849 * reload the 'interrupt_request' value */ 850 interrupt_request = cpu->interrupt_request; 851 } 852 #endif /* !CONFIG_USER_ONLY */ 853 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 854 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 855 /* ensure that no TB jump will be modified as 856 the program flow was changed */ 857 *last_tb = NULL; 858 } 859 860 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 861 qemu_mutex_unlock_iothread(); 862 } 863 864 /* Finally, check if we need to exit to the main loop. */ 865 if (unlikely(qatomic_read(&cpu->exit_request)) 866 || (icount_enabled() 867 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 868 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 869 qatomic_set(&cpu->exit_request, 0); 870 if (cpu->exception_index == -1) { 871 cpu->exception_index = EXCP_INTERRUPT; 872 } 873 return true; 874 } 875 876 return false; 877 } 878 879 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 880 target_ulong pc, 881 TranslationBlock **last_tb, int *tb_exit) 882 { 883 int32_t insns_left; 884 885 trace_exec_tb(tb, pc); 886 tb = cpu_tb_exec(cpu, tb, tb_exit); 887 if (*tb_exit != TB_EXIT_REQUESTED) { 888 *last_tb = tb; 889 return; 890 } 891 892 *last_tb = NULL; 893 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 894 if (insns_left < 0) { 895 /* Something asked us to stop executing chained TBs; just 896 * continue round the main loop. Whatever requested the exit 897 * will also have set something else (eg exit_request or 898 * interrupt_request) which will be handled by 899 * cpu_handle_interrupt. cpu_handle_interrupt will also 900 * clear cpu->icount_decr.u16.high. 901 */ 902 return; 903 } 904 905 /* Instruction counter expired. */ 906 assert(icount_enabled()); 907 #ifndef CONFIG_USER_ONLY 908 /* Ensure global icount has gone forward */ 909 icount_update(cpu); 910 /* Refill decrementer and continue execution. */ 911 insns_left = MIN(0xffff, cpu->icount_budget); 912 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 913 cpu->icount_extra = cpu->icount_budget - insns_left; 914 915 /* 916 * If the next tb has more instructions than we have left to 917 * execute we need to ensure we find/generate a TB with exactly 918 * insns_left instructions in it. 919 */ 920 if (insns_left > 0 && insns_left < tb->icount) { 921 assert(insns_left <= CF_COUNT_MASK); 922 assert(cpu->icount_extra == 0); 923 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 924 } 925 #endif 926 } 927 928 /* main execution loop */ 929 930 static int __attribute__((noinline)) 931 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 932 { 933 int ret; 934 935 /* if an exception is pending, we execute it here */ 936 while (!cpu_handle_exception(cpu, &ret)) { 937 TranslationBlock *last_tb = NULL; 938 int tb_exit = 0; 939 940 while (!cpu_handle_interrupt(cpu, &last_tb)) { 941 TranslationBlock *tb; 942 target_ulong cs_base, pc; 943 uint32_t flags, cflags; 944 945 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 946 947 /* 948 * When requested, use an exact setting for cflags for the next 949 * execution. This is used for icount, precise smc, and stop- 950 * after-access watchpoints. Since this request should never 951 * have CF_INVALID set, -1 is a convenient invalid value that 952 * does not require tcg headers for cpu_common_reset. 953 */ 954 cflags = cpu->cflags_next_tb; 955 if (cflags == -1) { 956 cflags = curr_cflags(cpu); 957 } else { 958 cpu->cflags_next_tb = -1; 959 } 960 961 if (check_for_breakpoints(cpu, pc, &cflags)) { 962 break; 963 } 964 965 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 966 if (tb == NULL) { 967 CPUJumpCache *jc; 968 uint32_t h; 969 970 mmap_lock(); 971 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 972 mmap_unlock(); 973 974 /* 975 * We add the TB in the virtual pc hash table 976 * for the fast lookup 977 */ 978 h = tb_jmp_cache_hash_func(pc); 979 jc = cpu->tb_jmp_cache; 980 if (cflags & CF_PCREL) { 981 jc->array[h].pc = pc; 982 /* Ensure pc is written first. */ 983 qatomic_store_release(&jc->array[h].tb, tb); 984 } else { 985 /* Use the pc value already stored in tb->pc. */ 986 qatomic_set(&jc->array[h].tb, tb); 987 } 988 } 989 990 #ifndef CONFIG_USER_ONLY 991 /* 992 * We don't take care of direct jumps when address mapping 993 * changes in system emulation. So it's not safe to make a 994 * direct jump to a TB spanning two pages because the mapping 995 * for the second page can change. 996 */ 997 if (tb_page_addr1(tb) != -1) { 998 last_tb = NULL; 999 } 1000 #endif 1001 /* See if we can patch the calling TB. */ 1002 if (last_tb) { 1003 tb_add_jump(last_tb, tb_exit, tb); 1004 } 1005 1006 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1007 1008 /* Try to align the host and virtual clocks 1009 if the guest is in advance */ 1010 align_clocks(sc, cpu); 1011 } 1012 } 1013 return ret; 1014 } 1015 1016 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1017 { 1018 /* Prepare setjmp context for exception handling. */ 1019 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1020 /* Non-buggy compilers preserve this; assert the correct value. */ 1021 g_assert(cpu == current_cpu); 1022 1023 #ifndef CONFIG_SOFTMMU 1024 clear_helper_retaddr(); 1025 if (have_mmap_lock()) { 1026 mmap_unlock(); 1027 } 1028 #endif 1029 if (qemu_mutex_iothread_locked()) { 1030 qemu_mutex_unlock_iothread(); 1031 } 1032 1033 assert_no_pages_locked(); 1034 } 1035 1036 return cpu_exec_loop(cpu, sc); 1037 } 1038 1039 int cpu_exec(CPUState *cpu) 1040 { 1041 int ret; 1042 SyncClocks sc = { 0 }; 1043 1044 /* replay_interrupt may need current_cpu */ 1045 current_cpu = cpu; 1046 1047 if (cpu_handle_halt(cpu)) { 1048 return EXCP_HALTED; 1049 } 1050 1051 rcu_read_lock(); 1052 cpu_exec_enter(cpu); 1053 1054 /* 1055 * Calculate difference between guest clock and host clock. 1056 * This delay includes the delay of the last cycle, so 1057 * what we have to do is sleep until it is 0. As for the 1058 * advance/delay we gain here, we try to fix it next time. 1059 */ 1060 init_delay_params(&sc, cpu); 1061 1062 ret = cpu_exec_setjmp(cpu, &sc); 1063 1064 cpu_exec_exit(cpu); 1065 rcu_read_unlock(); 1066 1067 return ret; 1068 } 1069 1070 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1071 { 1072 static bool tcg_target_initialized; 1073 CPUClass *cc = CPU_GET_CLASS(cpu); 1074 1075 if (!tcg_target_initialized) { 1076 cc->tcg_ops->initialize(); 1077 tcg_target_initialized = true; 1078 } 1079 1080 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1081 tlb_init(cpu); 1082 #ifndef CONFIG_USER_ONLY 1083 tcg_iommu_init_notifier_list(cpu); 1084 #endif /* !CONFIG_USER_ONLY */ 1085 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1086 } 1087 1088 /* undo the initializations in reverse order */ 1089 void tcg_exec_unrealizefn(CPUState *cpu) 1090 { 1091 #ifndef CONFIG_USER_ONLY 1092 tcg_iommu_free_notifier_list(cpu); 1093 #endif /* !CONFIG_USER_ONLY */ 1094 1095 tlb_destroy(cpu); 1096 g_free_rcu(cpu->tb_jmp_cache, rcu); 1097 } 1098