1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/hw.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/cpus.h" 33 #include "qemu/bswap.h" 34 #include "exec/memory.h" 35 #include "exec/ram_addr.h" 36 #include "exec/address-spaces.h" 37 #include "qemu/event_notifier.h" 38 #include "trace.h" 39 #include "hw/irq.h" 40 #include "sysemu/sev.h" 41 #include "sysemu/balloon.h" 42 43 #include "hw/boards.h" 44 45 /* This check must be after config-host.h is included */ 46 #ifdef CONFIG_EVENTFD 47 #include <sys/eventfd.h> 48 #endif 49 50 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 51 * need to use the real host PAGE_SIZE, as that's what KVM will use. 52 */ 53 #define PAGE_SIZE getpagesize() 54 55 //#define DEBUG_KVM 56 57 #ifdef DEBUG_KVM 58 #define DPRINTF(fmt, ...) \ 59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 60 #else 61 #define DPRINTF(fmt, ...) \ 62 do { } while (0) 63 #endif 64 65 #define KVM_MSI_HASHTAB_SIZE 256 66 67 struct KVMParkedVcpu { 68 unsigned long vcpu_id; 69 int kvm_fd; 70 QLIST_ENTRY(KVMParkedVcpu) node; 71 }; 72 73 struct KVMState 74 { 75 AccelState parent_obj; 76 77 int nr_slots; 78 int fd; 79 int vmfd; 80 int coalesced_mmio; 81 int coalesced_pio; 82 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 83 bool coalesced_flush_in_progress; 84 int vcpu_events; 85 int robust_singlestep; 86 int debugregs; 87 #ifdef KVM_CAP_SET_GUEST_DEBUG 88 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 89 #endif 90 int max_nested_state_len; 91 int many_ioeventfds; 92 int intx_set_mask; 93 bool sync_mmu; 94 bool manual_dirty_log_protect; 95 /* The man page (and posix) say ioctl numbers are signed int, but 96 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 97 * unsigned, and treating them as signed here can break things */ 98 unsigned irq_set_ioctl; 99 unsigned int sigmask_len; 100 GHashTable *gsimap; 101 #ifdef KVM_CAP_IRQ_ROUTING 102 struct kvm_irq_routing *irq_routes; 103 int nr_allocated_irq_routes; 104 unsigned long *used_gsi_bitmap; 105 unsigned int gsi_count; 106 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 107 #endif 108 KVMMemoryListener memory_listener; 109 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 110 111 /* memory encryption */ 112 void *memcrypt_handle; 113 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 114 }; 115 116 KVMState *kvm_state; 117 bool kvm_kernel_irqchip; 118 bool kvm_split_irqchip; 119 bool kvm_async_interrupts_allowed; 120 bool kvm_halt_in_kernel_allowed; 121 bool kvm_eventfds_allowed; 122 bool kvm_irqfds_allowed; 123 bool kvm_resamplefds_allowed; 124 bool kvm_msi_via_irqfd_allowed; 125 bool kvm_gsi_routing_allowed; 126 bool kvm_gsi_direct_mapping; 127 bool kvm_allowed; 128 bool kvm_readonly_mem_allowed; 129 bool kvm_vm_attributes_allowed; 130 bool kvm_direct_msi_allowed; 131 bool kvm_ioeventfd_any_length_allowed; 132 bool kvm_msi_use_devid; 133 static bool kvm_immediate_exit; 134 135 static const KVMCapabilityInfo kvm_required_capabilites[] = { 136 KVM_CAP_INFO(USER_MEMORY), 137 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 138 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 139 KVM_CAP_LAST_INFO 140 }; 141 142 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 143 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 144 145 int kvm_get_max_memslots(void) 146 { 147 KVMState *s = KVM_STATE(current_machine->accelerator); 148 149 return s->nr_slots; 150 } 151 152 bool kvm_memcrypt_enabled(void) 153 { 154 if (kvm_state && kvm_state->memcrypt_handle) { 155 return true; 156 } 157 158 return false; 159 } 160 161 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 162 { 163 if (kvm_state->memcrypt_handle && 164 kvm_state->memcrypt_encrypt_data) { 165 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 166 ptr, len); 167 } 168 169 return 1; 170 } 171 172 /* Called with KVMMemoryListener.slots_lock held */ 173 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 174 { 175 KVMState *s = kvm_state; 176 int i; 177 178 for (i = 0; i < s->nr_slots; i++) { 179 if (kml->slots[i].memory_size == 0) { 180 return &kml->slots[i]; 181 } 182 } 183 184 return NULL; 185 } 186 187 bool kvm_has_free_slot(MachineState *ms) 188 { 189 KVMState *s = KVM_STATE(ms->accelerator); 190 bool result; 191 KVMMemoryListener *kml = &s->memory_listener; 192 193 kvm_slots_lock(kml); 194 result = !!kvm_get_free_slot(kml); 195 kvm_slots_unlock(kml); 196 197 return result; 198 } 199 200 /* Called with KVMMemoryListener.slots_lock held */ 201 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 202 { 203 KVMSlot *slot = kvm_get_free_slot(kml); 204 205 if (slot) { 206 return slot; 207 } 208 209 fprintf(stderr, "%s: no free slot available\n", __func__); 210 abort(); 211 } 212 213 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 214 hwaddr start_addr, 215 hwaddr size) 216 { 217 KVMState *s = kvm_state; 218 int i; 219 220 for (i = 0; i < s->nr_slots; i++) { 221 KVMSlot *mem = &kml->slots[i]; 222 223 if (start_addr == mem->start_addr && size == mem->memory_size) { 224 return mem; 225 } 226 } 227 228 return NULL; 229 } 230 231 /* 232 * Calculate and align the start address and the size of the section. 233 * Return the size. If the size is 0, the aligned section is empty. 234 */ 235 static hwaddr kvm_align_section(MemoryRegionSection *section, 236 hwaddr *start) 237 { 238 hwaddr size = int128_get64(section->size); 239 hwaddr delta, aligned; 240 241 /* kvm works in page size chunks, but the function may be called 242 with sub-page size and unaligned start address. Pad the start 243 address to next and truncate size to previous page boundary. */ 244 aligned = ROUND_UP(section->offset_within_address_space, 245 qemu_real_host_page_size); 246 delta = aligned - section->offset_within_address_space; 247 *start = aligned; 248 if (delta > size) { 249 return 0; 250 } 251 252 return (size - delta) & qemu_real_host_page_mask; 253 } 254 255 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 256 hwaddr *phys_addr) 257 { 258 KVMMemoryListener *kml = &s->memory_listener; 259 int i, ret = 0; 260 261 kvm_slots_lock(kml); 262 for (i = 0; i < s->nr_slots; i++) { 263 KVMSlot *mem = &kml->slots[i]; 264 265 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 266 *phys_addr = mem->start_addr + (ram - mem->ram); 267 ret = 1; 268 break; 269 } 270 } 271 kvm_slots_unlock(kml); 272 273 return ret; 274 } 275 276 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 277 { 278 KVMState *s = kvm_state; 279 struct kvm_userspace_memory_region mem; 280 int ret; 281 282 mem.slot = slot->slot | (kml->as_id << 16); 283 mem.guest_phys_addr = slot->start_addr; 284 mem.userspace_addr = (unsigned long)slot->ram; 285 mem.flags = slot->flags; 286 287 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 288 /* Set the slot size to 0 before setting the slot to the desired 289 * value. This is needed based on KVM commit 75d61fbc. */ 290 mem.memory_size = 0; 291 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 292 } 293 mem.memory_size = slot->memory_size; 294 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 295 slot->old_flags = mem.flags; 296 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 297 mem.memory_size, mem.userspace_addr, ret); 298 return ret; 299 } 300 301 int kvm_destroy_vcpu(CPUState *cpu) 302 { 303 KVMState *s = kvm_state; 304 long mmap_size; 305 struct KVMParkedVcpu *vcpu = NULL; 306 int ret = 0; 307 308 DPRINTF("kvm_destroy_vcpu\n"); 309 310 ret = kvm_arch_destroy_vcpu(cpu); 311 if (ret < 0) { 312 goto err; 313 } 314 315 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 316 if (mmap_size < 0) { 317 ret = mmap_size; 318 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 319 goto err; 320 } 321 322 ret = munmap(cpu->kvm_run, mmap_size); 323 if (ret < 0) { 324 goto err; 325 } 326 327 vcpu = g_malloc0(sizeof(*vcpu)); 328 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 329 vcpu->kvm_fd = cpu->kvm_fd; 330 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 331 err: 332 return ret; 333 } 334 335 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 336 { 337 struct KVMParkedVcpu *cpu; 338 339 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 340 if (cpu->vcpu_id == vcpu_id) { 341 int kvm_fd; 342 343 QLIST_REMOVE(cpu, node); 344 kvm_fd = cpu->kvm_fd; 345 g_free(cpu); 346 return kvm_fd; 347 } 348 } 349 350 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 351 } 352 353 int kvm_init_vcpu(CPUState *cpu) 354 { 355 KVMState *s = kvm_state; 356 long mmap_size; 357 int ret; 358 359 DPRINTF("kvm_init_vcpu\n"); 360 361 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 362 if (ret < 0) { 363 DPRINTF("kvm_create_vcpu failed\n"); 364 goto err; 365 } 366 367 cpu->kvm_fd = ret; 368 cpu->kvm_state = s; 369 cpu->vcpu_dirty = true; 370 371 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 372 if (mmap_size < 0) { 373 ret = mmap_size; 374 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 375 goto err; 376 } 377 378 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 379 cpu->kvm_fd, 0); 380 if (cpu->kvm_run == MAP_FAILED) { 381 ret = -errno; 382 DPRINTF("mmap'ing vcpu state failed\n"); 383 goto err; 384 } 385 386 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 387 s->coalesced_mmio_ring = 388 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 389 } 390 391 ret = kvm_arch_init_vcpu(cpu); 392 err: 393 return ret; 394 } 395 396 /* 397 * dirty pages logging control 398 */ 399 400 static int kvm_mem_flags(MemoryRegion *mr) 401 { 402 bool readonly = mr->readonly || memory_region_is_romd(mr); 403 int flags = 0; 404 405 if (memory_region_get_dirty_log_mask(mr) != 0) { 406 flags |= KVM_MEM_LOG_DIRTY_PAGES; 407 } 408 if (readonly && kvm_readonly_mem_allowed) { 409 flags |= KVM_MEM_READONLY; 410 } 411 return flags; 412 } 413 414 /* Called with KVMMemoryListener.slots_lock held */ 415 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 416 MemoryRegion *mr) 417 { 418 mem->flags = kvm_mem_flags(mr); 419 420 /* If nothing changed effectively, no need to issue ioctl */ 421 if (mem->flags == mem->old_flags) { 422 return 0; 423 } 424 425 return kvm_set_user_memory_region(kml, mem, false); 426 } 427 428 static int kvm_section_update_flags(KVMMemoryListener *kml, 429 MemoryRegionSection *section) 430 { 431 hwaddr start_addr, size; 432 KVMSlot *mem; 433 int ret = 0; 434 435 size = kvm_align_section(section, &start_addr); 436 if (!size) { 437 return 0; 438 } 439 440 kvm_slots_lock(kml); 441 442 mem = kvm_lookup_matching_slot(kml, start_addr, size); 443 if (!mem) { 444 /* We don't have a slot if we want to trap every access. */ 445 goto out; 446 } 447 448 ret = kvm_slot_update_flags(kml, mem, section->mr); 449 450 out: 451 kvm_slots_unlock(kml); 452 return ret; 453 } 454 455 static void kvm_log_start(MemoryListener *listener, 456 MemoryRegionSection *section, 457 int old, int new) 458 { 459 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 460 int r; 461 462 if (old != 0) { 463 return; 464 } 465 466 r = kvm_section_update_flags(kml, section); 467 if (r < 0) { 468 abort(); 469 } 470 } 471 472 static void kvm_log_stop(MemoryListener *listener, 473 MemoryRegionSection *section, 474 int old, int new) 475 { 476 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 477 int r; 478 479 if (new != 0) { 480 return; 481 } 482 483 r = kvm_section_update_flags(kml, section); 484 if (r < 0) { 485 abort(); 486 } 487 } 488 489 /* get kvm's dirty pages bitmap and update qemu's */ 490 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 491 unsigned long *bitmap) 492 { 493 ram_addr_t start = section->offset_within_region + 494 memory_region_get_ram_addr(section->mr); 495 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 496 497 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 498 return 0; 499 } 500 501 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 502 503 /** 504 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 505 * 506 * This function will first try to fetch dirty bitmap from the kernel, 507 * and then updates qemu's dirty bitmap. 508 * 509 * NOTE: caller must be with kml->slots_lock held. 510 * 511 * @kml: the KVM memory listener object 512 * @section: the memory section to sync the dirty bitmap with 513 */ 514 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 515 MemoryRegionSection *section) 516 { 517 KVMState *s = kvm_state; 518 struct kvm_dirty_log d = {}; 519 KVMSlot *mem; 520 hwaddr start_addr, size; 521 int ret = 0; 522 523 size = kvm_align_section(section, &start_addr); 524 if (size) { 525 mem = kvm_lookup_matching_slot(kml, start_addr, size); 526 if (!mem) { 527 /* We don't have a slot if we want to trap every access. */ 528 goto out; 529 } 530 531 /* XXX bad kernel interface alert 532 * For dirty bitmap, kernel allocates array of size aligned to 533 * bits-per-long. But for case when the kernel is 64bits and 534 * the userspace is 32bits, userspace can't align to the same 535 * bits-per-long, since sizeof(long) is different between kernel 536 * and user space. This way, userspace will provide buffer which 537 * may be 4 bytes less than the kernel will use, resulting in 538 * userspace memory corruption (which is not detectable by valgrind 539 * too, in most cases). 540 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 541 * a hope that sizeof(long) won't become >8 any time soon. 542 */ 543 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 544 /*HOST_LONG_BITS*/ 64) / 8; 545 if (!mem->dirty_bmap) { 546 /* Allocate on the first log_sync, once and for all */ 547 mem->dirty_bmap = g_malloc0(size); 548 } 549 550 d.dirty_bitmap = mem->dirty_bmap; 551 d.slot = mem->slot | (kml->as_id << 16); 552 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 553 DPRINTF("ioctl failed %d\n", errno); 554 ret = -1; 555 goto out; 556 } 557 558 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 559 } 560 out: 561 return ret; 562 } 563 564 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 565 #define KVM_CLEAR_LOG_SHIFT 6 566 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 567 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 568 569 /** 570 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 571 * 572 * NOTE: this will be a no-op if we haven't enabled manual dirty log 573 * protection in the host kernel because in that case this operation 574 * will be done within log_sync(). 575 * 576 * @kml: the kvm memory listener 577 * @section: the memory range to clear dirty bitmap 578 */ 579 static int kvm_physical_log_clear(KVMMemoryListener *kml, 580 MemoryRegionSection *section) 581 { 582 KVMState *s = kvm_state; 583 struct kvm_clear_dirty_log d; 584 uint64_t start, end, bmap_start, start_delta, bmap_npages, size; 585 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 586 KVMSlot *mem = NULL; 587 int ret, i; 588 589 if (!s->manual_dirty_log_protect) { 590 /* No need to do explicit clear */ 591 return 0; 592 } 593 594 start = section->offset_within_address_space; 595 size = int128_get64(section->size); 596 597 if (!size) { 598 /* Nothing more we can do... */ 599 return 0; 600 } 601 602 kvm_slots_lock(kml); 603 604 /* Find any possible slot that covers the section */ 605 for (i = 0; i < s->nr_slots; i++) { 606 mem = &kml->slots[i]; 607 if (mem->start_addr <= start && 608 start + size <= mem->start_addr + mem->memory_size) { 609 break; 610 } 611 } 612 613 /* 614 * We should always find one memslot until this point, otherwise 615 * there could be something wrong from the upper layer 616 */ 617 assert(mem && i != s->nr_slots); 618 619 /* 620 * We need to extend either the start or the size or both to 621 * satisfy the KVM interface requirement. Firstly, do the start 622 * page alignment on 64 host pages 623 */ 624 bmap_start = (start - mem->start_addr) & KVM_CLEAR_LOG_MASK; 625 start_delta = start - mem->start_addr - bmap_start; 626 bmap_start /= psize; 627 628 /* 629 * The kernel interface has restriction on the size too, that either: 630 * 631 * (1) the size is 64 host pages aligned (just like the start), or 632 * (2) the size fills up until the end of the KVM memslot. 633 */ 634 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 635 << KVM_CLEAR_LOG_SHIFT; 636 end = mem->memory_size / psize; 637 if (bmap_npages > end - bmap_start) { 638 bmap_npages = end - bmap_start; 639 } 640 start_delta /= psize; 641 642 /* 643 * Prepare the bitmap to clear dirty bits. Here we must guarantee 644 * that we won't clear any unknown dirty bits otherwise we might 645 * accidentally clear some set bits which are not yet synced from 646 * the kernel into QEMU's bitmap, then we'll lose track of the 647 * guest modifications upon those pages (which can directly lead 648 * to guest data loss or panic after migration). 649 * 650 * Layout of the KVMSlot.dirty_bmap: 651 * 652 * |<-------- bmap_npages -----------..>| 653 * [1] 654 * start_delta size 655 * |----------------|-------------|------------------|------------| 656 * ^ ^ ^ ^ 657 * | | | | 658 * start bmap_start (start) end 659 * of memslot of memslot 660 * 661 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 662 */ 663 664 assert(bmap_start % BITS_PER_LONG == 0); 665 /* We should never do log_clear before log_sync */ 666 assert(mem->dirty_bmap); 667 if (start_delta) { 668 /* Slow path - we need to manipulate a temp bitmap */ 669 bmap_clear = bitmap_new(bmap_npages); 670 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 671 bmap_start, start_delta + size / psize); 672 /* 673 * We need to fill the holes at start because that was not 674 * specified by the caller and we extended the bitmap only for 675 * 64 pages alignment 676 */ 677 bitmap_clear(bmap_clear, 0, start_delta); 678 d.dirty_bitmap = bmap_clear; 679 } else { 680 /* Fast path - start address aligns well with BITS_PER_LONG */ 681 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 682 } 683 684 d.first_page = bmap_start; 685 /* It should never overflow. If it happens, say something */ 686 assert(bmap_npages <= UINT32_MAX); 687 d.num_pages = bmap_npages; 688 d.slot = mem->slot | (kml->as_id << 16); 689 690 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 691 ret = -errno; 692 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 693 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 694 __func__, d.slot, (uint64_t)d.first_page, 695 (uint32_t)d.num_pages, ret); 696 } else { 697 ret = 0; 698 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 699 } 700 701 /* 702 * After we have updated the remote dirty bitmap, we update the 703 * cached bitmap as well for the memslot, then if another user 704 * clears the same region we know we shouldn't clear it again on 705 * the remote otherwise it's data loss as well. 706 */ 707 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 708 size / psize); 709 /* This handles the NULL case well */ 710 g_free(bmap_clear); 711 712 kvm_slots_unlock(kml); 713 714 return ret; 715 } 716 717 static void kvm_coalesce_mmio_region(MemoryListener *listener, 718 MemoryRegionSection *secion, 719 hwaddr start, hwaddr size) 720 { 721 KVMState *s = kvm_state; 722 723 if (s->coalesced_mmio) { 724 struct kvm_coalesced_mmio_zone zone; 725 726 zone.addr = start; 727 zone.size = size; 728 zone.pad = 0; 729 730 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 731 } 732 } 733 734 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 735 MemoryRegionSection *secion, 736 hwaddr start, hwaddr size) 737 { 738 KVMState *s = kvm_state; 739 740 if (s->coalesced_mmio) { 741 struct kvm_coalesced_mmio_zone zone; 742 743 zone.addr = start; 744 zone.size = size; 745 zone.pad = 0; 746 747 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 748 } 749 } 750 751 static void kvm_coalesce_pio_add(MemoryListener *listener, 752 MemoryRegionSection *section, 753 hwaddr start, hwaddr size) 754 { 755 KVMState *s = kvm_state; 756 757 if (s->coalesced_pio) { 758 struct kvm_coalesced_mmio_zone zone; 759 760 zone.addr = start; 761 zone.size = size; 762 zone.pio = 1; 763 764 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 765 } 766 } 767 768 static void kvm_coalesce_pio_del(MemoryListener *listener, 769 MemoryRegionSection *section, 770 hwaddr start, hwaddr size) 771 { 772 KVMState *s = kvm_state; 773 774 if (s->coalesced_pio) { 775 struct kvm_coalesced_mmio_zone zone; 776 777 zone.addr = start; 778 zone.size = size; 779 zone.pio = 1; 780 781 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 782 } 783 } 784 785 static MemoryListener kvm_coalesced_pio_listener = { 786 .coalesced_io_add = kvm_coalesce_pio_add, 787 .coalesced_io_del = kvm_coalesce_pio_del, 788 }; 789 790 int kvm_check_extension(KVMState *s, unsigned int extension) 791 { 792 int ret; 793 794 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 795 if (ret < 0) { 796 ret = 0; 797 } 798 799 return ret; 800 } 801 802 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 803 { 804 int ret; 805 806 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 807 if (ret < 0) { 808 /* VM wide version not implemented, use global one instead */ 809 ret = kvm_check_extension(s, extension); 810 } 811 812 return ret; 813 } 814 815 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 816 { 817 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 818 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 819 * endianness, but the memory core hands them in target endianness. 820 * For example, PPC is always treated as big-endian even if running 821 * on KVM and on PPC64LE. Correct here. 822 */ 823 switch (size) { 824 case 2: 825 val = bswap16(val); 826 break; 827 case 4: 828 val = bswap32(val); 829 break; 830 } 831 #endif 832 return val; 833 } 834 835 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 836 bool assign, uint32_t size, bool datamatch) 837 { 838 int ret; 839 struct kvm_ioeventfd iofd = { 840 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 841 .addr = addr, 842 .len = size, 843 .flags = 0, 844 .fd = fd, 845 }; 846 847 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 848 datamatch); 849 if (!kvm_enabled()) { 850 return -ENOSYS; 851 } 852 853 if (datamatch) { 854 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 855 } 856 if (!assign) { 857 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 858 } 859 860 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 861 862 if (ret < 0) { 863 return -errno; 864 } 865 866 return 0; 867 } 868 869 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 870 bool assign, uint32_t size, bool datamatch) 871 { 872 struct kvm_ioeventfd kick = { 873 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 874 .addr = addr, 875 .flags = KVM_IOEVENTFD_FLAG_PIO, 876 .len = size, 877 .fd = fd, 878 }; 879 int r; 880 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 881 if (!kvm_enabled()) { 882 return -ENOSYS; 883 } 884 if (datamatch) { 885 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 886 } 887 if (!assign) { 888 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 889 } 890 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 891 if (r < 0) { 892 return r; 893 } 894 return 0; 895 } 896 897 898 static int kvm_check_many_ioeventfds(void) 899 { 900 /* Userspace can use ioeventfd for io notification. This requires a host 901 * that supports eventfd(2) and an I/O thread; since eventfd does not 902 * support SIGIO it cannot interrupt the vcpu. 903 * 904 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 905 * can avoid creating too many ioeventfds. 906 */ 907 #if defined(CONFIG_EVENTFD) 908 int ioeventfds[7]; 909 int i, ret = 0; 910 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 911 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 912 if (ioeventfds[i] < 0) { 913 break; 914 } 915 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 916 if (ret < 0) { 917 close(ioeventfds[i]); 918 break; 919 } 920 } 921 922 /* Decide whether many devices are supported or not */ 923 ret = i == ARRAY_SIZE(ioeventfds); 924 925 while (i-- > 0) { 926 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 927 close(ioeventfds[i]); 928 } 929 return ret; 930 #else 931 return 0; 932 #endif 933 } 934 935 static const KVMCapabilityInfo * 936 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 937 { 938 while (list->name) { 939 if (!kvm_check_extension(s, list->value)) { 940 return list; 941 } 942 list++; 943 } 944 return NULL; 945 } 946 947 static void kvm_set_phys_mem(KVMMemoryListener *kml, 948 MemoryRegionSection *section, bool add) 949 { 950 KVMSlot *mem; 951 int err; 952 MemoryRegion *mr = section->mr; 953 bool writeable = !mr->readonly && !mr->rom_device; 954 hwaddr start_addr, size; 955 void *ram; 956 957 if (!memory_region_is_ram(mr)) { 958 if (writeable || !kvm_readonly_mem_allowed) { 959 return; 960 } else if (!mr->romd_mode) { 961 /* If the memory device is not in romd_mode, then we actually want 962 * to remove the kvm memory slot so all accesses will trap. */ 963 add = false; 964 } 965 } 966 967 size = kvm_align_section(section, &start_addr); 968 if (!size) { 969 return; 970 } 971 972 /* use aligned delta to align the ram address */ 973 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 974 (start_addr - section->offset_within_address_space); 975 976 kvm_slots_lock(kml); 977 978 if (!add) { 979 mem = kvm_lookup_matching_slot(kml, start_addr, size); 980 if (!mem) { 981 goto out; 982 } 983 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 984 kvm_physical_sync_dirty_bitmap(kml, section); 985 } 986 987 /* unregister the slot */ 988 g_free(mem->dirty_bmap); 989 mem->dirty_bmap = NULL; 990 mem->memory_size = 0; 991 mem->flags = 0; 992 err = kvm_set_user_memory_region(kml, mem, false); 993 if (err) { 994 fprintf(stderr, "%s: error unregistering slot: %s\n", 995 __func__, strerror(-err)); 996 abort(); 997 } 998 goto out; 999 } 1000 1001 /* register the new slot */ 1002 mem = kvm_alloc_slot(kml); 1003 mem->memory_size = size; 1004 mem->start_addr = start_addr; 1005 mem->ram = ram; 1006 mem->flags = kvm_mem_flags(mr); 1007 1008 err = kvm_set_user_memory_region(kml, mem, true); 1009 if (err) { 1010 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1011 strerror(-err)); 1012 abort(); 1013 } 1014 1015 out: 1016 kvm_slots_unlock(kml); 1017 } 1018 1019 static void kvm_region_add(MemoryListener *listener, 1020 MemoryRegionSection *section) 1021 { 1022 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1023 1024 memory_region_ref(section->mr); 1025 kvm_set_phys_mem(kml, section, true); 1026 } 1027 1028 static void kvm_region_del(MemoryListener *listener, 1029 MemoryRegionSection *section) 1030 { 1031 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1032 1033 kvm_set_phys_mem(kml, section, false); 1034 memory_region_unref(section->mr); 1035 } 1036 1037 static void kvm_log_sync(MemoryListener *listener, 1038 MemoryRegionSection *section) 1039 { 1040 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1041 int r; 1042 1043 kvm_slots_lock(kml); 1044 r = kvm_physical_sync_dirty_bitmap(kml, section); 1045 kvm_slots_unlock(kml); 1046 if (r < 0) { 1047 abort(); 1048 } 1049 } 1050 1051 static void kvm_log_clear(MemoryListener *listener, 1052 MemoryRegionSection *section) 1053 { 1054 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1055 int r; 1056 1057 r = kvm_physical_log_clear(kml, section); 1058 if (r < 0) { 1059 error_report_once("%s: kvm log clear failed: mr=%s " 1060 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1061 section->mr->name, section->offset_within_region, 1062 int128_get64(section->size)); 1063 abort(); 1064 } 1065 } 1066 1067 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1068 MemoryRegionSection *section, 1069 bool match_data, uint64_t data, 1070 EventNotifier *e) 1071 { 1072 int fd = event_notifier_get_fd(e); 1073 int r; 1074 1075 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1076 data, true, int128_get64(section->size), 1077 match_data); 1078 if (r < 0) { 1079 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1080 __func__, strerror(-r), -r); 1081 abort(); 1082 } 1083 } 1084 1085 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1086 MemoryRegionSection *section, 1087 bool match_data, uint64_t data, 1088 EventNotifier *e) 1089 { 1090 int fd = event_notifier_get_fd(e); 1091 int r; 1092 1093 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1094 data, false, int128_get64(section->size), 1095 match_data); 1096 if (r < 0) { 1097 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1098 __func__, strerror(-r), -r); 1099 abort(); 1100 } 1101 } 1102 1103 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1104 MemoryRegionSection *section, 1105 bool match_data, uint64_t data, 1106 EventNotifier *e) 1107 { 1108 int fd = event_notifier_get_fd(e); 1109 int r; 1110 1111 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1112 data, true, int128_get64(section->size), 1113 match_data); 1114 if (r < 0) { 1115 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1116 __func__, strerror(-r), -r); 1117 abort(); 1118 } 1119 } 1120 1121 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1122 MemoryRegionSection *section, 1123 bool match_data, uint64_t data, 1124 EventNotifier *e) 1125 1126 { 1127 int fd = event_notifier_get_fd(e); 1128 int r; 1129 1130 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1131 data, false, int128_get64(section->size), 1132 match_data); 1133 if (r < 0) { 1134 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1135 __func__, strerror(-r), -r); 1136 abort(); 1137 } 1138 } 1139 1140 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1141 AddressSpace *as, int as_id) 1142 { 1143 int i; 1144 1145 qemu_mutex_init(&kml->slots_lock); 1146 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1147 kml->as_id = as_id; 1148 1149 for (i = 0; i < s->nr_slots; i++) { 1150 kml->slots[i].slot = i; 1151 } 1152 1153 kml->listener.region_add = kvm_region_add; 1154 kml->listener.region_del = kvm_region_del; 1155 kml->listener.log_start = kvm_log_start; 1156 kml->listener.log_stop = kvm_log_stop; 1157 kml->listener.log_sync = kvm_log_sync; 1158 kml->listener.log_clear = kvm_log_clear; 1159 kml->listener.priority = 10; 1160 1161 memory_listener_register(&kml->listener, as); 1162 } 1163 1164 static MemoryListener kvm_io_listener = { 1165 .eventfd_add = kvm_io_ioeventfd_add, 1166 .eventfd_del = kvm_io_ioeventfd_del, 1167 .priority = 10, 1168 }; 1169 1170 int kvm_set_irq(KVMState *s, int irq, int level) 1171 { 1172 struct kvm_irq_level event; 1173 int ret; 1174 1175 assert(kvm_async_interrupts_enabled()); 1176 1177 event.level = level; 1178 event.irq = irq; 1179 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1180 if (ret < 0) { 1181 perror("kvm_set_irq"); 1182 abort(); 1183 } 1184 1185 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1186 } 1187 1188 #ifdef KVM_CAP_IRQ_ROUTING 1189 typedef struct KVMMSIRoute { 1190 struct kvm_irq_routing_entry kroute; 1191 QTAILQ_ENTRY(KVMMSIRoute) entry; 1192 } KVMMSIRoute; 1193 1194 static void set_gsi(KVMState *s, unsigned int gsi) 1195 { 1196 set_bit(gsi, s->used_gsi_bitmap); 1197 } 1198 1199 static void clear_gsi(KVMState *s, unsigned int gsi) 1200 { 1201 clear_bit(gsi, s->used_gsi_bitmap); 1202 } 1203 1204 void kvm_init_irq_routing(KVMState *s) 1205 { 1206 int gsi_count, i; 1207 1208 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1209 if (gsi_count > 0) { 1210 /* Round up so we can search ints using ffs */ 1211 s->used_gsi_bitmap = bitmap_new(gsi_count); 1212 s->gsi_count = gsi_count; 1213 } 1214 1215 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1216 s->nr_allocated_irq_routes = 0; 1217 1218 if (!kvm_direct_msi_allowed) { 1219 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1220 QTAILQ_INIT(&s->msi_hashtab[i]); 1221 } 1222 } 1223 1224 kvm_arch_init_irq_routing(s); 1225 } 1226 1227 void kvm_irqchip_commit_routes(KVMState *s) 1228 { 1229 int ret; 1230 1231 if (kvm_gsi_direct_mapping()) { 1232 return; 1233 } 1234 1235 if (!kvm_gsi_routing_enabled()) { 1236 return; 1237 } 1238 1239 s->irq_routes->flags = 0; 1240 trace_kvm_irqchip_commit_routes(); 1241 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1242 assert(ret == 0); 1243 } 1244 1245 static void kvm_add_routing_entry(KVMState *s, 1246 struct kvm_irq_routing_entry *entry) 1247 { 1248 struct kvm_irq_routing_entry *new; 1249 int n, size; 1250 1251 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1252 n = s->nr_allocated_irq_routes * 2; 1253 if (n < 64) { 1254 n = 64; 1255 } 1256 size = sizeof(struct kvm_irq_routing); 1257 size += n * sizeof(*new); 1258 s->irq_routes = g_realloc(s->irq_routes, size); 1259 s->nr_allocated_irq_routes = n; 1260 } 1261 n = s->irq_routes->nr++; 1262 new = &s->irq_routes->entries[n]; 1263 1264 *new = *entry; 1265 1266 set_gsi(s, entry->gsi); 1267 } 1268 1269 static int kvm_update_routing_entry(KVMState *s, 1270 struct kvm_irq_routing_entry *new_entry) 1271 { 1272 struct kvm_irq_routing_entry *entry; 1273 int n; 1274 1275 for (n = 0; n < s->irq_routes->nr; n++) { 1276 entry = &s->irq_routes->entries[n]; 1277 if (entry->gsi != new_entry->gsi) { 1278 continue; 1279 } 1280 1281 if(!memcmp(entry, new_entry, sizeof *entry)) { 1282 return 0; 1283 } 1284 1285 *entry = *new_entry; 1286 1287 return 0; 1288 } 1289 1290 return -ESRCH; 1291 } 1292 1293 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1294 { 1295 struct kvm_irq_routing_entry e = {}; 1296 1297 assert(pin < s->gsi_count); 1298 1299 e.gsi = irq; 1300 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1301 e.flags = 0; 1302 e.u.irqchip.irqchip = irqchip; 1303 e.u.irqchip.pin = pin; 1304 kvm_add_routing_entry(s, &e); 1305 } 1306 1307 void kvm_irqchip_release_virq(KVMState *s, int virq) 1308 { 1309 struct kvm_irq_routing_entry *e; 1310 int i; 1311 1312 if (kvm_gsi_direct_mapping()) { 1313 return; 1314 } 1315 1316 for (i = 0; i < s->irq_routes->nr; i++) { 1317 e = &s->irq_routes->entries[i]; 1318 if (e->gsi == virq) { 1319 s->irq_routes->nr--; 1320 *e = s->irq_routes->entries[s->irq_routes->nr]; 1321 } 1322 } 1323 clear_gsi(s, virq); 1324 kvm_arch_release_virq_post(virq); 1325 trace_kvm_irqchip_release_virq(virq); 1326 } 1327 1328 static unsigned int kvm_hash_msi(uint32_t data) 1329 { 1330 /* This is optimized for IA32 MSI layout. However, no other arch shall 1331 * repeat the mistake of not providing a direct MSI injection API. */ 1332 return data & 0xff; 1333 } 1334 1335 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1336 { 1337 KVMMSIRoute *route, *next; 1338 unsigned int hash; 1339 1340 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1341 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1342 kvm_irqchip_release_virq(s, route->kroute.gsi); 1343 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1344 g_free(route); 1345 } 1346 } 1347 } 1348 1349 static int kvm_irqchip_get_virq(KVMState *s) 1350 { 1351 int next_virq; 1352 1353 /* 1354 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1355 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1356 * number can succeed even though a new route entry cannot be added. 1357 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1358 */ 1359 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1360 kvm_flush_dynamic_msi_routes(s); 1361 } 1362 1363 /* Return the lowest unused GSI in the bitmap */ 1364 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1365 if (next_virq >= s->gsi_count) { 1366 return -ENOSPC; 1367 } else { 1368 return next_virq; 1369 } 1370 } 1371 1372 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1373 { 1374 unsigned int hash = kvm_hash_msi(msg.data); 1375 KVMMSIRoute *route; 1376 1377 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1378 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1379 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1380 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1381 return route; 1382 } 1383 } 1384 return NULL; 1385 } 1386 1387 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1388 { 1389 struct kvm_msi msi; 1390 KVMMSIRoute *route; 1391 1392 if (kvm_direct_msi_allowed) { 1393 msi.address_lo = (uint32_t)msg.address; 1394 msi.address_hi = msg.address >> 32; 1395 msi.data = le32_to_cpu(msg.data); 1396 msi.flags = 0; 1397 memset(msi.pad, 0, sizeof(msi.pad)); 1398 1399 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1400 } 1401 1402 route = kvm_lookup_msi_route(s, msg); 1403 if (!route) { 1404 int virq; 1405 1406 virq = kvm_irqchip_get_virq(s); 1407 if (virq < 0) { 1408 return virq; 1409 } 1410 1411 route = g_malloc0(sizeof(KVMMSIRoute)); 1412 route->kroute.gsi = virq; 1413 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1414 route->kroute.flags = 0; 1415 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1416 route->kroute.u.msi.address_hi = msg.address >> 32; 1417 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1418 1419 kvm_add_routing_entry(s, &route->kroute); 1420 kvm_irqchip_commit_routes(s); 1421 1422 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1423 entry); 1424 } 1425 1426 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1427 1428 return kvm_set_irq(s, route->kroute.gsi, 1); 1429 } 1430 1431 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1432 { 1433 struct kvm_irq_routing_entry kroute = {}; 1434 int virq; 1435 MSIMessage msg = {0, 0}; 1436 1437 if (pci_available && dev) { 1438 msg = pci_get_msi_message(dev, vector); 1439 } 1440 1441 if (kvm_gsi_direct_mapping()) { 1442 return kvm_arch_msi_data_to_gsi(msg.data); 1443 } 1444 1445 if (!kvm_gsi_routing_enabled()) { 1446 return -ENOSYS; 1447 } 1448 1449 virq = kvm_irqchip_get_virq(s); 1450 if (virq < 0) { 1451 return virq; 1452 } 1453 1454 kroute.gsi = virq; 1455 kroute.type = KVM_IRQ_ROUTING_MSI; 1456 kroute.flags = 0; 1457 kroute.u.msi.address_lo = (uint32_t)msg.address; 1458 kroute.u.msi.address_hi = msg.address >> 32; 1459 kroute.u.msi.data = le32_to_cpu(msg.data); 1460 if (pci_available && kvm_msi_devid_required()) { 1461 kroute.flags = KVM_MSI_VALID_DEVID; 1462 kroute.u.msi.devid = pci_requester_id(dev); 1463 } 1464 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1465 kvm_irqchip_release_virq(s, virq); 1466 return -EINVAL; 1467 } 1468 1469 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1470 vector, virq); 1471 1472 kvm_add_routing_entry(s, &kroute); 1473 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1474 kvm_irqchip_commit_routes(s); 1475 1476 return virq; 1477 } 1478 1479 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1480 PCIDevice *dev) 1481 { 1482 struct kvm_irq_routing_entry kroute = {}; 1483 1484 if (kvm_gsi_direct_mapping()) { 1485 return 0; 1486 } 1487 1488 if (!kvm_irqchip_in_kernel()) { 1489 return -ENOSYS; 1490 } 1491 1492 kroute.gsi = virq; 1493 kroute.type = KVM_IRQ_ROUTING_MSI; 1494 kroute.flags = 0; 1495 kroute.u.msi.address_lo = (uint32_t)msg.address; 1496 kroute.u.msi.address_hi = msg.address >> 32; 1497 kroute.u.msi.data = le32_to_cpu(msg.data); 1498 if (pci_available && kvm_msi_devid_required()) { 1499 kroute.flags = KVM_MSI_VALID_DEVID; 1500 kroute.u.msi.devid = pci_requester_id(dev); 1501 } 1502 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1503 return -EINVAL; 1504 } 1505 1506 trace_kvm_irqchip_update_msi_route(virq); 1507 1508 return kvm_update_routing_entry(s, &kroute); 1509 } 1510 1511 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1512 bool assign) 1513 { 1514 struct kvm_irqfd irqfd = { 1515 .fd = fd, 1516 .gsi = virq, 1517 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1518 }; 1519 1520 if (rfd != -1) { 1521 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1522 irqfd.resamplefd = rfd; 1523 } 1524 1525 if (!kvm_irqfds_enabled()) { 1526 return -ENOSYS; 1527 } 1528 1529 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1530 } 1531 1532 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1533 { 1534 struct kvm_irq_routing_entry kroute = {}; 1535 int virq; 1536 1537 if (!kvm_gsi_routing_enabled()) { 1538 return -ENOSYS; 1539 } 1540 1541 virq = kvm_irqchip_get_virq(s); 1542 if (virq < 0) { 1543 return virq; 1544 } 1545 1546 kroute.gsi = virq; 1547 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1548 kroute.flags = 0; 1549 kroute.u.adapter.summary_addr = adapter->summary_addr; 1550 kroute.u.adapter.ind_addr = adapter->ind_addr; 1551 kroute.u.adapter.summary_offset = adapter->summary_offset; 1552 kroute.u.adapter.ind_offset = adapter->ind_offset; 1553 kroute.u.adapter.adapter_id = adapter->adapter_id; 1554 1555 kvm_add_routing_entry(s, &kroute); 1556 1557 return virq; 1558 } 1559 1560 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1561 { 1562 struct kvm_irq_routing_entry kroute = {}; 1563 int virq; 1564 1565 if (!kvm_gsi_routing_enabled()) { 1566 return -ENOSYS; 1567 } 1568 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1569 return -ENOSYS; 1570 } 1571 virq = kvm_irqchip_get_virq(s); 1572 if (virq < 0) { 1573 return virq; 1574 } 1575 1576 kroute.gsi = virq; 1577 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1578 kroute.flags = 0; 1579 kroute.u.hv_sint.vcpu = vcpu; 1580 kroute.u.hv_sint.sint = sint; 1581 1582 kvm_add_routing_entry(s, &kroute); 1583 kvm_irqchip_commit_routes(s); 1584 1585 return virq; 1586 } 1587 1588 #else /* !KVM_CAP_IRQ_ROUTING */ 1589 1590 void kvm_init_irq_routing(KVMState *s) 1591 { 1592 } 1593 1594 void kvm_irqchip_release_virq(KVMState *s, int virq) 1595 { 1596 } 1597 1598 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1599 { 1600 abort(); 1601 } 1602 1603 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1604 { 1605 return -ENOSYS; 1606 } 1607 1608 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1609 { 1610 return -ENOSYS; 1611 } 1612 1613 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1614 { 1615 return -ENOSYS; 1616 } 1617 1618 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1619 { 1620 abort(); 1621 } 1622 1623 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1624 { 1625 return -ENOSYS; 1626 } 1627 #endif /* !KVM_CAP_IRQ_ROUTING */ 1628 1629 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1630 EventNotifier *rn, int virq) 1631 { 1632 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1633 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1634 } 1635 1636 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1637 int virq) 1638 { 1639 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1640 false); 1641 } 1642 1643 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1644 EventNotifier *rn, qemu_irq irq) 1645 { 1646 gpointer key, gsi; 1647 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1648 1649 if (!found) { 1650 return -ENXIO; 1651 } 1652 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1653 } 1654 1655 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1656 qemu_irq irq) 1657 { 1658 gpointer key, gsi; 1659 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1660 1661 if (!found) { 1662 return -ENXIO; 1663 } 1664 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1665 } 1666 1667 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1668 { 1669 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1670 } 1671 1672 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1673 { 1674 int ret; 1675 1676 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1677 ; 1678 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1679 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1680 if (ret < 0) { 1681 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1682 exit(1); 1683 } 1684 } else { 1685 return; 1686 } 1687 1688 /* First probe and see if there's a arch-specific hook to create the 1689 * in-kernel irqchip for us */ 1690 ret = kvm_arch_irqchip_create(machine, s); 1691 if (ret == 0) { 1692 if (machine_kernel_irqchip_split(machine)) { 1693 perror("Split IRQ chip mode not supported."); 1694 exit(1); 1695 } else { 1696 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1697 } 1698 } 1699 if (ret < 0) { 1700 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1701 exit(1); 1702 } 1703 1704 kvm_kernel_irqchip = true; 1705 /* If we have an in-kernel IRQ chip then we must have asynchronous 1706 * interrupt delivery (though the reverse is not necessarily true) 1707 */ 1708 kvm_async_interrupts_allowed = true; 1709 kvm_halt_in_kernel_allowed = true; 1710 1711 kvm_init_irq_routing(s); 1712 1713 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1714 } 1715 1716 /* Find number of supported CPUs using the recommended 1717 * procedure from the kernel API documentation to cope with 1718 * older kernels that may be missing capabilities. 1719 */ 1720 static int kvm_recommended_vcpus(KVMState *s) 1721 { 1722 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1723 return (ret) ? ret : 4; 1724 } 1725 1726 static int kvm_max_vcpus(KVMState *s) 1727 { 1728 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1729 return (ret) ? ret : kvm_recommended_vcpus(s); 1730 } 1731 1732 static int kvm_max_vcpu_id(KVMState *s) 1733 { 1734 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1735 return (ret) ? ret : kvm_max_vcpus(s); 1736 } 1737 1738 bool kvm_vcpu_id_is_valid(int vcpu_id) 1739 { 1740 KVMState *s = KVM_STATE(current_machine->accelerator); 1741 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1742 } 1743 1744 static int kvm_init(MachineState *ms) 1745 { 1746 MachineClass *mc = MACHINE_GET_CLASS(ms); 1747 static const char upgrade_note[] = 1748 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1749 "(see http://sourceforge.net/projects/kvm).\n"; 1750 struct { 1751 const char *name; 1752 int num; 1753 } num_cpus[] = { 1754 { "SMP", ms->smp.cpus }, 1755 { "hotpluggable", ms->smp.max_cpus }, 1756 { NULL, } 1757 }, *nc = num_cpus; 1758 int soft_vcpus_limit, hard_vcpus_limit; 1759 KVMState *s; 1760 const KVMCapabilityInfo *missing_cap; 1761 int ret; 1762 int type = 0; 1763 const char *kvm_type; 1764 1765 s = KVM_STATE(ms->accelerator); 1766 1767 /* 1768 * On systems where the kernel can support different base page 1769 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1770 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1771 * page size for the system though. 1772 */ 1773 assert(TARGET_PAGE_SIZE <= getpagesize()); 1774 1775 s->sigmask_len = 8; 1776 1777 #ifdef KVM_CAP_SET_GUEST_DEBUG 1778 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1779 #endif 1780 QLIST_INIT(&s->kvm_parked_vcpus); 1781 s->vmfd = -1; 1782 s->fd = qemu_open("/dev/kvm", O_RDWR); 1783 if (s->fd == -1) { 1784 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1785 ret = -errno; 1786 goto err; 1787 } 1788 1789 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1790 if (ret < KVM_API_VERSION) { 1791 if (ret >= 0) { 1792 ret = -EINVAL; 1793 } 1794 fprintf(stderr, "kvm version too old\n"); 1795 goto err; 1796 } 1797 1798 if (ret > KVM_API_VERSION) { 1799 ret = -EINVAL; 1800 fprintf(stderr, "kvm version not supported\n"); 1801 goto err; 1802 } 1803 1804 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1805 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1806 1807 /* If unspecified, use the default value */ 1808 if (!s->nr_slots) { 1809 s->nr_slots = 32; 1810 } 1811 1812 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1813 if (mc->kvm_type) { 1814 type = mc->kvm_type(ms, kvm_type); 1815 } else if (kvm_type) { 1816 ret = -EINVAL; 1817 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1818 goto err; 1819 } 1820 1821 do { 1822 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1823 } while (ret == -EINTR); 1824 1825 if (ret < 0) { 1826 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1827 strerror(-ret)); 1828 1829 #ifdef TARGET_S390X 1830 if (ret == -EINVAL) { 1831 fprintf(stderr, 1832 "Host kernel setup problem detected. Please verify:\n"); 1833 fprintf(stderr, "- for kernels supporting the switch_amode or" 1834 " user_mode parameters, whether\n"); 1835 fprintf(stderr, 1836 " user space is running in primary address space\n"); 1837 fprintf(stderr, 1838 "- for kernels supporting the vm.allocate_pgste sysctl, " 1839 "whether it is enabled\n"); 1840 } 1841 #endif 1842 goto err; 1843 } 1844 1845 s->vmfd = ret; 1846 1847 /* check the vcpu limits */ 1848 soft_vcpus_limit = kvm_recommended_vcpus(s); 1849 hard_vcpus_limit = kvm_max_vcpus(s); 1850 1851 while (nc->name) { 1852 if (nc->num > soft_vcpus_limit) { 1853 warn_report("Number of %s cpus requested (%d) exceeds " 1854 "the recommended cpus supported by KVM (%d)", 1855 nc->name, nc->num, soft_vcpus_limit); 1856 1857 if (nc->num > hard_vcpus_limit) { 1858 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1859 "the maximum cpus supported by KVM (%d)\n", 1860 nc->name, nc->num, hard_vcpus_limit); 1861 exit(1); 1862 } 1863 } 1864 nc++; 1865 } 1866 1867 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1868 if (!missing_cap) { 1869 missing_cap = 1870 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1871 } 1872 if (missing_cap) { 1873 ret = -EINVAL; 1874 fprintf(stderr, "kvm does not support %s\n%s", 1875 missing_cap->name, upgrade_note); 1876 goto err; 1877 } 1878 1879 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1880 s->coalesced_pio = s->coalesced_mmio && 1881 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1882 1883 s->manual_dirty_log_protect = 1884 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 1885 if (s->manual_dirty_log_protect) { 1886 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); 1887 if (ret) { 1888 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " 1889 "but failed. Falling back to the legacy mode. "); 1890 s->manual_dirty_log_protect = false; 1891 } 1892 } 1893 1894 #ifdef KVM_CAP_VCPU_EVENTS 1895 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1896 #endif 1897 1898 s->robust_singlestep = 1899 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1900 1901 #ifdef KVM_CAP_DEBUGREGS 1902 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1903 #endif 1904 1905 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 1906 1907 #ifdef KVM_CAP_IRQ_ROUTING 1908 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1909 #endif 1910 1911 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1912 1913 s->irq_set_ioctl = KVM_IRQ_LINE; 1914 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1915 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1916 } 1917 1918 kvm_readonly_mem_allowed = 1919 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1920 1921 kvm_eventfds_allowed = 1922 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1923 1924 kvm_irqfds_allowed = 1925 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1926 1927 kvm_resamplefds_allowed = 1928 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1929 1930 kvm_vm_attributes_allowed = 1931 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1932 1933 kvm_ioeventfd_any_length_allowed = 1934 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1935 1936 kvm_state = s; 1937 1938 /* 1939 * if memory encryption object is specified then initialize the memory 1940 * encryption context. 1941 */ 1942 if (ms->memory_encryption) { 1943 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 1944 if (!kvm_state->memcrypt_handle) { 1945 ret = -1; 1946 goto err; 1947 } 1948 1949 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 1950 } 1951 1952 ret = kvm_arch_init(ms, s); 1953 if (ret < 0) { 1954 goto err; 1955 } 1956 1957 if (machine_kernel_irqchip_allowed(ms)) { 1958 kvm_irqchip_create(ms, s); 1959 } 1960 1961 if (kvm_eventfds_allowed) { 1962 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1963 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1964 } 1965 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 1966 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 1967 1968 kvm_memory_listener_register(s, &s->memory_listener, 1969 &address_space_memory, 0); 1970 memory_listener_register(&kvm_io_listener, 1971 &address_space_io); 1972 memory_listener_register(&kvm_coalesced_pio_listener, 1973 &address_space_io); 1974 1975 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1976 1977 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 1978 if (!s->sync_mmu) { 1979 qemu_balloon_inhibit(true); 1980 } 1981 1982 return 0; 1983 1984 err: 1985 assert(ret < 0); 1986 if (s->vmfd >= 0) { 1987 close(s->vmfd); 1988 } 1989 if (s->fd != -1) { 1990 close(s->fd); 1991 } 1992 g_free(s->memory_listener.slots); 1993 1994 return ret; 1995 } 1996 1997 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1998 { 1999 s->sigmask_len = sigmask_len; 2000 } 2001 2002 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2003 int size, uint32_t count) 2004 { 2005 int i; 2006 uint8_t *ptr = data; 2007 2008 for (i = 0; i < count; i++) { 2009 address_space_rw(&address_space_io, port, attrs, 2010 ptr, size, 2011 direction == KVM_EXIT_IO_OUT); 2012 ptr += size; 2013 } 2014 } 2015 2016 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2017 { 2018 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2019 run->internal.suberror); 2020 2021 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2022 int i; 2023 2024 for (i = 0; i < run->internal.ndata; ++i) { 2025 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2026 i, (uint64_t)run->internal.data[i]); 2027 } 2028 } 2029 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2030 fprintf(stderr, "emulation failure\n"); 2031 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2032 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2033 return EXCP_INTERRUPT; 2034 } 2035 } 2036 /* FIXME: Should trigger a qmp message to let management know 2037 * something went wrong. 2038 */ 2039 return -1; 2040 } 2041 2042 void kvm_flush_coalesced_mmio_buffer(void) 2043 { 2044 KVMState *s = kvm_state; 2045 2046 if (s->coalesced_flush_in_progress) { 2047 return; 2048 } 2049 2050 s->coalesced_flush_in_progress = true; 2051 2052 if (s->coalesced_mmio_ring) { 2053 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2054 while (ring->first != ring->last) { 2055 struct kvm_coalesced_mmio *ent; 2056 2057 ent = &ring->coalesced_mmio[ring->first]; 2058 2059 if (ent->pio == 1) { 2060 address_space_rw(&address_space_io, ent->phys_addr, 2061 MEMTXATTRS_UNSPECIFIED, ent->data, 2062 ent->len, true); 2063 } else { 2064 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2065 } 2066 smp_wmb(); 2067 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2068 } 2069 } 2070 2071 s->coalesced_flush_in_progress = false; 2072 } 2073 2074 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2075 { 2076 if (!cpu->vcpu_dirty) { 2077 kvm_arch_get_registers(cpu); 2078 cpu->vcpu_dirty = true; 2079 } 2080 } 2081 2082 void kvm_cpu_synchronize_state(CPUState *cpu) 2083 { 2084 if (!cpu->vcpu_dirty) { 2085 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2086 } 2087 } 2088 2089 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2090 { 2091 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2092 cpu->vcpu_dirty = false; 2093 } 2094 2095 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2096 { 2097 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2098 } 2099 2100 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2101 { 2102 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2103 cpu->vcpu_dirty = false; 2104 } 2105 2106 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2107 { 2108 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2109 } 2110 2111 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2112 { 2113 cpu->vcpu_dirty = true; 2114 } 2115 2116 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2117 { 2118 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2119 } 2120 2121 #ifdef KVM_HAVE_MCE_INJECTION 2122 static __thread void *pending_sigbus_addr; 2123 static __thread int pending_sigbus_code; 2124 static __thread bool have_sigbus_pending; 2125 #endif 2126 2127 static void kvm_cpu_kick(CPUState *cpu) 2128 { 2129 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2130 } 2131 2132 static void kvm_cpu_kick_self(void) 2133 { 2134 if (kvm_immediate_exit) { 2135 kvm_cpu_kick(current_cpu); 2136 } else { 2137 qemu_cpu_kick_self(); 2138 } 2139 } 2140 2141 static void kvm_eat_signals(CPUState *cpu) 2142 { 2143 struct timespec ts = { 0, 0 }; 2144 siginfo_t siginfo; 2145 sigset_t waitset; 2146 sigset_t chkset; 2147 int r; 2148 2149 if (kvm_immediate_exit) { 2150 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2151 /* Write kvm_run->immediate_exit before the cpu->exit_request 2152 * write in kvm_cpu_exec. 2153 */ 2154 smp_wmb(); 2155 return; 2156 } 2157 2158 sigemptyset(&waitset); 2159 sigaddset(&waitset, SIG_IPI); 2160 2161 do { 2162 r = sigtimedwait(&waitset, &siginfo, &ts); 2163 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2164 perror("sigtimedwait"); 2165 exit(1); 2166 } 2167 2168 r = sigpending(&chkset); 2169 if (r == -1) { 2170 perror("sigpending"); 2171 exit(1); 2172 } 2173 } while (sigismember(&chkset, SIG_IPI)); 2174 } 2175 2176 int kvm_cpu_exec(CPUState *cpu) 2177 { 2178 struct kvm_run *run = cpu->kvm_run; 2179 int ret, run_ret; 2180 2181 DPRINTF("kvm_cpu_exec()\n"); 2182 2183 if (kvm_arch_process_async_events(cpu)) { 2184 atomic_set(&cpu->exit_request, 0); 2185 return EXCP_HLT; 2186 } 2187 2188 qemu_mutex_unlock_iothread(); 2189 cpu_exec_start(cpu); 2190 2191 do { 2192 MemTxAttrs attrs; 2193 2194 if (cpu->vcpu_dirty) { 2195 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2196 cpu->vcpu_dirty = false; 2197 } 2198 2199 kvm_arch_pre_run(cpu, run); 2200 if (atomic_read(&cpu->exit_request)) { 2201 DPRINTF("interrupt exit requested\n"); 2202 /* 2203 * KVM requires us to reenter the kernel after IO exits to complete 2204 * instruction emulation. This self-signal will ensure that we 2205 * leave ASAP again. 2206 */ 2207 kvm_cpu_kick_self(); 2208 } 2209 2210 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2211 * Matching barrier in kvm_eat_signals. 2212 */ 2213 smp_rmb(); 2214 2215 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2216 2217 attrs = kvm_arch_post_run(cpu, run); 2218 2219 #ifdef KVM_HAVE_MCE_INJECTION 2220 if (unlikely(have_sigbus_pending)) { 2221 qemu_mutex_lock_iothread(); 2222 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2223 pending_sigbus_addr); 2224 have_sigbus_pending = false; 2225 qemu_mutex_unlock_iothread(); 2226 } 2227 #endif 2228 2229 if (run_ret < 0) { 2230 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2231 DPRINTF("io window exit\n"); 2232 kvm_eat_signals(cpu); 2233 ret = EXCP_INTERRUPT; 2234 break; 2235 } 2236 fprintf(stderr, "error: kvm run failed %s\n", 2237 strerror(-run_ret)); 2238 #ifdef TARGET_PPC 2239 if (run_ret == -EBUSY) { 2240 fprintf(stderr, 2241 "This is probably because your SMT is enabled.\n" 2242 "VCPU can only run on primary threads with all " 2243 "secondary threads offline.\n"); 2244 } 2245 #endif 2246 ret = -1; 2247 break; 2248 } 2249 2250 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2251 switch (run->exit_reason) { 2252 case KVM_EXIT_IO: 2253 DPRINTF("handle_io\n"); 2254 /* Called outside BQL */ 2255 kvm_handle_io(run->io.port, attrs, 2256 (uint8_t *)run + run->io.data_offset, 2257 run->io.direction, 2258 run->io.size, 2259 run->io.count); 2260 ret = 0; 2261 break; 2262 case KVM_EXIT_MMIO: 2263 DPRINTF("handle_mmio\n"); 2264 /* Called outside BQL */ 2265 address_space_rw(&address_space_memory, 2266 run->mmio.phys_addr, attrs, 2267 run->mmio.data, 2268 run->mmio.len, 2269 run->mmio.is_write); 2270 ret = 0; 2271 break; 2272 case KVM_EXIT_IRQ_WINDOW_OPEN: 2273 DPRINTF("irq_window_open\n"); 2274 ret = EXCP_INTERRUPT; 2275 break; 2276 case KVM_EXIT_SHUTDOWN: 2277 DPRINTF("shutdown\n"); 2278 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2279 ret = EXCP_INTERRUPT; 2280 break; 2281 case KVM_EXIT_UNKNOWN: 2282 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2283 (uint64_t)run->hw.hardware_exit_reason); 2284 ret = -1; 2285 break; 2286 case KVM_EXIT_INTERNAL_ERROR: 2287 ret = kvm_handle_internal_error(cpu, run); 2288 break; 2289 case KVM_EXIT_SYSTEM_EVENT: 2290 switch (run->system_event.type) { 2291 case KVM_SYSTEM_EVENT_SHUTDOWN: 2292 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2293 ret = EXCP_INTERRUPT; 2294 break; 2295 case KVM_SYSTEM_EVENT_RESET: 2296 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2297 ret = EXCP_INTERRUPT; 2298 break; 2299 case KVM_SYSTEM_EVENT_CRASH: 2300 kvm_cpu_synchronize_state(cpu); 2301 qemu_mutex_lock_iothread(); 2302 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2303 qemu_mutex_unlock_iothread(); 2304 ret = 0; 2305 break; 2306 default: 2307 DPRINTF("kvm_arch_handle_exit\n"); 2308 ret = kvm_arch_handle_exit(cpu, run); 2309 break; 2310 } 2311 break; 2312 default: 2313 DPRINTF("kvm_arch_handle_exit\n"); 2314 ret = kvm_arch_handle_exit(cpu, run); 2315 break; 2316 } 2317 } while (ret == 0); 2318 2319 cpu_exec_end(cpu); 2320 qemu_mutex_lock_iothread(); 2321 2322 if (ret < 0) { 2323 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2324 vm_stop(RUN_STATE_INTERNAL_ERROR); 2325 } 2326 2327 atomic_set(&cpu->exit_request, 0); 2328 return ret; 2329 } 2330 2331 int kvm_ioctl(KVMState *s, int type, ...) 2332 { 2333 int ret; 2334 void *arg; 2335 va_list ap; 2336 2337 va_start(ap, type); 2338 arg = va_arg(ap, void *); 2339 va_end(ap); 2340 2341 trace_kvm_ioctl(type, arg); 2342 ret = ioctl(s->fd, type, arg); 2343 if (ret == -1) { 2344 ret = -errno; 2345 } 2346 return ret; 2347 } 2348 2349 int kvm_vm_ioctl(KVMState *s, int type, ...) 2350 { 2351 int ret; 2352 void *arg; 2353 va_list ap; 2354 2355 va_start(ap, type); 2356 arg = va_arg(ap, void *); 2357 va_end(ap); 2358 2359 trace_kvm_vm_ioctl(type, arg); 2360 ret = ioctl(s->vmfd, type, arg); 2361 if (ret == -1) { 2362 ret = -errno; 2363 } 2364 return ret; 2365 } 2366 2367 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2368 { 2369 int ret; 2370 void *arg; 2371 va_list ap; 2372 2373 va_start(ap, type); 2374 arg = va_arg(ap, void *); 2375 va_end(ap); 2376 2377 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2378 ret = ioctl(cpu->kvm_fd, type, arg); 2379 if (ret == -1) { 2380 ret = -errno; 2381 } 2382 return ret; 2383 } 2384 2385 int kvm_device_ioctl(int fd, int type, ...) 2386 { 2387 int ret; 2388 void *arg; 2389 va_list ap; 2390 2391 va_start(ap, type); 2392 arg = va_arg(ap, void *); 2393 va_end(ap); 2394 2395 trace_kvm_device_ioctl(fd, type, arg); 2396 ret = ioctl(fd, type, arg); 2397 if (ret == -1) { 2398 ret = -errno; 2399 } 2400 return ret; 2401 } 2402 2403 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2404 { 2405 int ret; 2406 struct kvm_device_attr attribute = { 2407 .group = group, 2408 .attr = attr, 2409 }; 2410 2411 if (!kvm_vm_attributes_allowed) { 2412 return 0; 2413 } 2414 2415 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2416 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2417 return ret ? 0 : 1; 2418 } 2419 2420 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2421 { 2422 struct kvm_device_attr attribute = { 2423 .group = group, 2424 .attr = attr, 2425 .flags = 0, 2426 }; 2427 2428 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2429 } 2430 2431 int kvm_device_access(int fd, int group, uint64_t attr, 2432 void *val, bool write, Error **errp) 2433 { 2434 struct kvm_device_attr kvmattr; 2435 int err; 2436 2437 kvmattr.flags = 0; 2438 kvmattr.group = group; 2439 kvmattr.attr = attr; 2440 kvmattr.addr = (uintptr_t)val; 2441 2442 err = kvm_device_ioctl(fd, 2443 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2444 &kvmattr); 2445 if (err < 0) { 2446 error_setg_errno(errp, -err, 2447 "KVM_%s_DEVICE_ATTR failed: Group %d " 2448 "attr 0x%016" PRIx64, 2449 write ? "SET" : "GET", group, attr); 2450 } 2451 return err; 2452 } 2453 2454 bool kvm_has_sync_mmu(void) 2455 { 2456 return kvm_state->sync_mmu; 2457 } 2458 2459 int kvm_has_vcpu_events(void) 2460 { 2461 return kvm_state->vcpu_events; 2462 } 2463 2464 int kvm_has_robust_singlestep(void) 2465 { 2466 return kvm_state->robust_singlestep; 2467 } 2468 2469 int kvm_has_debugregs(void) 2470 { 2471 return kvm_state->debugregs; 2472 } 2473 2474 int kvm_max_nested_state_length(void) 2475 { 2476 return kvm_state->max_nested_state_len; 2477 } 2478 2479 int kvm_has_many_ioeventfds(void) 2480 { 2481 if (!kvm_enabled()) { 2482 return 0; 2483 } 2484 return kvm_state->many_ioeventfds; 2485 } 2486 2487 int kvm_has_gsi_routing(void) 2488 { 2489 #ifdef KVM_CAP_IRQ_ROUTING 2490 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2491 #else 2492 return false; 2493 #endif 2494 } 2495 2496 int kvm_has_intx_set_mask(void) 2497 { 2498 return kvm_state->intx_set_mask; 2499 } 2500 2501 bool kvm_arm_supports_user_irq(void) 2502 { 2503 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2504 } 2505 2506 #ifdef KVM_CAP_SET_GUEST_DEBUG 2507 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2508 target_ulong pc) 2509 { 2510 struct kvm_sw_breakpoint *bp; 2511 2512 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2513 if (bp->pc == pc) { 2514 return bp; 2515 } 2516 } 2517 return NULL; 2518 } 2519 2520 int kvm_sw_breakpoints_active(CPUState *cpu) 2521 { 2522 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2523 } 2524 2525 struct kvm_set_guest_debug_data { 2526 struct kvm_guest_debug dbg; 2527 int err; 2528 }; 2529 2530 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2531 { 2532 struct kvm_set_guest_debug_data *dbg_data = 2533 (struct kvm_set_guest_debug_data *) data.host_ptr; 2534 2535 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2536 &dbg_data->dbg); 2537 } 2538 2539 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2540 { 2541 struct kvm_set_guest_debug_data data; 2542 2543 data.dbg.control = reinject_trap; 2544 2545 if (cpu->singlestep_enabled) { 2546 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2547 } 2548 kvm_arch_update_guest_debug(cpu, &data.dbg); 2549 2550 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2551 RUN_ON_CPU_HOST_PTR(&data)); 2552 return data.err; 2553 } 2554 2555 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2556 target_ulong len, int type) 2557 { 2558 struct kvm_sw_breakpoint *bp; 2559 int err; 2560 2561 if (type == GDB_BREAKPOINT_SW) { 2562 bp = kvm_find_sw_breakpoint(cpu, addr); 2563 if (bp) { 2564 bp->use_count++; 2565 return 0; 2566 } 2567 2568 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2569 bp->pc = addr; 2570 bp->use_count = 1; 2571 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2572 if (err) { 2573 g_free(bp); 2574 return err; 2575 } 2576 2577 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2578 } else { 2579 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2580 if (err) { 2581 return err; 2582 } 2583 } 2584 2585 CPU_FOREACH(cpu) { 2586 err = kvm_update_guest_debug(cpu, 0); 2587 if (err) { 2588 return err; 2589 } 2590 } 2591 return 0; 2592 } 2593 2594 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2595 target_ulong len, int type) 2596 { 2597 struct kvm_sw_breakpoint *bp; 2598 int err; 2599 2600 if (type == GDB_BREAKPOINT_SW) { 2601 bp = kvm_find_sw_breakpoint(cpu, addr); 2602 if (!bp) { 2603 return -ENOENT; 2604 } 2605 2606 if (bp->use_count > 1) { 2607 bp->use_count--; 2608 return 0; 2609 } 2610 2611 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2612 if (err) { 2613 return err; 2614 } 2615 2616 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2617 g_free(bp); 2618 } else { 2619 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2620 if (err) { 2621 return err; 2622 } 2623 } 2624 2625 CPU_FOREACH(cpu) { 2626 err = kvm_update_guest_debug(cpu, 0); 2627 if (err) { 2628 return err; 2629 } 2630 } 2631 return 0; 2632 } 2633 2634 void kvm_remove_all_breakpoints(CPUState *cpu) 2635 { 2636 struct kvm_sw_breakpoint *bp, *next; 2637 KVMState *s = cpu->kvm_state; 2638 CPUState *tmpcpu; 2639 2640 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2641 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2642 /* Try harder to find a CPU that currently sees the breakpoint. */ 2643 CPU_FOREACH(tmpcpu) { 2644 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2645 break; 2646 } 2647 } 2648 } 2649 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2650 g_free(bp); 2651 } 2652 kvm_arch_remove_all_hw_breakpoints(); 2653 2654 CPU_FOREACH(cpu) { 2655 kvm_update_guest_debug(cpu, 0); 2656 } 2657 } 2658 2659 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2660 2661 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2662 { 2663 return -EINVAL; 2664 } 2665 2666 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2667 target_ulong len, int type) 2668 { 2669 return -EINVAL; 2670 } 2671 2672 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2673 target_ulong len, int type) 2674 { 2675 return -EINVAL; 2676 } 2677 2678 void kvm_remove_all_breakpoints(CPUState *cpu) 2679 { 2680 } 2681 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2682 2683 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2684 { 2685 KVMState *s = kvm_state; 2686 struct kvm_signal_mask *sigmask; 2687 int r; 2688 2689 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2690 2691 sigmask->len = s->sigmask_len; 2692 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2693 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2694 g_free(sigmask); 2695 2696 return r; 2697 } 2698 2699 static void kvm_ipi_signal(int sig) 2700 { 2701 if (current_cpu) { 2702 assert(kvm_immediate_exit); 2703 kvm_cpu_kick(current_cpu); 2704 } 2705 } 2706 2707 void kvm_init_cpu_signals(CPUState *cpu) 2708 { 2709 int r; 2710 sigset_t set; 2711 struct sigaction sigact; 2712 2713 memset(&sigact, 0, sizeof(sigact)); 2714 sigact.sa_handler = kvm_ipi_signal; 2715 sigaction(SIG_IPI, &sigact, NULL); 2716 2717 pthread_sigmask(SIG_BLOCK, NULL, &set); 2718 #if defined KVM_HAVE_MCE_INJECTION 2719 sigdelset(&set, SIGBUS); 2720 pthread_sigmask(SIG_SETMASK, &set, NULL); 2721 #endif 2722 sigdelset(&set, SIG_IPI); 2723 if (kvm_immediate_exit) { 2724 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2725 } else { 2726 r = kvm_set_signal_mask(cpu, &set); 2727 } 2728 if (r) { 2729 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2730 exit(1); 2731 } 2732 } 2733 2734 /* Called asynchronously in VCPU thread. */ 2735 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2736 { 2737 #ifdef KVM_HAVE_MCE_INJECTION 2738 if (have_sigbus_pending) { 2739 return 1; 2740 } 2741 have_sigbus_pending = true; 2742 pending_sigbus_addr = addr; 2743 pending_sigbus_code = code; 2744 atomic_set(&cpu->exit_request, 1); 2745 return 0; 2746 #else 2747 return 1; 2748 #endif 2749 } 2750 2751 /* Called synchronously (via signalfd) in main thread. */ 2752 int kvm_on_sigbus(int code, void *addr) 2753 { 2754 #ifdef KVM_HAVE_MCE_INJECTION 2755 /* Action required MCE kills the process if SIGBUS is blocked. Because 2756 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2757 * we can only get action optional here. 2758 */ 2759 assert(code != BUS_MCEERR_AR); 2760 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2761 return 0; 2762 #else 2763 return 1; 2764 #endif 2765 } 2766 2767 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2768 { 2769 int ret; 2770 struct kvm_create_device create_dev; 2771 2772 create_dev.type = type; 2773 create_dev.fd = -1; 2774 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2775 2776 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2777 return -ENOTSUP; 2778 } 2779 2780 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2781 if (ret) { 2782 return ret; 2783 } 2784 2785 return test ? 0 : create_dev.fd; 2786 } 2787 2788 bool kvm_device_supported(int vmfd, uint64_t type) 2789 { 2790 struct kvm_create_device create_dev = { 2791 .type = type, 2792 .fd = -1, 2793 .flags = KVM_CREATE_DEVICE_TEST, 2794 }; 2795 2796 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2797 return false; 2798 } 2799 2800 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2801 } 2802 2803 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2804 { 2805 struct kvm_one_reg reg; 2806 int r; 2807 2808 reg.id = id; 2809 reg.addr = (uintptr_t) source; 2810 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2811 if (r) { 2812 trace_kvm_failed_reg_set(id, strerror(-r)); 2813 } 2814 return r; 2815 } 2816 2817 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2818 { 2819 struct kvm_one_reg reg; 2820 int r; 2821 2822 reg.id = id; 2823 reg.addr = (uintptr_t) target; 2824 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2825 if (r) { 2826 trace_kvm_failed_reg_get(id, strerror(-r)); 2827 } 2828 return r; 2829 } 2830 2831 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2832 { 2833 AccelClass *ac = ACCEL_CLASS(oc); 2834 ac->name = "KVM"; 2835 ac->init_machine = kvm_init; 2836 ac->allowed = &kvm_allowed; 2837 } 2838 2839 static const TypeInfo kvm_accel_type = { 2840 .name = TYPE_KVM_ACCEL, 2841 .parent = TYPE_ACCEL, 2842 .class_init = kvm_accel_class_init, 2843 .instance_size = sizeof(KVMState), 2844 }; 2845 2846 static void kvm_type_init(void) 2847 { 2848 type_register_static(&kvm_accel_type); 2849 } 2850 2851 type_init(kvm_type_init); 2852