xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision feb58e3b)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "gdbstub/enums.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 /* Default num of memslots to be allocated when VM starts */
73 #define  KVM_MEMSLOTS_NR_ALLOC_DEFAULT                      16
74 /* Default max allowed memslots if kernel reported nothing */
75 #define  KVM_MEMSLOTS_NR_MAX_DEFAULT                        32
76 
77 struct KVMParkedVcpu {
78     unsigned long vcpu_id;
79     int kvm_fd;
80     QLIST_ENTRY(KVMParkedVcpu) node;
81 };
82 
83 KVMState *kvm_state;
84 bool kvm_kernel_irqchip;
85 bool kvm_split_irqchip;
86 bool kvm_async_interrupts_allowed;
87 bool kvm_halt_in_kernel_allowed;
88 bool kvm_resamplefds_allowed;
89 bool kvm_msi_via_irqfd_allowed;
90 bool kvm_gsi_routing_allowed;
91 bool kvm_gsi_direct_mapping;
92 bool kvm_allowed;
93 bool kvm_readonly_mem_allowed;
94 bool kvm_vm_attributes_allowed;
95 bool kvm_msi_use_devid;
96 static bool kvm_has_guest_debug;
97 static int kvm_sstep_flags;
98 static bool kvm_immediate_exit;
99 static uint64_t kvm_supported_memory_attributes;
100 static bool kvm_guest_memfd_supported;
101 static hwaddr kvm_max_slot_size = ~0;
102 
103 static const KVMCapabilityInfo kvm_required_capabilites[] = {
104     KVM_CAP_INFO(USER_MEMORY),
105     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
106     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
107     KVM_CAP_INFO(INTERNAL_ERROR_DATA),
108     KVM_CAP_INFO(IOEVENTFD),
109     KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
110     KVM_CAP_LAST_INFO
111 };
112 
113 static NotifierList kvm_irqchip_change_notifiers =
114     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
115 
116 struct KVMResampleFd {
117     int gsi;
118     EventNotifier *resample_event;
119     QLIST_ENTRY(KVMResampleFd) node;
120 };
121 typedef struct KVMResampleFd KVMResampleFd;
122 
123 /*
124  * Only used with split irqchip where we need to do the resample fd
125  * kick for the kernel from userspace.
126  */
127 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
128     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
129 
130 static QemuMutex kml_slots_lock;
131 
132 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
133 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
134 
135 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
136 
137 static inline void kvm_resample_fd_remove(int gsi)
138 {
139     KVMResampleFd *rfd;
140 
141     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
142         if (rfd->gsi == gsi) {
143             QLIST_REMOVE(rfd, node);
144             g_free(rfd);
145             break;
146         }
147     }
148 }
149 
150 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
151 {
152     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
153 
154     rfd->gsi = gsi;
155     rfd->resample_event = event;
156 
157     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
158 }
159 
160 void kvm_resample_fd_notify(int gsi)
161 {
162     KVMResampleFd *rfd;
163 
164     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
165         if (rfd->gsi == gsi) {
166             event_notifier_set(rfd->resample_event);
167             trace_kvm_resample_fd_notify(gsi);
168             return;
169         }
170     }
171 }
172 
173 /**
174  * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener
175  *
176  * @kml: The KVMMemoryListener* to grow the slots[] array
177  * @nr_slots_new: The new size of slots[] array
178  *
179  * Returns: True if the array grows larger, false otherwise.
180  */
181 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new)
182 {
183     unsigned int i, cur = kml->nr_slots_allocated;
184     KVMSlot *slots;
185 
186     if (nr_slots_new > kvm_state->nr_slots_max) {
187         nr_slots_new = kvm_state->nr_slots_max;
188     }
189 
190     if (cur >= nr_slots_new) {
191         /* Big enough, no need to grow, or we reached max */
192         return false;
193     }
194 
195     if (cur == 0) {
196         slots = g_new0(KVMSlot, nr_slots_new);
197     } else {
198         assert(kml->slots);
199         slots = g_renew(KVMSlot, kml->slots, nr_slots_new);
200         /*
201          * g_renew() doesn't initialize extended buffers, however kvm
202          * memslots require fields to be zero-initialized. E.g. pointers,
203          * memory_size field, etc.
204          */
205         memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur));
206     }
207 
208     for (i = cur; i < nr_slots_new; i++) {
209         slots[i].slot = i;
210     }
211 
212     kml->slots = slots;
213     kml->nr_slots_allocated = nr_slots_new;
214     trace_kvm_slots_grow(cur, nr_slots_new);
215 
216     return true;
217 }
218 
219 static bool kvm_slots_double(KVMMemoryListener *kml)
220 {
221     return kvm_slots_grow(kml, kml->nr_slots_allocated * 2);
222 }
223 
224 unsigned int kvm_get_max_memslots(void)
225 {
226     KVMState *s = KVM_STATE(current_accel());
227 
228     return s->nr_slots_max;
229 }
230 
231 unsigned int kvm_get_free_memslots(void)
232 {
233     unsigned int used_slots = 0;
234     KVMState *s = kvm_state;
235     int i;
236 
237     kvm_slots_lock();
238     for (i = 0; i < s->nr_as; i++) {
239         if (!s->as[i].ml) {
240             continue;
241         }
242         used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used);
243     }
244     kvm_slots_unlock();
245 
246     return s->nr_slots_max - used_slots;
247 }
248 
249 /* Called with KVMMemoryListener.slots_lock held */
250 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
251 {
252     unsigned int n;
253     int i;
254 
255     for (i = 0; i < kml->nr_slots_allocated; i++) {
256         if (kml->slots[i].memory_size == 0) {
257             return &kml->slots[i];
258         }
259     }
260 
261     /*
262      * If no free slots, try to grow first by doubling.  Cache the old size
263      * here to avoid another round of search: if the grow succeeded, it
264      * means slots[] now must have the existing "n" slots occupied,
265      * followed by one or more free slots starting from slots[n].
266      */
267     n = kml->nr_slots_allocated;
268     if (kvm_slots_double(kml)) {
269         return &kml->slots[n];
270     }
271 
272     return NULL;
273 }
274 
275 /* Called with KVMMemoryListener.slots_lock held */
276 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
277 {
278     KVMSlot *slot = kvm_get_free_slot(kml);
279 
280     if (slot) {
281         return slot;
282     }
283 
284     fprintf(stderr, "%s: no free slot available\n", __func__);
285     abort();
286 }
287 
288 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
289                                          hwaddr start_addr,
290                                          hwaddr size)
291 {
292     int i;
293 
294     for (i = 0; i < kml->nr_slots_allocated; i++) {
295         KVMSlot *mem = &kml->slots[i];
296 
297         if (start_addr == mem->start_addr && size == mem->memory_size) {
298             return mem;
299         }
300     }
301 
302     return NULL;
303 }
304 
305 /*
306  * Calculate and align the start address and the size of the section.
307  * Return the size. If the size is 0, the aligned section is empty.
308  */
309 static hwaddr kvm_align_section(MemoryRegionSection *section,
310                                 hwaddr *start)
311 {
312     hwaddr size = int128_get64(section->size);
313     hwaddr delta, aligned;
314 
315     /* kvm works in page size chunks, but the function may be called
316        with sub-page size and unaligned start address. Pad the start
317        address to next and truncate size to previous page boundary. */
318     aligned = ROUND_UP(section->offset_within_address_space,
319                        qemu_real_host_page_size());
320     delta = aligned - section->offset_within_address_space;
321     *start = aligned;
322     if (delta > size) {
323         return 0;
324     }
325 
326     return (size - delta) & qemu_real_host_page_mask();
327 }
328 
329 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
330                                        hwaddr *phys_addr)
331 {
332     KVMMemoryListener *kml = &s->memory_listener;
333     int i, ret = 0;
334 
335     kvm_slots_lock();
336     for (i = 0; i < kml->nr_slots_allocated; i++) {
337         KVMSlot *mem = &kml->slots[i];
338 
339         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
340             *phys_addr = mem->start_addr + (ram - mem->ram);
341             ret = 1;
342             break;
343         }
344     }
345     kvm_slots_unlock();
346 
347     return ret;
348 }
349 
350 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
351 {
352     KVMState *s = kvm_state;
353     struct kvm_userspace_memory_region2 mem;
354     int ret;
355 
356     mem.slot = slot->slot | (kml->as_id << 16);
357     mem.guest_phys_addr = slot->start_addr;
358     mem.userspace_addr = (unsigned long)slot->ram;
359     mem.flags = slot->flags;
360     mem.guest_memfd = slot->guest_memfd;
361     mem.guest_memfd_offset = slot->guest_memfd_offset;
362 
363     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
364         /* Set the slot size to 0 before setting the slot to the desired
365          * value. This is needed based on KVM commit 75d61fbc. */
366         mem.memory_size = 0;
367 
368         if (kvm_guest_memfd_supported) {
369             ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
370         } else {
371             ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
372         }
373         if (ret < 0) {
374             goto err;
375         }
376     }
377     mem.memory_size = slot->memory_size;
378     if (kvm_guest_memfd_supported) {
379         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
380     } else {
381         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
382     }
383     slot->old_flags = mem.flags;
384 err:
385     trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags,
386                               mem.guest_phys_addr, mem.memory_size,
387                               mem.userspace_addr, mem.guest_memfd,
388                               mem.guest_memfd_offset, ret);
389     if (ret < 0) {
390         if (kvm_guest_memfd_supported) {
391                 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d,"
392                         " start=0x%" PRIx64 ", size=0x%" PRIx64 ","
393                         " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 ","
394                         " guest_memfd_offset=0x%" PRIx64 ": %s",
395                         __func__, mem.slot, slot->start_addr,
396                         (uint64_t)mem.memory_size, mem.flags,
397                         mem.guest_memfd, (uint64_t)mem.guest_memfd_offset,
398                         strerror(errno));
399         } else {
400                 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
401                             " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
402                             __func__, mem.slot, slot->start_addr,
403                             (uint64_t)mem.memory_size, strerror(errno));
404         }
405     }
406     return ret;
407 }
408 
409 void kvm_park_vcpu(CPUState *cpu)
410 {
411     struct KVMParkedVcpu *vcpu;
412 
413     trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
414 
415     vcpu = g_malloc0(sizeof(*vcpu));
416     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
417     vcpu->kvm_fd = cpu->kvm_fd;
418     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
419 }
420 
421 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id)
422 {
423     struct KVMParkedVcpu *cpu;
424     int kvm_fd = -ENOENT;
425 
426     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
427         if (cpu->vcpu_id == vcpu_id) {
428             QLIST_REMOVE(cpu, node);
429             kvm_fd = cpu->kvm_fd;
430             g_free(cpu);
431             break;
432         }
433     }
434 
435     trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked");
436 
437     return kvm_fd;
438 }
439 
440 int kvm_create_vcpu(CPUState *cpu)
441 {
442     unsigned long vcpu_id = kvm_arch_vcpu_id(cpu);
443     KVMState *s = kvm_state;
444     int kvm_fd;
445 
446     /* check if the KVM vCPU already exist but is parked */
447     kvm_fd = kvm_unpark_vcpu(s, vcpu_id);
448     if (kvm_fd < 0) {
449         /* vCPU not parked: create a new KVM vCPU */
450         kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id);
451         if (kvm_fd < 0) {
452             error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id);
453             return kvm_fd;
454         }
455     }
456 
457     cpu->kvm_fd = kvm_fd;
458     cpu->kvm_state = s;
459     cpu->vcpu_dirty = true;
460     cpu->dirty_pages = 0;
461     cpu->throttle_us_per_full = 0;
462 
463     trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd);
464 
465     return 0;
466 }
467 
468 int kvm_create_and_park_vcpu(CPUState *cpu)
469 {
470     int ret = 0;
471 
472     ret = kvm_create_vcpu(cpu);
473     if (!ret) {
474         kvm_park_vcpu(cpu);
475     }
476 
477     return ret;
478 }
479 
480 static int do_kvm_destroy_vcpu(CPUState *cpu)
481 {
482     KVMState *s = kvm_state;
483     int mmap_size;
484     int ret = 0;
485 
486     trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
487 
488     ret = kvm_arch_destroy_vcpu(cpu);
489     if (ret < 0) {
490         goto err;
491     }
492 
493     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
494     if (mmap_size < 0) {
495         ret = mmap_size;
496         trace_kvm_failed_get_vcpu_mmap_size();
497         goto err;
498     }
499 
500     ret = munmap(cpu->kvm_run, mmap_size);
501     if (ret < 0) {
502         goto err;
503     }
504 
505     if (cpu->kvm_dirty_gfns) {
506         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
507         if (ret < 0) {
508             goto err;
509         }
510     }
511 
512     kvm_park_vcpu(cpu);
513 err:
514     return ret;
515 }
516 
517 void kvm_destroy_vcpu(CPUState *cpu)
518 {
519     if (do_kvm_destroy_vcpu(cpu) < 0) {
520         error_report("kvm_destroy_vcpu failed");
521         exit(EXIT_FAILURE);
522     }
523 }
524 
525 int kvm_init_vcpu(CPUState *cpu, Error **errp)
526 {
527     KVMState *s = kvm_state;
528     int mmap_size;
529     int ret;
530 
531     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
532 
533     ret = kvm_create_vcpu(cpu);
534     if (ret < 0) {
535         error_setg_errno(errp, -ret,
536                          "kvm_init_vcpu: kvm_create_vcpu failed (%lu)",
537                          kvm_arch_vcpu_id(cpu));
538         goto err;
539     }
540 
541     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
542     if (mmap_size < 0) {
543         ret = mmap_size;
544         error_setg_errno(errp, -mmap_size,
545                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
546         goto err;
547     }
548 
549     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
550                         cpu->kvm_fd, 0);
551     if (cpu->kvm_run == MAP_FAILED) {
552         ret = -errno;
553         error_setg_errno(errp, ret,
554                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
555                          kvm_arch_vcpu_id(cpu));
556         goto err;
557     }
558 
559     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
560         s->coalesced_mmio_ring =
561             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
562     }
563 
564     if (s->kvm_dirty_ring_size) {
565         /* Use MAP_SHARED to share pages with the kernel */
566         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
567                                    PROT_READ | PROT_WRITE, MAP_SHARED,
568                                    cpu->kvm_fd,
569                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
570         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
571             ret = -errno;
572             goto err;
573         }
574     }
575 
576     ret = kvm_arch_init_vcpu(cpu);
577     if (ret < 0) {
578         error_setg_errno(errp, -ret,
579                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
580                          kvm_arch_vcpu_id(cpu));
581     }
582     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
583 
584 err:
585     return ret;
586 }
587 
588 /*
589  * dirty pages logging control
590  */
591 
592 static int kvm_mem_flags(MemoryRegion *mr)
593 {
594     bool readonly = mr->readonly || memory_region_is_romd(mr);
595     int flags = 0;
596 
597     if (memory_region_get_dirty_log_mask(mr) != 0) {
598         flags |= KVM_MEM_LOG_DIRTY_PAGES;
599     }
600     if (readonly && kvm_readonly_mem_allowed) {
601         flags |= KVM_MEM_READONLY;
602     }
603     if (memory_region_has_guest_memfd(mr)) {
604         assert(kvm_guest_memfd_supported);
605         flags |= KVM_MEM_GUEST_MEMFD;
606     }
607     return flags;
608 }
609 
610 /* Called with KVMMemoryListener.slots_lock held */
611 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
612                                  MemoryRegion *mr)
613 {
614     mem->flags = kvm_mem_flags(mr);
615 
616     /* If nothing changed effectively, no need to issue ioctl */
617     if (mem->flags == mem->old_flags) {
618         return 0;
619     }
620 
621     kvm_slot_init_dirty_bitmap(mem);
622     return kvm_set_user_memory_region(kml, mem, false);
623 }
624 
625 static int kvm_section_update_flags(KVMMemoryListener *kml,
626                                     MemoryRegionSection *section)
627 {
628     hwaddr start_addr, size, slot_size;
629     KVMSlot *mem;
630     int ret = 0;
631 
632     size = kvm_align_section(section, &start_addr);
633     if (!size) {
634         return 0;
635     }
636 
637     kvm_slots_lock();
638 
639     while (size && !ret) {
640         slot_size = MIN(kvm_max_slot_size, size);
641         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
642         if (!mem) {
643             /* We don't have a slot if we want to trap every access. */
644             goto out;
645         }
646 
647         ret = kvm_slot_update_flags(kml, mem, section->mr);
648         start_addr += slot_size;
649         size -= slot_size;
650     }
651 
652 out:
653     kvm_slots_unlock();
654     return ret;
655 }
656 
657 static void kvm_log_start(MemoryListener *listener,
658                           MemoryRegionSection *section,
659                           int old, int new)
660 {
661     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
662     int r;
663 
664     if (old != 0) {
665         return;
666     }
667 
668     r = kvm_section_update_flags(kml, section);
669     if (r < 0) {
670         abort();
671     }
672 }
673 
674 static void kvm_log_stop(MemoryListener *listener,
675                           MemoryRegionSection *section,
676                           int old, int new)
677 {
678     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
679     int r;
680 
681     if (new != 0) {
682         return;
683     }
684 
685     r = kvm_section_update_flags(kml, section);
686     if (r < 0) {
687         abort();
688     }
689 }
690 
691 /* get kvm's dirty pages bitmap and update qemu's */
692 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
693 {
694     ram_addr_t start = slot->ram_start_offset;
695     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
696 
697     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
698 }
699 
700 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
701 {
702     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
703 }
704 
705 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
706 
707 /* Allocate the dirty bitmap for a slot  */
708 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
709 {
710     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
711         return;
712     }
713 
714     /*
715      * XXX bad kernel interface alert
716      * For dirty bitmap, kernel allocates array of size aligned to
717      * bits-per-long.  But for case when the kernel is 64bits and
718      * the userspace is 32bits, userspace can't align to the same
719      * bits-per-long, since sizeof(long) is different between kernel
720      * and user space.  This way, userspace will provide buffer which
721      * may be 4 bytes less than the kernel will use, resulting in
722      * userspace memory corruption (which is not detectable by valgrind
723      * too, in most cases).
724      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
725      * a hope that sizeof(long) won't become >8 any time soon.
726      *
727      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
728      * And mem->memory_size is aligned to it (otherwise this mem can't
729      * be registered to KVM).
730      */
731     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
732                                         /*HOST_LONG_BITS*/ 64) / 8;
733     mem->dirty_bmap = g_malloc0(bitmap_size);
734     mem->dirty_bmap_size = bitmap_size;
735 }
736 
737 /*
738  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
739  * succeeded, false otherwise
740  */
741 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
742 {
743     struct kvm_dirty_log d = {};
744     int ret;
745 
746     d.dirty_bitmap = slot->dirty_bmap;
747     d.slot = slot->slot | (slot->as_id << 16);
748     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
749 
750     if (ret == -ENOENT) {
751         /* kernel does not have dirty bitmap in this slot */
752         ret = 0;
753     }
754     if (ret) {
755         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
756                           __func__, ret);
757     }
758     return ret == 0;
759 }
760 
761 /* Should be with all slots_lock held for the address spaces. */
762 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
763                                      uint32_t slot_id, uint64_t offset)
764 {
765     KVMMemoryListener *kml;
766     KVMSlot *mem;
767 
768     if (as_id >= s->nr_as) {
769         return;
770     }
771 
772     kml = s->as[as_id].ml;
773     mem = &kml->slots[slot_id];
774 
775     if (!mem->memory_size || offset >=
776         (mem->memory_size / qemu_real_host_page_size())) {
777         return;
778     }
779 
780     set_bit(offset, mem->dirty_bmap);
781 }
782 
783 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
784 {
785     /*
786      * Read the flags before the value.  Pairs with barrier in
787      * KVM's kvm_dirty_ring_push() function.
788      */
789     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
790 }
791 
792 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
793 {
794     /*
795      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
796      * sees the full content of the ring:
797      *
798      * CPU0                     CPU1                         CPU2
799      * ------------------------------------------------------------------------------
800      *                                                       fill gfn0
801      *                                                       store-rel flags for gfn0
802      * load-acq flags for gfn0
803      * store-rel RESET for gfn0
804      *                          ioctl(RESET_RINGS)
805      *                            load-acq flags for gfn0
806      *                            check if flags have RESET
807      *
808      * The synchronization goes from CPU2 to CPU0 to CPU1.
809      */
810     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
811 }
812 
813 /*
814  * Should be with all slots_lock held for the address spaces.  It returns the
815  * dirty page we've collected on this dirty ring.
816  */
817 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
818 {
819     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
820     uint32_t ring_size = s->kvm_dirty_ring_size;
821     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
822 
823     /*
824      * It's possible that we race with vcpu creation code where the vcpu is
825      * put onto the vcpus list but not yet initialized the dirty ring
826      * structures.  If so, skip it.
827      */
828     if (!cpu->created) {
829         return 0;
830     }
831 
832     assert(dirty_gfns && ring_size);
833     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
834 
835     while (true) {
836         cur = &dirty_gfns[fetch % ring_size];
837         if (!dirty_gfn_is_dirtied(cur)) {
838             break;
839         }
840         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
841                                  cur->offset);
842         dirty_gfn_set_collected(cur);
843         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
844         fetch++;
845         count++;
846     }
847     cpu->kvm_fetch_index = fetch;
848     cpu->dirty_pages += count;
849 
850     return count;
851 }
852 
853 /* Must be with slots_lock held */
854 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
855 {
856     int ret;
857     uint64_t total = 0;
858     int64_t stamp;
859 
860     stamp = get_clock();
861 
862     if (cpu) {
863         total = kvm_dirty_ring_reap_one(s, cpu);
864     } else {
865         CPU_FOREACH(cpu) {
866             total += kvm_dirty_ring_reap_one(s, cpu);
867         }
868     }
869 
870     if (total) {
871         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
872         assert(ret == total);
873     }
874 
875     stamp = get_clock() - stamp;
876 
877     if (total) {
878         trace_kvm_dirty_ring_reap(total, stamp / 1000);
879     }
880 
881     return total;
882 }
883 
884 /*
885  * Currently for simplicity, we must hold BQL before calling this.  We can
886  * consider to drop the BQL if we're clear with all the race conditions.
887  */
888 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
889 {
890     uint64_t total;
891 
892     /*
893      * We need to lock all kvm slots for all address spaces here,
894      * because:
895      *
896      * (1) We need to mark dirty for dirty bitmaps in multiple slots
897      *     and for tons of pages, so it's better to take the lock here
898      *     once rather than once per page.  And more importantly,
899      *
900      * (2) We must _NOT_ publish dirty bits to the other threads
901      *     (e.g., the migration thread) via the kvm memory slot dirty
902      *     bitmaps before correctly re-protect those dirtied pages.
903      *     Otherwise we can have potential risk of data corruption if
904      *     the page data is read in the other thread before we do
905      *     reset below.
906      */
907     kvm_slots_lock();
908     total = kvm_dirty_ring_reap_locked(s, cpu);
909     kvm_slots_unlock();
910 
911     return total;
912 }
913 
914 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
915 {
916     /* No need to do anything */
917 }
918 
919 /*
920  * Kick all vcpus out in a synchronized way.  When returned, we
921  * guarantee that every vcpu has been kicked and at least returned to
922  * userspace once.
923  */
924 static void kvm_cpu_synchronize_kick_all(void)
925 {
926     CPUState *cpu;
927 
928     CPU_FOREACH(cpu) {
929         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
930     }
931 }
932 
933 /*
934  * Flush all the existing dirty pages to the KVM slot buffers.  When
935  * this call returns, we guarantee that all the touched dirty pages
936  * before calling this function have been put into the per-kvmslot
937  * dirty bitmap.
938  *
939  * This function must be called with BQL held.
940  */
941 static void kvm_dirty_ring_flush(void)
942 {
943     trace_kvm_dirty_ring_flush(0);
944     /*
945      * The function needs to be serialized.  Since this function
946      * should always be with BQL held, serialization is guaranteed.
947      * However, let's be sure of it.
948      */
949     assert(bql_locked());
950     /*
951      * First make sure to flush the hardware buffers by kicking all
952      * vcpus out in a synchronous way.
953      */
954     kvm_cpu_synchronize_kick_all();
955     kvm_dirty_ring_reap(kvm_state, NULL);
956     trace_kvm_dirty_ring_flush(1);
957 }
958 
959 /**
960  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
961  *
962  * This function will first try to fetch dirty bitmap from the kernel,
963  * and then updates qemu's dirty bitmap.
964  *
965  * NOTE: caller must be with kml->slots_lock held.
966  *
967  * @kml: the KVM memory listener object
968  * @section: the memory section to sync the dirty bitmap with
969  */
970 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
971                                            MemoryRegionSection *section)
972 {
973     KVMState *s = kvm_state;
974     KVMSlot *mem;
975     hwaddr start_addr, size;
976     hwaddr slot_size;
977 
978     size = kvm_align_section(section, &start_addr);
979     while (size) {
980         slot_size = MIN(kvm_max_slot_size, size);
981         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
982         if (!mem) {
983             /* We don't have a slot if we want to trap every access. */
984             return;
985         }
986         if (kvm_slot_get_dirty_log(s, mem)) {
987             kvm_slot_sync_dirty_pages(mem);
988         }
989         start_addr += slot_size;
990         size -= slot_size;
991     }
992 }
993 
994 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
995 #define KVM_CLEAR_LOG_SHIFT  6
996 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
997 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
998 
999 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
1000                                   uint64_t size)
1001 {
1002     KVMState *s = kvm_state;
1003     uint64_t end, bmap_start, start_delta, bmap_npages;
1004     struct kvm_clear_dirty_log d;
1005     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
1006     int ret;
1007 
1008     /*
1009      * We need to extend either the start or the size or both to
1010      * satisfy the KVM interface requirement.  Firstly, do the start
1011      * page alignment on 64 host pages
1012      */
1013     bmap_start = start & KVM_CLEAR_LOG_MASK;
1014     start_delta = start - bmap_start;
1015     bmap_start /= psize;
1016 
1017     /*
1018      * The kernel interface has restriction on the size too, that either:
1019      *
1020      * (1) the size is 64 host pages aligned (just like the start), or
1021      * (2) the size fills up until the end of the KVM memslot.
1022      */
1023     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
1024         << KVM_CLEAR_LOG_SHIFT;
1025     end = mem->memory_size / psize;
1026     if (bmap_npages > end - bmap_start) {
1027         bmap_npages = end - bmap_start;
1028     }
1029     start_delta /= psize;
1030 
1031     /*
1032      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
1033      * that we won't clear any unknown dirty bits otherwise we might
1034      * accidentally clear some set bits which are not yet synced from
1035      * the kernel into QEMU's bitmap, then we'll lose track of the
1036      * guest modifications upon those pages (which can directly lead
1037      * to guest data loss or panic after migration).
1038      *
1039      * Layout of the KVMSlot.dirty_bmap:
1040      *
1041      *                   |<-------- bmap_npages -----------..>|
1042      *                                                     [1]
1043      *                     start_delta         size
1044      *  |----------------|-------------|------------------|------------|
1045      *  ^                ^             ^                               ^
1046      *  |                |             |                               |
1047      * start          bmap_start     (start)                         end
1048      * of memslot                                             of memslot
1049      *
1050      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
1051      */
1052 
1053     assert(bmap_start % BITS_PER_LONG == 0);
1054     /* We should never do log_clear before log_sync */
1055     assert(mem->dirty_bmap);
1056     if (start_delta || bmap_npages - size / psize) {
1057         /* Slow path - we need to manipulate a temp bitmap */
1058         bmap_clear = bitmap_new(bmap_npages);
1059         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
1060                                     bmap_start, start_delta + size / psize);
1061         /*
1062          * We need to fill the holes at start because that was not
1063          * specified by the caller and we extended the bitmap only for
1064          * 64 pages alignment
1065          */
1066         bitmap_clear(bmap_clear, 0, start_delta);
1067         d.dirty_bitmap = bmap_clear;
1068     } else {
1069         /*
1070          * Fast path - both start and size align well with BITS_PER_LONG
1071          * (or the end of memory slot)
1072          */
1073         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
1074     }
1075 
1076     d.first_page = bmap_start;
1077     /* It should never overflow.  If it happens, say something */
1078     assert(bmap_npages <= UINT32_MAX);
1079     d.num_pages = bmap_npages;
1080     d.slot = mem->slot | (as_id << 16);
1081 
1082     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
1083     if (ret < 0 && ret != -ENOENT) {
1084         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
1085                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
1086                      __func__, d.slot, (uint64_t)d.first_page,
1087                      (uint32_t)d.num_pages, ret);
1088     } else {
1089         ret = 0;
1090         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
1091     }
1092 
1093     /*
1094      * After we have updated the remote dirty bitmap, we update the
1095      * cached bitmap as well for the memslot, then if another user
1096      * clears the same region we know we shouldn't clear it again on
1097      * the remote otherwise it's data loss as well.
1098      */
1099     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1100                  size / psize);
1101     /* This handles the NULL case well */
1102     g_free(bmap_clear);
1103     return ret;
1104 }
1105 
1106 
1107 /**
1108  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1109  *
1110  * NOTE: this will be a no-op if we haven't enabled manual dirty log
1111  * protection in the host kernel because in that case this operation
1112  * will be done within log_sync().
1113  *
1114  * @kml:     the kvm memory listener
1115  * @section: the memory range to clear dirty bitmap
1116  */
1117 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1118                                   MemoryRegionSection *section)
1119 {
1120     KVMState *s = kvm_state;
1121     uint64_t start, size, offset, count;
1122     KVMSlot *mem;
1123     int ret = 0, i;
1124 
1125     if (!s->manual_dirty_log_protect) {
1126         /* No need to do explicit clear */
1127         return ret;
1128     }
1129 
1130     start = section->offset_within_address_space;
1131     size = int128_get64(section->size);
1132 
1133     if (!size) {
1134         /* Nothing more we can do... */
1135         return ret;
1136     }
1137 
1138     kvm_slots_lock();
1139 
1140     for (i = 0; i < kml->nr_slots_allocated; i++) {
1141         mem = &kml->slots[i];
1142         /* Discard slots that are empty or do not overlap the section */
1143         if (!mem->memory_size ||
1144             mem->start_addr > start + size - 1 ||
1145             start > mem->start_addr + mem->memory_size - 1) {
1146             continue;
1147         }
1148 
1149         if (start >= mem->start_addr) {
1150             /* The slot starts before section or is aligned to it.  */
1151             offset = start - mem->start_addr;
1152             count = MIN(mem->memory_size - offset, size);
1153         } else {
1154             /* The slot starts after section.  */
1155             offset = 0;
1156             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1157         }
1158         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1159         if (ret < 0) {
1160             break;
1161         }
1162     }
1163 
1164     kvm_slots_unlock();
1165 
1166     return ret;
1167 }
1168 
1169 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1170                                      MemoryRegionSection *secion,
1171                                      hwaddr start, hwaddr size)
1172 {
1173     KVMState *s = kvm_state;
1174 
1175     if (s->coalesced_mmio) {
1176         struct kvm_coalesced_mmio_zone zone;
1177 
1178         zone.addr = start;
1179         zone.size = size;
1180         zone.pad = 0;
1181 
1182         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1183     }
1184 }
1185 
1186 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1187                                        MemoryRegionSection *secion,
1188                                        hwaddr start, hwaddr size)
1189 {
1190     KVMState *s = kvm_state;
1191 
1192     if (s->coalesced_mmio) {
1193         struct kvm_coalesced_mmio_zone zone;
1194 
1195         zone.addr = start;
1196         zone.size = size;
1197         zone.pad = 0;
1198 
1199         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1200     }
1201 }
1202 
1203 static void kvm_coalesce_pio_add(MemoryListener *listener,
1204                                 MemoryRegionSection *section,
1205                                 hwaddr start, hwaddr size)
1206 {
1207     KVMState *s = kvm_state;
1208 
1209     if (s->coalesced_pio) {
1210         struct kvm_coalesced_mmio_zone zone;
1211 
1212         zone.addr = start;
1213         zone.size = size;
1214         zone.pio = 1;
1215 
1216         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1217     }
1218 }
1219 
1220 static void kvm_coalesce_pio_del(MemoryListener *listener,
1221                                 MemoryRegionSection *section,
1222                                 hwaddr start, hwaddr size)
1223 {
1224     KVMState *s = kvm_state;
1225 
1226     if (s->coalesced_pio) {
1227         struct kvm_coalesced_mmio_zone zone;
1228 
1229         zone.addr = start;
1230         zone.size = size;
1231         zone.pio = 1;
1232 
1233         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1234      }
1235 }
1236 
1237 int kvm_check_extension(KVMState *s, unsigned int extension)
1238 {
1239     int ret;
1240 
1241     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1242     if (ret < 0) {
1243         ret = 0;
1244     }
1245 
1246     return ret;
1247 }
1248 
1249 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1250 {
1251     int ret;
1252 
1253     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1254     if (ret < 0) {
1255         /* VM wide version not implemented, use global one instead */
1256         ret = kvm_check_extension(s, extension);
1257     }
1258 
1259     return ret;
1260 }
1261 
1262 /*
1263  * We track the poisoned pages to be able to:
1264  * - replace them on VM reset
1265  * - block a migration for a VM with a poisoned page
1266  */
1267 typedef struct HWPoisonPage {
1268     ram_addr_t ram_addr;
1269     QLIST_ENTRY(HWPoisonPage) list;
1270 } HWPoisonPage;
1271 
1272 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1273     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1274 
1275 static void kvm_unpoison_all(void *param)
1276 {
1277     HWPoisonPage *page, *next_page;
1278 
1279     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1280         QLIST_REMOVE(page, list);
1281         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1282         g_free(page);
1283     }
1284 }
1285 
1286 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1287 {
1288     HWPoisonPage *page;
1289 
1290     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1291         if (page->ram_addr == ram_addr) {
1292             return;
1293         }
1294     }
1295     page = g_new(HWPoisonPage, 1);
1296     page->ram_addr = ram_addr;
1297     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1298 }
1299 
1300 bool kvm_hwpoisoned_mem(void)
1301 {
1302     return !QLIST_EMPTY(&hwpoison_page_list);
1303 }
1304 
1305 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1306 {
1307 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1308     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1309      * endianness, but the memory core hands them in target endianness.
1310      * For example, PPC is always treated as big-endian even if running
1311      * on KVM and on PPC64LE.  Correct here.
1312      */
1313     switch (size) {
1314     case 2:
1315         val = bswap16(val);
1316         break;
1317     case 4:
1318         val = bswap32(val);
1319         break;
1320     }
1321 #endif
1322     return val;
1323 }
1324 
1325 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1326                                   bool assign, uint32_t size, bool datamatch)
1327 {
1328     int ret;
1329     struct kvm_ioeventfd iofd = {
1330         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1331         .addr = addr,
1332         .len = size,
1333         .flags = 0,
1334         .fd = fd,
1335     };
1336 
1337     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1338                                  datamatch);
1339     if (!kvm_enabled()) {
1340         return -ENOSYS;
1341     }
1342 
1343     if (datamatch) {
1344         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1345     }
1346     if (!assign) {
1347         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1348     }
1349 
1350     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1351 
1352     if (ret < 0) {
1353         return -errno;
1354     }
1355 
1356     return 0;
1357 }
1358 
1359 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1360                                  bool assign, uint32_t size, bool datamatch)
1361 {
1362     struct kvm_ioeventfd kick = {
1363         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1364         .addr = addr,
1365         .flags = KVM_IOEVENTFD_FLAG_PIO,
1366         .len = size,
1367         .fd = fd,
1368     };
1369     int r;
1370     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1371     if (!kvm_enabled()) {
1372         return -ENOSYS;
1373     }
1374     if (datamatch) {
1375         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1376     }
1377     if (!assign) {
1378         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1379     }
1380     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1381     if (r < 0) {
1382         return r;
1383     }
1384     return 0;
1385 }
1386 
1387 
1388 static const KVMCapabilityInfo *
1389 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1390 {
1391     while (list->name) {
1392         if (!kvm_check_extension(s, list->value)) {
1393             return list;
1394         }
1395         list++;
1396     }
1397     return NULL;
1398 }
1399 
1400 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1401 {
1402     g_assert(
1403         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1404     );
1405     kvm_max_slot_size = max_slot_size;
1406 }
1407 
1408 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr)
1409 {
1410     struct kvm_memory_attributes attrs;
1411     int r;
1412 
1413     assert((attr & kvm_supported_memory_attributes) == attr);
1414     attrs.attributes = attr;
1415     attrs.address = start;
1416     attrs.size = size;
1417     attrs.flags = 0;
1418 
1419     r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs);
1420     if (r) {
1421         error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") "
1422                      "with attr 0x%" PRIx64 " error '%s'",
1423                      start, size, attr, strerror(errno));
1424     }
1425     return r;
1426 }
1427 
1428 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size)
1429 {
1430     return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
1431 }
1432 
1433 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size)
1434 {
1435     return kvm_set_memory_attributes(start, size, 0);
1436 }
1437 
1438 /* Called with KVMMemoryListener.slots_lock held */
1439 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1440                              MemoryRegionSection *section, bool add)
1441 {
1442     KVMSlot *mem;
1443     int err;
1444     MemoryRegion *mr = section->mr;
1445     bool writable = !mr->readonly && !mr->rom_device;
1446     hwaddr start_addr, size, slot_size, mr_offset;
1447     ram_addr_t ram_start_offset;
1448     void *ram;
1449 
1450     if (!memory_region_is_ram(mr)) {
1451         if (writable || !kvm_readonly_mem_allowed) {
1452             return;
1453         } else if (!mr->romd_mode) {
1454             /* If the memory device is not in romd_mode, then we actually want
1455              * to remove the kvm memory slot so all accesses will trap. */
1456             add = false;
1457         }
1458     }
1459 
1460     size = kvm_align_section(section, &start_addr);
1461     if (!size) {
1462         return;
1463     }
1464 
1465     /* The offset of the kvmslot within the memory region */
1466     mr_offset = section->offset_within_region + start_addr -
1467         section->offset_within_address_space;
1468 
1469     /* use aligned delta to align the ram address and offset */
1470     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1471     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1472 
1473     if (!add) {
1474         do {
1475             slot_size = MIN(kvm_max_slot_size, size);
1476             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1477             if (!mem) {
1478                 return;
1479             }
1480             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1481                 /*
1482                  * NOTE: We should be aware of the fact that here we're only
1483                  * doing a best effort to sync dirty bits.  No matter whether
1484                  * we're using dirty log or dirty ring, we ignored two facts:
1485                  *
1486                  * (1) dirty bits can reside in hardware buffers (PML)
1487                  *
1488                  * (2) after we collected dirty bits here, pages can be dirtied
1489                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1490                  * remove the slot.
1491                  *
1492                  * Not easy.  Let's cross the fingers until it's fixed.
1493                  */
1494                 if (kvm_state->kvm_dirty_ring_size) {
1495                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1496                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1497                         kvm_slot_sync_dirty_pages(mem);
1498                         kvm_slot_get_dirty_log(kvm_state, mem);
1499                     }
1500                 } else {
1501                     kvm_slot_get_dirty_log(kvm_state, mem);
1502                 }
1503                 kvm_slot_sync_dirty_pages(mem);
1504             }
1505 
1506             /* unregister the slot */
1507             g_free(mem->dirty_bmap);
1508             mem->dirty_bmap = NULL;
1509             mem->memory_size = 0;
1510             mem->flags = 0;
1511             err = kvm_set_user_memory_region(kml, mem, false);
1512             if (err) {
1513                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1514                         __func__, strerror(-err));
1515                 abort();
1516             }
1517             start_addr += slot_size;
1518             size -= slot_size;
1519             kml->nr_slots_used--;
1520         } while (size);
1521         return;
1522     }
1523 
1524     /* register the new slot */
1525     do {
1526         slot_size = MIN(kvm_max_slot_size, size);
1527         mem = kvm_alloc_slot(kml);
1528         mem->as_id = kml->as_id;
1529         mem->memory_size = slot_size;
1530         mem->start_addr = start_addr;
1531         mem->ram_start_offset = ram_start_offset;
1532         mem->ram = ram;
1533         mem->flags = kvm_mem_flags(mr);
1534         mem->guest_memfd = mr->ram_block->guest_memfd;
1535         mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host;
1536 
1537         kvm_slot_init_dirty_bitmap(mem);
1538         err = kvm_set_user_memory_region(kml, mem, true);
1539         if (err) {
1540             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1541                     strerror(-err));
1542             abort();
1543         }
1544 
1545         if (memory_region_has_guest_memfd(mr)) {
1546             err = kvm_set_memory_attributes_private(start_addr, slot_size);
1547             if (err) {
1548                 error_report("%s: failed to set memory attribute private: %s",
1549                              __func__, strerror(-err));
1550                 exit(1);
1551             }
1552         }
1553 
1554         start_addr += slot_size;
1555         ram_start_offset += slot_size;
1556         ram += slot_size;
1557         size -= slot_size;
1558         kml->nr_slots_used++;
1559     } while (size);
1560 }
1561 
1562 static void *kvm_dirty_ring_reaper_thread(void *data)
1563 {
1564     KVMState *s = data;
1565     struct KVMDirtyRingReaper *r = &s->reaper;
1566 
1567     rcu_register_thread();
1568 
1569     trace_kvm_dirty_ring_reaper("init");
1570 
1571     while (true) {
1572         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1573         trace_kvm_dirty_ring_reaper("wait");
1574         /*
1575          * TODO: provide a smarter timeout rather than a constant?
1576          */
1577         sleep(1);
1578 
1579         /* keep sleeping so that dirtylimit not be interfered by reaper */
1580         if (dirtylimit_in_service()) {
1581             continue;
1582         }
1583 
1584         trace_kvm_dirty_ring_reaper("wakeup");
1585         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1586 
1587         bql_lock();
1588         kvm_dirty_ring_reap(s, NULL);
1589         bql_unlock();
1590 
1591         r->reaper_iteration++;
1592     }
1593 
1594     g_assert_not_reached();
1595 }
1596 
1597 static void kvm_dirty_ring_reaper_init(KVMState *s)
1598 {
1599     struct KVMDirtyRingReaper *r = &s->reaper;
1600 
1601     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1602                        kvm_dirty_ring_reaper_thread,
1603                        s, QEMU_THREAD_JOINABLE);
1604 }
1605 
1606 static int kvm_dirty_ring_init(KVMState *s)
1607 {
1608     uint32_t ring_size = s->kvm_dirty_ring_size;
1609     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1610     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1611     int ret;
1612 
1613     s->kvm_dirty_ring_size = 0;
1614     s->kvm_dirty_ring_bytes = 0;
1615 
1616     /* Bail if the dirty ring size isn't specified */
1617     if (!ring_size) {
1618         return 0;
1619     }
1620 
1621     /*
1622      * Read the max supported pages. Fall back to dirty logging mode
1623      * if the dirty ring isn't supported.
1624      */
1625     ret = kvm_vm_check_extension(s, capability);
1626     if (ret <= 0) {
1627         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1628         ret = kvm_vm_check_extension(s, capability);
1629     }
1630 
1631     if (ret <= 0) {
1632         warn_report("KVM dirty ring not available, using bitmap method");
1633         return 0;
1634     }
1635 
1636     if (ring_bytes > ret) {
1637         error_report("KVM dirty ring size %" PRIu32 " too big "
1638                      "(maximum is %ld).  Please use a smaller value.",
1639                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1640         return -EINVAL;
1641     }
1642 
1643     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1644     if (ret) {
1645         error_report("Enabling of KVM dirty ring failed: %s. "
1646                      "Suggested minimum value is 1024.", strerror(-ret));
1647         return -EIO;
1648     }
1649 
1650     /* Enable the backup bitmap if it is supported */
1651     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1652     if (ret > 0) {
1653         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1654         if (ret) {
1655             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1656                          "%s. ", strerror(-ret));
1657             return -EIO;
1658         }
1659 
1660         s->kvm_dirty_ring_with_bitmap = true;
1661     }
1662 
1663     s->kvm_dirty_ring_size = ring_size;
1664     s->kvm_dirty_ring_bytes = ring_bytes;
1665 
1666     return 0;
1667 }
1668 
1669 static void kvm_region_add(MemoryListener *listener,
1670                            MemoryRegionSection *section)
1671 {
1672     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1673     KVMMemoryUpdate *update;
1674 
1675     update = g_new0(KVMMemoryUpdate, 1);
1676     update->section = *section;
1677 
1678     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1679 }
1680 
1681 static void kvm_region_del(MemoryListener *listener,
1682                            MemoryRegionSection *section)
1683 {
1684     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1685     KVMMemoryUpdate *update;
1686 
1687     update = g_new0(KVMMemoryUpdate, 1);
1688     update->section = *section;
1689 
1690     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1691 }
1692 
1693 static void kvm_region_commit(MemoryListener *listener)
1694 {
1695     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1696                                           listener);
1697     KVMMemoryUpdate *u1, *u2;
1698     bool need_inhibit = false;
1699 
1700     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1701         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1702         return;
1703     }
1704 
1705     /*
1706      * We have to be careful when regions to add overlap with ranges to remove.
1707      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1708      * is currently active.
1709      *
1710      * The lists are order by addresses, so it's easy to find overlaps.
1711      */
1712     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1713     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1714     while (u1 && u2) {
1715         Range r1, r2;
1716 
1717         range_init_nofail(&r1, u1->section.offset_within_address_space,
1718                           int128_get64(u1->section.size));
1719         range_init_nofail(&r2, u2->section.offset_within_address_space,
1720                           int128_get64(u2->section.size));
1721 
1722         if (range_overlaps_range(&r1, &r2)) {
1723             need_inhibit = true;
1724             break;
1725         }
1726         if (range_lob(&r1) < range_lob(&r2)) {
1727             u1 = QSIMPLEQ_NEXT(u1, next);
1728         } else {
1729             u2 = QSIMPLEQ_NEXT(u2, next);
1730         }
1731     }
1732 
1733     kvm_slots_lock();
1734     if (need_inhibit) {
1735         accel_ioctl_inhibit_begin();
1736     }
1737 
1738     /* Remove all memslots before adding the new ones. */
1739     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1740         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1741         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1742 
1743         kvm_set_phys_mem(kml, &u1->section, false);
1744         memory_region_unref(u1->section.mr);
1745 
1746         g_free(u1);
1747     }
1748     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1749         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1750         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1751 
1752         memory_region_ref(u1->section.mr);
1753         kvm_set_phys_mem(kml, &u1->section, true);
1754 
1755         g_free(u1);
1756     }
1757 
1758     if (need_inhibit) {
1759         accel_ioctl_inhibit_end();
1760     }
1761     kvm_slots_unlock();
1762 }
1763 
1764 static void kvm_log_sync(MemoryListener *listener,
1765                          MemoryRegionSection *section)
1766 {
1767     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1768 
1769     kvm_slots_lock();
1770     kvm_physical_sync_dirty_bitmap(kml, section);
1771     kvm_slots_unlock();
1772 }
1773 
1774 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1775 {
1776     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1777     KVMState *s = kvm_state;
1778     KVMSlot *mem;
1779     int i;
1780 
1781     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1782     kvm_dirty_ring_flush();
1783 
1784     kvm_slots_lock();
1785     for (i = 0; i < kml->nr_slots_allocated; i++) {
1786         mem = &kml->slots[i];
1787         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1788             kvm_slot_sync_dirty_pages(mem);
1789 
1790             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1791                 kvm_slot_get_dirty_log(s, mem)) {
1792                 kvm_slot_sync_dirty_pages(mem);
1793             }
1794 
1795             /*
1796              * This is not needed by KVM_GET_DIRTY_LOG because the
1797              * ioctl will unconditionally overwrite the whole region.
1798              * However kvm dirty ring has no such side effect.
1799              */
1800             kvm_slot_reset_dirty_pages(mem);
1801         }
1802     }
1803     kvm_slots_unlock();
1804 }
1805 
1806 static void kvm_log_clear(MemoryListener *listener,
1807                           MemoryRegionSection *section)
1808 {
1809     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1810     int r;
1811 
1812     r = kvm_physical_log_clear(kml, section);
1813     if (r < 0) {
1814         error_report_once("%s: kvm log clear failed: mr=%s "
1815                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1816                           section->mr->name, section->offset_within_region,
1817                           int128_get64(section->size));
1818         abort();
1819     }
1820 }
1821 
1822 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1823                                   MemoryRegionSection *section,
1824                                   bool match_data, uint64_t data,
1825                                   EventNotifier *e)
1826 {
1827     int fd = event_notifier_get_fd(e);
1828     int r;
1829 
1830     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1831                                data, true, int128_get64(section->size),
1832                                match_data);
1833     if (r < 0) {
1834         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1835                 __func__, strerror(-r), -r);
1836         abort();
1837     }
1838 }
1839 
1840 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1841                                   MemoryRegionSection *section,
1842                                   bool match_data, uint64_t data,
1843                                   EventNotifier *e)
1844 {
1845     int fd = event_notifier_get_fd(e);
1846     int r;
1847 
1848     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1849                                data, false, int128_get64(section->size),
1850                                match_data);
1851     if (r < 0) {
1852         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1853                 __func__, strerror(-r), -r);
1854         abort();
1855     }
1856 }
1857 
1858 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1859                                  MemoryRegionSection *section,
1860                                  bool match_data, uint64_t data,
1861                                  EventNotifier *e)
1862 {
1863     int fd = event_notifier_get_fd(e);
1864     int r;
1865 
1866     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1867                               data, true, int128_get64(section->size),
1868                               match_data);
1869     if (r < 0) {
1870         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1871                 __func__, strerror(-r), -r);
1872         abort();
1873     }
1874 }
1875 
1876 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1877                                  MemoryRegionSection *section,
1878                                  bool match_data, uint64_t data,
1879                                  EventNotifier *e)
1880 
1881 {
1882     int fd = event_notifier_get_fd(e);
1883     int r;
1884 
1885     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1886                               data, false, int128_get64(section->size),
1887                               match_data);
1888     if (r < 0) {
1889         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1890                 __func__, strerror(-r), -r);
1891         abort();
1892     }
1893 }
1894 
1895 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1896                                   AddressSpace *as, int as_id, const char *name)
1897 {
1898     int i;
1899 
1900     kml->as_id = as_id;
1901 
1902     kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT);
1903 
1904     QSIMPLEQ_INIT(&kml->transaction_add);
1905     QSIMPLEQ_INIT(&kml->transaction_del);
1906 
1907     kml->listener.region_add = kvm_region_add;
1908     kml->listener.region_del = kvm_region_del;
1909     kml->listener.commit = kvm_region_commit;
1910     kml->listener.log_start = kvm_log_start;
1911     kml->listener.log_stop = kvm_log_stop;
1912     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1913     kml->listener.name = name;
1914 
1915     if (s->kvm_dirty_ring_size) {
1916         kml->listener.log_sync_global = kvm_log_sync_global;
1917     } else {
1918         kml->listener.log_sync = kvm_log_sync;
1919         kml->listener.log_clear = kvm_log_clear;
1920     }
1921 
1922     memory_listener_register(&kml->listener, as);
1923 
1924     for (i = 0; i < s->nr_as; ++i) {
1925         if (!s->as[i].as) {
1926             s->as[i].as = as;
1927             s->as[i].ml = kml;
1928             break;
1929         }
1930     }
1931 }
1932 
1933 static MemoryListener kvm_io_listener = {
1934     .name = "kvm-io",
1935     .coalesced_io_add = kvm_coalesce_pio_add,
1936     .coalesced_io_del = kvm_coalesce_pio_del,
1937     .eventfd_add = kvm_io_ioeventfd_add,
1938     .eventfd_del = kvm_io_ioeventfd_del,
1939     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1940 };
1941 
1942 int kvm_set_irq(KVMState *s, int irq, int level)
1943 {
1944     struct kvm_irq_level event;
1945     int ret;
1946 
1947     assert(kvm_async_interrupts_enabled());
1948 
1949     event.level = level;
1950     event.irq = irq;
1951     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1952     if (ret < 0) {
1953         perror("kvm_set_irq");
1954         abort();
1955     }
1956 
1957     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1958 }
1959 
1960 #ifdef KVM_CAP_IRQ_ROUTING
1961 typedef struct KVMMSIRoute {
1962     struct kvm_irq_routing_entry kroute;
1963     QTAILQ_ENTRY(KVMMSIRoute) entry;
1964 } KVMMSIRoute;
1965 
1966 static void set_gsi(KVMState *s, unsigned int gsi)
1967 {
1968     set_bit(gsi, s->used_gsi_bitmap);
1969 }
1970 
1971 static void clear_gsi(KVMState *s, unsigned int gsi)
1972 {
1973     clear_bit(gsi, s->used_gsi_bitmap);
1974 }
1975 
1976 void kvm_init_irq_routing(KVMState *s)
1977 {
1978     int gsi_count;
1979 
1980     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1981     if (gsi_count > 0) {
1982         /* Round up so we can search ints using ffs */
1983         s->used_gsi_bitmap = bitmap_new(gsi_count);
1984         s->gsi_count = gsi_count;
1985     }
1986 
1987     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1988     s->nr_allocated_irq_routes = 0;
1989 
1990     kvm_arch_init_irq_routing(s);
1991 }
1992 
1993 void kvm_irqchip_commit_routes(KVMState *s)
1994 {
1995     int ret;
1996 
1997     if (kvm_gsi_direct_mapping()) {
1998         return;
1999     }
2000 
2001     if (!kvm_gsi_routing_enabled()) {
2002         return;
2003     }
2004 
2005     s->irq_routes->flags = 0;
2006     trace_kvm_irqchip_commit_routes();
2007     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
2008     assert(ret == 0);
2009 }
2010 
2011 void kvm_add_routing_entry(KVMState *s,
2012                            struct kvm_irq_routing_entry *entry)
2013 {
2014     struct kvm_irq_routing_entry *new;
2015     int n, size;
2016 
2017     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
2018         n = s->nr_allocated_irq_routes * 2;
2019         if (n < 64) {
2020             n = 64;
2021         }
2022         size = sizeof(struct kvm_irq_routing);
2023         size += n * sizeof(*new);
2024         s->irq_routes = g_realloc(s->irq_routes, size);
2025         s->nr_allocated_irq_routes = n;
2026     }
2027     n = s->irq_routes->nr++;
2028     new = &s->irq_routes->entries[n];
2029 
2030     *new = *entry;
2031 
2032     set_gsi(s, entry->gsi);
2033 }
2034 
2035 static int kvm_update_routing_entry(KVMState *s,
2036                                     struct kvm_irq_routing_entry *new_entry)
2037 {
2038     struct kvm_irq_routing_entry *entry;
2039     int n;
2040 
2041     for (n = 0; n < s->irq_routes->nr; n++) {
2042         entry = &s->irq_routes->entries[n];
2043         if (entry->gsi != new_entry->gsi) {
2044             continue;
2045         }
2046 
2047         if(!memcmp(entry, new_entry, sizeof *entry)) {
2048             return 0;
2049         }
2050 
2051         *entry = *new_entry;
2052 
2053         return 0;
2054     }
2055 
2056     return -ESRCH;
2057 }
2058 
2059 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
2060 {
2061     struct kvm_irq_routing_entry e = {};
2062 
2063     assert(pin < s->gsi_count);
2064 
2065     e.gsi = irq;
2066     e.type = KVM_IRQ_ROUTING_IRQCHIP;
2067     e.flags = 0;
2068     e.u.irqchip.irqchip = irqchip;
2069     e.u.irqchip.pin = pin;
2070     kvm_add_routing_entry(s, &e);
2071 }
2072 
2073 void kvm_irqchip_release_virq(KVMState *s, int virq)
2074 {
2075     struct kvm_irq_routing_entry *e;
2076     int i;
2077 
2078     if (kvm_gsi_direct_mapping()) {
2079         return;
2080     }
2081 
2082     for (i = 0; i < s->irq_routes->nr; i++) {
2083         e = &s->irq_routes->entries[i];
2084         if (e->gsi == virq) {
2085             s->irq_routes->nr--;
2086             *e = s->irq_routes->entries[s->irq_routes->nr];
2087         }
2088     }
2089     clear_gsi(s, virq);
2090     kvm_arch_release_virq_post(virq);
2091     trace_kvm_irqchip_release_virq(virq);
2092 }
2093 
2094 void kvm_irqchip_add_change_notifier(Notifier *n)
2095 {
2096     notifier_list_add(&kvm_irqchip_change_notifiers, n);
2097 }
2098 
2099 void kvm_irqchip_remove_change_notifier(Notifier *n)
2100 {
2101     notifier_remove(n);
2102 }
2103 
2104 void kvm_irqchip_change_notify(void)
2105 {
2106     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
2107 }
2108 
2109 int kvm_irqchip_get_virq(KVMState *s)
2110 {
2111     int next_virq;
2112 
2113     /* Return the lowest unused GSI in the bitmap */
2114     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2115     if (next_virq >= s->gsi_count) {
2116         return -ENOSPC;
2117     } else {
2118         return next_virq;
2119     }
2120 }
2121 
2122 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2123 {
2124     struct kvm_msi msi;
2125 
2126     msi.address_lo = (uint32_t)msg.address;
2127     msi.address_hi = msg.address >> 32;
2128     msi.data = le32_to_cpu(msg.data);
2129     msi.flags = 0;
2130     memset(msi.pad, 0, sizeof(msi.pad));
2131 
2132     return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2133 }
2134 
2135 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2136 {
2137     struct kvm_irq_routing_entry kroute = {};
2138     int virq;
2139     KVMState *s = c->s;
2140     MSIMessage msg = {0, 0};
2141 
2142     if (pci_available && dev) {
2143         msg = pci_get_msi_message(dev, vector);
2144     }
2145 
2146     if (kvm_gsi_direct_mapping()) {
2147         return kvm_arch_msi_data_to_gsi(msg.data);
2148     }
2149 
2150     if (!kvm_gsi_routing_enabled()) {
2151         return -ENOSYS;
2152     }
2153 
2154     virq = kvm_irqchip_get_virq(s);
2155     if (virq < 0) {
2156         return virq;
2157     }
2158 
2159     kroute.gsi = virq;
2160     kroute.type = KVM_IRQ_ROUTING_MSI;
2161     kroute.flags = 0;
2162     kroute.u.msi.address_lo = (uint32_t)msg.address;
2163     kroute.u.msi.address_hi = msg.address >> 32;
2164     kroute.u.msi.data = le32_to_cpu(msg.data);
2165     if (pci_available && kvm_msi_devid_required()) {
2166         kroute.flags = KVM_MSI_VALID_DEVID;
2167         kroute.u.msi.devid = pci_requester_id(dev);
2168     }
2169     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2170         kvm_irqchip_release_virq(s, virq);
2171         return -EINVAL;
2172     }
2173 
2174     if (s->irq_routes->nr < s->gsi_count) {
2175         trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2176                                         vector, virq);
2177 
2178         kvm_add_routing_entry(s, &kroute);
2179         kvm_arch_add_msi_route_post(&kroute, vector, dev);
2180         c->changes++;
2181     } else {
2182         kvm_irqchip_release_virq(s, virq);
2183         return -ENOSPC;
2184     }
2185 
2186     return virq;
2187 }
2188 
2189 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2190                                  PCIDevice *dev)
2191 {
2192     struct kvm_irq_routing_entry kroute = {};
2193 
2194     if (kvm_gsi_direct_mapping()) {
2195         return 0;
2196     }
2197 
2198     if (!kvm_irqchip_in_kernel()) {
2199         return -ENOSYS;
2200     }
2201 
2202     kroute.gsi = virq;
2203     kroute.type = KVM_IRQ_ROUTING_MSI;
2204     kroute.flags = 0;
2205     kroute.u.msi.address_lo = (uint32_t)msg.address;
2206     kroute.u.msi.address_hi = msg.address >> 32;
2207     kroute.u.msi.data = le32_to_cpu(msg.data);
2208     if (pci_available && kvm_msi_devid_required()) {
2209         kroute.flags = KVM_MSI_VALID_DEVID;
2210         kroute.u.msi.devid = pci_requester_id(dev);
2211     }
2212     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2213         return -EINVAL;
2214     }
2215 
2216     trace_kvm_irqchip_update_msi_route(virq);
2217 
2218     return kvm_update_routing_entry(s, &kroute);
2219 }
2220 
2221 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2222                                     EventNotifier *resample, int virq,
2223                                     bool assign)
2224 {
2225     int fd = event_notifier_get_fd(event);
2226     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2227 
2228     struct kvm_irqfd irqfd = {
2229         .fd = fd,
2230         .gsi = virq,
2231         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2232     };
2233 
2234     if (rfd != -1) {
2235         assert(assign);
2236         if (kvm_irqchip_is_split()) {
2237             /*
2238              * When the slow irqchip (e.g. IOAPIC) is in the
2239              * userspace, KVM kernel resamplefd will not work because
2240              * the EOI of the interrupt will be delivered to userspace
2241              * instead, so the KVM kernel resamplefd kick will be
2242              * skipped.  The userspace here mimics what the kernel
2243              * provides with resamplefd, remember the resamplefd and
2244              * kick it when we receive EOI of this IRQ.
2245              *
2246              * This is hackery because IOAPIC is mostly bypassed
2247              * (except EOI broadcasts) when irqfd is used.  However
2248              * this can bring much performance back for split irqchip
2249              * with INTx IRQs (for VFIO, this gives 93% perf of the
2250              * full fast path, which is 46% perf boost comparing to
2251              * the INTx slow path).
2252              */
2253             kvm_resample_fd_insert(virq, resample);
2254         } else {
2255             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2256             irqfd.resamplefd = rfd;
2257         }
2258     } else if (!assign) {
2259         if (kvm_irqchip_is_split()) {
2260             kvm_resample_fd_remove(virq);
2261         }
2262     }
2263 
2264     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2265 }
2266 
2267 #else /* !KVM_CAP_IRQ_ROUTING */
2268 
2269 void kvm_init_irq_routing(KVMState *s)
2270 {
2271 }
2272 
2273 void kvm_irqchip_release_virq(KVMState *s, int virq)
2274 {
2275 }
2276 
2277 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2278 {
2279     abort();
2280 }
2281 
2282 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2283 {
2284     return -ENOSYS;
2285 }
2286 
2287 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2288 {
2289     return -ENOSYS;
2290 }
2291 
2292 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2293 {
2294     return -ENOSYS;
2295 }
2296 
2297 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2298                                     EventNotifier *resample, int virq,
2299                                     bool assign)
2300 {
2301     abort();
2302 }
2303 
2304 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2305 {
2306     return -ENOSYS;
2307 }
2308 #endif /* !KVM_CAP_IRQ_ROUTING */
2309 
2310 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2311                                        EventNotifier *rn, int virq)
2312 {
2313     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2314 }
2315 
2316 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2317                                           int virq)
2318 {
2319     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2320 }
2321 
2322 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2323                                    EventNotifier *rn, qemu_irq irq)
2324 {
2325     gpointer key, gsi;
2326     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2327 
2328     if (!found) {
2329         return -ENXIO;
2330     }
2331     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2332 }
2333 
2334 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2335                                       qemu_irq irq)
2336 {
2337     gpointer key, gsi;
2338     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2339 
2340     if (!found) {
2341         return -ENXIO;
2342     }
2343     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2344 }
2345 
2346 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2347 {
2348     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2349 }
2350 
2351 static void kvm_irqchip_create(KVMState *s)
2352 {
2353     int ret;
2354 
2355     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2356     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2357         ;
2358     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2359         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2360         if (ret < 0) {
2361             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2362             exit(1);
2363         }
2364     } else {
2365         return;
2366     }
2367 
2368     if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2369         fprintf(stderr, "kvm: irqfd not implemented\n");
2370         exit(1);
2371     }
2372 
2373     /* First probe and see if there's a arch-specific hook to create the
2374      * in-kernel irqchip for us */
2375     ret = kvm_arch_irqchip_create(s);
2376     if (ret == 0) {
2377         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2378             error_report("Split IRQ chip mode not supported.");
2379             exit(1);
2380         } else {
2381             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2382         }
2383     }
2384     if (ret < 0) {
2385         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2386         exit(1);
2387     }
2388 
2389     kvm_kernel_irqchip = true;
2390     /* If we have an in-kernel IRQ chip then we must have asynchronous
2391      * interrupt delivery (though the reverse is not necessarily true)
2392      */
2393     kvm_async_interrupts_allowed = true;
2394     kvm_halt_in_kernel_allowed = true;
2395 
2396     kvm_init_irq_routing(s);
2397 
2398     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2399 }
2400 
2401 /* Find number of supported CPUs using the recommended
2402  * procedure from the kernel API documentation to cope with
2403  * older kernels that may be missing capabilities.
2404  */
2405 static int kvm_recommended_vcpus(KVMState *s)
2406 {
2407     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2408     return (ret) ? ret : 4;
2409 }
2410 
2411 static int kvm_max_vcpus(KVMState *s)
2412 {
2413     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2414     return (ret) ? ret : kvm_recommended_vcpus(s);
2415 }
2416 
2417 static int kvm_max_vcpu_id(KVMState *s)
2418 {
2419     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2420     return (ret) ? ret : kvm_max_vcpus(s);
2421 }
2422 
2423 bool kvm_vcpu_id_is_valid(int vcpu_id)
2424 {
2425     KVMState *s = KVM_STATE(current_accel());
2426     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2427 }
2428 
2429 bool kvm_dirty_ring_enabled(void)
2430 {
2431     return kvm_state && kvm_state->kvm_dirty_ring_size;
2432 }
2433 
2434 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2435                            strList *names, strList *targets, Error **errp);
2436 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2437 
2438 uint32_t kvm_dirty_ring_size(void)
2439 {
2440     return kvm_state->kvm_dirty_ring_size;
2441 }
2442 
2443 static int do_kvm_create_vm(MachineState *ms, int type)
2444 {
2445     KVMState *s;
2446     int ret;
2447 
2448     s = KVM_STATE(ms->accelerator);
2449 
2450     do {
2451         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2452     } while (ret == -EINTR);
2453 
2454     if (ret < 0) {
2455         error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret));
2456 
2457 #ifdef TARGET_S390X
2458         if (ret == -EINVAL) {
2459             error_printf("Host kernel setup problem detected."
2460                          " Please verify:\n");
2461             error_printf("- for kernels supporting the"
2462                         " switch_amode or user_mode parameters, whether");
2463             error_printf(" user space is running in primary address space\n");
2464             error_printf("- for kernels supporting the vm.allocate_pgste"
2465                          " sysctl, whether it is enabled\n");
2466         }
2467 #elif defined(TARGET_PPC)
2468         if (ret == -EINVAL) {
2469             error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2470                          (type == 2) ? "pr" : "hv");
2471         }
2472 #endif
2473     }
2474 
2475     return ret;
2476 }
2477 
2478 static int find_kvm_machine_type(MachineState *ms)
2479 {
2480     MachineClass *mc = MACHINE_GET_CLASS(ms);
2481     int type;
2482 
2483     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2484         g_autofree char *kvm_type;
2485         kvm_type = object_property_get_str(OBJECT(current_machine),
2486                                            "kvm-type",
2487                                            &error_abort);
2488         type = mc->kvm_type(ms, kvm_type);
2489     } else if (mc->kvm_type) {
2490         type = mc->kvm_type(ms, NULL);
2491     } else {
2492         type = kvm_arch_get_default_type(ms);
2493     }
2494     return type;
2495 }
2496 
2497 static int kvm_setup_dirty_ring(KVMState *s)
2498 {
2499     uint64_t dirty_log_manual_caps;
2500     int ret;
2501 
2502     /*
2503      * Enable KVM dirty ring if supported, otherwise fall back to
2504      * dirty logging mode
2505      */
2506     ret = kvm_dirty_ring_init(s);
2507     if (ret < 0) {
2508         return ret;
2509     }
2510 
2511     /*
2512      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2513      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2514      * page is wr-protected initially, which is against how kvm dirty ring is
2515      * usage - kvm dirty ring requires all pages are wr-protected at the very
2516      * beginning.  Enabling this feature for dirty ring causes data corruption.
2517      *
2518      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2519      * we may expect a higher stall time when starting the migration.  In the
2520      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2521      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2522      * guest pages.
2523      */
2524     if (!s->kvm_dirty_ring_size) {
2525         dirty_log_manual_caps =
2526             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2527         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2528                                   KVM_DIRTY_LOG_INITIALLY_SET);
2529         s->manual_dirty_log_protect = dirty_log_manual_caps;
2530         if (dirty_log_manual_caps) {
2531             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2532                                     dirty_log_manual_caps);
2533             if (ret) {
2534                 warn_report("Trying to enable capability %"PRIu64" of "
2535                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2536                             "Falling back to the legacy mode. ",
2537                             dirty_log_manual_caps);
2538                 s->manual_dirty_log_protect = 0;
2539             }
2540         }
2541     }
2542 
2543     return 0;
2544 }
2545 
2546 static int kvm_init(MachineState *ms)
2547 {
2548     MachineClass *mc = MACHINE_GET_CLASS(ms);
2549     static const char upgrade_note[] =
2550         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2551         "(see http://sourceforge.net/projects/kvm).\n";
2552     const struct {
2553         const char *name;
2554         int num;
2555     } num_cpus[] = {
2556         { "SMP",          ms->smp.cpus },
2557         { "hotpluggable", ms->smp.max_cpus },
2558         { /* end of list */ }
2559     }, *nc = num_cpus;
2560     int soft_vcpus_limit, hard_vcpus_limit;
2561     KVMState *s;
2562     const KVMCapabilityInfo *missing_cap;
2563     int ret;
2564     int type;
2565 
2566     qemu_mutex_init(&kml_slots_lock);
2567 
2568     s = KVM_STATE(ms->accelerator);
2569 
2570     /*
2571      * On systems where the kernel can support different base page
2572      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2573      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2574      * page size for the system though.
2575      */
2576     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2577 
2578     s->sigmask_len = 8;
2579     accel_blocker_init();
2580 
2581 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2582     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2583 #endif
2584     QLIST_INIT(&s->kvm_parked_vcpus);
2585     s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2586     if (s->fd == -1) {
2587         error_report("Could not access KVM kernel module: %m");
2588         ret = -errno;
2589         goto err;
2590     }
2591 
2592     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2593     if (ret < KVM_API_VERSION) {
2594         if (ret >= 0) {
2595             ret = -EINVAL;
2596         }
2597         error_report("kvm version too old");
2598         goto err;
2599     }
2600 
2601     if (ret > KVM_API_VERSION) {
2602         ret = -EINVAL;
2603         error_report("kvm version not supported");
2604         goto err;
2605     }
2606 
2607     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2608     s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2609 
2610     /* If unspecified, use the default value */
2611     if (!s->nr_slots_max) {
2612         s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT;
2613     }
2614 
2615     type = find_kvm_machine_type(ms);
2616     if (type < 0) {
2617         ret = -EINVAL;
2618         goto err;
2619     }
2620 
2621     ret = do_kvm_create_vm(ms, type);
2622     if (ret < 0) {
2623         goto err;
2624     }
2625 
2626     s->vmfd = ret;
2627 
2628     s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2629     if (s->nr_as <= 1) {
2630         s->nr_as = 1;
2631     }
2632     s->as = g_new0(struct KVMAs, s->nr_as);
2633 
2634     /* check the vcpu limits */
2635     soft_vcpus_limit = kvm_recommended_vcpus(s);
2636     hard_vcpus_limit = kvm_max_vcpus(s);
2637 
2638     while (nc->name) {
2639         if (nc->num > soft_vcpus_limit) {
2640             warn_report("Number of %s cpus requested (%d) exceeds "
2641                         "the recommended cpus supported by KVM (%d)",
2642                         nc->name, nc->num, soft_vcpus_limit);
2643 
2644             if (nc->num > hard_vcpus_limit) {
2645                 error_report("Number of %s cpus requested (%d) exceeds "
2646                              "the maximum cpus supported by KVM (%d)",
2647                              nc->name, nc->num, hard_vcpus_limit);
2648                 exit(1);
2649             }
2650         }
2651         nc++;
2652     }
2653 
2654     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2655     if (!missing_cap) {
2656         missing_cap =
2657             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2658     }
2659     if (missing_cap) {
2660         ret = -EINVAL;
2661         error_report("kvm does not support %s", missing_cap->name);
2662         error_printf("%s", upgrade_note);
2663         goto err;
2664     }
2665 
2666     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2667     s->coalesced_pio = s->coalesced_mmio &&
2668                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2669 
2670     ret = kvm_setup_dirty_ring(s);
2671     if (ret < 0) {
2672         goto err;
2673     }
2674 
2675 #ifdef KVM_CAP_VCPU_EVENTS
2676     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2677 #endif
2678     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2679 
2680     s->irq_set_ioctl = KVM_IRQ_LINE;
2681     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2682         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2683     }
2684 
2685     kvm_readonly_mem_allowed =
2686         (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2687 
2688     kvm_resamplefds_allowed =
2689         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2690 
2691     kvm_vm_attributes_allowed =
2692         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2693 
2694 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2695     kvm_has_guest_debug =
2696         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2697 #endif
2698 
2699     kvm_sstep_flags = 0;
2700     if (kvm_has_guest_debug) {
2701         kvm_sstep_flags = SSTEP_ENABLE;
2702 
2703 #if defined TARGET_KVM_HAVE_GUEST_DEBUG
2704         int guest_debug_flags =
2705             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2706 
2707         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2708             kvm_sstep_flags |= SSTEP_NOIRQ;
2709         }
2710 #endif
2711     }
2712 
2713     kvm_state = s;
2714 
2715     ret = kvm_arch_init(ms, s);
2716     if (ret < 0) {
2717         goto err;
2718     }
2719 
2720     kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES);
2721     kvm_guest_memfd_supported =
2722         kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) &&
2723         kvm_check_extension(s, KVM_CAP_USER_MEMORY2) &&
2724         (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE);
2725 
2726     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2727         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2728     }
2729 
2730     qemu_register_reset(kvm_unpoison_all, NULL);
2731 
2732     if (s->kernel_irqchip_allowed) {
2733         kvm_irqchip_create(s);
2734     }
2735 
2736     s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2737     s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2738     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2739     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2740 
2741     kvm_memory_listener_register(s, &s->memory_listener,
2742                                  &address_space_memory, 0, "kvm-memory");
2743     memory_listener_register(&kvm_io_listener,
2744                              &address_space_io);
2745 
2746     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2747     if (!s->sync_mmu) {
2748         ret = ram_block_discard_disable(true);
2749         assert(!ret);
2750     }
2751 
2752     if (s->kvm_dirty_ring_size) {
2753         kvm_dirty_ring_reaper_init(s);
2754     }
2755 
2756     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2757         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2758                             query_stats_schemas_cb);
2759     }
2760 
2761     return 0;
2762 
2763 err:
2764     assert(ret < 0);
2765     if (s->vmfd >= 0) {
2766         close(s->vmfd);
2767     }
2768     if (s->fd != -1) {
2769         close(s->fd);
2770     }
2771     g_free(s->as);
2772     g_free(s->memory_listener.slots);
2773 
2774     return ret;
2775 }
2776 
2777 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2778 {
2779     s->sigmask_len = sigmask_len;
2780 }
2781 
2782 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2783                           int size, uint32_t count)
2784 {
2785     int i;
2786     uint8_t *ptr = data;
2787 
2788     for (i = 0; i < count; i++) {
2789         address_space_rw(&address_space_io, port, attrs,
2790                          ptr, size,
2791                          direction == KVM_EXIT_IO_OUT);
2792         ptr += size;
2793     }
2794 }
2795 
2796 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2797 {
2798     int i;
2799 
2800     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2801             run->internal.suberror);
2802 
2803     for (i = 0; i < run->internal.ndata; ++i) {
2804         fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2805                 i, (uint64_t)run->internal.data[i]);
2806     }
2807     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2808         fprintf(stderr, "emulation failure\n");
2809         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2810             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2811             return EXCP_INTERRUPT;
2812         }
2813     }
2814     /* FIXME: Should trigger a qmp message to let management know
2815      * something went wrong.
2816      */
2817     return -1;
2818 }
2819 
2820 void kvm_flush_coalesced_mmio_buffer(void)
2821 {
2822     KVMState *s = kvm_state;
2823 
2824     if (!s || s->coalesced_flush_in_progress) {
2825         return;
2826     }
2827 
2828     s->coalesced_flush_in_progress = true;
2829 
2830     if (s->coalesced_mmio_ring) {
2831         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2832         while (ring->first != ring->last) {
2833             struct kvm_coalesced_mmio *ent;
2834 
2835             ent = &ring->coalesced_mmio[ring->first];
2836 
2837             if (ent->pio == 1) {
2838                 address_space_write(&address_space_io, ent->phys_addr,
2839                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2840                                     ent->len);
2841             } else {
2842                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2843             }
2844             smp_wmb();
2845             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2846         }
2847     }
2848 
2849     s->coalesced_flush_in_progress = false;
2850 }
2851 
2852 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2853 {
2854     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2855         Error *err = NULL;
2856         int ret = kvm_arch_get_registers(cpu, &err);
2857         if (ret) {
2858             if (err) {
2859                 error_reportf_err(err, "Failed to synchronize CPU state: ");
2860             } else {
2861                 error_report("Failed to get registers: %s", strerror(-ret));
2862             }
2863 
2864             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2865             vm_stop(RUN_STATE_INTERNAL_ERROR);
2866         }
2867 
2868         cpu->vcpu_dirty = true;
2869     }
2870 }
2871 
2872 void kvm_cpu_synchronize_state(CPUState *cpu)
2873 {
2874     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2875         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2876     }
2877 }
2878 
2879 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2880 {
2881     Error *err = NULL;
2882     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err);
2883     if (ret) {
2884         if (err) {
2885             error_reportf_err(err, "Restoring resisters after reset: ");
2886         } else {
2887             error_report("Failed to put registers after reset: %s",
2888                          strerror(-ret));
2889         }
2890         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2891         vm_stop(RUN_STATE_INTERNAL_ERROR);
2892     }
2893 
2894     cpu->vcpu_dirty = false;
2895 }
2896 
2897 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2898 {
2899     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2900 }
2901 
2902 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2903 {
2904     Error *err = NULL;
2905     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err);
2906     if (ret) {
2907         if (err) {
2908             error_reportf_err(err, "Putting registers after init: ");
2909         } else {
2910             error_report("Failed to put registers after init: %s",
2911                          strerror(-ret));
2912         }
2913         exit(1);
2914     }
2915 
2916     cpu->vcpu_dirty = false;
2917 }
2918 
2919 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2920 {
2921     if (!kvm_state->guest_state_protected) {
2922         /*
2923          * This runs before the machine_init_done notifiers, and is the last
2924          * opportunity to synchronize the state of confidential guests.
2925          */
2926         run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2927     }
2928 }
2929 
2930 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2931 {
2932     cpu->vcpu_dirty = true;
2933 }
2934 
2935 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2936 {
2937     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2938 }
2939 
2940 #ifdef KVM_HAVE_MCE_INJECTION
2941 static __thread void *pending_sigbus_addr;
2942 static __thread int pending_sigbus_code;
2943 static __thread bool have_sigbus_pending;
2944 #endif
2945 
2946 static void kvm_cpu_kick(CPUState *cpu)
2947 {
2948     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2949 }
2950 
2951 static void kvm_cpu_kick_self(void)
2952 {
2953     if (kvm_immediate_exit) {
2954         kvm_cpu_kick(current_cpu);
2955     } else {
2956         qemu_cpu_kick_self();
2957     }
2958 }
2959 
2960 static void kvm_eat_signals(CPUState *cpu)
2961 {
2962     struct timespec ts = { 0, 0 };
2963     siginfo_t siginfo;
2964     sigset_t waitset;
2965     sigset_t chkset;
2966     int r;
2967 
2968     if (kvm_immediate_exit) {
2969         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2970         /* Write kvm_run->immediate_exit before the cpu->exit_request
2971          * write in kvm_cpu_exec.
2972          */
2973         smp_wmb();
2974         return;
2975     }
2976 
2977     sigemptyset(&waitset);
2978     sigaddset(&waitset, SIG_IPI);
2979 
2980     do {
2981         r = sigtimedwait(&waitset, &siginfo, &ts);
2982         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2983             perror("sigtimedwait");
2984             exit(1);
2985         }
2986 
2987         r = sigpending(&chkset);
2988         if (r == -1) {
2989             perror("sigpending");
2990             exit(1);
2991         }
2992     } while (sigismember(&chkset, SIG_IPI));
2993 }
2994 
2995 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private)
2996 {
2997     MemoryRegionSection section;
2998     ram_addr_t offset;
2999     MemoryRegion *mr;
3000     RAMBlock *rb;
3001     void *addr;
3002     int ret = -1;
3003 
3004     trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared");
3005 
3006     if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) ||
3007         !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) {
3008         return -1;
3009     }
3010 
3011     if (!size) {
3012         return -1;
3013     }
3014 
3015     section = memory_region_find(get_system_memory(), start, size);
3016     mr = section.mr;
3017     if (!mr) {
3018         /*
3019          * Ignore converting non-assigned region to shared.
3020          *
3021          * TDX requires vMMIO region to be shared to inject #VE to guest.
3022          * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region,
3023          * and vIO-APIC 0xFEC00000 4K page.
3024          * OVMF assigns 32bit PCI MMIO region to
3025          * [top of low memory: typically 2GB=0xC000000,  0xFC00000)
3026          */
3027         if (!to_private) {
3028             return 0;
3029         }
3030         return -1;
3031     }
3032 
3033     if (!memory_region_has_guest_memfd(mr)) {
3034         /*
3035          * Because vMMIO region must be shared, guest TD may convert vMMIO
3036          * region to shared explicitly.  Don't complain such case.  See
3037          * memory_region_type() for checking if the region is MMIO region.
3038          */
3039         if (!to_private &&
3040             !memory_region_is_ram(mr) &&
3041             !memory_region_is_ram_device(mr) &&
3042             !memory_region_is_rom(mr) &&
3043             !memory_region_is_romd(mr)) {
3044             ret = 0;
3045         } else {
3046             error_report("Convert non guest_memfd backed memory region "
3047                         "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s",
3048                         start, size, to_private ? "private" : "shared");
3049         }
3050         goto out_unref;
3051     }
3052 
3053     if (to_private) {
3054         ret = kvm_set_memory_attributes_private(start, size);
3055     } else {
3056         ret = kvm_set_memory_attributes_shared(start, size);
3057     }
3058     if (ret) {
3059         goto out_unref;
3060     }
3061 
3062     addr = memory_region_get_ram_ptr(mr) + section.offset_within_region;
3063     rb = qemu_ram_block_from_host(addr, false, &offset);
3064 
3065     if (to_private) {
3066         if (rb->page_size != qemu_real_host_page_size()) {
3067             /*
3068              * shared memory is backed by hugetlb, which is supposed to be
3069              * pre-allocated and doesn't need to be discarded
3070              */
3071             goto out_unref;
3072         }
3073         ret = ram_block_discard_range(rb, offset, size);
3074     } else {
3075         ret = ram_block_discard_guest_memfd_range(rb, offset, size);
3076     }
3077 
3078 out_unref:
3079     memory_region_unref(mr);
3080     return ret;
3081 }
3082 
3083 int kvm_cpu_exec(CPUState *cpu)
3084 {
3085     struct kvm_run *run = cpu->kvm_run;
3086     int ret, run_ret;
3087 
3088     trace_kvm_cpu_exec();
3089 
3090     if (kvm_arch_process_async_events(cpu)) {
3091         qatomic_set(&cpu->exit_request, 0);
3092         return EXCP_HLT;
3093     }
3094 
3095     bql_unlock();
3096     cpu_exec_start(cpu);
3097 
3098     do {
3099         MemTxAttrs attrs;
3100 
3101         if (cpu->vcpu_dirty) {
3102             Error *err = NULL;
3103             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err);
3104             if (ret) {
3105                 if (err) {
3106                     error_reportf_err(err, "Putting registers after init: ");
3107                 } else {
3108                     error_report("Failed to put registers after init: %s",
3109                                  strerror(-ret));
3110                 }
3111                 ret = -1;
3112                 break;
3113             }
3114 
3115             cpu->vcpu_dirty = false;
3116         }
3117 
3118         kvm_arch_pre_run(cpu, run);
3119         if (qatomic_read(&cpu->exit_request)) {
3120             trace_kvm_interrupt_exit_request();
3121             /*
3122              * KVM requires us to reenter the kernel after IO exits to complete
3123              * instruction emulation. This self-signal will ensure that we
3124              * leave ASAP again.
3125              */
3126             kvm_cpu_kick_self();
3127         }
3128 
3129         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
3130          * Matching barrier in kvm_eat_signals.
3131          */
3132         smp_rmb();
3133 
3134         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
3135 
3136         attrs = kvm_arch_post_run(cpu, run);
3137 
3138 #ifdef KVM_HAVE_MCE_INJECTION
3139         if (unlikely(have_sigbus_pending)) {
3140             bql_lock();
3141             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
3142                                     pending_sigbus_addr);
3143             have_sigbus_pending = false;
3144             bql_unlock();
3145         }
3146 #endif
3147 
3148         if (run_ret < 0) {
3149             if (run_ret == -EINTR || run_ret == -EAGAIN) {
3150                 trace_kvm_io_window_exit();
3151                 kvm_eat_signals(cpu);
3152                 ret = EXCP_INTERRUPT;
3153                 break;
3154             }
3155             if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) {
3156                 fprintf(stderr, "error: kvm run failed %s\n",
3157                         strerror(-run_ret));
3158 #ifdef TARGET_PPC
3159                 if (run_ret == -EBUSY) {
3160                     fprintf(stderr,
3161                             "This is probably because your SMT is enabled.\n"
3162                             "VCPU can only run on primary threads with all "
3163                             "secondary threads offline.\n");
3164                 }
3165 #endif
3166                 ret = -1;
3167                 break;
3168             }
3169         }
3170 
3171         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3172         switch (run->exit_reason) {
3173         case KVM_EXIT_IO:
3174             /* Called outside BQL */
3175             kvm_handle_io(run->io.port, attrs,
3176                           (uint8_t *)run + run->io.data_offset,
3177                           run->io.direction,
3178                           run->io.size,
3179                           run->io.count);
3180             ret = 0;
3181             break;
3182         case KVM_EXIT_MMIO:
3183             /* Called outside BQL */
3184             address_space_rw(&address_space_memory,
3185                              run->mmio.phys_addr, attrs,
3186                              run->mmio.data,
3187                              run->mmio.len,
3188                              run->mmio.is_write);
3189             ret = 0;
3190             break;
3191         case KVM_EXIT_IRQ_WINDOW_OPEN:
3192             ret = EXCP_INTERRUPT;
3193             break;
3194         case KVM_EXIT_SHUTDOWN:
3195             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3196             ret = EXCP_INTERRUPT;
3197             break;
3198         case KVM_EXIT_UNKNOWN:
3199             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3200                     (uint64_t)run->hw.hardware_exit_reason);
3201             ret = -1;
3202             break;
3203         case KVM_EXIT_INTERNAL_ERROR:
3204             ret = kvm_handle_internal_error(cpu, run);
3205             break;
3206         case KVM_EXIT_DIRTY_RING_FULL:
3207             /*
3208              * We shouldn't continue if the dirty ring of this vcpu is
3209              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
3210              */
3211             trace_kvm_dirty_ring_full(cpu->cpu_index);
3212             bql_lock();
3213             /*
3214              * We throttle vCPU by making it sleep once it exit from kernel
3215              * due to dirty ring full. In the dirtylimit scenario, reaping
3216              * all vCPUs after a single vCPU dirty ring get full result in
3217              * the miss of sleep, so just reap the ring-fulled vCPU.
3218              */
3219             if (dirtylimit_in_service()) {
3220                 kvm_dirty_ring_reap(kvm_state, cpu);
3221             } else {
3222                 kvm_dirty_ring_reap(kvm_state, NULL);
3223             }
3224             bql_unlock();
3225             dirtylimit_vcpu_execute(cpu);
3226             ret = 0;
3227             break;
3228         case KVM_EXIT_SYSTEM_EVENT:
3229             trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
3230             switch (run->system_event.type) {
3231             case KVM_SYSTEM_EVENT_SHUTDOWN:
3232                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3233                 ret = EXCP_INTERRUPT;
3234                 break;
3235             case KVM_SYSTEM_EVENT_RESET:
3236                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3237                 ret = EXCP_INTERRUPT;
3238                 break;
3239             case KVM_SYSTEM_EVENT_CRASH:
3240                 kvm_cpu_synchronize_state(cpu);
3241                 bql_lock();
3242                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3243                 bql_unlock();
3244                 ret = 0;
3245                 break;
3246             default:
3247                 ret = kvm_arch_handle_exit(cpu, run);
3248                 break;
3249             }
3250             break;
3251         case KVM_EXIT_MEMORY_FAULT:
3252             trace_kvm_memory_fault(run->memory_fault.gpa,
3253                                    run->memory_fault.size,
3254                                    run->memory_fault.flags);
3255             if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) {
3256                 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64,
3257                              (uint64_t)run->memory_fault.flags);
3258                 ret = -1;
3259                 break;
3260             }
3261             ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size,
3262                                      run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE);
3263             break;
3264         default:
3265             ret = kvm_arch_handle_exit(cpu, run);
3266             break;
3267         }
3268     } while (ret == 0);
3269 
3270     cpu_exec_end(cpu);
3271     bql_lock();
3272 
3273     if (ret < 0) {
3274         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3275         vm_stop(RUN_STATE_INTERNAL_ERROR);
3276     }
3277 
3278     qatomic_set(&cpu->exit_request, 0);
3279     return ret;
3280 }
3281 
3282 int kvm_ioctl(KVMState *s, unsigned long type, ...)
3283 {
3284     int ret;
3285     void *arg;
3286     va_list ap;
3287 
3288     va_start(ap, type);
3289     arg = va_arg(ap, void *);
3290     va_end(ap);
3291 
3292     trace_kvm_ioctl(type, arg);
3293     ret = ioctl(s->fd, type, arg);
3294     if (ret == -1) {
3295         ret = -errno;
3296     }
3297     return ret;
3298 }
3299 
3300 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...)
3301 {
3302     int ret;
3303     void *arg;
3304     va_list ap;
3305 
3306     va_start(ap, type);
3307     arg = va_arg(ap, void *);
3308     va_end(ap);
3309 
3310     trace_kvm_vm_ioctl(type, arg);
3311     accel_ioctl_begin();
3312     ret = ioctl(s->vmfd, type, arg);
3313     accel_ioctl_end();
3314     if (ret == -1) {
3315         ret = -errno;
3316     }
3317     return ret;
3318 }
3319 
3320 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...)
3321 {
3322     int ret;
3323     void *arg;
3324     va_list ap;
3325 
3326     va_start(ap, type);
3327     arg = va_arg(ap, void *);
3328     va_end(ap);
3329 
3330     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3331     accel_cpu_ioctl_begin(cpu);
3332     ret = ioctl(cpu->kvm_fd, type, arg);
3333     accel_cpu_ioctl_end(cpu);
3334     if (ret == -1) {
3335         ret = -errno;
3336     }
3337     return ret;
3338 }
3339 
3340 int kvm_device_ioctl(int fd, unsigned long type, ...)
3341 {
3342     int ret;
3343     void *arg;
3344     va_list ap;
3345 
3346     va_start(ap, type);
3347     arg = va_arg(ap, void *);
3348     va_end(ap);
3349 
3350     trace_kvm_device_ioctl(fd, type, arg);
3351     accel_ioctl_begin();
3352     ret = ioctl(fd, type, arg);
3353     accel_ioctl_end();
3354     if (ret == -1) {
3355         ret = -errno;
3356     }
3357     return ret;
3358 }
3359 
3360 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3361 {
3362     int ret;
3363     struct kvm_device_attr attribute = {
3364         .group = group,
3365         .attr = attr,
3366     };
3367 
3368     if (!kvm_vm_attributes_allowed) {
3369         return 0;
3370     }
3371 
3372     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3373     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3374     return ret ? 0 : 1;
3375 }
3376 
3377 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3378 {
3379     struct kvm_device_attr attribute = {
3380         .group = group,
3381         .attr = attr,
3382         .flags = 0,
3383     };
3384 
3385     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3386 }
3387 
3388 int kvm_device_access(int fd, int group, uint64_t attr,
3389                       void *val, bool write, Error **errp)
3390 {
3391     struct kvm_device_attr kvmattr;
3392     int err;
3393 
3394     kvmattr.flags = 0;
3395     kvmattr.group = group;
3396     kvmattr.attr = attr;
3397     kvmattr.addr = (uintptr_t)val;
3398 
3399     err = kvm_device_ioctl(fd,
3400                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3401                            &kvmattr);
3402     if (err < 0) {
3403         error_setg_errno(errp, -err,
3404                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3405                          "attr 0x%016" PRIx64,
3406                          write ? "SET" : "GET", group, attr);
3407     }
3408     return err;
3409 }
3410 
3411 bool kvm_has_sync_mmu(void)
3412 {
3413     return kvm_state->sync_mmu;
3414 }
3415 
3416 int kvm_has_vcpu_events(void)
3417 {
3418     return kvm_state->vcpu_events;
3419 }
3420 
3421 int kvm_max_nested_state_length(void)
3422 {
3423     return kvm_state->max_nested_state_len;
3424 }
3425 
3426 int kvm_has_gsi_routing(void)
3427 {
3428 #ifdef KVM_CAP_IRQ_ROUTING
3429     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3430 #else
3431     return false;
3432 #endif
3433 }
3434 
3435 bool kvm_arm_supports_user_irq(void)
3436 {
3437     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3438 }
3439 
3440 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
3441 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3442 {
3443     struct kvm_sw_breakpoint *bp;
3444 
3445     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3446         if (bp->pc == pc) {
3447             return bp;
3448         }
3449     }
3450     return NULL;
3451 }
3452 
3453 int kvm_sw_breakpoints_active(CPUState *cpu)
3454 {
3455     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3456 }
3457 
3458 struct kvm_set_guest_debug_data {
3459     struct kvm_guest_debug dbg;
3460     int err;
3461 };
3462 
3463 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3464 {
3465     struct kvm_set_guest_debug_data *dbg_data =
3466         (struct kvm_set_guest_debug_data *) data.host_ptr;
3467 
3468     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3469                                    &dbg_data->dbg);
3470 }
3471 
3472 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3473 {
3474     struct kvm_set_guest_debug_data data;
3475 
3476     data.dbg.control = reinject_trap;
3477 
3478     if (cpu->singlestep_enabled) {
3479         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3480 
3481         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3482             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3483         }
3484     }
3485     kvm_arch_update_guest_debug(cpu, &data.dbg);
3486 
3487     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3488                RUN_ON_CPU_HOST_PTR(&data));
3489     return data.err;
3490 }
3491 
3492 bool kvm_supports_guest_debug(void)
3493 {
3494     /* probed during kvm_init() */
3495     return kvm_has_guest_debug;
3496 }
3497 
3498 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3499 {
3500     struct kvm_sw_breakpoint *bp;
3501     int err;
3502 
3503     if (type == GDB_BREAKPOINT_SW) {
3504         bp = kvm_find_sw_breakpoint(cpu, addr);
3505         if (bp) {
3506             bp->use_count++;
3507             return 0;
3508         }
3509 
3510         bp = g_new(struct kvm_sw_breakpoint, 1);
3511         bp->pc = addr;
3512         bp->use_count = 1;
3513         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3514         if (err) {
3515             g_free(bp);
3516             return err;
3517         }
3518 
3519         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3520     } else {
3521         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3522         if (err) {
3523             return err;
3524         }
3525     }
3526 
3527     CPU_FOREACH(cpu) {
3528         err = kvm_update_guest_debug(cpu, 0);
3529         if (err) {
3530             return err;
3531         }
3532     }
3533     return 0;
3534 }
3535 
3536 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3537 {
3538     struct kvm_sw_breakpoint *bp;
3539     int err;
3540 
3541     if (type == GDB_BREAKPOINT_SW) {
3542         bp = kvm_find_sw_breakpoint(cpu, addr);
3543         if (!bp) {
3544             return -ENOENT;
3545         }
3546 
3547         if (bp->use_count > 1) {
3548             bp->use_count--;
3549             return 0;
3550         }
3551 
3552         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3553         if (err) {
3554             return err;
3555         }
3556 
3557         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3558         g_free(bp);
3559     } else {
3560         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3561         if (err) {
3562             return err;
3563         }
3564     }
3565 
3566     CPU_FOREACH(cpu) {
3567         err = kvm_update_guest_debug(cpu, 0);
3568         if (err) {
3569             return err;
3570         }
3571     }
3572     return 0;
3573 }
3574 
3575 void kvm_remove_all_breakpoints(CPUState *cpu)
3576 {
3577     struct kvm_sw_breakpoint *bp, *next;
3578     KVMState *s = cpu->kvm_state;
3579     CPUState *tmpcpu;
3580 
3581     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3582         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3583             /* Try harder to find a CPU that currently sees the breakpoint. */
3584             CPU_FOREACH(tmpcpu) {
3585                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3586                     break;
3587                 }
3588             }
3589         }
3590         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3591         g_free(bp);
3592     }
3593     kvm_arch_remove_all_hw_breakpoints();
3594 
3595     CPU_FOREACH(cpu) {
3596         kvm_update_guest_debug(cpu, 0);
3597     }
3598 }
3599 
3600 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */
3601 
3602 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3603 {
3604     KVMState *s = kvm_state;
3605     struct kvm_signal_mask *sigmask;
3606     int r;
3607 
3608     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3609 
3610     sigmask->len = s->sigmask_len;
3611     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3612     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3613     g_free(sigmask);
3614 
3615     return r;
3616 }
3617 
3618 static void kvm_ipi_signal(int sig)
3619 {
3620     if (current_cpu) {
3621         assert(kvm_immediate_exit);
3622         kvm_cpu_kick(current_cpu);
3623     }
3624 }
3625 
3626 void kvm_init_cpu_signals(CPUState *cpu)
3627 {
3628     int r;
3629     sigset_t set;
3630     struct sigaction sigact;
3631 
3632     memset(&sigact, 0, sizeof(sigact));
3633     sigact.sa_handler = kvm_ipi_signal;
3634     sigaction(SIG_IPI, &sigact, NULL);
3635 
3636     pthread_sigmask(SIG_BLOCK, NULL, &set);
3637 #if defined KVM_HAVE_MCE_INJECTION
3638     sigdelset(&set, SIGBUS);
3639     pthread_sigmask(SIG_SETMASK, &set, NULL);
3640 #endif
3641     sigdelset(&set, SIG_IPI);
3642     if (kvm_immediate_exit) {
3643         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3644     } else {
3645         r = kvm_set_signal_mask(cpu, &set);
3646     }
3647     if (r) {
3648         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3649         exit(1);
3650     }
3651 }
3652 
3653 /* Called asynchronously in VCPU thread.  */
3654 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3655 {
3656 #ifdef KVM_HAVE_MCE_INJECTION
3657     if (have_sigbus_pending) {
3658         return 1;
3659     }
3660     have_sigbus_pending = true;
3661     pending_sigbus_addr = addr;
3662     pending_sigbus_code = code;
3663     qatomic_set(&cpu->exit_request, 1);
3664     return 0;
3665 #else
3666     return 1;
3667 #endif
3668 }
3669 
3670 /* Called synchronously (via signalfd) in main thread.  */
3671 int kvm_on_sigbus(int code, void *addr)
3672 {
3673 #ifdef KVM_HAVE_MCE_INJECTION
3674     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3675      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3676      * we can only get action optional here.
3677      */
3678     assert(code != BUS_MCEERR_AR);
3679     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3680     return 0;
3681 #else
3682     return 1;
3683 #endif
3684 }
3685 
3686 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3687 {
3688     int ret;
3689     struct kvm_create_device create_dev;
3690 
3691     create_dev.type = type;
3692     create_dev.fd = -1;
3693     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3694 
3695     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3696         return -ENOTSUP;
3697     }
3698 
3699     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3700     if (ret) {
3701         return ret;
3702     }
3703 
3704     return test ? 0 : create_dev.fd;
3705 }
3706 
3707 bool kvm_device_supported(int vmfd, uint64_t type)
3708 {
3709     struct kvm_create_device create_dev = {
3710         .type = type,
3711         .fd = -1,
3712         .flags = KVM_CREATE_DEVICE_TEST,
3713     };
3714 
3715     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3716         return false;
3717     }
3718 
3719     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3720 }
3721 
3722 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3723 {
3724     struct kvm_one_reg reg;
3725     int r;
3726 
3727     reg.id = id;
3728     reg.addr = (uintptr_t) source;
3729     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3730     if (r) {
3731         trace_kvm_failed_reg_set(id, strerror(-r));
3732     }
3733     return r;
3734 }
3735 
3736 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3737 {
3738     struct kvm_one_reg reg;
3739     int r;
3740 
3741     reg.id = id;
3742     reg.addr = (uintptr_t) target;
3743     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3744     if (r) {
3745         trace_kvm_failed_reg_get(id, strerror(-r));
3746     }
3747     return r;
3748 }
3749 
3750 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3751                                  hwaddr start_addr, hwaddr size)
3752 {
3753     KVMState *kvm = KVM_STATE(ms->accelerator);
3754     int i;
3755 
3756     for (i = 0; i < kvm->nr_as; ++i) {
3757         if (kvm->as[i].as == as && kvm->as[i].ml) {
3758             size = MIN(kvm_max_slot_size, size);
3759             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3760                                                     start_addr, size);
3761         }
3762     }
3763 
3764     return false;
3765 }
3766 
3767 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3768                                    const char *name, void *opaque,
3769                                    Error **errp)
3770 {
3771     KVMState *s = KVM_STATE(obj);
3772     int64_t value = s->kvm_shadow_mem;
3773 
3774     visit_type_int(v, name, &value, errp);
3775 }
3776 
3777 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3778                                    const char *name, void *opaque,
3779                                    Error **errp)
3780 {
3781     KVMState *s = KVM_STATE(obj);
3782     int64_t value;
3783 
3784     if (s->fd != -1) {
3785         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3786         return;
3787     }
3788 
3789     if (!visit_type_int(v, name, &value, errp)) {
3790         return;
3791     }
3792 
3793     s->kvm_shadow_mem = value;
3794 }
3795 
3796 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3797                                    const char *name, void *opaque,
3798                                    Error **errp)
3799 {
3800     KVMState *s = KVM_STATE(obj);
3801     OnOffSplit mode;
3802 
3803     if (s->fd != -1) {
3804         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3805         return;
3806     }
3807 
3808     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3809         return;
3810     }
3811     switch (mode) {
3812     case ON_OFF_SPLIT_ON:
3813         s->kernel_irqchip_allowed = true;
3814         s->kernel_irqchip_required = true;
3815         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3816         break;
3817     case ON_OFF_SPLIT_OFF:
3818         s->kernel_irqchip_allowed = false;
3819         s->kernel_irqchip_required = false;
3820         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3821         break;
3822     case ON_OFF_SPLIT_SPLIT:
3823         s->kernel_irqchip_allowed = true;
3824         s->kernel_irqchip_required = true;
3825         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3826         break;
3827     default:
3828         /* The value was checked in visit_type_OnOffSplit() above. If
3829          * we get here, then something is wrong in QEMU.
3830          */
3831         abort();
3832     }
3833 }
3834 
3835 bool kvm_kernel_irqchip_allowed(void)
3836 {
3837     return kvm_state->kernel_irqchip_allowed;
3838 }
3839 
3840 bool kvm_kernel_irqchip_required(void)
3841 {
3842     return kvm_state->kernel_irqchip_required;
3843 }
3844 
3845 bool kvm_kernel_irqchip_split(void)
3846 {
3847     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3848 }
3849 
3850 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3851                                     const char *name, void *opaque,
3852                                     Error **errp)
3853 {
3854     KVMState *s = KVM_STATE(obj);
3855     uint32_t value = s->kvm_dirty_ring_size;
3856 
3857     visit_type_uint32(v, name, &value, errp);
3858 }
3859 
3860 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3861                                     const char *name, void *opaque,
3862                                     Error **errp)
3863 {
3864     KVMState *s = KVM_STATE(obj);
3865     uint32_t value;
3866 
3867     if (s->fd != -1) {
3868         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3869         return;
3870     }
3871 
3872     if (!visit_type_uint32(v, name, &value, errp)) {
3873         return;
3874     }
3875     if (value & (value - 1)) {
3876         error_setg(errp, "dirty-ring-size must be a power of two.");
3877         return;
3878     }
3879 
3880     s->kvm_dirty_ring_size = value;
3881 }
3882 
3883 static char *kvm_get_device(Object *obj,
3884                             Error **errp G_GNUC_UNUSED)
3885 {
3886     KVMState *s = KVM_STATE(obj);
3887 
3888     return g_strdup(s->device);
3889 }
3890 
3891 static void kvm_set_device(Object *obj,
3892                            const char *value,
3893                            Error **errp G_GNUC_UNUSED)
3894 {
3895     KVMState *s = KVM_STATE(obj);
3896 
3897     g_free(s->device);
3898     s->device = g_strdup(value);
3899 }
3900 
3901 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp)
3902 {
3903     KVMState *s = KVM_STATE(obj);
3904     s->msr_energy.enable = value;
3905 }
3906 
3907 static void kvm_set_kvm_rapl_socket_path(Object *obj,
3908                                          const char *str,
3909                                          Error **errp)
3910 {
3911     KVMState *s = KVM_STATE(obj);
3912     g_free(s->msr_energy.socket_path);
3913     s->msr_energy.socket_path = g_strdup(str);
3914 }
3915 
3916 static void kvm_accel_instance_init(Object *obj)
3917 {
3918     KVMState *s = KVM_STATE(obj);
3919 
3920     s->fd = -1;
3921     s->vmfd = -1;
3922     s->kvm_shadow_mem = -1;
3923     s->kernel_irqchip_allowed = true;
3924     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3925     /* KVM dirty ring is by default off */
3926     s->kvm_dirty_ring_size = 0;
3927     s->kvm_dirty_ring_with_bitmap = false;
3928     s->kvm_eager_split_size = 0;
3929     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3930     s->notify_window = 0;
3931     s->xen_version = 0;
3932     s->xen_gnttab_max_frames = 64;
3933     s->xen_evtchn_max_pirq = 256;
3934     s->device = NULL;
3935     s->msr_energy.enable = false;
3936 }
3937 
3938 /**
3939  * kvm_gdbstub_sstep_flags():
3940  *
3941  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3942  * support is probed during kvm_init()
3943  */
3944 static int kvm_gdbstub_sstep_flags(void)
3945 {
3946     return kvm_sstep_flags;
3947 }
3948 
3949 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3950 {
3951     AccelClass *ac = ACCEL_CLASS(oc);
3952     ac->name = "KVM";
3953     ac->init_machine = kvm_init;
3954     ac->has_memory = kvm_accel_has_memory;
3955     ac->allowed = &kvm_allowed;
3956     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3957 
3958     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3959         NULL, kvm_set_kernel_irqchip,
3960         NULL, NULL);
3961     object_class_property_set_description(oc, "kernel-irqchip",
3962         "Configure KVM in-kernel irqchip");
3963 
3964     object_class_property_add(oc, "kvm-shadow-mem", "int",
3965         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3966         NULL, NULL);
3967     object_class_property_set_description(oc, "kvm-shadow-mem",
3968         "KVM shadow MMU size");
3969 
3970     object_class_property_add(oc, "dirty-ring-size", "uint32",
3971         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3972         NULL, NULL);
3973     object_class_property_set_description(oc, "dirty-ring-size",
3974         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3975 
3976     object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3977     object_class_property_set_description(oc, "device",
3978         "Path to the device node to use (default: /dev/kvm)");
3979 
3980     object_class_property_add_bool(oc, "rapl",
3981                                    NULL,
3982                                    kvm_set_kvm_rapl);
3983     object_class_property_set_description(oc, "rapl",
3984         "Allow energy related MSRs for RAPL interface in Guest");
3985 
3986     object_class_property_add_str(oc, "rapl-helper-socket", NULL,
3987                                   kvm_set_kvm_rapl_socket_path);
3988     object_class_property_set_description(oc, "rapl-helper-socket",
3989         "Socket Path for comminucating with the Virtual MSR helper daemon");
3990 
3991     kvm_arch_accel_class_init(oc);
3992 }
3993 
3994 static const TypeInfo kvm_accel_type = {
3995     .name = TYPE_KVM_ACCEL,
3996     .parent = TYPE_ACCEL,
3997     .instance_init = kvm_accel_instance_init,
3998     .class_init = kvm_accel_class_init,
3999     .instance_size = sizeof(KVMState),
4000 };
4001 
4002 static void kvm_type_init(void)
4003 {
4004     type_register_static(&kvm_accel_type);
4005 }
4006 
4007 type_init(kvm_type_init);
4008 
4009 typedef struct StatsArgs {
4010     union StatsResultsType {
4011         StatsResultList **stats;
4012         StatsSchemaList **schema;
4013     } result;
4014     strList *names;
4015     Error **errp;
4016 } StatsArgs;
4017 
4018 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
4019                                     uint64_t *stats_data,
4020                                     StatsList *stats_list,
4021                                     Error **errp)
4022 {
4023 
4024     Stats *stats;
4025     uint64List *val_list = NULL;
4026 
4027     /* Only add stats that we understand.  */
4028     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
4029     case KVM_STATS_TYPE_CUMULATIVE:
4030     case KVM_STATS_TYPE_INSTANT:
4031     case KVM_STATS_TYPE_PEAK:
4032     case KVM_STATS_TYPE_LINEAR_HIST:
4033     case KVM_STATS_TYPE_LOG_HIST:
4034         break;
4035     default:
4036         return stats_list;
4037     }
4038 
4039     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
4040     case KVM_STATS_UNIT_NONE:
4041     case KVM_STATS_UNIT_BYTES:
4042     case KVM_STATS_UNIT_CYCLES:
4043     case KVM_STATS_UNIT_SECONDS:
4044     case KVM_STATS_UNIT_BOOLEAN:
4045         break;
4046     default:
4047         return stats_list;
4048     }
4049 
4050     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
4051     case KVM_STATS_BASE_POW10:
4052     case KVM_STATS_BASE_POW2:
4053         break;
4054     default:
4055         return stats_list;
4056     }
4057 
4058     /* Alloc and populate data list */
4059     stats = g_new0(Stats, 1);
4060     stats->name = g_strdup(pdesc->name);
4061     stats->value = g_new0(StatsValue, 1);
4062 
4063     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
4064         stats->value->u.boolean = *stats_data;
4065         stats->value->type = QTYPE_QBOOL;
4066     } else if (pdesc->size == 1) {
4067         stats->value->u.scalar = *stats_data;
4068         stats->value->type = QTYPE_QNUM;
4069     } else {
4070         int i;
4071         for (i = 0; i < pdesc->size; i++) {
4072             QAPI_LIST_PREPEND(val_list, stats_data[i]);
4073         }
4074         stats->value->u.list = val_list;
4075         stats->value->type = QTYPE_QLIST;
4076     }
4077 
4078     QAPI_LIST_PREPEND(stats_list, stats);
4079     return stats_list;
4080 }
4081 
4082 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
4083                                                  StatsSchemaValueList *list,
4084                                                  Error **errp)
4085 {
4086     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
4087     schema_entry->value = g_new0(StatsSchemaValue, 1);
4088 
4089     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
4090     case KVM_STATS_TYPE_CUMULATIVE:
4091         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
4092         break;
4093     case KVM_STATS_TYPE_INSTANT:
4094         schema_entry->value->type = STATS_TYPE_INSTANT;
4095         break;
4096     case KVM_STATS_TYPE_PEAK:
4097         schema_entry->value->type = STATS_TYPE_PEAK;
4098         break;
4099     case KVM_STATS_TYPE_LINEAR_HIST:
4100         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
4101         schema_entry->value->bucket_size = pdesc->bucket_size;
4102         schema_entry->value->has_bucket_size = true;
4103         break;
4104     case KVM_STATS_TYPE_LOG_HIST:
4105         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
4106         break;
4107     default:
4108         goto exit;
4109     }
4110 
4111     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
4112     case KVM_STATS_UNIT_NONE:
4113         break;
4114     case KVM_STATS_UNIT_BOOLEAN:
4115         schema_entry->value->has_unit = true;
4116         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
4117         break;
4118     case KVM_STATS_UNIT_BYTES:
4119         schema_entry->value->has_unit = true;
4120         schema_entry->value->unit = STATS_UNIT_BYTES;
4121         break;
4122     case KVM_STATS_UNIT_CYCLES:
4123         schema_entry->value->has_unit = true;
4124         schema_entry->value->unit = STATS_UNIT_CYCLES;
4125         break;
4126     case KVM_STATS_UNIT_SECONDS:
4127         schema_entry->value->has_unit = true;
4128         schema_entry->value->unit = STATS_UNIT_SECONDS;
4129         break;
4130     default:
4131         goto exit;
4132     }
4133 
4134     schema_entry->value->exponent = pdesc->exponent;
4135     if (pdesc->exponent) {
4136         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
4137         case KVM_STATS_BASE_POW10:
4138             schema_entry->value->has_base = true;
4139             schema_entry->value->base = 10;
4140             break;
4141         case KVM_STATS_BASE_POW2:
4142             schema_entry->value->has_base = true;
4143             schema_entry->value->base = 2;
4144             break;
4145         default:
4146             goto exit;
4147         }
4148     }
4149 
4150     schema_entry->value->name = g_strdup(pdesc->name);
4151     schema_entry->next = list;
4152     return schema_entry;
4153 exit:
4154     g_free(schema_entry->value);
4155     g_free(schema_entry);
4156     return list;
4157 }
4158 
4159 /* Cached stats descriptors */
4160 typedef struct StatsDescriptors {
4161     const char *ident; /* cache key, currently the StatsTarget */
4162     struct kvm_stats_desc *kvm_stats_desc;
4163     struct kvm_stats_header kvm_stats_header;
4164     QTAILQ_ENTRY(StatsDescriptors) next;
4165 } StatsDescriptors;
4166 
4167 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
4168     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
4169 
4170 /*
4171  * Return the descriptors for 'target', that either have already been read
4172  * or are retrieved from 'stats_fd'.
4173  */
4174 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
4175                                                 Error **errp)
4176 {
4177     StatsDescriptors *descriptors;
4178     const char *ident;
4179     struct kvm_stats_desc *kvm_stats_desc;
4180     struct kvm_stats_header *kvm_stats_header;
4181     size_t size_desc;
4182     ssize_t ret;
4183 
4184     ident = StatsTarget_str(target);
4185     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4186         if (g_str_equal(descriptors->ident, ident)) {
4187             return descriptors;
4188         }
4189     }
4190 
4191     descriptors = g_new0(StatsDescriptors, 1);
4192 
4193     /* Read stats header */
4194     kvm_stats_header = &descriptors->kvm_stats_header;
4195     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4196     if (ret != sizeof(*kvm_stats_header)) {
4197         error_setg(errp, "KVM stats: failed to read stats header: "
4198                    "expected %zu actual %zu",
4199                    sizeof(*kvm_stats_header), ret);
4200         g_free(descriptors);
4201         return NULL;
4202     }
4203     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4204 
4205     /* Read stats descriptors */
4206     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4207     ret = pread(stats_fd, kvm_stats_desc,
4208                 size_desc * kvm_stats_header->num_desc,
4209                 kvm_stats_header->desc_offset);
4210 
4211     if (ret != size_desc * kvm_stats_header->num_desc) {
4212         error_setg(errp, "KVM stats: failed to read stats descriptors: "
4213                    "expected %zu actual %zu",
4214                    size_desc * kvm_stats_header->num_desc, ret);
4215         g_free(descriptors);
4216         g_free(kvm_stats_desc);
4217         return NULL;
4218     }
4219     descriptors->kvm_stats_desc = kvm_stats_desc;
4220     descriptors->ident = ident;
4221     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4222     return descriptors;
4223 }
4224 
4225 static void query_stats(StatsResultList **result, StatsTarget target,
4226                         strList *names, int stats_fd, CPUState *cpu,
4227                         Error **errp)
4228 {
4229     struct kvm_stats_desc *kvm_stats_desc;
4230     struct kvm_stats_header *kvm_stats_header;
4231     StatsDescriptors *descriptors;
4232     g_autofree uint64_t *stats_data = NULL;
4233     struct kvm_stats_desc *pdesc;
4234     StatsList *stats_list = NULL;
4235     size_t size_desc, size_data = 0;
4236     ssize_t ret;
4237     int i;
4238 
4239     descriptors = find_stats_descriptors(target, stats_fd, errp);
4240     if (!descriptors) {
4241         return;
4242     }
4243 
4244     kvm_stats_header = &descriptors->kvm_stats_header;
4245     kvm_stats_desc = descriptors->kvm_stats_desc;
4246     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4247 
4248     /* Tally the total data size; read schema data */
4249     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4250         pdesc = (void *)kvm_stats_desc + i * size_desc;
4251         size_data += pdesc->size * sizeof(*stats_data);
4252     }
4253 
4254     stats_data = g_malloc0(size_data);
4255     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4256 
4257     if (ret != size_data) {
4258         error_setg(errp, "KVM stats: failed to read data: "
4259                    "expected %zu actual %zu", size_data, ret);
4260         return;
4261     }
4262 
4263     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4264         uint64_t *stats;
4265         pdesc = (void *)kvm_stats_desc + i * size_desc;
4266 
4267         /* Add entry to the list */
4268         stats = (void *)stats_data + pdesc->offset;
4269         if (!apply_str_list_filter(pdesc->name, names)) {
4270             continue;
4271         }
4272         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4273     }
4274 
4275     if (!stats_list) {
4276         return;
4277     }
4278 
4279     switch (target) {
4280     case STATS_TARGET_VM:
4281         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4282         break;
4283     case STATS_TARGET_VCPU:
4284         add_stats_entry(result, STATS_PROVIDER_KVM,
4285                         cpu->parent_obj.canonical_path,
4286                         stats_list);
4287         break;
4288     default:
4289         g_assert_not_reached();
4290     }
4291 }
4292 
4293 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4294                                int stats_fd, Error **errp)
4295 {
4296     struct kvm_stats_desc *kvm_stats_desc;
4297     struct kvm_stats_header *kvm_stats_header;
4298     StatsDescriptors *descriptors;
4299     struct kvm_stats_desc *pdesc;
4300     StatsSchemaValueList *stats_list = NULL;
4301     size_t size_desc;
4302     int i;
4303 
4304     descriptors = find_stats_descriptors(target, stats_fd, errp);
4305     if (!descriptors) {
4306         return;
4307     }
4308 
4309     kvm_stats_header = &descriptors->kvm_stats_header;
4310     kvm_stats_desc = descriptors->kvm_stats_desc;
4311     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4312 
4313     /* Tally the total data size; read schema data */
4314     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4315         pdesc = (void *)kvm_stats_desc + i * size_desc;
4316         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4317     }
4318 
4319     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4320 }
4321 
4322 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4323 {
4324     int stats_fd = cpu->kvm_vcpu_stats_fd;
4325     Error *local_err = NULL;
4326 
4327     if (stats_fd == -1) {
4328         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4329         error_propagate(kvm_stats_args->errp, local_err);
4330         return;
4331     }
4332     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4333                 kvm_stats_args->names, stats_fd, cpu,
4334                 kvm_stats_args->errp);
4335 }
4336 
4337 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4338 {
4339     int stats_fd = cpu->kvm_vcpu_stats_fd;
4340     Error *local_err = NULL;
4341 
4342     if (stats_fd == -1) {
4343         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4344         error_propagate(kvm_stats_args->errp, local_err);
4345         return;
4346     }
4347     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4348                        kvm_stats_args->errp);
4349 }
4350 
4351 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4352                            strList *names, strList *targets, Error **errp)
4353 {
4354     KVMState *s = kvm_state;
4355     CPUState *cpu;
4356     int stats_fd;
4357 
4358     switch (target) {
4359     case STATS_TARGET_VM:
4360     {
4361         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4362         if (stats_fd == -1) {
4363             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4364             return;
4365         }
4366         query_stats(result, target, names, stats_fd, NULL, errp);
4367         close(stats_fd);
4368         break;
4369     }
4370     case STATS_TARGET_VCPU:
4371     {
4372         StatsArgs stats_args;
4373         stats_args.result.stats = result;
4374         stats_args.names = names;
4375         stats_args.errp = errp;
4376         CPU_FOREACH(cpu) {
4377             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4378                 continue;
4379             }
4380             query_stats_vcpu(cpu, &stats_args);
4381         }
4382         break;
4383     }
4384     default:
4385         break;
4386     }
4387 }
4388 
4389 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4390 {
4391     StatsArgs stats_args;
4392     KVMState *s = kvm_state;
4393     int stats_fd;
4394 
4395     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4396     if (stats_fd == -1) {
4397         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4398         return;
4399     }
4400     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4401     close(stats_fd);
4402 
4403     if (first_cpu) {
4404         stats_args.result.schema = result;
4405         stats_args.errp = errp;
4406         query_stats_schema_vcpu(first_cpu, &stats_args);
4407     }
4408 }
4409 
4410 void kvm_mark_guest_state_protected(void)
4411 {
4412     kvm_state->guest_state_protected = true;
4413 }
4414 
4415 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp)
4416 {
4417     int fd;
4418     struct kvm_create_guest_memfd guest_memfd = {
4419         .size = size,
4420         .flags = flags,
4421     };
4422 
4423     if (!kvm_guest_memfd_supported) {
4424         error_setg(errp, "KVM does not support guest_memfd");
4425         return -1;
4426     }
4427 
4428     fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
4429     if (fd < 0) {
4430         error_setg_errno(errp, errno, "Error creating KVM guest_memfd");
4431         return -1;
4432     }
4433 
4434     return fd;
4435 }
4436