xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision f3635813)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 
19 #include <linux/kvm.h>
20 
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "sysemu/balloon.h"
44 
45 #include "hw/boards.h"
46 
47 /* This check must be after config-host.h is included */
48 #ifdef CONFIG_EVENTFD
49 #include <sys/eventfd.h>
50 #endif
51 
52 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
53  * need to use the real host PAGE_SIZE, as that's what KVM will use.
54  */
55 #define PAGE_SIZE qemu_real_host_page_size
56 
57 //#define DEBUG_KVM
58 
59 #ifdef DEBUG_KVM
60 #define DPRINTF(fmt, ...) \
61     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62 #else
63 #define DPRINTF(fmt, ...) \
64     do { } while (0)
65 #endif
66 
67 #define KVM_MSI_HASHTAB_SIZE    256
68 
69 struct KVMParkedVcpu {
70     unsigned long vcpu_id;
71     int kvm_fd;
72     QLIST_ENTRY(KVMParkedVcpu) node;
73 };
74 
75 struct KVMState
76 {
77     AccelState parent_obj;
78 
79     int nr_slots;
80     int fd;
81     int vmfd;
82     int coalesced_mmio;
83     int coalesced_pio;
84     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
85     bool coalesced_flush_in_progress;
86     int vcpu_events;
87     int robust_singlestep;
88     int debugregs;
89 #ifdef KVM_CAP_SET_GUEST_DEBUG
90     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
91 #endif
92     int max_nested_state_len;
93     int many_ioeventfds;
94     int intx_set_mask;
95     bool sync_mmu;
96     bool manual_dirty_log_protect;
97     /* The man page (and posix) say ioctl numbers are signed int, but
98      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
99      * unsigned, and treating them as signed here can break things */
100     unsigned irq_set_ioctl;
101     unsigned int sigmask_len;
102     GHashTable *gsimap;
103 #ifdef KVM_CAP_IRQ_ROUTING
104     struct kvm_irq_routing *irq_routes;
105     int nr_allocated_irq_routes;
106     unsigned long *used_gsi_bitmap;
107     unsigned int gsi_count;
108     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
109 #endif
110     KVMMemoryListener memory_listener;
111     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
112 
113     /* memory encryption */
114     void *memcrypt_handle;
115     int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
116 
117     /* For "info mtree -f" to tell if an MR is registered in KVM */
118     int nr_as;
119     struct KVMAs {
120         KVMMemoryListener *ml;
121         AddressSpace *as;
122     } *as;
123 };
124 
125 KVMState *kvm_state;
126 bool kvm_kernel_irqchip;
127 bool kvm_split_irqchip;
128 bool kvm_async_interrupts_allowed;
129 bool kvm_halt_in_kernel_allowed;
130 bool kvm_eventfds_allowed;
131 bool kvm_irqfds_allowed;
132 bool kvm_resamplefds_allowed;
133 bool kvm_msi_via_irqfd_allowed;
134 bool kvm_gsi_routing_allowed;
135 bool kvm_gsi_direct_mapping;
136 bool kvm_allowed;
137 bool kvm_readonly_mem_allowed;
138 bool kvm_vm_attributes_allowed;
139 bool kvm_direct_msi_allowed;
140 bool kvm_ioeventfd_any_length_allowed;
141 bool kvm_msi_use_devid;
142 static bool kvm_immediate_exit;
143 static hwaddr kvm_max_slot_size = ~0;
144 
145 static const KVMCapabilityInfo kvm_required_capabilites[] = {
146     KVM_CAP_INFO(USER_MEMORY),
147     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
148     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
149     KVM_CAP_LAST_INFO
150 };
151 
152 static NotifierList kvm_irqchip_change_notifiers =
153     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
154 
155 #define kvm_slots_lock(kml)      qemu_mutex_lock(&(kml)->slots_lock)
156 #define kvm_slots_unlock(kml)    qemu_mutex_unlock(&(kml)->slots_lock)
157 
158 int kvm_get_max_memslots(void)
159 {
160     KVMState *s = KVM_STATE(current_machine->accelerator);
161 
162     return s->nr_slots;
163 }
164 
165 bool kvm_memcrypt_enabled(void)
166 {
167     if (kvm_state && kvm_state->memcrypt_handle) {
168         return true;
169     }
170 
171     return false;
172 }
173 
174 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
175 {
176     if (kvm_state->memcrypt_handle &&
177         kvm_state->memcrypt_encrypt_data) {
178         return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
179                                               ptr, len);
180     }
181 
182     return 1;
183 }
184 
185 /* Called with KVMMemoryListener.slots_lock held */
186 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
187 {
188     KVMState *s = kvm_state;
189     int i;
190 
191     for (i = 0; i < s->nr_slots; i++) {
192         if (kml->slots[i].memory_size == 0) {
193             return &kml->slots[i];
194         }
195     }
196 
197     return NULL;
198 }
199 
200 bool kvm_has_free_slot(MachineState *ms)
201 {
202     KVMState *s = KVM_STATE(ms->accelerator);
203     bool result;
204     KVMMemoryListener *kml = &s->memory_listener;
205 
206     kvm_slots_lock(kml);
207     result = !!kvm_get_free_slot(kml);
208     kvm_slots_unlock(kml);
209 
210     return result;
211 }
212 
213 /* Called with KVMMemoryListener.slots_lock held */
214 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
215 {
216     KVMSlot *slot = kvm_get_free_slot(kml);
217 
218     if (slot) {
219         return slot;
220     }
221 
222     fprintf(stderr, "%s: no free slot available\n", __func__);
223     abort();
224 }
225 
226 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
227                                          hwaddr start_addr,
228                                          hwaddr size)
229 {
230     KVMState *s = kvm_state;
231     int i;
232 
233     for (i = 0; i < s->nr_slots; i++) {
234         KVMSlot *mem = &kml->slots[i];
235 
236         if (start_addr == mem->start_addr && size == mem->memory_size) {
237             return mem;
238         }
239     }
240 
241     return NULL;
242 }
243 
244 /*
245  * Calculate and align the start address and the size of the section.
246  * Return the size. If the size is 0, the aligned section is empty.
247  */
248 static hwaddr kvm_align_section(MemoryRegionSection *section,
249                                 hwaddr *start)
250 {
251     hwaddr size = int128_get64(section->size);
252     hwaddr delta, aligned;
253 
254     /* kvm works in page size chunks, but the function may be called
255        with sub-page size and unaligned start address. Pad the start
256        address to next and truncate size to previous page boundary. */
257     aligned = ROUND_UP(section->offset_within_address_space,
258                        qemu_real_host_page_size);
259     delta = aligned - section->offset_within_address_space;
260     *start = aligned;
261     if (delta > size) {
262         return 0;
263     }
264 
265     return (size - delta) & qemu_real_host_page_mask;
266 }
267 
268 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
269                                        hwaddr *phys_addr)
270 {
271     KVMMemoryListener *kml = &s->memory_listener;
272     int i, ret = 0;
273 
274     kvm_slots_lock(kml);
275     for (i = 0; i < s->nr_slots; i++) {
276         KVMSlot *mem = &kml->slots[i];
277 
278         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
279             *phys_addr = mem->start_addr + (ram - mem->ram);
280             ret = 1;
281             break;
282         }
283     }
284     kvm_slots_unlock(kml);
285 
286     return ret;
287 }
288 
289 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
290 {
291     KVMState *s = kvm_state;
292     struct kvm_userspace_memory_region mem;
293     int ret;
294 
295     mem.slot = slot->slot | (kml->as_id << 16);
296     mem.guest_phys_addr = slot->start_addr;
297     mem.userspace_addr = (unsigned long)slot->ram;
298     mem.flags = slot->flags;
299 
300     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
301         /* Set the slot size to 0 before setting the slot to the desired
302          * value. This is needed based on KVM commit 75d61fbc. */
303         mem.memory_size = 0;
304         kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
305     }
306     mem.memory_size = slot->memory_size;
307     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
308     slot->old_flags = mem.flags;
309     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
310                               mem.memory_size, mem.userspace_addr, ret);
311     return ret;
312 }
313 
314 int kvm_destroy_vcpu(CPUState *cpu)
315 {
316     KVMState *s = kvm_state;
317     long mmap_size;
318     struct KVMParkedVcpu *vcpu = NULL;
319     int ret = 0;
320 
321     DPRINTF("kvm_destroy_vcpu\n");
322 
323     ret = kvm_arch_destroy_vcpu(cpu);
324     if (ret < 0) {
325         goto err;
326     }
327 
328     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
329     if (mmap_size < 0) {
330         ret = mmap_size;
331         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
332         goto err;
333     }
334 
335     ret = munmap(cpu->kvm_run, mmap_size);
336     if (ret < 0) {
337         goto err;
338     }
339 
340     vcpu = g_malloc0(sizeof(*vcpu));
341     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
342     vcpu->kvm_fd = cpu->kvm_fd;
343     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
344 err:
345     return ret;
346 }
347 
348 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
349 {
350     struct KVMParkedVcpu *cpu;
351 
352     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
353         if (cpu->vcpu_id == vcpu_id) {
354             int kvm_fd;
355 
356             QLIST_REMOVE(cpu, node);
357             kvm_fd = cpu->kvm_fd;
358             g_free(cpu);
359             return kvm_fd;
360         }
361     }
362 
363     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
364 }
365 
366 int kvm_init_vcpu(CPUState *cpu)
367 {
368     KVMState *s = kvm_state;
369     long mmap_size;
370     int ret;
371 
372     DPRINTF("kvm_init_vcpu\n");
373 
374     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
375     if (ret < 0) {
376         DPRINTF("kvm_create_vcpu failed\n");
377         goto err;
378     }
379 
380     cpu->kvm_fd = ret;
381     cpu->kvm_state = s;
382     cpu->vcpu_dirty = true;
383 
384     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
385     if (mmap_size < 0) {
386         ret = mmap_size;
387         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
388         goto err;
389     }
390 
391     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
392                         cpu->kvm_fd, 0);
393     if (cpu->kvm_run == MAP_FAILED) {
394         ret = -errno;
395         DPRINTF("mmap'ing vcpu state failed\n");
396         goto err;
397     }
398 
399     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
400         s->coalesced_mmio_ring =
401             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
402     }
403 
404     ret = kvm_arch_init_vcpu(cpu);
405 err:
406     return ret;
407 }
408 
409 /*
410  * dirty pages logging control
411  */
412 
413 static int kvm_mem_flags(MemoryRegion *mr)
414 {
415     bool readonly = mr->readonly || memory_region_is_romd(mr);
416     int flags = 0;
417 
418     if (memory_region_get_dirty_log_mask(mr) != 0) {
419         flags |= KVM_MEM_LOG_DIRTY_PAGES;
420     }
421     if (readonly && kvm_readonly_mem_allowed) {
422         flags |= KVM_MEM_READONLY;
423     }
424     return flags;
425 }
426 
427 /* Called with KVMMemoryListener.slots_lock held */
428 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
429                                  MemoryRegion *mr)
430 {
431     mem->flags = kvm_mem_flags(mr);
432 
433     /* If nothing changed effectively, no need to issue ioctl */
434     if (mem->flags == mem->old_flags) {
435         return 0;
436     }
437 
438     return kvm_set_user_memory_region(kml, mem, false);
439 }
440 
441 static int kvm_section_update_flags(KVMMemoryListener *kml,
442                                     MemoryRegionSection *section)
443 {
444     hwaddr start_addr, size, slot_size;
445     KVMSlot *mem;
446     int ret = 0;
447 
448     size = kvm_align_section(section, &start_addr);
449     if (!size) {
450         return 0;
451     }
452 
453     kvm_slots_lock(kml);
454 
455     while (size && !ret) {
456         slot_size = MIN(kvm_max_slot_size, size);
457         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
458         if (!mem) {
459             /* We don't have a slot if we want to trap every access. */
460             goto out;
461         }
462 
463         ret = kvm_slot_update_flags(kml, mem, section->mr);
464         start_addr += slot_size;
465         size -= slot_size;
466     }
467 
468 out:
469     kvm_slots_unlock(kml);
470     return ret;
471 }
472 
473 static void kvm_log_start(MemoryListener *listener,
474                           MemoryRegionSection *section,
475                           int old, int new)
476 {
477     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
478     int r;
479 
480     if (old != 0) {
481         return;
482     }
483 
484     r = kvm_section_update_flags(kml, section);
485     if (r < 0) {
486         abort();
487     }
488 }
489 
490 static void kvm_log_stop(MemoryListener *listener,
491                           MemoryRegionSection *section,
492                           int old, int new)
493 {
494     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
495     int r;
496 
497     if (new != 0) {
498         return;
499     }
500 
501     r = kvm_section_update_flags(kml, section);
502     if (r < 0) {
503         abort();
504     }
505 }
506 
507 /* get kvm's dirty pages bitmap and update qemu's */
508 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
509                                          unsigned long *bitmap)
510 {
511     ram_addr_t start = section->offset_within_region +
512                        memory_region_get_ram_addr(section->mr);
513     ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
514 
515     cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
516     return 0;
517 }
518 
519 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
520 
521 /**
522  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
523  *
524  * This function will first try to fetch dirty bitmap from the kernel,
525  * and then updates qemu's dirty bitmap.
526  *
527  * NOTE: caller must be with kml->slots_lock held.
528  *
529  * @kml: the KVM memory listener object
530  * @section: the memory section to sync the dirty bitmap with
531  */
532 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
533                                           MemoryRegionSection *section)
534 {
535     KVMState *s = kvm_state;
536     struct kvm_dirty_log d = {};
537     KVMSlot *mem;
538     hwaddr start_addr, size;
539     hwaddr slot_size, slot_offset = 0;
540     int ret = 0;
541 
542     size = kvm_align_section(section, &start_addr);
543     while (size) {
544         MemoryRegionSection subsection = *section;
545 
546         slot_size = MIN(kvm_max_slot_size, size);
547         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
548         if (!mem) {
549             /* We don't have a slot if we want to trap every access. */
550             goto out;
551         }
552 
553         /* XXX bad kernel interface alert
554          * For dirty bitmap, kernel allocates array of size aligned to
555          * bits-per-long.  But for case when the kernel is 64bits and
556          * the userspace is 32bits, userspace can't align to the same
557          * bits-per-long, since sizeof(long) is different between kernel
558          * and user space.  This way, userspace will provide buffer which
559          * may be 4 bytes less than the kernel will use, resulting in
560          * userspace memory corruption (which is not detectable by valgrind
561          * too, in most cases).
562          * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
563          * a hope that sizeof(long) won't become >8 any time soon.
564          */
565         if (!mem->dirty_bmap) {
566             hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
567                                         /*HOST_LONG_BITS*/ 64) / 8;
568             /* Allocate on the first log_sync, once and for all */
569             mem->dirty_bmap = g_malloc0(bitmap_size);
570         }
571 
572         d.dirty_bitmap = mem->dirty_bmap;
573         d.slot = mem->slot | (kml->as_id << 16);
574         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
575             DPRINTF("ioctl failed %d\n", errno);
576             ret = -1;
577             goto out;
578         }
579 
580         subsection.offset_within_region += slot_offset;
581         subsection.size = int128_make64(slot_size);
582         kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
583 
584         slot_offset += slot_size;
585         start_addr += slot_size;
586         size -= slot_size;
587     }
588 out:
589     return ret;
590 }
591 
592 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
593 #define KVM_CLEAR_LOG_SHIFT  6
594 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
595 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
596 
597 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
598                                   uint64_t size)
599 {
600     KVMState *s = kvm_state;
601     uint64_t end, bmap_start, start_delta, bmap_npages;
602     struct kvm_clear_dirty_log d;
603     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
604     int ret;
605 
606     /*
607      * We need to extend either the start or the size or both to
608      * satisfy the KVM interface requirement.  Firstly, do the start
609      * page alignment on 64 host pages
610      */
611     bmap_start = start & KVM_CLEAR_LOG_MASK;
612     start_delta = start - bmap_start;
613     bmap_start /= psize;
614 
615     /*
616      * The kernel interface has restriction on the size too, that either:
617      *
618      * (1) the size is 64 host pages aligned (just like the start), or
619      * (2) the size fills up until the end of the KVM memslot.
620      */
621     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
622         << KVM_CLEAR_LOG_SHIFT;
623     end = mem->memory_size / psize;
624     if (bmap_npages > end - bmap_start) {
625         bmap_npages = end - bmap_start;
626     }
627     start_delta /= psize;
628 
629     /*
630      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
631      * that we won't clear any unknown dirty bits otherwise we might
632      * accidentally clear some set bits which are not yet synced from
633      * the kernel into QEMU's bitmap, then we'll lose track of the
634      * guest modifications upon those pages (which can directly lead
635      * to guest data loss or panic after migration).
636      *
637      * Layout of the KVMSlot.dirty_bmap:
638      *
639      *                   |<-------- bmap_npages -----------..>|
640      *                                                     [1]
641      *                     start_delta         size
642      *  |----------------|-------------|------------------|------------|
643      *  ^                ^             ^                               ^
644      *  |                |             |                               |
645      * start          bmap_start     (start)                         end
646      * of memslot                                             of memslot
647      *
648      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
649      */
650 
651     assert(bmap_start % BITS_PER_LONG == 0);
652     /* We should never do log_clear before log_sync */
653     assert(mem->dirty_bmap);
654     if (start_delta) {
655         /* Slow path - we need to manipulate a temp bitmap */
656         bmap_clear = bitmap_new(bmap_npages);
657         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
658                                     bmap_start, start_delta + size / psize);
659         /*
660          * We need to fill the holes at start because that was not
661          * specified by the caller and we extended the bitmap only for
662          * 64 pages alignment
663          */
664         bitmap_clear(bmap_clear, 0, start_delta);
665         d.dirty_bitmap = bmap_clear;
666     } else {
667         /* Fast path - start address aligns well with BITS_PER_LONG */
668         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
669     }
670 
671     d.first_page = bmap_start;
672     /* It should never overflow.  If it happens, say something */
673     assert(bmap_npages <= UINT32_MAX);
674     d.num_pages = bmap_npages;
675     d.slot = mem->slot | (as_id << 16);
676 
677     if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
678         ret = -errno;
679         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
680                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
681                      __func__, d.slot, (uint64_t)d.first_page,
682                      (uint32_t)d.num_pages, ret);
683     } else {
684         ret = 0;
685         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
686     }
687 
688     /*
689      * After we have updated the remote dirty bitmap, we update the
690      * cached bitmap as well for the memslot, then if another user
691      * clears the same region we know we shouldn't clear it again on
692      * the remote otherwise it's data loss as well.
693      */
694     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
695                  size / psize);
696     /* This handles the NULL case well */
697     g_free(bmap_clear);
698     return ret;
699 }
700 
701 
702 /**
703  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
704  *
705  * NOTE: this will be a no-op if we haven't enabled manual dirty log
706  * protection in the host kernel because in that case this operation
707  * will be done within log_sync().
708  *
709  * @kml:     the kvm memory listener
710  * @section: the memory range to clear dirty bitmap
711  */
712 static int kvm_physical_log_clear(KVMMemoryListener *kml,
713                                   MemoryRegionSection *section)
714 {
715     KVMState *s = kvm_state;
716     uint64_t start, size, offset, count;
717     KVMSlot *mem;
718     int ret = 0, i;
719 
720     if (!s->manual_dirty_log_protect) {
721         /* No need to do explicit clear */
722         return ret;
723     }
724 
725     start = section->offset_within_address_space;
726     size = int128_get64(section->size);
727 
728     if (!size) {
729         /* Nothing more we can do... */
730         return ret;
731     }
732 
733     kvm_slots_lock(kml);
734 
735     for (i = 0; i < s->nr_slots; i++) {
736         mem = &kml->slots[i];
737         /* Discard slots that are empty or do not overlap the section */
738         if (!mem->memory_size ||
739             mem->start_addr > start + size - 1 ||
740             start > mem->start_addr + mem->memory_size - 1) {
741             continue;
742         }
743 
744         if (start >= mem->start_addr) {
745             /* The slot starts before section or is aligned to it.  */
746             offset = start - mem->start_addr;
747             count = MIN(mem->memory_size - offset, size);
748         } else {
749             /* The slot starts after section.  */
750             offset = 0;
751             count = MIN(mem->memory_size, size - (mem->start_addr - start));
752         }
753         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
754         if (ret < 0) {
755             break;
756         }
757     }
758 
759     kvm_slots_unlock(kml);
760 
761     return ret;
762 }
763 
764 static void kvm_coalesce_mmio_region(MemoryListener *listener,
765                                      MemoryRegionSection *secion,
766                                      hwaddr start, hwaddr size)
767 {
768     KVMState *s = kvm_state;
769 
770     if (s->coalesced_mmio) {
771         struct kvm_coalesced_mmio_zone zone;
772 
773         zone.addr = start;
774         zone.size = size;
775         zone.pad = 0;
776 
777         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
778     }
779 }
780 
781 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
782                                        MemoryRegionSection *secion,
783                                        hwaddr start, hwaddr size)
784 {
785     KVMState *s = kvm_state;
786 
787     if (s->coalesced_mmio) {
788         struct kvm_coalesced_mmio_zone zone;
789 
790         zone.addr = start;
791         zone.size = size;
792         zone.pad = 0;
793 
794         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
795     }
796 }
797 
798 static void kvm_coalesce_pio_add(MemoryListener *listener,
799                                 MemoryRegionSection *section,
800                                 hwaddr start, hwaddr size)
801 {
802     KVMState *s = kvm_state;
803 
804     if (s->coalesced_pio) {
805         struct kvm_coalesced_mmio_zone zone;
806 
807         zone.addr = start;
808         zone.size = size;
809         zone.pio = 1;
810 
811         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
812     }
813 }
814 
815 static void kvm_coalesce_pio_del(MemoryListener *listener,
816                                 MemoryRegionSection *section,
817                                 hwaddr start, hwaddr size)
818 {
819     KVMState *s = kvm_state;
820 
821     if (s->coalesced_pio) {
822         struct kvm_coalesced_mmio_zone zone;
823 
824         zone.addr = start;
825         zone.size = size;
826         zone.pio = 1;
827 
828         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
829      }
830 }
831 
832 static MemoryListener kvm_coalesced_pio_listener = {
833     .coalesced_io_add = kvm_coalesce_pio_add,
834     .coalesced_io_del = kvm_coalesce_pio_del,
835 };
836 
837 int kvm_check_extension(KVMState *s, unsigned int extension)
838 {
839     int ret;
840 
841     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
842     if (ret < 0) {
843         ret = 0;
844     }
845 
846     return ret;
847 }
848 
849 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
850 {
851     int ret;
852 
853     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
854     if (ret < 0) {
855         /* VM wide version not implemented, use global one instead */
856         ret = kvm_check_extension(s, extension);
857     }
858 
859     return ret;
860 }
861 
862 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
863 {
864 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
865     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
866      * endianness, but the memory core hands them in target endianness.
867      * For example, PPC is always treated as big-endian even if running
868      * on KVM and on PPC64LE.  Correct here.
869      */
870     switch (size) {
871     case 2:
872         val = bswap16(val);
873         break;
874     case 4:
875         val = bswap32(val);
876         break;
877     }
878 #endif
879     return val;
880 }
881 
882 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
883                                   bool assign, uint32_t size, bool datamatch)
884 {
885     int ret;
886     struct kvm_ioeventfd iofd = {
887         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
888         .addr = addr,
889         .len = size,
890         .flags = 0,
891         .fd = fd,
892     };
893 
894     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
895                                  datamatch);
896     if (!kvm_enabled()) {
897         return -ENOSYS;
898     }
899 
900     if (datamatch) {
901         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
902     }
903     if (!assign) {
904         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
905     }
906 
907     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
908 
909     if (ret < 0) {
910         return -errno;
911     }
912 
913     return 0;
914 }
915 
916 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
917                                  bool assign, uint32_t size, bool datamatch)
918 {
919     struct kvm_ioeventfd kick = {
920         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
921         .addr = addr,
922         .flags = KVM_IOEVENTFD_FLAG_PIO,
923         .len = size,
924         .fd = fd,
925     };
926     int r;
927     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
928     if (!kvm_enabled()) {
929         return -ENOSYS;
930     }
931     if (datamatch) {
932         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
933     }
934     if (!assign) {
935         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
936     }
937     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
938     if (r < 0) {
939         return r;
940     }
941     return 0;
942 }
943 
944 
945 static int kvm_check_many_ioeventfds(void)
946 {
947     /* Userspace can use ioeventfd for io notification.  This requires a host
948      * that supports eventfd(2) and an I/O thread; since eventfd does not
949      * support SIGIO it cannot interrupt the vcpu.
950      *
951      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
952      * can avoid creating too many ioeventfds.
953      */
954 #if defined(CONFIG_EVENTFD)
955     int ioeventfds[7];
956     int i, ret = 0;
957     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
958         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
959         if (ioeventfds[i] < 0) {
960             break;
961         }
962         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
963         if (ret < 0) {
964             close(ioeventfds[i]);
965             break;
966         }
967     }
968 
969     /* Decide whether many devices are supported or not */
970     ret = i == ARRAY_SIZE(ioeventfds);
971 
972     while (i-- > 0) {
973         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
974         close(ioeventfds[i]);
975     }
976     return ret;
977 #else
978     return 0;
979 #endif
980 }
981 
982 static const KVMCapabilityInfo *
983 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
984 {
985     while (list->name) {
986         if (!kvm_check_extension(s, list->value)) {
987             return list;
988         }
989         list++;
990     }
991     return NULL;
992 }
993 
994 void kvm_set_max_memslot_size(hwaddr max_slot_size)
995 {
996     g_assert(
997         ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
998     );
999     kvm_max_slot_size = max_slot_size;
1000 }
1001 
1002 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1003                              MemoryRegionSection *section, bool add)
1004 {
1005     KVMSlot *mem;
1006     int err;
1007     MemoryRegion *mr = section->mr;
1008     bool writeable = !mr->readonly && !mr->rom_device;
1009     hwaddr start_addr, size, slot_size;
1010     void *ram;
1011 
1012     if (!memory_region_is_ram(mr)) {
1013         if (writeable || !kvm_readonly_mem_allowed) {
1014             return;
1015         } else if (!mr->romd_mode) {
1016             /* If the memory device is not in romd_mode, then we actually want
1017              * to remove the kvm memory slot so all accesses will trap. */
1018             add = false;
1019         }
1020     }
1021 
1022     size = kvm_align_section(section, &start_addr);
1023     if (!size) {
1024         return;
1025     }
1026 
1027     /* use aligned delta to align the ram address */
1028     ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1029           (start_addr - section->offset_within_address_space);
1030 
1031     kvm_slots_lock(kml);
1032 
1033     if (!add) {
1034         do {
1035             slot_size = MIN(kvm_max_slot_size, size);
1036             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1037             if (!mem) {
1038                 goto out;
1039             }
1040             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1041                 kvm_physical_sync_dirty_bitmap(kml, section);
1042             }
1043 
1044             /* unregister the slot */
1045             g_free(mem->dirty_bmap);
1046             mem->dirty_bmap = NULL;
1047             mem->memory_size = 0;
1048             mem->flags = 0;
1049             err = kvm_set_user_memory_region(kml, mem, false);
1050             if (err) {
1051                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1052                         __func__, strerror(-err));
1053                 abort();
1054             }
1055             start_addr += slot_size;
1056             size -= slot_size;
1057         } while (size);
1058         goto out;
1059     }
1060 
1061     /* register the new slot */
1062     do {
1063         slot_size = MIN(kvm_max_slot_size, size);
1064         mem = kvm_alloc_slot(kml);
1065         mem->memory_size = slot_size;
1066         mem->start_addr = start_addr;
1067         mem->ram = ram;
1068         mem->flags = kvm_mem_flags(mr);
1069 
1070         err = kvm_set_user_memory_region(kml, mem, true);
1071         if (err) {
1072             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1073                     strerror(-err));
1074             abort();
1075         }
1076         start_addr += slot_size;
1077         ram += slot_size;
1078         size -= slot_size;
1079     } while (size);
1080 
1081 out:
1082     kvm_slots_unlock(kml);
1083 }
1084 
1085 static void kvm_region_add(MemoryListener *listener,
1086                            MemoryRegionSection *section)
1087 {
1088     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1089 
1090     memory_region_ref(section->mr);
1091     kvm_set_phys_mem(kml, section, true);
1092 }
1093 
1094 static void kvm_region_del(MemoryListener *listener,
1095                            MemoryRegionSection *section)
1096 {
1097     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1098 
1099     kvm_set_phys_mem(kml, section, false);
1100     memory_region_unref(section->mr);
1101 }
1102 
1103 static void kvm_log_sync(MemoryListener *listener,
1104                          MemoryRegionSection *section)
1105 {
1106     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1107     int r;
1108 
1109     kvm_slots_lock(kml);
1110     r = kvm_physical_sync_dirty_bitmap(kml, section);
1111     kvm_slots_unlock(kml);
1112     if (r < 0) {
1113         abort();
1114     }
1115 }
1116 
1117 static void kvm_log_clear(MemoryListener *listener,
1118                           MemoryRegionSection *section)
1119 {
1120     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1121     int r;
1122 
1123     r = kvm_physical_log_clear(kml, section);
1124     if (r < 0) {
1125         error_report_once("%s: kvm log clear failed: mr=%s "
1126                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1127                           section->mr->name, section->offset_within_region,
1128                           int128_get64(section->size));
1129         abort();
1130     }
1131 }
1132 
1133 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1134                                   MemoryRegionSection *section,
1135                                   bool match_data, uint64_t data,
1136                                   EventNotifier *e)
1137 {
1138     int fd = event_notifier_get_fd(e);
1139     int r;
1140 
1141     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1142                                data, true, int128_get64(section->size),
1143                                match_data);
1144     if (r < 0) {
1145         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1146                 __func__, strerror(-r), -r);
1147         abort();
1148     }
1149 }
1150 
1151 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1152                                   MemoryRegionSection *section,
1153                                   bool match_data, uint64_t data,
1154                                   EventNotifier *e)
1155 {
1156     int fd = event_notifier_get_fd(e);
1157     int r;
1158 
1159     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1160                                data, false, int128_get64(section->size),
1161                                match_data);
1162     if (r < 0) {
1163         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1164                 __func__, strerror(-r), -r);
1165         abort();
1166     }
1167 }
1168 
1169 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1170                                  MemoryRegionSection *section,
1171                                  bool match_data, uint64_t data,
1172                                  EventNotifier *e)
1173 {
1174     int fd = event_notifier_get_fd(e);
1175     int r;
1176 
1177     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1178                               data, true, int128_get64(section->size),
1179                               match_data);
1180     if (r < 0) {
1181         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1182                 __func__, strerror(-r), -r);
1183         abort();
1184     }
1185 }
1186 
1187 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1188                                  MemoryRegionSection *section,
1189                                  bool match_data, uint64_t data,
1190                                  EventNotifier *e)
1191 
1192 {
1193     int fd = event_notifier_get_fd(e);
1194     int r;
1195 
1196     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1197                               data, false, int128_get64(section->size),
1198                               match_data);
1199     if (r < 0) {
1200         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1201                 __func__, strerror(-r), -r);
1202         abort();
1203     }
1204 }
1205 
1206 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1207                                   AddressSpace *as, int as_id)
1208 {
1209     int i;
1210 
1211     qemu_mutex_init(&kml->slots_lock);
1212     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1213     kml->as_id = as_id;
1214 
1215     for (i = 0; i < s->nr_slots; i++) {
1216         kml->slots[i].slot = i;
1217     }
1218 
1219     kml->listener.region_add = kvm_region_add;
1220     kml->listener.region_del = kvm_region_del;
1221     kml->listener.log_start = kvm_log_start;
1222     kml->listener.log_stop = kvm_log_stop;
1223     kml->listener.log_sync = kvm_log_sync;
1224     kml->listener.log_clear = kvm_log_clear;
1225     kml->listener.priority = 10;
1226 
1227     memory_listener_register(&kml->listener, as);
1228 
1229     for (i = 0; i < s->nr_as; ++i) {
1230         if (!s->as[i].as) {
1231             s->as[i].as = as;
1232             s->as[i].ml = kml;
1233             break;
1234         }
1235     }
1236 }
1237 
1238 static MemoryListener kvm_io_listener = {
1239     .eventfd_add = kvm_io_ioeventfd_add,
1240     .eventfd_del = kvm_io_ioeventfd_del,
1241     .priority = 10,
1242 };
1243 
1244 int kvm_set_irq(KVMState *s, int irq, int level)
1245 {
1246     struct kvm_irq_level event;
1247     int ret;
1248 
1249     assert(kvm_async_interrupts_enabled());
1250 
1251     event.level = level;
1252     event.irq = irq;
1253     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1254     if (ret < 0) {
1255         perror("kvm_set_irq");
1256         abort();
1257     }
1258 
1259     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1260 }
1261 
1262 #ifdef KVM_CAP_IRQ_ROUTING
1263 typedef struct KVMMSIRoute {
1264     struct kvm_irq_routing_entry kroute;
1265     QTAILQ_ENTRY(KVMMSIRoute) entry;
1266 } KVMMSIRoute;
1267 
1268 static void set_gsi(KVMState *s, unsigned int gsi)
1269 {
1270     set_bit(gsi, s->used_gsi_bitmap);
1271 }
1272 
1273 static void clear_gsi(KVMState *s, unsigned int gsi)
1274 {
1275     clear_bit(gsi, s->used_gsi_bitmap);
1276 }
1277 
1278 void kvm_init_irq_routing(KVMState *s)
1279 {
1280     int gsi_count, i;
1281 
1282     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1283     if (gsi_count > 0) {
1284         /* Round up so we can search ints using ffs */
1285         s->used_gsi_bitmap = bitmap_new(gsi_count);
1286         s->gsi_count = gsi_count;
1287     }
1288 
1289     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1290     s->nr_allocated_irq_routes = 0;
1291 
1292     if (!kvm_direct_msi_allowed) {
1293         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1294             QTAILQ_INIT(&s->msi_hashtab[i]);
1295         }
1296     }
1297 
1298     kvm_arch_init_irq_routing(s);
1299 }
1300 
1301 void kvm_irqchip_commit_routes(KVMState *s)
1302 {
1303     int ret;
1304 
1305     if (kvm_gsi_direct_mapping()) {
1306         return;
1307     }
1308 
1309     if (!kvm_gsi_routing_enabled()) {
1310         return;
1311     }
1312 
1313     s->irq_routes->flags = 0;
1314     trace_kvm_irqchip_commit_routes();
1315     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1316     assert(ret == 0);
1317 }
1318 
1319 static void kvm_add_routing_entry(KVMState *s,
1320                                   struct kvm_irq_routing_entry *entry)
1321 {
1322     struct kvm_irq_routing_entry *new;
1323     int n, size;
1324 
1325     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1326         n = s->nr_allocated_irq_routes * 2;
1327         if (n < 64) {
1328             n = 64;
1329         }
1330         size = sizeof(struct kvm_irq_routing);
1331         size += n * sizeof(*new);
1332         s->irq_routes = g_realloc(s->irq_routes, size);
1333         s->nr_allocated_irq_routes = n;
1334     }
1335     n = s->irq_routes->nr++;
1336     new = &s->irq_routes->entries[n];
1337 
1338     *new = *entry;
1339 
1340     set_gsi(s, entry->gsi);
1341 }
1342 
1343 static int kvm_update_routing_entry(KVMState *s,
1344                                     struct kvm_irq_routing_entry *new_entry)
1345 {
1346     struct kvm_irq_routing_entry *entry;
1347     int n;
1348 
1349     for (n = 0; n < s->irq_routes->nr; n++) {
1350         entry = &s->irq_routes->entries[n];
1351         if (entry->gsi != new_entry->gsi) {
1352             continue;
1353         }
1354 
1355         if(!memcmp(entry, new_entry, sizeof *entry)) {
1356             return 0;
1357         }
1358 
1359         *entry = *new_entry;
1360 
1361         return 0;
1362     }
1363 
1364     return -ESRCH;
1365 }
1366 
1367 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1368 {
1369     struct kvm_irq_routing_entry e = {};
1370 
1371     assert(pin < s->gsi_count);
1372 
1373     e.gsi = irq;
1374     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1375     e.flags = 0;
1376     e.u.irqchip.irqchip = irqchip;
1377     e.u.irqchip.pin = pin;
1378     kvm_add_routing_entry(s, &e);
1379 }
1380 
1381 void kvm_irqchip_release_virq(KVMState *s, int virq)
1382 {
1383     struct kvm_irq_routing_entry *e;
1384     int i;
1385 
1386     if (kvm_gsi_direct_mapping()) {
1387         return;
1388     }
1389 
1390     for (i = 0; i < s->irq_routes->nr; i++) {
1391         e = &s->irq_routes->entries[i];
1392         if (e->gsi == virq) {
1393             s->irq_routes->nr--;
1394             *e = s->irq_routes->entries[s->irq_routes->nr];
1395         }
1396     }
1397     clear_gsi(s, virq);
1398     kvm_arch_release_virq_post(virq);
1399     trace_kvm_irqchip_release_virq(virq);
1400 }
1401 
1402 void kvm_irqchip_add_change_notifier(Notifier *n)
1403 {
1404     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1405 }
1406 
1407 void kvm_irqchip_remove_change_notifier(Notifier *n)
1408 {
1409     notifier_remove(n);
1410 }
1411 
1412 void kvm_irqchip_change_notify(void)
1413 {
1414     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1415 }
1416 
1417 static unsigned int kvm_hash_msi(uint32_t data)
1418 {
1419     /* This is optimized for IA32 MSI layout. However, no other arch shall
1420      * repeat the mistake of not providing a direct MSI injection API. */
1421     return data & 0xff;
1422 }
1423 
1424 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1425 {
1426     KVMMSIRoute *route, *next;
1427     unsigned int hash;
1428 
1429     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1430         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1431             kvm_irqchip_release_virq(s, route->kroute.gsi);
1432             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1433             g_free(route);
1434         }
1435     }
1436 }
1437 
1438 static int kvm_irqchip_get_virq(KVMState *s)
1439 {
1440     int next_virq;
1441 
1442     /*
1443      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1444      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1445      * number can succeed even though a new route entry cannot be added.
1446      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1447      */
1448     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1449         kvm_flush_dynamic_msi_routes(s);
1450     }
1451 
1452     /* Return the lowest unused GSI in the bitmap */
1453     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1454     if (next_virq >= s->gsi_count) {
1455         return -ENOSPC;
1456     } else {
1457         return next_virq;
1458     }
1459 }
1460 
1461 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1462 {
1463     unsigned int hash = kvm_hash_msi(msg.data);
1464     KVMMSIRoute *route;
1465 
1466     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1467         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1468             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1469             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1470             return route;
1471         }
1472     }
1473     return NULL;
1474 }
1475 
1476 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1477 {
1478     struct kvm_msi msi;
1479     KVMMSIRoute *route;
1480 
1481     if (kvm_direct_msi_allowed) {
1482         msi.address_lo = (uint32_t)msg.address;
1483         msi.address_hi = msg.address >> 32;
1484         msi.data = le32_to_cpu(msg.data);
1485         msi.flags = 0;
1486         memset(msi.pad, 0, sizeof(msi.pad));
1487 
1488         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1489     }
1490 
1491     route = kvm_lookup_msi_route(s, msg);
1492     if (!route) {
1493         int virq;
1494 
1495         virq = kvm_irqchip_get_virq(s);
1496         if (virq < 0) {
1497             return virq;
1498         }
1499 
1500         route = g_malloc0(sizeof(KVMMSIRoute));
1501         route->kroute.gsi = virq;
1502         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1503         route->kroute.flags = 0;
1504         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1505         route->kroute.u.msi.address_hi = msg.address >> 32;
1506         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1507 
1508         kvm_add_routing_entry(s, &route->kroute);
1509         kvm_irqchip_commit_routes(s);
1510 
1511         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1512                            entry);
1513     }
1514 
1515     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1516 
1517     return kvm_set_irq(s, route->kroute.gsi, 1);
1518 }
1519 
1520 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1521 {
1522     struct kvm_irq_routing_entry kroute = {};
1523     int virq;
1524     MSIMessage msg = {0, 0};
1525 
1526     if (pci_available && dev) {
1527         msg = pci_get_msi_message(dev, vector);
1528     }
1529 
1530     if (kvm_gsi_direct_mapping()) {
1531         return kvm_arch_msi_data_to_gsi(msg.data);
1532     }
1533 
1534     if (!kvm_gsi_routing_enabled()) {
1535         return -ENOSYS;
1536     }
1537 
1538     virq = kvm_irqchip_get_virq(s);
1539     if (virq < 0) {
1540         return virq;
1541     }
1542 
1543     kroute.gsi = virq;
1544     kroute.type = KVM_IRQ_ROUTING_MSI;
1545     kroute.flags = 0;
1546     kroute.u.msi.address_lo = (uint32_t)msg.address;
1547     kroute.u.msi.address_hi = msg.address >> 32;
1548     kroute.u.msi.data = le32_to_cpu(msg.data);
1549     if (pci_available && kvm_msi_devid_required()) {
1550         kroute.flags = KVM_MSI_VALID_DEVID;
1551         kroute.u.msi.devid = pci_requester_id(dev);
1552     }
1553     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1554         kvm_irqchip_release_virq(s, virq);
1555         return -EINVAL;
1556     }
1557 
1558     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1559                                     vector, virq);
1560 
1561     kvm_add_routing_entry(s, &kroute);
1562     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1563     kvm_irqchip_commit_routes(s);
1564 
1565     return virq;
1566 }
1567 
1568 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1569                                  PCIDevice *dev)
1570 {
1571     struct kvm_irq_routing_entry kroute = {};
1572 
1573     if (kvm_gsi_direct_mapping()) {
1574         return 0;
1575     }
1576 
1577     if (!kvm_irqchip_in_kernel()) {
1578         return -ENOSYS;
1579     }
1580 
1581     kroute.gsi = virq;
1582     kroute.type = KVM_IRQ_ROUTING_MSI;
1583     kroute.flags = 0;
1584     kroute.u.msi.address_lo = (uint32_t)msg.address;
1585     kroute.u.msi.address_hi = msg.address >> 32;
1586     kroute.u.msi.data = le32_to_cpu(msg.data);
1587     if (pci_available && kvm_msi_devid_required()) {
1588         kroute.flags = KVM_MSI_VALID_DEVID;
1589         kroute.u.msi.devid = pci_requester_id(dev);
1590     }
1591     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1592         return -EINVAL;
1593     }
1594 
1595     trace_kvm_irqchip_update_msi_route(virq);
1596 
1597     return kvm_update_routing_entry(s, &kroute);
1598 }
1599 
1600 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1601                                     bool assign)
1602 {
1603     struct kvm_irqfd irqfd = {
1604         .fd = fd,
1605         .gsi = virq,
1606         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1607     };
1608 
1609     if (rfd != -1) {
1610         irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1611         irqfd.resamplefd = rfd;
1612     }
1613 
1614     if (!kvm_irqfds_enabled()) {
1615         return -ENOSYS;
1616     }
1617 
1618     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1619 }
1620 
1621 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1622 {
1623     struct kvm_irq_routing_entry kroute = {};
1624     int virq;
1625 
1626     if (!kvm_gsi_routing_enabled()) {
1627         return -ENOSYS;
1628     }
1629 
1630     virq = kvm_irqchip_get_virq(s);
1631     if (virq < 0) {
1632         return virq;
1633     }
1634 
1635     kroute.gsi = virq;
1636     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1637     kroute.flags = 0;
1638     kroute.u.adapter.summary_addr = adapter->summary_addr;
1639     kroute.u.adapter.ind_addr = adapter->ind_addr;
1640     kroute.u.adapter.summary_offset = adapter->summary_offset;
1641     kroute.u.adapter.ind_offset = adapter->ind_offset;
1642     kroute.u.adapter.adapter_id = adapter->adapter_id;
1643 
1644     kvm_add_routing_entry(s, &kroute);
1645 
1646     return virq;
1647 }
1648 
1649 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1650 {
1651     struct kvm_irq_routing_entry kroute = {};
1652     int virq;
1653 
1654     if (!kvm_gsi_routing_enabled()) {
1655         return -ENOSYS;
1656     }
1657     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1658         return -ENOSYS;
1659     }
1660     virq = kvm_irqchip_get_virq(s);
1661     if (virq < 0) {
1662         return virq;
1663     }
1664 
1665     kroute.gsi = virq;
1666     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1667     kroute.flags = 0;
1668     kroute.u.hv_sint.vcpu = vcpu;
1669     kroute.u.hv_sint.sint = sint;
1670 
1671     kvm_add_routing_entry(s, &kroute);
1672     kvm_irqchip_commit_routes(s);
1673 
1674     return virq;
1675 }
1676 
1677 #else /* !KVM_CAP_IRQ_ROUTING */
1678 
1679 void kvm_init_irq_routing(KVMState *s)
1680 {
1681 }
1682 
1683 void kvm_irqchip_release_virq(KVMState *s, int virq)
1684 {
1685 }
1686 
1687 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1688 {
1689     abort();
1690 }
1691 
1692 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1693 {
1694     return -ENOSYS;
1695 }
1696 
1697 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1698 {
1699     return -ENOSYS;
1700 }
1701 
1702 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1703 {
1704     return -ENOSYS;
1705 }
1706 
1707 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1708 {
1709     abort();
1710 }
1711 
1712 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1713 {
1714     return -ENOSYS;
1715 }
1716 #endif /* !KVM_CAP_IRQ_ROUTING */
1717 
1718 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1719                                        EventNotifier *rn, int virq)
1720 {
1721     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1722            rn ? event_notifier_get_fd(rn) : -1, virq, true);
1723 }
1724 
1725 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1726                                           int virq)
1727 {
1728     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1729            false);
1730 }
1731 
1732 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1733                                    EventNotifier *rn, qemu_irq irq)
1734 {
1735     gpointer key, gsi;
1736     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1737 
1738     if (!found) {
1739         return -ENXIO;
1740     }
1741     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1742 }
1743 
1744 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1745                                       qemu_irq irq)
1746 {
1747     gpointer key, gsi;
1748     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1749 
1750     if (!found) {
1751         return -ENXIO;
1752     }
1753     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1754 }
1755 
1756 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1757 {
1758     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1759 }
1760 
1761 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1762 {
1763     int ret;
1764 
1765     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1766         ;
1767     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1768         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1769         if (ret < 0) {
1770             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1771             exit(1);
1772         }
1773     } else {
1774         return;
1775     }
1776 
1777     /* First probe and see if there's a arch-specific hook to create the
1778      * in-kernel irqchip for us */
1779     ret = kvm_arch_irqchip_create(machine, s);
1780     if (ret == 0) {
1781         if (machine_kernel_irqchip_split(machine)) {
1782             perror("Split IRQ chip mode not supported.");
1783             exit(1);
1784         } else {
1785             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1786         }
1787     }
1788     if (ret < 0) {
1789         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1790         exit(1);
1791     }
1792 
1793     kvm_kernel_irqchip = true;
1794     /* If we have an in-kernel IRQ chip then we must have asynchronous
1795      * interrupt delivery (though the reverse is not necessarily true)
1796      */
1797     kvm_async_interrupts_allowed = true;
1798     kvm_halt_in_kernel_allowed = true;
1799 
1800     kvm_init_irq_routing(s);
1801 
1802     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1803 }
1804 
1805 /* Find number of supported CPUs using the recommended
1806  * procedure from the kernel API documentation to cope with
1807  * older kernels that may be missing capabilities.
1808  */
1809 static int kvm_recommended_vcpus(KVMState *s)
1810 {
1811     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1812     return (ret) ? ret : 4;
1813 }
1814 
1815 static int kvm_max_vcpus(KVMState *s)
1816 {
1817     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1818     return (ret) ? ret : kvm_recommended_vcpus(s);
1819 }
1820 
1821 static int kvm_max_vcpu_id(KVMState *s)
1822 {
1823     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1824     return (ret) ? ret : kvm_max_vcpus(s);
1825 }
1826 
1827 bool kvm_vcpu_id_is_valid(int vcpu_id)
1828 {
1829     KVMState *s = KVM_STATE(current_machine->accelerator);
1830     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1831 }
1832 
1833 static int kvm_init(MachineState *ms)
1834 {
1835     MachineClass *mc = MACHINE_GET_CLASS(ms);
1836     static const char upgrade_note[] =
1837         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1838         "(see http://sourceforge.net/projects/kvm).\n";
1839     struct {
1840         const char *name;
1841         int num;
1842     } num_cpus[] = {
1843         { "SMP",          ms->smp.cpus },
1844         { "hotpluggable", ms->smp.max_cpus },
1845         { NULL, }
1846     }, *nc = num_cpus;
1847     int soft_vcpus_limit, hard_vcpus_limit;
1848     KVMState *s;
1849     const KVMCapabilityInfo *missing_cap;
1850     int ret;
1851     int type = 0;
1852     const char *kvm_type;
1853 
1854     s = KVM_STATE(ms->accelerator);
1855 
1856     /*
1857      * On systems where the kernel can support different base page
1858      * sizes, host page size may be different from TARGET_PAGE_SIZE,
1859      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1860      * page size for the system though.
1861      */
1862     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
1863 
1864     s->sigmask_len = 8;
1865 
1866 #ifdef KVM_CAP_SET_GUEST_DEBUG
1867     QTAILQ_INIT(&s->kvm_sw_breakpoints);
1868 #endif
1869     QLIST_INIT(&s->kvm_parked_vcpus);
1870     s->vmfd = -1;
1871     s->fd = qemu_open("/dev/kvm", O_RDWR);
1872     if (s->fd == -1) {
1873         fprintf(stderr, "Could not access KVM kernel module: %m\n");
1874         ret = -errno;
1875         goto err;
1876     }
1877 
1878     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1879     if (ret < KVM_API_VERSION) {
1880         if (ret >= 0) {
1881             ret = -EINVAL;
1882         }
1883         fprintf(stderr, "kvm version too old\n");
1884         goto err;
1885     }
1886 
1887     if (ret > KVM_API_VERSION) {
1888         ret = -EINVAL;
1889         fprintf(stderr, "kvm version not supported\n");
1890         goto err;
1891     }
1892 
1893     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1894     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1895 
1896     /* If unspecified, use the default value */
1897     if (!s->nr_slots) {
1898         s->nr_slots = 32;
1899     }
1900 
1901     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
1902     if (s->nr_as <= 1) {
1903         s->nr_as = 1;
1904     }
1905     s->as = g_new0(struct KVMAs, s->nr_as);
1906 
1907     kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1908     if (mc->kvm_type) {
1909         type = mc->kvm_type(ms, kvm_type);
1910     } else if (kvm_type) {
1911         ret = -EINVAL;
1912         fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1913         goto err;
1914     }
1915 
1916     do {
1917         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1918     } while (ret == -EINTR);
1919 
1920     if (ret < 0) {
1921         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1922                 strerror(-ret));
1923 
1924 #ifdef TARGET_S390X
1925         if (ret == -EINVAL) {
1926             fprintf(stderr,
1927                     "Host kernel setup problem detected. Please verify:\n");
1928             fprintf(stderr, "- for kernels supporting the switch_amode or"
1929                     " user_mode parameters, whether\n");
1930             fprintf(stderr,
1931                     "  user space is running in primary address space\n");
1932             fprintf(stderr,
1933                     "- for kernels supporting the vm.allocate_pgste sysctl, "
1934                     "whether it is enabled\n");
1935         }
1936 #endif
1937         goto err;
1938     }
1939 
1940     s->vmfd = ret;
1941 
1942     /* check the vcpu limits */
1943     soft_vcpus_limit = kvm_recommended_vcpus(s);
1944     hard_vcpus_limit = kvm_max_vcpus(s);
1945 
1946     while (nc->name) {
1947         if (nc->num > soft_vcpus_limit) {
1948             warn_report("Number of %s cpus requested (%d) exceeds "
1949                         "the recommended cpus supported by KVM (%d)",
1950                         nc->name, nc->num, soft_vcpus_limit);
1951 
1952             if (nc->num > hard_vcpus_limit) {
1953                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1954                         "the maximum cpus supported by KVM (%d)\n",
1955                         nc->name, nc->num, hard_vcpus_limit);
1956                 exit(1);
1957             }
1958         }
1959         nc++;
1960     }
1961 
1962     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1963     if (!missing_cap) {
1964         missing_cap =
1965             kvm_check_extension_list(s, kvm_arch_required_capabilities);
1966     }
1967     if (missing_cap) {
1968         ret = -EINVAL;
1969         fprintf(stderr, "kvm does not support %s\n%s",
1970                 missing_cap->name, upgrade_note);
1971         goto err;
1972     }
1973 
1974     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1975     s->coalesced_pio = s->coalesced_mmio &&
1976                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1977 
1978     s->manual_dirty_log_protect =
1979         kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
1980     if (s->manual_dirty_log_protect) {
1981         ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1);
1982         if (ret) {
1983             warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 "
1984                         "but failed.  Falling back to the legacy mode. ");
1985             s->manual_dirty_log_protect = false;
1986         }
1987     }
1988 
1989 #ifdef KVM_CAP_VCPU_EVENTS
1990     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1991 #endif
1992 
1993     s->robust_singlestep =
1994         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1995 
1996 #ifdef KVM_CAP_DEBUGREGS
1997     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1998 #endif
1999 
2000     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2001 
2002 #ifdef KVM_CAP_IRQ_ROUTING
2003     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2004 #endif
2005 
2006     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2007 
2008     s->irq_set_ioctl = KVM_IRQ_LINE;
2009     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2010         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2011     }
2012 
2013     kvm_readonly_mem_allowed =
2014         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2015 
2016     kvm_eventfds_allowed =
2017         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2018 
2019     kvm_irqfds_allowed =
2020         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2021 
2022     kvm_resamplefds_allowed =
2023         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2024 
2025     kvm_vm_attributes_allowed =
2026         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2027 
2028     kvm_ioeventfd_any_length_allowed =
2029         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2030 
2031     kvm_state = s;
2032 
2033     /*
2034      * if memory encryption object is specified then initialize the memory
2035      * encryption context.
2036      */
2037     if (ms->memory_encryption) {
2038         kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2039         if (!kvm_state->memcrypt_handle) {
2040             ret = -1;
2041             goto err;
2042         }
2043 
2044         kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2045     }
2046 
2047     ret = kvm_arch_init(ms, s);
2048     if (ret < 0) {
2049         goto err;
2050     }
2051 
2052     if (machine_kernel_irqchip_allowed(ms)) {
2053         kvm_irqchip_create(ms, s);
2054     }
2055 
2056     if (kvm_eventfds_allowed) {
2057         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2058         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2059     }
2060     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2061     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2062 
2063     kvm_memory_listener_register(s, &s->memory_listener,
2064                                  &address_space_memory, 0);
2065     memory_listener_register(&kvm_io_listener,
2066                              &address_space_io);
2067     memory_listener_register(&kvm_coalesced_pio_listener,
2068                              &address_space_io);
2069 
2070     s->many_ioeventfds = kvm_check_many_ioeventfds();
2071 
2072     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2073     if (!s->sync_mmu) {
2074         qemu_balloon_inhibit(true);
2075     }
2076 
2077     return 0;
2078 
2079 err:
2080     assert(ret < 0);
2081     if (s->vmfd >= 0) {
2082         close(s->vmfd);
2083     }
2084     if (s->fd != -1) {
2085         close(s->fd);
2086     }
2087     g_free(s->memory_listener.slots);
2088 
2089     return ret;
2090 }
2091 
2092 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2093 {
2094     s->sigmask_len = sigmask_len;
2095 }
2096 
2097 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2098                           int size, uint32_t count)
2099 {
2100     int i;
2101     uint8_t *ptr = data;
2102 
2103     for (i = 0; i < count; i++) {
2104         address_space_rw(&address_space_io, port, attrs,
2105                          ptr, size,
2106                          direction == KVM_EXIT_IO_OUT);
2107         ptr += size;
2108     }
2109 }
2110 
2111 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2112 {
2113     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2114             run->internal.suberror);
2115 
2116     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2117         int i;
2118 
2119         for (i = 0; i < run->internal.ndata; ++i) {
2120             fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2121                     i, (uint64_t)run->internal.data[i]);
2122         }
2123     }
2124     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2125         fprintf(stderr, "emulation failure\n");
2126         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2127             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2128             return EXCP_INTERRUPT;
2129         }
2130     }
2131     /* FIXME: Should trigger a qmp message to let management know
2132      * something went wrong.
2133      */
2134     return -1;
2135 }
2136 
2137 void kvm_flush_coalesced_mmio_buffer(void)
2138 {
2139     KVMState *s = kvm_state;
2140 
2141     if (s->coalesced_flush_in_progress) {
2142         return;
2143     }
2144 
2145     s->coalesced_flush_in_progress = true;
2146 
2147     if (s->coalesced_mmio_ring) {
2148         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2149         while (ring->first != ring->last) {
2150             struct kvm_coalesced_mmio *ent;
2151 
2152             ent = &ring->coalesced_mmio[ring->first];
2153 
2154             if (ent->pio == 1) {
2155                 address_space_rw(&address_space_io, ent->phys_addr,
2156                                  MEMTXATTRS_UNSPECIFIED, ent->data,
2157                                  ent->len, true);
2158             } else {
2159                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2160             }
2161             smp_wmb();
2162             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2163         }
2164     }
2165 
2166     s->coalesced_flush_in_progress = false;
2167 }
2168 
2169 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2170 {
2171     if (!cpu->vcpu_dirty) {
2172         kvm_arch_get_registers(cpu);
2173         cpu->vcpu_dirty = true;
2174     }
2175 }
2176 
2177 void kvm_cpu_synchronize_state(CPUState *cpu)
2178 {
2179     if (!cpu->vcpu_dirty) {
2180         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2181     }
2182 }
2183 
2184 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2185 {
2186     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2187     cpu->vcpu_dirty = false;
2188 }
2189 
2190 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2191 {
2192     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2193 }
2194 
2195 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2196 {
2197     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2198     cpu->vcpu_dirty = false;
2199 }
2200 
2201 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2202 {
2203     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2204 }
2205 
2206 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2207 {
2208     cpu->vcpu_dirty = true;
2209 }
2210 
2211 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2212 {
2213     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2214 }
2215 
2216 #ifdef KVM_HAVE_MCE_INJECTION
2217 static __thread void *pending_sigbus_addr;
2218 static __thread int pending_sigbus_code;
2219 static __thread bool have_sigbus_pending;
2220 #endif
2221 
2222 static void kvm_cpu_kick(CPUState *cpu)
2223 {
2224     atomic_set(&cpu->kvm_run->immediate_exit, 1);
2225 }
2226 
2227 static void kvm_cpu_kick_self(void)
2228 {
2229     if (kvm_immediate_exit) {
2230         kvm_cpu_kick(current_cpu);
2231     } else {
2232         qemu_cpu_kick_self();
2233     }
2234 }
2235 
2236 static void kvm_eat_signals(CPUState *cpu)
2237 {
2238     struct timespec ts = { 0, 0 };
2239     siginfo_t siginfo;
2240     sigset_t waitset;
2241     sigset_t chkset;
2242     int r;
2243 
2244     if (kvm_immediate_exit) {
2245         atomic_set(&cpu->kvm_run->immediate_exit, 0);
2246         /* Write kvm_run->immediate_exit before the cpu->exit_request
2247          * write in kvm_cpu_exec.
2248          */
2249         smp_wmb();
2250         return;
2251     }
2252 
2253     sigemptyset(&waitset);
2254     sigaddset(&waitset, SIG_IPI);
2255 
2256     do {
2257         r = sigtimedwait(&waitset, &siginfo, &ts);
2258         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2259             perror("sigtimedwait");
2260             exit(1);
2261         }
2262 
2263         r = sigpending(&chkset);
2264         if (r == -1) {
2265             perror("sigpending");
2266             exit(1);
2267         }
2268     } while (sigismember(&chkset, SIG_IPI));
2269 }
2270 
2271 int kvm_cpu_exec(CPUState *cpu)
2272 {
2273     struct kvm_run *run = cpu->kvm_run;
2274     int ret, run_ret;
2275 
2276     DPRINTF("kvm_cpu_exec()\n");
2277 
2278     if (kvm_arch_process_async_events(cpu)) {
2279         atomic_set(&cpu->exit_request, 0);
2280         return EXCP_HLT;
2281     }
2282 
2283     qemu_mutex_unlock_iothread();
2284     cpu_exec_start(cpu);
2285 
2286     do {
2287         MemTxAttrs attrs;
2288 
2289         if (cpu->vcpu_dirty) {
2290             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2291             cpu->vcpu_dirty = false;
2292         }
2293 
2294         kvm_arch_pre_run(cpu, run);
2295         if (atomic_read(&cpu->exit_request)) {
2296             DPRINTF("interrupt exit requested\n");
2297             /*
2298              * KVM requires us to reenter the kernel after IO exits to complete
2299              * instruction emulation. This self-signal will ensure that we
2300              * leave ASAP again.
2301              */
2302             kvm_cpu_kick_self();
2303         }
2304 
2305         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2306          * Matching barrier in kvm_eat_signals.
2307          */
2308         smp_rmb();
2309 
2310         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2311 
2312         attrs = kvm_arch_post_run(cpu, run);
2313 
2314 #ifdef KVM_HAVE_MCE_INJECTION
2315         if (unlikely(have_sigbus_pending)) {
2316             qemu_mutex_lock_iothread();
2317             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2318                                     pending_sigbus_addr);
2319             have_sigbus_pending = false;
2320             qemu_mutex_unlock_iothread();
2321         }
2322 #endif
2323 
2324         if (run_ret < 0) {
2325             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2326                 DPRINTF("io window exit\n");
2327                 kvm_eat_signals(cpu);
2328                 ret = EXCP_INTERRUPT;
2329                 break;
2330             }
2331             fprintf(stderr, "error: kvm run failed %s\n",
2332                     strerror(-run_ret));
2333 #ifdef TARGET_PPC
2334             if (run_ret == -EBUSY) {
2335                 fprintf(stderr,
2336                         "This is probably because your SMT is enabled.\n"
2337                         "VCPU can only run on primary threads with all "
2338                         "secondary threads offline.\n");
2339             }
2340 #endif
2341             ret = -1;
2342             break;
2343         }
2344 
2345         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2346         switch (run->exit_reason) {
2347         case KVM_EXIT_IO:
2348             DPRINTF("handle_io\n");
2349             /* Called outside BQL */
2350             kvm_handle_io(run->io.port, attrs,
2351                           (uint8_t *)run + run->io.data_offset,
2352                           run->io.direction,
2353                           run->io.size,
2354                           run->io.count);
2355             ret = 0;
2356             break;
2357         case KVM_EXIT_MMIO:
2358             DPRINTF("handle_mmio\n");
2359             /* Called outside BQL */
2360             address_space_rw(&address_space_memory,
2361                              run->mmio.phys_addr, attrs,
2362                              run->mmio.data,
2363                              run->mmio.len,
2364                              run->mmio.is_write);
2365             ret = 0;
2366             break;
2367         case KVM_EXIT_IRQ_WINDOW_OPEN:
2368             DPRINTF("irq_window_open\n");
2369             ret = EXCP_INTERRUPT;
2370             break;
2371         case KVM_EXIT_SHUTDOWN:
2372             DPRINTF("shutdown\n");
2373             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2374             ret = EXCP_INTERRUPT;
2375             break;
2376         case KVM_EXIT_UNKNOWN:
2377             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2378                     (uint64_t)run->hw.hardware_exit_reason);
2379             ret = -1;
2380             break;
2381         case KVM_EXIT_INTERNAL_ERROR:
2382             ret = kvm_handle_internal_error(cpu, run);
2383             break;
2384         case KVM_EXIT_SYSTEM_EVENT:
2385             switch (run->system_event.type) {
2386             case KVM_SYSTEM_EVENT_SHUTDOWN:
2387                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2388                 ret = EXCP_INTERRUPT;
2389                 break;
2390             case KVM_SYSTEM_EVENT_RESET:
2391                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2392                 ret = EXCP_INTERRUPT;
2393                 break;
2394             case KVM_SYSTEM_EVENT_CRASH:
2395                 kvm_cpu_synchronize_state(cpu);
2396                 qemu_mutex_lock_iothread();
2397                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2398                 qemu_mutex_unlock_iothread();
2399                 ret = 0;
2400                 break;
2401             default:
2402                 DPRINTF("kvm_arch_handle_exit\n");
2403                 ret = kvm_arch_handle_exit(cpu, run);
2404                 break;
2405             }
2406             break;
2407         default:
2408             DPRINTF("kvm_arch_handle_exit\n");
2409             ret = kvm_arch_handle_exit(cpu, run);
2410             break;
2411         }
2412     } while (ret == 0);
2413 
2414     cpu_exec_end(cpu);
2415     qemu_mutex_lock_iothread();
2416 
2417     if (ret < 0) {
2418         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2419         vm_stop(RUN_STATE_INTERNAL_ERROR);
2420     }
2421 
2422     atomic_set(&cpu->exit_request, 0);
2423     return ret;
2424 }
2425 
2426 int kvm_ioctl(KVMState *s, int type, ...)
2427 {
2428     int ret;
2429     void *arg;
2430     va_list ap;
2431 
2432     va_start(ap, type);
2433     arg = va_arg(ap, void *);
2434     va_end(ap);
2435 
2436     trace_kvm_ioctl(type, arg);
2437     ret = ioctl(s->fd, type, arg);
2438     if (ret == -1) {
2439         ret = -errno;
2440     }
2441     return ret;
2442 }
2443 
2444 int kvm_vm_ioctl(KVMState *s, int type, ...)
2445 {
2446     int ret;
2447     void *arg;
2448     va_list ap;
2449 
2450     va_start(ap, type);
2451     arg = va_arg(ap, void *);
2452     va_end(ap);
2453 
2454     trace_kvm_vm_ioctl(type, arg);
2455     ret = ioctl(s->vmfd, type, arg);
2456     if (ret == -1) {
2457         ret = -errno;
2458     }
2459     return ret;
2460 }
2461 
2462 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2463 {
2464     int ret;
2465     void *arg;
2466     va_list ap;
2467 
2468     va_start(ap, type);
2469     arg = va_arg(ap, void *);
2470     va_end(ap);
2471 
2472     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2473     ret = ioctl(cpu->kvm_fd, type, arg);
2474     if (ret == -1) {
2475         ret = -errno;
2476     }
2477     return ret;
2478 }
2479 
2480 int kvm_device_ioctl(int fd, int type, ...)
2481 {
2482     int ret;
2483     void *arg;
2484     va_list ap;
2485 
2486     va_start(ap, type);
2487     arg = va_arg(ap, void *);
2488     va_end(ap);
2489 
2490     trace_kvm_device_ioctl(fd, type, arg);
2491     ret = ioctl(fd, type, arg);
2492     if (ret == -1) {
2493         ret = -errno;
2494     }
2495     return ret;
2496 }
2497 
2498 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2499 {
2500     int ret;
2501     struct kvm_device_attr attribute = {
2502         .group = group,
2503         .attr = attr,
2504     };
2505 
2506     if (!kvm_vm_attributes_allowed) {
2507         return 0;
2508     }
2509 
2510     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2511     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2512     return ret ? 0 : 1;
2513 }
2514 
2515 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2516 {
2517     struct kvm_device_attr attribute = {
2518         .group = group,
2519         .attr = attr,
2520         .flags = 0,
2521     };
2522 
2523     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2524 }
2525 
2526 int kvm_device_access(int fd, int group, uint64_t attr,
2527                       void *val, bool write, Error **errp)
2528 {
2529     struct kvm_device_attr kvmattr;
2530     int err;
2531 
2532     kvmattr.flags = 0;
2533     kvmattr.group = group;
2534     kvmattr.attr = attr;
2535     kvmattr.addr = (uintptr_t)val;
2536 
2537     err = kvm_device_ioctl(fd,
2538                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2539                            &kvmattr);
2540     if (err < 0) {
2541         error_setg_errno(errp, -err,
2542                          "KVM_%s_DEVICE_ATTR failed: Group %d "
2543                          "attr 0x%016" PRIx64,
2544                          write ? "SET" : "GET", group, attr);
2545     }
2546     return err;
2547 }
2548 
2549 bool kvm_has_sync_mmu(void)
2550 {
2551     return kvm_state->sync_mmu;
2552 }
2553 
2554 int kvm_has_vcpu_events(void)
2555 {
2556     return kvm_state->vcpu_events;
2557 }
2558 
2559 int kvm_has_robust_singlestep(void)
2560 {
2561     return kvm_state->robust_singlestep;
2562 }
2563 
2564 int kvm_has_debugregs(void)
2565 {
2566     return kvm_state->debugregs;
2567 }
2568 
2569 int kvm_max_nested_state_length(void)
2570 {
2571     return kvm_state->max_nested_state_len;
2572 }
2573 
2574 int kvm_has_many_ioeventfds(void)
2575 {
2576     if (!kvm_enabled()) {
2577         return 0;
2578     }
2579     return kvm_state->many_ioeventfds;
2580 }
2581 
2582 int kvm_has_gsi_routing(void)
2583 {
2584 #ifdef KVM_CAP_IRQ_ROUTING
2585     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2586 #else
2587     return false;
2588 #endif
2589 }
2590 
2591 int kvm_has_intx_set_mask(void)
2592 {
2593     return kvm_state->intx_set_mask;
2594 }
2595 
2596 bool kvm_arm_supports_user_irq(void)
2597 {
2598     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2599 }
2600 
2601 #ifdef KVM_CAP_SET_GUEST_DEBUG
2602 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2603                                                  target_ulong pc)
2604 {
2605     struct kvm_sw_breakpoint *bp;
2606 
2607     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2608         if (bp->pc == pc) {
2609             return bp;
2610         }
2611     }
2612     return NULL;
2613 }
2614 
2615 int kvm_sw_breakpoints_active(CPUState *cpu)
2616 {
2617     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2618 }
2619 
2620 struct kvm_set_guest_debug_data {
2621     struct kvm_guest_debug dbg;
2622     int err;
2623 };
2624 
2625 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2626 {
2627     struct kvm_set_guest_debug_data *dbg_data =
2628         (struct kvm_set_guest_debug_data *) data.host_ptr;
2629 
2630     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2631                                    &dbg_data->dbg);
2632 }
2633 
2634 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2635 {
2636     struct kvm_set_guest_debug_data data;
2637 
2638     data.dbg.control = reinject_trap;
2639 
2640     if (cpu->singlestep_enabled) {
2641         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2642     }
2643     kvm_arch_update_guest_debug(cpu, &data.dbg);
2644 
2645     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2646                RUN_ON_CPU_HOST_PTR(&data));
2647     return data.err;
2648 }
2649 
2650 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2651                           target_ulong len, int type)
2652 {
2653     struct kvm_sw_breakpoint *bp;
2654     int err;
2655 
2656     if (type == GDB_BREAKPOINT_SW) {
2657         bp = kvm_find_sw_breakpoint(cpu, addr);
2658         if (bp) {
2659             bp->use_count++;
2660             return 0;
2661         }
2662 
2663         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2664         bp->pc = addr;
2665         bp->use_count = 1;
2666         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2667         if (err) {
2668             g_free(bp);
2669             return err;
2670         }
2671 
2672         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2673     } else {
2674         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2675         if (err) {
2676             return err;
2677         }
2678     }
2679 
2680     CPU_FOREACH(cpu) {
2681         err = kvm_update_guest_debug(cpu, 0);
2682         if (err) {
2683             return err;
2684         }
2685     }
2686     return 0;
2687 }
2688 
2689 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2690                           target_ulong len, int type)
2691 {
2692     struct kvm_sw_breakpoint *bp;
2693     int err;
2694 
2695     if (type == GDB_BREAKPOINT_SW) {
2696         bp = kvm_find_sw_breakpoint(cpu, addr);
2697         if (!bp) {
2698             return -ENOENT;
2699         }
2700 
2701         if (bp->use_count > 1) {
2702             bp->use_count--;
2703             return 0;
2704         }
2705 
2706         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2707         if (err) {
2708             return err;
2709         }
2710 
2711         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2712         g_free(bp);
2713     } else {
2714         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2715         if (err) {
2716             return err;
2717         }
2718     }
2719 
2720     CPU_FOREACH(cpu) {
2721         err = kvm_update_guest_debug(cpu, 0);
2722         if (err) {
2723             return err;
2724         }
2725     }
2726     return 0;
2727 }
2728 
2729 void kvm_remove_all_breakpoints(CPUState *cpu)
2730 {
2731     struct kvm_sw_breakpoint *bp, *next;
2732     KVMState *s = cpu->kvm_state;
2733     CPUState *tmpcpu;
2734 
2735     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2736         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2737             /* Try harder to find a CPU that currently sees the breakpoint. */
2738             CPU_FOREACH(tmpcpu) {
2739                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2740                     break;
2741                 }
2742             }
2743         }
2744         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2745         g_free(bp);
2746     }
2747     kvm_arch_remove_all_hw_breakpoints();
2748 
2749     CPU_FOREACH(cpu) {
2750         kvm_update_guest_debug(cpu, 0);
2751     }
2752 }
2753 
2754 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2755 
2756 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2757 {
2758     return -EINVAL;
2759 }
2760 
2761 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2762                           target_ulong len, int type)
2763 {
2764     return -EINVAL;
2765 }
2766 
2767 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2768                           target_ulong len, int type)
2769 {
2770     return -EINVAL;
2771 }
2772 
2773 void kvm_remove_all_breakpoints(CPUState *cpu)
2774 {
2775 }
2776 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2777 
2778 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2779 {
2780     KVMState *s = kvm_state;
2781     struct kvm_signal_mask *sigmask;
2782     int r;
2783 
2784     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2785 
2786     sigmask->len = s->sigmask_len;
2787     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2788     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2789     g_free(sigmask);
2790 
2791     return r;
2792 }
2793 
2794 static void kvm_ipi_signal(int sig)
2795 {
2796     if (current_cpu) {
2797         assert(kvm_immediate_exit);
2798         kvm_cpu_kick(current_cpu);
2799     }
2800 }
2801 
2802 void kvm_init_cpu_signals(CPUState *cpu)
2803 {
2804     int r;
2805     sigset_t set;
2806     struct sigaction sigact;
2807 
2808     memset(&sigact, 0, sizeof(sigact));
2809     sigact.sa_handler = kvm_ipi_signal;
2810     sigaction(SIG_IPI, &sigact, NULL);
2811 
2812     pthread_sigmask(SIG_BLOCK, NULL, &set);
2813 #if defined KVM_HAVE_MCE_INJECTION
2814     sigdelset(&set, SIGBUS);
2815     pthread_sigmask(SIG_SETMASK, &set, NULL);
2816 #endif
2817     sigdelset(&set, SIG_IPI);
2818     if (kvm_immediate_exit) {
2819         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2820     } else {
2821         r = kvm_set_signal_mask(cpu, &set);
2822     }
2823     if (r) {
2824         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2825         exit(1);
2826     }
2827 }
2828 
2829 /* Called asynchronously in VCPU thread.  */
2830 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2831 {
2832 #ifdef KVM_HAVE_MCE_INJECTION
2833     if (have_sigbus_pending) {
2834         return 1;
2835     }
2836     have_sigbus_pending = true;
2837     pending_sigbus_addr = addr;
2838     pending_sigbus_code = code;
2839     atomic_set(&cpu->exit_request, 1);
2840     return 0;
2841 #else
2842     return 1;
2843 #endif
2844 }
2845 
2846 /* Called synchronously (via signalfd) in main thread.  */
2847 int kvm_on_sigbus(int code, void *addr)
2848 {
2849 #ifdef KVM_HAVE_MCE_INJECTION
2850     /* Action required MCE kills the process if SIGBUS is blocked.  Because
2851      * that's what happens in the I/O thread, where we handle MCE via signalfd,
2852      * we can only get action optional here.
2853      */
2854     assert(code != BUS_MCEERR_AR);
2855     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2856     return 0;
2857 #else
2858     return 1;
2859 #endif
2860 }
2861 
2862 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2863 {
2864     int ret;
2865     struct kvm_create_device create_dev;
2866 
2867     create_dev.type = type;
2868     create_dev.fd = -1;
2869     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2870 
2871     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2872         return -ENOTSUP;
2873     }
2874 
2875     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2876     if (ret) {
2877         return ret;
2878     }
2879 
2880     return test ? 0 : create_dev.fd;
2881 }
2882 
2883 bool kvm_device_supported(int vmfd, uint64_t type)
2884 {
2885     struct kvm_create_device create_dev = {
2886         .type = type,
2887         .fd = -1,
2888         .flags = KVM_CREATE_DEVICE_TEST,
2889     };
2890 
2891     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2892         return false;
2893     }
2894 
2895     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2896 }
2897 
2898 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2899 {
2900     struct kvm_one_reg reg;
2901     int r;
2902 
2903     reg.id = id;
2904     reg.addr = (uintptr_t) source;
2905     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2906     if (r) {
2907         trace_kvm_failed_reg_set(id, strerror(-r));
2908     }
2909     return r;
2910 }
2911 
2912 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2913 {
2914     struct kvm_one_reg reg;
2915     int r;
2916 
2917     reg.id = id;
2918     reg.addr = (uintptr_t) target;
2919     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2920     if (r) {
2921         trace_kvm_failed_reg_get(id, strerror(-r));
2922     }
2923     return r;
2924 }
2925 
2926 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
2927                                  hwaddr start_addr, hwaddr size)
2928 {
2929     KVMState *kvm = KVM_STATE(ms->accelerator);
2930     int i;
2931 
2932     for (i = 0; i < kvm->nr_as; ++i) {
2933         if (kvm->as[i].as == as && kvm->as[i].ml) {
2934             size = MIN(kvm_max_slot_size, size);
2935             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
2936                                                     start_addr, size);
2937         }
2938     }
2939 
2940     return false;
2941 }
2942 
2943 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2944 {
2945     AccelClass *ac = ACCEL_CLASS(oc);
2946     ac->name = "KVM";
2947     ac->init_machine = kvm_init;
2948     ac->has_memory = kvm_accel_has_memory;
2949     ac->allowed = &kvm_allowed;
2950 }
2951 
2952 static const TypeInfo kvm_accel_type = {
2953     .name = TYPE_KVM_ACCEL,
2954     .parent = TYPE_ACCEL,
2955     .class_init = kvm_accel_class_init,
2956     .instance_size = sizeof(KVMState),
2957 };
2958 
2959 static void kvm_type_init(void)
2960 {
2961     type_register_static(&kvm_accel_type);
2962 }
2963 
2964 type_init(kvm_type_init);
2965