1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu-common.h" 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/hw.h" 28 #include "hw/pci/msi.h" 29 #include "hw/pci/msix.h" 30 #include "hw/s390x/adapter.h" 31 #include "exec/gdbstub.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 42 #include "hw/boards.h" 43 44 /* This check must be after config-host.h is included */ 45 #ifdef CONFIG_EVENTFD 46 #include <sys/eventfd.h> 47 #endif 48 49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 50 * need to use the real host PAGE_SIZE, as that's what KVM will use. 51 */ 52 #define PAGE_SIZE getpagesize() 53 54 //#define DEBUG_KVM 55 56 #ifdef DEBUG_KVM 57 #define DPRINTF(fmt, ...) \ 58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 59 #else 60 #define DPRINTF(fmt, ...) \ 61 do { } while (0) 62 #endif 63 64 #define KVM_MSI_HASHTAB_SIZE 256 65 66 struct KVMParkedVcpu { 67 unsigned long vcpu_id; 68 int kvm_fd; 69 QLIST_ENTRY(KVMParkedVcpu) node; 70 }; 71 72 struct KVMState 73 { 74 AccelState parent_obj; 75 76 int nr_slots; 77 int fd; 78 int vmfd; 79 int coalesced_mmio; 80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 81 bool coalesced_flush_in_progress; 82 int vcpu_events; 83 int robust_singlestep; 84 int debugregs; 85 #ifdef KVM_CAP_SET_GUEST_DEBUG 86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints; 87 #endif 88 int many_ioeventfds; 89 int intx_set_mask; 90 /* The man page (and posix) say ioctl numbers are signed int, but 91 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 92 * unsigned, and treating them as signed here can break things */ 93 unsigned irq_set_ioctl; 94 unsigned int sigmask_len; 95 GHashTable *gsimap; 96 #ifdef KVM_CAP_IRQ_ROUTING 97 struct kvm_irq_routing *irq_routes; 98 int nr_allocated_irq_routes; 99 unsigned long *used_gsi_bitmap; 100 unsigned int gsi_count; 101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 102 #endif 103 KVMMemoryListener memory_listener; 104 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 105 }; 106 107 KVMState *kvm_state; 108 bool kvm_kernel_irqchip; 109 bool kvm_split_irqchip; 110 bool kvm_async_interrupts_allowed; 111 bool kvm_halt_in_kernel_allowed; 112 bool kvm_eventfds_allowed; 113 bool kvm_irqfds_allowed; 114 bool kvm_resamplefds_allowed; 115 bool kvm_msi_via_irqfd_allowed; 116 bool kvm_gsi_routing_allowed; 117 bool kvm_gsi_direct_mapping; 118 bool kvm_allowed; 119 bool kvm_readonly_mem_allowed; 120 bool kvm_vm_attributes_allowed; 121 bool kvm_direct_msi_allowed; 122 bool kvm_ioeventfd_any_length_allowed; 123 bool kvm_msi_use_devid; 124 static bool kvm_immediate_exit; 125 126 static const KVMCapabilityInfo kvm_required_capabilites[] = { 127 KVM_CAP_INFO(USER_MEMORY), 128 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 129 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 130 KVM_CAP_LAST_INFO 131 }; 132 133 int kvm_get_max_memslots(void) 134 { 135 KVMState *s = KVM_STATE(current_machine->accelerator); 136 137 return s->nr_slots; 138 } 139 140 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 141 { 142 KVMState *s = kvm_state; 143 int i; 144 145 for (i = 0; i < s->nr_slots; i++) { 146 if (kml->slots[i].memory_size == 0) { 147 return &kml->slots[i]; 148 } 149 } 150 151 return NULL; 152 } 153 154 bool kvm_has_free_slot(MachineState *ms) 155 { 156 KVMState *s = KVM_STATE(ms->accelerator); 157 158 return kvm_get_free_slot(&s->memory_listener); 159 } 160 161 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 162 { 163 KVMSlot *slot = kvm_get_free_slot(kml); 164 165 if (slot) { 166 return slot; 167 } 168 169 fprintf(stderr, "%s: no free slot available\n", __func__); 170 abort(); 171 } 172 173 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 174 hwaddr start_addr, 175 hwaddr size) 176 { 177 KVMState *s = kvm_state; 178 int i; 179 180 for (i = 0; i < s->nr_slots; i++) { 181 KVMSlot *mem = &kml->slots[i]; 182 183 if (start_addr == mem->start_addr && size == mem->memory_size) { 184 return mem; 185 } 186 } 187 188 return NULL; 189 } 190 191 /* 192 * Calculate and align the start address and the size of the section. 193 * Return the size. If the size is 0, the aligned section is empty. 194 */ 195 static hwaddr kvm_align_section(MemoryRegionSection *section, 196 hwaddr *start) 197 { 198 hwaddr size = int128_get64(section->size); 199 hwaddr delta; 200 201 *start = section->offset_within_address_space; 202 203 /* kvm works in page size chunks, but the function may be called 204 with sub-page size and unaligned start address. Pad the start 205 address to next and truncate size to previous page boundary. */ 206 delta = qemu_real_host_page_size - (*start & ~qemu_real_host_page_mask); 207 delta &= ~qemu_real_host_page_mask; 208 *start += delta; 209 if (delta > size) { 210 return 0; 211 } 212 size -= delta; 213 size &= qemu_real_host_page_mask; 214 if (*start & ~qemu_real_host_page_mask) { 215 return 0; 216 } 217 218 return size; 219 } 220 221 /* 222 * Find overlapping slot with lowest start address 223 */ 224 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml, 225 hwaddr start_addr, 226 hwaddr end_addr) 227 { 228 KVMState *s = kvm_state; 229 KVMSlot *found = NULL; 230 int i; 231 232 for (i = 0; i < s->nr_slots; i++) { 233 KVMSlot *mem = &kml->slots[i]; 234 235 if (mem->memory_size == 0 || 236 (found && found->start_addr < mem->start_addr)) { 237 continue; 238 } 239 240 if (end_addr > mem->start_addr && 241 start_addr < mem->start_addr + mem->memory_size) { 242 found = mem; 243 } 244 } 245 246 return found; 247 } 248 249 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 250 hwaddr *phys_addr) 251 { 252 KVMMemoryListener *kml = &s->memory_listener; 253 int i; 254 255 for (i = 0; i < s->nr_slots; i++) { 256 KVMSlot *mem = &kml->slots[i]; 257 258 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 259 *phys_addr = mem->start_addr + (ram - mem->ram); 260 return 1; 261 } 262 } 263 264 return 0; 265 } 266 267 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) 268 { 269 KVMState *s = kvm_state; 270 struct kvm_userspace_memory_region mem; 271 272 mem.slot = slot->slot | (kml->as_id << 16); 273 mem.guest_phys_addr = slot->start_addr; 274 mem.userspace_addr = (unsigned long)slot->ram; 275 mem.flags = slot->flags; 276 277 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { 278 /* Set the slot size to 0 before setting the slot to the desired 279 * value. This is needed based on KVM commit 75d61fbc. */ 280 mem.memory_size = 0; 281 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 282 } 283 mem.memory_size = slot->memory_size; 284 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 285 } 286 287 int kvm_destroy_vcpu(CPUState *cpu) 288 { 289 KVMState *s = kvm_state; 290 long mmap_size; 291 struct KVMParkedVcpu *vcpu = NULL; 292 int ret = 0; 293 294 DPRINTF("kvm_destroy_vcpu\n"); 295 296 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 297 if (mmap_size < 0) { 298 ret = mmap_size; 299 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 300 goto err; 301 } 302 303 ret = munmap(cpu->kvm_run, mmap_size); 304 if (ret < 0) { 305 goto err; 306 } 307 308 vcpu = g_malloc0(sizeof(*vcpu)); 309 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 310 vcpu->kvm_fd = cpu->kvm_fd; 311 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 312 err: 313 return ret; 314 } 315 316 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 317 { 318 struct KVMParkedVcpu *cpu; 319 320 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 321 if (cpu->vcpu_id == vcpu_id) { 322 int kvm_fd; 323 324 QLIST_REMOVE(cpu, node); 325 kvm_fd = cpu->kvm_fd; 326 g_free(cpu); 327 return kvm_fd; 328 } 329 } 330 331 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 332 } 333 334 int kvm_init_vcpu(CPUState *cpu) 335 { 336 KVMState *s = kvm_state; 337 long mmap_size; 338 int ret; 339 340 DPRINTF("kvm_init_vcpu\n"); 341 342 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 343 if (ret < 0) { 344 DPRINTF("kvm_create_vcpu failed\n"); 345 goto err; 346 } 347 348 cpu->kvm_fd = ret; 349 cpu->kvm_state = s; 350 cpu->vcpu_dirty = true; 351 352 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 353 if (mmap_size < 0) { 354 ret = mmap_size; 355 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 356 goto err; 357 } 358 359 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 360 cpu->kvm_fd, 0); 361 if (cpu->kvm_run == MAP_FAILED) { 362 ret = -errno; 363 DPRINTF("mmap'ing vcpu state failed\n"); 364 goto err; 365 } 366 367 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 368 s->coalesced_mmio_ring = 369 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 370 } 371 372 ret = kvm_arch_init_vcpu(cpu); 373 err: 374 return ret; 375 } 376 377 /* 378 * dirty pages logging control 379 */ 380 381 static int kvm_mem_flags(MemoryRegion *mr) 382 { 383 bool readonly = mr->readonly || memory_region_is_romd(mr); 384 int flags = 0; 385 386 if (memory_region_get_dirty_log_mask(mr) != 0) { 387 flags |= KVM_MEM_LOG_DIRTY_PAGES; 388 } 389 if (readonly && kvm_readonly_mem_allowed) { 390 flags |= KVM_MEM_READONLY; 391 } 392 return flags; 393 } 394 395 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 396 MemoryRegion *mr) 397 { 398 int old_flags; 399 400 old_flags = mem->flags; 401 mem->flags = kvm_mem_flags(mr); 402 403 /* If nothing changed effectively, no need to issue ioctl */ 404 if (mem->flags == old_flags) { 405 return 0; 406 } 407 408 return kvm_set_user_memory_region(kml, mem); 409 } 410 411 static int kvm_section_update_flags(KVMMemoryListener *kml, 412 MemoryRegionSection *section) 413 { 414 hwaddr phys_addr = section->offset_within_address_space; 415 ram_addr_t size = int128_get64(section->size); 416 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, size); 417 418 if (mem == NULL) { 419 return 0; 420 } else { 421 return kvm_slot_update_flags(kml, mem, section->mr); 422 } 423 } 424 425 static void kvm_log_start(MemoryListener *listener, 426 MemoryRegionSection *section, 427 int old, int new) 428 { 429 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 430 int r; 431 432 if (old != 0) { 433 return; 434 } 435 436 r = kvm_section_update_flags(kml, section); 437 if (r < 0) { 438 abort(); 439 } 440 } 441 442 static void kvm_log_stop(MemoryListener *listener, 443 MemoryRegionSection *section, 444 int old, int new) 445 { 446 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 447 int r; 448 449 if (new != 0) { 450 return; 451 } 452 453 r = kvm_section_update_flags(kml, section); 454 if (r < 0) { 455 abort(); 456 } 457 } 458 459 /* get kvm's dirty pages bitmap and update qemu's */ 460 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 461 unsigned long *bitmap) 462 { 463 ram_addr_t start = section->offset_within_region + 464 memory_region_get_ram_addr(section->mr); 465 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 466 467 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 468 return 0; 469 } 470 471 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 472 473 /** 474 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 475 * This function updates qemu's dirty bitmap using 476 * memory_region_set_dirty(). This means all bits are set 477 * to dirty. 478 * 479 * @start_add: start of logged region. 480 * @end_addr: end of logged region. 481 */ 482 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 483 MemoryRegionSection *section) 484 { 485 KVMState *s = kvm_state; 486 unsigned long size, allocated_size = 0; 487 struct kvm_dirty_log d = {}; 488 KVMSlot *mem; 489 int ret = 0; 490 hwaddr start_addr = section->offset_within_address_space; 491 hwaddr end_addr = start_addr + int128_get64(section->size); 492 493 d.dirty_bitmap = NULL; 494 while (start_addr < end_addr) { 495 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr); 496 if (mem == NULL) { 497 break; 498 } 499 500 /* XXX bad kernel interface alert 501 * For dirty bitmap, kernel allocates array of size aligned to 502 * bits-per-long. But for case when the kernel is 64bits and 503 * the userspace is 32bits, userspace can't align to the same 504 * bits-per-long, since sizeof(long) is different between kernel 505 * and user space. This way, userspace will provide buffer which 506 * may be 4 bytes less than the kernel will use, resulting in 507 * userspace memory corruption (which is not detectable by valgrind 508 * too, in most cases). 509 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 510 * a hope that sizeof(long) won't become >8 any time soon. 511 */ 512 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 513 /*HOST_LONG_BITS*/ 64) / 8; 514 if (!d.dirty_bitmap) { 515 d.dirty_bitmap = g_malloc(size); 516 } else if (size > allocated_size) { 517 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); 518 } 519 allocated_size = size; 520 memset(d.dirty_bitmap, 0, allocated_size); 521 522 d.slot = mem->slot | (kml->as_id << 16); 523 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 524 DPRINTF("ioctl failed %d\n", errno); 525 ret = -1; 526 break; 527 } 528 529 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 530 start_addr = mem->start_addr + mem->memory_size; 531 } 532 g_free(d.dirty_bitmap); 533 534 return ret; 535 } 536 537 static void kvm_coalesce_mmio_region(MemoryListener *listener, 538 MemoryRegionSection *secion, 539 hwaddr start, hwaddr size) 540 { 541 KVMState *s = kvm_state; 542 543 if (s->coalesced_mmio) { 544 struct kvm_coalesced_mmio_zone zone; 545 546 zone.addr = start; 547 zone.size = size; 548 zone.pad = 0; 549 550 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 551 } 552 } 553 554 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 555 MemoryRegionSection *secion, 556 hwaddr start, hwaddr size) 557 { 558 KVMState *s = kvm_state; 559 560 if (s->coalesced_mmio) { 561 struct kvm_coalesced_mmio_zone zone; 562 563 zone.addr = start; 564 zone.size = size; 565 zone.pad = 0; 566 567 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 568 } 569 } 570 571 int kvm_check_extension(KVMState *s, unsigned int extension) 572 { 573 int ret; 574 575 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 576 if (ret < 0) { 577 ret = 0; 578 } 579 580 return ret; 581 } 582 583 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 584 { 585 int ret; 586 587 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 588 if (ret < 0) { 589 /* VM wide version not implemented, use global one instead */ 590 ret = kvm_check_extension(s, extension); 591 } 592 593 return ret; 594 } 595 596 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 597 { 598 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 599 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 600 * endianness, but the memory core hands them in target endianness. 601 * For example, PPC is always treated as big-endian even if running 602 * on KVM and on PPC64LE. Correct here. 603 */ 604 switch (size) { 605 case 2: 606 val = bswap16(val); 607 break; 608 case 4: 609 val = bswap32(val); 610 break; 611 } 612 #endif 613 return val; 614 } 615 616 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 617 bool assign, uint32_t size, bool datamatch) 618 { 619 int ret; 620 struct kvm_ioeventfd iofd = { 621 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 622 .addr = addr, 623 .len = size, 624 .flags = 0, 625 .fd = fd, 626 }; 627 628 if (!kvm_enabled()) { 629 return -ENOSYS; 630 } 631 632 if (datamatch) { 633 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 634 } 635 if (!assign) { 636 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 637 } 638 639 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 640 641 if (ret < 0) { 642 return -errno; 643 } 644 645 return 0; 646 } 647 648 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 649 bool assign, uint32_t size, bool datamatch) 650 { 651 struct kvm_ioeventfd kick = { 652 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 653 .addr = addr, 654 .flags = KVM_IOEVENTFD_FLAG_PIO, 655 .len = size, 656 .fd = fd, 657 }; 658 int r; 659 if (!kvm_enabled()) { 660 return -ENOSYS; 661 } 662 if (datamatch) { 663 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 664 } 665 if (!assign) { 666 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 667 } 668 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 669 if (r < 0) { 670 return r; 671 } 672 return 0; 673 } 674 675 676 static int kvm_check_many_ioeventfds(void) 677 { 678 /* Userspace can use ioeventfd for io notification. This requires a host 679 * that supports eventfd(2) and an I/O thread; since eventfd does not 680 * support SIGIO it cannot interrupt the vcpu. 681 * 682 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 683 * can avoid creating too many ioeventfds. 684 */ 685 #if defined(CONFIG_EVENTFD) 686 int ioeventfds[7]; 687 int i, ret = 0; 688 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 689 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 690 if (ioeventfds[i] < 0) { 691 break; 692 } 693 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 694 if (ret < 0) { 695 close(ioeventfds[i]); 696 break; 697 } 698 } 699 700 /* Decide whether many devices are supported or not */ 701 ret = i == ARRAY_SIZE(ioeventfds); 702 703 while (i-- > 0) { 704 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 705 close(ioeventfds[i]); 706 } 707 return ret; 708 #else 709 return 0; 710 #endif 711 } 712 713 static const KVMCapabilityInfo * 714 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 715 { 716 while (list->name) { 717 if (!kvm_check_extension(s, list->value)) { 718 return list; 719 } 720 list++; 721 } 722 return NULL; 723 } 724 725 static void kvm_set_phys_mem(KVMMemoryListener *kml, 726 MemoryRegionSection *section, bool add) 727 { 728 KVMSlot *mem; 729 int err; 730 MemoryRegion *mr = section->mr; 731 bool writeable = !mr->readonly && !mr->rom_device; 732 hwaddr start_addr, size; 733 void *ram; 734 735 if (!memory_region_is_ram(mr)) { 736 if (writeable || !kvm_readonly_mem_allowed) { 737 return; 738 } else if (!mr->romd_mode) { 739 /* If the memory device is not in romd_mode, then we actually want 740 * to remove the kvm memory slot so all accesses will trap. */ 741 add = false; 742 } 743 } 744 745 size = kvm_align_section(section, &start_addr); 746 if (!size) { 747 return; 748 } 749 750 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 751 (section->offset_within_address_space - start_addr); 752 753 mem = kvm_lookup_matching_slot(kml, start_addr, size); 754 if (!add) { 755 if (!mem) { 756 g_assert(!memory_region_is_ram(mr) && !writeable && !mr->romd_mode); 757 return; 758 } 759 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 760 kvm_physical_sync_dirty_bitmap(kml, section); 761 } 762 763 /* unregister the slot */ 764 mem->memory_size = 0; 765 err = kvm_set_user_memory_region(kml, mem); 766 if (err) { 767 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", 768 __func__, strerror(-err)); 769 abort(); 770 } 771 return; 772 } 773 774 if (mem) { 775 /* update the slot */ 776 kvm_slot_update_flags(kml, mem, mr); 777 return; 778 } 779 780 /* register the new slot */ 781 mem = kvm_alloc_slot(kml); 782 mem->memory_size = size; 783 mem->start_addr = start_addr; 784 mem->ram = ram; 785 mem->flags = kvm_mem_flags(mr); 786 787 err = kvm_set_user_memory_region(kml, mem); 788 if (err) { 789 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 790 strerror(-err)); 791 abort(); 792 } 793 } 794 795 static void kvm_region_add(MemoryListener *listener, 796 MemoryRegionSection *section) 797 { 798 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 799 800 memory_region_ref(section->mr); 801 kvm_set_phys_mem(kml, section, true); 802 } 803 804 static void kvm_region_del(MemoryListener *listener, 805 MemoryRegionSection *section) 806 { 807 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 808 809 kvm_set_phys_mem(kml, section, false); 810 memory_region_unref(section->mr); 811 } 812 813 static void kvm_log_sync(MemoryListener *listener, 814 MemoryRegionSection *section) 815 { 816 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 817 int r; 818 819 r = kvm_physical_sync_dirty_bitmap(kml, section); 820 if (r < 0) { 821 abort(); 822 } 823 } 824 825 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 826 MemoryRegionSection *section, 827 bool match_data, uint64_t data, 828 EventNotifier *e) 829 { 830 int fd = event_notifier_get_fd(e); 831 int r; 832 833 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 834 data, true, int128_get64(section->size), 835 match_data); 836 if (r < 0) { 837 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 838 __func__, strerror(-r)); 839 abort(); 840 } 841 } 842 843 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 844 MemoryRegionSection *section, 845 bool match_data, uint64_t data, 846 EventNotifier *e) 847 { 848 int fd = event_notifier_get_fd(e); 849 int r; 850 851 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 852 data, false, int128_get64(section->size), 853 match_data); 854 if (r < 0) { 855 abort(); 856 } 857 } 858 859 static void kvm_io_ioeventfd_add(MemoryListener *listener, 860 MemoryRegionSection *section, 861 bool match_data, uint64_t data, 862 EventNotifier *e) 863 { 864 int fd = event_notifier_get_fd(e); 865 int r; 866 867 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 868 data, true, int128_get64(section->size), 869 match_data); 870 if (r < 0) { 871 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 872 __func__, strerror(-r)); 873 abort(); 874 } 875 } 876 877 static void kvm_io_ioeventfd_del(MemoryListener *listener, 878 MemoryRegionSection *section, 879 bool match_data, uint64_t data, 880 EventNotifier *e) 881 882 { 883 int fd = event_notifier_get_fd(e); 884 int r; 885 886 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 887 data, false, int128_get64(section->size), 888 match_data); 889 if (r < 0) { 890 abort(); 891 } 892 } 893 894 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 895 AddressSpace *as, int as_id) 896 { 897 int i; 898 899 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 900 kml->as_id = as_id; 901 902 for (i = 0; i < s->nr_slots; i++) { 903 kml->slots[i].slot = i; 904 } 905 906 kml->listener.region_add = kvm_region_add; 907 kml->listener.region_del = kvm_region_del; 908 kml->listener.log_start = kvm_log_start; 909 kml->listener.log_stop = kvm_log_stop; 910 kml->listener.log_sync = kvm_log_sync; 911 kml->listener.priority = 10; 912 913 memory_listener_register(&kml->listener, as); 914 } 915 916 static MemoryListener kvm_io_listener = { 917 .eventfd_add = kvm_io_ioeventfd_add, 918 .eventfd_del = kvm_io_ioeventfd_del, 919 .priority = 10, 920 }; 921 922 int kvm_set_irq(KVMState *s, int irq, int level) 923 { 924 struct kvm_irq_level event; 925 int ret; 926 927 assert(kvm_async_interrupts_enabled()); 928 929 event.level = level; 930 event.irq = irq; 931 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 932 if (ret < 0) { 933 perror("kvm_set_irq"); 934 abort(); 935 } 936 937 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 938 } 939 940 #ifdef KVM_CAP_IRQ_ROUTING 941 typedef struct KVMMSIRoute { 942 struct kvm_irq_routing_entry kroute; 943 QTAILQ_ENTRY(KVMMSIRoute) entry; 944 } KVMMSIRoute; 945 946 static void set_gsi(KVMState *s, unsigned int gsi) 947 { 948 set_bit(gsi, s->used_gsi_bitmap); 949 } 950 951 static void clear_gsi(KVMState *s, unsigned int gsi) 952 { 953 clear_bit(gsi, s->used_gsi_bitmap); 954 } 955 956 void kvm_init_irq_routing(KVMState *s) 957 { 958 int gsi_count, i; 959 960 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 961 if (gsi_count > 0) { 962 /* Round up so we can search ints using ffs */ 963 s->used_gsi_bitmap = bitmap_new(gsi_count); 964 s->gsi_count = gsi_count; 965 } 966 967 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 968 s->nr_allocated_irq_routes = 0; 969 970 if (!kvm_direct_msi_allowed) { 971 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 972 QTAILQ_INIT(&s->msi_hashtab[i]); 973 } 974 } 975 976 kvm_arch_init_irq_routing(s); 977 } 978 979 void kvm_irqchip_commit_routes(KVMState *s) 980 { 981 int ret; 982 983 if (kvm_gsi_direct_mapping()) { 984 return; 985 } 986 987 if (!kvm_gsi_routing_enabled()) { 988 return; 989 } 990 991 s->irq_routes->flags = 0; 992 trace_kvm_irqchip_commit_routes(); 993 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 994 assert(ret == 0); 995 } 996 997 static void kvm_add_routing_entry(KVMState *s, 998 struct kvm_irq_routing_entry *entry) 999 { 1000 struct kvm_irq_routing_entry *new; 1001 int n, size; 1002 1003 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1004 n = s->nr_allocated_irq_routes * 2; 1005 if (n < 64) { 1006 n = 64; 1007 } 1008 size = sizeof(struct kvm_irq_routing); 1009 size += n * sizeof(*new); 1010 s->irq_routes = g_realloc(s->irq_routes, size); 1011 s->nr_allocated_irq_routes = n; 1012 } 1013 n = s->irq_routes->nr++; 1014 new = &s->irq_routes->entries[n]; 1015 1016 *new = *entry; 1017 1018 set_gsi(s, entry->gsi); 1019 } 1020 1021 static int kvm_update_routing_entry(KVMState *s, 1022 struct kvm_irq_routing_entry *new_entry) 1023 { 1024 struct kvm_irq_routing_entry *entry; 1025 int n; 1026 1027 for (n = 0; n < s->irq_routes->nr; n++) { 1028 entry = &s->irq_routes->entries[n]; 1029 if (entry->gsi != new_entry->gsi) { 1030 continue; 1031 } 1032 1033 if(!memcmp(entry, new_entry, sizeof *entry)) { 1034 return 0; 1035 } 1036 1037 *entry = *new_entry; 1038 1039 return 0; 1040 } 1041 1042 return -ESRCH; 1043 } 1044 1045 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1046 { 1047 struct kvm_irq_routing_entry e = {}; 1048 1049 assert(pin < s->gsi_count); 1050 1051 e.gsi = irq; 1052 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1053 e.flags = 0; 1054 e.u.irqchip.irqchip = irqchip; 1055 e.u.irqchip.pin = pin; 1056 kvm_add_routing_entry(s, &e); 1057 } 1058 1059 void kvm_irqchip_release_virq(KVMState *s, int virq) 1060 { 1061 struct kvm_irq_routing_entry *e; 1062 int i; 1063 1064 if (kvm_gsi_direct_mapping()) { 1065 return; 1066 } 1067 1068 for (i = 0; i < s->irq_routes->nr; i++) { 1069 e = &s->irq_routes->entries[i]; 1070 if (e->gsi == virq) { 1071 s->irq_routes->nr--; 1072 *e = s->irq_routes->entries[s->irq_routes->nr]; 1073 } 1074 } 1075 clear_gsi(s, virq); 1076 kvm_arch_release_virq_post(virq); 1077 trace_kvm_irqchip_release_virq(virq); 1078 } 1079 1080 static unsigned int kvm_hash_msi(uint32_t data) 1081 { 1082 /* This is optimized for IA32 MSI layout. However, no other arch shall 1083 * repeat the mistake of not providing a direct MSI injection API. */ 1084 return data & 0xff; 1085 } 1086 1087 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1088 { 1089 KVMMSIRoute *route, *next; 1090 unsigned int hash; 1091 1092 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1093 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1094 kvm_irqchip_release_virq(s, route->kroute.gsi); 1095 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1096 g_free(route); 1097 } 1098 } 1099 } 1100 1101 static int kvm_irqchip_get_virq(KVMState *s) 1102 { 1103 int next_virq; 1104 1105 /* 1106 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1107 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1108 * number can succeed even though a new route entry cannot be added. 1109 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1110 */ 1111 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1112 kvm_flush_dynamic_msi_routes(s); 1113 } 1114 1115 /* Return the lowest unused GSI in the bitmap */ 1116 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1117 if (next_virq >= s->gsi_count) { 1118 return -ENOSPC; 1119 } else { 1120 return next_virq; 1121 } 1122 } 1123 1124 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1125 { 1126 unsigned int hash = kvm_hash_msi(msg.data); 1127 KVMMSIRoute *route; 1128 1129 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1130 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1131 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1132 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1133 return route; 1134 } 1135 } 1136 return NULL; 1137 } 1138 1139 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1140 { 1141 struct kvm_msi msi; 1142 KVMMSIRoute *route; 1143 1144 if (kvm_direct_msi_allowed) { 1145 msi.address_lo = (uint32_t)msg.address; 1146 msi.address_hi = msg.address >> 32; 1147 msi.data = le32_to_cpu(msg.data); 1148 msi.flags = 0; 1149 memset(msi.pad, 0, sizeof(msi.pad)); 1150 1151 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1152 } 1153 1154 route = kvm_lookup_msi_route(s, msg); 1155 if (!route) { 1156 int virq; 1157 1158 virq = kvm_irqchip_get_virq(s); 1159 if (virq < 0) { 1160 return virq; 1161 } 1162 1163 route = g_malloc0(sizeof(KVMMSIRoute)); 1164 route->kroute.gsi = virq; 1165 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1166 route->kroute.flags = 0; 1167 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1168 route->kroute.u.msi.address_hi = msg.address >> 32; 1169 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1170 1171 kvm_add_routing_entry(s, &route->kroute); 1172 kvm_irqchip_commit_routes(s); 1173 1174 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1175 entry); 1176 } 1177 1178 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1179 1180 return kvm_set_irq(s, route->kroute.gsi, 1); 1181 } 1182 1183 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1184 { 1185 struct kvm_irq_routing_entry kroute = {}; 1186 int virq; 1187 MSIMessage msg = {0, 0}; 1188 1189 if (pci_available && dev) { 1190 msg = pci_get_msi_message(dev, vector); 1191 } 1192 1193 if (kvm_gsi_direct_mapping()) { 1194 return kvm_arch_msi_data_to_gsi(msg.data); 1195 } 1196 1197 if (!kvm_gsi_routing_enabled()) { 1198 return -ENOSYS; 1199 } 1200 1201 virq = kvm_irqchip_get_virq(s); 1202 if (virq < 0) { 1203 return virq; 1204 } 1205 1206 kroute.gsi = virq; 1207 kroute.type = KVM_IRQ_ROUTING_MSI; 1208 kroute.flags = 0; 1209 kroute.u.msi.address_lo = (uint32_t)msg.address; 1210 kroute.u.msi.address_hi = msg.address >> 32; 1211 kroute.u.msi.data = le32_to_cpu(msg.data); 1212 if (pci_available && kvm_msi_devid_required()) { 1213 kroute.flags = KVM_MSI_VALID_DEVID; 1214 kroute.u.msi.devid = pci_requester_id(dev); 1215 } 1216 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1217 kvm_irqchip_release_virq(s, virq); 1218 return -EINVAL; 1219 } 1220 1221 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1222 vector, virq); 1223 1224 kvm_add_routing_entry(s, &kroute); 1225 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1226 kvm_irqchip_commit_routes(s); 1227 1228 return virq; 1229 } 1230 1231 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1232 PCIDevice *dev) 1233 { 1234 struct kvm_irq_routing_entry kroute = {}; 1235 1236 if (kvm_gsi_direct_mapping()) { 1237 return 0; 1238 } 1239 1240 if (!kvm_irqchip_in_kernel()) { 1241 return -ENOSYS; 1242 } 1243 1244 kroute.gsi = virq; 1245 kroute.type = KVM_IRQ_ROUTING_MSI; 1246 kroute.flags = 0; 1247 kroute.u.msi.address_lo = (uint32_t)msg.address; 1248 kroute.u.msi.address_hi = msg.address >> 32; 1249 kroute.u.msi.data = le32_to_cpu(msg.data); 1250 if (pci_available && kvm_msi_devid_required()) { 1251 kroute.flags = KVM_MSI_VALID_DEVID; 1252 kroute.u.msi.devid = pci_requester_id(dev); 1253 } 1254 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1255 return -EINVAL; 1256 } 1257 1258 trace_kvm_irqchip_update_msi_route(virq); 1259 1260 return kvm_update_routing_entry(s, &kroute); 1261 } 1262 1263 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1264 bool assign) 1265 { 1266 struct kvm_irqfd irqfd = { 1267 .fd = fd, 1268 .gsi = virq, 1269 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1270 }; 1271 1272 if (rfd != -1) { 1273 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1274 irqfd.resamplefd = rfd; 1275 } 1276 1277 if (!kvm_irqfds_enabled()) { 1278 return -ENOSYS; 1279 } 1280 1281 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1282 } 1283 1284 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1285 { 1286 struct kvm_irq_routing_entry kroute = {}; 1287 int virq; 1288 1289 if (!kvm_gsi_routing_enabled()) { 1290 return -ENOSYS; 1291 } 1292 1293 virq = kvm_irqchip_get_virq(s); 1294 if (virq < 0) { 1295 return virq; 1296 } 1297 1298 kroute.gsi = virq; 1299 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1300 kroute.flags = 0; 1301 kroute.u.adapter.summary_addr = adapter->summary_addr; 1302 kroute.u.adapter.ind_addr = adapter->ind_addr; 1303 kroute.u.adapter.summary_offset = adapter->summary_offset; 1304 kroute.u.adapter.ind_offset = adapter->ind_offset; 1305 kroute.u.adapter.adapter_id = adapter->adapter_id; 1306 1307 kvm_add_routing_entry(s, &kroute); 1308 1309 return virq; 1310 } 1311 1312 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1313 { 1314 struct kvm_irq_routing_entry kroute = {}; 1315 int virq; 1316 1317 if (!kvm_gsi_routing_enabled()) { 1318 return -ENOSYS; 1319 } 1320 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1321 return -ENOSYS; 1322 } 1323 virq = kvm_irqchip_get_virq(s); 1324 if (virq < 0) { 1325 return virq; 1326 } 1327 1328 kroute.gsi = virq; 1329 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1330 kroute.flags = 0; 1331 kroute.u.hv_sint.vcpu = vcpu; 1332 kroute.u.hv_sint.sint = sint; 1333 1334 kvm_add_routing_entry(s, &kroute); 1335 kvm_irqchip_commit_routes(s); 1336 1337 return virq; 1338 } 1339 1340 #else /* !KVM_CAP_IRQ_ROUTING */ 1341 1342 void kvm_init_irq_routing(KVMState *s) 1343 { 1344 } 1345 1346 void kvm_irqchip_release_virq(KVMState *s, int virq) 1347 { 1348 } 1349 1350 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1351 { 1352 abort(); 1353 } 1354 1355 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1356 { 1357 return -ENOSYS; 1358 } 1359 1360 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1361 { 1362 return -ENOSYS; 1363 } 1364 1365 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1366 { 1367 return -ENOSYS; 1368 } 1369 1370 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1371 { 1372 abort(); 1373 } 1374 1375 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1376 { 1377 return -ENOSYS; 1378 } 1379 #endif /* !KVM_CAP_IRQ_ROUTING */ 1380 1381 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1382 EventNotifier *rn, int virq) 1383 { 1384 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1385 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1386 } 1387 1388 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1389 int virq) 1390 { 1391 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1392 false); 1393 } 1394 1395 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1396 EventNotifier *rn, qemu_irq irq) 1397 { 1398 gpointer key, gsi; 1399 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1400 1401 if (!found) { 1402 return -ENXIO; 1403 } 1404 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1405 } 1406 1407 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1408 qemu_irq irq) 1409 { 1410 gpointer key, gsi; 1411 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1412 1413 if (!found) { 1414 return -ENXIO; 1415 } 1416 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1417 } 1418 1419 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1420 { 1421 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1422 } 1423 1424 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1425 { 1426 int ret; 1427 1428 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1429 ; 1430 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1431 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1432 if (ret < 0) { 1433 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1434 exit(1); 1435 } 1436 } else { 1437 return; 1438 } 1439 1440 /* First probe and see if there's a arch-specific hook to create the 1441 * in-kernel irqchip for us */ 1442 ret = kvm_arch_irqchip_create(machine, s); 1443 if (ret == 0) { 1444 if (machine_kernel_irqchip_split(machine)) { 1445 perror("Split IRQ chip mode not supported."); 1446 exit(1); 1447 } else { 1448 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1449 } 1450 } 1451 if (ret < 0) { 1452 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1453 exit(1); 1454 } 1455 1456 kvm_kernel_irqchip = true; 1457 /* If we have an in-kernel IRQ chip then we must have asynchronous 1458 * interrupt delivery (though the reverse is not necessarily true) 1459 */ 1460 kvm_async_interrupts_allowed = true; 1461 kvm_halt_in_kernel_allowed = true; 1462 1463 kvm_init_irq_routing(s); 1464 1465 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1466 } 1467 1468 /* Find number of supported CPUs using the recommended 1469 * procedure from the kernel API documentation to cope with 1470 * older kernels that may be missing capabilities. 1471 */ 1472 static int kvm_recommended_vcpus(KVMState *s) 1473 { 1474 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); 1475 return (ret) ? ret : 4; 1476 } 1477 1478 static int kvm_max_vcpus(KVMState *s) 1479 { 1480 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1481 return (ret) ? ret : kvm_recommended_vcpus(s); 1482 } 1483 1484 static int kvm_max_vcpu_id(KVMState *s) 1485 { 1486 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1487 return (ret) ? ret : kvm_max_vcpus(s); 1488 } 1489 1490 bool kvm_vcpu_id_is_valid(int vcpu_id) 1491 { 1492 KVMState *s = KVM_STATE(current_machine->accelerator); 1493 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1494 } 1495 1496 static int kvm_init(MachineState *ms) 1497 { 1498 MachineClass *mc = MACHINE_GET_CLASS(ms); 1499 static const char upgrade_note[] = 1500 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1501 "(see http://sourceforge.net/projects/kvm).\n"; 1502 struct { 1503 const char *name; 1504 int num; 1505 } num_cpus[] = { 1506 { "SMP", smp_cpus }, 1507 { "hotpluggable", max_cpus }, 1508 { NULL, } 1509 }, *nc = num_cpus; 1510 int soft_vcpus_limit, hard_vcpus_limit; 1511 KVMState *s; 1512 const KVMCapabilityInfo *missing_cap; 1513 int ret; 1514 int type = 0; 1515 const char *kvm_type; 1516 1517 s = KVM_STATE(ms->accelerator); 1518 1519 /* 1520 * On systems where the kernel can support different base page 1521 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1522 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1523 * page size for the system though. 1524 */ 1525 assert(TARGET_PAGE_SIZE <= getpagesize()); 1526 1527 s->sigmask_len = 8; 1528 1529 #ifdef KVM_CAP_SET_GUEST_DEBUG 1530 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1531 #endif 1532 QLIST_INIT(&s->kvm_parked_vcpus); 1533 s->vmfd = -1; 1534 s->fd = qemu_open("/dev/kvm", O_RDWR); 1535 if (s->fd == -1) { 1536 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1537 ret = -errno; 1538 goto err; 1539 } 1540 1541 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1542 if (ret < KVM_API_VERSION) { 1543 if (ret >= 0) { 1544 ret = -EINVAL; 1545 } 1546 fprintf(stderr, "kvm version too old\n"); 1547 goto err; 1548 } 1549 1550 if (ret > KVM_API_VERSION) { 1551 ret = -EINVAL; 1552 fprintf(stderr, "kvm version not supported\n"); 1553 goto err; 1554 } 1555 1556 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1557 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1558 1559 /* If unspecified, use the default value */ 1560 if (!s->nr_slots) { 1561 s->nr_slots = 32; 1562 } 1563 1564 /* check the vcpu limits */ 1565 soft_vcpus_limit = kvm_recommended_vcpus(s); 1566 hard_vcpus_limit = kvm_max_vcpus(s); 1567 1568 while (nc->name) { 1569 if (nc->num > soft_vcpus_limit) { 1570 fprintf(stderr, 1571 "Warning: Number of %s cpus requested (%d) exceeds " 1572 "the recommended cpus supported by KVM (%d)\n", 1573 nc->name, nc->num, soft_vcpus_limit); 1574 1575 if (nc->num > hard_vcpus_limit) { 1576 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1577 "the maximum cpus supported by KVM (%d)\n", 1578 nc->name, nc->num, hard_vcpus_limit); 1579 exit(1); 1580 } 1581 } 1582 nc++; 1583 } 1584 1585 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1586 if (mc->kvm_type) { 1587 type = mc->kvm_type(kvm_type); 1588 } else if (kvm_type) { 1589 ret = -EINVAL; 1590 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1591 goto err; 1592 } 1593 1594 do { 1595 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1596 } while (ret == -EINTR); 1597 1598 if (ret < 0) { 1599 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1600 strerror(-ret)); 1601 1602 #ifdef TARGET_S390X 1603 if (ret == -EINVAL) { 1604 fprintf(stderr, 1605 "Host kernel setup problem detected. Please verify:\n"); 1606 fprintf(stderr, "- for kernels supporting the switch_amode or" 1607 " user_mode parameters, whether\n"); 1608 fprintf(stderr, 1609 " user space is running in primary address space\n"); 1610 fprintf(stderr, 1611 "- for kernels supporting the vm.allocate_pgste sysctl, " 1612 "whether it is enabled\n"); 1613 } 1614 #endif 1615 goto err; 1616 } 1617 1618 s->vmfd = ret; 1619 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1620 if (!missing_cap) { 1621 missing_cap = 1622 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1623 } 1624 if (missing_cap) { 1625 ret = -EINVAL; 1626 fprintf(stderr, "kvm does not support %s\n%s", 1627 missing_cap->name, upgrade_note); 1628 goto err; 1629 } 1630 1631 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1632 1633 #ifdef KVM_CAP_VCPU_EVENTS 1634 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1635 #endif 1636 1637 s->robust_singlestep = 1638 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1639 1640 #ifdef KVM_CAP_DEBUGREGS 1641 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1642 #endif 1643 1644 #ifdef KVM_CAP_IRQ_ROUTING 1645 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1646 #endif 1647 1648 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1649 1650 s->irq_set_ioctl = KVM_IRQ_LINE; 1651 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1652 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1653 } 1654 1655 #ifdef KVM_CAP_READONLY_MEM 1656 kvm_readonly_mem_allowed = 1657 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1658 #endif 1659 1660 kvm_eventfds_allowed = 1661 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1662 1663 kvm_irqfds_allowed = 1664 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1665 1666 kvm_resamplefds_allowed = 1667 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1668 1669 kvm_vm_attributes_allowed = 1670 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1671 1672 kvm_ioeventfd_any_length_allowed = 1673 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1674 1675 kvm_state = s; 1676 1677 ret = kvm_arch_init(ms, s); 1678 if (ret < 0) { 1679 goto err; 1680 } 1681 1682 if (machine_kernel_irqchip_allowed(ms)) { 1683 kvm_irqchip_create(ms, s); 1684 } 1685 1686 if (kvm_eventfds_allowed) { 1687 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1688 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1689 } 1690 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; 1691 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; 1692 1693 kvm_memory_listener_register(s, &s->memory_listener, 1694 &address_space_memory, 0); 1695 memory_listener_register(&kvm_io_listener, 1696 &address_space_io); 1697 1698 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1699 1700 return 0; 1701 1702 err: 1703 assert(ret < 0); 1704 if (s->vmfd >= 0) { 1705 close(s->vmfd); 1706 } 1707 if (s->fd != -1) { 1708 close(s->fd); 1709 } 1710 g_free(s->memory_listener.slots); 1711 1712 return ret; 1713 } 1714 1715 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1716 { 1717 s->sigmask_len = sigmask_len; 1718 } 1719 1720 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1721 int size, uint32_t count) 1722 { 1723 int i; 1724 uint8_t *ptr = data; 1725 1726 for (i = 0; i < count; i++) { 1727 address_space_rw(&address_space_io, port, attrs, 1728 ptr, size, 1729 direction == KVM_EXIT_IO_OUT); 1730 ptr += size; 1731 } 1732 } 1733 1734 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1735 { 1736 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1737 run->internal.suberror); 1738 1739 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1740 int i; 1741 1742 for (i = 0; i < run->internal.ndata; ++i) { 1743 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1744 i, (uint64_t)run->internal.data[i]); 1745 } 1746 } 1747 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1748 fprintf(stderr, "emulation failure\n"); 1749 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1750 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 1751 return EXCP_INTERRUPT; 1752 } 1753 } 1754 /* FIXME: Should trigger a qmp message to let management know 1755 * something went wrong. 1756 */ 1757 return -1; 1758 } 1759 1760 void kvm_flush_coalesced_mmio_buffer(void) 1761 { 1762 KVMState *s = kvm_state; 1763 1764 if (s->coalesced_flush_in_progress) { 1765 return; 1766 } 1767 1768 s->coalesced_flush_in_progress = true; 1769 1770 if (s->coalesced_mmio_ring) { 1771 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1772 while (ring->first != ring->last) { 1773 struct kvm_coalesced_mmio *ent; 1774 1775 ent = &ring->coalesced_mmio[ring->first]; 1776 1777 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1778 smp_wmb(); 1779 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1780 } 1781 } 1782 1783 s->coalesced_flush_in_progress = false; 1784 } 1785 1786 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1787 { 1788 if (!cpu->vcpu_dirty) { 1789 kvm_arch_get_registers(cpu); 1790 cpu->vcpu_dirty = true; 1791 } 1792 } 1793 1794 void kvm_cpu_synchronize_state(CPUState *cpu) 1795 { 1796 if (!cpu->vcpu_dirty) { 1797 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1798 } 1799 } 1800 1801 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1802 { 1803 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1804 cpu->vcpu_dirty = false; 1805 } 1806 1807 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1808 { 1809 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1810 } 1811 1812 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1813 { 1814 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1815 cpu->vcpu_dirty = false; 1816 } 1817 1818 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1819 { 1820 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1821 } 1822 1823 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1824 { 1825 cpu->vcpu_dirty = true; 1826 } 1827 1828 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1829 { 1830 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1831 } 1832 1833 #ifdef KVM_HAVE_MCE_INJECTION 1834 static __thread void *pending_sigbus_addr; 1835 static __thread int pending_sigbus_code; 1836 static __thread bool have_sigbus_pending; 1837 #endif 1838 1839 static void kvm_cpu_kick(CPUState *cpu) 1840 { 1841 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1842 } 1843 1844 static void kvm_cpu_kick_self(void) 1845 { 1846 if (kvm_immediate_exit) { 1847 kvm_cpu_kick(current_cpu); 1848 } else { 1849 qemu_cpu_kick_self(); 1850 } 1851 } 1852 1853 static void kvm_eat_signals(CPUState *cpu) 1854 { 1855 struct timespec ts = { 0, 0 }; 1856 siginfo_t siginfo; 1857 sigset_t waitset; 1858 sigset_t chkset; 1859 int r; 1860 1861 if (kvm_immediate_exit) { 1862 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1863 /* Write kvm_run->immediate_exit before the cpu->exit_request 1864 * write in kvm_cpu_exec. 1865 */ 1866 smp_wmb(); 1867 return; 1868 } 1869 1870 sigemptyset(&waitset); 1871 sigaddset(&waitset, SIG_IPI); 1872 1873 do { 1874 r = sigtimedwait(&waitset, &siginfo, &ts); 1875 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1876 perror("sigtimedwait"); 1877 exit(1); 1878 } 1879 1880 r = sigpending(&chkset); 1881 if (r == -1) { 1882 perror("sigpending"); 1883 exit(1); 1884 } 1885 } while (sigismember(&chkset, SIG_IPI)); 1886 } 1887 1888 int kvm_cpu_exec(CPUState *cpu) 1889 { 1890 struct kvm_run *run = cpu->kvm_run; 1891 int ret, run_ret; 1892 1893 DPRINTF("kvm_cpu_exec()\n"); 1894 1895 if (kvm_arch_process_async_events(cpu)) { 1896 atomic_set(&cpu->exit_request, 0); 1897 return EXCP_HLT; 1898 } 1899 1900 qemu_mutex_unlock_iothread(); 1901 cpu_exec_start(cpu); 1902 1903 do { 1904 MemTxAttrs attrs; 1905 1906 if (cpu->vcpu_dirty) { 1907 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1908 cpu->vcpu_dirty = false; 1909 } 1910 1911 kvm_arch_pre_run(cpu, run); 1912 if (atomic_read(&cpu->exit_request)) { 1913 DPRINTF("interrupt exit requested\n"); 1914 /* 1915 * KVM requires us to reenter the kernel after IO exits to complete 1916 * instruction emulation. This self-signal will ensure that we 1917 * leave ASAP again. 1918 */ 1919 kvm_cpu_kick_self(); 1920 } 1921 1922 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1923 * Matching barrier in kvm_eat_signals. 1924 */ 1925 smp_rmb(); 1926 1927 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1928 1929 attrs = kvm_arch_post_run(cpu, run); 1930 1931 #ifdef KVM_HAVE_MCE_INJECTION 1932 if (unlikely(have_sigbus_pending)) { 1933 qemu_mutex_lock_iothread(); 1934 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1935 pending_sigbus_addr); 1936 have_sigbus_pending = false; 1937 qemu_mutex_unlock_iothread(); 1938 } 1939 #endif 1940 1941 if (run_ret < 0) { 1942 if (run_ret == -EINTR || run_ret == -EAGAIN) { 1943 DPRINTF("io window exit\n"); 1944 kvm_eat_signals(cpu); 1945 ret = EXCP_INTERRUPT; 1946 break; 1947 } 1948 fprintf(stderr, "error: kvm run failed %s\n", 1949 strerror(-run_ret)); 1950 #ifdef TARGET_PPC 1951 if (run_ret == -EBUSY) { 1952 fprintf(stderr, 1953 "This is probably because your SMT is enabled.\n" 1954 "VCPU can only run on primary threads with all " 1955 "secondary threads offline.\n"); 1956 } 1957 #endif 1958 ret = -1; 1959 break; 1960 } 1961 1962 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 1963 switch (run->exit_reason) { 1964 case KVM_EXIT_IO: 1965 DPRINTF("handle_io\n"); 1966 /* Called outside BQL */ 1967 kvm_handle_io(run->io.port, attrs, 1968 (uint8_t *)run + run->io.data_offset, 1969 run->io.direction, 1970 run->io.size, 1971 run->io.count); 1972 ret = 0; 1973 break; 1974 case KVM_EXIT_MMIO: 1975 DPRINTF("handle_mmio\n"); 1976 /* Called outside BQL */ 1977 address_space_rw(&address_space_memory, 1978 run->mmio.phys_addr, attrs, 1979 run->mmio.data, 1980 run->mmio.len, 1981 run->mmio.is_write); 1982 ret = 0; 1983 break; 1984 case KVM_EXIT_IRQ_WINDOW_OPEN: 1985 DPRINTF("irq_window_open\n"); 1986 ret = EXCP_INTERRUPT; 1987 break; 1988 case KVM_EXIT_SHUTDOWN: 1989 DPRINTF("shutdown\n"); 1990 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1991 ret = EXCP_INTERRUPT; 1992 break; 1993 case KVM_EXIT_UNKNOWN: 1994 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 1995 (uint64_t)run->hw.hardware_exit_reason); 1996 ret = -1; 1997 break; 1998 case KVM_EXIT_INTERNAL_ERROR: 1999 ret = kvm_handle_internal_error(cpu, run); 2000 break; 2001 case KVM_EXIT_SYSTEM_EVENT: 2002 switch (run->system_event.type) { 2003 case KVM_SYSTEM_EVENT_SHUTDOWN: 2004 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2005 ret = EXCP_INTERRUPT; 2006 break; 2007 case KVM_SYSTEM_EVENT_RESET: 2008 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2009 ret = EXCP_INTERRUPT; 2010 break; 2011 case KVM_SYSTEM_EVENT_CRASH: 2012 kvm_cpu_synchronize_state(cpu); 2013 qemu_mutex_lock_iothread(); 2014 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2015 qemu_mutex_unlock_iothread(); 2016 ret = 0; 2017 break; 2018 default: 2019 DPRINTF("kvm_arch_handle_exit\n"); 2020 ret = kvm_arch_handle_exit(cpu, run); 2021 break; 2022 } 2023 break; 2024 default: 2025 DPRINTF("kvm_arch_handle_exit\n"); 2026 ret = kvm_arch_handle_exit(cpu, run); 2027 break; 2028 } 2029 } while (ret == 0); 2030 2031 cpu_exec_end(cpu); 2032 qemu_mutex_lock_iothread(); 2033 2034 if (ret < 0) { 2035 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 2036 vm_stop(RUN_STATE_INTERNAL_ERROR); 2037 } 2038 2039 atomic_set(&cpu->exit_request, 0); 2040 return ret; 2041 } 2042 2043 int kvm_ioctl(KVMState *s, int type, ...) 2044 { 2045 int ret; 2046 void *arg; 2047 va_list ap; 2048 2049 va_start(ap, type); 2050 arg = va_arg(ap, void *); 2051 va_end(ap); 2052 2053 trace_kvm_ioctl(type, arg); 2054 ret = ioctl(s->fd, type, arg); 2055 if (ret == -1) { 2056 ret = -errno; 2057 } 2058 return ret; 2059 } 2060 2061 int kvm_vm_ioctl(KVMState *s, int type, ...) 2062 { 2063 int ret; 2064 void *arg; 2065 va_list ap; 2066 2067 va_start(ap, type); 2068 arg = va_arg(ap, void *); 2069 va_end(ap); 2070 2071 trace_kvm_vm_ioctl(type, arg); 2072 ret = ioctl(s->vmfd, type, arg); 2073 if (ret == -1) { 2074 ret = -errno; 2075 } 2076 return ret; 2077 } 2078 2079 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2080 { 2081 int ret; 2082 void *arg; 2083 va_list ap; 2084 2085 va_start(ap, type); 2086 arg = va_arg(ap, void *); 2087 va_end(ap); 2088 2089 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2090 ret = ioctl(cpu->kvm_fd, type, arg); 2091 if (ret == -1) { 2092 ret = -errno; 2093 } 2094 return ret; 2095 } 2096 2097 int kvm_device_ioctl(int fd, int type, ...) 2098 { 2099 int ret; 2100 void *arg; 2101 va_list ap; 2102 2103 va_start(ap, type); 2104 arg = va_arg(ap, void *); 2105 va_end(ap); 2106 2107 trace_kvm_device_ioctl(fd, type, arg); 2108 ret = ioctl(fd, type, arg); 2109 if (ret == -1) { 2110 ret = -errno; 2111 } 2112 return ret; 2113 } 2114 2115 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2116 { 2117 int ret; 2118 struct kvm_device_attr attribute = { 2119 .group = group, 2120 .attr = attr, 2121 }; 2122 2123 if (!kvm_vm_attributes_allowed) { 2124 return 0; 2125 } 2126 2127 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2128 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2129 return ret ? 0 : 1; 2130 } 2131 2132 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2133 { 2134 struct kvm_device_attr attribute = { 2135 .group = group, 2136 .attr = attr, 2137 .flags = 0, 2138 }; 2139 2140 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2141 } 2142 2143 int kvm_device_access(int fd, int group, uint64_t attr, 2144 void *val, bool write, Error **errp) 2145 { 2146 struct kvm_device_attr kvmattr; 2147 int err; 2148 2149 kvmattr.flags = 0; 2150 kvmattr.group = group; 2151 kvmattr.attr = attr; 2152 kvmattr.addr = (uintptr_t)val; 2153 2154 err = kvm_device_ioctl(fd, 2155 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2156 &kvmattr); 2157 if (err < 0) { 2158 error_setg_errno(errp, -err, 2159 "KVM_%s_DEVICE_ATTR failed: Group %d " 2160 "attr 0x%016" PRIx64, 2161 write ? "SET" : "GET", group, attr); 2162 } 2163 return err; 2164 } 2165 2166 /* Return 1 on success, 0 on failure */ 2167 int kvm_has_sync_mmu(void) 2168 { 2169 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2170 } 2171 2172 int kvm_has_vcpu_events(void) 2173 { 2174 return kvm_state->vcpu_events; 2175 } 2176 2177 int kvm_has_robust_singlestep(void) 2178 { 2179 return kvm_state->robust_singlestep; 2180 } 2181 2182 int kvm_has_debugregs(void) 2183 { 2184 return kvm_state->debugregs; 2185 } 2186 2187 int kvm_has_many_ioeventfds(void) 2188 { 2189 if (!kvm_enabled()) { 2190 return 0; 2191 } 2192 return kvm_state->many_ioeventfds; 2193 } 2194 2195 int kvm_has_gsi_routing(void) 2196 { 2197 #ifdef KVM_CAP_IRQ_ROUTING 2198 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2199 #else 2200 return false; 2201 #endif 2202 } 2203 2204 int kvm_has_intx_set_mask(void) 2205 { 2206 return kvm_state->intx_set_mask; 2207 } 2208 2209 bool kvm_arm_supports_user_irq(void) 2210 { 2211 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2212 } 2213 2214 #ifdef KVM_CAP_SET_GUEST_DEBUG 2215 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2216 target_ulong pc) 2217 { 2218 struct kvm_sw_breakpoint *bp; 2219 2220 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2221 if (bp->pc == pc) { 2222 return bp; 2223 } 2224 } 2225 return NULL; 2226 } 2227 2228 int kvm_sw_breakpoints_active(CPUState *cpu) 2229 { 2230 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2231 } 2232 2233 struct kvm_set_guest_debug_data { 2234 struct kvm_guest_debug dbg; 2235 int err; 2236 }; 2237 2238 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2239 { 2240 struct kvm_set_guest_debug_data *dbg_data = 2241 (struct kvm_set_guest_debug_data *) data.host_ptr; 2242 2243 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2244 &dbg_data->dbg); 2245 } 2246 2247 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2248 { 2249 struct kvm_set_guest_debug_data data; 2250 2251 data.dbg.control = reinject_trap; 2252 2253 if (cpu->singlestep_enabled) { 2254 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2255 } 2256 kvm_arch_update_guest_debug(cpu, &data.dbg); 2257 2258 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2259 RUN_ON_CPU_HOST_PTR(&data)); 2260 return data.err; 2261 } 2262 2263 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2264 target_ulong len, int type) 2265 { 2266 struct kvm_sw_breakpoint *bp; 2267 int err; 2268 2269 if (type == GDB_BREAKPOINT_SW) { 2270 bp = kvm_find_sw_breakpoint(cpu, addr); 2271 if (bp) { 2272 bp->use_count++; 2273 return 0; 2274 } 2275 2276 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2277 bp->pc = addr; 2278 bp->use_count = 1; 2279 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2280 if (err) { 2281 g_free(bp); 2282 return err; 2283 } 2284 2285 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2286 } else { 2287 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2288 if (err) { 2289 return err; 2290 } 2291 } 2292 2293 CPU_FOREACH(cpu) { 2294 err = kvm_update_guest_debug(cpu, 0); 2295 if (err) { 2296 return err; 2297 } 2298 } 2299 return 0; 2300 } 2301 2302 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2303 target_ulong len, int type) 2304 { 2305 struct kvm_sw_breakpoint *bp; 2306 int err; 2307 2308 if (type == GDB_BREAKPOINT_SW) { 2309 bp = kvm_find_sw_breakpoint(cpu, addr); 2310 if (!bp) { 2311 return -ENOENT; 2312 } 2313 2314 if (bp->use_count > 1) { 2315 bp->use_count--; 2316 return 0; 2317 } 2318 2319 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2320 if (err) { 2321 return err; 2322 } 2323 2324 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2325 g_free(bp); 2326 } else { 2327 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2328 if (err) { 2329 return err; 2330 } 2331 } 2332 2333 CPU_FOREACH(cpu) { 2334 err = kvm_update_guest_debug(cpu, 0); 2335 if (err) { 2336 return err; 2337 } 2338 } 2339 return 0; 2340 } 2341 2342 void kvm_remove_all_breakpoints(CPUState *cpu) 2343 { 2344 struct kvm_sw_breakpoint *bp, *next; 2345 KVMState *s = cpu->kvm_state; 2346 CPUState *tmpcpu; 2347 2348 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2349 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2350 /* Try harder to find a CPU that currently sees the breakpoint. */ 2351 CPU_FOREACH(tmpcpu) { 2352 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2353 break; 2354 } 2355 } 2356 } 2357 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2358 g_free(bp); 2359 } 2360 kvm_arch_remove_all_hw_breakpoints(); 2361 2362 CPU_FOREACH(cpu) { 2363 kvm_update_guest_debug(cpu, 0); 2364 } 2365 } 2366 2367 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2368 2369 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2370 { 2371 return -EINVAL; 2372 } 2373 2374 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2375 target_ulong len, int type) 2376 { 2377 return -EINVAL; 2378 } 2379 2380 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2381 target_ulong len, int type) 2382 { 2383 return -EINVAL; 2384 } 2385 2386 void kvm_remove_all_breakpoints(CPUState *cpu) 2387 { 2388 } 2389 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2390 2391 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2392 { 2393 KVMState *s = kvm_state; 2394 struct kvm_signal_mask *sigmask; 2395 int r; 2396 2397 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2398 2399 sigmask->len = s->sigmask_len; 2400 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2401 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2402 g_free(sigmask); 2403 2404 return r; 2405 } 2406 2407 static void kvm_ipi_signal(int sig) 2408 { 2409 if (current_cpu) { 2410 assert(kvm_immediate_exit); 2411 kvm_cpu_kick(current_cpu); 2412 } 2413 } 2414 2415 void kvm_init_cpu_signals(CPUState *cpu) 2416 { 2417 int r; 2418 sigset_t set; 2419 struct sigaction sigact; 2420 2421 memset(&sigact, 0, sizeof(sigact)); 2422 sigact.sa_handler = kvm_ipi_signal; 2423 sigaction(SIG_IPI, &sigact, NULL); 2424 2425 pthread_sigmask(SIG_BLOCK, NULL, &set); 2426 #if defined KVM_HAVE_MCE_INJECTION 2427 sigdelset(&set, SIGBUS); 2428 pthread_sigmask(SIG_SETMASK, &set, NULL); 2429 #endif 2430 sigdelset(&set, SIG_IPI); 2431 if (kvm_immediate_exit) { 2432 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2433 } else { 2434 r = kvm_set_signal_mask(cpu, &set); 2435 } 2436 if (r) { 2437 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2438 exit(1); 2439 } 2440 } 2441 2442 /* Called asynchronously in VCPU thread. */ 2443 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2444 { 2445 #ifdef KVM_HAVE_MCE_INJECTION 2446 if (have_sigbus_pending) { 2447 return 1; 2448 } 2449 have_sigbus_pending = true; 2450 pending_sigbus_addr = addr; 2451 pending_sigbus_code = code; 2452 atomic_set(&cpu->exit_request, 1); 2453 return 0; 2454 #else 2455 return 1; 2456 #endif 2457 } 2458 2459 /* Called synchronously (via signalfd) in main thread. */ 2460 int kvm_on_sigbus(int code, void *addr) 2461 { 2462 #ifdef KVM_HAVE_MCE_INJECTION 2463 /* Action required MCE kills the process if SIGBUS is blocked. Because 2464 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2465 * we can only get action optional here. 2466 */ 2467 assert(code != BUS_MCEERR_AR); 2468 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2469 return 0; 2470 #else 2471 return 1; 2472 #endif 2473 } 2474 2475 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2476 { 2477 int ret; 2478 struct kvm_create_device create_dev; 2479 2480 create_dev.type = type; 2481 create_dev.fd = -1; 2482 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2483 2484 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2485 return -ENOTSUP; 2486 } 2487 2488 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2489 if (ret) { 2490 return ret; 2491 } 2492 2493 return test ? 0 : create_dev.fd; 2494 } 2495 2496 bool kvm_device_supported(int vmfd, uint64_t type) 2497 { 2498 struct kvm_create_device create_dev = { 2499 .type = type, 2500 .fd = -1, 2501 .flags = KVM_CREATE_DEVICE_TEST, 2502 }; 2503 2504 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2505 return false; 2506 } 2507 2508 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2509 } 2510 2511 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2512 { 2513 struct kvm_one_reg reg; 2514 int r; 2515 2516 reg.id = id; 2517 reg.addr = (uintptr_t) source; 2518 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2519 if (r) { 2520 trace_kvm_failed_reg_set(id, strerror(-r)); 2521 } 2522 return r; 2523 } 2524 2525 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2526 { 2527 struct kvm_one_reg reg; 2528 int r; 2529 2530 reg.id = id; 2531 reg.addr = (uintptr_t) target; 2532 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2533 if (r) { 2534 trace_kvm_failed_reg_get(id, strerror(-r)); 2535 } 2536 return r; 2537 } 2538 2539 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2540 { 2541 AccelClass *ac = ACCEL_CLASS(oc); 2542 ac->name = "KVM"; 2543 ac->init_machine = kvm_init; 2544 ac->allowed = &kvm_allowed; 2545 } 2546 2547 static const TypeInfo kvm_accel_type = { 2548 .name = TYPE_KVM_ACCEL, 2549 .parent = TYPE_ACCEL, 2550 .class_init = kvm_accel_class_init, 2551 .instance_size = sizeof(KVMState), 2552 }; 2553 2554 static void kvm_type_init(void) 2555 { 2556 type_register_static(&kvm_accel_type); 2557 } 2558 2559 type_init(kvm_type_init); 2560