1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 KVMState *kvm_state; 79 bool kvm_kernel_irqchip; 80 bool kvm_split_irqchip; 81 bool kvm_async_interrupts_allowed; 82 bool kvm_halt_in_kernel_allowed; 83 bool kvm_resamplefds_allowed; 84 bool kvm_msi_via_irqfd_allowed; 85 bool kvm_gsi_routing_allowed; 86 bool kvm_gsi_direct_mapping; 87 bool kvm_allowed; 88 bool kvm_readonly_mem_allowed; 89 bool kvm_vm_attributes_allowed; 90 bool kvm_msi_use_devid; 91 static bool kvm_has_guest_debug; 92 static int kvm_sstep_flags; 93 static bool kvm_immediate_exit; 94 static hwaddr kvm_max_slot_size = ~0; 95 96 static const KVMCapabilityInfo kvm_required_capabilites[] = { 97 KVM_CAP_INFO(USER_MEMORY), 98 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 99 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 100 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 101 KVM_CAP_INFO(IOEVENTFD), 102 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 103 KVM_CAP_LAST_INFO 104 }; 105 106 static NotifierList kvm_irqchip_change_notifiers = 107 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 108 109 struct KVMResampleFd { 110 int gsi; 111 EventNotifier *resample_event; 112 QLIST_ENTRY(KVMResampleFd) node; 113 }; 114 typedef struct KVMResampleFd KVMResampleFd; 115 116 /* 117 * Only used with split irqchip where we need to do the resample fd 118 * kick for the kernel from userspace. 119 */ 120 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 121 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 122 123 static QemuMutex kml_slots_lock; 124 125 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 126 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 127 128 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 129 130 static inline void kvm_resample_fd_remove(int gsi) 131 { 132 KVMResampleFd *rfd; 133 134 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 135 if (rfd->gsi == gsi) { 136 QLIST_REMOVE(rfd, node); 137 g_free(rfd); 138 break; 139 } 140 } 141 } 142 143 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 144 { 145 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 146 147 rfd->gsi = gsi; 148 rfd->resample_event = event; 149 150 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 151 } 152 153 void kvm_resample_fd_notify(int gsi) 154 { 155 KVMResampleFd *rfd; 156 157 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 158 if (rfd->gsi == gsi) { 159 event_notifier_set(rfd->resample_event); 160 trace_kvm_resample_fd_notify(gsi); 161 return; 162 } 163 } 164 } 165 166 unsigned int kvm_get_max_memslots(void) 167 { 168 KVMState *s = KVM_STATE(current_accel()); 169 170 return s->nr_slots; 171 } 172 173 unsigned int kvm_get_free_memslots(void) 174 { 175 unsigned int used_slots = 0; 176 KVMState *s = kvm_state; 177 int i; 178 179 kvm_slots_lock(); 180 for (i = 0; i < s->nr_as; i++) { 181 if (!s->as[i].ml) { 182 continue; 183 } 184 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 185 } 186 kvm_slots_unlock(); 187 188 return s->nr_slots - used_slots; 189 } 190 191 /* Called with KVMMemoryListener.slots_lock held */ 192 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 193 { 194 KVMState *s = kvm_state; 195 int i; 196 197 for (i = 0; i < s->nr_slots; i++) { 198 if (kml->slots[i].memory_size == 0) { 199 return &kml->slots[i]; 200 } 201 } 202 203 return NULL; 204 } 205 206 /* Called with KVMMemoryListener.slots_lock held */ 207 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 208 { 209 KVMSlot *slot = kvm_get_free_slot(kml); 210 211 if (slot) { 212 return slot; 213 } 214 215 fprintf(stderr, "%s: no free slot available\n", __func__); 216 abort(); 217 } 218 219 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 220 hwaddr start_addr, 221 hwaddr size) 222 { 223 KVMState *s = kvm_state; 224 int i; 225 226 for (i = 0; i < s->nr_slots; i++) { 227 KVMSlot *mem = &kml->slots[i]; 228 229 if (start_addr == mem->start_addr && size == mem->memory_size) { 230 return mem; 231 } 232 } 233 234 return NULL; 235 } 236 237 /* 238 * Calculate and align the start address and the size of the section. 239 * Return the size. If the size is 0, the aligned section is empty. 240 */ 241 static hwaddr kvm_align_section(MemoryRegionSection *section, 242 hwaddr *start) 243 { 244 hwaddr size = int128_get64(section->size); 245 hwaddr delta, aligned; 246 247 /* kvm works in page size chunks, but the function may be called 248 with sub-page size and unaligned start address. Pad the start 249 address to next and truncate size to previous page boundary. */ 250 aligned = ROUND_UP(section->offset_within_address_space, 251 qemu_real_host_page_size()); 252 delta = aligned - section->offset_within_address_space; 253 *start = aligned; 254 if (delta > size) { 255 return 0; 256 } 257 258 return (size - delta) & qemu_real_host_page_mask(); 259 } 260 261 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 262 hwaddr *phys_addr) 263 { 264 KVMMemoryListener *kml = &s->memory_listener; 265 int i, ret = 0; 266 267 kvm_slots_lock(); 268 for (i = 0; i < s->nr_slots; i++) { 269 KVMSlot *mem = &kml->slots[i]; 270 271 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 272 *phys_addr = mem->start_addr + (ram - mem->ram); 273 ret = 1; 274 break; 275 } 276 } 277 kvm_slots_unlock(); 278 279 return ret; 280 } 281 282 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 283 { 284 KVMState *s = kvm_state; 285 struct kvm_userspace_memory_region mem; 286 int ret; 287 288 mem.slot = slot->slot | (kml->as_id << 16); 289 mem.guest_phys_addr = slot->start_addr; 290 mem.userspace_addr = (unsigned long)slot->ram; 291 mem.flags = slot->flags; 292 293 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 294 /* Set the slot size to 0 before setting the slot to the desired 295 * value. This is needed based on KVM commit 75d61fbc. */ 296 mem.memory_size = 0; 297 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 298 if (ret < 0) { 299 goto err; 300 } 301 } 302 mem.memory_size = slot->memory_size; 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 304 slot->old_flags = mem.flags; 305 err: 306 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 307 mem.memory_size, mem.userspace_addr, ret); 308 if (ret < 0) { 309 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 310 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 311 __func__, mem.slot, slot->start_addr, 312 (uint64_t)mem.memory_size, strerror(errno)); 313 } 314 return ret; 315 } 316 317 static int do_kvm_destroy_vcpu(CPUState *cpu) 318 { 319 KVMState *s = kvm_state; 320 long mmap_size; 321 struct KVMParkedVcpu *vcpu = NULL; 322 int ret = 0; 323 324 trace_kvm_destroy_vcpu(); 325 326 ret = kvm_arch_destroy_vcpu(cpu); 327 if (ret < 0) { 328 goto err; 329 } 330 331 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 332 if (mmap_size < 0) { 333 ret = mmap_size; 334 trace_kvm_failed_get_vcpu_mmap_size(); 335 goto err; 336 } 337 338 ret = munmap(cpu->kvm_run, mmap_size); 339 if (ret < 0) { 340 goto err; 341 } 342 343 if (cpu->kvm_dirty_gfns) { 344 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 345 if (ret < 0) { 346 goto err; 347 } 348 } 349 350 vcpu = g_malloc0(sizeof(*vcpu)); 351 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 352 vcpu->kvm_fd = cpu->kvm_fd; 353 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 354 err: 355 return ret; 356 } 357 358 void kvm_destroy_vcpu(CPUState *cpu) 359 { 360 if (do_kvm_destroy_vcpu(cpu) < 0) { 361 error_report("kvm_destroy_vcpu failed"); 362 exit(EXIT_FAILURE); 363 } 364 } 365 366 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 367 { 368 struct KVMParkedVcpu *cpu; 369 370 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 371 if (cpu->vcpu_id == vcpu_id) { 372 int kvm_fd; 373 374 QLIST_REMOVE(cpu, node); 375 kvm_fd = cpu->kvm_fd; 376 g_free(cpu); 377 return kvm_fd; 378 } 379 } 380 381 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 382 } 383 384 int kvm_init_vcpu(CPUState *cpu, Error **errp) 385 { 386 KVMState *s = kvm_state; 387 long mmap_size; 388 int ret; 389 390 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 391 392 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 393 if (ret < 0) { 394 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 395 kvm_arch_vcpu_id(cpu)); 396 goto err; 397 } 398 399 cpu->kvm_fd = ret; 400 cpu->kvm_state = s; 401 cpu->vcpu_dirty = true; 402 cpu->dirty_pages = 0; 403 cpu->throttle_us_per_full = 0; 404 405 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 406 if (mmap_size < 0) { 407 ret = mmap_size; 408 error_setg_errno(errp, -mmap_size, 409 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 410 goto err; 411 } 412 413 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 414 cpu->kvm_fd, 0); 415 if (cpu->kvm_run == MAP_FAILED) { 416 ret = -errno; 417 error_setg_errno(errp, ret, 418 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 419 kvm_arch_vcpu_id(cpu)); 420 goto err; 421 } 422 423 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 424 s->coalesced_mmio_ring = 425 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 426 } 427 428 if (s->kvm_dirty_ring_size) { 429 /* Use MAP_SHARED to share pages with the kernel */ 430 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 431 PROT_READ | PROT_WRITE, MAP_SHARED, 432 cpu->kvm_fd, 433 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 434 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 435 ret = -errno; 436 goto err; 437 } 438 } 439 440 ret = kvm_arch_init_vcpu(cpu); 441 if (ret < 0) { 442 error_setg_errno(errp, -ret, 443 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 444 kvm_arch_vcpu_id(cpu)); 445 } 446 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 447 448 err: 449 return ret; 450 } 451 452 /* 453 * dirty pages logging control 454 */ 455 456 static int kvm_mem_flags(MemoryRegion *mr) 457 { 458 bool readonly = mr->readonly || memory_region_is_romd(mr); 459 int flags = 0; 460 461 if (memory_region_get_dirty_log_mask(mr) != 0) { 462 flags |= KVM_MEM_LOG_DIRTY_PAGES; 463 } 464 if (readonly && kvm_readonly_mem_allowed) { 465 flags |= KVM_MEM_READONLY; 466 } 467 return flags; 468 } 469 470 /* Called with KVMMemoryListener.slots_lock held */ 471 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 472 MemoryRegion *mr) 473 { 474 mem->flags = kvm_mem_flags(mr); 475 476 /* If nothing changed effectively, no need to issue ioctl */ 477 if (mem->flags == mem->old_flags) { 478 return 0; 479 } 480 481 kvm_slot_init_dirty_bitmap(mem); 482 return kvm_set_user_memory_region(kml, mem, false); 483 } 484 485 static int kvm_section_update_flags(KVMMemoryListener *kml, 486 MemoryRegionSection *section) 487 { 488 hwaddr start_addr, size, slot_size; 489 KVMSlot *mem; 490 int ret = 0; 491 492 size = kvm_align_section(section, &start_addr); 493 if (!size) { 494 return 0; 495 } 496 497 kvm_slots_lock(); 498 499 while (size && !ret) { 500 slot_size = MIN(kvm_max_slot_size, size); 501 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 502 if (!mem) { 503 /* We don't have a slot if we want to trap every access. */ 504 goto out; 505 } 506 507 ret = kvm_slot_update_flags(kml, mem, section->mr); 508 start_addr += slot_size; 509 size -= slot_size; 510 } 511 512 out: 513 kvm_slots_unlock(); 514 return ret; 515 } 516 517 static void kvm_log_start(MemoryListener *listener, 518 MemoryRegionSection *section, 519 int old, int new) 520 { 521 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 522 int r; 523 524 if (old != 0) { 525 return; 526 } 527 528 r = kvm_section_update_flags(kml, section); 529 if (r < 0) { 530 abort(); 531 } 532 } 533 534 static void kvm_log_stop(MemoryListener *listener, 535 MemoryRegionSection *section, 536 int old, int new) 537 { 538 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 539 int r; 540 541 if (new != 0) { 542 return; 543 } 544 545 r = kvm_section_update_flags(kml, section); 546 if (r < 0) { 547 abort(); 548 } 549 } 550 551 /* get kvm's dirty pages bitmap and update qemu's */ 552 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 553 { 554 ram_addr_t start = slot->ram_start_offset; 555 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 556 557 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 558 } 559 560 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 561 { 562 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 563 } 564 565 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 566 567 /* Allocate the dirty bitmap for a slot */ 568 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 569 { 570 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 571 return; 572 } 573 574 /* 575 * XXX bad kernel interface alert 576 * For dirty bitmap, kernel allocates array of size aligned to 577 * bits-per-long. But for case when the kernel is 64bits and 578 * the userspace is 32bits, userspace can't align to the same 579 * bits-per-long, since sizeof(long) is different between kernel 580 * and user space. This way, userspace will provide buffer which 581 * may be 4 bytes less than the kernel will use, resulting in 582 * userspace memory corruption (which is not detectable by valgrind 583 * too, in most cases). 584 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 585 * a hope that sizeof(long) won't become >8 any time soon. 586 * 587 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 588 * And mem->memory_size is aligned to it (otherwise this mem can't 589 * be registered to KVM). 590 */ 591 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 592 /*HOST_LONG_BITS*/ 64) / 8; 593 mem->dirty_bmap = g_malloc0(bitmap_size); 594 mem->dirty_bmap_size = bitmap_size; 595 } 596 597 /* 598 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 599 * succeeded, false otherwise 600 */ 601 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 602 { 603 struct kvm_dirty_log d = {}; 604 int ret; 605 606 d.dirty_bitmap = slot->dirty_bmap; 607 d.slot = slot->slot | (slot->as_id << 16); 608 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 609 610 if (ret == -ENOENT) { 611 /* kernel does not have dirty bitmap in this slot */ 612 ret = 0; 613 } 614 if (ret) { 615 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 616 __func__, ret); 617 } 618 return ret == 0; 619 } 620 621 /* Should be with all slots_lock held for the address spaces. */ 622 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 623 uint32_t slot_id, uint64_t offset) 624 { 625 KVMMemoryListener *kml; 626 KVMSlot *mem; 627 628 if (as_id >= s->nr_as) { 629 return; 630 } 631 632 kml = s->as[as_id].ml; 633 mem = &kml->slots[slot_id]; 634 635 if (!mem->memory_size || offset >= 636 (mem->memory_size / qemu_real_host_page_size())) { 637 return; 638 } 639 640 set_bit(offset, mem->dirty_bmap); 641 } 642 643 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 644 { 645 /* 646 * Read the flags before the value. Pairs with barrier in 647 * KVM's kvm_dirty_ring_push() function. 648 */ 649 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 650 } 651 652 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 653 { 654 /* 655 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 656 * sees the full content of the ring: 657 * 658 * CPU0 CPU1 CPU2 659 * ------------------------------------------------------------------------------ 660 * fill gfn0 661 * store-rel flags for gfn0 662 * load-acq flags for gfn0 663 * store-rel RESET for gfn0 664 * ioctl(RESET_RINGS) 665 * load-acq flags for gfn0 666 * check if flags have RESET 667 * 668 * The synchronization goes from CPU2 to CPU0 to CPU1. 669 */ 670 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 671 } 672 673 /* 674 * Should be with all slots_lock held for the address spaces. It returns the 675 * dirty page we've collected on this dirty ring. 676 */ 677 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 678 { 679 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 680 uint32_t ring_size = s->kvm_dirty_ring_size; 681 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 682 683 /* 684 * It's possible that we race with vcpu creation code where the vcpu is 685 * put onto the vcpus list but not yet initialized the dirty ring 686 * structures. If so, skip it. 687 */ 688 if (!cpu->created) { 689 return 0; 690 } 691 692 assert(dirty_gfns && ring_size); 693 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 694 695 while (true) { 696 cur = &dirty_gfns[fetch % ring_size]; 697 if (!dirty_gfn_is_dirtied(cur)) { 698 break; 699 } 700 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 701 cur->offset); 702 dirty_gfn_set_collected(cur); 703 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 704 fetch++; 705 count++; 706 } 707 cpu->kvm_fetch_index = fetch; 708 cpu->dirty_pages += count; 709 710 return count; 711 } 712 713 /* Must be with slots_lock held */ 714 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 715 { 716 int ret; 717 uint64_t total = 0; 718 int64_t stamp; 719 720 stamp = get_clock(); 721 722 if (cpu) { 723 total = kvm_dirty_ring_reap_one(s, cpu); 724 } else { 725 CPU_FOREACH(cpu) { 726 total += kvm_dirty_ring_reap_one(s, cpu); 727 } 728 } 729 730 if (total) { 731 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 732 assert(ret == total); 733 } 734 735 stamp = get_clock() - stamp; 736 737 if (total) { 738 trace_kvm_dirty_ring_reap(total, stamp / 1000); 739 } 740 741 return total; 742 } 743 744 /* 745 * Currently for simplicity, we must hold BQL before calling this. We can 746 * consider to drop the BQL if we're clear with all the race conditions. 747 */ 748 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 749 { 750 uint64_t total; 751 752 /* 753 * We need to lock all kvm slots for all address spaces here, 754 * because: 755 * 756 * (1) We need to mark dirty for dirty bitmaps in multiple slots 757 * and for tons of pages, so it's better to take the lock here 758 * once rather than once per page. And more importantly, 759 * 760 * (2) We must _NOT_ publish dirty bits to the other threads 761 * (e.g., the migration thread) via the kvm memory slot dirty 762 * bitmaps before correctly re-protect those dirtied pages. 763 * Otherwise we can have potential risk of data corruption if 764 * the page data is read in the other thread before we do 765 * reset below. 766 */ 767 kvm_slots_lock(); 768 total = kvm_dirty_ring_reap_locked(s, cpu); 769 kvm_slots_unlock(); 770 771 return total; 772 } 773 774 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 775 { 776 /* No need to do anything */ 777 } 778 779 /* 780 * Kick all vcpus out in a synchronized way. When returned, we 781 * guarantee that every vcpu has been kicked and at least returned to 782 * userspace once. 783 */ 784 static void kvm_cpu_synchronize_kick_all(void) 785 { 786 CPUState *cpu; 787 788 CPU_FOREACH(cpu) { 789 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 790 } 791 } 792 793 /* 794 * Flush all the existing dirty pages to the KVM slot buffers. When 795 * this call returns, we guarantee that all the touched dirty pages 796 * before calling this function have been put into the per-kvmslot 797 * dirty bitmap. 798 * 799 * This function must be called with BQL held. 800 */ 801 static void kvm_dirty_ring_flush(void) 802 { 803 trace_kvm_dirty_ring_flush(0); 804 /* 805 * The function needs to be serialized. Since this function 806 * should always be with BQL held, serialization is guaranteed. 807 * However, let's be sure of it. 808 */ 809 assert(bql_locked()); 810 /* 811 * First make sure to flush the hardware buffers by kicking all 812 * vcpus out in a synchronous way. 813 */ 814 kvm_cpu_synchronize_kick_all(); 815 kvm_dirty_ring_reap(kvm_state, NULL); 816 trace_kvm_dirty_ring_flush(1); 817 } 818 819 /** 820 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 821 * 822 * This function will first try to fetch dirty bitmap from the kernel, 823 * and then updates qemu's dirty bitmap. 824 * 825 * NOTE: caller must be with kml->slots_lock held. 826 * 827 * @kml: the KVM memory listener object 828 * @section: the memory section to sync the dirty bitmap with 829 */ 830 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 831 MemoryRegionSection *section) 832 { 833 KVMState *s = kvm_state; 834 KVMSlot *mem; 835 hwaddr start_addr, size; 836 hwaddr slot_size; 837 838 size = kvm_align_section(section, &start_addr); 839 while (size) { 840 slot_size = MIN(kvm_max_slot_size, size); 841 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 842 if (!mem) { 843 /* We don't have a slot if we want to trap every access. */ 844 return; 845 } 846 if (kvm_slot_get_dirty_log(s, mem)) { 847 kvm_slot_sync_dirty_pages(mem); 848 } 849 start_addr += slot_size; 850 size -= slot_size; 851 } 852 } 853 854 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 855 #define KVM_CLEAR_LOG_SHIFT 6 856 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 857 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 858 859 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 860 uint64_t size) 861 { 862 KVMState *s = kvm_state; 863 uint64_t end, bmap_start, start_delta, bmap_npages; 864 struct kvm_clear_dirty_log d; 865 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 866 int ret; 867 868 /* 869 * We need to extend either the start or the size or both to 870 * satisfy the KVM interface requirement. Firstly, do the start 871 * page alignment on 64 host pages 872 */ 873 bmap_start = start & KVM_CLEAR_LOG_MASK; 874 start_delta = start - bmap_start; 875 bmap_start /= psize; 876 877 /* 878 * The kernel interface has restriction on the size too, that either: 879 * 880 * (1) the size is 64 host pages aligned (just like the start), or 881 * (2) the size fills up until the end of the KVM memslot. 882 */ 883 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 884 << KVM_CLEAR_LOG_SHIFT; 885 end = mem->memory_size / psize; 886 if (bmap_npages > end - bmap_start) { 887 bmap_npages = end - bmap_start; 888 } 889 start_delta /= psize; 890 891 /* 892 * Prepare the bitmap to clear dirty bits. Here we must guarantee 893 * that we won't clear any unknown dirty bits otherwise we might 894 * accidentally clear some set bits which are not yet synced from 895 * the kernel into QEMU's bitmap, then we'll lose track of the 896 * guest modifications upon those pages (which can directly lead 897 * to guest data loss or panic after migration). 898 * 899 * Layout of the KVMSlot.dirty_bmap: 900 * 901 * |<-------- bmap_npages -----------..>| 902 * [1] 903 * start_delta size 904 * |----------------|-------------|------------------|------------| 905 * ^ ^ ^ ^ 906 * | | | | 907 * start bmap_start (start) end 908 * of memslot of memslot 909 * 910 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 911 */ 912 913 assert(bmap_start % BITS_PER_LONG == 0); 914 /* We should never do log_clear before log_sync */ 915 assert(mem->dirty_bmap); 916 if (start_delta || bmap_npages - size / psize) { 917 /* Slow path - we need to manipulate a temp bitmap */ 918 bmap_clear = bitmap_new(bmap_npages); 919 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 920 bmap_start, start_delta + size / psize); 921 /* 922 * We need to fill the holes at start because that was not 923 * specified by the caller and we extended the bitmap only for 924 * 64 pages alignment 925 */ 926 bitmap_clear(bmap_clear, 0, start_delta); 927 d.dirty_bitmap = bmap_clear; 928 } else { 929 /* 930 * Fast path - both start and size align well with BITS_PER_LONG 931 * (or the end of memory slot) 932 */ 933 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 934 } 935 936 d.first_page = bmap_start; 937 /* It should never overflow. If it happens, say something */ 938 assert(bmap_npages <= UINT32_MAX); 939 d.num_pages = bmap_npages; 940 d.slot = mem->slot | (as_id << 16); 941 942 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 943 if (ret < 0 && ret != -ENOENT) { 944 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 945 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 946 __func__, d.slot, (uint64_t)d.first_page, 947 (uint32_t)d.num_pages, ret); 948 } else { 949 ret = 0; 950 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 951 } 952 953 /* 954 * After we have updated the remote dirty bitmap, we update the 955 * cached bitmap as well for the memslot, then if another user 956 * clears the same region we know we shouldn't clear it again on 957 * the remote otherwise it's data loss as well. 958 */ 959 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 960 size / psize); 961 /* This handles the NULL case well */ 962 g_free(bmap_clear); 963 return ret; 964 } 965 966 967 /** 968 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 969 * 970 * NOTE: this will be a no-op if we haven't enabled manual dirty log 971 * protection in the host kernel because in that case this operation 972 * will be done within log_sync(). 973 * 974 * @kml: the kvm memory listener 975 * @section: the memory range to clear dirty bitmap 976 */ 977 static int kvm_physical_log_clear(KVMMemoryListener *kml, 978 MemoryRegionSection *section) 979 { 980 KVMState *s = kvm_state; 981 uint64_t start, size, offset, count; 982 KVMSlot *mem; 983 int ret = 0, i; 984 985 if (!s->manual_dirty_log_protect) { 986 /* No need to do explicit clear */ 987 return ret; 988 } 989 990 start = section->offset_within_address_space; 991 size = int128_get64(section->size); 992 993 if (!size) { 994 /* Nothing more we can do... */ 995 return ret; 996 } 997 998 kvm_slots_lock(); 999 1000 for (i = 0; i < s->nr_slots; i++) { 1001 mem = &kml->slots[i]; 1002 /* Discard slots that are empty or do not overlap the section */ 1003 if (!mem->memory_size || 1004 mem->start_addr > start + size - 1 || 1005 start > mem->start_addr + mem->memory_size - 1) { 1006 continue; 1007 } 1008 1009 if (start >= mem->start_addr) { 1010 /* The slot starts before section or is aligned to it. */ 1011 offset = start - mem->start_addr; 1012 count = MIN(mem->memory_size - offset, size); 1013 } else { 1014 /* The slot starts after section. */ 1015 offset = 0; 1016 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1017 } 1018 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1019 if (ret < 0) { 1020 break; 1021 } 1022 } 1023 1024 kvm_slots_unlock(); 1025 1026 return ret; 1027 } 1028 1029 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1030 MemoryRegionSection *secion, 1031 hwaddr start, hwaddr size) 1032 { 1033 KVMState *s = kvm_state; 1034 1035 if (s->coalesced_mmio) { 1036 struct kvm_coalesced_mmio_zone zone; 1037 1038 zone.addr = start; 1039 zone.size = size; 1040 zone.pad = 0; 1041 1042 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1043 } 1044 } 1045 1046 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1047 MemoryRegionSection *secion, 1048 hwaddr start, hwaddr size) 1049 { 1050 KVMState *s = kvm_state; 1051 1052 if (s->coalesced_mmio) { 1053 struct kvm_coalesced_mmio_zone zone; 1054 1055 zone.addr = start; 1056 zone.size = size; 1057 zone.pad = 0; 1058 1059 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1060 } 1061 } 1062 1063 static void kvm_coalesce_pio_add(MemoryListener *listener, 1064 MemoryRegionSection *section, 1065 hwaddr start, hwaddr size) 1066 { 1067 KVMState *s = kvm_state; 1068 1069 if (s->coalesced_pio) { 1070 struct kvm_coalesced_mmio_zone zone; 1071 1072 zone.addr = start; 1073 zone.size = size; 1074 zone.pio = 1; 1075 1076 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1077 } 1078 } 1079 1080 static void kvm_coalesce_pio_del(MemoryListener *listener, 1081 MemoryRegionSection *section, 1082 hwaddr start, hwaddr size) 1083 { 1084 KVMState *s = kvm_state; 1085 1086 if (s->coalesced_pio) { 1087 struct kvm_coalesced_mmio_zone zone; 1088 1089 zone.addr = start; 1090 zone.size = size; 1091 zone.pio = 1; 1092 1093 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1094 } 1095 } 1096 1097 int kvm_check_extension(KVMState *s, unsigned int extension) 1098 { 1099 int ret; 1100 1101 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1102 if (ret < 0) { 1103 ret = 0; 1104 } 1105 1106 return ret; 1107 } 1108 1109 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1110 { 1111 int ret; 1112 1113 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1114 if (ret < 0) { 1115 /* VM wide version not implemented, use global one instead */ 1116 ret = kvm_check_extension(s, extension); 1117 } 1118 1119 return ret; 1120 } 1121 1122 typedef struct HWPoisonPage { 1123 ram_addr_t ram_addr; 1124 QLIST_ENTRY(HWPoisonPage) list; 1125 } HWPoisonPage; 1126 1127 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1128 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1129 1130 static void kvm_unpoison_all(void *param) 1131 { 1132 HWPoisonPage *page, *next_page; 1133 1134 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1135 QLIST_REMOVE(page, list); 1136 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1137 g_free(page); 1138 } 1139 } 1140 1141 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1142 { 1143 HWPoisonPage *page; 1144 1145 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1146 if (page->ram_addr == ram_addr) { 1147 return; 1148 } 1149 } 1150 page = g_new(HWPoisonPage, 1); 1151 page->ram_addr = ram_addr; 1152 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1153 } 1154 1155 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1156 { 1157 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1158 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1159 * endianness, but the memory core hands them in target endianness. 1160 * For example, PPC is always treated as big-endian even if running 1161 * on KVM and on PPC64LE. Correct here. 1162 */ 1163 switch (size) { 1164 case 2: 1165 val = bswap16(val); 1166 break; 1167 case 4: 1168 val = bswap32(val); 1169 break; 1170 } 1171 #endif 1172 return val; 1173 } 1174 1175 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1176 bool assign, uint32_t size, bool datamatch) 1177 { 1178 int ret; 1179 struct kvm_ioeventfd iofd = { 1180 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1181 .addr = addr, 1182 .len = size, 1183 .flags = 0, 1184 .fd = fd, 1185 }; 1186 1187 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1188 datamatch); 1189 if (!kvm_enabled()) { 1190 return -ENOSYS; 1191 } 1192 1193 if (datamatch) { 1194 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1195 } 1196 if (!assign) { 1197 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1198 } 1199 1200 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1201 1202 if (ret < 0) { 1203 return -errno; 1204 } 1205 1206 return 0; 1207 } 1208 1209 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1210 bool assign, uint32_t size, bool datamatch) 1211 { 1212 struct kvm_ioeventfd kick = { 1213 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1214 .addr = addr, 1215 .flags = KVM_IOEVENTFD_FLAG_PIO, 1216 .len = size, 1217 .fd = fd, 1218 }; 1219 int r; 1220 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1221 if (!kvm_enabled()) { 1222 return -ENOSYS; 1223 } 1224 if (datamatch) { 1225 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1226 } 1227 if (!assign) { 1228 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1229 } 1230 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1231 if (r < 0) { 1232 return r; 1233 } 1234 return 0; 1235 } 1236 1237 1238 static const KVMCapabilityInfo * 1239 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1240 { 1241 while (list->name) { 1242 if (!kvm_check_extension(s, list->value)) { 1243 return list; 1244 } 1245 list++; 1246 } 1247 return NULL; 1248 } 1249 1250 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1251 { 1252 g_assert( 1253 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1254 ); 1255 kvm_max_slot_size = max_slot_size; 1256 } 1257 1258 /* Called with KVMMemoryListener.slots_lock held */ 1259 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1260 MemoryRegionSection *section, bool add) 1261 { 1262 KVMSlot *mem; 1263 int err; 1264 MemoryRegion *mr = section->mr; 1265 bool writable = !mr->readonly && !mr->rom_device; 1266 hwaddr start_addr, size, slot_size, mr_offset; 1267 ram_addr_t ram_start_offset; 1268 void *ram; 1269 1270 if (!memory_region_is_ram(mr)) { 1271 if (writable || !kvm_readonly_mem_allowed) { 1272 return; 1273 } else if (!mr->romd_mode) { 1274 /* If the memory device is not in romd_mode, then we actually want 1275 * to remove the kvm memory slot so all accesses will trap. */ 1276 add = false; 1277 } 1278 } 1279 1280 size = kvm_align_section(section, &start_addr); 1281 if (!size) { 1282 return; 1283 } 1284 1285 /* The offset of the kvmslot within the memory region */ 1286 mr_offset = section->offset_within_region + start_addr - 1287 section->offset_within_address_space; 1288 1289 /* use aligned delta to align the ram address and offset */ 1290 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1291 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1292 1293 if (!add) { 1294 do { 1295 slot_size = MIN(kvm_max_slot_size, size); 1296 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1297 if (!mem) { 1298 return; 1299 } 1300 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1301 /* 1302 * NOTE: We should be aware of the fact that here we're only 1303 * doing a best effort to sync dirty bits. No matter whether 1304 * we're using dirty log or dirty ring, we ignored two facts: 1305 * 1306 * (1) dirty bits can reside in hardware buffers (PML) 1307 * 1308 * (2) after we collected dirty bits here, pages can be dirtied 1309 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1310 * remove the slot. 1311 * 1312 * Not easy. Let's cross the fingers until it's fixed. 1313 */ 1314 if (kvm_state->kvm_dirty_ring_size) { 1315 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1316 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1317 kvm_slot_sync_dirty_pages(mem); 1318 kvm_slot_get_dirty_log(kvm_state, mem); 1319 } 1320 } else { 1321 kvm_slot_get_dirty_log(kvm_state, mem); 1322 } 1323 kvm_slot_sync_dirty_pages(mem); 1324 } 1325 1326 /* unregister the slot */ 1327 g_free(mem->dirty_bmap); 1328 mem->dirty_bmap = NULL; 1329 mem->memory_size = 0; 1330 mem->flags = 0; 1331 err = kvm_set_user_memory_region(kml, mem, false); 1332 if (err) { 1333 fprintf(stderr, "%s: error unregistering slot: %s\n", 1334 __func__, strerror(-err)); 1335 abort(); 1336 } 1337 start_addr += slot_size; 1338 size -= slot_size; 1339 kml->nr_used_slots--; 1340 } while (size); 1341 return; 1342 } 1343 1344 /* register the new slot */ 1345 do { 1346 slot_size = MIN(kvm_max_slot_size, size); 1347 mem = kvm_alloc_slot(kml); 1348 mem->as_id = kml->as_id; 1349 mem->memory_size = slot_size; 1350 mem->start_addr = start_addr; 1351 mem->ram_start_offset = ram_start_offset; 1352 mem->ram = ram; 1353 mem->flags = kvm_mem_flags(mr); 1354 kvm_slot_init_dirty_bitmap(mem); 1355 err = kvm_set_user_memory_region(kml, mem, true); 1356 if (err) { 1357 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1358 strerror(-err)); 1359 abort(); 1360 } 1361 start_addr += slot_size; 1362 ram_start_offset += slot_size; 1363 ram += slot_size; 1364 size -= slot_size; 1365 kml->nr_used_slots++; 1366 } while (size); 1367 } 1368 1369 static void *kvm_dirty_ring_reaper_thread(void *data) 1370 { 1371 KVMState *s = data; 1372 struct KVMDirtyRingReaper *r = &s->reaper; 1373 1374 rcu_register_thread(); 1375 1376 trace_kvm_dirty_ring_reaper("init"); 1377 1378 while (true) { 1379 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1380 trace_kvm_dirty_ring_reaper("wait"); 1381 /* 1382 * TODO: provide a smarter timeout rather than a constant? 1383 */ 1384 sleep(1); 1385 1386 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1387 if (dirtylimit_in_service()) { 1388 continue; 1389 } 1390 1391 trace_kvm_dirty_ring_reaper("wakeup"); 1392 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1393 1394 bql_lock(); 1395 kvm_dirty_ring_reap(s, NULL); 1396 bql_unlock(); 1397 1398 r->reaper_iteration++; 1399 } 1400 1401 trace_kvm_dirty_ring_reaper("exit"); 1402 1403 rcu_unregister_thread(); 1404 1405 return NULL; 1406 } 1407 1408 static void kvm_dirty_ring_reaper_init(KVMState *s) 1409 { 1410 struct KVMDirtyRingReaper *r = &s->reaper; 1411 1412 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1413 kvm_dirty_ring_reaper_thread, 1414 s, QEMU_THREAD_JOINABLE); 1415 } 1416 1417 static int kvm_dirty_ring_init(KVMState *s) 1418 { 1419 uint32_t ring_size = s->kvm_dirty_ring_size; 1420 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1421 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1422 int ret; 1423 1424 s->kvm_dirty_ring_size = 0; 1425 s->kvm_dirty_ring_bytes = 0; 1426 1427 /* Bail if the dirty ring size isn't specified */ 1428 if (!ring_size) { 1429 return 0; 1430 } 1431 1432 /* 1433 * Read the max supported pages. Fall back to dirty logging mode 1434 * if the dirty ring isn't supported. 1435 */ 1436 ret = kvm_vm_check_extension(s, capability); 1437 if (ret <= 0) { 1438 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1439 ret = kvm_vm_check_extension(s, capability); 1440 } 1441 1442 if (ret <= 0) { 1443 warn_report("KVM dirty ring not available, using bitmap method"); 1444 return 0; 1445 } 1446 1447 if (ring_bytes > ret) { 1448 error_report("KVM dirty ring size %" PRIu32 " too big " 1449 "(maximum is %ld). Please use a smaller value.", 1450 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1451 return -EINVAL; 1452 } 1453 1454 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1455 if (ret) { 1456 error_report("Enabling of KVM dirty ring failed: %s. " 1457 "Suggested minimum value is 1024.", strerror(-ret)); 1458 return -EIO; 1459 } 1460 1461 /* Enable the backup bitmap if it is supported */ 1462 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1463 if (ret > 0) { 1464 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1465 if (ret) { 1466 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1467 "%s. ", strerror(-ret)); 1468 return -EIO; 1469 } 1470 1471 s->kvm_dirty_ring_with_bitmap = true; 1472 } 1473 1474 s->kvm_dirty_ring_size = ring_size; 1475 s->kvm_dirty_ring_bytes = ring_bytes; 1476 1477 return 0; 1478 } 1479 1480 static void kvm_region_add(MemoryListener *listener, 1481 MemoryRegionSection *section) 1482 { 1483 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1484 KVMMemoryUpdate *update; 1485 1486 update = g_new0(KVMMemoryUpdate, 1); 1487 update->section = *section; 1488 1489 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1490 } 1491 1492 static void kvm_region_del(MemoryListener *listener, 1493 MemoryRegionSection *section) 1494 { 1495 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1496 KVMMemoryUpdate *update; 1497 1498 update = g_new0(KVMMemoryUpdate, 1); 1499 update->section = *section; 1500 1501 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1502 } 1503 1504 static void kvm_region_commit(MemoryListener *listener) 1505 { 1506 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1507 listener); 1508 KVMMemoryUpdate *u1, *u2; 1509 bool need_inhibit = false; 1510 1511 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1512 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1513 return; 1514 } 1515 1516 /* 1517 * We have to be careful when regions to add overlap with ranges to remove. 1518 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1519 * is currently active. 1520 * 1521 * The lists are order by addresses, so it's easy to find overlaps. 1522 */ 1523 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1524 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1525 while (u1 && u2) { 1526 Range r1, r2; 1527 1528 range_init_nofail(&r1, u1->section.offset_within_address_space, 1529 int128_get64(u1->section.size)); 1530 range_init_nofail(&r2, u2->section.offset_within_address_space, 1531 int128_get64(u2->section.size)); 1532 1533 if (range_overlaps_range(&r1, &r2)) { 1534 need_inhibit = true; 1535 break; 1536 } 1537 if (range_lob(&r1) < range_lob(&r2)) { 1538 u1 = QSIMPLEQ_NEXT(u1, next); 1539 } else { 1540 u2 = QSIMPLEQ_NEXT(u2, next); 1541 } 1542 } 1543 1544 kvm_slots_lock(); 1545 if (need_inhibit) { 1546 accel_ioctl_inhibit_begin(); 1547 } 1548 1549 /* Remove all memslots before adding the new ones. */ 1550 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1551 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1552 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1553 1554 kvm_set_phys_mem(kml, &u1->section, false); 1555 memory_region_unref(u1->section.mr); 1556 1557 g_free(u1); 1558 } 1559 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1560 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1561 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1562 1563 memory_region_ref(u1->section.mr); 1564 kvm_set_phys_mem(kml, &u1->section, true); 1565 1566 g_free(u1); 1567 } 1568 1569 if (need_inhibit) { 1570 accel_ioctl_inhibit_end(); 1571 } 1572 kvm_slots_unlock(); 1573 } 1574 1575 static void kvm_log_sync(MemoryListener *listener, 1576 MemoryRegionSection *section) 1577 { 1578 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1579 1580 kvm_slots_lock(); 1581 kvm_physical_sync_dirty_bitmap(kml, section); 1582 kvm_slots_unlock(); 1583 } 1584 1585 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1586 { 1587 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1588 KVMState *s = kvm_state; 1589 KVMSlot *mem; 1590 int i; 1591 1592 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1593 kvm_dirty_ring_flush(); 1594 1595 /* 1596 * TODO: make this faster when nr_slots is big while there are 1597 * only a few used slots (small VMs). 1598 */ 1599 kvm_slots_lock(); 1600 for (i = 0; i < s->nr_slots; i++) { 1601 mem = &kml->slots[i]; 1602 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1603 kvm_slot_sync_dirty_pages(mem); 1604 1605 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1606 kvm_slot_get_dirty_log(s, mem)) { 1607 kvm_slot_sync_dirty_pages(mem); 1608 } 1609 1610 /* 1611 * This is not needed by KVM_GET_DIRTY_LOG because the 1612 * ioctl will unconditionally overwrite the whole region. 1613 * However kvm dirty ring has no such side effect. 1614 */ 1615 kvm_slot_reset_dirty_pages(mem); 1616 } 1617 } 1618 kvm_slots_unlock(); 1619 } 1620 1621 static void kvm_log_clear(MemoryListener *listener, 1622 MemoryRegionSection *section) 1623 { 1624 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1625 int r; 1626 1627 r = kvm_physical_log_clear(kml, section); 1628 if (r < 0) { 1629 error_report_once("%s: kvm log clear failed: mr=%s " 1630 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1631 section->mr->name, section->offset_within_region, 1632 int128_get64(section->size)); 1633 abort(); 1634 } 1635 } 1636 1637 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1638 MemoryRegionSection *section, 1639 bool match_data, uint64_t data, 1640 EventNotifier *e) 1641 { 1642 int fd = event_notifier_get_fd(e); 1643 int r; 1644 1645 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1646 data, true, int128_get64(section->size), 1647 match_data); 1648 if (r < 0) { 1649 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1650 __func__, strerror(-r), -r); 1651 abort(); 1652 } 1653 } 1654 1655 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1656 MemoryRegionSection *section, 1657 bool match_data, uint64_t data, 1658 EventNotifier *e) 1659 { 1660 int fd = event_notifier_get_fd(e); 1661 int r; 1662 1663 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1664 data, false, int128_get64(section->size), 1665 match_data); 1666 if (r < 0) { 1667 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1668 __func__, strerror(-r), -r); 1669 abort(); 1670 } 1671 } 1672 1673 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1674 MemoryRegionSection *section, 1675 bool match_data, uint64_t data, 1676 EventNotifier *e) 1677 { 1678 int fd = event_notifier_get_fd(e); 1679 int r; 1680 1681 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1682 data, true, int128_get64(section->size), 1683 match_data); 1684 if (r < 0) { 1685 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1686 __func__, strerror(-r), -r); 1687 abort(); 1688 } 1689 } 1690 1691 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1692 MemoryRegionSection *section, 1693 bool match_data, uint64_t data, 1694 EventNotifier *e) 1695 1696 { 1697 int fd = event_notifier_get_fd(e); 1698 int r; 1699 1700 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1701 data, false, int128_get64(section->size), 1702 match_data); 1703 if (r < 0) { 1704 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1705 __func__, strerror(-r), -r); 1706 abort(); 1707 } 1708 } 1709 1710 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1711 AddressSpace *as, int as_id, const char *name) 1712 { 1713 int i; 1714 1715 kml->slots = g_new0(KVMSlot, s->nr_slots); 1716 kml->as_id = as_id; 1717 1718 for (i = 0; i < s->nr_slots; i++) { 1719 kml->slots[i].slot = i; 1720 } 1721 1722 QSIMPLEQ_INIT(&kml->transaction_add); 1723 QSIMPLEQ_INIT(&kml->transaction_del); 1724 1725 kml->listener.region_add = kvm_region_add; 1726 kml->listener.region_del = kvm_region_del; 1727 kml->listener.commit = kvm_region_commit; 1728 kml->listener.log_start = kvm_log_start; 1729 kml->listener.log_stop = kvm_log_stop; 1730 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1731 kml->listener.name = name; 1732 1733 if (s->kvm_dirty_ring_size) { 1734 kml->listener.log_sync_global = kvm_log_sync_global; 1735 } else { 1736 kml->listener.log_sync = kvm_log_sync; 1737 kml->listener.log_clear = kvm_log_clear; 1738 } 1739 1740 memory_listener_register(&kml->listener, as); 1741 1742 for (i = 0; i < s->nr_as; ++i) { 1743 if (!s->as[i].as) { 1744 s->as[i].as = as; 1745 s->as[i].ml = kml; 1746 break; 1747 } 1748 } 1749 } 1750 1751 static MemoryListener kvm_io_listener = { 1752 .name = "kvm-io", 1753 .coalesced_io_add = kvm_coalesce_pio_add, 1754 .coalesced_io_del = kvm_coalesce_pio_del, 1755 .eventfd_add = kvm_io_ioeventfd_add, 1756 .eventfd_del = kvm_io_ioeventfd_del, 1757 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1758 }; 1759 1760 int kvm_set_irq(KVMState *s, int irq, int level) 1761 { 1762 struct kvm_irq_level event; 1763 int ret; 1764 1765 assert(kvm_async_interrupts_enabled()); 1766 1767 event.level = level; 1768 event.irq = irq; 1769 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1770 if (ret < 0) { 1771 perror("kvm_set_irq"); 1772 abort(); 1773 } 1774 1775 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1776 } 1777 1778 #ifdef KVM_CAP_IRQ_ROUTING 1779 typedef struct KVMMSIRoute { 1780 struct kvm_irq_routing_entry kroute; 1781 QTAILQ_ENTRY(KVMMSIRoute) entry; 1782 } KVMMSIRoute; 1783 1784 static void set_gsi(KVMState *s, unsigned int gsi) 1785 { 1786 set_bit(gsi, s->used_gsi_bitmap); 1787 } 1788 1789 static void clear_gsi(KVMState *s, unsigned int gsi) 1790 { 1791 clear_bit(gsi, s->used_gsi_bitmap); 1792 } 1793 1794 void kvm_init_irq_routing(KVMState *s) 1795 { 1796 int gsi_count; 1797 1798 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1799 if (gsi_count > 0) { 1800 /* Round up so we can search ints using ffs */ 1801 s->used_gsi_bitmap = bitmap_new(gsi_count); 1802 s->gsi_count = gsi_count; 1803 } 1804 1805 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1806 s->nr_allocated_irq_routes = 0; 1807 1808 kvm_arch_init_irq_routing(s); 1809 } 1810 1811 void kvm_irqchip_commit_routes(KVMState *s) 1812 { 1813 int ret; 1814 1815 if (kvm_gsi_direct_mapping()) { 1816 return; 1817 } 1818 1819 if (!kvm_gsi_routing_enabled()) { 1820 return; 1821 } 1822 1823 s->irq_routes->flags = 0; 1824 trace_kvm_irqchip_commit_routes(); 1825 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1826 assert(ret == 0); 1827 } 1828 1829 static void kvm_add_routing_entry(KVMState *s, 1830 struct kvm_irq_routing_entry *entry) 1831 { 1832 struct kvm_irq_routing_entry *new; 1833 int n, size; 1834 1835 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1836 n = s->nr_allocated_irq_routes * 2; 1837 if (n < 64) { 1838 n = 64; 1839 } 1840 size = sizeof(struct kvm_irq_routing); 1841 size += n * sizeof(*new); 1842 s->irq_routes = g_realloc(s->irq_routes, size); 1843 s->nr_allocated_irq_routes = n; 1844 } 1845 n = s->irq_routes->nr++; 1846 new = &s->irq_routes->entries[n]; 1847 1848 *new = *entry; 1849 1850 set_gsi(s, entry->gsi); 1851 } 1852 1853 static int kvm_update_routing_entry(KVMState *s, 1854 struct kvm_irq_routing_entry *new_entry) 1855 { 1856 struct kvm_irq_routing_entry *entry; 1857 int n; 1858 1859 for (n = 0; n < s->irq_routes->nr; n++) { 1860 entry = &s->irq_routes->entries[n]; 1861 if (entry->gsi != new_entry->gsi) { 1862 continue; 1863 } 1864 1865 if(!memcmp(entry, new_entry, sizeof *entry)) { 1866 return 0; 1867 } 1868 1869 *entry = *new_entry; 1870 1871 return 0; 1872 } 1873 1874 return -ESRCH; 1875 } 1876 1877 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1878 { 1879 struct kvm_irq_routing_entry e = {}; 1880 1881 assert(pin < s->gsi_count); 1882 1883 e.gsi = irq; 1884 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1885 e.flags = 0; 1886 e.u.irqchip.irqchip = irqchip; 1887 e.u.irqchip.pin = pin; 1888 kvm_add_routing_entry(s, &e); 1889 } 1890 1891 void kvm_irqchip_release_virq(KVMState *s, int virq) 1892 { 1893 struct kvm_irq_routing_entry *e; 1894 int i; 1895 1896 if (kvm_gsi_direct_mapping()) { 1897 return; 1898 } 1899 1900 for (i = 0; i < s->irq_routes->nr; i++) { 1901 e = &s->irq_routes->entries[i]; 1902 if (e->gsi == virq) { 1903 s->irq_routes->nr--; 1904 *e = s->irq_routes->entries[s->irq_routes->nr]; 1905 } 1906 } 1907 clear_gsi(s, virq); 1908 kvm_arch_release_virq_post(virq); 1909 trace_kvm_irqchip_release_virq(virq); 1910 } 1911 1912 void kvm_irqchip_add_change_notifier(Notifier *n) 1913 { 1914 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1915 } 1916 1917 void kvm_irqchip_remove_change_notifier(Notifier *n) 1918 { 1919 notifier_remove(n); 1920 } 1921 1922 void kvm_irqchip_change_notify(void) 1923 { 1924 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1925 } 1926 1927 static int kvm_irqchip_get_virq(KVMState *s) 1928 { 1929 int next_virq; 1930 1931 /* Return the lowest unused GSI in the bitmap */ 1932 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1933 if (next_virq >= s->gsi_count) { 1934 return -ENOSPC; 1935 } else { 1936 return next_virq; 1937 } 1938 } 1939 1940 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1941 { 1942 struct kvm_msi msi; 1943 1944 msi.address_lo = (uint32_t)msg.address; 1945 msi.address_hi = msg.address >> 32; 1946 msi.data = le32_to_cpu(msg.data); 1947 msi.flags = 0; 1948 memset(msi.pad, 0, sizeof(msi.pad)); 1949 1950 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1951 } 1952 1953 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 1954 { 1955 struct kvm_irq_routing_entry kroute = {}; 1956 int virq; 1957 KVMState *s = c->s; 1958 MSIMessage msg = {0, 0}; 1959 1960 if (pci_available && dev) { 1961 msg = pci_get_msi_message(dev, vector); 1962 } 1963 1964 if (kvm_gsi_direct_mapping()) { 1965 return kvm_arch_msi_data_to_gsi(msg.data); 1966 } 1967 1968 if (!kvm_gsi_routing_enabled()) { 1969 return -ENOSYS; 1970 } 1971 1972 virq = kvm_irqchip_get_virq(s); 1973 if (virq < 0) { 1974 return virq; 1975 } 1976 1977 kroute.gsi = virq; 1978 kroute.type = KVM_IRQ_ROUTING_MSI; 1979 kroute.flags = 0; 1980 kroute.u.msi.address_lo = (uint32_t)msg.address; 1981 kroute.u.msi.address_hi = msg.address >> 32; 1982 kroute.u.msi.data = le32_to_cpu(msg.data); 1983 if (pci_available && kvm_msi_devid_required()) { 1984 kroute.flags = KVM_MSI_VALID_DEVID; 1985 kroute.u.msi.devid = pci_requester_id(dev); 1986 } 1987 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1988 kvm_irqchip_release_virq(s, virq); 1989 return -EINVAL; 1990 } 1991 1992 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1993 vector, virq); 1994 1995 kvm_add_routing_entry(s, &kroute); 1996 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1997 c->changes++; 1998 1999 return virq; 2000 } 2001 2002 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2003 PCIDevice *dev) 2004 { 2005 struct kvm_irq_routing_entry kroute = {}; 2006 2007 if (kvm_gsi_direct_mapping()) { 2008 return 0; 2009 } 2010 2011 if (!kvm_irqchip_in_kernel()) { 2012 return -ENOSYS; 2013 } 2014 2015 kroute.gsi = virq; 2016 kroute.type = KVM_IRQ_ROUTING_MSI; 2017 kroute.flags = 0; 2018 kroute.u.msi.address_lo = (uint32_t)msg.address; 2019 kroute.u.msi.address_hi = msg.address >> 32; 2020 kroute.u.msi.data = le32_to_cpu(msg.data); 2021 if (pci_available && kvm_msi_devid_required()) { 2022 kroute.flags = KVM_MSI_VALID_DEVID; 2023 kroute.u.msi.devid = pci_requester_id(dev); 2024 } 2025 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2026 return -EINVAL; 2027 } 2028 2029 trace_kvm_irqchip_update_msi_route(virq); 2030 2031 return kvm_update_routing_entry(s, &kroute); 2032 } 2033 2034 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2035 EventNotifier *resample, int virq, 2036 bool assign) 2037 { 2038 int fd = event_notifier_get_fd(event); 2039 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2040 2041 struct kvm_irqfd irqfd = { 2042 .fd = fd, 2043 .gsi = virq, 2044 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2045 }; 2046 2047 if (rfd != -1) { 2048 assert(assign); 2049 if (kvm_irqchip_is_split()) { 2050 /* 2051 * When the slow irqchip (e.g. IOAPIC) is in the 2052 * userspace, KVM kernel resamplefd will not work because 2053 * the EOI of the interrupt will be delivered to userspace 2054 * instead, so the KVM kernel resamplefd kick will be 2055 * skipped. The userspace here mimics what the kernel 2056 * provides with resamplefd, remember the resamplefd and 2057 * kick it when we receive EOI of this IRQ. 2058 * 2059 * This is hackery because IOAPIC is mostly bypassed 2060 * (except EOI broadcasts) when irqfd is used. However 2061 * this can bring much performance back for split irqchip 2062 * with INTx IRQs (for VFIO, this gives 93% perf of the 2063 * full fast path, which is 46% perf boost comparing to 2064 * the INTx slow path). 2065 */ 2066 kvm_resample_fd_insert(virq, resample); 2067 } else { 2068 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2069 irqfd.resamplefd = rfd; 2070 } 2071 } else if (!assign) { 2072 if (kvm_irqchip_is_split()) { 2073 kvm_resample_fd_remove(virq); 2074 } 2075 } 2076 2077 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2078 } 2079 2080 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2081 { 2082 struct kvm_irq_routing_entry kroute = {}; 2083 int virq; 2084 2085 if (!kvm_gsi_routing_enabled()) { 2086 return -ENOSYS; 2087 } 2088 2089 virq = kvm_irqchip_get_virq(s); 2090 if (virq < 0) { 2091 return virq; 2092 } 2093 2094 kroute.gsi = virq; 2095 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2096 kroute.flags = 0; 2097 kroute.u.adapter.summary_addr = adapter->summary_addr; 2098 kroute.u.adapter.ind_addr = adapter->ind_addr; 2099 kroute.u.adapter.summary_offset = adapter->summary_offset; 2100 kroute.u.adapter.ind_offset = adapter->ind_offset; 2101 kroute.u.adapter.adapter_id = adapter->adapter_id; 2102 2103 kvm_add_routing_entry(s, &kroute); 2104 2105 return virq; 2106 } 2107 2108 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2109 { 2110 struct kvm_irq_routing_entry kroute = {}; 2111 int virq; 2112 2113 if (!kvm_gsi_routing_enabled()) { 2114 return -ENOSYS; 2115 } 2116 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2117 return -ENOSYS; 2118 } 2119 virq = kvm_irqchip_get_virq(s); 2120 if (virq < 0) { 2121 return virq; 2122 } 2123 2124 kroute.gsi = virq; 2125 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2126 kroute.flags = 0; 2127 kroute.u.hv_sint.vcpu = vcpu; 2128 kroute.u.hv_sint.sint = sint; 2129 2130 kvm_add_routing_entry(s, &kroute); 2131 kvm_irqchip_commit_routes(s); 2132 2133 return virq; 2134 } 2135 2136 #else /* !KVM_CAP_IRQ_ROUTING */ 2137 2138 void kvm_init_irq_routing(KVMState *s) 2139 { 2140 } 2141 2142 void kvm_irqchip_release_virq(KVMState *s, int virq) 2143 { 2144 } 2145 2146 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2147 { 2148 abort(); 2149 } 2150 2151 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2152 { 2153 return -ENOSYS; 2154 } 2155 2156 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2157 { 2158 return -ENOSYS; 2159 } 2160 2161 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2162 { 2163 return -ENOSYS; 2164 } 2165 2166 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2167 EventNotifier *resample, int virq, 2168 bool assign) 2169 { 2170 abort(); 2171 } 2172 2173 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2174 { 2175 return -ENOSYS; 2176 } 2177 #endif /* !KVM_CAP_IRQ_ROUTING */ 2178 2179 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2180 EventNotifier *rn, int virq) 2181 { 2182 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2183 } 2184 2185 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2186 int virq) 2187 { 2188 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2189 } 2190 2191 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2192 EventNotifier *rn, qemu_irq irq) 2193 { 2194 gpointer key, gsi; 2195 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2196 2197 if (!found) { 2198 return -ENXIO; 2199 } 2200 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2201 } 2202 2203 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2204 qemu_irq irq) 2205 { 2206 gpointer key, gsi; 2207 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2208 2209 if (!found) { 2210 return -ENXIO; 2211 } 2212 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2213 } 2214 2215 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2216 { 2217 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2218 } 2219 2220 static void kvm_irqchip_create(KVMState *s) 2221 { 2222 int ret; 2223 2224 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2225 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2226 ; 2227 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2228 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2229 if (ret < 0) { 2230 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2231 exit(1); 2232 } 2233 } else { 2234 return; 2235 } 2236 2237 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2238 fprintf(stderr, "kvm: irqfd not implemented\n"); 2239 exit(1); 2240 } 2241 2242 /* First probe and see if there's a arch-specific hook to create the 2243 * in-kernel irqchip for us */ 2244 ret = kvm_arch_irqchip_create(s); 2245 if (ret == 0) { 2246 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2247 error_report("Split IRQ chip mode not supported."); 2248 exit(1); 2249 } else { 2250 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2251 } 2252 } 2253 if (ret < 0) { 2254 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2255 exit(1); 2256 } 2257 2258 kvm_kernel_irqchip = true; 2259 /* If we have an in-kernel IRQ chip then we must have asynchronous 2260 * interrupt delivery (though the reverse is not necessarily true) 2261 */ 2262 kvm_async_interrupts_allowed = true; 2263 kvm_halt_in_kernel_allowed = true; 2264 2265 kvm_init_irq_routing(s); 2266 2267 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2268 } 2269 2270 /* Find number of supported CPUs using the recommended 2271 * procedure from the kernel API documentation to cope with 2272 * older kernels that may be missing capabilities. 2273 */ 2274 static int kvm_recommended_vcpus(KVMState *s) 2275 { 2276 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2277 return (ret) ? ret : 4; 2278 } 2279 2280 static int kvm_max_vcpus(KVMState *s) 2281 { 2282 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2283 return (ret) ? ret : kvm_recommended_vcpus(s); 2284 } 2285 2286 static int kvm_max_vcpu_id(KVMState *s) 2287 { 2288 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2289 return (ret) ? ret : kvm_max_vcpus(s); 2290 } 2291 2292 bool kvm_vcpu_id_is_valid(int vcpu_id) 2293 { 2294 KVMState *s = KVM_STATE(current_accel()); 2295 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2296 } 2297 2298 bool kvm_dirty_ring_enabled(void) 2299 { 2300 return kvm_state->kvm_dirty_ring_size ? true : false; 2301 } 2302 2303 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2304 strList *names, strList *targets, Error **errp); 2305 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2306 2307 uint32_t kvm_dirty_ring_size(void) 2308 { 2309 return kvm_state->kvm_dirty_ring_size; 2310 } 2311 2312 static int kvm_init(MachineState *ms) 2313 { 2314 MachineClass *mc = MACHINE_GET_CLASS(ms); 2315 static const char upgrade_note[] = 2316 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2317 "(see http://sourceforge.net/projects/kvm).\n"; 2318 const struct { 2319 const char *name; 2320 int num; 2321 } num_cpus[] = { 2322 { "SMP", ms->smp.cpus }, 2323 { "hotpluggable", ms->smp.max_cpus }, 2324 { /* end of list */ } 2325 }, *nc = num_cpus; 2326 int soft_vcpus_limit, hard_vcpus_limit; 2327 KVMState *s; 2328 const KVMCapabilityInfo *missing_cap; 2329 int ret; 2330 int type; 2331 uint64_t dirty_log_manual_caps; 2332 2333 qemu_mutex_init(&kml_slots_lock); 2334 2335 s = KVM_STATE(ms->accelerator); 2336 2337 /* 2338 * On systems where the kernel can support different base page 2339 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2340 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2341 * page size for the system though. 2342 */ 2343 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2344 2345 s->sigmask_len = 8; 2346 accel_blocker_init(); 2347 2348 #ifdef KVM_CAP_SET_GUEST_DEBUG 2349 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2350 #endif 2351 QLIST_INIT(&s->kvm_parked_vcpus); 2352 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2353 if (s->fd == -1) { 2354 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2355 ret = -errno; 2356 goto err; 2357 } 2358 2359 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2360 if (ret < KVM_API_VERSION) { 2361 if (ret >= 0) { 2362 ret = -EINVAL; 2363 } 2364 fprintf(stderr, "kvm version too old\n"); 2365 goto err; 2366 } 2367 2368 if (ret > KVM_API_VERSION) { 2369 ret = -EINVAL; 2370 fprintf(stderr, "kvm version not supported\n"); 2371 goto err; 2372 } 2373 2374 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2375 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2376 2377 /* If unspecified, use the default value */ 2378 if (!s->nr_slots) { 2379 s->nr_slots = 32; 2380 } 2381 2382 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2383 if (s->nr_as <= 1) { 2384 s->nr_as = 1; 2385 } 2386 s->as = g_new0(struct KVMAs, s->nr_as); 2387 2388 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2389 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2390 "kvm-type", 2391 &error_abort); 2392 type = mc->kvm_type(ms, kvm_type); 2393 } else if (mc->kvm_type) { 2394 type = mc->kvm_type(ms, NULL); 2395 } else { 2396 type = kvm_arch_get_default_type(ms); 2397 } 2398 2399 if (type < 0) { 2400 ret = -EINVAL; 2401 goto err; 2402 } 2403 2404 do { 2405 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2406 } while (ret == -EINTR); 2407 2408 if (ret < 0) { 2409 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2410 strerror(-ret)); 2411 2412 #ifdef TARGET_S390X 2413 if (ret == -EINVAL) { 2414 fprintf(stderr, 2415 "Host kernel setup problem detected. Please verify:\n"); 2416 fprintf(stderr, "- for kernels supporting the switch_amode or" 2417 " user_mode parameters, whether\n"); 2418 fprintf(stderr, 2419 " user space is running in primary address space\n"); 2420 fprintf(stderr, 2421 "- for kernels supporting the vm.allocate_pgste sysctl, " 2422 "whether it is enabled\n"); 2423 } 2424 #elif defined(TARGET_PPC) 2425 if (ret == -EINVAL) { 2426 fprintf(stderr, 2427 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2428 (type == 2) ? "pr" : "hv"); 2429 } 2430 #endif 2431 goto err; 2432 } 2433 2434 s->vmfd = ret; 2435 2436 /* check the vcpu limits */ 2437 soft_vcpus_limit = kvm_recommended_vcpus(s); 2438 hard_vcpus_limit = kvm_max_vcpus(s); 2439 2440 while (nc->name) { 2441 if (nc->num > soft_vcpus_limit) { 2442 warn_report("Number of %s cpus requested (%d) exceeds " 2443 "the recommended cpus supported by KVM (%d)", 2444 nc->name, nc->num, soft_vcpus_limit); 2445 2446 if (nc->num > hard_vcpus_limit) { 2447 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2448 "the maximum cpus supported by KVM (%d)\n", 2449 nc->name, nc->num, hard_vcpus_limit); 2450 exit(1); 2451 } 2452 } 2453 nc++; 2454 } 2455 2456 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2457 if (!missing_cap) { 2458 missing_cap = 2459 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2460 } 2461 if (missing_cap) { 2462 ret = -EINVAL; 2463 fprintf(stderr, "kvm does not support %s\n%s", 2464 missing_cap->name, upgrade_note); 2465 goto err; 2466 } 2467 2468 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2469 s->coalesced_pio = s->coalesced_mmio && 2470 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2471 2472 /* 2473 * Enable KVM dirty ring if supported, otherwise fall back to 2474 * dirty logging mode 2475 */ 2476 ret = kvm_dirty_ring_init(s); 2477 if (ret < 0) { 2478 goto err; 2479 } 2480 2481 /* 2482 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2483 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2484 * page is wr-protected initially, which is against how kvm dirty ring is 2485 * usage - kvm dirty ring requires all pages are wr-protected at the very 2486 * beginning. Enabling this feature for dirty ring causes data corruption. 2487 * 2488 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2489 * we may expect a higher stall time when starting the migration. In the 2490 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2491 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2492 * guest pages. 2493 */ 2494 if (!s->kvm_dirty_ring_size) { 2495 dirty_log_manual_caps = 2496 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2497 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2498 KVM_DIRTY_LOG_INITIALLY_SET); 2499 s->manual_dirty_log_protect = dirty_log_manual_caps; 2500 if (dirty_log_manual_caps) { 2501 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2502 dirty_log_manual_caps); 2503 if (ret) { 2504 warn_report("Trying to enable capability %"PRIu64" of " 2505 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2506 "Falling back to the legacy mode. ", 2507 dirty_log_manual_caps); 2508 s->manual_dirty_log_protect = 0; 2509 } 2510 } 2511 } 2512 2513 #ifdef KVM_CAP_VCPU_EVENTS 2514 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2515 #endif 2516 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2517 2518 s->irq_set_ioctl = KVM_IRQ_LINE; 2519 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2520 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2521 } 2522 2523 kvm_readonly_mem_allowed = 2524 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2525 2526 kvm_resamplefds_allowed = 2527 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2528 2529 kvm_vm_attributes_allowed = 2530 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2531 2532 #ifdef KVM_CAP_SET_GUEST_DEBUG 2533 kvm_has_guest_debug = 2534 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2535 #endif 2536 2537 kvm_sstep_flags = 0; 2538 if (kvm_has_guest_debug) { 2539 kvm_sstep_flags = SSTEP_ENABLE; 2540 2541 #if defined KVM_CAP_SET_GUEST_DEBUG2 2542 int guest_debug_flags = 2543 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2544 2545 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2546 kvm_sstep_flags |= SSTEP_NOIRQ; 2547 } 2548 #endif 2549 } 2550 2551 kvm_state = s; 2552 2553 ret = kvm_arch_init(ms, s); 2554 if (ret < 0) { 2555 goto err; 2556 } 2557 2558 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2559 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2560 } 2561 2562 qemu_register_reset(kvm_unpoison_all, NULL); 2563 2564 if (s->kernel_irqchip_allowed) { 2565 kvm_irqchip_create(s); 2566 } 2567 2568 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2569 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2570 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2571 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2572 2573 kvm_memory_listener_register(s, &s->memory_listener, 2574 &address_space_memory, 0, "kvm-memory"); 2575 memory_listener_register(&kvm_io_listener, 2576 &address_space_io); 2577 2578 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2579 if (!s->sync_mmu) { 2580 ret = ram_block_discard_disable(true); 2581 assert(!ret); 2582 } 2583 2584 if (s->kvm_dirty_ring_size) { 2585 kvm_dirty_ring_reaper_init(s); 2586 } 2587 2588 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2589 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2590 query_stats_schemas_cb); 2591 } 2592 2593 return 0; 2594 2595 err: 2596 assert(ret < 0); 2597 if (s->vmfd >= 0) { 2598 close(s->vmfd); 2599 } 2600 if (s->fd != -1) { 2601 close(s->fd); 2602 } 2603 g_free(s->as); 2604 g_free(s->memory_listener.slots); 2605 2606 return ret; 2607 } 2608 2609 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2610 { 2611 s->sigmask_len = sigmask_len; 2612 } 2613 2614 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2615 int size, uint32_t count) 2616 { 2617 int i; 2618 uint8_t *ptr = data; 2619 2620 for (i = 0; i < count; i++) { 2621 address_space_rw(&address_space_io, port, attrs, 2622 ptr, size, 2623 direction == KVM_EXIT_IO_OUT); 2624 ptr += size; 2625 } 2626 } 2627 2628 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2629 { 2630 int i; 2631 2632 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2633 run->internal.suberror); 2634 2635 for (i = 0; i < run->internal.ndata; ++i) { 2636 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2637 i, (uint64_t)run->internal.data[i]); 2638 } 2639 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2640 fprintf(stderr, "emulation failure\n"); 2641 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2642 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2643 return EXCP_INTERRUPT; 2644 } 2645 } 2646 /* FIXME: Should trigger a qmp message to let management know 2647 * something went wrong. 2648 */ 2649 return -1; 2650 } 2651 2652 void kvm_flush_coalesced_mmio_buffer(void) 2653 { 2654 KVMState *s = kvm_state; 2655 2656 if (!s || s->coalesced_flush_in_progress) { 2657 return; 2658 } 2659 2660 s->coalesced_flush_in_progress = true; 2661 2662 if (s->coalesced_mmio_ring) { 2663 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2664 while (ring->first != ring->last) { 2665 struct kvm_coalesced_mmio *ent; 2666 2667 ent = &ring->coalesced_mmio[ring->first]; 2668 2669 if (ent->pio == 1) { 2670 address_space_write(&address_space_io, ent->phys_addr, 2671 MEMTXATTRS_UNSPECIFIED, ent->data, 2672 ent->len); 2673 } else { 2674 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2675 } 2676 smp_wmb(); 2677 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2678 } 2679 } 2680 2681 s->coalesced_flush_in_progress = false; 2682 } 2683 2684 bool kvm_cpu_check_are_resettable(void) 2685 { 2686 return kvm_arch_cpu_check_are_resettable(); 2687 } 2688 2689 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2690 { 2691 if (!cpu->vcpu_dirty) { 2692 int ret = kvm_arch_get_registers(cpu); 2693 if (ret) { 2694 error_report("Failed to get registers: %s", strerror(-ret)); 2695 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2696 vm_stop(RUN_STATE_INTERNAL_ERROR); 2697 } 2698 2699 cpu->vcpu_dirty = true; 2700 } 2701 } 2702 2703 void kvm_cpu_synchronize_state(CPUState *cpu) 2704 { 2705 if (!cpu->vcpu_dirty) { 2706 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2707 } 2708 } 2709 2710 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2711 { 2712 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2713 if (ret) { 2714 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2715 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2716 vm_stop(RUN_STATE_INTERNAL_ERROR); 2717 } 2718 2719 cpu->vcpu_dirty = false; 2720 } 2721 2722 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2723 { 2724 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2725 } 2726 2727 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2728 { 2729 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2730 if (ret) { 2731 error_report("Failed to put registers after init: %s", strerror(-ret)); 2732 exit(1); 2733 } 2734 2735 cpu->vcpu_dirty = false; 2736 } 2737 2738 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2739 { 2740 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2741 } 2742 2743 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2744 { 2745 cpu->vcpu_dirty = true; 2746 } 2747 2748 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2749 { 2750 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2751 } 2752 2753 #ifdef KVM_HAVE_MCE_INJECTION 2754 static __thread void *pending_sigbus_addr; 2755 static __thread int pending_sigbus_code; 2756 static __thread bool have_sigbus_pending; 2757 #endif 2758 2759 static void kvm_cpu_kick(CPUState *cpu) 2760 { 2761 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2762 } 2763 2764 static void kvm_cpu_kick_self(void) 2765 { 2766 if (kvm_immediate_exit) { 2767 kvm_cpu_kick(current_cpu); 2768 } else { 2769 qemu_cpu_kick_self(); 2770 } 2771 } 2772 2773 static void kvm_eat_signals(CPUState *cpu) 2774 { 2775 struct timespec ts = { 0, 0 }; 2776 siginfo_t siginfo; 2777 sigset_t waitset; 2778 sigset_t chkset; 2779 int r; 2780 2781 if (kvm_immediate_exit) { 2782 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2783 /* Write kvm_run->immediate_exit before the cpu->exit_request 2784 * write in kvm_cpu_exec. 2785 */ 2786 smp_wmb(); 2787 return; 2788 } 2789 2790 sigemptyset(&waitset); 2791 sigaddset(&waitset, SIG_IPI); 2792 2793 do { 2794 r = sigtimedwait(&waitset, &siginfo, &ts); 2795 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2796 perror("sigtimedwait"); 2797 exit(1); 2798 } 2799 2800 r = sigpending(&chkset); 2801 if (r == -1) { 2802 perror("sigpending"); 2803 exit(1); 2804 } 2805 } while (sigismember(&chkset, SIG_IPI)); 2806 } 2807 2808 int kvm_cpu_exec(CPUState *cpu) 2809 { 2810 struct kvm_run *run = cpu->kvm_run; 2811 int ret, run_ret; 2812 2813 trace_kvm_cpu_exec(); 2814 2815 if (kvm_arch_process_async_events(cpu)) { 2816 qatomic_set(&cpu->exit_request, 0); 2817 return EXCP_HLT; 2818 } 2819 2820 bql_unlock(); 2821 cpu_exec_start(cpu); 2822 2823 do { 2824 MemTxAttrs attrs; 2825 2826 if (cpu->vcpu_dirty) { 2827 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2828 if (ret) { 2829 error_report("Failed to put registers after init: %s", 2830 strerror(-ret)); 2831 ret = -1; 2832 break; 2833 } 2834 2835 cpu->vcpu_dirty = false; 2836 } 2837 2838 kvm_arch_pre_run(cpu, run); 2839 if (qatomic_read(&cpu->exit_request)) { 2840 trace_kvm_interrupt_exit_request(); 2841 /* 2842 * KVM requires us to reenter the kernel after IO exits to complete 2843 * instruction emulation. This self-signal will ensure that we 2844 * leave ASAP again. 2845 */ 2846 kvm_cpu_kick_self(); 2847 } 2848 2849 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2850 * Matching barrier in kvm_eat_signals. 2851 */ 2852 smp_rmb(); 2853 2854 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2855 2856 attrs = kvm_arch_post_run(cpu, run); 2857 2858 #ifdef KVM_HAVE_MCE_INJECTION 2859 if (unlikely(have_sigbus_pending)) { 2860 bql_lock(); 2861 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2862 pending_sigbus_addr); 2863 have_sigbus_pending = false; 2864 bql_unlock(); 2865 } 2866 #endif 2867 2868 if (run_ret < 0) { 2869 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2870 trace_kvm_io_window_exit(); 2871 kvm_eat_signals(cpu); 2872 ret = EXCP_INTERRUPT; 2873 break; 2874 } 2875 fprintf(stderr, "error: kvm run failed %s\n", 2876 strerror(-run_ret)); 2877 #ifdef TARGET_PPC 2878 if (run_ret == -EBUSY) { 2879 fprintf(stderr, 2880 "This is probably because your SMT is enabled.\n" 2881 "VCPU can only run on primary threads with all " 2882 "secondary threads offline.\n"); 2883 } 2884 #endif 2885 ret = -1; 2886 break; 2887 } 2888 2889 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2890 switch (run->exit_reason) { 2891 case KVM_EXIT_IO: 2892 /* Called outside BQL */ 2893 kvm_handle_io(run->io.port, attrs, 2894 (uint8_t *)run + run->io.data_offset, 2895 run->io.direction, 2896 run->io.size, 2897 run->io.count); 2898 ret = 0; 2899 break; 2900 case KVM_EXIT_MMIO: 2901 /* Called outside BQL */ 2902 address_space_rw(&address_space_memory, 2903 run->mmio.phys_addr, attrs, 2904 run->mmio.data, 2905 run->mmio.len, 2906 run->mmio.is_write); 2907 ret = 0; 2908 break; 2909 case KVM_EXIT_IRQ_WINDOW_OPEN: 2910 ret = EXCP_INTERRUPT; 2911 break; 2912 case KVM_EXIT_SHUTDOWN: 2913 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2914 ret = EXCP_INTERRUPT; 2915 break; 2916 case KVM_EXIT_UNKNOWN: 2917 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2918 (uint64_t)run->hw.hardware_exit_reason); 2919 ret = -1; 2920 break; 2921 case KVM_EXIT_INTERNAL_ERROR: 2922 ret = kvm_handle_internal_error(cpu, run); 2923 break; 2924 case KVM_EXIT_DIRTY_RING_FULL: 2925 /* 2926 * We shouldn't continue if the dirty ring of this vcpu is 2927 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2928 */ 2929 trace_kvm_dirty_ring_full(cpu->cpu_index); 2930 bql_lock(); 2931 /* 2932 * We throttle vCPU by making it sleep once it exit from kernel 2933 * due to dirty ring full. In the dirtylimit scenario, reaping 2934 * all vCPUs after a single vCPU dirty ring get full result in 2935 * the miss of sleep, so just reap the ring-fulled vCPU. 2936 */ 2937 if (dirtylimit_in_service()) { 2938 kvm_dirty_ring_reap(kvm_state, cpu); 2939 } else { 2940 kvm_dirty_ring_reap(kvm_state, NULL); 2941 } 2942 bql_unlock(); 2943 dirtylimit_vcpu_execute(cpu); 2944 ret = 0; 2945 break; 2946 case KVM_EXIT_SYSTEM_EVENT: 2947 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 2948 switch (run->system_event.type) { 2949 case KVM_SYSTEM_EVENT_SHUTDOWN: 2950 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2951 ret = EXCP_INTERRUPT; 2952 break; 2953 case KVM_SYSTEM_EVENT_RESET: 2954 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2955 ret = EXCP_INTERRUPT; 2956 break; 2957 case KVM_SYSTEM_EVENT_CRASH: 2958 kvm_cpu_synchronize_state(cpu); 2959 bql_lock(); 2960 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2961 bql_unlock(); 2962 ret = 0; 2963 break; 2964 default: 2965 ret = kvm_arch_handle_exit(cpu, run); 2966 break; 2967 } 2968 break; 2969 default: 2970 ret = kvm_arch_handle_exit(cpu, run); 2971 break; 2972 } 2973 } while (ret == 0); 2974 2975 cpu_exec_end(cpu); 2976 bql_lock(); 2977 2978 if (ret < 0) { 2979 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2980 vm_stop(RUN_STATE_INTERNAL_ERROR); 2981 } 2982 2983 qatomic_set(&cpu->exit_request, 0); 2984 return ret; 2985 } 2986 2987 int kvm_ioctl(KVMState *s, int type, ...) 2988 { 2989 int ret; 2990 void *arg; 2991 va_list ap; 2992 2993 va_start(ap, type); 2994 arg = va_arg(ap, void *); 2995 va_end(ap); 2996 2997 trace_kvm_ioctl(type, arg); 2998 ret = ioctl(s->fd, type, arg); 2999 if (ret == -1) { 3000 ret = -errno; 3001 } 3002 return ret; 3003 } 3004 3005 int kvm_vm_ioctl(KVMState *s, int type, ...) 3006 { 3007 int ret; 3008 void *arg; 3009 va_list ap; 3010 3011 va_start(ap, type); 3012 arg = va_arg(ap, void *); 3013 va_end(ap); 3014 3015 trace_kvm_vm_ioctl(type, arg); 3016 accel_ioctl_begin(); 3017 ret = ioctl(s->vmfd, type, arg); 3018 accel_ioctl_end(); 3019 if (ret == -1) { 3020 ret = -errno; 3021 } 3022 return ret; 3023 } 3024 3025 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3026 { 3027 int ret; 3028 void *arg; 3029 va_list ap; 3030 3031 va_start(ap, type); 3032 arg = va_arg(ap, void *); 3033 va_end(ap); 3034 3035 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3036 accel_cpu_ioctl_begin(cpu); 3037 ret = ioctl(cpu->kvm_fd, type, arg); 3038 accel_cpu_ioctl_end(cpu); 3039 if (ret == -1) { 3040 ret = -errno; 3041 } 3042 return ret; 3043 } 3044 3045 int kvm_device_ioctl(int fd, int type, ...) 3046 { 3047 int ret; 3048 void *arg; 3049 va_list ap; 3050 3051 va_start(ap, type); 3052 arg = va_arg(ap, void *); 3053 va_end(ap); 3054 3055 trace_kvm_device_ioctl(fd, type, arg); 3056 accel_ioctl_begin(); 3057 ret = ioctl(fd, type, arg); 3058 accel_ioctl_end(); 3059 if (ret == -1) { 3060 ret = -errno; 3061 } 3062 return ret; 3063 } 3064 3065 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3066 { 3067 int ret; 3068 struct kvm_device_attr attribute = { 3069 .group = group, 3070 .attr = attr, 3071 }; 3072 3073 if (!kvm_vm_attributes_allowed) { 3074 return 0; 3075 } 3076 3077 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3078 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3079 return ret ? 0 : 1; 3080 } 3081 3082 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3083 { 3084 struct kvm_device_attr attribute = { 3085 .group = group, 3086 .attr = attr, 3087 .flags = 0, 3088 }; 3089 3090 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3091 } 3092 3093 int kvm_device_access(int fd, int group, uint64_t attr, 3094 void *val, bool write, Error **errp) 3095 { 3096 struct kvm_device_attr kvmattr; 3097 int err; 3098 3099 kvmattr.flags = 0; 3100 kvmattr.group = group; 3101 kvmattr.attr = attr; 3102 kvmattr.addr = (uintptr_t)val; 3103 3104 err = kvm_device_ioctl(fd, 3105 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3106 &kvmattr); 3107 if (err < 0) { 3108 error_setg_errno(errp, -err, 3109 "KVM_%s_DEVICE_ATTR failed: Group %d " 3110 "attr 0x%016" PRIx64, 3111 write ? "SET" : "GET", group, attr); 3112 } 3113 return err; 3114 } 3115 3116 bool kvm_has_sync_mmu(void) 3117 { 3118 return kvm_state->sync_mmu; 3119 } 3120 3121 int kvm_has_vcpu_events(void) 3122 { 3123 return kvm_state->vcpu_events; 3124 } 3125 3126 int kvm_max_nested_state_length(void) 3127 { 3128 return kvm_state->max_nested_state_len; 3129 } 3130 3131 int kvm_has_gsi_routing(void) 3132 { 3133 #ifdef KVM_CAP_IRQ_ROUTING 3134 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3135 #else 3136 return false; 3137 #endif 3138 } 3139 3140 bool kvm_arm_supports_user_irq(void) 3141 { 3142 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3143 } 3144 3145 #ifdef KVM_CAP_SET_GUEST_DEBUG 3146 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3147 { 3148 struct kvm_sw_breakpoint *bp; 3149 3150 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3151 if (bp->pc == pc) { 3152 return bp; 3153 } 3154 } 3155 return NULL; 3156 } 3157 3158 int kvm_sw_breakpoints_active(CPUState *cpu) 3159 { 3160 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3161 } 3162 3163 struct kvm_set_guest_debug_data { 3164 struct kvm_guest_debug dbg; 3165 int err; 3166 }; 3167 3168 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3169 { 3170 struct kvm_set_guest_debug_data *dbg_data = 3171 (struct kvm_set_guest_debug_data *) data.host_ptr; 3172 3173 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3174 &dbg_data->dbg); 3175 } 3176 3177 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3178 { 3179 struct kvm_set_guest_debug_data data; 3180 3181 data.dbg.control = reinject_trap; 3182 3183 if (cpu->singlestep_enabled) { 3184 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3185 3186 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3187 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3188 } 3189 } 3190 kvm_arch_update_guest_debug(cpu, &data.dbg); 3191 3192 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3193 RUN_ON_CPU_HOST_PTR(&data)); 3194 return data.err; 3195 } 3196 3197 bool kvm_supports_guest_debug(void) 3198 { 3199 /* probed during kvm_init() */ 3200 return kvm_has_guest_debug; 3201 } 3202 3203 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3204 { 3205 struct kvm_sw_breakpoint *bp; 3206 int err; 3207 3208 if (type == GDB_BREAKPOINT_SW) { 3209 bp = kvm_find_sw_breakpoint(cpu, addr); 3210 if (bp) { 3211 bp->use_count++; 3212 return 0; 3213 } 3214 3215 bp = g_new(struct kvm_sw_breakpoint, 1); 3216 bp->pc = addr; 3217 bp->use_count = 1; 3218 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3219 if (err) { 3220 g_free(bp); 3221 return err; 3222 } 3223 3224 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3225 } else { 3226 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3227 if (err) { 3228 return err; 3229 } 3230 } 3231 3232 CPU_FOREACH(cpu) { 3233 err = kvm_update_guest_debug(cpu, 0); 3234 if (err) { 3235 return err; 3236 } 3237 } 3238 return 0; 3239 } 3240 3241 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3242 { 3243 struct kvm_sw_breakpoint *bp; 3244 int err; 3245 3246 if (type == GDB_BREAKPOINT_SW) { 3247 bp = kvm_find_sw_breakpoint(cpu, addr); 3248 if (!bp) { 3249 return -ENOENT; 3250 } 3251 3252 if (bp->use_count > 1) { 3253 bp->use_count--; 3254 return 0; 3255 } 3256 3257 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3258 if (err) { 3259 return err; 3260 } 3261 3262 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3263 g_free(bp); 3264 } else { 3265 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3266 if (err) { 3267 return err; 3268 } 3269 } 3270 3271 CPU_FOREACH(cpu) { 3272 err = kvm_update_guest_debug(cpu, 0); 3273 if (err) { 3274 return err; 3275 } 3276 } 3277 return 0; 3278 } 3279 3280 void kvm_remove_all_breakpoints(CPUState *cpu) 3281 { 3282 struct kvm_sw_breakpoint *bp, *next; 3283 KVMState *s = cpu->kvm_state; 3284 CPUState *tmpcpu; 3285 3286 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3287 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3288 /* Try harder to find a CPU that currently sees the breakpoint. */ 3289 CPU_FOREACH(tmpcpu) { 3290 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3291 break; 3292 } 3293 } 3294 } 3295 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3296 g_free(bp); 3297 } 3298 kvm_arch_remove_all_hw_breakpoints(); 3299 3300 CPU_FOREACH(cpu) { 3301 kvm_update_guest_debug(cpu, 0); 3302 } 3303 } 3304 3305 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3306 3307 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3308 { 3309 KVMState *s = kvm_state; 3310 struct kvm_signal_mask *sigmask; 3311 int r; 3312 3313 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3314 3315 sigmask->len = s->sigmask_len; 3316 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3317 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3318 g_free(sigmask); 3319 3320 return r; 3321 } 3322 3323 static void kvm_ipi_signal(int sig) 3324 { 3325 if (current_cpu) { 3326 assert(kvm_immediate_exit); 3327 kvm_cpu_kick(current_cpu); 3328 } 3329 } 3330 3331 void kvm_init_cpu_signals(CPUState *cpu) 3332 { 3333 int r; 3334 sigset_t set; 3335 struct sigaction sigact; 3336 3337 memset(&sigact, 0, sizeof(sigact)); 3338 sigact.sa_handler = kvm_ipi_signal; 3339 sigaction(SIG_IPI, &sigact, NULL); 3340 3341 pthread_sigmask(SIG_BLOCK, NULL, &set); 3342 #if defined KVM_HAVE_MCE_INJECTION 3343 sigdelset(&set, SIGBUS); 3344 pthread_sigmask(SIG_SETMASK, &set, NULL); 3345 #endif 3346 sigdelset(&set, SIG_IPI); 3347 if (kvm_immediate_exit) { 3348 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3349 } else { 3350 r = kvm_set_signal_mask(cpu, &set); 3351 } 3352 if (r) { 3353 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3354 exit(1); 3355 } 3356 } 3357 3358 /* Called asynchronously in VCPU thread. */ 3359 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3360 { 3361 #ifdef KVM_HAVE_MCE_INJECTION 3362 if (have_sigbus_pending) { 3363 return 1; 3364 } 3365 have_sigbus_pending = true; 3366 pending_sigbus_addr = addr; 3367 pending_sigbus_code = code; 3368 qatomic_set(&cpu->exit_request, 1); 3369 return 0; 3370 #else 3371 return 1; 3372 #endif 3373 } 3374 3375 /* Called synchronously (via signalfd) in main thread. */ 3376 int kvm_on_sigbus(int code, void *addr) 3377 { 3378 #ifdef KVM_HAVE_MCE_INJECTION 3379 /* Action required MCE kills the process if SIGBUS is blocked. Because 3380 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3381 * we can only get action optional here. 3382 */ 3383 assert(code != BUS_MCEERR_AR); 3384 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3385 return 0; 3386 #else 3387 return 1; 3388 #endif 3389 } 3390 3391 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3392 { 3393 int ret; 3394 struct kvm_create_device create_dev; 3395 3396 create_dev.type = type; 3397 create_dev.fd = -1; 3398 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3399 3400 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3401 return -ENOTSUP; 3402 } 3403 3404 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3405 if (ret) { 3406 return ret; 3407 } 3408 3409 return test ? 0 : create_dev.fd; 3410 } 3411 3412 bool kvm_device_supported(int vmfd, uint64_t type) 3413 { 3414 struct kvm_create_device create_dev = { 3415 .type = type, 3416 .fd = -1, 3417 .flags = KVM_CREATE_DEVICE_TEST, 3418 }; 3419 3420 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3421 return false; 3422 } 3423 3424 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3425 } 3426 3427 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3428 { 3429 struct kvm_one_reg reg; 3430 int r; 3431 3432 reg.id = id; 3433 reg.addr = (uintptr_t) source; 3434 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3435 if (r) { 3436 trace_kvm_failed_reg_set(id, strerror(-r)); 3437 } 3438 return r; 3439 } 3440 3441 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3442 { 3443 struct kvm_one_reg reg; 3444 int r; 3445 3446 reg.id = id; 3447 reg.addr = (uintptr_t) target; 3448 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3449 if (r) { 3450 trace_kvm_failed_reg_get(id, strerror(-r)); 3451 } 3452 return r; 3453 } 3454 3455 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3456 hwaddr start_addr, hwaddr size) 3457 { 3458 KVMState *kvm = KVM_STATE(ms->accelerator); 3459 int i; 3460 3461 for (i = 0; i < kvm->nr_as; ++i) { 3462 if (kvm->as[i].as == as && kvm->as[i].ml) { 3463 size = MIN(kvm_max_slot_size, size); 3464 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3465 start_addr, size); 3466 } 3467 } 3468 3469 return false; 3470 } 3471 3472 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3473 const char *name, void *opaque, 3474 Error **errp) 3475 { 3476 KVMState *s = KVM_STATE(obj); 3477 int64_t value = s->kvm_shadow_mem; 3478 3479 visit_type_int(v, name, &value, errp); 3480 } 3481 3482 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3483 const char *name, void *opaque, 3484 Error **errp) 3485 { 3486 KVMState *s = KVM_STATE(obj); 3487 int64_t value; 3488 3489 if (s->fd != -1) { 3490 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3491 return; 3492 } 3493 3494 if (!visit_type_int(v, name, &value, errp)) { 3495 return; 3496 } 3497 3498 s->kvm_shadow_mem = value; 3499 } 3500 3501 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3502 const char *name, void *opaque, 3503 Error **errp) 3504 { 3505 KVMState *s = KVM_STATE(obj); 3506 OnOffSplit mode; 3507 3508 if (s->fd != -1) { 3509 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3510 return; 3511 } 3512 3513 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3514 return; 3515 } 3516 switch (mode) { 3517 case ON_OFF_SPLIT_ON: 3518 s->kernel_irqchip_allowed = true; 3519 s->kernel_irqchip_required = true; 3520 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3521 break; 3522 case ON_OFF_SPLIT_OFF: 3523 s->kernel_irqchip_allowed = false; 3524 s->kernel_irqchip_required = false; 3525 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3526 break; 3527 case ON_OFF_SPLIT_SPLIT: 3528 s->kernel_irqchip_allowed = true; 3529 s->kernel_irqchip_required = true; 3530 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3531 break; 3532 default: 3533 /* The value was checked in visit_type_OnOffSplit() above. If 3534 * we get here, then something is wrong in QEMU. 3535 */ 3536 abort(); 3537 } 3538 } 3539 3540 bool kvm_kernel_irqchip_allowed(void) 3541 { 3542 return kvm_state->kernel_irqchip_allowed; 3543 } 3544 3545 bool kvm_kernel_irqchip_required(void) 3546 { 3547 return kvm_state->kernel_irqchip_required; 3548 } 3549 3550 bool kvm_kernel_irqchip_split(void) 3551 { 3552 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3553 } 3554 3555 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3556 const char *name, void *opaque, 3557 Error **errp) 3558 { 3559 KVMState *s = KVM_STATE(obj); 3560 uint32_t value = s->kvm_dirty_ring_size; 3561 3562 visit_type_uint32(v, name, &value, errp); 3563 } 3564 3565 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3566 const char *name, void *opaque, 3567 Error **errp) 3568 { 3569 KVMState *s = KVM_STATE(obj); 3570 uint32_t value; 3571 3572 if (s->fd != -1) { 3573 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3574 return; 3575 } 3576 3577 if (!visit_type_uint32(v, name, &value, errp)) { 3578 return; 3579 } 3580 if (value & (value - 1)) { 3581 error_setg(errp, "dirty-ring-size must be a power of two."); 3582 return; 3583 } 3584 3585 s->kvm_dirty_ring_size = value; 3586 } 3587 3588 static char *kvm_get_device(Object *obj, 3589 Error **errp G_GNUC_UNUSED) 3590 { 3591 KVMState *s = KVM_STATE(obj); 3592 3593 return g_strdup(s->device); 3594 } 3595 3596 static void kvm_set_device(Object *obj, 3597 const char *value, 3598 Error **errp G_GNUC_UNUSED) 3599 { 3600 KVMState *s = KVM_STATE(obj); 3601 3602 g_free(s->device); 3603 s->device = g_strdup(value); 3604 } 3605 3606 static void kvm_accel_instance_init(Object *obj) 3607 { 3608 KVMState *s = KVM_STATE(obj); 3609 3610 s->fd = -1; 3611 s->vmfd = -1; 3612 s->kvm_shadow_mem = -1; 3613 s->kernel_irqchip_allowed = true; 3614 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3615 /* KVM dirty ring is by default off */ 3616 s->kvm_dirty_ring_size = 0; 3617 s->kvm_dirty_ring_with_bitmap = false; 3618 s->kvm_eager_split_size = 0; 3619 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3620 s->notify_window = 0; 3621 s->xen_version = 0; 3622 s->xen_gnttab_max_frames = 64; 3623 s->xen_evtchn_max_pirq = 256; 3624 s->device = NULL; 3625 } 3626 3627 /** 3628 * kvm_gdbstub_sstep_flags(): 3629 * 3630 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3631 * support is probed during kvm_init() 3632 */ 3633 static int kvm_gdbstub_sstep_flags(void) 3634 { 3635 return kvm_sstep_flags; 3636 } 3637 3638 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3639 { 3640 AccelClass *ac = ACCEL_CLASS(oc); 3641 ac->name = "KVM"; 3642 ac->init_machine = kvm_init; 3643 ac->has_memory = kvm_accel_has_memory; 3644 ac->allowed = &kvm_allowed; 3645 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3646 3647 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3648 NULL, kvm_set_kernel_irqchip, 3649 NULL, NULL); 3650 object_class_property_set_description(oc, "kernel-irqchip", 3651 "Configure KVM in-kernel irqchip"); 3652 3653 object_class_property_add(oc, "kvm-shadow-mem", "int", 3654 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3655 NULL, NULL); 3656 object_class_property_set_description(oc, "kvm-shadow-mem", 3657 "KVM shadow MMU size"); 3658 3659 object_class_property_add(oc, "dirty-ring-size", "uint32", 3660 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3661 NULL, NULL); 3662 object_class_property_set_description(oc, "dirty-ring-size", 3663 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3664 3665 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3666 object_class_property_set_description(oc, "device", 3667 "Path to the device node to use (default: /dev/kvm)"); 3668 3669 kvm_arch_accel_class_init(oc); 3670 } 3671 3672 static const TypeInfo kvm_accel_type = { 3673 .name = TYPE_KVM_ACCEL, 3674 .parent = TYPE_ACCEL, 3675 .instance_init = kvm_accel_instance_init, 3676 .class_init = kvm_accel_class_init, 3677 .instance_size = sizeof(KVMState), 3678 }; 3679 3680 static void kvm_type_init(void) 3681 { 3682 type_register_static(&kvm_accel_type); 3683 } 3684 3685 type_init(kvm_type_init); 3686 3687 typedef struct StatsArgs { 3688 union StatsResultsType { 3689 StatsResultList **stats; 3690 StatsSchemaList **schema; 3691 } result; 3692 strList *names; 3693 Error **errp; 3694 } StatsArgs; 3695 3696 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3697 uint64_t *stats_data, 3698 StatsList *stats_list, 3699 Error **errp) 3700 { 3701 3702 Stats *stats; 3703 uint64List *val_list = NULL; 3704 3705 /* Only add stats that we understand. */ 3706 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3707 case KVM_STATS_TYPE_CUMULATIVE: 3708 case KVM_STATS_TYPE_INSTANT: 3709 case KVM_STATS_TYPE_PEAK: 3710 case KVM_STATS_TYPE_LINEAR_HIST: 3711 case KVM_STATS_TYPE_LOG_HIST: 3712 break; 3713 default: 3714 return stats_list; 3715 } 3716 3717 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3718 case KVM_STATS_UNIT_NONE: 3719 case KVM_STATS_UNIT_BYTES: 3720 case KVM_STATS_UNIT_CYCLES: 3721 case KVM_STATS_UNIT_SECONDS: 3722 case KVM_STATS_UNIT_BOOLEAN: 3723 break; 3724 default: 3725 return stats_list; 3726 } 3727 3728 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3729 case KVM_STATS_BASE_POW10: 3730 case KVM_STATS_BASE_POW2: 3731 break; 3732 default: 3733 return stats_list; 3734 } 3735 3736 /* Alloc and populate data list */ 3737 stats = g_new0(Stats, 1); 3738 stats->name = g_strdup(pdesc->name); 3739 stats->value = g_new0(StatsValue, 1);; 3740 3741 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3742 stats->value->u.boolean = *stats_data; 3743 stats->value->type = QTYPE_QBOOL; 3744 } else if (pdesc->size == 1) { 3745 stats->value->u.scalar = *stats_data; 3746 stats->value->type = QTYPE_QNUM; 3747 } else { 3748 int i; 3749 for (i = 0; i < pdesc->size; i++) { 3750 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3751 } 3752 stats->value->u.list = val_list; 3753 stats->value->type = QTYPE_QLIST; 3754 } 3755 3756 QAPI_LIST_PREPEND(stats_list, stats); 3757 return stats_list; 3758 } 3759 3760 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3761 StatsSchemaValueList *list, 3762 Error **errp) 3763 { 3764 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3765 schema_entry->value = g_new0(StatsSchemaValue, 1); 3766 3767 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3768 case KVM_STATS_TYPE_CUMULATIVE: 3769 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3770 break; 3771 case KVM_STATS_TYPE_INSTANT: 3772 schema_entry->value->type = STATS_TYPE_INSTANT; 3773 break; 3774 case KVM_STATS_TYPE_PEAK: 3775 schema_entry->value->type = STATS_TYPE_PEAK; 3776 break; 3777 case KVM_STATS_TYPE_LINEAR_HIST: 3778 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3779 schema_entry->value->bucket_size = pdesc->bucket_size; 3780 schema_entry->value->has_bucket_size = true; 3781 break; 3782 case KVM_STATS_TYPE_LOG_HIST: 3783 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3784 break; 3785 default: 3786 goto exit; 3787 } 3788 3789 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3790 case KVM_STATS_UNIT_NONE: 3791 break; 3792 case KVM_STATS_UNIT_BOOLEAN: 3793 schema_entry->value->has_unit = true; 3794 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3795 break; 3796 case KVM_STATS_UNIT_BYTES: 3797 schema_entry->value->has_unit = true; 3798 schema_entry->value->unit = STATS_UNIT_BYTES; 3799 break; 3800 case KVM_STATS_UNIT_CYCLES: 3801 schema_entry->value->has_unit = true; 3802 schema_entry->value->unit = STATS_UNIT_CYCLES; 3803 break; 3804 case KVM_STATS_UNIT_SECONDS: 3805 schema_entry->value->has_unit = true; 3806 schema_entry->value->unit = STATS_UNIT_SECONDS; 3807 break; 3808 default: 3809 goto exit; 3810 } 3811 3812 schema_entry->value->exponent = pdesc->exponent; 3813 if (pdesc->exponent) { 3814 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3815 case KVM_STATS_BASE_POW10: 3816 schema_entry->value->has_base = true; 3817 schema_entry->value->base = 10; 3818 break; 3819 case KVM_STATS_BASE_POW2: 3820 schema_entry->value->has_base = true; 3821 schema_entry->value->base = 2; 3822 break; 3823 default: 3824 goto exit; 3825 } 3826 } 3827 3828 schema_entry->value->name = g_strdup(pdesc->name); 3829 schema_entry->next = list; 3830 return schema_entry; 3831 exit: 3832 g_free(schema_entry->value); 3833 g_free(schema_entry); 3834 return list; 3835 } 3836 3837 /* Cached stats descriptors */ 3838 typedef struct StatsDescriptors { 3839 const char *ident; /* cache key, currently the StatsTarget */ 3840 struct kvm_stats_desc *kvm_stats_desc; 3841 struct kvm_stats_header kvm_stats_header; 3842 QTAILQ_ENTRY(StatsDescriptors) next; 3843 } StatsDescriptors; 3844 3845 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3846 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3847 3848 /* 3849 * Return the descriptors for 'target', that either have already been read 3850 * or are retrieved from 'stats_fd'. 3851 */ 3852 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3853 Error **errp) 3854 { 3855 StatsDescriptors *descriptors; 3856 const char *ident; 3857 struct kvm_stats_desc *kvm_stats_desc; 3858 struct kvm_stats_header *kvm_stats_header; 3859 size_t size_desc; 3860 ssize_t ret; 3861 3862 ident = StatsTarget_str(target); 3863 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3864 if (g_str_equal(descriptors->ident, ident)) { 3865 return descriptors; 3866 } 3867 } 3868 3869 descriptors = g_new0(StatsDescriptors, 1); 3870 3871 /* Read stats header */ 3872 kvm_stats_header = &descriptors->kvm_stats_header; 3873 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 3874 if (ret != sizeof(*kvm_stats_header)) { 3875 error_setg(errp, "KVM stats: failed to read stats header: " 3876 "expected %zu actual %zu", 3877 sizeof(*kvm_stats_header), ret); 3878 g_free(descriptors); 3879 return NULL; 3880 } 3881 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3882 3883 /* Read stats descriptors */ 3884 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3885 ret = pread(stats_fd, kvm_stats_desc, 3886 size_desc * kvm_stats_header->num_desc, 3887 kvm_stats_header->desc_offset); 3888 3889 if (ret != size_desc * kvm_stats_header->num_desc) { 3890 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3891 "expected %zu actual %zu", 3892 size_desc * kvm_stats_header->num_desc, ret); 3893 g_free(descriptors); 3894 g_free(kvm_stats_desc); 3895 return NULL; 3896 } 3897 descriptors->kvm_stats_desc = kvm_stats_desc; 3898 descriptors->ident = ident; 3899 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3900 return descriptors; 3901 } 3902 3903 static void query_stats(StatsResultList **result, StatsTarget target, 3904 strList *names, int stats_fd, CPUState *cpu, 3905 Error **errp) 3906 { 3907 struct kvm_stats_desc *kvm_stats_desc; 3908 struct kvm_stats_header *kvm_stats_header; 3909 StatsDescriptors *descriptors; 3910 g_autofree uint64_t *stats_data = NULL; 3911 struct kvm_stats_desc *pdesc; 3912 StatsList *stats_list = NULL; 3913 size_t size_desc, size_data = 0; 3914 ssize_t ret; 3915 int i; 3916 3917 descriptors = find_stats_descriptors(target, stats_fd, errp); 3918 if (!descriptors) { 3919 return; 3920 } 3921 3922 kvm_stats_header = &descriptors->kvm_stats_header; 3923 kvm_stats_desc = descriptors->kvm_stats_desc; 3924 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3925 3926 /* Tally the total data size; read schema data */ 3927 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3928 pdesc = (void *)kvm_stats_desc + i * size_desc; 3929 size_data += pdesc->size * sizeof(*stats_data); 3930 } 3931 3932 stats_data = g_malloc0(size_data); 3933 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 3934 3935 if (ret != size_data) { 3936 error_setg(errp, "KVM stats: failed to read data: " 3937 "expected %zu actual %zu", size_data, ret); 3938 return; 3939 } 3940 3941 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3942 uint64_t *stats; 3943 pdesc = (void *)kvm_stats_desc + i * size_desc; 3944 3945 /* Add entry to the list */ 3946 stats = (void *)stats_data + pdesc->offset; 3947 if (!apply_str_list_filter(pdesc->name, names)) { 3948 continue; 3949 } 3950 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 3951 } 3952 3953 if (!stats_list) { 3954 return; 3955 } 3956 3957 switch (target) { 3958 case STATS_TARGET_VM: 3959 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 3960 break; 3961 case STATS_TARGET_VCPU: 3962 add_stats_entry(result, STATS_PROVIDER_KVM, 3963 cpu->parent_obj.canonical_path, 3964 stats_list); 3965 break; 3966 default: 3967 g_assert_not_reached(); 3968 } 3969 } 3970 3971 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 3972 int stats_fd, Error **errp) 3973 { 3974 struct kvm_stats_desc *kvm_stats_desc; 3975 struct kvm_stats_header *kvm_stats_header; 3976 StatsDescriptors *descriptors; 3977 struct kvm_stats_desc *pdesc; 3978 StatsSchemaValueList *stats_list = NULL; 3979 size_t size_desc; 3980 int i; 3981 3982 descriptors = find_stats_descriptors(target, stats_fd, errp); 3983 if (!descriptors) { 3984 return; 3985 } 3986 3987 kvm_stats_header = &descriptors->kvm_stats_header; 3988 kvm_stats_desc = descriptors->kvm_stats_desc; 3989 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3990 3991 /* Tally the total data size; read schema data */ 3992 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3993 pdesc = (void *)kvm_stats_desc + i * size_desc; 3994 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 3995 } 3996 3997 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 3998 } 3999 4000 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4001 { 4002 int stats_fd = cpu->kvm_vcpu_stats_fd; 4003 Error *local_err = NULL; 4004 4005 if (stats_fd == -1) { 4006 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4007 error_propagate(kvm_stats_args->errp, local_err); 4008 return; 4009 } 4010 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4011 kvm_stats_args->names, stats_fd, cpu, 4012 kvm_stats_args->errp); 4013 } 4014 4015 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4016 { 4017 int stats_fd = cpu->kvm_vcpu_stats_fd; 4018 Error *local_err = NULL; 4019 4020 if (stats_fd == -1) { 4021 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4022 error_propagate(kvm_stats_args->errp, local_err); 4023 return; 4024 } 4025 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4026 kvm_stats_args->errp); 4027 } 4028 4029 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4030 strList *names, strList *targets, Error **errp) 4031 { 4032 KVMState *s = kvm_state; 4033 CPUState *cpu; 4034 int stats_fd; 4035 4036 switch (target) { 4037 case STATS_TARGET_VM: 4038 { 4039 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4040 if (stats_fd == -1) { 4041 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4042 return; 4043 } 4044 query_stats(result, target, names, stats_fd, NULL, errp); 4045 close(stats_fd); 4046 break; 4047 } 4048 case STATS_TARGET_VCPU: 4049 { 4050 StatsArgs stats_args; 4051 stats_args.result.stats = result; 4052 stats_args.names = names; 4053 stats_args.errp = errp; 4054 CPU_FOREACH(cpu) { 4055 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4056 continue; 4057 } 4058 query_stats_vcpu(cpu, &stats_args); 4059 } 4060 break; 4061 } 4062 default: 4063 break; 4064 } 4065 } 4066 4067 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4068 { 4069 StatsArgs stats_args; 4070 KVMState *s = kvm_state; 4071 int stats_fd; 4072 4073 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4074 if (stats_fd == -1) { 4075 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4076 return; 4077 } 4078 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4079 close(stats_fd); 4080 4081 if (first_cpu) { 4082 stats_args.result.schema = result; 4083 stats_args.errp = errp; 4084 query_stats_schema_vcpu(first_cpu, &stats_args); 4085 } 4086 } 4087