xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision effd60c8)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 struct KVMParkedVcpu {
73     unsigned long vcpu_id;
74     int kvm_fd;
75     QLIST_ENTRY(KVMParkedVcpu) node;
76 };
77 
78 KVMState *kvm_state;
79 bool kvm_kernel_irqchip;
80 bool kvm_split_irqchip;
81 bool kvm_async_interrupts_allowed;
82 bool kvm_halt_in_kernel_allowed;
83 bool kvm_resamplefds_allowed;
84 bool kvm_msi_via_irqfd_allowed;
85 bool kvm_gsi_routing_allowed;
86 bool kvm_gsi_direct_mapping;
87 bool kvm_allowed;
88 bool kvm_readonly_mem_allowed;
89 bool kvm_vm_attributes_allowed;
90 bool kvm_msi_use_devid;
91 static bool kvm_has_guest_debug;
92 static int kvm_sstep_flags;
93 static bool kvm_immediate_exit;
94 static hwaddr kvm_max_slot_size = ~0;
95 
96 static const KVMCapabilityInfo kvm_required_capabilites[] = {
97     KVM_CAP_INFO(USER_MEMORY),
98     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
99     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
100     KVM_CAP_INFO(INTERNAL_ERROR_DATA),
101     KVM_CAP_INFO(IOEVENTFD),
102     KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
103     KVM_CAP_LAST_INFO
104 };
105 
106 static NotifierList kvm_irqchip_change_notifiers =
107     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
108 
109 struct KVMResampleFd {
110     int gsi;
111     EventNotifier *resample_event;
112     QLIST_ENTRY(KVMResampleFd) node;
113 };
114 typedef struct KVMResampleFd KVMResampleFd;
115 
116 /*
117  * Only used with split irqchip where we need to do the resample fd
118  * kick for the kernel from userspace.
119  */
120 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
121     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
122 
123 static QemuMutex kml_slots_lock;
124 
125 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
126 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
127 
128 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
129 
130 static inline void kvm_resample_fd_remove(int gsi)
131 {
132     KVMResampleFd *rfd;
133 
134     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
135         if (rfd->gsi == gsi) {
136             QLIST_REMOVE(rfd, node);
137             g_free(rfd);
138             break;
139         }
140     }
141 }
142 
143 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
144 {
145     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
146 
147     rfd->gsi = gsi;
148     rfd->resample_event = event;
149 
150     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
151 }
152 
153 void kvm_resample_fd_notify(int gsi)
154 {
155     KVMResampleFd *rfd;
156 
157     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
158         if (rfd->gsi == gsi) {
159             event_notifier_set(rfd->resample_event);
160             trace_kvm_resample_fd_notify(gsi);
161             return;
162         }
163     }
164 }
165 
166 unsigned int kvm_get_max_memslots(void)
167 {
168     KVMState *s = KVM_STATE(current_accel());
169 
170     return s->nr_slots;
171 }
172 
173 unsigned int kvm_get_free_memslots(void)
174 {
175     unsigned int used_slots = 0;
176     KVMState *s = kvm_state;
177     int i;
178 
179     kvm_slots_lock();
180     for (i = 0; i < s->nr_as; i++) {
181         if (!s->as[i].ml) {
182             continue;
183         }
184         used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
185     }
186     kvm_slots_unlock();
187 
188     return s->nr_slots - used_slots;
189 }
190 
191 /* Called with KVMMemoryListener.slots_lock held */
192 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
193 {
194     KVMState *s = kvm_state;
195     int i;
196 
197     for (i = 0; i < s->nr_slots; i++) {
198         if (kml->slots[i].memory_size == 0) {
199             return &kml->slots[i];
200         }
201     }
202 
203     return NULL;
204 }
205 
206 /* Called with KVMMemoryListener.slots_lock held */
207 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
208 {
209     KVMSlot *slot = kvm_get_free_slot(kml);
210 
211     if (slot) {
212         return slot;
213     }
214 
215     fprintf(stderr, "%s: no free slot available\n", __func__);
216     abort();
217 }
218 
219 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
220                                          hwaddr start_addr,
221                                          hwaddr size)
222 {
223     KVMState *s = kvm_state;
224     int i;
225 
226     for (i = 0; i < s->nr_slots; i++) {
227         KVMSlot *mem = &kml->slots[i];
228 
229         if (start_addr == mem->start_addr && size == mem->memory_size) {
230             return mem;
231         }
232     }
233 
234     return NULL;
235 }
236 
237 /*
238  * Calculate and align the start address and the size of the section.
239  * Return the size. If the size is 0, the aligned section is empty.
240  */
241 static hwaddr kvm_align_section(MemoryRegionSection *section,
242                                 hwaddr *start)
243 {
244     hwaddr size = int128_get64(section->size);
245     hwaddr delta, aligned;
246 
247     /* kvm works in page size chunks, but the function may be called
248        with sub-page size and unaligned start address. Pad the start
249        address to next and truncate size to previous page boundary. */
250     aligned = ROUND_UP(section->offset_within_address_space,
251                        qemu_real_host_page_size());
252     delta = aligned - section->offset_within_address_space;
253     *start = aligned;
254     if (delta > size) {
255         return 0;
256     }
257 
258     return (size - delta) & qemu_real_host_page_mask();
259 }
260 
261 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
262                                        hwaddr *phys_addr)
263 {
264     KVMMemoryListener *kml = &s->memory_listener;
265     int i, ret = 0;
266 
267     kvm_slots_lock();
268     for (i = 0; i < s->nr_slots; i++) {
269         KVMSlot *mem = &kml->slots[i];
270 
271         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
272             *phys_addr = mem->start_addr + (ram - mem->ram);
273             ret = 1;
274             break;
275         }
276     }
277     kvm_slots_unlock();
278 
279     return ret;
280 }
281 
282 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
283 {
284     KVMState *s = kvm_state;
285     struct kvm_userspace_memory_region mem;
286     int ret;
287 
288     mem.slot = slot->slot | (kml->as_id << 16);
289     mem.guest_phys_addr = slot->start_addr;
290     mem.userspace_addr = (unsigned long)slot->ram;
291     mem.flags = slot->flags;
292 
293     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
294         /* Set the slot size to 0 before setting the slot to the desired
295          * value. This is needed based on KVM commit 75d61fbc. */
296         mem.memory_size = 0;
297         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
298         if (ret < 0) {
299             goto err;
300         }
301     }
302     mem.memory_size = slot->memory_size;
303     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304     slot->old_flags = mem.flags;
305 err:
306     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
307                               mem.memory_size, mem.userspace_addr, ret);
308     if (ret < 0) {
309         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
310                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
311                      __func__, mem.slot, slot->start_addr,
312                      (uint64_t)mem.memory_size, strerror(errno));
313     }
314     return ret;
315 }
316 
317 static int do_kvm_destroy_vcpu(CPUState *cpu)
318 {
319     KVMState *s = kvm_state;
320     long mmap_size;
321     struct KVMParkedVcpu *vcpu = NULL;
322     int ret = 0;
323 
324     trace_kvm_destroy_vcpu();
325 
326     ret = kvm_arch_destroy_vcpu(cpu);
327     if (ret < 0) {
328         goto err;
329     }
330 
331     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
332     if (mmap_size < 0) {
333         ret = mmap_size;
334         trace_kvm_failed_get_vcpu_mmap_size();
335         goto err;
336     }
337 
338     ret = munmap(cpu->kvm_run, mmap_size);
339     if (ret < 0) {
340         goto err;
341     }
342 
343     if (cpu->kvm_dirty_gfns) {
344         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
345         if (ret < 0) {
346             goto err;
347         }
348     }
349 
350     vcpu = g_malloc0(sizeof(*vcpu));
351     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
352     vcpu->kvm_fd = cpu->kvm_fd;
353     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
354 err:
355     return ret;
356 }
357 
358 void kvm_destroy_vcpu(CPUState *cpu)
359 {
360     if (do_kvm_destroy_vcpu(cpu) < 0) {
361         error_report("kvm_destroy_vcpu failed");
362         exit(EXIT_FAILURE);
363     }
364 }
365 
366 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
367 {
368     struct KVMParkedVcpu *cpu;
369 
370     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
371         if (cpu->vcpu_id == vcpu_id) {
372             int kvm_fd;
373 
374             QLIST_REMOVE(cpu, node);
375             kvm_fd = cpu->kvm_fd;
376             g_free(cpu);
377             return kvm_fd;
378         }
379     }
380 
381     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
382 }
383 
384 int kvm_init_vcpu(CPUState *cpu, Error **errp)
385 {
386     KVMState *s = kvm_state;
387     long mmap_size;
388     int ret;
389 
390     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
391 
392     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
393     if (ret < 0) {
394         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
395                          kvm_arch_vcpu_id(cpu));
396         goto err;
397     }
398 
399     cpu->kvm_fd = ret;
400     cpu->kvm_state = s;
401     cpu->vcpu_dirty = true;
402     cpu->dirty_pages = 0;
403     cpu->throttle_us_per_full = 0;
404 
405     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
406     if (mmap_size < 0) {
407         ret = mmap_size;
408         error_setg_errno(errp, -mmap_size,
409                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
410         goto err;
411     }
412 
413     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
414                         cpu->kvm_fd, 0);
415     if (cpu->kvm_run == MAP_FAILED) {
416         ret = -errno;
417         error_setg_errno(errp, ret,
418                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
419                          kvm_arch_vcpu_id(cpu));
420         goto err;
421     }
422 
423     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
424         s->coalesced_mmio_ring =
425             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
426     }
427 
428     if (s->kvm_dirty_ring_size) {
429         /* Use MAP_SHARED to share pages with the kernel */
430         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
431                                    PROT_READ | PROT_WRITE, MAP_SHARED,
432                                    cpu->kvm_fd,
433                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
434         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
435             ret = -errno;
436             goto err;
437         }
438     }
439 
440     ret = kvm_arch_init_vcpu(cpu);
441     if (ret < 0) {
442         error_setg_errno(errp, -ret,
443                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
444                          kvm_arch_vcpu_id(cpu));
445     }
446     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
447 
448 err:
449     return ret;
450 }
451 
452 /*
453  * dirty pages logging control
454  */
455 
456 static int kvm_mem_flags(MemoryRegion *mr)
457 {
458     bool readonly = mr->readonly || memory_region_is_romd(mr);
459     int flags = 0;
460 
461     if (memory_region_get_dirty_log_mask(mr) != 0) {
462         flags |= KVM_MEM_LOG_DIRTY_PAGES;
463     }
464     if (readonly && kvm_readonly_mem_allowed) {
465         flags |= KVM_MEM_READONLY;
466     }
467     return flags;
468 }
469 
470 /* Called with KVMMemoryListener.slots_lock held */
471 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
472                                  MemoryRegion *mr)
473 {
474     mem->flags = kvm_mem_flags(mr);
475 
476     /* If nothing changed effectively, no need to issue ioctl */
477     if (mem->flags == mem->old_flags) {
478         return 0;
479     }
480 
481     kvm_slot_init_dirty_bitmap(mem);
482     return kvm_set_user_memory_region(kml, mem, false);
483 }
484 
485 static int kvm_section_update_flags(KVMMemoryListener *kml,
486                                     MemoryRegionSection *section)
487 {
488     hwaddr start_addr, size, slot_size;
489     KVMSlot *mem;
490     int ret = 0;
491 
492     size = kvm_align_section(section, &start_addr);
493     if (!size) {
494         return 0;
495     }
496 
497     kvm_slots_lock();
498 
499     while (size && !ret) {
500         slot_size = MIN(kvm_max_slot_size, size);
501         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
502         if (!mem) {
503             /* We don't have a slot if we want to trap every access. */
504             goto out;
505         }
506 
507         ret = kvm_slot_update_flags(kml, mem, section->mr);
508         start_addr += slot_size;
509         size -= slot_size;
510     }
511 
512 out:
513     kvm_slots_unlock();
514     return ret;
515 }
516 
517 static void kvm_log_start(MemoryListener *listener,
518                           MemoryRegionSection *section,
519                           int old, int new)
520 {
521     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
522     int r;
523 
524     if (old != 0) {
525         return;
526     }
527 
528     r = kvm_section_update_flags(kml, section);
529     if (r < 0) {
530         abort();
531     }
532 }
533 
534 static void kvm_log_stop(MemoryListener *listener,
535                           MemoryRegionSection *section,
536                           int old, int new)
537 {
538     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
539     int r;
540 
541     if (new != 0) {
542         return;
543     }
544 
545     r = kvm_section_update_flags(kml, section);
546     if (r < 0) {
547         abort();
548     }
549 }
550 
551 /* get kvm's dirty pages bitmap and update qemu's */
552 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
553 {
554     ram_addr_t start = slot->ram_start_offset;
555     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
556 
557     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
558 }
559 
560 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
561 {
562     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
563 }
564 
565 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
566 
567 /* Allocate the dirty bitmap for a slot  */
568 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
569 {
570     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
571         return;
572     }
573 
574     /*
575      * XXX bad kernel interface alert
576      * For dirty bitmap, kernel allocates array of size aligned to
577      * bits-per-long.  But for case when the kernel is 64bits and
578      * the userspace is 32bits, userspace can't align to the same
579      * bits-per-long, since sizeof(long) is different between kernel
580      * and user space.  This way, userspace will provide buffer which
581      * may be 4 bytes less than the kernel will use, resulting in
582      * userspace memory corruption (which is not detectable by valgrind
583      * too, in most cases).
584      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
585      * a hope that sizeof(long) won't become >8 any time soon.
586      *
587      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
588      * And mem->memory_size is aligned to it (otherwise this mem can't
589      * be registered to KVM).
590      */
591     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
592                                         /*HOST_LONG_BITS*/ 64) / 8;
593     mem->dirty_bmap = g_malloc0(bitmap_size);
594     mem->dirty_bmap_size = bitmap_size;
595 }
596 
597 /*
598  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
599  * succeeded, false otherwise
600  */
601 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
602 {
603     struct kvm_dirty_log d = {};
604     int ret;
605 
606     d.dirty_bitmap = slot->dirty_bmap;
607     d.slot = slot->slot | (slot->as_id << 16);
608     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
609 
610     if (ret == -ENOENT) {
611         /* kernel does not have dirty bitmap in this slot */
612         ret = 0;
613     }
614     if (ret) {
615         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
616                           __func__, ret);
617     }
618     return ret == 0;
619 }
620 
621 /* Should be with all slots_lock held for the address spaces. */
622 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
623                                      uint32_t slot_id, uint64_t offset)
624 {
625     KVMMemoryListener *kml;
626     KVMSlot *mem;
627 
628     if (as_id >= s->nr_as) {
629         return;
630     }
631 
632     kml = s->as[as_id].ml;
633     mem = &kml->slots[slot_id];
634 
635     if (!mem->memory_size || offset >=
636         (mem->memory_size / qemu_real_host_page_size())) {
637         return;
638     }
639 
640     set_bit(offset, mem->dirty_bmap);
641 }
642 
643 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
644 {
645     /*
646      * Read the flags before the value.  Pairs with barrier in
647      * KVM's kvm_dirty_ring_push() function.
648      */
649     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
650 }
651 
652 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
653 {
654     /*
655      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
656      * sees the full content of the ring:
657      *
658      * CPU0                     CPU1                         CPU2
659      * ------------------------------------------------------------------------------
660      *                                                       fill gfn0
661      *                                                       store-rel flags for gfn0
662      * load-acq flags for gfn0
663      * store-rel RESET for gfn0
664      *                          ioctl(RESET_RINGS)
665      *                            load-acq flags for gfn0
666      *                            check if flags have RESET
667      *
668      * The synchronization goes from CPU2 to CPU0 to CPU1.
669      */
670     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
671 }
672 
673 /*
674  * Should be with all slots_lock held for the address spaces.  It returns the
675  * dirty page we've collected on this dirty ring.
676  */
677 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
678 {
679     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
680     uint32_t ring_size = s->kvm_dirty_ring_size;
681     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
682 
683     /*
684      * It's possible that we race with vcpu creation code where the vcpu is
685      * put onto the vcpus list but not yet initialized the dirty ring
686      * structures.  If so, skip it.
687      */
688     if (!cpu->created) {
689         return 0;
690     }
691 
692     assert(dirty_gfns && ring_size);
693     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
694 
695     while (true) {
696         cur = &dirty_gfns[fetch % ring_size];
697         if (!dirty_gfn_is_dirtied(cur)) {
698             break;
699         }
700         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
701                                  cur->offset);
702         dirty_gfn_set_collected(cur);
703         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
704         fetch++;
705         count++;
706     }
707     cpu->kvm_fetch_index = fetch;
708     cpu->dirty_pages += count;
709 
710     return count;
711 }
712 
713 /* Must be with slots_lock held */
714 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
715 {
716     int ret;
717     uint64_t total = 0;
718     int64_t stamp;
719 
720     stamp = get_clock();
721 
722     if (cpu) {
723         total = kvm_dirty_ring_reap_one(s, cpu);
724     } else {
725         CPU_FOREACH(cpu) {
726             total += kvm_dirty_ring_reap_one(s, cpu);
727         }
728     }
729 
730     if (total) {
731         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
732         assert(ret == total);
733     }
734 
735     stamp = get_clock() - stamp;
736 
737     if (total) {
738         trace_kvm_dirty_ring_reap(total, stamp / 1000);
739     }
740 
741     return total;
742 }
743 
744 /*
745  * Currently for simplicity, we must hold BQL before calling this.  We can
746  * consider to drop the BQL if we're clear with all the race conditions.
747  */
748 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
749 {
750     uint64_t total;
751 
752     /*
753      * We need to lock all kvm slots for all address spaces here,
754      * because:
755      *
756      * (1) We need to mark dirty for dirty bitmaps in multiple slots
757      *     and for tons of pages, so it's better to take the lock here
758      *     once rather than once per page.  And more importantly,
759      *
760      * (2) We must _NOT_ publish dirty bits to the other threads
761      *     (e.g., the migration thread) via the kvm memory slot dirty
762      *     bitmaps before correctly re-protect those dirtied pages.
763      *     Otherwise we can have potential risk of data corruption if
764      *     the page data is read in the other thread before we do
765      *     reset below.
766      */
767     kvm_slots_lock();
768     total = kvm_dirty_ring_reap_locked(s, cpu);
769     kvm_slots_unlock();
770 
771     return total;
772 }
773 
774 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
775 {
776     /* No need to do anything */
777 }
778 
779 /*
780  * Kick all vcpus out in a synchronized way.  When returned, we
781  * guarantee that every vcpu has been kicked and at least returned to
782  * userspace once.
783  */
784 static void kvm_cpu_synchronize_kick_all(void)
785 {
786     CPUState *cpu;
787 
788     CPU_FOREACH(cpu) {
789         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
790     }
791 }
792 
793 /*
794  * Flush all the existing dirty pages to the KVM slot buffers.  When
795  * this call returns, we guarantee that all the touched dirty pages
796  * before calling this function have been put into the per-kvmslot
797  * dirty bitmap.
798  *
799  * This function must be called with BQL held.
800  */
801 static void kvm_dirty_ring_flush(void)
802 {
803     trace_kvm_dirty_ring_flush(0);
804     /*
805      * The function needs to be serialized.  Since this function
806      * should always be with BQL held, serialization is guaranteed.
807      * However, let's be sure of it.
808      */
809     assert(bql_locked());
810     /*
811      * First make sure to flush the hardware buffers by kicking all
812      * vcpus out in a synchronous way.
813      */
814     kvm_cpu_synchronize_kick_all();
815     kvm_dirty_ring_reap(kvm_state, NULL);
816     trace_kvm_dirty_ring_flush(1);
817 }
818 
819 /**
820  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
821  *
822  * This function will first try to fetch dirty bitmap from the kernel,
823  * and then updates qemu's dirty bitmap.
824  *
825  * NOTE: caller must be with kml->slots_lock held.
826  *
827  * @kml: the KVM memory listener object
828  * @section: the memory section to sync the dirty bitmap with
829  */
830 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
831                                            MemoryRegionSection *section)
832 {
833     KVMState *s = kvm_state;
834     KVMSlot *mem;
835     hwaddr start_addr, size;
836     hwaddr slot_size;
837 
838     size = kvm_align_section(section, &start_addr);
839     while (size) {
840         slot_size = MIN(kvm_max_slot_size, size);
841         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
842         if (!mem) {
843             /* We don't have a slot if we want to trap every access. */
844             return;
845         }
846         if (kvm_slot_get_dirty_log(s, mem)) {
847             kvm_slot_sync_dirty_pages(mem);
848         }
849         start_addr += slot_size;
850         size -= slot_size;
851     }
852 }
853 
854 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
855 #define KVM_CLEAR_LOG_SHIFT  6
856 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
857 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
858 
859 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
860                                   uint64_t size)
861 {
862     KVMState *s = kvm_state;
863     uint64_t end, bmap_start, start_delta, bmap_npages;
864     struct kvm_clear_dirty_log d;
865     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
866     int ret;
867 
868     /*
869      * We need to extend either the start or the size or both to
870      * satisfy the KVM interface requirement.  Firstly, do the start
871      * page alignment on 64 host pages
872      */
873     bmap_start = start & KVM_CLEAR_LOG_MASK;
874     start_delta = start - bmap_start;
875     bmap_start /= psize;
876 
877     /*
878      * The kernel interface has restriction on the size too, that either:
879      *
880      * (1) the size is 64 host pages aligned (just like the start), or
881      * (2) the size fills up until the end of the KVM memslot.
882      */
883     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
884         << KVM_CLEAR_LOG_SHIFT;
885     end = mem->memory_size / psize;
886     if (bmap_npages > end - bmap_start) {
887         bmap_npages = end - bmap_start;
888     }
889     start_delta /= psize;
890 
891     /*
892      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
893      * that we won't clear any unknown dirty bits otherwise we might
894      * accidentally clear some set bits which are not yet synced from
895      * the kernel into QEMU's bitmap, then we'll lose track of the
896      * guest modifications upon those pages (which can directly lead
897      * to guest data loss or panic after migration).
898      *
899      * Layout of the KVMSlot.dirty_bmap:
900      *
901      *                   |<-------- bmap_npages -----------..>|
902      *                                                     [1]
903      *                     start_delta         size
904      *  |----------------|-------------|------------------|------------|
905      *  ^                ^             ^                               ^
906      *  |                |             |                               |
907      * start          bmap_start     (start)                         end
908      * of memslot                                             of memslot
909      *
910      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
911      */
912 
913     assert(bmap_start % BITS_PER_LONG == 0);
914     /* We should never do log_clear before log_sync */
915     assert(mem->dirty_bmap);
916     if (start_delta || bmap_npages - size / psize) {
917         /* Slow path - we need to manipulate a temp bitmap */
918         bmap_clear = bitmap_new(bmap_npages);
919         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
920                                     bmap_start, start_delta + size / psize);
921         /*
922          * We need to fill the holes at start because that was not
923          * specified by the caller and we extended the bitmap only for
924          * 64 pages alignment
925          */
926         bitmap_clear(bmap_clear, 0, start_delta);
927         d.dirty_bitmap = bmap_clear;
928     } else {
929         /*
930          * Fast path - both start and size align well with BITS_PER_LONG
931          * (or the end of memory slot)
932          */
933         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
934     }
935 
936     d.first_page = bmap_start;
937     /* It should never overflow.  If it happens, say something */
938     assert(bmap_npages <= UINT32_MAX);
939     d.num_pages = bmap_npages;
940     d.slot = mem->slot | (as_id << 16);
941 
942     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
943     if (ret < 0 && ret != -ENOENT) {
944         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
945                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
946                      __func__, d.slot, (uint64_t)d.first_page,
947                      (uint32_t)d.num_pages, ret);
948     } else {
949         ret = 0;
950         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
951     }
952 
953     /*
954      * After we have updated the remote dirty bitmap, we update the
955      * cached bitmap as well for the memslot, then if another user
956      * clears the same region we know we shouldn't clear it again on
957      * the remote otherwise it's data loss as well.
958      */
959     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
960                  size / psize);
961     /* This handles the NULL case well */
962     g_free(bmap_clear);
963     return ret;
964 }
965 
966 
967 /**
968  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
969  *
970  * NOTE: this will be a no-op if we haven't enabled manual dirty log
971  * protection in the host kernel because in that case this operation
972  * will be done within log_sync().
973  *
974  * @kml:     the kvm memory listener
975  * @section: the memory range to clear dirty bitmap
976  */
977 static int kvm_physical_log_clear(KVMMemoryListener *kml,
978                                   MemoryRegionSection *section)
979 {
980     KVMState *s = kvm_state;
981     uint64_t start, size, offset, count;
982     KVMSlot *mem;
983     int ret = 0, i;
984 
985     if (!s->manual_dirty_log_protect) {
986         /* No need to do explicit clear */
987         return ret;
988     }
989 
990     start = section->offset_within_address_space;
991     size = int128_get64(section->size);
992 
993     if (!size) {
994         /* Nothing more we can do... */
995         return ret;
996     }
997 
998     kvm_slots_lock();
999 
1000     for (i = 0; i < s->nr_slots; i++) {
1001         mem = &kml->slots[i];
1002         /* Discard slots that are empty or do not overlap the section */
1003         if (!mem->memory_size ||
1004             mem->start_addr > start + size - 1 ||
1005             start > mem->start_addr + mem->memory_size - 1) {
1006             continue;
1007         }
1008 
1009         if (start >= mem->start_addr) {
1010             /* The slot starts before section or is aligned to it.  */
1011             offset = start - mem->start_addr;
1012             count = MIN(mem->memory_size - offset, size);
1013         } else {
1014             /* The slot starts after section.  */
1015             offset = 0;
1016             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1017         }
1018         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1019         if (ret < 0) {
1020             break;
1021         }
1022     }
1023 
1024     kvm_slots_unlock();
1025 
1026     return ret;
1027 }
1028 
1029 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1030                                      MemoryRegionSection *secion,
1031                                      hwaddr start, hwaddr size)
1032 {
1033     KVMState *s = kvm_state;
1034 
1035     if (s->coalesced_mmio) {
1036         struct kvm_coalesced_mmio_zone zone;
1037 
1038         zone.addr = start;
1039         zone.size = size;
1040         zone.pad = 0;
1041 
1042         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1043     }
1044 }
1045 
1046 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1047                                        MemoryRegionSection *secion,
1048                                        hwaddr start, hwaddr size)
1049 {
1050     KVMState *s = kvm_state;
1051 
1052     if (s->coalesced_mmio) {
1053         struct kvm_coalesced_mmio_zone zone;
1054 
1055         zone.addr = start;
1056         zone.size = size;
1057         zone.pad = 0;
1058 
1059         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1060     }
1061 }
1062 
1063 static void kvm_coalesce_pio_add(MemoryListener *listener,
1064                                 MemoryRegionSection *section,
1065                                 hwaddr start, hwaddr size)
1066 {
1067     KVMState *s = kvm_state;
1068 
1069     if (s->coalesced_pio) {
1070         struct kvm_coalesced_mmio_zone zone;
1071 
1072         zone.addr = start;
1073         zone.size = size;
1074         zone.pio = 1;
1075 
1076         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1077     }
1078 }
1079 
1080 static void kvm_coalesce_pio_del(MemoryListener *listener,
1081                                 MemoryRegionSection *section,
1082                                 hwaddr start, hwaddr size)
1083 {
1084     KVMState *s = kvm_state;
1085 
1086     if (s->coalesced_pio) {
1087         struct kvm_coalesced_mmio_zone zone;
1088 
1089         zone.addr = start;
1090         zone.size = size;
1091         zone.pio = 1;
1092 
1093         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1094      }
1095 }
1096 
1097 int kvm_check_extension(KVMState *s, unsigned int extension)
1098 {
1099     int ret;
1100 
1101     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1102     if (ret < 0) {
1103         ret = 0;
1104     }
1105 
1106     return ret;
1107 }
1108 
1109 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1110 {
1111     int ret;
1112 
1113     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1114     if (ret < 0) {
1115         /* VM wide version not implemented, use global one instead */
1116         ret = kvm_check_extension(s, extension);
1117     }
1118 
1119     return ret;
1120 }
1121 
1122 typedef struct HWPoisonPage {
1123     ram_addr_t ram_addr;
1124     QLIST_ENTRY(HWPoisonPage) list;
1125 } HWPoisonPage;
1126 
1127 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1128     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1129 
1130 static void kvm_unpoison_all(void *param)
1131 {
1132     HWPoisonPage *page, *next_page;
1133 
1134     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1135         QLIST_REMOVE(page, list);
1136         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1137         g_free(page);
1138     }
1139 }
1140 
1141 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1142 {
1143     HWPoisonPage *page;
1144 
1145     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1146         if (page->ram_addr == ram_addr) {
1147             return;
1148         }
1149     }
1150     page = g_new(HWPoisonPage, 1);
1151     page->ram_addr = ram_addr;
1152     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1153 }
1154 
1155 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1156 {
1157 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1158     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1159      * endianness, but the memory core hands them in target endianness.
1160      * For example, PPC is always treated as big-endian even if running
1161      * on KVM and on PPC64LE.  Correct here.
1162      */
1163     switch (size) {
1164     case 2:
1165         val = bswap16(val);
1166         break;
1167     case 4:
1168         val = bswap32(val);
1169         break;
1170     }
1171 #endif
1172     return val;
1173 }
1174 
1175 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1176                                   bool assign, uint32_t size, bool datamatch)
1177 {
1178     int ret;
1179     struct kvm_ioeventfd iofd = {
1180         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1181         .addr = addr,
1182         .len = size,
1183         .flags = 0,
1184         .fd = fd,
1185     };
1186 
1187     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1188                                  datamatch);
1189     if (!kvm_enabled()) {
1190         return -ENOSYS;
1191     }
1192 
1193     if (datamatch) {
1194         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1195     }
1196     if (!assign) {
1197         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1198     }
1199 
1200     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1201 
1202     if (ret < 0) {
1203         return -errno;
1204     }
1205 
1206     return 0;
1207 }
1208 
1209 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1210                                  bool assign, uint32_t size, bool datamatch)
1211 {
1212     struct kvm_ioeventfd kick = {
1213         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1214         .addr = addr,
1215         .flags = KVM_IOEVENTFD_FLAG_PIO,
1216         .len = size,
1217         .fd = fd,
1218     };
1219     int r;
1220     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1221     if (!kvm_enabled()) {
1222         return -ENOSYS;
1223     }
1224     if (datamatch) {
1225         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1226     }
1227     if (!assign) {
1228         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1229     }
1230     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1231     if (r < 0) {
1232         return r;
1233     }
1234     return 0;
1235 }
1236 
1237 
1238 static const KVMCapabilityInfo *
1239 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1240 {
1241     while (list->name) {
1242         if (!kvm_check_extension(s, list->value)) {
1243             return list;
1244         }
1245         list++;
1246     }
1247     return NULL;
1248 }
1249 
1250 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1251 {
1252     g_assert(
1253         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1254     );
1255     kvm_max_slot_size = max_slot_size;
1256 }
1257 
1258 /* Called with KVMMemoryListener.slots_lock held */
1259 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1260                              MemoryRegionSection *section, bool add)
1261 {
1262     KVMSlot *mem;
1263     int err;
1264     MemoryRegion *mr = section->mr;
1265     bool writable = !mr->readonly && !mr->rom_device;
1266     hwaddr start_addr, size, slot_size, mr_offset;
1267     ram_addr_t ram_start_offset;
1268     void *ram;
1269 
1270     if (!memory_region_is_ram(mr)) {
1271         if (writable || !kvm_readonly_mem_allowed) {
1272             return;
1273         } else if (!mr->romd_mode) {
1274             /* If the memory device is not in romd_mode, then we actually want
1275              * to remove the kvm memory slot so all accesses will trap. */
1276             add = false;
1277         }
1278     }
1279 
1280     size = kvm_align_section(section, &start_addr);
1281     if (!size) {
1282         return;
1283     }
1284 
1285     /* The offset of the kvmslot within the memory region */
1286     mr_offset = section->offset_within_region + start_addr -
1287         section->offset_within_address_space;
1288 
1289     /* use aligned delta to align the ram address and offset */
1290     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1291     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1292 
1293     if (!add) {
1294         do {
1295             slot_size = MIN(kvm_max_slot_size, size);
1296             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1297             if (!mem) {
1298                 return;
1299             }
1300             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1301                 /*
1302                  * NOTE: We should be aware of the fact that here we're only
1303                  * doing a best effort to sync dirty bits.  No matter whether
1304                  * we're using dirty log or dirty ring, we ignored two facts:
1305                  *
1306                  * (1) dirty bits can reside in hardware buffers (PML)
1307                  *
1308                  * (2) after we collected dirty bits here, pages can be dirtied
1309                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1310                  * remove the slot.
1311                  *
1312                  * Not easy.  Let's cross the fingers until it's fixed.
1313                  */
1314                 if (kvm_state->kvm_dirty_ring_size) {
1315                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1316                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1317                         kvm_slot_sync_dirty_pages(mem);
1318                         kvm_slot_get_dirty_log(kvm_state, mem);
1319                     }
1320                 } else {
1321                     kvm_slot_get_dirty_log(kvm_state, mem);
1322                 }
1323                 kvm_slot_sync_dirty_pages(mem);
1324             }
1325 
1326             /* unregister the slot */
1327             g_free(mem->dirty_bmap);
1328             mem->dirty_bmap = NULL;
1329             mem->memory_size = 0;
1330             mem->flags = 0;
1331             err = kvm_set_user_memory_region(kml, mem, false);
1332             if (err) {
1333                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1334                         __func__, strerror(-err));
1335                 abort();
1336             }
1337             start_addr += slot_size;
1338             size -= slot_size;
1339             kml->nr_used_slots--;
1340         } while (size);
1341         return;
1342     }
1343 
1344     /* register the new slot */
1345     do {
1346         slot_size = MIN(kvm_max_slot_size, size);
1347         mem = kvm_alloc_slot(kml);
1348         mem->as_id = kml->as_id;
1349         mem->memory_size = slot_size;
1350         mem->start_addr = start_addr;
1351         mem->ram_start_offset = ram_start_offset;
1352         mem->ram = ram;
1353         mem->flags = kvm_mem_flags(mr);
1354         kvm_slot_init_dirty_bitmap(mem);
1355         err = kvm_set_user_memory_region(kml, mem, true);
1356         if (err) {
1357             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1358                     strerror(-err));
1359             abort();
1360         }
1361         start_addr += slot_size;
1362         ram_start_offset += slot_size;
1363         ram += slot_size;
1364         size -= slot_size;
1365         kml->nr_used_slots++;
1366     } while (size);
1367 }
1368 
1369 static void *kvm_dirty_ring_reaper_thread(void *data)
1370 {
1371     KVMState *s = data;
1372     struct KVMDirtyRingReaper *r = &s->reaper;
1373 
1374     rcu_register_thread();
1375 
1376     trace_kvm_dirty_ring_reaper("init");
1377 
1378     while (true) {
1379         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1380         trace_kvm_dirty_ring_reaper("wait");
1381         /*
1382          * TODO: provide a smarter timeout rather than a constant?
1383          */
1384         sleep(1);
1385 
1386         /* keep sleeping so that dirtylimit not be interfered by reaper */
1387         if (dirtylimit_in_service()) {
1388             continue;
1389         }
1390 
1391         trace_kvm_dirty_ring_reaper("wakeup");
1392         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1393 
1394         bql_lock();
1395         kvm_dirty_ring_reap(s, NULL);
1396         bql_unlock();
1397 
1398         r->reaper_iteration++;
1399     }
1400 
1401     trace_kvm_dirty_ring_reaper("exit");
1402 
1403     rcu_unregister_thread();
1404 
1405     return NULL;
1406 }
1407 
1408 static void kvm_dirty_ring_reaper_init(KVMState *s)
1409 {
1410     struct KVMDirtyRingReaper *r = &s->reaper;
1411 
1412     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1413                        kvm_dirty_ring_reaper_thread,
1414                        s, QEMU_THREAD_JOINABLE);
1415 }
1416 
1417 static int kvm_dirty_ring_init(KVMState *s)
1418 {
1419     uint32_t ring_size = s->kvm_dirty_ring_size;
1420     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1421     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1422     int ret;
1423 
1424     s->kvm_dirty_ring_size = 0;
1425     s->kvm_dirty_ring_bytes = 0;
1426 
1427     /* Bail if the dirty ring size isn't specified */
1428     if (!ring_size) {
1429         return 0;
1430     }
1431 
1432     /*
1433      * Read the max supported pages. Fall back to dirty logging mode
1434      * if the dirty ring isn't supported.
1435      */
1436     ret = kvm_vm_check_extension(s, capability);
1437     if (ret <= 0) {
1438         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1439         ret = kvm_vm_check_extension(s, capability);
1440     }
1441 
1442     if (ret <= 0) {
1443         warn_report("KVM dirty ring not available, using bitmap method");
1444         return 0;
1445     }
1446 
1447     if (ring_bytes > ret) {
1448         error_report("KVM dirty ring size %" PRIu32 " too big "
1449                      "(maximum is %ld).  Please use a smaller value.",
1450                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1451         return -EINVAL;
1452     }
1453 
1454     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1455     if (ret) {
1456         error_report("Enabling of KVM dirty ring failed: %s. "
1457                      "Suggested minimum value is 1024.", strerror(-ret));
1458         return -EIO;
1459     }
1460 
1461     /* Enable the backup bitmap if it is supported */
1462     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1463     if (ret > 0) {
1464         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1465         if (ret) {
1466             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1467                          "%s. ", strerror(-ret));
1468             return -EIO;
1469         }
1470 
1471         s->kvm_dirty_ring_with_bitmap = true;
1472     }
1473 
1474     s->kvm_dirty_ring_size = ring_size;
1475     s->kvm_dirty_ring_bytes = ring_bytes;
1476 
1477     return 0;
1478 }
1479 
1480 static void kvm_region_add(MemoryListener *listener,
1481                            MemoryRegionSection *section)
1482 {
1483     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1484     KVMMemoryUpdate *update;
1485 
1486     update = g_new0(KVMMemoryUpdate, 1);
1487     update->section = *section;
1488 
1489     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1490 }
1491 
1492 static void kvm_region_del(MemoryListener *listener,
1493                            MemoryRegionSection *section)
1494 {
1495     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1496     KVMMemoryUpdate *update;
1497 
1498     update = g_new0(KVMMemoryUpdate, 1);
1499     update->section = *section;
1500 
1501     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1502 }
1503 
1504 static void kvm_region_commit(MemoryListener *listener)
1505 {
1506     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1507                                           listener);
1508     KVMMemoryUpdate *u1, *u2;
1509     bool need_inhibit = false;
1510 
1511     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1512         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1513         return;
1514     }
1515 
1516     /*
1517      * We have to be careful when regions to add overlap with ranges to remove.
1518      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1519      * is currently active.
1520      *
1521      * The lists are order by addresses, so it's easy to find overlaps.
1522      */
1523     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1524     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1525     while (u1 && u2) {
1526         Range r1, r2;
1527 
1528         range_init_nofail(&r1, u1->section.offset_within_address_space,
1529                           int128_get64(u1->section.size));
1530         range_init_nofail(&r2, u2->section.offset_within_address_space,
1531                           int128_get64(u2->section.size));
1532 
1533         if (range_overlaps_range(&r1, &r2)) {
1534             need_inhibit = true;
1535             break;
1536         }
1537         if (range_lob(&r1) < range_lob(&r2)) {
1538             u1 = QSIMPLEQ_NEXT(u1, next);
1539         } else {
1540             u2 = QSIMPLEQ_NEXT(u2, next);
1541         }
1542     }
1543 
1544     kvm_slots_lock();
1545     if (need_inhibit) {
1546         accel_ioctl_inhibit_begin();
1547     }
1548 
1549     /* Remove all memslots before adding the new ones. */
1550     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1551         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1552         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1553 
1554         kvm_set_phys_mem(kml, &u1->section, false);
1555         memory_region_unref(u1->section.mr);
1556 
1557         g_free(u1);
1558     }
1559     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1560         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1561         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1562 
1563         memory_region_ref(u1->section.mr);
1564         kvm_set_phys_mem(kml, &u1->section, true);
1565 
1566         g_free(u1);
1567     }
1568 
1569     if (need_inhibit) {
1570         accel_ioctl_inhibit_end();
1571     }
1572     kvm_slots_unlock();
1573 }
1574 
1575 static void kvm_log_sync(MemoryListener *listener,
1576                          MemoryRegionSection *section)
1577 {
1578     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1579 
1580     kvm_slots_lock();
1581     kvm_physical_sync_dirty_bitmap(kml, section);
1582     kvm_slots_unlock();
1583 }
1584 
1585 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1586 {
1587     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1588     KVMState *s = kvm_state;
1589     KVMSlot *mem;
1590     int i;
1591 
1592     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1593     kvm_dirty_ring_flush();
1594 
1595     /*
1596      * TODO: make this faster when nr_slots is big while there are
1597      * only a few used slots (small VMs).
1598      */
1599     kvm_slots_lock();
1600     for (i = 0; i < s->nr_slots; i++) {
1601         mem = &kml->slots[i];
1602         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1603             kvm_slot_sync_dirty_pages(mem);
1604 
1605             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1606                 kvm_slot_get_dirty_log(s, mem)) {
1607                 kvm_slot_sync_dirty_pages(mem);
1608             }
1609 
1610             /*
1611              * This is not needed by KVM_GET_DIRTY_LOG because the
1612              * ioctl will unconditionally overwrite the whole region.
1613              * However kvm dirty ring has no such side effect.
1614              */
1615             kvm_slot_reset_dirty_pages(mem);
1616         }
1617     }
1618     kvm_slots_unlock();
1619 }
1620 
1621 static void kvm_log_clear(MemoryListener *listener,
1622                           MemoryRegionSection *section)
1623 {
1624     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1625     int r;
1626 
1627     r = kvm_physical_log_clear(kml, section);
1628     if (r < 0) {
1629         error_report_once("%s: kvm log clear failed: mr=%s "
1630                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1631                           section->mr->name, section->offset_within_region,
1632                           int128_get64(section->size));
1633         abort();
1634     }
1635 }
1636 
1637 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1638                                   MemoryRegionSection *section,
1639                                   bool match_data, uint64_t data,
1640                                   EventNotifier *e)
1641 {
1642     int fd = event_notifier_get_fd(e);
1643     int r;
1644 
1645     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1646                                data, true, int128_get64(section->size),
1647                                match_data);
1648     if (r < 0) {
1649         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1650                 __func__, strerror(-r), -r);
1651         abort();
1652     }
1653 }
1654 
1655 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1656                                   MemoryRegionSection *section,
1657                                   bool match_data, uint64_t data,
1658                                   EventNotifier *e)
1659 {
1660     int fd = event_notifier_get_fd(e);
1661     int r;
1662 
1663     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1664                                data, false, int128_get64(section->size),
1665                                match_data);
1666     if (r < 0) {
1667         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1668                 __func__, strerror(-r), -r);
1669         abort();
1670     }
1671 }
1672 
1673 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1674                                  MemoryRegionSection *section,
1675                                  bool match_data, uint64_t data,
1676                                  EventNotifier *e)
1677 {
1678     int fd = event_notifier_get_fd(e);
1679     int r;
1680 
1681     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1682                               data, true, int128_get64(section->size),
1683                               match_data);
1684     if (r < 0) {
1685         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1686                 __func__, strerror(-r), -r);
1687         abort();
1688     }
1689 }
1690 
1691 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1692                                  MemoryRegionSection *section,
1693                                  bool match_data, uint64_t data,
1694                                  EventNotifier *e)
1695 
1696 {
1697     int fd = event_notifier_get_fd(e);
1698     int r;
1699 
1700     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1701                               data, false, int128_get64(section->size),
1702                               match_data);
1703     if (r < 0) {
1704         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1705                 __func__, strerror(-r), -r);
1706         abort();
1707     }
1708 }
1709 
1710 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1711                                   AddressSpace *as, int as_id, const char *name)
1712 {
1713     int i;
1714 
1715     kml->slots = g_new0(KVMSlot, s->nr_slots);
1716     kml->as_id = as_id;
1717 
1718     for (i = 0; i < s->nr_slots; i++) {
1719         kml->slots[i].slot = i;
1720     }
1721 
1722     QSIMPLEQ_INIT(&kml->transaction_add);
1723     QSIMPLEQ_INIT(&kml->transaction_del);
1724 
1725     kml->listener.region_add = kvm_region_add;
1726     kml->listener.region_del = kvm_region_del;
1727     kml->listener.commit = kvm_region_commit;
1728     kml->listener.log_start = kvm_log_start;
1729     kml->listener.log_stop = kvm_log_stop;
1730     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1731     kml->listener.name = name;
1732 
1733     if (s->kvm_dirty_ring_size) {
1734         kml->listener.log_sync_global = kvm_log_sync_global;
1735     } else {
1736         kml->listener.log_sync = kvm_log_sync;
1737         kml->listener.log_clear = kvm_log_clear;
1738     }
1739 
1740     memory_listener_register(&kml->listener, as);
1741 
1742     for (i = 0; i < s->nr_as; ++i) {
1743         if (!s->as[i].as) {
1744             s->as[i].as = as;
1745             s->as[i].ml = kml;
1746             break;
1747         }
1748     }
1749 }
1750 
1751 static MemoryListener kvm_io_listener = {
1752     .name = "kvm-io",
1753     .coalesced_io_add = kvm_coalesce_pio_add,
1754     .coalesced_io_del = kvm_coalesce_pio_del,
1755     .eventfd_add = kvm_io_ioeventfd_add,
1756     .eventfd_del = kvm_io_ioeventfd_del,
1757     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1758 };
1759 
1760 int kvm_set_irq(KVMState *s, int irq, int level)
1761 {
1762     struct kvm_irq_level event;
1763     int ret;
1764 
1765     assert(kvm_async_interrupts_enabled());
1766 
1767     event.level = level;
1768     event.irq = irq;
1769     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1770     if (ret < 0) {
1771         perror("kvm_set_irq");
1772         abort();
1773     }
1774 
1775     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1776 }
1777 
1778 #ifdef KVM_CAP_IRQ_ROUTING
1779 typedef struct KVMMSIRoute {
1780     struct kvm_irq_routing_entry kroute;
1781     QTAILQ_ENTRY(KVMMSIRoute) entry;
1782 } KVMMSIRoute;
1783 
1784 static void set_gsi(KVMState *s, unsigned int gsi)
1785 {
1786     set_bit(gsi, s->used_gsi_bitmap);
1787 }
1788 
1789 static void clear_gsi(KVMState *s, unsigned int gsi)
1790 {
1791     clear_bit(gsi, s->used_gsi_bitmap);
1792 }
1793 
1794 void kvm_init_irq_routing(KVMState *s)
1795 {
1796     int gsi_count;
1797 
1798     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1799     if (gsi_count > 0) {
1800         /* Round up so we can search ints using ffs */
1801         s->used_gsi_bitmap = bitmap_new(gsi_count);
1802         s->gsi_count = gsi_count;
1803     }
1804 
1805     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1806     s->nr_allocated_irq_routes = 0;
1807 
1808     kvm_arch_init_irq_routing(s);
1809 }
1810 
1811 void kvm_irqchip_commit_routes(KVMState *s)
1812 {
1813     int ret;
1814 
1815     if (kvm_gsi_direct_mapping()) {
1816         return;
1817     }
1818 
1819     if (!kvm_gsi_routing_enabled()) {
1820         return;
1821     }
1822 
1823     s->irq_routes->flags = 0;
1824     trace_kvm_irqchip_commit_routes();
1825     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1826     assert(ret == 0);
1827 }
1828 
1829 static void kvm_add_routing_entry(KVMState *s,
1830                                   struct kvm_irq_routing_entry *entry)
1831 {
1832     struct kvm_irq_routing_entry *new;
1833     int n, size;
1834 
1835     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1836         n = s->nr_allocated_irq_routes * 2;
1837         if (n < 64) {
1838             n = 64;
1839         }
1840         size = sizeof(struct kvm_irq_routing);
1841         size += n * sizeof(*new);
1842         s->irq_routes = g_realloc(s->irq_routes, size);
1843         s->nr_allocated_irq_routes = n;
1844     }
1845     n = s->irq_routes->nr++;
1846     new = &s->irq_routes->entries[n];
1847 
1848     *new = *entry;
1849 
1850     set_gsi(s, entry->gsi);
1851 }
1852 
1853 static int kvm_update_routing_entry(KVMState *s,
1854                                     struct kvm_irq_routing_entry *new_entry)
1855 {
1856     struct kvm_irq_routing_entry *entry;
1857     int n;
1858 
1859     for (n = 0; n < s->irq_routes->nr; n++) {
1860         entry = &s->irq_routes->entries[n];
1861         if (entry->gsi != new_entry->gsi) {
1862             continue;
1863         }
1864 
1865         if(!memcmp(entry, new_entry, sizeof *entry)) {
1866             return 0;
1867         }
1868 
1869         *entry = *new_entry;
1870 
1871         return 0;
1872     }
1873 
1874     return -ESRCH;
1875 }
1876 
1877 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1878 {
1879     struct kvm_irq_routing_entry e = {};
1880 
1881     assert(pin < s->gsi_count);
1882 
1883     e.gsi = irq;
1884     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1885     e.flags = 0;
1886     e.u.irqchip.irqchip = irqchip;
1887     e.u.irqchip.pin = pin;
1888     kvm_add_routing_entry(s, &e);
1889 }
1890 
1891 void kvm_irqchip_release_virq(KVMState *s, int virq)
1892 {
1893     struct kvm_irq_routing_entry *e;
1894     int i;
1895 
1896     if (kvm_gsi_direct_mapping()) {
1897         return;
1898     }
1899 
1900     for (i = 0; i < s->irq_routes->nr; i++) {
1901         e = &s->irq_routes->entries[i];
1902         if (e->gsi == virq) {
1903             s->irq_routes->nr--;
1904             *e = s->irq_routes->entries[s->irq_routes->nr];
1905         }
1906     }
1907     clear_gsi(s, virq);
1908     kvm_arch_release_virq_post(virq);
1909     trace_kvm_irqchip_release_virq(virq);
1910 }
1911 
1912 void kvm_irqchip_add_change_notifier(Notifier *n)
1913 {
1914     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1915 }
1916 
1917 void kvm_irqchip_remove_change_notifier(Notifier *n)
1918 {
1919     notifier_remove(n);
1920 }
1921 
1922 void kvm_irqchip_change_notify(void)
1923 {
1924     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1925 }
1926 
1927 static int kvm_irqchip_get_virq(KVMState *s)
1928 {
1929     int next_virq;
1930 
1931     /* Return the lowest unused GSI in the bitmap */
1932     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1933     if (next_virq >= s->gsi_count) {
1934         return -ENOSPC;
1935     } else {
1936         return next_virq;
1937     }
1938 }
1939 
1940 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1941 {
1942     struct kvm_msi msi;
1943 
1944     msi.address_lo = (uint32_t)msg.address;
1945     msi.address_hi = msg.address >> 32;
1946     msi.data = le32_to_cpu(msg.data);
1947     msi.flags = 0;
1948     memset(msi.pad, 0, sizeof(msi.pad));
1949 
1950     return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1951 }
1952 
1953 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1954 {
1955     struct kvm_irq_routing_entry kroute = {};
1956     int virq;
1957     KVMState *s = c->s;
1958     MSIMessage msg = {0, 0};
1959 
1960     if (pci_available && dev) {
1961         msg = pci_get_msi_message(dev, vector);
1962     }
1963 
1964     if (kvm_gsi_direct_mapping()) {
1965         return kvm_arch_msi_data_to_gsi(msg.data);
1966     }
1967 
1968     if (!kvm_gsi_routing_enabled()) {
1969         return -ENOSYS;
1970     }
1971 
1972     virq = kvm_irqchip_get_virq(s);
1973     if (virq < 0) {
1974         return virq;
1975     }
1976 
1977     kroute.gsi = virq;
1978     kroute.type = KVM_IRQ_ROUTING_MSI;
1979     kroute.flags = 0;
1980     kroute.u.msi.address_lo = (uint32_t)msg.address;
1981     kroute.u.msi.address_hi = msg.address >> 32;
1982     kroute.u.msi.data = le32_to_cpu(msg.data);
1983     if (pci_available && kvm_msi_devid_required()) {
1984         kroute.flags = KVM_MSI_VALID_DEVID;
1985         kroute.u.msi.devid = pci_requester_id(dev);
1986     }
1987     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1988         kvm_irqchip_release_virq(s, virq);
1989         return -EINVAL;
1990     }
1991 
1992     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1993                                     vector, virq);
1994 
1995     kvm_add_routing_entry(s, &kroute);
1996     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1997     c->changes++;
1998 
1999     return virq;
2000 }
2001 
2002 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2003                                  PCIDevice *dev)
2004 {
2005     struct kvm_irq_routing_entry kroute = {};
2006 
2007     if (kvm_gsi_direct_mapping()) {
2008         return 0;
2009     }
2010 
2011     if (!kvm_irqchip_in_kernel()) {
2012         return -ENOSYS;
2013     }
2014 
2015     kroute.gsi = virq;
2016     kroute.type = KVM_IRQ_ROUTING_MSI;
2017     kroute.flags = 0;
2018     kroute.u.msi.address_lo = (uint32_t)msg.address;
2019     kroute.u.msi.address_hi = msg.address >> 32;
2020     kroute.u.msi.data = le32_to_cpu(msg.data);
2021     if (pci_available && kvm_msi_devid_required()) {
2022         kroute.flags = KVM_MSI_VALID_DEVID;
2023         kroute.u.msi.devid = pci_requester_id(dev);
2024     }
2025     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2026         return -EINVAL;
2027     }
2028 
2029     trace_kvm_irqchip_update_msi_route(virq);
2030 
2031     return kvm_update_routing_entry(s, &kroute);
2032 }
2033 
2034 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2035                                     EventNotifier *resample, int virq,
2036                                     bool assign)
2037 {
2038     int fd = event_notifier_get_fd(event);
2039     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2040 
2041     struct kvm_irqfd irqfd = {
2042         .fd = fd,
2043         .gsi = virq,
2044         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2045     };
2046 
2047     if (rfd != -1) {
2048         assert(assign);
2049         if (kvm_irqchip_is_split()) {
2050             /*
2051              * When the slow irqchip (e.g. IOAPIC) is in the
2052              * userspace, KVM kernel resamplefd will not work because
2053              * the EOI of the interrupt will be delivered to userspace
2054              * instead, so the KVM kernel resamplefd kick will be
2055              * skipped.  The userspace here mimics what the kernel
2056              * provides with resamplefd, remember the resamplefd and
2057              * kick it when we receive EOI of this IRQ.
2058              *
2059              * This is hackery because IOAPIC is mostly bypassed
2060              * (except EOI broadcasts) when irqfd is used.  However
2061              * this can bring much performance back for split irqchip
2062              * with INTx IRQs (for VFIO, this gives 93% perf of the
2063              * full fast path, which is 46% perf boost comparing to
2064              * the INTx slow path).
2065              */
2066             kvm_resample_fd_insert(virq, resample);
2067         } else {
2068             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2069             irqfd.resamplefd = rfd;
2070         }
2071     } else if (!assign) {
2072         if (kvm_irqchip_is_split()) {
2073             kvm_resample_fd_remove(virq);
2074         }
2075     }
2076 
2077     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2078 }
2079 
2080 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2081 {
2082     struct kvm_irq_routing_entry kroute = {};
2083     int virq;
2084 
2085     if (!kvm_gsi_routing_enabled()) {
2086         return -ENOSYS;
2087     }
2088 
2089     virq = kvm_irqchip_get_virq(s);
2090     if (virq < 0) {
2091         return virq;
2092     }
2093 
2094     kroute.gsi = virq;
2095     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2096     kroute.flags = 0;
2097     kroute.u.adapter.summary_addr = adapter->summary_addr;
2098     kroute.u.adapter.ind_addr = adapter->ind_addr;
2099     kroute.u.adapter.summary_offset = adapter->summary_offset;
2100     kroute.u.adapter.ind_offset = adapter->ind_offset;
2101     kroute.u.adapter.adapter_id = adapter->adapter_id;
2102 
2103     kvm_add_routing_entry(s, &kroute);
2104 
2105     return virq;
2106 }
2107 
2108 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2109 {
2110     struct kvm_irq_routing_entry kroute = {};
2111     int virq;
2112 
2113     if (!kvm_gsi_routing_enabled()) {
2114         return -ENOSYS;
2115     }
2116     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2117         return -ENOSYS;
2118     }
2119     virq = kvm_irqchip_get_virq(s);
2120     if (virq < 0) {
2121         return virq;
2122     }
2123 
2124     kroute.gsi = virq;
2125     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2126     kroute.flags = 0;
2127     kroute.u.hv_sint.vcpu = vcpu;
2128     kroute.u.hv_sint.sint = sint;
2129 
2130     kvm_add_routing_entry(s, &kroute);
2131     kvm_irqchip_commit_routes(s);
2132 
2133     return virq;
2134 }
2135 
2136 #else /* !KVM_CAP_IRQ_ROUTING */
2137 
2138 void kvm_init_irq_routing(KVMState *s)
2139 {
2140 }
2141 
2142 void kvm_irqchip_release_virq(KVMState *s, int virq)
2143 {
2144 }
2145 
2146 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2147 {
2148     abort();
2149 }
2150 
2151 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2152 {
2153     return -ENOSYS;
2154 }
2155 
2156 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2157 {
2158     return -ENOSYS;
2159 }
2160 
2161 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2162 {
2163     return -ENOSYS;
2164 }
2165 
2166 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2167                                     EventNotifier *resample, int virq,
2168                                     bool assign)
2169 {
2170     abort();
2171 }
2172 
2173 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2174 {
2175     return -ENOSYS;
2176 }
2177 #endif /* !KVM_CAP_IRQ_ROUTING */
2178 
2179 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2180                                        EventNotifier *rn, int virq)
2181 {
2182     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2183 }
2184 
2185 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2186                                           int virq)
2187 {
2188     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2189 }
2190 
2191 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2192                                    EventNotifier *rn, qemu_irq irq)
2193 {
2194     gpointer key, gsi;
2195     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2196 
2197     if (!found) {
2198         return -ENXIO;
2199     }
2200     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2201 }
2202 
2203 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2204                                       qemu_irq irq)
2205 {
2206     gpointer key, gsi;
2207     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2208 
2209     if (!found) {
2210         return -ENXIO;
2211     }
2212     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2213 }
2214 
2215 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2216 {
2217     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2218 }
2219 
2220 static void kvm_irqchip_create(KVMState *s)
2221 {
2222     int ret;
2223 
2224     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2225     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2226         ;
2227     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2228         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2229         if (ret < 0) {
2230             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2231             exit(1);
2232         }
2233     } else {
2234         return;
2235     }
2236 
2237     if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2238         fprintf(stderr, "kvm: irqfd not implemented\n");
2239         exit(1);
2240     }
2241 
2242     /* First probe and see if there's a arch-specific hook to create the
2243      * in-kernel irqchip for us */
2244     ret = kvm_arch_irqchip_create(s);
2245     if (ret == 0) {
2246         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2247             error_report("Split IRQ chip mode not supported.");
2248             exit(1);
2249         } else {
2250             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2251         }
2252     }
2253     if (ret < 0) {
2254         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2255         exit(1);
2256     }
2257 
2258     kvm_kernel_irqchip = true;
2259     /* If we have an in-kernel IRQ chip then we must have asynchronous
2260      * interrupt delivery (though the reverse is not necessarily true)
2261      */
2262     kvm_async_interrupts_allowed = true;
2263     kvm_halt_in_kernel_allowed = true;
2264 
2265     kvm_init_irq_routing(s);
2266 
2267     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2268 }
2269 
2270 /* Find number of supported CPUs using the recommended
2271  * procedure from the kernel API documentation to cope with
2272  * older kernels that may be missing capabilities.
2273  */
2274 static int kvm_recommended_vcpus(KVMState *s)
2275 {
2276     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2277     return (ret) ? ret : 4;
2278 }
2279 
2280 static int kvm_max_vcpus(KVMState *s)
2281 {
2282     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2283     return (ret) ? ret : kvm_recommended_vcpus(s);
2284 }
2285 
2286 static int kvm_max_vcpu_id(KVMState *s)
2287 {
2288     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2289     return (ret) ? ret : kvm_max_vcpus(s);
2290 }
2291 
2292 bool kvm_vcpu_id_is_valid(int vcpu_id)
2293 {
2294     KVMState *s = KVM_STATE(current_accel());
2295     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2296 }
2297 
2298 bool kvm_dirty_ring_enabled(void)
2299 {
2300     return kvm_state->kvm_dirty_ring_size ? true : false;
2301 }
2302 
2303 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2304                            strList *names, strList *targets, Error **errp);
2305 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2306 
2307 uint32_t kvm_dirty_ring_size(void)
2308 {
2309     return kvm_state->kvm_dirty_ring_size;
2310 }
2311 
2312 static int kvm_init(MachineState *ms)
2313 {
2314     MachineClass *mc = MACHINE_GET_CLASS(ms);
2315     static const char upgrade_note[] =
2316         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2317         "(see http://sourceforge.net/projects/kvm).\n";
2318     const struct {
2319         const char *name;
2320         int num;
2321     } num_cpus[] = {
2322         { "SMP",          ms->smp.cpus },
2323         { "hotpluggable", ms->smp.max_cpus },
2324         { /* end of list */ }
2325     }, *nc = num_cpus;
2326     int soft_vcpus_limit, hard_vcpus_limit;
2327     KVMState *s;
2328     const KVMCapabilityInfo *missing_cap;
2329     int ret;
2330     int type;
2331     uint64_t dirty_log_manual_caps;
2332 
2333     qemu_mutex_init(&kml_slots_lock);
2334 
2335     s = KVM_STATE(ms->accelerator);
2336 
2337     /*
2338      * On systems where the kernel can support different base page
2339      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2340      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2341      * page size for the system though.
2342      */
2343     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2344 
2345     s->sigmask_len = 8;
2346     accel_blocker_init();
2347 
2348 #ifdef KVM_CAP_SET_GUEST_DEBUG
2349     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2350 #endif
2351     QLIST_INIT(&s->kvm_parked_vcpus);
2352     s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2353     if (s->fd == -1) {
2354         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2355         ret = -errno;
2356         goto err;
2357     }
2358 
2359     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2360     if (ret < KVM_API_VERSION) {
2361         if (ret >= 0) {
2362             ret = -EINVAL;
2363         }
2364         fprintf(stderr, "kvm version too old\n");
2365         goto err;
2366     }
2367 
2368     if (ret > KVM_API_VERSION) {
2369         ret = -EINVAL;
2370         fprintf(stderr, "kvm version not supported\n");
2371         goto err;
2372     }
2373 
2374     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2375     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2376 
2377     /* If unspecified, use the default value */
2378     if (!s->nr_slots) {
2379         s->nr_slots = 32;
2380     }
2381 
2382     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2383     if (s->nr_as <= 1) {
2384         s->nr_as = 1;
2385     }
2386     s->as = g_new0(struct KVMAs, s->nr_as);
2387 
2388     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2389         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2390                                                             "kvm-type",
2391                                                             &error_abort);
2392         type = mc->kvm_type(ms, kvm_type);
2393     } else if (mc->kvm_type) {
2394         type = mc->kvm_type(ms, NULL);
2395     } else {
2396         type = kvm_arch_get_default_type(ms);
2397     }
2398 
2399     if (type < 0) {
2400         ret = -EINVAL;
2401         goto err;
2402     }
2403 
2404     do {
2405         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2406     } while (ret == -EINTR);
2407 
2408     if (ret < 0) {
2409         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2410                 strerror(-ret));
2411 
2412 #ifdef TARGET_S390X
2413         if (ret == -EINVAL) {
2414             fprintf(stderr,
2415                     "Host kernel setup problem detected. Please verify:\n");
2416             fprintf(stderr, "- for kernels supporting the switch_amode or"
2417                     " user_mode parameters, whether\n");
2418             fprintf(stderr,
2419                     "  user space is running in primary address space\n");
2420             fprintf(stderr,
2421                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2422                     "whether it is enabled\n");
2423         }
2424 #elif defined(TARGET_PPC)
2425         if (ret == -EINVAL) {
2426             fprintf(stderr,
2427                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2428                     (type == 2) ? "pr" : "hv");
2429         }
2430 #endif
2431         goto err;
2432     }
2433 
2434     s->vmfd = ret;
2435 
2436     /* check the vcpu limits */
2437     soft_vcpus_limit = kvm_recommended_vcpus(s);
2438     hard_vcpus_limit = kvm_max_vcpus(s);
2439 
2440     while (nc->name) {
2441         if (nc->num > soft_vcpus_limit) {
2442             warn_report("Number of %s cpus requested (%d) exceeds "
2443                         "the recommended cpus supported by KVM (%d)",
2444                         nc->name, nc->num, soft_vcpus_limit);
2445 
2446             if (nc->num > hard_vcpus_limit) {
2447                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2448                         "the maximum cpus supported by KVM (%d)\n",
2449                         nc->name, nc->num, hard_vcpus_limit);
2450                 exit(1);
2451             }
2452         }
2453         nc++;
2454     }
2455 
2456     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2457     if (!missing_cap) {
2458         missing_cap =
2459             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2460     }
2461     if (missing_cap) {
2462         ret = -EINVAL;
2463         fprintf(stderr, "kvm does not support %s\n%s",
2464                 missing_cap->name, upgrade_note);
2465         goto err;
2466     }
2467 
2468     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2469     s->coalesced_pio = s->coalesced_mmio &&
2470                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2471 
2472     /*
2473      * Enable KVM dirty ring if supported, otherwise fall back to
2474      * dirty logging mode
2475      */
2476     ret = kvm_dirty_ring_init(s);
2477     if (ret < 0) {
2478         goto err;
2479     }
2480 
2481     /*
2482      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2483      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2484      * page is wr-protected initially, which is against how kvm dirty ring is
2485      * usage - kvm dirty ring requires all pages are wr-protected at the very
2486      * beginning.  Enabling this feature for dirty ring causes data corruption.
2487      *
2488      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2489      * we may expect a higher stall time when starting the migration.  In the
2490      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2491      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2492      * guest pages.
2493      */
2494     if (!s->kvm_dirty_ring_size) {
2495         dirty_log_manual_caps =
2496             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2497         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2498                                   KVM_DIRTY_LOG_INITIALLY_SET);
2499         s->manual_dirty_log_protect = dirty_log_manual_caps;
2500         if (dirty_log_manual_caps) {
2501             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2502                                     dirty_log_manual_caps);
2503             if (ret) {
2504                 warn_report("Trying to enable capability %"PRIu64" of "
2505                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2506                             "Falling back to the legacy mode. ",
2507                             dirty_log_manual_caps);
2508                 s->manual_dirty_log_protect = 0;
2509             }
2510         }
2511     }
2512 
2513 #ifdef KVM_CAP_VCPU_EVENTS
2514     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2515 #endif
2516     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2517 
2518     s->irq_set_ioctl = KVM_IRQ_LINE;
2519     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2520         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2521     }
2522 
2523     kvm_readonly_mem_allowed =
2524         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2525 
2526     kvm_resamplefds_allowed =
2527         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2528 
2529     kvm_vm_attributes_allowed =
2530         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2531 
2532 #ifdef KVM_CAP_SET_GUEST_DEBUG
2533     kvm_has_guest_debug =
2534         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2535 #endif
2536 
2537     kvm_sstep_flags = 0;
2538     if (kvm_has_guest_debug) {
2539         kvm_sstep_flags = SSTEP_ENABLE;
2540 
2541 #if defined KVM_CAP_SET_GUEST_DEBUG2
2542         int guest_debug_flags =
2543             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2544 
2545         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2546             kvm_sstep_flags |= SSTEP_NOIRQ;
2547         }
2548 #endif
2549     }
2550 
2551     kvm_state = s;
2552 
2553     ret = kvm_arch_init(ms, s);
2554     if (ret < 0) {
2555         goto err;
2556     }
2557 
2558     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2559         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2560     }
2561 
2562     qemu_register_reset(kvm_unpoison_all, NULL);
2563 
2564     if (s->kernel_irqchip_allowed) {
2565         kvm_irqchip_create(s);
2566     }
2567 
2568     s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2569     s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2570     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2571     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2572 
2573     kvm_memory_listener_register(s, &s->memory_listener,
2574                                  &address_space_memory, 0, "kvm-memory");
2575     memory_listener_register(&kvm_io_listener,
2576                              &address_space_io);
2577 
2578     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2579     if (!s->sync_mmu) {
2580         ret = ram_block_discard_disable(true);
2581         assert(!ret);
2582     }
2583 
2584     if (s->kvm_dirty_ring_size) {
2585         kvm_dirty_ring_reaper_init(s);
2586     }
2587 
2588     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2589         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2590                             query_stats_schemas_cb);
2591     }
2592 
2593     return 0;
2594 
2595 err:
2596     assert(ret < 0);
2597     if (s->vmfd >= 0) {
2598         close(s->vmfd);
2599     }
2600     if (s->fd != -1) {
2601         close(s->fd);
2602     }
2603     g_free(s->as);
2604     g_free(s->memory_listener.slots);
2605 
2606     return ret;
2607 }
2608 
2609 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2610 {
2611     s->sigmask_len = sigmask_len;
2612 }
2613 
2614 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2615                           int size, uint32_t count)
2616 {
2617     int i;
2618     uint8_t *ptr = data;
2619 
2620     for (i = 0; i < count; i++) {
2621         address_space_rw(&address_space_io, port, attrs,
2622                          ptr, size,
2623                          direction == KVM_EXIT_IO_OUT);
2624         ptr += size;
2625     }
2626 }
2627 
2628 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2629 {
2630     int i;
2631 
2632     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2633             run->internal.suberror);
2634 
2635     for (i = 0; i < run->internal.ndata; ++i) {
2636         fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2637                 i, (uint64_t)run->internal.data[i]);
2638     }
2639     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2640         fprintf(stderr, "emulation failure\n");
2641         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2642             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2643             return EXCP_INTERRUPT;
2644         }
2645     }
2646     /* FIXME: Should trigger a qmp message to let management know
2647      * something went wrong.
2648      */
2649     return -1;
2650 }
2651 
2652 void kvm_flush_coalesced_mmio_buffer(void)
2653 {
2654     KVMState *s = kvm_state;
2655 
2656     if (!s || s->coalesced_flush_in_progress) {
2657         return;
2658     }
2659 
2660     s->coalesced_flush_in_progress = true;
2661 
2662     if (s->coalesced_mmio_ring) {
2663         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2664         while (ring->first != ring->last) {
2665             struct kvm_coalesced_mmio *ent;
2666 
2667             ent = &ring->coalesced_mmio[ring->first];
2668 
2669             if (ent->pio == 1) {
2670                 address_space_write(&address_space_io, ent->phys_addr,
2671                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2672                                     ent->len);
2673             } else {
2674                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2675             }
2676             smp_wmb();
2677             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2678         }
2679     }
2680 
2681     s->coalesced_flush_in_progress = false;
2682 }
2683 
2684 bool kvm_cpu_check_are_resettable(void)
2685 {
2686     return kvm_arch_cpu_check_are_resettable();
2687 }
2688 
2689 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2690 {
2691     if (!cpu->vcpu_dirty) {
2692         int ret = kvm_arch_get_registers(cpu);
2693         if (ret) {
2694             error_report("Failed to get registers: %s", strerror(-ret));
2695             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2696             vm_stop(RUN_STATE_INTERNAL_ERROR);
2697         }
2698 
2699         cpu->vcpu_dirty = true;
2700     }
2701 }
2702 
2703 void kvm_cpu_synchronize_state(CPUState *cpu)
2704 {
2705     if (!cpu->vcpu_dirty) {
2706         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2707     }
2708 }
2709 
2710 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2711 {
2712     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2713     if (ret) {
2714         error_report("Failed to put registers after reset: %s", strerror(-ret));
2715         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2716         vm_stop(RUN_STATE_INTERNAL_ERROR);
2717     }
2718 
2719     cpu->vcpu_dirty = false;
2720 }
2721 
2722 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2723 {
2724     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2725 }
2726 
2727 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2728 {
2729     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2730     if (ret) {
2731         error_report("Failed to put registers after init: %s", strerror(-ret));
2732         exit(1);
2733     }
2734 
2735     cpu->vcpu_dirty = false;
2736 }
2737 
2738 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2739 {
2740     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2741 }
2742 
2743 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2744 {
2745     cpu->vcpu_dirty = true;
2746 }
2747 
2748 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2749 {
2750     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2751 }
2752 
2753 #ifdef KVM_HAVE_MCE_INJECTION
2754 static __thread void *pending_sigbus_addr;
2755 static __thread int pending_sigbus_code;
2756 static __thread bool have_sigbus_pending;
2757 #endif
2758 
2759 static void kvm_cpu_kick(CPUState *cpu)
2760 {
2761     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2762 }
2763 
2764 static void kvm_cpu_kick_self(void)
2765 {
2766     if (kvm_immediate_exit) {
2767         kvm_cpu_kick(current_cpu);
2768     } else {
2769         qemu_cpu_kick_self();
2770     }
2771 }
2772 
2773 static void kvm_eat_signals(CPUState *cpu)
2774 {
2775     struct timespec ts = { 0, 0 };
2776     siginfo_t siginfo;
2777     sigset_t waitset;
2778     sigset_t chkset;
2779     int r;
2780 
2781     if (kvm_immediate_exit) {
2782         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2783         /* Write kvm_run->immediate_exit before the cpu->exit_request
2784          * write in kvm_cpu_exec.
2785          */
2786         smp_wmb();
2787         return;
2788     }
2789 
2790     sigemptyset(&waitset);
2791     sigaddset(&waitset, SIG_IPI);
2792 
2793     do {
2794         r = sigtimedwait(&waitset, &siginfo, &ts);
2795         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2796             perror("sigtimedwait");
2797             exit(1);
2798         }
2799 
2800         r = sigpending(&chkset);
2801         if (r == -1) {
2802             perror("sigpending");
2803             exit(1);
2804         }
2805     } while (sigismember(&chkset, SIG_IPI));
2806 }
2807 
2808 int kvm_cpu_exec(CPUState *cpu)
2809 {
2810     struct kvm_run *run = cpu->kvm_run;
2811     int ret, run_ret;
2812 
2813     trace_kvm_cpu_exec();
2814 
2815     if (kvm_arch_process_async_events(cpu)) {
2816         qatomic_set(&cpu->exit_request, 0);
2817         return EXCP_HLT;
2818     }
2819 
2820     bql_unlock();
2821     cpu_exec_start(cpu);
2822 
2823     do {
2824         MemTxAttrs attrs;
2825 
2826         if (cpu->vcpu_dirty) {
2827             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2828             if (ret) {
2829                 error_report("Failed to put registers after init: %s",
2830                              strerror(-ret));
2831                 ret = -1;
2832                 break;
2833             }
2834 
2835             cpu->vcpu_dirty = false;
2836         }
2837 
2838         kvm_arch_pre_run(cpu, run);
2839         if (qatomic_read(&cpu->exit_request)) {
2840 	    trace_kvm_interrupt_exit_request();
2841             /*
2842              * KVM requires us to reenter the kernel after IO exits to complete
2843              * instruction emulation. This self-signal will ensure that we
2844              * leave ASAP again.
2845              */
2846             kvm_cpu_kick_self();
2847         }
2848 
2849         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2850          * Matching barrier in kvm_eat_signals.
2851          */
2852         smp_rmb();
2853 
2854         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2855 
2856         attrs = kvm_arch_post_run(cpu, run);
2857 
2858 #ifdef KVM_HAVE_MCE_INJECTION
2859         if (unlikely(have_sigbus_pending)) {
2860             bql_lock();
2861             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2862                                     pending_sigbus_addr);
2863             have_sigbus_pending = false;
2864             bql_unlock();
2865         }
2866 #endif
2867 
2868         if (run_ret < 0) {
2869             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2870                 trace_kvm_io_window_exit();
2871                 kvm_eat_signals(cpu);
2872                 ret = EXCP_INTERRUPT;
2873                 break;
2874             }
2875             fprintf(stderr, "error: kvm run failed %s\n",
2876                     strerror(-run_ret));
2877 #ifdef TARGET_PPC
2878             if (run_ret == -EBUSY) {
2879                 fprintf(stderr,
2880                         "This is probably because your SMT is enabled.\n"
2881                         "VCPU can only run on primary threads with all "
2882                         "secondary threads offline.\n");
2883             }
2884 #endif
2885             ret = -1;
2886             break;
2887         }
2888 
2889         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2890         switch (run->exit_reason) {
2891         case KVM_EXIT_IO:
2892             /* Called outside BQL */
2893             kvm_handle_io(run->io.port, attrs,
2894                           (uint8_t *)run + run->io.data_offset,
2895                           run->io.direction,
2896                           run->io.size,
2897                           run->io.count);
2898             ret = 0;
2899             break;
2900         case KVM_EXIT_MMIO:
2901             /* Called outside BQL */
2902             address_space_rw(&address_space_memory,
2903                              run->mmio.phys_addr, attrs,
2904                              run->mmio.data,
2905                              run->mmio.len,
2906                              run->mmio.is_write);
2907             ret = 0;
2908             break;
2909         case KVM_EXIT_IRQ_WINDOW_OPEN:
2910             ret = EXCP_INTERRUPT;
2911             break;
2912         case KVM_EXIT_SHUTDOWN:
2913             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2914             ret = EXCP_INTERRUPT;
2915             break;
2916         case KVM_EXIT_UNKNOWN:
2917             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2918                     (uint64_t)run->hw.hardware_exit_reason);
2919             ret = -1;
2920             break;
2921         case KVM_EXIT_INTERNAL_ERROR:
2922             ret = kvm_handle_internal_error(cpu, run);
2923             break;
2924         case KVM_EXIT_DIRTY_RING_FULL:
2925             /*
2926              * We shouldn't continue if the dirty ring of this vcpu is
2927              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2928              */
2929             trace_kvm_dirty_ring_full(cpu->cpu_index);
2930             bql_lock();
2931             /*
2932              * We throttle vCPU by making it sleep once it exit from kernel
2933              * due to dirty ring full. In the dirtylimit scenario, reaping
2934              * all vCPUs after a single vCPU dirty ring get full result in
2935              * the miss of sleep, so just reap the ring-fulled vCPU.
2936              */
2937             if (dirtylimit_in_service()) {
2938                 kvm_dirty_ring_reap(kvm_state, cpu);
2939             } else {
2940                 kvm_dirty_ring_reap(kvm_state, NULL);
2941             }
2942             bql_unlock();
2943             dirtylimit_vcpu_execute(cpu);
2944             ret = 0;
2945             break;
2946         case KVM_EXIT_SYSTEM_EVENT:
2947             trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
2948             switch (run->system_event.type) {
2949             case KVM_SYSTEM_EVENT_SHUTDOWN:
2950                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2951                 ret = EXCP_INTERRUPT;
2952                 break;
2953             case KVM_SYSTEM_EVENT_RESET:
2954                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2955                 ret = EXCP_INTERRUPT;
2956                 break;
2957             case KVM_SYSTEM_EVENT_CRASH:
2958                 kvm_cpu_synchronize_state(cpu);
2959                 bql_lock();
2960                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2961                 bql_unlock();
2962                 ret = 0;
2963                 break;
2964             default:
2965                 ret = kvm_arch_handle_exit(cpu, run);
2966                 break;
2967             }
2968             break;
2969         default:
2970             ret = kvm_arch_handle_exit(cpu, run);
2971             break;
2972         }
2973     } while (ret == 0);
2974 
2975     cpu_exec_end(cpu);
2976     bql_lock();
2977 
2978     if (ret < 0) {
2979         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2980         vm_stop(RUN_STATE_INTERNAL_ERROR);
2981     }
2982 
2983     qatomic_set(&cpu->exit_request, 0);
2984     return ret;
2985 }
2986 
2987 int kvm_ioctl(KVMState *s, int type, ...)
2988 {
2989     int ret;
2990     void *arg;
2991     va_list ap;
2992 
2993     va_start(ap, type);
2994     arg = va_arg(ap, void *);
2995     va_end(ap);
2996 
2997     trace_kvm_ioctl(type, arg);
2998     ret = ioctl(s->fd, type, arg);
2999     if (ret == -1) {
3000         ret = -errno;
3001     }
3002     return ret;
3003 }
3004 
3005 int kvm_vm_ioctl(KVMState *s, int type, ...)
3006 {
3007     int ret;
3008     void *arg;
3009     va_list ap;
3010 
3011     va_start(ap, type);
3012     arg = va_arg(ap, void *);
3013     va_end(ap);
3014 
3015     trace_kvm_vm_ioctl(type, arg);
3016     accel_ioctl_begin();
3017     ret = ioctl(s->vmfd, type, arg);
3018     accel_ioctl_end();
3019     if (ret == -1) {
3020         ret = -errno;
3021     }
3022     return ret;
3023 }
3024 
3025 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3026 {
3027     int ret;
3028     void *arg;
3029     va_list ap;
3030 
3031     va_start(ap, type);
3032     arg = va_arg(ap, void *);
3033     va_end(ap);
3034 
3035     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3036     accel_cpu_ioctl_begin(cpu);
3037     ret = ioctl(cpu->kvm_fd, type, arg);
3038     accel_cpu_ioctl_end(cpu);
3039     if (ret == -1) {
3040         ret = -errno;
3041     }
3042     return ret;
3043 }
3044 
3045 int kvm_device_ioctl(int fd, int type, ...)
3046 {
3047     int ret;
3048     void *arg;
3049     va_list ap;
3050 
3051     va_start(ap, type);
3052     arg = va_arg(ap, void *);
3053     va_end(ap);
3054 
3055     trace_kvm_device_ioctl(fd, type, arg);
3056     accel_ioctl_begin();
3057     ret = ioctl(fd, type, arg);
3058     accel_ioctl_end();
3059     if (ret == -1) {
3060         ret = -errno;
3061     }
3062     return ret;
3063 }
3064 
3065 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3066 {
3067     int ret;
3068     struct kvm_device_attr attribute = {
3069         .group = group,
3070         .attr = attr,
3071     };
3072 
3073     if (!kvm_vm_attributes_allowed) {
3074         return 0;
3075     }
3076 
3077     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3078     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3079     return ret ? 0 : 1;
3080 }
3081 
3082 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3083 {
3084     struct kvm_device_attr attribute = {
3085         .group = group,
3086         .attr = attr,
3087         .flags = 0,
3088     };
3089 
3090     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3091 }
3092 
3093 int kvm_device_access(int fd, int group, uint64_t attr,
3094                       void *val, bool write, Error **errp)
3095 {
3096     struct kvm_device_attr kvmattr;
3097     int err;
3098 
3099     kvmattr.flags = 0;
3100     kvmattr.group = group;
3101     kvmattr.attr = attr;
3102     kvmattr.addr = (uintptr_t)val;
3103 
3104     err = kvm_device_ioctl(fd,
3105                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3106                            &kvmattr);
3107     if (err < 0) {
3108         error_setg_errno(errp, -err,
3109                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3110                          "attr 0x%016" PRIx64,
3111                          write ? "SET" : "GET", group, attr);
3112     }
3113     return err;
3114 }
3115 
3116 bool kvm_has_sync_mmu(void)
3117 {
3118     return kvm_state->sync_mmu;
3119 }
3120 
3121 int kvm_has_vcpu_events(void)
3122 {
3123     return kvm_state->vcpu_events;
3124 }
3125 
3126 int kvm_max_nested_state_length(void)
3127 {
3128     return kvm_state->max_nested_state_len;
3129 }
3130 
3131 int kvm_has_gsi_routing(void)
3132 {
3133 #ifdef KVM_CAP_IRQ_ROUTING
3134     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3135 #else
3136     return false;
3137 #endif
3138 }
3139 
3140 bool kvm_arm_supports_user_irq(void)
3141 {
3142     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3143 }
3144 
3145 #ifdef KVM_CAP_SET_GUEST_DEBUG
3146 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3147 {
3148     struct kvm_sw_breakpoint *bp;
3149 
3150     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3151         if (bp->pc == pc) {
3152             return bp;
3153         }
3154     }
3155     return NULL;
3156 }
3157 
3158 int kvm_sw_breakpoints_active(CPUState *cpu)
3159 {
3160     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3161 }
3162 
3163 struct kvm_set_guest_debug_data {
3164     struct kvm_guest_debug dbg;
3165     int err;
3166 };
3167 
3168 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3169 {
3170     struct kvm_set_guest_debug_data *dbg_data =
3171         (struct kvm_set_guest_debug_data *) data.host_ptr;
3172 
3173     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3174                                    &dbg_data->dbg);
3175 }
3176 
3177 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3178 {
3179     struct kvm_set_guest_debug_data data;
3180 
3181     data.dbg.control = reinject_trap;
3182 
3183     if (cpu->singlestep_enabled) {
3184         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3185 
3186         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3187             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3188         }
3189     }
3190     kvm_arch_update_guest_debug(cpu, &data.dbg);
3191 
3192     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3193                RUN_ON_CPU_HOST_PTR(&data));
3194     return data.err;
3195 }
3196 
3197 bool kvm_supports_guest_debug(void)
3198 {
3199     /* probed during kvm_init() */
3200     return kvm_has_guest_debug;
3201 }
3202 
3203 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3204 {
3205     struct kvm_sw_breakpoint *bp;
3206     int err;
3207 
3208     if (type == GDB_BREAKPOINT_SW) {
3209         bp = kvm_find_sw_breakpoint(cpu, addr);
3210         if (bp) {
3211             bp->use_count++;
3212             return 0;
3213         }
3214 
3215         bp = g_new(struct kvm_sw_breakpoint, 1);
3216         bp->pc = addr;
3217         bp->use_count = 1;
3218         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3219         if (err) {
3220             g_free(bp);
3221             return err;
3222         }
3223 
3224         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3225     } else {
3226         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3227         if (err) {
3228             return err;
3229         }
3230     }
3231 
3232     CPU_FOREACH(cpu) {
3233         err = kvm_update_guest_debug(cpu, 0);
3234         if (err) {
3235             return err;
3236         }
3237     }
3238     return 0;
3239 }
3240 
3241 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3242 {
3243     struct kvm_sw_breakpoint *bp;
3244     int err;
3245 
3246     if (type == GDB_BREAKPOINT_SW) {
3247         bp = kvm_find_sw_breakpoint(cpu, addr);
3248         if (!bp) {
3249             return -ENOENT;
3250         }
3251 
3252         if (bp->use_count > 1) {
3253             bp->use_count--;
3254             return 0;
3255         }
3256 
3257         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3258         if (err) {
3259             return err;
3260         }
3261 
3262         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3263         g_free(bp);
3264     } else {
3265         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3266         if (err) {
3267             return err;
3268         }
3269     }
3270 
3271     CPU_FOREACH(cpu) {
3272         err = kvm_update_guest_debug(cpu, 0);
3273         if (err) {
3274             return err;
3275         }
3276     }
3277     return 0;
3278 }
3279 
3280 void kvm_remove_all_breakpoints(CPUState *cpu)
3281 {
3282     struct kvm_sw_breakpoint *bp, *next;
3283     KVMState *s = cpu->kvm_state;
3284     CPUState *tmpcpu;
3285 
3286     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3287         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3288             /* Try harder to find a CPU that currently sees the breakpoint. */
3289             CPU_FOREACH(tmpcpu) {
3290                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3291                     break;
3292                 }
3293             }
3294         }
3295         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3296         g_free(bp);
3297     }
3298     kvm_arch_remove_all_hw_breakpoints();
3299 
3300     CPU_FOREACH(cpu) {
3301         kvm_update_guest_debug(cpu, 0);
3302     }
3303 }
3304 
3305 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3306 
3307 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3308 {
3309     KVMState *s = kvm_state;
3310     struct kvm_signal_mask *sigmask;
3311     int r;
3312 
3313     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3314 
3315     sigmask->len = s->sigmask_len;
3316     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3317     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3318     g_free(sigmask);
3319 
3320     return r;
3321 }
3322 
3323 static void kvm_ipi_signal(int sig)
3324 {
3325     if (current_cpu) {
3326         assert(kvm_immediate_exit);
3327         kvm_cpu_kick(current_cpu);
3328     }
3329 }
3330 
3331 void kvm_init_cpu_signals(CPUState *cpu)
3332 {
3333     int r;
3334     sigset_t set;
3335     struct sigaction sigact;
3336 
3337     memset(&sigact, 0, sizeof(sigact));
3338     sigact.sa_handler = kvm_ipi_signal;
3339     sigaction(SIG_IPI, &sigact, NULL);
3340 
3341     pthread_sigmask(SIG_BLOCK, NULL, &set);
3342 #if defined KVM_HAVE_MCE_INJECTION
3343     sigdelset(&set, SIGBUS);
3344     pthread_sigmask(SIG_SETMASK, &set, NULL);
3345 #endif
3346     sigdelset(&set, SIG_IPI);
3347     if (kvm_immediate_exit) {
3348         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3349     } else {
3350         r = kvm_set_signal_mask(cpu, &set);
3351     }
3352     if (r) {
3353         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3354         exit(1);
3355     }
3356 }
3357 
3358 /* Called asynchronously in VCPU thread.  */
3359 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3360 {
3361 #ifdef KVM_HAVE_MCE_INJECTION
3362     if (have_sigbus_pending) {
3363         return 1;
3364     }
3365     have_sigbus_pending = true;
3366     pending_sigbus_addr = addr;
3367     pending_sigbus_code = code;
3368     qatomic_set(&cpu->exit_request, 1);
3369     return 0;
3370 #else
3371     return 1;
3372 #endif
3373 }
3374 
3375 /* Called synchronously (via signalfd) in main thread.  */
3376 int kvm_on_sigbus(int code, void *addr)
3377 {
3378 #ifdef KVM_HAVE_MCE_INJECTION
3379     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3380      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3381      * we can only get action optional here.
3382      */
3383     assert(code != BUS_MCEERR_AR);
3384     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3385     return 0;
3386 #else
3387     return 1;
3388 #endif
3389 }
3390 
3391 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3392 {
3393     int ret;
3394     struct kvm_create_device create_dev;
3395 
3396     create_dev.type = type;
3397     create_dev.fd = -1;
3398     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3399 
3400     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3401         return -ENOTSUP;
3402     }
3403 
3404     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3405     if (ret) {
3406         return ret;
3407     }
3408 
3409     return test ? 0 : create_dev.fd;
3410 }
3411 
3412 bool kvm_device_supported(int vmfd, uint64_t type)
3413 {
3414     struct kvm_create_device create_dev = {
3415         .type = type,
3416         .fd = -1,
3417         .flags = KVM_CREATE_DEVICE_TEST,
3418     };
3419 
3420     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3421         return false;
3422     }
3423 
3424     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3425 }
3426 
3427 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3428 {
3429     struct kvm_one_reg reg;
3430     int r;
3431 
3432     reg.id = id;
3433     reg.addr = (uintptr_t) source;
3434     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3435     if (r) {
3436         trace_kvm_failed_reg_set(id, strerror(-r));
3437     }
3438     return r;
3439 }
3440 
3441 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3442 {
3443     struct kvm_one_reg reg;
3444     int r;
3445 
3446     reg.id = id;
3447     reg.addr = (uintptr_t) target;
3448     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3449     if (r) {
3450         trace_kvm_failed_reg_get(id, strerror(-r));
3451     }
3452     return r;
3453 }
3454 
3455 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3456                                  hwaddr start_addr, hwaddr size)
3457 {
3458     KVMState *kvm = KVM_STATE(ms->accelerator);
3459     int i;
3460 
3461     for (i = 0; i < kvm->nr_as; ++i) {
3462         if (kvm->as[i].as == as && kvm->as[i].ml) {
3463             size = MIN(kvm_max_slot_size, size);
3464             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3465                                                     start_addr, size);
3466         }
3467     }
3468 
3469     return false;
3470 }
3471 
3472 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3473                                    const char *name, void *opaque,
3474                                    Error **errp)
3475 {
3476     KVMState *s = KVM_STATE(obj);
3477     int64_t value = s->kvm_shadow_mem;
3478 
3479     visit_type_int(v, name, &value, errp);
3480 }
3481 
3482 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3483                                    const char *name, void *opaque,
3484                                    Error **errp)
3485 {
3486     KVMState *s = KVM_STATE(obj);
3487     int64_t value;
3488 
3489     if (s->fd != -1) {
3490         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3491         return;
3492     }
3493 
3494     if (!visit_type_int(v, name, &value, errp)) {
3495         return;
3496     }
3497 
3498     s->kvm_shadow_mem = value;
3499 }
3500 
3501 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3502                                    const char *name, void *opaque,
3503                                    Error **errp)
3504 {
3505     KVMState *s = KVM_STATE(obj);
3506     OnOffSplit mode;
3507 
3508     if (s->fd != -1) {
3509         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3510         return;
3511     }
3512 
3513     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3514         return;
3515     }
3516     switch (mode) {
3517     case ON_OFF_SPLIT_ON:
3518         s->kernel_irqchip_allowed = true;
3519         s->kernel_irqchip_required = true;
3520         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3521         break;
3522     case ON_OFF_SPLIT_OFF:
3523         s->kernel_irqchip_allowed = false;
3524         s->kernel_irqchip_required = false;
3525         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3526         break;
3527     case ON_OFF_SPLIT_SPLIT:
3528         s->kernel_irqchip_allowed = true;
3529         s->kernel_irqchip_required = true;
3530         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3531         break;
3532     default:
3533         /* The value was checked in visit_type_OnOffSplit() above. If
3534          * we get here, then something is wrong in QEMU.
3535          */
3536         abort();
3537     }
3538 }
3539 
3540 bool kvm_kernel_irqchip_allowed(void)
3541 {
3542     return kvm_state->kernel_irqchip_allowed;
3543 }
3544 
3545 bool kvm_kernel_irqchip_required(void)
3546 {
3547     return kvm_state->kernel_irqchip_required;
3548 }
3549 
3550 bool kvm_kernel_irqchip_split(void)
3551 {
3552     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3553 }
3554 
3555 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3556                                     const char *name, void *opaque,
3557                                     Error **errp)
3558 {
3559     KVMState *s = KVM_STATE(obj);
3560     uint32_t value = s->kvm_dirty_ring_size;
3561 
3562     visit_type_uint32(v, name, &value, errp);
3563 }
3564 
3565 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3566                                     const char *name, void *opaque,
3567                                     Error **errp)
3568 {
3569     KVMState *s = KVM_STATE(obj);
3570     uint32_t value;
3571 
3572     if (s->fd != -1) {
3573         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3574         return;
3575     }
3576 
3577     if (!visit_type_uint32(v, name, &value, errp)) {
3578         return;
3579     }
3580     if (value & (value - 1)) {
3581         error_setg(errp, "dirty-ring-size must be a power of two.");
3582         return;
3583     }
3584 
3585     s->kvm_dirty_ring_size = value;
3586 }
3587 
3588 static char *kvm_get_device(Object *obj,
3589                             Error **errp G_GNUC_UNUSED)
3590 {
3591     KVMState *s = KVM_STATE(obj);
3592 
3593     return g_strdup(s->device);
3594 }
3595 
3596 static void kvm_set_device(Object *obj,
3597                            const char *value,
3598                            Error **errp G_GNUC_UNUSED)
3599 {
3600     KVMState *s = KVM_STATE(obj);
3601 
3602     g_free(s->device);
3603     s->device = g_strdup(value);
3604 }
3605 
3606 static void kvm_accel_instance_init(Object *obj)
3607 {
3608     KVMState *s = KVM_STATE(obj);
3609 
3610     s->fd = -1;
3611     s->vmfd = -1;
3612     s->kvm_shadow_mem = -1;
3613     s->kernel_irqchip_allowed = true;
3614     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3615     /* KVM dirty ring is by default off */
3616     s->kvm_dirty_ring_size = 0;
3617     s->kvm_dirty_ring_with_bitmap = false;
3618     s->kvm_eager_split_size = 0;
3619     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3620     s->notify_window = 0;
3621     s->xen_version = 0;
3622     s->xen_gnttab_max_frames = 64;
3623     s->xen_evtchn_max_pirq = 256;
3624     s->device = NULL;
3625 }
3626 
3627 /**
3628  * kvm_gdbstub_sstep_flags():
3629  *
3630  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3631  * support is probed during kvm_init()
3632  */
3633 static int kvm_gdbstub_sstep_flags(void)
3634 {
3635     return kvm_sstep_flags;
3636 }
3637 
3638 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3639 {
3640     AccelClass *ac = ACCEL_CLASS(oc);
3641     ac->name = "KVM";
3642     ac->init_machine = kvm_init;
3643     ac->has_memory = kvm_accel_has_memory;
3644     ac->allowed = &kvm_allowed;
3645     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3646 
3647     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3648         NULL, kvm_set_kernel_irqchip,
3649         NULL, NULL);
3650     object_class_property_set_description(oc, "kernel-irqchip",
3651         "Configure KVM in-kernel irqchip");
3652 
3653     object_class_property_add(oc, "kvm-shadow-mem", "int",
3654         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3655         NULL, NULL);
3656     object_class_property_set_description(oc, "kvm-shadow-mem",
3657         "KVM shadow MMU size");
3658 
3659     object_class_property_add(oc, "dirty-ring-size", "uint32",
3660         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3661         NULL, NULL);
3662     object_class_property_set_description(oc, "dirty-ring-size",
3663         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3664 
3665     object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3666     object_class_property_set_description(oc, "device",
3667         "Path to the device node to use (default: /dev/kvm)");
3668 
3669     kvm_arch_accel_class_init(oc);
3670 }
3671 
3672 static const TypeInfo kvm_accel_type = {
3673     .name = TYPE_KVM_ACCEL,
3674     .parent = TYPE_ACCEL,
3675     .instance_init = kvm_accel_instance_init,
3676     .class_init = kvm_accel_class_init,
3677     .instance_size = sizeof(KVMState),
3678 };
3679 
3680 static void kvm_type_init(void)
3681 {
3682     type_register_static(&kvm_accel_type);
3683 }
3684 
3685 type_init(kvm_type_init);
3686 
3687 typedef struct StatsArgs {
3688     union StatsResultsType {
3689         StatsResultList **stats;
3690         StatsSchemaList **schema;
3691     } result;
3692     strList *names;
3693     Error **errp;
3694 } StatsArgs;
3695 
3696 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3697                                     uint64_t *stats_data,
3698                                     StatsList *stats_list,
3699                                     Error **errp)
3700 {
3701 
3702     Stats *stats;
3703     uint64List *val_list = NULL;
3704 
3705     /* Only add stats that we understand.  */
3706     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3707     case KVM_STATS_TYPE_CUMULATIVE:
3708     case KVM_STATS_TYPE_INSTANT:
3709     case KVM_STATS_TYPE_PEAK:
3710     case KVM_STATS_TYPE_LINEAR_HIST:
3711     case KVM_STATS_TYPE_LOG_HIST:
3712         break;
3713     default:
3714         return stats_list;
3715     }
3716 
3717     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3718     case KVM_STATS_UNIT_NONE:
3719     case KVM_STATS_UNIT_BYTES:
3720     case KVM_STATS_UNIT_CYCLES:
3721     case KVM_STATS_UNIT_SECONDS:
3722     case KVM_STATS_UNIT_BOOLEAN:
3723         break;
3724     default:
3725         return stats_list;
3726     }
3727 
3728     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3729     case KVM_STATS_BASE_POW10:
3730     case KVM_STATS_BASE_POW2:
3731         break;
3732     default:
3733         return stats_list;
3734     }
3735 
3736     /* Alloc and populate data list */
3737     stats = g_new0(Stats, 1);
3738     stats->name = g_strdup(pdesc->name);
3739     stats->value = g_new0(StatsValue, 1);;
3740 
3741     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3742         stats->value->u.boolean = *stats_data;
3743         stats->value->type = QTYPE_QBOOL;
3744     } else if (pdesc->size == 1) {
3745         stats->value->u.scalar = *stats_data;
3746         stats->value->type = QTYPE_QNUM;
3747     } else {
3748         int i;
3749         for (i = 0; i < pdesc->size; i++) {
3750             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3751         }
3752         stats->value->u.list = val_list;
3753         stats->value->type = QTYPE_QLIST;
3754     }
3755 
3756     QAPI_LIST_PREPEND(stats_list, stats);
3757     return stats_list;
3758 }
3759 
3760 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3761                                                  StatsSchemaValueList *list,
3762                                                  Error **errp)
3763 {
3764     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3765     schema_entry->value = g_new0(StatsSchemaValue, 1);
3766 
3767     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3768     case KVM_STATS_TYPE_CUMULATIVE:
3769         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3770         break;
3771     case KVM_STATS_TYPE_INSTANT:
3772         schema_entry->value->type = STATS_TYPE_INSTANT;
3773         break;
3774     case KVM_STATS_TYPE_PEAK:
3775         schema_entry->value->type = STATS_TYPE_PEAK;
3776         break;
3777     case KVM_STATS_TYPE_LINEAR_HIST:
3778         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3779         schema_entry->value->bucket_size = pdesc->bucket_size;
3780         schema_entry->value->has_bucket_size = true;
3781         break;
3782     case KVM_STATS_TYPE_LOG_HIST:
3783         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3784         break;
3785     default:
3786         goto exit;
3787     }
3788 
3789     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3790     case KVM_STATS_UNIT_NONE:
3791         break;
3792     case KVM_STATS_UNIT_BOOLEAN:
3793         schema_entry->value->has_unit = true;
3794         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3795         break;
3796     case KVM_STATS_UNIT_BYTES:
3797         schema_entry->value->has_unit = true;
3798         schema_entry->value->unit = STATS_UNIT_BYTES;
3799         break;
3800     case KVM_STATS_UNIT_CYCLES:
3801         schema_entry->value->has_unit = true;
3802         schema_entry->value->unit = STATS_UNIT_CYCLES;
3803         break;
3804     case KVM_STATS_UNIT_SECONDS:
3805         schema_entry->value->has_unit = true;
3806         schema_entry->value->unit = STATS_UNIT_SECONDS;
3807         break;
3808     default:
3809         goto exit;
3810     }
3811 
3812     schema_entry->value->exponent = pdesc->exponent;
3813     if (pdesc->exponent) {
3814         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3815         case KVM_STATS_BASE_POW10:
3816             schema_entry->value->has_base = true;
3817             schema_entry->value->base = 10;
3818             break;
3819         case KVM_STATS_BASE_POW2:
3820             schema_entry->value->has_base = true;
3821             schema_entry->value->base = 2;
3822             break;
3823         default:
3824             goto exit;
3825         }
3826     }
3827 
3828     schema_entry->value->name = g_strdup(pdesc->name);
3829     schema_entry->next = list;
3830     return schema_entry;
3831 exit:
3832     g_free(schema_entry->value);
3833     g_free(schema_entry);
3834     return list;
3835 }
3836 
3837 /* Cached stats descriptors */
3838 typedef struct StatsDescriptors {
3839     const char *ident; /* cache key, currently the StatsTarget */
3840     struct kvm_stats_desc *kvm_stats_desc;
3841     struct kvm_stats_header kvm_stats_header;
3842     QTAILQ_ENTRY(StatsDescriptors) next;
3843 } StatsDescriptors;
3844 
3845 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3846     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3847 
3848 /*
3849  * Return the descriptors for 'target', that either have already been read
3850  * or are retrieved from 'stats_fd'.
3851  */
3852 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3853                                                 Error **errp)
3854 {
3855     StatsDescriptors *descriptors;
3856     const char *ident;
3857     struct kvm_stats_desc *kvm_stats_desc;
3858     struct kvm_stats_header *kvm_stats_header;
3859     size_t size_desc;
3860     ssize_t ret;
3861 
3862     ident = StatsTarget_str(target);
3863     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3864         if (g_str_equal(descriptors->ident, ident)) {
3865             return descriptors;
3866         }
3867     }
3868 
3869     descriptors = g_new0(StatsDescriptors, 1);
3870 
3871     /* Read stats header */
3872     kvm_stats_header = &descriptors->kvm_stats_header;
3873     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
3874     if (ret != sizeof(*kvm_stats_header)) {
3875         error_setg(errp, "KVM stats: failed to read stats header: "
3876                    "expected %zu actual %zu",
3877                    sizeof(*kvm_stats_header), ret);
3878         g_free(descriptors);
3879         return NULL;
3880     }
3881     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3882 
3883     /* Read stats descriptors */
3884     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3885     ret = pread(stats_fd, kvm_stats_desc,
3886                 size_desc * kvm_stats_header->num_desc,
3887                 kvm_stats_header->desc_offset);
3888 
3889     if (ret != size_desc * kvm_stats_header->num_desc) {
3890         error_setg(errp, "KVM stats: failed to read stats descriptors: "
3891                    "expected %zu actual %zu",
3892                    size_desc * kvm_stats_header->num_desc, ret);
3893         g_free(descriptors);
3894         g_free(kvm_stats_desc);
3895         return NULL;
3896     }
3897     descriptors->kvm_stats_desc = kvm_stats_desc;
3898     descriptors->ident = ident;
3899     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3900     return descriptors;
3901 }
3902 
3903 static void query_stats(StatsResultList **result, StatsTarget target,
3904                         strList *names, int stats_fd, CPUState *cpu,
3905                         Error **errp)
3906 {
3907     struct kvm_stats_desc *kvm_stats_desc;
3908     struct kvm_stats_header *kvm_stats_header;
3909     StatsDescriptors *descriptors;
3910     g_autofree uint64_t *stats_data = NULL;
3911     struct kvm_stats_desc *pdesc;
3912     StatsList *stats_list = NULL;
3913     size_t size_desc, size_data = 0;
3914     ssize_t ret;
3915     int i;
3916 
3917     descriptors = find_stats_descriptors(target, stats_fd, errp);
3918     if (!descriptors) {
3919         return;
3920     }
3921 
3922     kvm_stats_header = &descriptors->kvm_stats_header;
3923     kvm_stats_desc = descriptors->kvm_stats_desc;
3924     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3925 
3926     /* Tally the total data size; read schema data */
3927     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3928         pdesc = (void *)kvm_stats_desc + i * size_desc;
3929         size_data += pdesc->size * sizeof(*stats_data);
3930     }
3931 
3932     stats_data = g_malloc0(size_data);
3933     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3934 
3935     if (ret != size_data) {
3936         error_setg(errp, "KVM stats: failed to read data: "
3937                    "expected %zu actual %zu", size_data, ret);
3938         return;
3939     }
3940 
3941     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3942         uint64_t *stats;
3943         pdesc = (void *)kvm_stats_desc + i * size_desc;
3944 
3945         /* Add entry to the list */
3946         stats = (void *)stats_data + pdesc->offset;
3947         if (!apply_str_list_filter(pdesc->name, names)) {
3948             continue;
3949         }
3950         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
3951     }
3952 
3953     if (!stats_list) {
3954         return;
3955     }
3956 
3957     switch (target) {
3958     case STATS_TARGET_VM:
3959         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
3960         break;
3961     case STATS_TARGET_VCPU:
3962         add_stats_entry(result, STATS_PROVIDER_KVM,
3963                         cpu->parent_obj.canonical_path,
3964                         stats_list);
3965         break;
3966     default:
3967         g_assert_not_reached();
3968     }
3969 }
3970 
3971 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
3972                                int stats_fd, Error **errp)
3973 {
3974     struct kvm_stats_desc *kvm_stats_desc;
3975     struct kvm_stats_header *kvm_stats_header;
3976     StatsDescriptors *descriptors;
3977     struct kvm_stats_desc *pdesc;
3978     StatsSchemaValueList *stats_list = NULL;
3979     size_t size_desc;
3980     int i;
3981 
3982     descriptors = find_stats_descriptors(target, stats_fd, errp);
3983     if (!descriptors) {
3984         return;
3985     }
3986 
3987     kvm_stats_header = &descriptors->kvm_stats_header;
3988     kvm_stats_desc = descriptors->kvm_stats_desc;
3989     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3990 
3991     /* Tally the total data size; read schema data */
3992     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3993         pdesc = (void *)kvm_stats_desc + i * size_desc;
3994         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
3995     }
3996 
3997     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
3998 }
3999 
4000 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4001 {
4002     int stats_fd = cpu->kvm_vcpu_stats_fd;
4003     Error *local_err = NULL;
4004 
4005     if (stats_fd == -1) {
4006         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4007         error_propagate(kvm_stats_args->errp, local_err);
4008         return;
4009     }
4010     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4011                 kvm_stats_args->names, stats_fd, cpu,
4012                 kvm_stats_args->errp);
4013 }
4014 
4015 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4016 {
4017     int stats_fd = cpu->kvm_vcpu_stats_fd;
4018     Error *local_err = NULL;
4019 
4020     if (stats_fd == -1) {
4021         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4022         error_propagate(kvm_stats_args->errp, local_err);
4023         return;
4024     }
4025     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4026                        kvm_stats_args->errp);
4027 }
4028 
4029 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4030                            strList *names, strList *targets, Error **errp)
4031 {
4032     KVMState *s = kvm_state;
4033     CPUState *cpu;
4034     int stats_fd;
4035 
4036     switch (target) {
4037     case STATS_TARGET_VM:
4038     {
4039         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4040         if (stats_fd == -1) {
4041             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4042             return;
4043         }
4044         query_stats(result, target, names, stats_fd, NULL, errp);
4045         close(stats_fd);
4046         break;
4047     }
4048     case STATS_TARGET_VCPU:
4049     {
4050         StatsArgs stats_args;
4051         stats_args.result.stats = result;
4052         stats_args.names = names;
4053         stats_args.errp = errp;
4054         CPU_FOREACH(cpu) {
4055             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4056                 continue;
4057             }
4058             query_stats_vcpu(cpu, &stats_args);
4059         }
4060         break;
4061     }
4062     default:
4063         break;
4064     }
4065 }
4066 
4067 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4068 {
4069     StatsArgs stats_args;
4070     KVMState *s = kvm_state;
4071     int stats_fd;
4072 
4073     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4074     if (stats_fd == -1) {
4075         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4076         return;
4077     }
4078     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4079     close(stats_fd);
4080 
4081     if (first_cpu) {
4082         stats_args.result.schema = result;
4083         stats_args.errp = errp;
4084         query_stats_schema_vcpu(first_cpu, &stats_args);
4085     }
4086 }
4087