1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 //#define DEBUG_KVM 73 74 #ifdef DEBUG_KVM 75 #define DPRINTF(fmt, ...) \ 76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 77 #else 78 #define DPRINTF(fmt, ...) \ 79 do { } while (0) 80 #endif 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_resamplefds_allowed; 94 bool kvm_msi_via_irqfd_allowed; 95 bool kvm_gsi_routing_allowed; 96 bool kvm_gsi_direct_mapping; 97 bool kvm_allowed; 98 bool kvm_readonly_mem_allowed; 99 bool kvm_vm_attributes_allowed; 100 bool kvm_msi_use_devid; 101 static bool kvm_has_guest_debug; 102 static int kvm_sstep_flags; 103 static bool kvm_immediate_exit; 104 static hwaddr kvm_max_slot_size = ~0; 105 106 static const KVMCapabilityInfo kvm_required_capabilites[] = { 107 KVM_CAP_INFO(USER_MEMORY), 108 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 109 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 110 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 111 KVM_CAP_INFO(IOEVENTFD), 112 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 113 KVM_CAP_LAST_INFO 114 }; 115 116 static NotifierList kvm_irqchip_change_notifiers = 117 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 118 119 struct KVMResampleFd { 120 int gsi; 121 EventNotifier *resample_event; 122 QLIST_ENTRY(KVMResampleFd) node; 123 }; 124 typedef struct KVMResampleFd KVMResampleFd; 125 126 /* 127 * Only used with split irqchip where we need to do the resample fd 128 * kick for the kernel from userspace. 129 */ 130 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 131 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 132 133 static QemuMutex kml_slots_lock; 134 135 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 136 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 137 138 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 139 140 static inline void kvm_resample_fd_remove(int gsi) 141 { 142 KVMResampleFd *rfd; 143 144 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 145 if (rfd->gsi == gsi) { 146 QLIST_REMOVE(rfd, node); 147 g_free(rfd); 148 break; 149 } 150 } 151 } 152 153 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 154 { 155 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 156 157 rfd->gsi = gsi; 158 rfd->resample_event = event; 159 160 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 161 } 162 163 void kvm_resample_fd_notify(int gsi) 164 { 165 KVMResampleFd *rfd; 166 167 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 168 if (rfd->gsi == gsi) { 169 event_notifier_set(rfd->resample_event); 170 trace_kvm_resample_fd_notify(gsi); 171 return; 172 } 173 } 174 } 175 176 unsigned int kvm_get_max_memslots(void) 177 { 178 KVMState *s = KVM_STATE(current_accel()); 179 180 return s->nr_slots; 181 } 182 183 unsigned int kvm_get_free_memslots(void) 184 { 185 unsigned int used_slots = 0; 186 KVMState *s = kvm_state; 187 int i; 188 189 kvm_slots_lock(); 190 for (i = 0; i < s->nr_as; i++) { 191 if (!s->as[i].ml) { 192 continue; 193 } 194 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 195 } 196 kvm_slots_unlock(); 197 198 return s->nr_slots - used_slots; 199 } 200 201 /* Called with KVMMemoryListener.slots_lock held */ 202 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 203 { 204 KVMState *s = kvm_state; 205 int i; 206 207 for (i = 0; i < s->nr_slots; i++) { 208 if (kml->slots[i].memory_size == 0) { 209 return &kml->slots[i]; 210 } 211 } 212 213 return NULL; 214 } 215 216 /* Called with KVMMemoryListener.slots_lock held */ 217 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 218 { 219 KVMSlot *slot = kvm_get_free_slot(kml); 220 221 if (slot) { 222 return slot; 223 } 224 225 fprintf(stderr, "%s: no free slot available\n", __func__); 226 abort(); 227 } 228 229 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 230 hwaddr start_addr, 231 hwaddr size) 232 { 233 KVMState *s = kvm_state; 234 int i; 235 236 for (i = 0; i < s->nr_slots; i++) { 237 KVMSlot *mem = &kml->slots[i]; 238 239 if (start_addr == mem->start_addr && size == mem->memory_size) { 240 return mem; 241 } 242 } 243 244 return NULL; 245 } 246 247 /* 248 * Calculate and align the start address and the size of the section. 249 * Return the size. If the size is 0, the aligned section is empty. 250 */ 251 static hwaddr kvm_align_section(MemoryRegionSection *section, 252 hwaddr *start) 253 { 254 hwaddr size = int128_get64(section->size); 255 hwaddr delta, aligned; 256 257 /* kvm works in page size chunks, but the function may be called 258 with sub-page size and unaligned start address. Pad the start 259 address to next and truncate size to previous page boundary. */ 260 aligned = ROUND_UP(section->offset_within_address_space, 261 qemu_real_host_page_size()); 262 delta = aligned - section->offset_within_address_space; 263 *start = aligned; 264 if (delta > size) { 265 return 0; 266 } 267 268 return (size - delta) & qemu_real_host_page_mask(); 269 } 270 271 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 272 hwaddr *phys_addr) 273 { 274 KVMMemoryListener *kml = &s->memory_listener; 275 int i, ret = 0; 276 277 kvm_slots_lock(); 278 for (i = 0; i < s->nr_slots; i++) { 279 KVMSlot *mem = &kml->slots[i]; 280 281 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 282 *phys_addr = mem->start_addr + (ram - mem->ram); 283 ret = 1; 284 break; 285 } 286 } 287 kvm_slots_unlock(); 288 289 return ret; 290 } 291 292 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 293 { 294 KVMState *s = kvm_state; 295 struct kvm_userspace_memory_region mem; 296 int ret; 297 298 mem.slot = slot->slot | (kml->as_id << 16); 299 mem.guest_phys_addr = slot->start_addr; 300 mem.userspace_addr = (unsigned long)slot->ram; 301 mem.flags = slot->flags; 302 303 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 304 /* Set the slot size to 0 before setting the slot to the desired 305 * value. This is needed based on KVM commit 75d61fbc. */ 306 mem.memory_size = 0; 307 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 308 if (ret < 0) { 309 goto err; 310 } 311 } 312 mem.memory_size = slot->memory_size; 313 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 314 slot->old_flags = mem.flags; 315 err: 316 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 317 mem.memory_size, mem.userspace_addr, ret); 318 if (ret < 0) { 319 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 320 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 321 __func__, mem.slot, slot->start_addr, 322 (uint64_t)mem.memory_size, strerror(errno)); 323 } 324 return ret; 325 } 326 327 static int do_kvm_destroy_vcpu(CPUState *cpu) 328 { 329 KVMState *s = kvm_state; 330 long mmap_size; 331 struct KVMParkedVcpu *vcpu = NULL; 332 int ret = 0; 333 334 DPRINTF("kvm_destroy_vcpu\n"); 335 336 ret = kvm_arch_destroy_vcpu(cpu); 337 if (ret < 0) { 338 goto err; 339 } 340 341 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 342 if (mmap_size < 0) { 343 ret = mmap_size; 344 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 345 goto err; 346 } 347 348 ret = munmap(cpu->kvm_run, mmap_size); 349 if (ret < 0) { 350 goto err; 351 } 352 353 if (cpu->kvm_dirty_gfns) { 354 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 355 if (ret < 0) { 356 goto err; 357 } 358 } 359 360 vcpu = g_malloc0(sizeof(*vcpu)); 361 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 362 vcpu->kvm_fd = cpu->kvm_fd; 363 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 364 err: 365 return ret; 366 } 367 368 void kvm_destroy_vcpu(CPUState *cpu) 369 { 370 if (do_kvm_destroy_vcpu(cpu) < 0) { 371 error_report("kvm_destroy_vcpu failed"); 372 exit(EXIT_FAILURE); 373 } 374 } 375 376 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 377 { 378 struct KVMParkedVcpu *cpu; 379 380 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 381 if (cpu->vcpu_id == vcpu_id) { 382 int kvm_fd; 383 384 QLIST_REMOVE(cpu, node); 385 kvm_fd = cpu->kvm_fd; 386 g_free(cpu); 387 return kvm_fd; 388 } 389 } 390 391 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 392 } 393 394 int kvm_init_vcpu(CPUState *cpu, Error **errp) 395 { 396 KVMState *s = kvm_state; 397 long mmap_size; 398 int ret; 399 400 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 401 402 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 403 if (ret < 0) { 404 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 405 kvm_arch_vcpu_id(cpu)); 406 goto err; 407 } 408 409 cpu->kvm_fd = ret; 410 cpu->kvm_state = s; 411 cpu->vcpu_dirty = true; 412 cpu->dirty_pages = 0; 413 cpu->throttle_us_per_full = 0; 414 415 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 416 if (mmap_size < 0) { 417 ret = mmap_size; 418 error_setg_errno(errp, -mmap_size, 419 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 420 goto err; 421 } 422 423 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 424 cpu->kvm_fd, 0); 425 if (cpu->kvm_run == MAP_FAILED) { 426 ret = -errno; 427 error_setg_errno(errp, ret, 428 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 429 kvm_arch_vcpu_id(cpu)); 430 goto err; 431 } 432 433 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 434 s->coalesced_mmio_ring = 435 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 436 } 437 438 if (s->kvm_dirty_ring_size) { 439 /* Use MAP_SHARED to share pages with the kernel */ 440 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 441 PROT_READ | PROT_WRITE, MAP_SHARED, 442 cpu->kvm_fd, 443 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 444 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 445 ret = -errno; 446 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 447 goto err; 448 } 449 } 450 451 ret = kvm_arch_init_vcpu(cpu); 452 if (ret < 0) { 453 error_setg_errno(errp, -ret, 454 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 455 kvm_arch_vcpu_id(cpu)); 456 } 457 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 458 459 err: 460 return ret; 461 } 462 463 /* 464 * dirty pages logging control 465 */ 466 467 static int kvm_mem_flags(MemoryRegion *mr) 468 { 469 bool readonly = mr->readonly || memory_region_is_romd(mr); 470 int flags = 0; 471 472 if (memory_region_get_dirty_log_mask(mr) != 0) { 473 flags |= KVM_MEM_LOG_DIRTY_PAGES; 474 } 475 if (readonly && kvm_readonly_mem_allowed) { 476 flags |= KVM_MEM_READONLY; 477 } 478 return flags; 479 } 480 481 /* Called with KVMMemoryListener.slots_lock held */ 482 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 483 MemoryRegion *mr) 484 { 485 mem->flags = kvm_mem_flags(mr); 486 487 /* If nothing changed effectively, no need to issue ioctl */ 488 if (mem->flags == mem->old_flags) { 489 return 0; 490 } 491 492 kvm_slot_init_dirty_bitmap(mem); 493 return kvm_set_user_memory_region(kml, mem, false); 494 } 495 496 static int kvm_section_update_flags(KVMMemoryListener *kml, 497 MemoryRegionSection *section) 498 { 499 hwaddr start_addr, size, slot_size; 500 KVMSlot *mem; 501 int ret = 0; 502 503 size = kvm_align_section(section, &start_addr); 504 if (!size) { 505 return 0; 506 } 507 508 kvm_slots_lock(); 509 510 while (size && !ret) { 511 slot_size = MIN(kvm_max_slot_size, size); 512 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 513 if (!mem) { 514 /* We don't have a slot if we want to trap every access. */ 515 goto out; 516 } 517 518 ret = kvm_slot_update_flags(kml, mem, section->mr); 519 start_addr += slot_size; 520 size -= slot_size; 521 } 522 523 out: 524 kvm_slots_unlock(); 525 return ret; 526 } 527 528 static void kvm_log_start(MemoryListener *listener, 529 MemoryRegionSection *section, 530 int old, int new) 531 { 532 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 533 int r; 534 535 if (old != 0) { 536 return; 537 } 538 539 r = kvm_section_update_flags(kml, section); 540 if (r < 0) { 541 abort(); 542 } 543 } 544 545 static void kvm_log_stop(MemoryListener *listener, 546 MemoryRegionSection *section, 547 int old, int new) 548 { 549 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 550 int r; 551 552 if (new != 0) { 553 return; 554 } 555 556 r = kvm_section_update_flags(kml, section); 557 if (r < 0) { 558 abort(); 559 } 560 } 561 562 /* get kvm's dirty pages bitmap and update qemu's */ 563 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 564 { 565 ram_addr_t start = slot->ram_start_offset; 566 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 567 568 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 569 } 570 571 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 572 { 573 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 574 } 575 576 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 577 578 /* Allocate the dirty bitmap for a slot */ 579 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 580 { 581 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 582 return; 583 } 584 585 /* 586 * XXX bad kernel interface alert 587 * For dirty bitmap, kernel allocates array of size aligned to 588 * bits-per-long. But for case when the kernel is 64bits and 589 * the userspace is 32bits, userspace can't align to the same 590 * bits-per-long, since sizeof(long) is different between kernel 591 * and user space. This way, userspace will provide buffer which 592 * may be 4 bytes less than the kernel will use, resulting in 593 * userspace memory corruption (which is not detectable by valgrind 594 * too, in most cases). 595 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 596 * a hope that sizeof(long) won't become >8 any time soon. 597 * 598 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 599 * And mem->memory_size is aligned to it (otherwise this mem can't 600 * be registered to KVM). 601 */ 602 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 603 /*HOST_LONG_BITS*/ 64) / 8; 604 mem->dirty_bmap = g_malloc0(bitmap_size); 605 mem->dirty_bmap_size = bitmap_size; 606 } 607 608 /* 609 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 610 * succeeded, false otherwise 611 */ 612 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 613 { 614 struct kvm_dirty_log d = {}; 615 int ret; 616 617 d.dirty_bitmap = slot->dirty_bmap; 618 d.slot = slot->slot | (slot->as_id << 16); 619 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 620 621 if (ret == -ENOENT) { 622 /* kernel does not have dirty bitmap in this slot */ 623 ret = 0; 624 } 625 if (ret) { 626 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 627 __func__, ret); 628 } 629 return ret == 0; 630 } 631 632 /* Should be with all slots_lock held for the address spaces. */ 633 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 634 uint32_t slot_id, uint64_t offset) 635 { 636 KVMMemoryListener *kml; 637 KVMSlot *mem; 638 639 if (as_id >= s->nr_as) { 640 return; 641 } 642 643 kml = s->as[as_id].ml; 644 mem = &kml->slots[slot_id]; 645 646 if (!mem->memory_size || offset >= 647 (mem->memory_size / qemu_real_host_page_size())) { 648 return; 649 } 650 651 set_bit(offset, mem->dirty_bmap); 652 } 653 654 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 655 { 656 /* 657 * Read the flags before the value. Pairs with barrier in 658 * KVM's kvm_dirty_ring_push() function. 659 */ 660 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 661 } 662 663 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 664 { 665 /* 666 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 667 * sees the full content of the ring: 668 * 669 * CPU0 CPU1 CPU2 670 * ------------------------------------------------------------------------------ 671 * fill gfn0 672 * store-rel flags for gfn0 673 * load-acq flags for gfn0 674 * store-rel RESET for gfn0 675 * ioctl(RESET_RINGS) 676 * load-acq flags for gfn0 677 * check if flags have RESET 678 * 679 * The synchronization goes from CPU2 to CPU0 to CPU1. 680 */ 681 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 682 } 683 684 /* 685 * Should be with all slots_lock held for the address spaces. It returns the 686 * dirty page we've collected on this dirty ring. 687 */ 688 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 689 { 690 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 691 uint32_t ring_size = s->kvm_dirty_ring_size; 692 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 693 694 /* 695 * It's possible that we race with vcpu creation code where the vcpu is 696 * put onto the vcpus list but not yet initialized the dirty ring 697 * structures. If so, skip it. 698 */ 699 if (!cpu->created) { 700 return 0; 701 } 702 703 assert(dirty_gfns && ring_size); 704 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 705 706 while (true) { 707 cur = &dirty_gfns[fetch % ring_size]; 708 if (!dirty_gfn_is_dirtied(cur)) { 709 break; 710 } 711 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 712 cur->offset); 713 dirty_gfn_set_collected(cur); 714 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 715 fetch++; 716 count++; 717 } 718 cpu->kvm_fetch_index = fetch; 719 cpu->dirty_pages += count; 720 721 return count; 722 } 723 724 /* Must be with slots_lock held */ 725 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 726 { 727 int ret; 728 uint64_t total = 0; 729 int64_t stamp; 730 731 stamp = get_clock(); 732 733 if (cpu) { 734 total = kvm_dirty_ring_reap_one(s, cpu); 735 } else { 736 CPU_FOREACH(cpu) { 737 total += kvm_dirty_ring_reap_one(s, cpu); 738 } 739 } 740 741 if (total) { 742 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 743 assert(ret == total); 744 } 745 746 stamp = get_clock() - stamp; 747 748 if (total) { 749 trace_kvm_dirty_ring_reap(total, stamp / 1000); 750 } 751 752 return total; 753 } 754 755 /* 756 * Currently for simplicity, we must hold BQL before calling this. We can 757 * consider to drop the BQL if we're clear with all the race conditions. 758 */ 759 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 760 { 761 uint64_t total; 762 763 /* 764 * We need to lock all kvm slots for all address spaces here, 765 * because: 766 * 767 * (1) We need to mark dirty for dirty bitmaps in multiple slots 768 * and for tons of pages, so it's better to take the lock here 769 * once rather than once per page. And more importantly, 770 * 771 * (2) We must _NOT_ publish dirty bits to the other threads 772 * (e.g., the migration thread) via the kvm memory slot dirty 773 * bitmaps before correctly re-protect those dirtied pages. 774 * Otherwise we can have potential risk of data corruption if 775 * the page data is read in the other thread before we do 776 * reset below. 777 */ 778 kvm_slots_lock(); 779 total = kvm_dirty_ring_reap_locked(s, cpu); 780 kvm_slots_unlock(); 781 782 return total; 783 } 784 785 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 786 { 787 /* No need to do anything */ 788 } 789 790 /* 791 * Kick all vcpus out in a synchronized way. When returned, we 792 * guarantee that every vcpu has been kicked and at least returned to 793 * userspace once. 794 */ 795 static void kvm_cpu_synchronize_kick_all(void) 796 { 797 CPUState *cpu; 798 799 CPU_FOREACH(cpu) { 800 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 801 } 802 } 803 804 /* 805 * Flush all the existing dirty pages to the KVM slot buffers. When 806 * this call returns, we guarantee that all the touched dirty pages 807 * before calling this function have been put into the per-kvmslot 808 * dirty bitmap. 809 * 810 * This function must be called with BQL held. 811 */ 812 static void kvm_dirty_ring_flush(void) 813 { 814 trace_kvm_dirty_ring_flush(0); 815 /* 816 * The function needs to be serialized. Since this function 817 * should always be with BQL held, serialization is guaranteed. 818 * However, let's be sure of it. 819 */ 820 assert(qemu_mutex_iothread_locked()); 821 /* 822 * First make sure to flush the hardware buffers by kicking all 823 * vcpus out in a synchronous way. 824 */ 825 kvm_cpu_synchronize_kick_all(); 826 kvm_dirty_ring_reap(kvm_state, NULL); 827 trace_kvm_dirty_ring_flush(1); 828 } 829 830 /** 831 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 832 * 833 * This function will first try to fetch dirty bitmap from the kernel, 834 * and then updates qemu's dirty bitmap. 835 * 836 * NOTE: caller must be with kml->slots_lock held. 837 * 838 * @kml: the KVM memory listener object 839 * @section: the memory section to sync the dirty bitmap with 840 */ 841 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 842 MemoryRegionSection *section) 843 { 844 KVMState *s = kvm_state; 845 KVMSlot *mem; 846 hwaddr start_addr, size; 847 hwaddr slot_size; 848 849 size = kvm_align_section(section, &start_addr); 850 while (size) { 851 slot_size = MIN(kvm_max_slot_size, size); 852 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 853 if (!mem) { 854 /* We don't have a slot if we want to trap every access. */ 855 return; 856 } 857 if (kvm_slot_get_dirty_log(s, mem)) { 858 kvm_slot_sync_dirty_pages(mem); 859 } 860 start_addr += slot_size; 861 size -= slot_size; 862 } 863 } 864 865 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 866 #define KVM_CLEAR_LOG_SHIFT 6 867 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 868 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 869 870 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 871 uint64_t size) 872 { 873 KVMState *s = kvm_state; 874 uint64_t end, bmap_start, start_delta, bmap_npages; 875 struct kvm_clear_dirty_log d; 876 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 877 int ret; 878 879 /* 880 * We need to extend either the start or the size or both to 881 * satisfy the KVM interface requirement. Firstly, do the start 882 * page alignment on 64 host pages 883 */ 884 bmap_start = start & KVM_CLEAR_LOG_MASK; 885 start_delta = start - bmap_start; 886 bmap_start /= psize; 887 888 /* 889 * The kernel interface has restriction on the size too, that either: 890 * 891 * (1) the size is 64 host pages aligned (just like the start), or 892 * (2) the size fills up until the end of the KVM memslot. 893 */ 894 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 895 << KVM_CLEAR_LOG_SHIFT; 896 end = mem->memory_size / psize; 897 if (bmap_npages > end - bmap_start) { 898 bmap_npages = end - bmap_start; 899 } 900 start_delta /= psize; 901 902 /* 903 * Prepare the bitmap to clear dirty bits. Here we must guarantee 904 * that we won't clear any unknown dirty bits otherwise we might 905 * accidentally clear some set bits which are not yet synced from 906 * the kernel into QEMU's bitmap, then we'll lose track of the 907 * guest modifications upon those pages (which can directly lead 908 * to guest data loss or panic after migration). 909 * 910 * Layout of the KVMSlot.dirty_bmap: 911 * 912 * |<-------- bmap_npages -----------..>| 913 * [1] 914 * start_delta size 915 * |----------------|-------------|------------------|------------| 916 * ^ ^ ^ ^ 917 * | | | | 918 * start bmap_start (start) end 919 * of memslot of memslot 920 * 921 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 922 */ 923 924 assert(bmap_start % BITS_PER_LONG == 0); 925 /* We should never do log_clear before log_sync */ 926 assert(mem->dirty_bmap); 927 if (start_delta || bmap_npages - size / psize) { 928 /* Slow path - we need to manipulate a temp bitmap */ 929 bmap_clear = bitmap_new(bmap_npages); 930 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 931 bmap_start, start_delta + size / psize); 932 /* 933 * We need to fill the holes at start because that was not 934 * specified by the caller and we extended the bitmap only for 935 * 64 pages alignment 936 */ 937 bitmap_clear(bmap_clear, 0, start_delta); 938 d.dirty_bitmap = bmap_clear; 939 } else { 940 /* 941 * Fast path - both start and size align well with BITS_PER_LONG 942 * (or the end of memory slot) 943 */ 944 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 945 } 946 947 d.first_page = bmap_start; 948 /* It should never overflow. If it happens, say something */ 949 assert(bmap_npages <= UINT32_MAX); 950 d.num_pages = bmap_npages; 951 d.slot = mem->slot | (as_id << 16); 952 953 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 954 if (ret < 0 && ret != -ENOENT) { 955 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 956 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 957 __func__, d.slot, (uint64_t)d.first_page, 958 (uint32_t)d.num_pages, ret); 959 } else { 960 ret = 0; 961 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 962 } 963 964 /* 965 * After we have updated the remote dirty bitmap, we update the 966 * cached bitmap as well for the memslot, then if another user 967 * clears the same region we know we shouldn't clear it again on 968 * the remote otherwise it's data loss as well. 969 */ 970 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 971 size / psize); 972 /* This handles the NULL case well */ 973 g_free(bmap_clear); 974 return ret; 975 } 976 977 978 /** 979 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 980 * 981 * NOTE: this will be a no-op if we haven't enabled manual dirty log 982 * protection in the host kernel because in that case this operation 983 * will be done within log_sync(). 984 * 985 * @kml: the kvm memory listener 986 * @section: the memory range to clear dirty bitmap 987 */ 988 static int kvm_physical_log_clear(KVMMemoryListener *kml, 989 MemoryRegionSection *section) 990 { 991 KVMState *s = kvm_state; 992 uint64_t start, size, offset, count; 993 KVMSlot *mem; 994 int ret = 0, i; 995 996 if (!s->manual_dirty_log_protect) { 997 /* No need to do explicit clear */ 998 return ret; 999 } 1000 1001 start = section->offset_within_address_space; 1002 size = int128_get64(section->size); 1003 1004 if (!size) { 1005 /* Nothing more we can do... */ 1006 return ret; 1007 } 1008 1009 kvm_slots_lock(); 1010 1011 for (i = 0; i < s->nr_slots; i++) { 1012 mem = &kml->slots[i]; 1013 /* Discard slots that are empty or do not overlap the section */ 1014 if (!mem->memory_size || 1015 mem->start_addr > start + size - 1 || 1016 start > mem->start_addr + mem->memory_size - 1) { 1017 continue; 1018 } 1019 1020 if (start >= mem->start_addr) { 1021 /* The slot starts before section or is aligned to it. */ 1022 offset = start - mem->start_addr; 1023 count = MIN(mem->memory_size - offset, size); 1024 } else { 1025 /* The slot starts after section. */ 1026 offset = 0; 1027 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1028 } 1029 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1030 if (ret < 0) { 1031 break; 1032 } 1033 } 1034 1035 kvm_slots_unlock(); 1036 1037 return ret; 1038 } 1039 1040 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1041 MemoryRegionSection *secion, 1042 hwaddr start, hwaddr size) 1043 { 1044 KVMState *s = kvm_state; 1045 1046 if (s->coalesced_mmio) { 1047 struct kvm_coalesced_mmio_zone zone; 1048 1049 zone.addr = start; 1050 zone.size = size; 1051 zone.pad = 0; 1052 1053 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1054 } 1055 } 1056 1057 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1058 MemoryRegionSection *secion, 1059 hwaddr start, hwaddr size) 1060 { 1061 KVMState *s = kvm_state; 1062 1063 if (s->coalesced_mmio) { 1064 struct kvm_coalesced_mmio_zone zone; 1065 1066 zone.addr = start; 1067 zone.size = size; 1068 zone.pad = 0; 1069 1070 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1071 } 1072 } 1073 1074 static void kvm_coalesce_pio_add(MemoryListener *listener, 1075 MemoryRegionSection *section, 1076 hwaddr start, hwaddr size) 1077 { 1078 KVMState *s = kvm_state; 1079 1080 if (s->coalesced_pio) { 1081 struct kvm_coalesced_mmio_zone zone; 1082 1083 zone.addr = start; 1084 zone.size = size; 1085 zone.pio = 1; 1086 1087 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1088 } 1089 } 1090 1091 static void kvm_coalesce_pio_del(MemoryListener *listener, 1092 MemoryRegionSection *section, 1093 hwaddr start, hwaddr size) 1094 { 1095 KVMState *s = kvm_state; 1096 1097 if (s->coalesced_pio) { 1098 struct kvm_coalesced_mmio_zone zone; 1099 1100 zone.addr = start; 1101 zone.size = size; 1102 zone.pio = 1; 1103 1104 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1105 } 1106 } 1107 1108 int kvm_check_extension(KVMState *s, unsigned int extension) 1109 { 1110 int ret; 1111 1112 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1113 if (ret < 0) { 1114 ret = 0; 1115 } 1116 1117 return ret; 1118 } 1119 1120 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1121 { 1122 int ret; 1123 1124 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1125 if (ret < 0) { 1126 /* VM wide version not implemented, use global one instead */ 1127 ret = kvm_check_extension(s, extension); 1128 } 1129 1130 return ret; 1131 } 1132 1133 typedef struct HWPoisonPage { 1134 ram_addr_t ram_addr; 1135 QLIST_ENTRY(HWPoisonPage) list; 1136 } HWPoisonPage; 1137 1138 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1139 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1140 1141 static void kvm_unpoison_all(void *param) 1142 { 1143 HWPoisonPage *page, *next_page; 1144 1145 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1146 QLIST_REMOVE(page, list); 1147 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1148 g_free(page); 1149 } 1150 } 1151 1152 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1153 { 1154 HWPoisonPage *page; 1155 1156 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1157 if (page->ram_addr == ram_addr) { 1158 return; 1159 } 1160 } 1161 page = g_new(HWPoisonPage, 1); 1162 page->ram_addr = ram_addr; 1163 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1164 } 1165 1166 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1167 { 1168 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1169 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1170 * endianness, but the memory core hands them in target endianness. 1171 * For example, PPC is always treated as big-endian even if running 1172 * on KVM and on PPC64LE. Correct here. 1173 */ 1174 switch (size) { 1175 case 2: 1176 val = bswap16(val); 1177 break; 1178 case 4: 1179 val = bswap32(val); 1180 break; 1181 } 1182 #endif 1183 return val; 1184 } 1185 1186 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1187 bool assign, uint32_t size, bool datamatch) 1188 { 1189 int ret; 1190 struct kvm_ioeventfd iofd = { 1191 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1192 .addr = addr, 1193 .len = size, 1194 .flags = 0, 1195 .fd = fd, 1196 }; 1197 1198 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1199 datamatch); 1200 if (!kvm_enabled()) { 1201 return -ENOSYS; 1202 } 1203 1204 if (datamatch) { 1205 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1206 } 1207 if (!assign) { 1208 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1209 } 1210 1211 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1212 1213 if (ret < 0) { 1214 return -errno; 1215 } 1216 1217 return 0; 1218 } 1219 1220 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1221 bool assign, uint32_t size, bool datamatch) 1222 { 1223 struct kvm_ioeventfd kick = { 1224 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1225 .addr = addr, 1226 .flags = KVM_IOEVENTFD_FLAG_PIO, 1227 .len = size, 1228 .fd = fd, 1229 }; 1230 int r; 1231 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1232 if (!kvm_enabled()) { 1233 return -ENOSYS; 1234 } 1235 if (datamatch) { 1236 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1237 } 1238 if (!assign) { 1239 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1240 } 1241 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1242 if (r < 0) { 1243 return r; 1244 } 1245 return 0; 1246 } 1247 1248 1249 static const KVMCapabilityInfo * 1250 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1251 { 1252 while (list->name) { 1253 if (!kvm_check_extension(s, list->value)) { 1254 return list; 1255 } 1256 list++; 1257 } 1258 return NULL; 1259 } 1260 1261 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1262 { 1263 g_assert( 1264 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1265 ); 1266 kvm_max_slot_size = max_slot_size; 1267 } 1268 1269 /* Called with KVMMemoryListener.slots_lock held */ 1270 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1271 MemoryRegionSection *section, bool add) 1272 { 1273 KVMSlot *mem; 1274 int err; 1275 MemoryRegion *mr = section->mr; 1276 bool writable = !mr->readonly && !mr->rom_device; 1277 hwaddr start_addr, size, slot_size, mr_offset; 1278 ram_addr_t ram_start_offset; 1279 void *ram; 1280 1281 if (!memory_region_is_ram(mr)) { 1282 if (writable || !kvm_readonly_mem_allowed) { 1283 return; 1284 } else if (!mr->romd_mode) { 1285 /* If the memory device is not in romd_mode, then we actually want 1286 * to remove the kvm memory slot so all accesses will trap. */ 1287 add = false; 1288 } 1289 } 1290 1291 size = kvm_align_section(section, &start_addr); 1292 if (!size) { 1293 return; 1294 } 1295 1296 /* The offset of the kvmslot within the memory region */ 1297 mr_offset = section->offset_within_region + start_addr - 1298 section->offset_within_address_space; 1299 1300 /* use aligned delta to align the ram address and offset */ 1301 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1302 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1303 1304 if (!add) { 1305 do { 1306 slot_size = MIN(kvm_max_slot_size, size); 1307 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1308 if (!mem) { 1309 return; 1310 } 1311 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1312 /* 1313 * NOTE: We should be aware of the fact that here we're only 1314 * doing a best effort to sync dirty bits. No matter whether 1315 * we're using dirty log or dirty ring, we ignored two facts: 1316 * 1317 * (1) dirty bits can reside in hardware buffers (PML) 1318 * 1319 * (2) after we collected dirty bits here, pages can be dirtied 1320 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1321 * remove the slot. 1322 * 1323 * Not easy. Let's cross the fingers until it's fixed. 1324 */ 1325 if (kvm_state->kvm_dirty_ring_size) { 1326 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1327 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1328 kvm_slot_sync_dirty_pages(mem); 1329 kvm_slot_get_dirty_log(kvm_state, mem); 1330 } 1331 } else { 1332 kvm_slot_get_dirty_log(kvm_state, mem); 1333 } 1334 kvm_slot_sync_dirty_pages(mem); 1335 } 1336 1337 /* unregister the slot */ 1338 g_free(mem->dirty_bmap); 1339 mem->dirty_bmap = NULL; 1340 mem->memory_size = 0; 1341 mem->flags = 0; 1342 err = kvm_set_user_memory_region(kml, mem, false); 1343 if (err) { 1344 fprintf(stderr, "%s: error unregistering slot: %s\n", 1345 __func__, strerror(-err)); 1346 abort(); 1347 } 1348 start_addr += slot_size; 1349 size -= slot_size; 1350 kml->nr_used_slots--; 1351 } while (size); 1352 return; 1353 } 1354 1355 /* register the new slot */ 1356 do { 1357 slot_size = MIN(kvm_max_slot_size, size); 1358 mem = kvm_alloc_slot(kml); 1359 mem->as_id = kml->as_id; 1360 mem->memory_size = slot_size; 1361 mem->start_addr = start_addr; 1362 mem->ram_start_offset = ram_start_offset; 1363 mem->ram = ram; 1364 mem->flags = kvm_mem_flags(mr); 1365 kvm_slot_init_dirty_bitmap(mem); 1366 err = kvm_set_user_memory_region(kml, mem, true); 1367 if (err) { 1368 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1369 strerror(-err)); 1370 abort(); 1371 } 1372 start_addr += slot_size; 1373 ram_start_offset += slot_size; 1374 ram += slot_size; 1375 size -= slot_size; 1376 kml->nr_used_slots++; 1377 } while (size); 1378 } 1379 1380 static void *kvm_dirty_ring_reaper_thread(void *data) 1381 { 1382 KVMState *s = data; 1383 struct KVMDirtyRingReaper *r = &s->reaper; 1384 1385 rcu_register_thread(); 1386 1387 trace_kvm_dirty_ring_reaper("init"); 1388 1389 while (true) { 1390 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1391 trace_kvm_dirty_ring_reaper("wait"); 1392 /* 1393 * TODO: provide a smarter timeout rather than a constant? 1394 */ 1395 sleep(1); 1396 1397 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1398 if (dirtylimit_in_service()) { 1399 continue; 1400 } 1401 1402 trace_kvm_dirty_ring_reaper("wakeup"); 1403 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1404 1405 qemu_mutex_lock_iothread(); 1406 kvm_dirty_ring_reap(s, NULL); 1407 qemu_mutex_unlock_iothread(); 1408 1409 r->reaper_iteration++; 1410 } 1411 1412 trace_kvm_dirty_ring_reaper("exit"); 1413 1414 rcu_unregister_thread(); 1415 1416 return NULL; 1417 } 1418 1419 static void kvm_dirty_ring_reaper_init(KVMState *s) 1420 { 1421 struct KVMDirtyRingReaper *r = &s->reaper; 1422 1423 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1424 kvm_dirty_ring_reaper_thread, 1425 s, QEMU_THREAD_JOINABLE); 1426 } 1427 1428 static int kvm_dirty_ring_init(KVMState *s) 1429 { 1430 uint32_t ring_size = s->kvm_dirty_ring_size; 1431 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1432 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1433 int ret; 1434 1435 s->kvm_dirty_ring_size = 0; 1436 s->kvm_dirty_ring_bytes = 0; 1437 1438 /* Bail if the dirty ring size isn't specified */ 1439 if (!ring_size) { 1440 return 0; 1441 } 1442 1443 /* 1444 * Read the max supported pages. Fall back to dirty logging mode 1445 * if the dirty ring isn't supported. 1446 */ 1447 ret = kvm_vm_check_extension(s, capability); 1448 if (ret <= 0) { 1449 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1450 ret = kvm_vm_check_extension(s, capability); 1451 } 1452 1453 if (ret <= 0) { 1454 warn_report("KVM dirty ring not available, using bitmap method"); 1455 return 0; 1456 } 1457 1458 if (ring_bytes > ret) { 1459 error_report("KVM dirty ring size %" PRIu32 " too big " 1460 "(maximum is %ld). Please use a smaller value.", 1461 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1462 return -EINVAL; 1463 } 1464 1465 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1466 if (ret) { 1467 error_report("Enabling of KVM dirty ring failed: %s. " 1468 "Suggested minimum value is 1024.", strerror(-ret)); 1469 return -EIO; 1470 } 1471 1472 /* Enable the backup bitmap if it is supported */ 1473 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1474 if (ret > 0) { 1475 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1476 if (ret) { 1477 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1478 "%s. ", strerror(-ret)); 1479 return -EIO; 1480 } 1481 1482 s->kvm_dirty_ring_with_bitmap = true; 1483 } 1484 1485 s->kvm_dirty_ring_size = ring_size; 1486 s->kvm_dirty_ring_bytes = ring_bytes; 1487 1488 return 0; 1489 } 1490 1491 static void kvm_region_add(MemoryListener *listener, 1492 MemoryRegionSection *section) 1493 { 1494 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1495 KVMMemoryUpdate *update; 1496 1497 update = g_new0(KVMMemoryUpdate, 1); 1498 update->section = *section; 1499 1500 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1501 } 1502 1503 static void kvm_region_del(MemoryListener *listener, 1504 MemoryRegionSection *section) 1505 { 1506 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1507 KVMMemoryUpdate *update; 1508 1509 update = g_new0(KVMMemoryUpdate, 1); 1510 update->section = *section; 1511 1512 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1513 } 1514 1515 static void kvm_region_commit(MemoryListener *listener) 1516 { 1517 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1518 listener); 1519 KVMMemoryUpdate *u1, *u2; 1520 bool need_inhibit = false; 1521 1522 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1523 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1524 return; 1525 } 1526 1527 /* 1528 * We have to be careful when regions to add overlap with ranges to remove. 1529 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1530 * is currently active. 1531 * 1532 * The lists are order by addresses, so it's easy to find overlaps. 1533 */ 1534 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1535 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1536 while (u1 && u2) { 1537 Range r1, r2; 1538 1539 range_init_nofail(&r1, u1->section.offset_within_address_space, 1540 int128_get64(u1->section.size)); 1541 range_init_nofail(&r2, u2->section.offset_within_address_space, 1542 int128_get64(u2->section.size)); 1543 1544 if (range_overlaps_range(&r1, &r2)) { 1545 need_inhibit = true; 1546 break; 1547 } 1548 if (range_lob(&r1) < range_lob(&r2)) { 1549 u1 = QSIMPLEQ_NEXT(u1, next); 1550 } else { 1551 u2 = QSIMPLEQ_NEXT(u2, next); 1552 } 1553 } 1554 1555 kvm_slots_lock(); 1556 if (need_inhibit) { 1557 accel_ioctl_inhibit_begin(); 1558 } 1559 1560 /* Remove all memslots before adding the new ones. */ 1561 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1562 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1563 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1564 1565 kvm_set_phys_mem(kml, &u1->section, false); 1566 memory_region_unref(u1->section.mr); 1567 1568 g_free(u1); 1569 } 1570 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1571 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1572 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1573 1574 memory_region_ref(u1->section.mr); 1575 kvm_set_phys_mem(kml, &u1->section, true); 1576 1577 g_free(u1); 1578 } 1579 1580 if (need_inhibit) { 1581 accel_ioctl_inhibit_end(); 1582 } 1583 kvm_slots_unlock(); 1584 } 1585 1586 static void kvm_log_sync(MemoryListener *listener, 1587 MemoryRegionSection *section) 1588 { 1589 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1590 1591 kvm_slots_lock(); 1592 kvm_physical_sync_dirty_bitmap(kml, section); 1593 kvm_slots_unlock(); 1594 } 1595 1596 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1597 { 1598 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1599 KVMState *s = kvm_state; 1600 KVMSlot *mem; 1601 int i; 1602 1603 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1604 kvm_dirty_ring_flush(); 1605 1606 /* 1607 * TODO: make this faster when nr_slots is big while there are 1608 * only a few used slots (small VMs). 1609 */ 1610 kvm_slots_lock(); 1611 for (i = 0; i < s->nr_slots; i++) { 1612 mem = &kml->slots[i]; 1613 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1614 kvm_slot_sync_dirty_pages(mem); 1615 1616 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1617 kvm_slot_get_dirty_log(s, mem)) { 1618 kvm_slot_sync_dirty_pages(mem); 1619 } 1620 1621 /* 1622 * This is not needed by KVM_GET_DIRTY_LOG because the 1623 * ioctl will unconditionally overwrite the whole region. 1624 * However kvm dirty ring has no such side effect. 1625 */ 1626 kvm_slot_reset_dirty_pages(mem); 1627 } 1628 } 1629 kvm_slots_unlock(); 1630 } 1631 1632 static void kvm_log_clear(MemoryListener *listener, 1633 MemoryRegionSection *section) 1634 { 1635 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1636 int r; 1637 1638 r = kvm_physical_log_clear(kml, section); 1639 if (r < 0) { 1640 error_report_once("%s: kvm log clear failed: mr=%s " 1641 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1642 section->mr->name, section->offset_within_region, 1643 int128_get64(section->size)); 1644 abort(); 1645 } 1646 } 1647 1648 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1649 MemoryRegionSection *section, 1650 bool match_data, uint64_t data, 1651 EventNotifier *e) 1652 { 1653 int fd = event_notifier_get_fd(e); 1654 int r; 1655 1656 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1657 data, true, int128_get64(section->size), 1658 match_data); 1659 if (r < 0) { 1660 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1661 __func__, strerror(-r), -r); 1662 abort(); 1663 } 1664 } 1665 1666 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1667 MemoryRegionSection *section, 1668 bool match_data, uint64_t data, 1669 EventNotifier *e) 1670 { 1671 int fd = event_notifier_get_fd(e); 1672 int r; 1673 1674 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1675 data, false, int128_get64(section->size), 1676 match_data); 1677 if (r < 0) { 1678 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1679 __func__, strerror(-r), -r); 1680 abort(); 1681 } 1682 } 1683 1684 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1685 MemoryRegionSection *section, 1686 bool match_data, uint64_t data, 1687 EventNotifier *e) 1688 { 1689 int fd = event_notifier_get_fd(e); 1690 int r; 1691 1692 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1693 data, true, int128_get64(section->size), 1694 match_data); 1695 if (r < 0) { 1696 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1697 __func__, strerror(-r), -r); 1698 abort(); 1699 } 1700 } 1701 1702 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1703 MemoryRegionSection *section, 1704 bool match_data, uint64_t data, 1705 EventNotifier *e) 1706 1707 { 1708 int fd = event_notifier_get_fd(e); 1709 int r; 1710 1711 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1712 data, false, int128_get64(section->size), 1713 match_data); 1714 if (r < 0) { 1715 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1716 __func__, strerror(-r), -r); 1717 abort(); 1718 } 1719 } 1720 1721 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1722 AddressSpace *as, int as_id, const char *name) 1723 { 1724 int i; 1725 1726 kml->slots = g_new0(KVMSlot, s->nr_slots); 1727 kml->as_id = as_id; 1728 1729 for (i = 0; i < s->nr_slots; i++) { 1730 kml->slots[i].slot = i; 1731 } 1732 1733 QSIMPLEQ_INIT(&kml->transaction_add); 1734 QSIMPLEQ_INIT(&kml->transaction_del); 1735 1736 kml->listener.region_add = kvm_region_add; 1737 kml->listener.region_del = kvm_region_del; 1738 kml->listener.commit = kvm_region_commit; 1739 kml->listener.log_start = kvm_log_start; 1740 kml->listener.log_stop = kvm_log_stop; 1741 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1742 kml->listener.name = name; 1743 1744 if (s->kvm_dirty_ring_size) { 1745 kml->listener.log_sync_global = kvm_log_sync_global; 1746 } else { 1747 kml->listener.log_sync = kvm_log_sync; 1748 kml->listener.log_clear = kvm_log_clear; 1749 } 1750 1751 memory_listener_register(&kml->listener, as); 1752 1753 for (i = 0; i < s->nr_as; ++i) { 1754 if (!s->as[i].as) { 1755 s->as[i].as = as; 1756 s->as[i].ml = kml; 1757 break; 1758 } 1759 } 1760 } 1761 1762 static MemoryListener kvm_io_listener = { 1763 .name = "kvm-io", 1764 .coalesced_io_add = kvm_coalesce_pio_add, 1765 .coalesced_io_del = kvm_coalesce_pio_del, 1766 .eventfd_add = kvm_io_ioeventfd_add, 1767 .eventfd_del = kvm_io_ioeventfd_del, 1768 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1769 }; 1770 1771 int kvm_set_irq(KVMState *s, int irq, int level) 1772 { 1773 struct kvm_irq_level event; 1774 int ret; 1775 1776 assert(kvm_async_interrupts_enabled()); 1777 1778 event.level = level; 1779 event.irq = irq; 1780 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1781 if (ret < 0) { 1782 perror("kvm_set_irq"); 1783 abort(); 1784 } 1785 1786 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1787 } 1788 1789 #ifdef KVM_CAP_IRQ_ROUTING 1790 typedef struct KVMMSIRoute { 1791 struct kvm_irq_routing_entry kroute; 1792 QTAILQ_ENTRY(KVMMSIRoute) entry; 1793 } KVMMSIRoute; 1794 1795 static void set_gsi(KVMState *s, unsigned int gsi) 1796 { 1797 set_bit(gsi, s->used_gsi_bitmap); 1798 } 1799 1800 static void clear_gsi(KVMState *s, unsigned int gsi) 1801 { 1802 clear_bit(gsi, s->used_gsi_bitmap); 1803 } 1804 1805 void kvm_init_irq_routing(KVMState *s) 1806 { 1807 int gsi_count; 1808 1809 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1810 if (gsi_count > 0) { 1811 /* Round up so we can search ints using ffs */ 1812 s->used_gsi_bitmap = bitmap_new(gsi_count); 1813 s->gsi_count = gsi_count; 1814 } 1815 1816 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1817 s->nr_allocated_irq_routes = 0; 1818 1819 kvm_arch_init_irq_routing(s); 1820 } 1821 1822 void kvm_irqchip_commit_routes(KVMState *s) 1823 { 1824 int ret; 1825 1826 if (kvm_gsi_direct_mapping()) { 1827 return; 1828 } 1829 1830 if (!kvm_gsi_routing_enabled()) { 1831 return; 1832 } 1833 1834 s->irq_routes->flags = 0; 1835 trace_kvm_irqchip_commit_routes(); 1836 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1837 assert(ret == 0); 1838 } 1839 1840 static void kvm_add_routing_entry(KVMState *s, 1841 struct kvm_irq_routing_entry *entry) 1842 { 1843 struct kvm_irq_routing_entry *new; 1844 int n, size; 1845 1846 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1847 n = s->nr_allocated_irq_routes * 2; 1848 if (n < 64) { 1849 n = 64; 1850 } 1851 size = sizeof(struct kvm_irq_routing); 1852 size += n * sizeof(*new); 1853 s->irq_routes = g_realloc(s->irq_routes, size); 1854 s->nr_allocated_irq_routes = n; 1855 } 1856 n = s->irq_routes->nr++; 1857 new = &s->irq_routes->entries[n]; 1858 1859 *new = *entry; 1860 1861 set_gsi(s, entry->gsi); 1862 } 1863 1864 static int kvm_update_routing_entry(KVMState *s, 1865 struct kvm_irq_routing_entry *new_entry) 1866 { 1867 struct kvm_irq_routing_entry *entry; 1868 int n; 1869 1870 for (n = 0; n < s->irq_routes->nr; n++) { 1871 entry = &s->irq_routes->entries[n]; 1872 if (entry->gsi != new_entry->gsi) { 1873 continue; 1874 } 1875 1876 if(!memcmp(entry, new_entry, sizeof *entry)) { 1877 return 0; 1878 } 1879 1880 *entry = *new_entry; 1881 1882 return 0; 1883 } 1884 1885 return -ESRCH; 1886 } 1887 1888 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1889 { 1890 struct kvm_irq_routing_entry e = {}; 1891 1892 assert(pin < s->gsi_count); 1893 1894 e.gsi = irq; 1895 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1896 e.flags = 0; 1897 e.u.irqchip.irqchip = irqchip; 1898 e.u.irqchip.pin = pin; 1899 kvm_add_routing_entry(s, &e); 1900 } 1901 1902 void kvm_irqchip_release_virq(KVMState *s, int virq) 1903 { 1904 struct kvm_irq_routing_entry *e; 1905 int i; 1906 1907 if (kvm_gsi_direct_mapping()) { 1908 return; 1909 } 1910 1911 for (i = 0; i < s->irq_routes->nr; i++) { 1912 e = &s->irq_routes->entries[i]; 1913 if (e->gsi == virq) { 1914 s->irq_routes->nr--; 1915 *e = s->irq_routes->entries[s->irq_routes->nr]; 1916 } 1917 } 1918 clear_gsi(s, virq); 1919 kvm_arch_release_virq_post(virq); 1920 trace_kvm_irqchip_release_virq(virq); 1921 } 1922 1923 void kvm_irqchip_add_change_notifier(Notifier *n) 1924 { 1925 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1926 } 1927 1928 void kvm_irqchip_remove_change_notifier(Notifier *n) 1929 { 1930 notifier_remove(n); 1931 } 1932 1933 void kvm_irqchip_change_notify(void) 1934 { 1935 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1936 } 1937 1938 static int kvm_irqchip_get_virq(KVMState *s) 1939 { 1940 int next_virq; 1941 1942 /* Return the lowest unused GSI in the bitmap */ 1943 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1944 if (next_virq >= s->gsi_count) { 1945 return -ENOSPC; 1946 } else { 1947 return next_virq; 1948 } 1949 } 1950 1951 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1952 { 1953 struct kvm_msi msi; 1954 1955 msi.address_lo = (uint32_t)msg.address; 1956 msi.address_hi = msg.address >> 32; 1957 msi.data = le32_to_cpu(msg.data); 1958 msi.flags = 0; 1959 memset(msi.pad, 0, sizeof(msi.pad)); 1960 1961 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1962 } 1963 1964 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 1965 { 1966 struct kvm_irq_routing_entry kroute = {}; 1967 int virq; 1968 KVMState *s = c->s; 1969 MSIMessage msg = {0, 0}; 1970 1971 if (pci_available && dev) { 1972 msg = pci_get_msi_message(dev, vector); 1973 } 1974 1975 if (kvm_gsi_direct_mapping()) { 1976 return kvm_arch_msi_data_to_gsi(msg.data); 1977 } 1978 1979 if (!kvm_gsi_routing_enabled()) { 1980 return -ENOSYS; 1981 } 1982 1983 virq = kvm_irqchip_get_virq(s); 1984 if (virq < 0) { 1985 return virq; 1986 } 1987 1988 kroute.gsi = virq; 1989 kroute.type = KVM_IRQ_ROUTING_MSI; 1990 kroute.flags = 0; 1991 kroute.u.msi.address_lo = (uint32_t)msg.address; 1992 kroute.u.msi.address_hi = msg.address >> 32; 1993 kroute.u.msi.data = le32_to_cpu(msg.data); 1994 if (pci_available && kvm_msi_devid_required()) { 1995 kroute.flags = KVM_MSI_VALID_DEVID; 1996 kroute.u.msi.devid = pci_requester_id(dev); 1997 } 1998 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1999 kvm_irqchip_release_virq(s, virq); 2000 return -EINVAL; 2001 } 2002 2003 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2004 vector, virq); 2005 2006 kvm_add_routing_entry(s, &kroute); 2007 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2008 c->changes++; 2009 2010 return virq; 2011 } 2012 2013 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2014 PCIDevice *dev) 2015 { 2016 struct kvm_irq_routing_entry kroute = {}; 2017 2018 if (kvm_gsi_direct_mapping()) { 2019 return 0; 2020 } 2021 2022 if (!kvm_irqchip_in_kernel()) { 2023 return -ENOSYS; 2024 } 2025 2026 kroute.gsi = virq; 2027 kroute.type = KVM_IRQ_ROUTING_MSI; 2028 kroute.flags = 0; 2029 kroute.u.msi.address_lo = (uint32_t)msg.address; 2030 kroute.u.msi.address_hi = msg.address >> 32; 2031 kroute.u.msi.data = le32_to_cpu(msg.data); 2032 if (pci_available && kvm_msi_devid_required()) { 2033 kroute.flags = KVM_MSI_VALID_DEVID; 2034 kroute.u.msi.devid = pci_requester_id(dev); 2035 } 2036 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2037 return -EINVAL; 2038 } 2039 2040 trace_kvm_irqchip_update_msi_route(virq); 2041 2042 return kvm_update_routing_entry(s, &kroute); 2043 } 2044 2045 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2046 EventNotifier *resample, int virq, 2047 bool assign) 2048 { 2049 int fd = event_notifier_get_fd(event); 2050 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2051 2052 struct kvm_irqfd irqfd = { 2053 .fd = fd, 2054 .gsi = virq, 2055 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2056 }; 2057 2058 if (rfd != -1) { 2059 assert(assign); 2060 if (kvm_irqchip_is_split()) { 2061 /* 2062 * When the slow irqchip (e.g. IOAPIC) is in the 2063 * userspace, KVM kernel resamplefd will not work because 2064 * the EOI of the interrupt will be delivered to userspace 2065 * instead, so the KVM kernel resamplefd kick will be 2066 * skipped. The userspace here mimics what the kernel 2067 * provides with resamplefd, remember the resamplefd and 2068 * kick it when we receive EOI of this IRQ. 2069 * 2070 * This is hackery because IOAPIC is mostly bypassed 2071 * (except EOI broadcasts) when irqfd is used. However 2072 * this can bring much performance back for split irqchip 2073 * with INTx IRQs (for VFIO, this gives 93% perf of the 2074 * full fast path, which is 46% perf boost comparing to 2075 * the INTx slow path). 2076 */ 2077 kvm_resample_fd_insert(virq, resample); 2078 } else { 2079 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2080 irqfd.resamplefd = rfd; 2081 } 2082 } else if (!assign) { 2083 if (kvm_irqchip_is_split()) { 2084 kvm_resample_fd_remove(virq); 2085 } 2086 } 2087 2088 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2089 } 2090 2091 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2092 { 2093 struct kvm_irq_routing_entry kroute = {}; 2094 int virq; 2095 2096 if (!kvm_gsi_routing_enabled()) { 2097 return -ENOSYS; 2098 } 2099 2100 virq = kvm_irqchip_get_virq(s); 2101 if (virq < 0) { 2102 return virq; 2103 } 2104 2105 kroute.gsi = virq; 2106 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2107 kroute.flags = 0; 2108 kroute.u.adapter.summary_addr = adapter->summary_addr; 2109 kroute.u.adapter.ind_addr = adapter->ind_addr; 2110 kroute.u.adapter.summary_offset = adapter->summary_offset; 2111 kroute.u.adapter.ind_offset = adapter->ind_offset; 2112 kroute.u.adapter.adapter_id = adapter->adapter_id; 2113 2114 kvm_add_routing_entry(s, &kroute); 2115 2116 return virq; 2117 } 2118 2119 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2120 { 2121 struct kvm_irq_routing_entry kroute = {}; 2122 int virq; 2123 2124 if (!kvm_gsi_routing_enabled()) { 2125 return -ENOSYS; 2126 } 2127 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2128 return -ENOSYS; 2129 } 2130 virq = kvm_irqchip_get_virq(s); 2131 if (virq < 0) { 2132 return virq; 2133 } 2134 2135 kroute.gsi = virq; 2136 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2137 kroute.flags = 0; 2138 kroute.u.hv_sint.vcpu = vcpu; 2139 kroute.u.hv_sint.sint = sint; 2140 2141 kvm_add_routing_entry(s, &kroute); 2142 kvm_irqchip_commit_routes(s); 2143 2144 return virq; 2145 } 2146 2147 #else /* !KVM_CAP_IRQ_ROUTING */ 2148 2149 void kvm_init_irq_routing(KVMState *s) 2150 { 2151 } 2152 2153 void kvm_irqchip_release_virq(KVMState *s, int virq) 2154 { 2155 } 2156 2157 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2158 { 2159 abort(); 2160 } 2161 2162 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2163 { 2164 return -ENOSYS; 2165 } 2166 2167 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2168 { 2169 return -ENOSYS; 2170 } 2171 2172 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2173 { 2174 return -ENOSYS; 2175 } 2176 2177 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2178 EventNotifier *resample, int virq, 2179 bool assign) 2180 { 2181 abort(); 2182 } 2183 2184 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2185 { 2186 return -ENOSYS; 2187 } 2188 #endif /* !KVM_CAP_IRQ_ROUTING */ 2189 2190 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2191 EventNotifier *rn, int virq) 2192 { 2193 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2194 } 2195 2196 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2197 int virq) 2198 { 2199 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2200 } 2201 2202 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2203 EventNotifier *rn, qemu_irq irq) 2204 { 2205 gpointer key, gsi; 2206 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2207 2208 if (!found) { 2209 return -ENXIO; 2210 } 2211 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2212 } 2213 2214 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2215 qemu_irq irq) 2216 { 2217 gpointer key, gsi; 2218 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2219 2220 if (!found) { 2221 return -ENXIO; 2222 } 2223 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2224 } 2225 2226 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2227 { 2228 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2229 } 2230 2231 static void kvm_irqchip_create(KVMState *s) 2232 { 2233 int ret; 2234 2235 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2236 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2237 ; 2238 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2239 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2240 if (ret < 0) { 2241 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2242 exit(1); 2243 } 2244 } else { 2245 return; 2246 } 2247 2248 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2249 fprintf(stderr, "kvm: irqfd not implemented\n"); 2250 exit(1); 2251 } 2252 2253 /* First probe and see if there's a arch-specific hook to create the 2254 * in-kernel irqchip for us */ 2255 ret = kvm_arch_irqchip_create(s); 2256 if (ret == 0) { 2257 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2258 error_report("Split IRQ chip mode not supported."); 2259 exit(1); 2260 } else { 2261 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2262 } 2263 } 2264 if (ret < 0) { 2265 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2266 exit(1); 2267 } 2268 2269 kvm_kernel_irqchip = true; 2270 /* If we have an in-kernel IRQ chip then we must have asynchronous 2271 * interrupt delivery (though the reverse is not necessarily true) 2272 */ 2273 kvm_async_interrupts_allowed = true; 2274 kvm_halt_in_kernel_allowed = true; 2275 2276 kvm_init_irq_routing(s); 2277 2278 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2279 } 2280 2281 /* Find number of supported CPUs using the recommended 2282 * procedure from the kernel API documentation to cope with 2283 * older kernels that may be missing capabilities. 2284 */ 2285 static int kvm_recommended_vcpus(KVMState *s) 2286 { 2287 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2288 return (ret) ? ret : 4; 2289 } 2290 2291 static int kvm_max_vcpus(KVMState *s) 2292 { 2293 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2294 return (ret) ? ret : kvm_recommended_vcpus(s); 2295 } 2296 2297 static int kvm_max_vcpu_id(KVMState *s) 2298 { 2299 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2300 return (ret) ? ret : kvm_max_vcpus(s); 2301 } 2302 2303 bool kvm_vcpu_id_is_valid(int vcpu_id) 2304 { 2305 KVMState *s = KVM_STATE(current_accel()); 2306 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2307 } 2308 2309 bool kvm_dirty_ring_enabled(void) 2310 { 2311 return kvm_state->kvm_dirty_ring_size ? true : false; 2312 } 2313 2314 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2315 strList *names, strList *targets, Error **errp); 2316 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2317 2318 uint32_t kvm_dirty_ring_size(void) 2319 { 2320 return kvm_state->kvm_dirty_ring_size; 2321 } 2322 2323 static int kvm_init(MachineState *ms) 2324 { 2325 MachineClass *mc = MACHINE_GET_CLASS(ms); 2326 static const char upgrade_note[] = 2327 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2328 "(see http://sourceforge.net/projects/kvm).\n"; 2329 const struct { 2330 const char *name; 2331 int num; 2332 } num_cpus[] = { 2333 { "SMP", ms->smp.cpus }, 2334 { "hotpluggable", ms->smp.max_cpus }, 2335 { /* end of list */ } 2336 }, *nc = num_cpus; 2337 int soft_vcpus_limit, hard_vcpus_limit; 2338 KVMState *s; 2339 const KVMCapabilityInfo *missing_cap; 2340 int ret; 2341 int type; 2342 uint64_t dirty_log_manual_caps; 2343 2344 qemu_mutex_init(&kml_slots_lock); 2345 2346 s = KVM_STATE(ms->accelerator); 2347 2348 /* 2349 * On systems where the kernel can support different base page 2350 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2351 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2352 * page size for the system though. 2353 */ 2354 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2355 2356 s->sigmask_len = 8; 2357 accel_blocker_init(); 2358 2359 #ifdef KVM_CAP_SET_GUEST_DEBUG 2360 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2361 #endif 2362 QLIST_INIT(&s->kvm_parked_vcpus); 2363 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2364 if (s->fd == -1) { 2365 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2366 ret = -errno; 2367 goto err; 2368 } 2369 2370 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2371 if (ret < KVM_API_VERSION) { 2372 if (ret >= 0) { 2373 ret = -EINVAL; 2374 } 2375 fprintf(stderr, "kvm version too old\n"); 2376 goto err; 2377 } 2378 2379 if (ret > KVM_API_VERSION) { 2380 ret = -EINVAL; 2381 fprintf(stderr, "kvm version not supported\n"); 2382 goto err; 2383 } 2384 2385 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2386 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2387 2388 /* If unspecified, use the default value */ 2389 if (!s->nr_slots) { 2390 s->nr_slots = 32; 2391 } 2392 2393 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2394 if (s->nr_as <= 1) { 2395 s->nr_as = 1; 2396 } 2397 s->as = g_new0(struct KVMAs, s->nr_as); 2398 2399 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2400 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2401 "kvm-type", 2402 &error_abort); 2403 type = mc->kvm_type(ms, kvm_type); 2404 } else if (mc->kvm_type) { 2405 type = mc->kvm_type(ms, NULL); 2406 } else { 2407 type = kvm_arch_get_default_type(ms); 2408 } 2409 2410 if (type < 0) { 2411 ret = -EINVAL; 2412 goto err; 2413 } 2414 2415 do { 2416 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2417 } while (ret == -EINTR); 2418 2419 if (ret < 0) { 2420 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2421 strerror(-ret)); 2422 2423 #ifdef TARGET_S390X 2424 if (ret == -EINVAL) { 2425 fprintf(stderr, 2426 "Host kernel setup problem detected. Please verify:\n"); 2427 fprintf(stderr, "- for kernels supporting the switch_amode or" 2428 " user_mode parameters, whether\n"); 2429 fprintf(stderr, 2430 " user space is running in primary address space\n"); 2431 fprintf(stderr, 2432 "- for kernels supporting the vm.allocate_pgste sysctl, " 2433 "whether it is enabled\n"); 2434 } 2435 #elif defined(TARGET_PPC) 2436 if (ret == -EINVAL) { 2437 fprintf(stderr, 2438 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2439 (type == 2) ? "pr" : "hv"); 2440 } 2441 #endif 2442 goto err; 2443 } 2444 2445 s->vmfd = ret; 2446 2447 /* check the vcpu limits */ 2448 soft_vcpus_limit = kvm_recommended_vcpus(s); 2449 hard_vcpus_limit = kvm_max_vcpus(s); 2450 2451 while (nc->name) { 2452 if (nc->num > soft_vcpus_limit) { 2453 warn_report("Number of %s cpus requested (%d) exceeds " 2454 "the recommended cpus supported by KVM (%d)", 2455 nc->name, nc->num, soft_vcpus_limit); 2456 2457 if (nc->num > hard_vcpus_limit) { 2458 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2459 "the maximum cpus supported by KVM (%d)\n", 2460 nc->name, nc->num, hard_vcpus_limit); 2461 exit(1); 2462 } 2463 } 2464 nc++; 2465 } 2466 2467 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2468 if (!missing_cap) { 2469 missing_cap = 2470 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2471 } 2472 if (missing_cap) { 2473 ret = -EINVAL; 2474 fprintf(stderr, "kvm does not support %s\n%s", 2475 missing_cap->name, upgrade_note); 2476 goto err; 2477 } 2478 2479 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2480 s->coalesced_pio = s->coalesced_mmio && 2481 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2482 2483 /* 2484 * Enable KVM dirty ring if supported, otherwise fall back to 2485 * dirty logging mode 2486 */ 2487 ret = kvm_dirty_ring_init(s); 2488 if (ret < 0) { 2489 goto err; 2490 } 2491 2492 /* 2493 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2494 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2495 * page is wr-protected initially, which is against how kvm dirty ring is 2496 * usage - kvm dirty ring requires all pages are wr-protected at the very 2497 * beginning. Enabling this feature for dirty ring causes data corruption. 2498 * 2499 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2500 * we may expect a higher stall time when starting the migration. In the 2501 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2502 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2503 * guest pages. 2504 */ 2505 if (!s->kvm_dirty_ring_size) { 2506 dirty_log_manual_caps = 2507 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2508 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2509 KVM_DIRTY_LOG_INITIALLY_SET); 2510 s->manual_dirty_log_protect = dirty_log_manual_caps; 2511 if (dirty_log_manual_caps) { 2512 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2513 dirty_log_manual_caps); 2514 if (ret) { 2515 warn_report("Trying to enable capability %"PRIu64" of " 2516 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2517 "Falling back to the legacy mode. ", 2518 dirty_log_manual_caps); 2519 s->manual_dirty_log_protect = 0; 2520 } 2521 } 2522 } 2523 2524 #ifdef KVM_CAP_VCPU_EVENTS 2525 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2526 #endif 2527 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2528 2529 s->irq_set_ioctl = KVM_IRQ_LINE; 2530 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2531 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2532 } 2533 2534 kvm_readonly_mem_allowed = 2535 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2536 2537 kvm_resamplefds_allowed = 2538 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2539 2540 kvm_vm_attributes_allowed = 2541 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2542 2543 #ifdef KVM_CAP_SET_GUEST_DEBUG 2544 kvm_has_guest_debug = 2545 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2546 #endif 2547 2548 kvm_sstep_flags = 0; 2549 if (kvm_has_guest_debug) { 2550 kvm_sstep_flags = SSTEP_ENABLE; 2551 2552 #if defined KVM_CAP_SET_GUEST_DEBUG2 2553 int guest_debug_flags = 2554 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2555 2556 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2557 kvm_sstep_flags |= SSTEP_NOIRQ; 2558 } 2559 #endif 2560 } 2561 2562 kvm_state = s; 2563 2564 ret = kvm_arch_init(ms, s); 2565 if (ret < 0) { 2566 goto err; 2567 } 2568 2569 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2570 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2571 } 2572 2573 qemu_register_reset(kvm_unpoison_all, NULL); 2574 2575 if (s->kernel_irqchip_allowed) { 2576 kvm_irqchip_create(s); 2577 } 2578 2579 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2580 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2581 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2582 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2583 2584 kvm_memory_listener_register(s, &s->memory_listener, 2585 &address_space_memory, 0, "kvm-memory"); 2586 memory_listener_register(&kvm_io_listener, 2587 &address_space_io); 2588 2589 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2590 if (!s->sync_mmu) { 2591 ret = ram_block_discard_disable(true); 2592 assert(!ret); 2593 } 2594 2595 if (s->kvm_dirty_ring_size) { 2596 kvm_dirty_ring_reaper_init(s); 2597 } 2598 2599 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2600 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2601 query_stats_schemas_cb); 2602 } 2603 2604 return 0; 2605 2606 err: 2607 assert(ret < 0); 2608 if (s->vmfd >= 0) { 2609 close(s->vmfd); 2610 } 2611 if (s->fd != -1) { 2612 close(s->fd); 2613 } 2614 g_free(s->as); 2615 g_free(s->memory_listener.slots); 2616 2617 return ret; 2618 } 2619 2620 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2621 { 2622 s->sigmask_len = sigmask_len; 2623 } 2624 2625 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2626 int size, uint32_t count) 2627 { 2628 int i; 2629 uint8_t *ptr = data; 2630 2631 for (i = 0; i < count; i++) { 2632 address_space_rw(&address_space_io, port, attrs, 2633 ptr, size, 2634 direction == KVM_EXIT_IO_OUT); 2635 ptr += size; 2636 } 2637 } 2638 2639 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2640 { 2641 int i; 2642 2643 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2644 run->internal.suberror); 2645 2646 for (i = 0; i < run->internal.ndata; ++i) { 2647 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2648 i, (uint64_t)run->internal.data[i]); 2649 } 2650 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2651 fprintf(stderr, "emulation failure\n"); 2652 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2653 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2654 return EXCP_INTERRUPT; 2655 } 2656 } 2657 /* FIXME: Should trigger a qmp message to let management know 2658 * something went wrong. 2659 */ 2660 return -1; 2661 } 2662 2663 void kvm_flush_coalesced_mmio_buffer(void) 2664 { 2665 KVMState *s = kvm_state; 2666 2667 if (!s || s->coalesced_flush_in_progress) { 2668 return; 2669 } 2670 2671 s->coalesced_flush_in_progress = true; 2672 2673 if (s->coalesced_mmio_ring) { 2674 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2675 while (ring->first != ring->last) { 2676 struct kvm_coalesced_mmio *ent; 2677 2678 ent = &ring->coalesced_mmio[ring->first]; 2679 2680 if (ent->pio == 1) { 2681 address_space_write(&address_space_io, ent->phys_addr, 2682 MEMTXATTRS_UNSPECIFIED, ent->data, 2683 ent->len); 2684 } else { 2685 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2686 } 2687 smp_wmb(); 2688 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2689 } 2690 } 2691 2692 s->coalesced_flush_in_progress = false; 2693 } 2694 2695 bool kvm_cpu_check_are_resettable(void) 2696 { 2697 return kvm_arch_cpu_check_are_resettable(); 2698 } 2699 2700 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2701 { 2702 if (!cpu->vcpu_dirty) { 2703 int ret = kvm_arch_get_registers(cpu); 2704 if (ret) { 2705 error_report("Failed to get registers: %s", strerror(-ret)); 2706 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2707 vm_stop(RUN_STATE_INTERNAL_ERROR); 2708 } 2709 2710 cpu->vcpu_dirty = true; 2711 } 2712 } 2713 2714 void kvm_cpu_synchronize_state(CPUState *cpu) 2715 { 2716 if (!cpu->vcpu_dirty) { 2717 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2718 } 2719 } 2720 2721 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2722 { 2723 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2724 if (ret) { 2725 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2726 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2727 vm_stop(RUN_STATE_INTERNAL_ERROR); 2728 } 2729 2730 cpu->vcpu_dirty = false; 2731 } 2732 2733 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2734 { 2735 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2736 } 2737 2738 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2739 { 2740 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2741 if (ret) { 2742 error_report("Failed to put registers after init: %s", strerror(-ret)); 2743 exit(1); 2744 } 2745 2746 cpu->vcpu_dirty = false; 2747 } 2748 2749 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2750 { 2751 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2752 } 2753 2754 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2755 { 2756 cpu->vcpu_dirty = true; 2757 } 2758 2759 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2760 { 2761 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2762 } 2763 2764 #ifdef KVM_HAVE_MCE_INJECTION 2765 static __thread void *pending_sigbus_addr; 2766 static __thread int pending_sigbus_code; 2767 static __thread bool have_sigbus_pending; 2768 #endif 2769 2770 static void kvm_cpu_kick(CPUState *cpu) 2771 { 2772 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2773 } 2774 2775 static void kvm_cpu_kick_self(void) 2776 { 2777 if (kvm_immediate_exit) { 2778 kvm_cpu_kick(current_cpu); 2779 } else { 2780 qemu_cpu_kick_self(); 2781 } 2782 } 2783 2784 static void kvm_eat_signals(CPUState *cpu) 2785 { 2786 struct timespec ts = { 0, 0 }; 2787 siginfo_t siginfo; 2788 sigset_t waitset; 2789 sigset_t chkset; 2790 int r; 2791 2792 if (kvm_immediate_exit) { 2793 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2794 /* Write kvm_run->immediate_exit before the cpu->exit_request 2795 * write in kvm_cpu_exec. 2796 */ 2797 smp_wmb(); 2798 return; 2799 } 2800 2801 sigemptyset(&waitset); 2802 sigaddset(&waitset, SIG_IPI); 2803 2804 do { 2805 r = sigtimedwait(&waitset, &siginfo, &ts); 2806 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2807 perror("sigtimedwait"); 2808 exit(1); 2809 } 2810 2811 r = sigpending(&chkset); 2812 if (r == -1) { 2813 perror("sigpending"); 2814 exit(1); 2815 } 2816 } while (sigismember(&chkset, SIG_IPI)); 2817 } 2818 2819 int kvm_cpu_exec(CPUState *cpu) 2820 { 2821 struct kvm_run *run = cpu->kvm_run; 2822 int ret, run_ret; 2823 2824 DPRINTF("kvm_cpu_exec()\n"); 2825 2826 if (kvm_arch_process_async_events(cpu)) { 2827 qatomic_set(&cpu->exit_request, 0); 2828 return EXCP_HLT; 2829 } 2830 2831 qemu_mutex_unlock_iothread(); 2832 cpu_exec_start(cpu); 2833 2834 do { 2835 MemTxAttrs attrs; 2836 2837 if (cpu->vcpu_dirty) { 2838 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2839 if (ret) { 2840 error_report("Failed to put registers after init: %s", 2841 strerror(-ret)); 2842 ret = -1; 2843 break; 2844 } 2845 2846 cpu->vcpu_dirty = false; 2847 } 2848 2849 kvm_arch_pre_run(cpu, run); 2850 if (qatomic_read(&cpu->exit_request)) { 2851 DPRINTF("interrupt exit requested\n"); 2852 /* 2853 * KVM requires us to reenter the kernel after IO exits to complete 2854 * instruction emulation. This self-signal will ensure that we 2855 * leave ASAP again. 2856 */ 2857 kvm_cpu_kick_self(); 2858 } 2859 2860 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2861 * Matching barrier in kvm_eat_signals. 2862 */ 2863 smp_rmb(); 2864 2865 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2866 2867 attrs = kvm_arch_post_run(cpu, run); 2868 2869 #ifdef KVM_HAVE_MCE_INJECTION 2870 if (unlikely(have_sigbus_pending)) { 2871 qemu_mutex_lock_iothread(); 2872 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2873 pending_sigbus_addr); 2874 have_sigbus_pending = false; 2875 qemu_mutex_unlock_iothread(); 2876 } 2877 #endif 2878 2879 if (run_ret < 0) { 2880 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2881 DPRINTF("io window exit\n"); 2882 kvm_eat_signals(cpu); 2883 ret = EXCP_INTERRUPT; 2884 break; 2885 } 2886 fprintf(stderr, "error: kvm run failed %s\n", 2887 strerror(-run_ret)); 2888 #ifdef TARGET_PPC 2889 if (run_ret == -EBUSY) { 2890 fprintf(stderr, 2891 "This is probably because your SMT is enabled.\n" 2892 "VCPU can only run on primary threads with all " 2893 "secondary threads offline.\n"); 2894 } 2895 #endif 2896 ret = -1; 2897 break; 2898 } 2899 2900 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2901 switch (run->exit_reason) { 2902 case KVM_EXIT_IO: 2903 DPRINTF("handle_io\n"); 2904 /* Called outside BQL */ 2905 kvm_handle_io(run->io.port, attrs, 2906 (uint8_t *)run + run->io.data_offset, 2907 run->io.direction, 2908 run->io.size, 2909 run->io.count); 2910 ret = 0; 2911 break; 2912 case KVM_EXIT_MMIO: 2913 DPRINTF("handle_mmio\n"); 2914 /* Called outside BQL */ 2915 address_space_rw(&address_space_memory, 2916 run->mmio.phys_addr, attrs, 2917 run->mmio.data, 2918 run->mmio.len, 2919 run->mmio.is_write); 2920 ret = 0; 2921 break; 2922 case KVM_EXIT_IRQ_WINDOW_OPEN: 2923 DPRINTF("irq_window_open\n"); 2924 ret = EXCP_INTERRUPT; 2925 break; 2926 case KVM_EXIT_SHUTDOWN: 2927 DPRINTF("shutdown\n"); 2928 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2929 ret = EXCP_INTERRUPT; 2930 break; 2931 case KVM_EXIT_UNKNOWN: 2932 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2933 (uint64_t)run->hw.hardware_exit_reason); 2934 ret = -1; 2935 break; 2936 case KVM_EXIT_INTERNAL_ERROR: 2937 ret = kvm_handle_internal_error(cpu, run); 2938 break; 2939 case KVM_EXIT_DIRTY_RING_FULL: 2940 /* 2941 * We shouldn't continue if the dirty ring of this vcpu is 2942 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2943 */ 2944 trace_kvm_dirty_ring_full(cpu->cpu_index); 2945 qemu_mutex_lock_iothread(); 2946 /* 2947 * We throttle vCPU by making it sleep once it exit from kernel 2948 * due to dirty ring full. In the dirtylimit scenario, reaping 2949 * all vCPUs after a single vCPU dirty ring get full result in 2950 * the miss of sleep, so just reap the ring-fulled vCPU. 2951 */ 2952 if (dirtylimit_in_service()) { 2953 kvm_dirty_ring_reap(kvm_state, cpu); 2954 } else { 2955 kvm_dirty_ring_reap(kvm_state, NULL); 2956 } 2957 qemu_mutex_unlock_iothread(); 2958 dirtylimit_vcpu_execute(cpu); 2959 ret = 0; 2960 break; 2961 case KVM_EXIT_SYSTEM_EVENT: 2962 switch (run->system_event.type) { 2963 case KVM_SYSTEM_EVENT_SHUTDOWN: 2964 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2965 ret = EXCP_INTERRUPT; 2966 break; 2967 case KVM_SYSTEM_EVENT_RESET: 2968 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2969 ret = EXCP_INTERRUPT; 2970 break; 2971 case KVM_SYSTEM_EVENT_CRASH: 2972 kvm_cpu_synchronize_state(cpu); 2973 qemu_mutex_lock_iothread(); 2974 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2975 qemu_mutex_unlock_iothread(); 2976 ret = 0; 2977 break; 2978 default: 2979 DPRINTF("kvm_arch_handle_exit\n"); 2980 ret = kvm_arch_handle_exit(cpu, run); 2981 break; 2982 } 2983 break; 2984 default: 2985 DPRINTF("kvm_arch_handle_exit\n"); 2986 ret = kvm_arch_handle_exit(cpu, run); 2987 break; 2988 } 2989 } while (ret == 0); 2990 2991 cpu_exec_end(cpu); 2992 qemu_mutex_lock_iothread(); 2993 2994 if (ret < 0) { 2995 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2996 vm_stop(RUN_STATE_INTERNAL_ERROR); 2997 } 2998 2999 qatomic_set(&cpu->exit_request, 0); 3000 return ret; 3001 } 3002 3003 int kvm_ioctl(KVMState *s, int type, ...) 3004 { 3005 int ret; 3006 void *arg; 3007 va_list ap; 3008 3009 va_start(ap, type); 3010 arg = va_arg(ap, void *); 3011 va_end(ap); 3012 3013 trace_kvm_ioctl(type, arg); 3014 ret = ioctl(s->fd, type, arg); 3015 if (ret == -1) { 3016 ret = -errno; 3017 } 3018 return ret; 3019 } 3020 3021 int kvm_vm_ioctl(KVMState *s, int type, ...) 3022 { 3023 int ret; 3024 void *arg; 3025 va_list ap; 3026 3027 va_start(ap, type); 3028 arg = va_arg(ap, void *); 3029 va_end(ap); 3030 3031 trace_kvm_vm_ioctl(type, arg); 3032 accel_ioctl_begin(); 3033 ret = ioctl(s->vmfd, type, arg); 3034 accel_ioctl_end(); 3035 if (ret == -1) { 3036 ret = -errno; 3037 } 3038 return ret; 3039 } 3040 3041 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3042 { 3043 int ret; 3044 void *arg; 3045 va_list ap; 3046 3047 va_start(ap, type); 3048 arg = va_arg(ap, void *); 3049 va_end(ap); 3050 3051 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3052 accel_cpu_ioctl_begin(cpu); 3053 ret = ioctl(cpu->kvm_fd, type, arg); 3054 accel_cpu_ioctl_end(cpu); 3055 if (ret == -1) { 3056 ret = -errno; 3057 } 3058 return ret; 3059 } 3060 3061 int kvm_device_ioctl(int fd, int type, ...) 3062 { 3063 int ret; 3064 void *arg; 3065 va_list ap; 3066 3067 va_start(ap, type); 3068 arg = va_arg(ap, void *); 3069 va_end(ap); 3070 3071 trace_kvm_device_ioctl(fd, type, arg); 3072 accel_ioctl_begin(); 3073 ret = ioctl(fd, type, arg); 3074 accel_ioctl_end(); 3075 if (ret == -1) { 3076 ret = -errno; 3077 } 3078 return ret; 3079 } 3080 3081 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3082 { 3083 int ret; 3084 struct kvm_device_attr attribute = { 3085 .group = group, 3086 .attr = attr, 3087 }; 3088 3089 if (!kvm_vm_attributes_allowed) { 3090 return 0; 3091 } 3092 3093 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3094 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3095 return ret ? 0 : 1; 3096 } 3097 3098 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3099 { 3100 struct kvm_device_attr attribute = { 3101 .group = group, 3102 .attr = attr, 3103 .flags = 0, 3104 }; 3105 3106 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3107 } 3108 3109 int kvm_device_access(int fd, int group, uint64_t attr, 3110 void *val, bool write, Error **errp) 3111 { 3112 struct kvm_device_attr kvmattr; 3113 int err; 3114 3115 kvmattr.flags = 0; 3116 kvmattr.group = group; 3117 kvmattr.attr = attr; 3118 kvmattr.addr = (uintptr_t)val; 3119 3120 err = kvm_device_ioctl(fd, 3121 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3122 &kvmattr); 3123 if (err < 0) { 3124 error_setg_errno(errp, -err, 3125 "KVM_%s_DEVICE_ATTR failed: Group %d " 3126 "attr 0x%016" PRIx64, 3127 write ? "SET" : "GET", group, attr); 3128 } 3129 return err; 3130 } 3131 3132 bool kvm_has_sync_mmu(void) 3133 { 3134 return kvm_state->sync_mmu; 3135 } 3136 3137 int kvm_has_vcpu_events(void) 3138 { 3139 return kvm_state->vcpu_events; 3140 } 3141 3142 int kvm_max_nested_state_length(void) 3143 { 3144 return kvm_state->max_nested_state_len; 3145 } 3146 3147 int kvm_has_gsi_routing(void) 3148 { 3149 #ifdef KVM_CAP_IRQ_ROUTING 3150 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3151 #else 3152 return false; 3153 #endif 3154 } 3155 3156 bool kvm_arm_supports_user_irq(void) 3157 { 3158 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3159 } 3160 3161 #ifdef KVM_CAP_SET_GUEST_DEBUG 3162 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3163 { 3164 struct kvm_sw_breakpoint *bp; 3165 3166 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3167 if (bp->pc == pc) { 3168 return bp; 3169 } 3170 } 3171 return NULL; 3172 } 3173 3174 int kvm_sw_breakpoints_active(CPUState *cpu) 3175 { 3176 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3177 } 3178 3179 struct kvm_set_guest_debug_data { 3180 struct kvm_guest_debug dbg; 3181 int err; 3182 }; 3183 3184 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3185 { 3186 struct kvm_set_guest_debug_data *dbg_data = 3187 (struct kvm_set_guest_debug_data *) data.host_ptr; 3188 3189 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3190 &dbg_data->dbg); 3191 } 3192 3193 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3194 { 3195 struct kvm_set_guest_debug_data data; 3196 3197 data.dbg.control = reinject_trap; 3198 3199 if (cpu->singlestep_enabled) { 3200 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3201 3202 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3203 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3204 } 3205 } 3206 kvm_arch_update_guest_debug(cpu, &data.dbg); 3207 3208 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3209 RUN_ON_CPU_HOST_PTR(&data)); 3210 return data.err; 3211 } 3212 3213 bool kvm_supports_guest_debug(void) 3214 { 3215 /* probed during kvm_init() */ 3216 return kvm_has_guest_debug; 3217 } 3218 3219 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3220 { 3221 struct kvm_sw_breakpoint *bp; 3222 int err; 3223 3224 if (type == GDB_BREAKPOINT_SW) { 3225 bp = kvm_find_sw_breakpoint(cpu, addr); 3226 if (bp) { 3227 bp->use_count++; 3228 return 0; 3229 } 3230 3231 bp = g_new(struct kvm_sw_breakpoint, 1); 3232 bp->pc = addr; 3233 bp->use_count = 1; 3234 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3235 if (err) { 3236 g_free(bp); 3237 return err; 3238 } 3239 3240 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3241 } else { 3242 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3243 if (err) { 3244 return err; 3245 } 3246 } 3247 3248 CPU_FOREACH(cpu) { 3249 err = kvm_update_guest_debug(cpu, 0); 3250 if (err) { 3251 return err; 3252 } 3253 } 3254 return 0; 3255 } 3256 3257 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3258 { 3259 struct kvm_sw_breakpoint *bp; 3260 int err; 3261 3262 if (type == GDB_BREAKPOINT_SW) { 3263 bp = kvm_find_sw_breakpoint(cpu, addr); 3264 if (!bp) { 3265 return -ENOENT; 3266 } 3267 3268 if (bp->use_count > 1) { 3269 bp->use_count--; 3270 return 0; 3271 } 3272 3273 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3274 if (err) { 3275 return err; 3276 } 3277 3278 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3279 g_free(bp); 3280 } else { 3281 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3282 if (err) { 3283 return err; 3284 } 3285 } 3286 3287 CPU_FOREACH(cpu) { 3288 err = kvm_update_guest_debug(cpu, 0); 3289 if (err) { 3290 return err; 3291 } 3292 } 3293 return 0; 3294 } 3295 3296 void kvm_remove_all_breakpoints(CPUState *cpu) 3297 { 3298 struct kvm_sw_breakpoint *bp, *next; 3299 KVMState *s = cpu->kvm_state; 3300 CPUState *tmpcpu; 3301 3302 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3303 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3304 /* Try harder to find a CPU that currently sees the breakpoint. */ 3305 CPU_FOREACH(tmpcpu) { 3306 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3307 break; 3308 } 3309 } 3310 } 3311 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3312 g_free(bp); 3313 } 3314 kvm_arch_remove_all_hw_breakpoints(); 3315 3316 CPU_FOREACH(cpu) { 3317 kvm_update_guest_debug(cpu, 0); 3318 } 3319 } 3320 3321 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3322 3323 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3324 { 3325 KVMState *s = kvm_state; 3326 struct kvm_signal_mask *sigmask; 3327 int r; 3328 3329 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3330 3331 sigmask->len = s->sigmask_len; 3332 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3333 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3334 g_free(sigmask); 3335 3336 return r; 3337 } 3338 3339 static void kvm_ipi_signal(int sig) 3340 { 3341 if (current_cpu) { 3342 assert(kvm_immediate_exit); 3343 kvm_cpu_kick(current_cpu); 3344 } 3345 } 3346 3347 void kvm_init_cpu_signals(CPUState *cpu) 3348 { 3349 int r; 3350 sigset_t set; 3351 struct sigaction sigact; 3352 3353 memset(&sigact, 0, sizeof(sigact)); 3354 sigact.sa_handler = kvm_ipi_signal; 3355 sigaction(SIG_IPI, &sigact, NULL); 3356 3357 pthread_sigmask(SIG_BLOCK, NULL, &set); 3358 #if defined KVM_HAVE_MCE_INJECTION 3359 sigdelset(&set, SIGBUS); 3360 pthread_sigmask(SIG_SETMASK, &set, NULL); 3361 #endif 3362 sigdelset(&set, SIG_IPI); 3363 if (kvm_immediate_exit) { 3364 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3365 } else { 3366 r = kvm_set_signal_mask(cpu, &set); 3367 } 3368 if (r) { 3369 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3370 exit(1); 3371 } 3372 } 3373 3374 /* Called asynchronously in VCPU thread. */ 3375 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3376 { 3377 #ifdef KVM_HAVE_MCE_INJECTION 3378 if (have_sigbus_pending) { 3379 return 1; 3380 } 3381 have_sigbus_pending = true; 3382 pending_sigbus_addr = addr; 3383 pending_sigbus_code = code; 3384 qatomic_set(&cpu->exit_request, 1); 3385 return 0; 3386 #else 3387 return 1; 3388 #endif 3389 } 3390 3391 /* Called synchronously (via signalfd) in main thread. */ 3392 int kvm_on_sigbus(int code, void *addr) 3393 { 3394 #ifdef KVM_HAVE_MCE_INJECTION 3395 /* Action required MCE kills the process if SIGBUS is blocked. Because 3396 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3397 * we can only get action optional here. 3398 */ 3399 assert(code != BUS_MCEERR_AR); 3400 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3401 return 0; 3402 #else 3403 return 1; 3404 #endif 3405 } 3406 3407 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3408 { 3409 int ret; 3410 struct kvm_create_device create_dev; 3411 3412 create_dev.type = type; 3413 create_dev.fd = -1; 3414 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3415 3416 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3417 return -ENOTSUP; 3418 } 3419 3420 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3421 if (ret) { 3422 return ret; 3423 } 3424 3425 return test ? 0 : create_dev.fd; 3426 } 3427 3428 bool kvm_device_supported(int vmfd, uint64_t type) 3429 { 3430 struct kvm_create_device create_dev = { 3431 .type = type, 3432 .fd = -1, 3433 .flags = KVM_CREATE_DEVICE_TEST, 3434 }; 3435 3436 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3437 return false; 3438 } 3439 3440 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3441 } 3442 3443 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3444 { 3445 struct kvm_one_reg reg; 3446 int r; 3447 3448 reg.id = id; 3449 reg.addr = (uintptr_t) source; 3450 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3451 if (r) { 3452 trace_kvm_failed_reg_set(id, strerror(-r)); 3453 } 3454 return r; 3455 } 3456 3457 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3458 { 3459 struct kvm_one_reg reg; 3460 int r; 3461 3462 reg.id = id; 3463 reg.addr = (uintptr_t) target; 3464 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3465 if (r) { 3466 trace_kvm_failed_reg_get(id, strerror(-r)); 3467 } 3468 return r; 3469 } 3470 3471 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3472 hwaddr start_addr, hwaddr size) 3473 { 3474 KVMState *kvm = KVM_STATE(ms->accelerator); 3475 int i; 3476 3477 for (i = 0; i < kvm->nr_as; ++i) { 3478 if (kvm->as[i].as == as && kvm->as[i].ml) { 3479 size = MIN(kvm_max_slot_size, size); 3480 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3481 start_addr, size); 3482 } 3483 } 3484 3485 return false; 3486 } 3487 3488 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3489 const char *name, void *opaque, 3490 Error **errp) 3491 { 3492 KVMState *s = KVM_STATE(obj); 3493 int64_t value = s->kvm_shadow_mem; 3494 3495 visit_type_int(v, name, &value, errp); 3496 } 3497 3498 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3499 const char *name, void *opaque, 3500 Error **errp) 3501 { 3502 KVMState *s = KVM_STATE(obj); 3503 int64_t value; 3504 3505 if (s->fd != -1) { 3506 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3507 return; 3508 } 3509 3510 if (!visit_type_int(v, name, &value, errp)) { 3511 return; 3512 } 3513 3514 s->kvm_shadow_mem = value; 3515 } 3516 3517 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3518 const char *name, void *opaque, 3519 Error **errp) 3520 { 3521 KVMState *s = KVM_STATE(obj); 3522 OnOffSplit mode; 3523 3524 if (s->fd != -1) { 3525 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3526 return; 3527 } 3528 3529 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3530 return; 3531 } 3532 switch (mode) { 3533 case ON_OFF_SPLIT_ON: 3534 s->kernel_irqchip_allowed = true; 3535 s->kernel_irqchip_required = true; 3536 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3537 break; 3538 case ON_OFF_SPLIT_OFF: 3539 s->kernel_irqchip_allowed = false; 3540 s->kernel_irqchip_required = false; 3541 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3542 break; 3543 case ON_OFF_SPLIT_SPLIT: 3544 s->kernel_irqchip_allowed = true; 3545 s->kernel_irqchip_required = true; 3546 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3547 break; 3548 default: 3549 /* The value was checked in visit_type_OnOffSplit() above. If 3550 * we get here, then something is wrong in QEMU. 3551 */ 3552 abort(); 3553 } 3554 } 3555 3556 bool kvm_kernel_irqchip_allowed(void) 3557 { 3558 return kvm_state->kernel_irqchip_allowed; 3559 } 3560 3561 bool kvm_kernel_irqchip_required(void) 3562 { 3563 return kvm_state->kernel_irqchip_required; 3564 } 3565 3566 bool kvm_kernel_irqchip_split(void) 3567 { 3568 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3569 } 3570 3571 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3572 const char *name, void *opaque, 3573 Error **errp) 3574 { 3575 KVMState *s = KVM_STATE(obj); 3576 uint32_t value = s->kvm_dirty_ring_size; 3577 3578 visit_type_uint32(v, name, &value, errp); 3579 } 3580 3581 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3582 const char *name, void *opaque, 3583 Error **errp) 3584 { 3585 KVMState *s = KVM_STATE(obj); 3586 uint32_t value; 3587 3588 if (s->fd != -1) { 3589 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3590 return; 3591 } 3592 3593 if (!visit_type_uint32(v, name, &value, errp)) { 3594 return; 3595 } 3596 if (value & (value - 1)) { 3597 error_setg(errp, "dirty-ring-size must be a power of two."); 3598 return; 3599 } 3600 3601 s->kvm_dirty_ring_size = value; 3602 } 3603 3604 static void kvm_accel_instance_init(Object *obj) 3605 { 3606 KVMState *s = KVM_STATE(obj); 3607 3608 s->fd = -1; 3609 s->vmfd = -1; 3610 s->kvm_shadow_mem = -1; 3611 s->kernel_irqchip_allowed = true; 3612 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3613 /* KVM dirty ring is by default off */ 3614 s->kvm_dirty_ring_size = 0; 3615 s->kvm_dirty_ring_with_bitmap = false; 3616 s->kvm_eager_split_size = 0; 3617 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3618 s->notify_window = 0; 3619 s->xen_version = 0; 3620 s->xen_gnttab_max_frames = 64; 3621 s->xen_evtchn_max_pirq = 256; 3622 } 3623 3624 /** 3625 * kvm_gdbstub_sstep_flags(): 3626 * 3627 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3628 * support is probed during kvm_init() 3629 */ 3630 static int kvm_gdbstub_sstep_flags(void) 3631 { 3632 return kvm_sstep_flags; 3633 } 3634 3635 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3636 { 3637 AccelClass *ac = ACCEL_CLASS(oc); 3638 ac->name = "KVM"; 3639 ac->init_machine = kvm_init; 3640 ac->has_memory = kvm_accel_has_memory; 3641 ac->allowed = &kvm_allowed; 3642 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3643 3644 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3645 NULL, kvm_set_kernel_irqchip, 3646 NULL, NULL); 3647 object_class_property_set_description(oc, "kernel-irqchip", 3648 "Configure KVM in-kernel irqchip"); 3649 3650 object_class_property_add(oc, "kvm-shadow-mem", "int", 3651 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3652 NULL, NULL); 3653 object_class_property_set_description(oc, "kvm-shadow-mem", 3654 "KVM shadow MMU size"); 3655 3656 object_class_property_add(oc, "dirty-ring-size", "uint32", 3657 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3658 NULL, NULL); 3659 object_class_property_set_description(oc, "dirty-ring-size", 3660 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3661 3662 kvm_arch_accel_class_init(oc); 3663 } 3664 3665 static const TypeInfo kvm_accel_type = { 3666 .name = TYPE_KVM_ACCEL, 3667 .parent = TYPE_ACCEL, 3668 .instance_init = kvm_accel_instance_init, 3669 .class_init = kvm_accel_class_init, 3670 .instance_size = sizeof(KVMState), 3671 }; 3672 3673 static void kvm_type_init(void) 3674 { 3675 type_register_static(&kvm_accel_type); 3676 } 3677 3678 type_init(kvm_type_init); 3679 3680 typedef struct StatsArgs { 3681 union StatsResultsType { 3682 StatsResultList **stats; 3683 StatsSchemaList **schema; 3684 } result; 3685 strList *names; 3686 Error **errp; 3687 } StatsArgs; 3688 3689 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3690 uint64_t *stats_data, 3691 StatsList *stats_list, 3692 Error **errp) 3693 { 3694 3695 Stats *stats; 3696 uint64List *val_list = NULL; 3697 3698 /* Only add stats that we understand. */ 3699 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3700 case KVM_STATS_TYPE_CUMULATIVE: 3701 case KVM_STATS_TYPE_INSTANT: 3702 case KVM_STATS_TYPE_PEAK: 3703 case KVM_STATS_TYPE_LINEAR_HIST: 3704 case KVM_STATS_TYPE_LOG_HIST: 3705 break; 3706 default: 3707 return stats_list; 3708 } 3709 3710 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3711 case KVM_STATS_UNIT_NONE: 3712 case KVM_STATS_UNIT_BYTES: 3713 case KVM_STATS_UNIT_CYCLES: 3714 case KVM_STATS_UNIT_SECONDS: 3715 case KVM_STATS_UNIT_BOOLEAN: 3716 break; 3717 default: 3718 return stats_list; 3719 } 3720 3721 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3722 case KVM_STATS_BASE_POW10: 3723 case KVM_STATS_BASE_POW2: 3724 break; 3725 default: 3726 return stats_list; 3727 } 3728 3729 /* Alloc and populate data list */ 3730 stats = g_new0(Stats, 1); 3731 stats->name = g_strdup(pdesc->name); 3732 stats->value = g_new0(StatsValue, 1);; 3733 3734 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3735 stats->value->u.boolean = *stats_data; 3736 stats->value->type = QTYPE_QBOOL; 3737 } else if (pdesc->size == 1) { 3738 stats->value->u.scalar = *stats_data; 3739 stats->value->type = QTYPE_QNUM; 3740 } else { 3741 int i; 3742 for (i = 0; i < pdesc->size; i++) { 3743 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3744 } 3745 stats->value->u.list = val_list; 3746 stats->value->type = QTYPE_QLIST; 3747 } 3748 3749 QAPI_LIST_PREPEND(stats_list, stats); 3750 return stats_list; 3751 } 3752 3753 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3754 StatsSchemaValueList *list, 3755 Error **errp) 3756 { 3757 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3758 schema_entry->value = g_new0(StatsSchemaValue, 1); 3759 3760 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3761 case KVM_STATS_TYPE_CUMULATIVE: 3762 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3763 break; 3764 case KVM_STATS_TYPE_INSTANT: 3765 schema_entry->value->type = STATS_TYPE_INSTANT; 3766 break; 3767 case KVM_STATS_TYPE_PEAK: 3768 schema_entry->value->type = STATS_TYPE_PEAK; 3769 break; 3770 case KVM_STATS_TYPE_LINEAR_HIST: 3771 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3772 schema_entry->value->bucket_size = pdesc->bucket_size; 3773 schema_entry->value->has_bucket_size = true; 3774 break; 3775 case KVM_STATS_TYPE_LOG_HIST: 3776 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3777 break; 3778 default: 3779 goto exit; 3780 } 3781 3782 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3783 case KVM_STATS_UNIT_NONE: 3784 break; 3785 case KVM_STATS_UNIT_BOOLEAN: 3786 schema_entry->value->has_unit = true; 3787 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3788 break; 3789 case KVM_STATS_UNIT_BYTES: 3790 schema_entry->value->has_unit = true; 3791 schema_entry->value->unit = STATS_UNIT_BYTES; 3792 break; 3793 case KVM_STATS_UNIT_CYCLES: 3794 schema_entry->value->has_unit = true; 3795 schema_entry->value->unit = STATS_UNIT_CYCLES; 3796 break; 3797 case KVM_STATS_UNIT_SECONDS: 3798 schema_entry->value->has_unit = true; 3799 schema_entry->value->unit = STATS_UNIT_SECONDS; 3800 break; 3801 default: 3802 goto exit; 3803 } 3804 3805 schema_entry->value->exponent = pdesc->exponent; 3806 if (pdesc->exponent) { 3807 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3808 case KVM_STATS_BASE_POW10: 3809 schema_entry->value->has_base = true; 3810 schema_entry->value->base = 10; 3811 break; 3812 case KVM_STATS_BASE_POW2: 3813 schema_entry->value->has_base = true; 3814 schema_entry->value->base = 2; 3815 break; 3816 default: 3817 goto exit; 3818 } 3819 } 3820 3821 schema_entry->value->name = g_strdup(pdesc->name); 3822 schema_entry->next = list; 3823 return schema_entry; 3824 exit: 3825 g_free(schema_entry->value); 3826 g_free(schema_entry); 3827 return list; 3828 } 3829 3830 /* Cached stats descriptors */ 3831 typedef struct StatsDescriptors { 3832 const char *ident; /* cache key, currently the StatsTarget */ 3833 struct kvm_stats_desc *kvm_stats_desc; 3834 struct kvm_stats_header kvm_stats_header; 3835 QTAILQ_ENTRY(StatsDescriptors) next; 3836 } StatsDescriptors; 3837 3838 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3839 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3840 3841 /* 3842 * Return the descriptors for 'target', that either have already been read 3843 * or are retrieved from 'stats_fd'. 3844 */ 3845 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3846 Error **errp) 3847 { 3848 StatsDescriptors *descriptors; 3849 const char *ident; 3850 struct kvm_stats_desc *kvm_stats_desc; 3851 struct kvm_stats_header *kvm_stats_header; 3852 size_t size_desc; 3853 ssize_t ret; 3854 3855 ident = StatsTarget_str(target); 3856 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3857 if (g_str_equal(descriptors->ident, ident)) { 3858 return descriptors; 3859 } 3860 } 3861 3862 descriptors = g_new0(StatsDescriptors, 1); 3863 3864 /* Read stats header */ 3865 kvm_stats_header = &descriptors->kvm_stats_header; 3866 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 3867 if (ret != sizeof(*kvm_stats_header)) { 3868 error_setg(errp, "KVM stats: failed to read stats header: " 3869 "expected %zu actual %zu", 3870 sizeof(*kvm_stats_header), ret); 3871 g_free(descriptors); 3872 return NULL; 3873 } 3874 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3875 3876 /* Read stats descriptors */ 3877 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3878 ret = pread(stats_fd, kvm_stats_desc, 3879 size_desc * kvm_stats_header->num_desc, 3880 kvm_stats_header->desc_offset); 3881 3882 if (ret != size_desc * kvm_stats_header->num_desc) { 3883 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3884 "expected %zu actual %zu", 3885 size_desc * kvm_stats_header->num_desc, ret); 3886 g_free(descriptors); 3887 g_free(kvm_stats_desc); 3888 return NULL; 3889 } 3890 descriptors->kvm_stats_desc = kvm_stats_desc; 3891 descriptors->ident = ident; 3892 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3893 return descriptors; 3894 } 3895 3896 static void query_stats(StatsResultList **result, StatsTarget target, 3897 strList *names, int stats_fd, CPUState *cpu, 3898 Error **errp) 3899 { 3900 struct kvm_stats_desc *kvm_stats_desc; 3901 struct kvm_stats_header *kvm_stats_header; 3902 StatsDescriptors *descriptors; 3903 g_autofree uint64_t *stats_data = NULL; 3904 struct kvm_stats_desc *pdesc; 3905 StatsList *stats_list = NULL; 3906 size_t size_desc, size_data = 0; 3907 ssize_t ret; 3908 int i; 3909 3910 descriptors = find_stats_descriptors(target, stats_fd, errp); 3911 if (!descriptors) { 3912 return; 3913 } 3914 3915 kvm_stats_header = &descriptors->kvm_stats_header; 3916 kvm_stats_desc = descriptors->kvm_stats_desc; 3917 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3918 3919 /* Tally the total data size; read schema data */ 3920 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3921 pdesc = (void *)kvm_stats_desc + i * size_desc; 3922 size_data += pdesc->size * sizeof(*stats_data); 3923 } 3924 3925 stats_data = g_malloc0(size_data); 3926 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 3927 3928 if (ret != size_data) { 3929 error_setg(errp, "KVM stats: failed to read data: " 3930 "expected %zu actual %zu", size_data, ret); 3931 return; 3932 } 3933 3934 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3935 uint64_t *stats; 3936 pdesc = (void *)kvm_stats_desc + i * size_desc; 3937 3938 /* Add entry to the list */ 3939 stats = (void *)stats_data + pdesc->offset; 3940 if (!apply_str_list_filter(pdesc->name, names)) { 3941 continue; 3942 } 3943 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 3944 } 3945 3946 if (!stats_list) { 3947 return; 3948 } 3949 3950 switch (target) { 3951 case STATS_TARGET_VM: 3952 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 3953 break; 3954 case STATS_TARGET_VCPU: 3955 add_stats_entry(result, STATS_PROVIDER_KVM, 3956 cpu->parent_obj.canonical_path, 3957 stats_list); 3958 break; 3959 default: 3960 g_assert_not_reached(); 3961 } 3962 } 3963 3964 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 3965 int stats_fd, Error **errp) 3966 { 3967 struct kvm_stats_desc *kvm_stats_desc; 3968 struct kvm_stats_header *kvm_stats_header; 3969 StatsDescriptors *descriptors; 3970 struct kvm_stats_desc *pdesc; 3971 StatsSchemaValueList *stats_list = NULL; 3972 size_t size_desc; 3973 int i; 3974 3975 descriptors = find_stats_descriptors(target, stats_fd, errp); 3976 if (!descriptors) { 3977 return; 3978 } 3979 3980 kvm_stats_header = &descriptors->kvm_stats_header; 3981 kvm_stats_desc = descriptors->kvm_stats_desc; 3982 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3983 3984 /* Tally the total data size; read schema data */ 3985 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3986 pdesc = (void *)kvm_stats_desc + i * size_desc; 3987 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 3988 } 3989 3990 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 3991 } 3992 3993 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 3994 { 3995 int stats_fd = cpu->kvm_vcpu_stats_fd; 3996 Error *local_err = NULL; 3997 3998 if (stats_fd == -1) { 3999 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4000 error_propagate(kvm_stats_args->errp, local_err); 4001 return; 4002 } 4003 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4004 kvm_stats_args->names, stats_fd, cpu, 4005 kvm_stats_args->errp); 4006 } 4007 4008 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4009 { 4010 int stats_fd = cpu->kvm_vcpu_stats_fd; 4011 Error *local_err = NULL; 4012 4013 if (stats_fd == -1) { 4014 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4015 error_propagate(kvm_stats_args->errp, local_err); 4016 return; 4017 } 4018 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4019 kvm_stats_args->errp); 4020 } 4021 4022 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4023 strList *names, strList *targets, Error **errp) 4024 { 4025 KVMState *s = kvm_state; 4026 CPUState *cpu; 4027 int stats_fd; 4028 4029 switch (target) { 4030 case STATS_TARGET_VM: 4031 { 4032 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4033 if (stats_fd == -1) { 4034 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4035 return; 4036 } 4037 query_stats(result, target, names, stats_fd, NULL, errp); 4038 close(stats_fd); 4039 break; 4040 } 4041 case STATS_TARGET_VCPU: 4042 { 4043 StatsArgs stats_args; 4044 stats_args.result.stats = result; 4045 stats_args.names = names; 4046 stats_args.errp = errp; 4047 CPU_FOREACH(cpu) { 4048 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4049 continue; 4050 } 4051 query_stats_vcpu(cpu, &stats_args); 4052 } 4053 break; 4054 } 4055 default: 4056 break; 4057 } 4058 } 4059 4060 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4061 { 4062 StatsArgs stats_args; 4063 KVMState *s = kvm_state; 4064 int stats_fd; 4065 4066 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4067 if (stats_fd == -1) { 4068 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4069 return; 4070 } 4071 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4072 close(stats_fd); 4073 4074 if (first_cpu) { 4075 stats_args.result.schema = result; 4076 stats_args.errp = errp; 4077 query_stats_schema_vcpu(first_cpu, &stats_args); 4078 } 4079 } 4080