1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 KVMState *kvm_state; 79 bool kvm_kernel_irqchip; 80 bool kvm_split_irqchip; 81 bool kvm_async_interrupts_allowed; 82 bool kvm_halt_in_kernel_allowed; 83 bool kvm_resamplefds_allowed; 84 bool kvm_msi_via_irqfd_allowed; 85 bool kvm_gsi_routing_allowed; 86 bool kvm_gsi_direct_mapping; 87 bool kvm_allowed; 88 bool kvm_readonly_mem_allowed; 89 bool kvm_vm_attributes_allowed; 90 bool kvm_msi_use_devid; 91 static bool kvm_has_guest_debug; 92 static int kvm_sstep_flags; 93 static bool kvm_immediate_exit; 94 static hwaddr kvm_max_slot_size = ~0; 95 96 static const KVMCapabilityInfo kvm_required_capabilites[] = { 97 KVM_CAP_INFO(USER_MEMORY), 98 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 99 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 100 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 101 KVM_CAP_INFO(IOEVENTFD), 102 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 103 KVM_CAP_LAST_INFO 104 }; 105 106 static NotifierList kvm_irqchip_change_notifiers = 107 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 108 109 struct KVMResampleFd { 110 int gsi; 111 EventNotifier *resample_event; 112 QLIST_ENTRY(KVMResampleFd) node; 113 }; 114 typedef struct KVMResampleFd KVMResampleFd; 115 116 /* 117 * Only used with split irqchip where we need to do the resample fd 118 * kick for the kernel from userspace. 119 */ 120 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 121 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 122 123 static QemuMutex kml_slots_lock; 124 125 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 126 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 127 128 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 129 130 static inline void kvm_resample_fd_remove(int gsi) 131 { 132 KVMResampleFd *rfd; 133 134 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 135 if (rfd->gsi == gsi) { 136 QLIST_REMOVE(rfd, node); 137 g_free(rfd); 138 break; 139 } 140 } 141 } 142 143 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 144 { 145 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 146 147 rfd->gsi = gsi; 148 rfd->resample_event = event; 149 150 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 151 } 152 153 void kvm_resample_fd_notify(int gsi) 154 { 155 KVMResampleFd *rfd; 156 157 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 158 if (rfd->gsi == gsi) { 159 event_notifier_set(rfd->resample_event); 160 trace_kvm_resample_fd_notify(gsi); 161 return; 162 } 163 } 164 } 165 166 unsigned int kvm_get_max_memslots(void) 167 { 168 KVMState *s = KVM_STATE(current_accel()); 169 170 return s->nr_slots; 171 } 172 173 unsigned int kvm_get_free_memslots(void) 174 { 175 unsigned int used_slots = 0; 176 KVMState *s = kvm_state; 177 int i; 178 179 kvm_slots_lock(); 180 for (i = 0; i < s->nr_as; i++) { 181 if (!s->as[i].ml) { 182 continue; 183 } 184 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 185 } 186 kvm_slots_unlock(); 187 188 return s->nr_slots - used_slots; 189 } 190 191 /* Called with KVMMemoryListener.slots_lock held */ 192 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 193 { 194 KVMState *s = kvm_state; 195 int i; 196 197 for (i = 0; i < s->nr_slots; i++) { 198 if (kml->slots[i].memory_size == 0) { 199 return &kml->slots[i]; 200 } 201 } 202 203 return NULL; 204 } 205 206 /* Called with KVMMemoryListener.slots_lock held */ 207 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 208 { 209 KVMSlot *slot = kvm_get_free_slot(kml); 210 211 if (slot) { 212 return slot; 213 } 214 215 fprintf(stderr, "%s: no free slot available\n", __func__); 216 abort(); 217 } 218 219 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 220 hwaddr start_addr, 221 hwaddr size) 222 { 223 KVMState *s = kvm_state; 224 int i; 225 226 for (i = 0; i < s->nr_slots; i++) { 227 KVMSlot *mem = &kml->slots[i]; 228 229 if (start_addr == mem->start_addr && size == mem->memory_size) { 230 return mem; 231 } 232 } 233 234 return NULL; 235 } 236 237 /* 238 * Calculate and align the start address and the size of the section. 239 * Return the size. If the size is 0, the aligned section is empty. 240 */ 241 static hwaddr kvm_align_section(MemoryRegionSection *section, 242 hwaddr *start) 243 { 244 hwaddr size = int128_get64(section->size); 245 hwaddr delta, aligned; 246 247 /* kvm works in page size chunks, but the function may be called 248 with sub-page size and unaligned start address. Pad the start 249 address to next and truncate size to previous page boundary. */ 250 aligned = ROUND_UP(section->offset_within_address_space, 251 qemu_real_host_page_size()); 252 delta = aligned - section->offset_within_address_space; 253 *start = aligned; 254 if (delta > size) { 255 return 0; 256 } 257 258 return (size - delta) & qemu_real_host_page_mask(); 259 } 260 261 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 262 hwaddr *phys_addr) 263 { 264 KVMMemoryListener *kml = &s->memory_listener; 265 int i, ret = 0; 266 267 kvm_slots_lock(); 268 for (i = 0; i < s->nr_slots; i++) { 269 KVMSlot *mem = &kml->slots[i]; 270 271 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 272 *phys_addr = mem->start_addr + (ram - mem->ram); 273 ret = 1; 274 break; 275 } 276 } 277 kvm_slots_unlock(); 278 279 return ret; 280 } 281 282 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 283 { 284 KVMState *s = kvm_state; 285 struct kvm_userspace_memory_region mem; 286 int ret; 287 288 mem.slot = slot->slot | (kml->as_id << 16); 289 mem.guest_phys_addr = slot->start_addr; 290 mem.userspace_addr = (unsigned long)slot->ram; 291 mem.flags = slot->flags; 292 293 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 294 /* Set the slot size to 0 before setting the slot to the desired 295 * value. This is needed based on KVM commit 75d61fbc. */ 296 mem.memory_size = 0; 297 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 298 if (ret < 0) { 299 goto err; 300 } 301 } 302 mem.memory_size = slot->memory_size; 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 304 slot->old_flags = mem.flags; 305 err: 306 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 307 mem.memory_size, mem.userspace_addr, ret); 308 if (ret < 0) { 309 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 310 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 311 __func__, mem.slot, slot->start_addr, 312 (uint64_t)mem.memory_size, strerror(errno)); 313 } 314 return ret; 315 } 316 317 static int do_kvm_destroy_vcpu(CPUState *cpu) 318 { 319 KVMState *s = kvm_state; 320 long mmap_size; 321 struct KVMParkedVcpu *vcpu = NULL; 322 int ret = 0; 323 324 trace_kvm_destroy_vcpu(); 325 326 ret = kvm_arch_destroy_vcpu(cpu); 327 if (ret < 0) { 328 goto err; 329 } 330 331 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 332 if (mmap_size < 0) { 333 ret = mmap_size; 334 trace_kvm_failed_get_vcpu_mmap_size(); 335 goto err; 336 } 337 338 ret = munmap(cpu->kvm_run, mmap_size); 339 if (ret < 0) { 340 goto err; 341 } 342 343 if (cpu->kvm_dirty_gfns) { 344 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 345 if (ret < 0) { 346 goto err; 347 } 348 } 349 350 vcpu = g_malloc0(sizeof(*vcpu)); 351 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 352 vcpu->kvm_fd = cpu->kvm_fd; 353 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 354 err: 355 return ret; 356 } 357 358 void kvm_destroy_vcpu(CPUState *cpu) 359 { 360 if (do_kvm_destroy_vcpu(cpu) < 0) { 361 error_report("kvm_destroy_vcpu failed"); 362 exit(EXIT_FAILURE); 363 } 364 } 365 366 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 367 { 368 struct KVMParkedVcpu *cpu; 369 370 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 371 if (cpu->vcpu_id == vcpu_id) { 372 int kvm_fd; 373 374 QLIST_REMOVE(cpu, node); 375 kvm_fd = cpu->kvm_fd; 376 g_free(cpu); 377 return kvm_fd; 378 } 379 } 380 381 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 382 } 383 384 int kvm_init_vcpu(CPUState *cpu, Error **errp) 385 { 386 KVMState *s = kvm_state; 387 long mmap_size; 388 int ret; 389 390 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 391 392 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 393 if (ret < 0) { 394 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 395 kvm_arch_vcpu_id(cpu)); 396 goto err; 397 } 398 399 cpu->kvm_fd = ret; 400 cpu->kvm_state = s; 401 cpu->vcpu_dirty = true; 402 cpu->dirty_pages = 0; 403 cpu->throttle_us_per_full = 0; 404 405 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 406 if (mmap_size < 0) { 407 ret = mmap_size; 408 error_setg_errno(errp, -mmap_size, 409 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 410 goto err; 411 } 412 413 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 414 cpu->kvm_fd, 0); 415 if (cpu->kvm_run == MAP_FAILED) { 416 ret = -errno; 417 error_setg_errno(errp, ret, 418 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 419 kvm_arch_vcpu_id(cpu)); 420 goto err; 421 } 422 423 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 424 s->coalesced_mmio_ring = 425 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 426 } 427 428 if (s->kvm_dirty_ring_size) { 429 /* Use MAP_SHARED to share pages with the kernel */ 430 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 431 PROT_READ | PROT_WRITE, MAP_SHARED, 432 cpu->kvm_fd, 433 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 434 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 435 ret = -errno; 436 goto err; 437 } 438 } 439 440 ret = kvm_arch_init_vcpu(cpu); 441 if (ret < 0) { 442 error_setg_errno(errp, -ret, 443 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 444 kvm_arch_vcpu_id(cpu)); 445 } 446 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 447 448 err: 449 return ret; 450 } 451 452 /* 453 * dirty pages logging control 454 */ 455 456 static int kvm_mem_flags(MemoryRegion *mr) 457 { 458 bool readonly = mr->readonly || memory_region_is_romd(mr); 459 int flags = 0; 460 461 if (memory_region_get_dirty_log_mask(mr) != 0) { 462 flags |= KVM_MEM_LOG_DIRTY_PAGES; 463 } 464 if (readonly && kvm_readonly_mem_allowed) { 465 flags |= KVM_MEM_READONLY; 466 } 467 return flags; 468 } 469 470 /* Called with KVMMemoryListener.slots_lock held */ 471 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 472 MemoryRegion *mr) 473 { 474 mem->flags = kvm_mem_flags(mr); 475 476 /* If nothing changed effectively, no need to issue ioctl */ 477 if (mem->flags == mem->old_flags) { 478 return 0; 479 } 480 481 kvm_slot_init_dirty_bitmap(mem); 482 return kvm_set_user_memory_region(kml, mem, false); 483 } 484 485 static int kvm_section_update_flags(KVMMemoryListener *kml, 486 MemoryRegionSection *section) 487 { 488 hwaddr start_addr, size, slot_size; 489 KVMSlot *mem; 490 int ret = 0; 491 492 size = kvm_align_section(section, &start_addr); 493 if (!size) { 494 return 0; 495 } 496 497 kvm_slots_lock(); 498 499 while (size && !ret) { 500 slot_size = MIN(kvm_max_slot_size, size); 501 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 502 if (!mem) { 503 /* We don't have a slot if we want to trap every access. */ 504 goto out; 505 } 506 507 ret = kvm_slot_update_flags(kml, mem, section->mr); 508 start_addr += slot_size; 509 size -= slot_size; 510 } 511 512 out: 513 kvm_slots_unlock(); 514 return ret; 515 } 516 517 static void kvm_log_start(MemoryListener *listener, 518 MemoryRegionSection *section, 519 int old, int new) 520 { 521 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 522 int r; 523 524 if (old != 0) { 525 return; 526 } 527 528 r = kvm_section_update_flags(kml, section); 529 if (r < 0) { 530 abort(); 531 } 532 } 533 534 static void kvm_log_stop(MemoryListener *listener, 535 MemoryRegionSection *section, 536 int old, int new) 537 { 538 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 539 int r; 540 541 if (new != 0) { 542 return; 543 } 544 545 r = kvm_section_update_flags(kml, section); 546 if (r < 0) { 547 abort(); 548 } 549 } 550 551 /* get kvm's dirty pages bitmap and update qemu's */ 552 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 553 { 554 ram_addr_t start = slot->ram_start_offset; 555 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 556 557 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 558 } 559 560 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 561 { 562 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 563 } 564 565 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 566 567 /* Allocate the dirty bitmap for a slot */ 568 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 569 { 570 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 571 return; 572 } 573 574 /* 575 * XXX bad kernel interface alert 576 * For dirty bitmap, kernel allocates array of size aligned to 577 * bits-per-long. But for case when the kernel is 64bits and 578 * the userspace is 32bits, userspace can't align to the same 579 * bits-per-long, since sizeof(long) is different between kernel 580 * and user space. This way, userspace will provide buffer which 581 * may be 4 bytes less than the kernel will use, resulting in 582 * userspace memory corruption (which is not detectable by valgrind 583 * too, in most cases). 584 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 585 * a hope that sizeof(long) won't become >8 any time soon. 586 * 587 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 588 * And mem->memory_size is aligned to it (otherwise this mem can't 589 * be registered to KVM). 590 */ 591 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 592 /*HOST_LONG_BITS*/ 64) / 8; 593 mem->dirty_bmap = g_malloc0(bitmap_size); 594 mem->dirty_bmap_size = bitmap_size; 595 } 596 597 /* 598 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 599 * succeeded, false otherwise 600 */ 601 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 602 { 603 struct kvm_dirty_log d = {}; 604 int ret; 605 606 d.dirty_bitmap = slot->dirty_bmap; 607 d.slot = slot->slot | (slot->as_id << 16); 608 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 609 610 if (ret == -ENOENT) { 611 /* kernel does not have dirty bitmap in this slot */ 612 ret = 0; 613 } 614 if (ret) { 615 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 616 __func__, ret); 617 } 618 return ret == 0; 619 } 620 621 /* Should be with all slots_lock held for the address spaces. */ 622 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 623 uint32_t slot_id, uint64_t offset) 624 { 625 KVMMemoryListener *kml; 626 KVMSlot *mem; 627 628 if (as_id >= s->nr_as) { 629 return; 630 } 631 632 kml = s->as[as_id].ml; 633 mem = &kml->slots[slot_id]; 634 635 if (!mem->memory_size || offset >= 636 (mem->memory_size / qemu_real_host_page_size())) { 637 return; 638 } 639 640 set_bit(offset, mem->dirty_bmap); 641 } 642 643 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 644 { 645 /* 646 * Read the flags before the value. Pairs with barrier in 647 * KVM's kvm_dirty_ring_push() function. 648 */ 649 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 650 } 651 652 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 653 { 654 /* 655 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 656 * sees the full content of the ring: 657 * 658 * CPU0 CPU1 CPU2 659 * ------------------------------------------------------------------------------ 660 * fill gfn0 661 * store-rel flags for gfn0 662 * load-acq flags for gfn0 663 * store-rel RESET for gfn0 664 * ioctl(RESET_RINGS) 665 * load-acq flags for gfn0 666 * check if flags have RESET 667 * 668 * The synchronization goes from CPU2 to CPU0 to CPU1. 669 */ 670 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 671 } 672 673 /* 674 * Should be with all slots_lock held for the address spaces. It returns the 675 * dirty page we've collected on this dirty ring. 676 */ 677 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 678 { 679 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 680 uint32_t ring_size = s->kvm_dirty_ring_size; 681 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 682 683 /* 684 * It's possible that we race with vcpu creation code where the vcpu is 685 * put onto the vcpus list but not yet initialized the dirty ring 686 * structures. If so, skip it. 687 */ 688 if (!cpu->created) { 689 return 0; 690 } 691 692 assert(dirty_gfns && ring_size); 693 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 694 695 while (true) { 696 cur = &dirty_gfns[fetch % ring_size]; 697 if (!dirty_gfn_is_dirtied(cur)) { 698 break; 699 } 700 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 701 cur->offset); 702 dirty_gfn_set_collected(cur); 703 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 704 fetch++; 705 count++; 706 } 707 cpu->kvm_fetch_index = fetch; 708 cpu->dirty_pages += count; 709 710 return count; 711 } 712 713 /* Must be with slots_lock held */ 714 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 715 { 716 int ret; 717 uint64_t total = 0; 718 int64_t stamp; 719 720 stamp = get_clock(); 721 722 if (cpu) { 723 total = kvm_dirty_ring_reap_one(s, cpu); 724 } else { 725 CPU_FOREACH(cpu) { 726 total += kvm_dirty_ring_reap_one(s, cpu); 727 } 728 } 729 730 if (total) { 731 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 732 assert(ret == total); 733 } 734 735 stamp = get_clock() - stamp; 736 737 if (total) { 738 trace_kvm_dirty_ring_reap(total, stamp / 1000); 739 } 740 741 return total; 742 } 743 744 /* 745 * Currently for simplicity, we must hold BQL before calling this. We can 746 * consider to drop the BQL if we're clear with all the race conditions. 747 */ 748 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 749 { 750 uint64_t total; 751 752 /* 753 * We need to lock all kvm slots for all address spaces here, 754 * because: 755 * 756 * (1) We need to mark dirty for dirty bitmaps in multiple slots 757 * and for tons of pages, so it's better to take the lock here 758 * once rather than once per page. And more importantly, 759 * 760 * (2) We must _NOT_ publish dirty bits to the other threads 761 * (e.g., the migration thread) via the kvm memory slot dirty 762 * bitmaps before correctly re-protect those dirtied pages. 763 * Otherwise we can have potential risk of data corruption if 764 * the page data is read in the other thread before we do 765 * reset below. 766 */ 767 kvm_slots_lock(); 768 total = kvm_dirty_ring_reap_locked(s, cpu); 769 kvm_slots_unlock(); 770 771 return total; 772 } 773 774 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 775 { 776 /* No need to do anything */ 777 } 778 779 /* 780 * Kick all vcpus out in a synchronized way. When returned, we 781 * guarantee that every vcpu has been kicked and at least returned to 782 * userspace once. 783 */ 784 static void kvm_cpu_synchronize_kick_all(void) 785 { 786 CPUState *cpu; 787 788 CPU_FOREACH(cpu) { 789 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 790 } 791 } 792 793 /* 794 * Flush all the existing dirty pages to the KVM slot buffers. When 795 * this call returns, we guarantee that all the touched dirty pages 796 * before calling this function have been put into the per-kvmslot 797 * dirty bitmap. 798 * 799 * This function must be called with BQL held. 800 */ 801 static void kvm_dirty_ring_flush(void) 802 { 803 trace_kvm_dirty_ring_flush(0); 804 /* 805 * The function needs to be serialized. Since this function 806 * should always be with BQL held, serialization is guaranteed. 807 * However, let's be sure of it. 808 */ 809 assert(bql_locked()); 810 /* 811 * First make sure to flush the hardware buffers by kicking all 812 * vcpus out in a synchronous way. 813 */ 814 kvm_cpu_synchronize_kick_all(); 815 kvm_dirty_ring_reap(kvm_state, NULL); 816 trace_kvm_dirty_ring_flush(1); 817 } 818 819 /** 820 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 821 * 822 * This function will first try to fetch dirty bitmap from the kernel, 823 * and then updates qemu's dirty bitmap. 824 * 825 * NOTE: caller must be with kml->slots_lock held. 826 * 827 * @kml: the KVM memory listener object 828 * @section: the memory section to sync the dirty bitmap with 829 */ 830 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 831 MemoryRegionSection *section) 832 { 833 KVMState *s = kvm_state; 834 KVMSlot *mem; 835 hwaddr start_addr, size; 836 hwaddr slot_size; 837 838 size = kvm_align_section(section, &start_addr); 839 while (size) { 840 slot_size = MIN(kvm_max_slot_size, size); 841 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 842 if (!mem) { 843 /* We don't have a slot if we want to trap every access. */ 844 return; 845 } 846 if (kvm_slot_get_dirty_log(s, mem)) { 847 kvm_slot_sync_dirty_pages(mem); 848 } 849 start_addr += slot_size; 850 size -= slot_size; 851 } 852 } 853 854 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 855 #define KVM_CLEAR_LOG_SHIFT 6 856 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 857 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 858 859 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 860 uint64_t size) 861 { 862 KVMState *s = kvm_state; 863 uint64_t end, bmap_start, start_delta, bmap_npages; 864 struct kvm_clear_dirty_log d; 865 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 866 int ret; 867 868 /* 869 * We need to extend either the start or the size or both to 870 * satisfy the KVM interface requirement. Firstly, do the start 871 * page alignment on 64 host pages 872 */ 873 bmap_start = start & KVM_CLEAR_LOG_MASK; 874 start_delta = start - bmap_start; 875 bmap_start /= psize; 876 877 /* 878 * The kernel interface has restriction on the size too, that either: 879 * 880 * (1) the size is 64 host pages aligned (just like the start), or 881 * (2) the size fills up until the end of the KVM memslot. 882 */ 883 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 884 << KVM_CLEAR_LOG_SHIFT; 885 end = mem->memory_size / psize; 886 if (bmap_npages > end - bmap_start) { 887 bmap_npages = end - bmap_start; 888 } 889 start_delta /= psize; 890 891 /* 892 * Prepare the bitmap to clear dirty bits. Here we must guarantee 893 * that we won't clear any unknown dirty bits otherwise we might 894 * accidentally clear some set bits which are not yet synced from 895 * the kernel into QEMU's bitmap, then we'll lose track of the 896 * guest modifications upon those pages (which can directly lead 897 * to guest data loss or panic after migration). 898 * 899 * Layout of the KVMSlot.dirty_bmap: 900 * 901 * |<-------- bmap_npages -----------..>| 902 * [1] 903 * start_delta size 904 * |----------------|-------------|------------------|------------| 905 * ^ ^ ^ ^ 906 * | | | | 907 * start bmap_start (start) end 908 * of memslot of memslot 909 * 910 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 911 */ 912 913 assert(bmap_start % BITS_PER_LONG == 0); 914 /* We should never do log_clear before log_sync */ 915 assert(mem->dirty_bmap); 916 if (start_delta || bmap_npages - size / psize) { 917 /* Slow path - we need to manipulate a temp bitmap */ 918 bmap_clear = bitmap_new(bmap_npages); 919 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 920 bmap_start, start_delta + size / psize); 921 /* 922 * We need to fill the holes at start because that was not 923 * specified by the caller and we extended the bitmap only for 924 * 64 pages alignment 925 */ 926 bitmap_clear(bmap_clear, 0, start_delta); 927 d.dirty_bitmap = bmap_clear; 928 } else { 929 /* 930 * Fast path - both start and size align well with BITS_PER_LONG 931 * (or the end of memory slot) 932 */ 933 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 934 } 935 936 d.first_page = bmap_start; 937 /* It should never overflow. If it happens, say something */ 938 assert(bmap_npages <= UINT32_MAX); 939 d.num_pages = bmap_npages; 940 d.slot = mem->slot | (as_id << 16); 941 942 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 943 if (ret < 0 && ret != -ENOENT) { 944 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 945 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 946 __func__, d.slot, (uint64_t)d.first_page, 947 (uint32_t)d.num_pages, ret); 948 } else { 949 ret = 0; 950 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 951 } 952 953 /* 954 * After we have updated the remote dirty bitmap, we update the 955 * cached bitmap as well for the memslot, then if another user 956 * clears the same region we know we shouldn't clear it again on 957 * the remote otherwise it's data loss as well. 958 */ 959 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 960 size / psize); 961 /* This handles the NULL case well */ 962 g_free(bmap_clear); 963 return ret; 964 } 965 966 967 /** 968 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 969 * 970 * NOTE: this will be a no-op if we haven't enabled manual dirty log 971 * protection in the host kernel because in that case this operation 972 * will be done within log_sync(). 973 * 974 * @kml: the kvm memory listener 975 * @section: the memory range to clear dirty bitmap 976 */ 977 static int kvm_physical_log_clear(KVMMemoryListener *kml, 978 MemoryRegionSection *section) 979 { 980 KVMState *s = kvm_state; 981 uint64_t start, size, offset, count; 982 KVMSlot *mem; 983 int ret = 0, i; 984 985 if (!s->manual_dirty_log_protect) { 986 /* No need to do explicit clear */ 987 return ret; 988 } 989 990 start = section->offset_within_address_space; 991 size = int128_get64(section->size); 992 993 if (!size) { 994 /* Nothing more we can do... */ 995 return ret; 996 } 997 998 kvm_slots_lock(); 999 1000 for (i = 0; i < s->nr_slots; i++) { 1001 mem = &kml->slots[i]; 1002 /* Discard slots that are empty or do not overlap the section */ 1003 if (!mem->memory_size || 1004 mem->start_addr > start + size - 1 || 1005 start > mem->start_addr + mem->memory_size - 1) { 1006 continue; 1007 } 1008 1009 if (start >= mem->start_addr) { 1010 /* The slot starts before section or is aligned to it. */ 1011 offset = start - mem->start_addr; 1012 count = MIN(mem->memory_size - offset, size); 1013 } else { 1014 /* The slot starts after section. */ 1015 offset = 0; 1016 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1017 } 1018 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1019 if (ret < 0) { 1020 break; 1021 } 1022 } 1023 1024 kvm_slots_unlock(); 1025 1026 return ret; 1027 } 1028 1029 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1030 MemoryRegionSection *secion, 1031 hwaddr start, hwaddr size) 1032 { 1033 KVMState *s = kvm_state; 1034 1035 if (s->coalesced_mmio) { 1036 struct kvm_coalesced_mmio_zone zone; 1037 1038 zone.addr = start; 1039 zone.size = size; 1040 zone.pad = 0; 1041 1042 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1043 } 1044 } 1045 1046 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1047 MemoryRegionSection *secion, 1048 hwaddr start, hwaddr size) 1049 { 1050 KVMState *s = kvm_state; 1051 1052 if (s->coalesced_mmio) { 1053 struct kvm_coalesced_mmio_zone zone; 1054 1055 zone.addr = start; 1056 zone.size = size; 1057 zone.pad = 0; 1058 1059 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1060 } 1061 } 1062 1063 static void kvm_coalesce_pio_add(MemoryListener *listener, 1064 MemoryRegionSection *section, 1065 hwaddr start, hwaddr size) 1066 { 1067 KVMState *s = kvm_state; 1068 1069 if (s->coalesced_pio) { 1070 struct kvm_coalesced_mmio_zone zone; 1071 1072 zone.addr = start; 1073 zone.size = size; 1074 zone.pio = 1; 1075 1076 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1077 } 1078 } 1079 1080 static void kvm_coalesce_pio_del(MemoryListener *listener, 1081 MemoryRegionSection *section, 1082 hwaddr start, hwaddr size) 1083 { 1084 KVMState *s = kvm_state; 1085 1086 if (s->coalesced_pio) { 1087 struct kvm_coalesced_mmio_zone zone; 1088 1089 zone.addr = start; 1090 zone.size = size; 1091 zone.pio = 1; 1092 1093 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1094 } 1095 } 1096 1097 int kvm_check_extension(KVMState *s, unsigned int extension) 1098 { 1099 int ret; 1100 1101 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1102 if (ret < 0) { 1103 ret = 0; 1104 } 1105 1106 return ret; 1107 } 1108 1109 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1110 { 1111 int ret; 1112 1113 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1114 if (ret < 0) { 1115 /* VM wide version not implemented, use global one instead */ 1116 ret = kvm_check_extension(s, extension); 1117 } 1118 1119 return ret; 1120 } 1121 1122 /* 1123 * We track the poisoned pages to be able to: 1124 * - replace them on VM reset 1125 * - block a migration for a VM with a poisoned page 1126 */ 1127 typedef struct HWPoisonPage { 1128 ram_addr_t ram_addr; 1129 QLIST_ENTRY(HWPoisonPage) list; 1130 } HWPoisonPage; 1131 1132 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1133 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1134 1135 static void kvm_unpoison_all(void *param) 1136 { 1137 HWPoisonPage *page, *next_page; 1138 1139 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1140 QLIST_REMOVE(page, list); 1141 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1142 g_free(page); 1143 } 1144 } 1145 1146 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1147 { 1148 HWPoisonPage *page; 1149 1150 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1151 if (page->ram_addr == ram_addr) { 1152 return; 1153 } 1154 } 1155 page = g_new(HWPoisonPage, 1); 1156 page->ram_addr = ram_addr; 1157 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1158 } 1159 1160 bool kvm_hwpoisoned_mem(void) 1161 { 1162 return !QLIST_EMPTY(&hwpoison_page_list); 1163 } 1164 1165 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1166 { 1167 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1168 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1169 * endianness, but the memory core hands them in target endianness. 1170 * For example, PPC is always treated as big-endian even if running 1171 * on KVM and on PPC64LE. Correct here. 1172 */ 1173 switch (size) { 1174 case 2: 1175 val = bswap16(val); 1176 break; 1177 case 4: 1178 val = bswap32(val); 1179 break; 1180 } 1181 #endif 1182 return val; 1183 } 1184 1185 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1186 bool assign, uint32_t size, bool datamatch) 1187 { 1188 int ret; 1189 struct kvm_ioeventfd iofd = { 1190 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1191 .addr = addr, 1192 .len = size, 1193 .flags = 0, 1194 .fd = fd, 1195 }; 1196 1197 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1198 datamatch); 1199 if (!kvm_enabled()) { 1200 return -ENOSYS; 1201 } 1202 1203 if (datamatch) { 1204 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1205 } 1206 if (!assign) { 1207 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1208 } 1209 1210 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1211 1212 if (ret < 0) { 1213 return -errno; 1214 } 1215 1216 return 0; 1217 } 1218 1219 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1220 bool assign, uint32_t size, bool datamatch) 1221 { 1222 struct kvm_ioeventfd kick = { 1223 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1224 .addr = addr, 1225 .flags = KVM_IOEVENTFD_FLAG_PIO, 1226 .len = size, 1227 .fd = fd, 1228 }; 1229 int r; 1230 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1231 if (!kvm_enabled()) { 1232 return -ENOSYS; 1233 } 1234 if (datamatch) { 1235 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1236 } 1237 if (!assign) { 1238 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1239 } 1240 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1241 if (r < 0) { 1242 return r; 1243 } 1244 return 0; 1245 } 1246 1247 1248 static const KVMCapabilityInfo * 1249 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1250 { 1251 while (list->name) { 1252 if (!kvm_check_extension(s, list->value)) { 1253 return list; 1254 } 1255 list++; 1256 } 1257 return NULL; 1258 } 1259 1260 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1261 { 1262 g_assert( 1263 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1264 ); 1265 kvm_max_slot_size = max_slot_size; 1266 } 1267 1268 /* Called with KVMMemoryListener.slots_lock held */ 1269 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1270 MemoryRegionSection *section, bool add) 1271 { 1272 KVMSlot *mem; 1273 int err; 1274 MemoryRegion *mr = section->mr; 1275 bool writable = !mr->readonly && !mr->rom_device; 1276 hwaddr start_addr, size, slot_size, mr_offset; 1277 ram_addr_t ram_start_offset; 1278 void *ram; 1279 1280 if (!memory_region_is_ram(mr)) { 1281 if (writable || !kvm_readonly_mem_allowed) { 1282 return; 1283 } else if (!mr->romd_mode) { 1284 /* If the memory device is not in romd_mode, then we actually want 1285 * to remove the kvm memory slot so all accesses will trap. */ 1286 add = false; 1287 } 1288 } 1289 1290 size = kvm_align_section(section, &start_addr); 1291 if (!size) { 1292 return; 1293 } 1294 1295 /* The offset of the kvmslot within the memory region */ 1296 mr_offset = section->offset_within_region + start_addr - 1297 section->offset_within_address_space; 1298 1299 /* use aligned delta to align the ram address and offset */ 1300 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1301 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1302 1303 if (!add) { 1304 do { 1305 slot_size = MIN(kvm_max_slot_size, size); 1306 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1307 if (!mem) { 1308 return; 1309 } 1310 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1311 /* 1312 * NOTE: We should be aware of the fact that here we're only 1313 * doing a best effort to sync dirty bits. No matter whether 1314 * we're using dirty log or dirty ring, we ignored two facts: 1315 * 1316 * (1) dirty bits can reside in hardware buffers (PML) 1317 * 1318 * (2) after we collected dirty bits here, pages can be dirtied 1319 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1320 * remove the slot. 1321 * 1322 * Not easy. Let's cross the fingers until it's fixed. 1323 */ 1324 if (kvm_state->kvm_dirty_ring_size) { 1325 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1326 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1327 kvm_slot_sync_dirty_pages(mem); 1328 kvm_slot_get_dirty_log(kvm_state, mem); 1329 } 1330 } else { 1331 kvm_slot_get_dirty_log(kvm_state, mem); 1332 } 1333 kvm_slot_sync_dirty_pages(mem); 1334 } 1335 1336 /* unregister the slot */ 1337 g_free(mem->dirty_bmap); 1338 mem->dirty_bmap = NULL; 1339 mem->memory_size = 0; 1340 mem->flags = 0; 1341 err = kvm_set_user_memory_region(kml, mem, false); 1342 if (err) { 1343 fprintf(stderr, "%s: error unregistering slot: %s\n", 1344 __func__, strerror(-err)); 1345 abort(); 1346 } 1347 start_addr += slot_size; 1348 size -= slot_size; 1349 kml->nr_used_slots--; 1350 } while (size); 1351 return; 1352 } 1353 1354 /* register the new slot */ 1355 do { 1356 slot_size = MIN(kvm_max_slot_size, size); 1357 mem = kvm_alloc_slot(kml); 1358 mem->as_id = kml->as_id; 1359 mem->memory_size = slot_size; 1360 mem->start_addr = start_addr; 1361 mem->ram_start_offset = ram_start_offset; 1362 mem->ram = ram; 1363 mem->flags = kvm_mem_flags(mr); 1364 kvm_slot_init_dirty_bitmap(mem); 1365 err = kvm_set_user_memory_region(kml, mem, true); 1366 if (err) { 1367 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1368 strerror(-err)); 1369 abort(); 1370 } 1371 start_addr += slot_size; 1372 ram_start_offset += slot_size; 1373 ram += slot_size; 1374 size -= slot_size; 1375 kml->nr_used_slots++; 1376 } while (size); 1377 } 1378 1379 static void *kvm_dirty_ring_reaper_thread(void *data) 1380 { 1381 KVMState *s = data; 1382 struct KVMDirtyRingReaper *r = &s->reaper; 1383 1384 rcu_register_thread(); 1385 1386 trace_kvm_dirty_ring_reaper("init"); 1387 1388 while (true) { 1389 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1390 trace_kvm_dirty_ring_reaper("wait"); 1391 /* 1392 * TODO: provide a smarter timeout rather than a constant? 1393 */ 1394 sleep(1); 1395 1396 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1397 if (dirtylimit_in_service()) { 1398 continue; 1399 } 1400 1401 trace_kvm_dirty_ring_reaper("wakeup"); 1402 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1403 1404 bql_lock(); 1405 kvm_dirty_ring_reap(s, NULL); 1406 bql_unlock(); 1407 1408 r->reaper_iteration++; 1409 } 1410 1411 trace_kvm_dirty_ring_reaper("exit"); 1412 1413 rcu_unregister_thread(); 1414 1415 return NULL; 1416 } 1417 1418 static void kvm_dirty_ring_reaper_init(KVMState *s) 1419 { 1420 struct KVMDirtyRingReaper *r = &s->reaper; 1421 1422 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1423 kvm_dirty_ring_reaper_thread, 1424 s, QEMU_THREAD_JOINABLE); 1425 } 1426 1427 static int kvm_dirty_ring_init(KVMState *s) 1428 { 1429 uint32_t ring_size = s->kvm_dirty_ring_size; 1430 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1431 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1432 int ret; 1433 1434 s->kvm_dirty_ring_size = 0; 1435 s->kvm_dirty_ring_bytes = 0; 1436 1437 /* Bail if the dirty ring size isn't specified */ 1438 if (!ring_size) { 1439 return 0; 1440 } 1441 1442 /* 1443 * Read the max supported pages. Fall back to dirty logging mode 1444 * if the dirty ring isn't supported. 1445 */ 1446 ret = kvm_vm_check_extension(s, capability); 1447 if (ret <= 0) { 1448 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1449 ret = kvm_vm_check_extension(s, capability); 1450 } 1451 1452 if (ret <= 0) { 1453 warn_report("KVM dirty ring not available, using bitmap method"); 1454 return 0; 1455 } 1456 1457 if (ring_bytes > ret) { 1458 error_report("KVM dirty ring size %" PRIu32 " too big " 1459 "(maximum is %ld). Please use a smaller value.", 1460 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1461 return -EINVAL; 1462 } 1463 1464 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1465 if (ret) { 1466 error_report("Enabling of KVM dirty ring failed: %s. " 1467 "Suggested minimum value is 1024.", strerror(-ret)); 1468 return -EIO; 1469 } 1470 1471 /* Enable the backup bitmap if it is supported */ 1472 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1473 if (ret > 0) { 1474 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1475 if (ret) { 1476 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1477 "%s. ", strerror(-ret)); 1478 return -EIO; 1479 } 1480 1481 s->kvm_dirty_ring_with_bitmap = true; 1482 } 1483 1484 s->kvm_dirty_ring_size = ring_size; 1485 s->kvm_dirty_ring_bytes = ring_bytes; 1486 1487 return 0; 1488 } 1489 1490 static void kvm_region_add(MemoryListener *listener, 1491 MemoryRegionSection *section) 1492 { 1493 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1494 KVMMemoryUpdate *update; 1495 1496 update = g_new0(KVMMemoryUpdate, 1); 1497 update->section = *section; 1498 1499 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1500 } 1501 1502 static void kvm_region_del(MemoryListener *listener, 1503 MemoryRegionSection *section) 1504 { 1505 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1506 KVMMemoryUpdate *update; 1507 1508 update = g_new0(KVMMemoryUpdate, 1); 1509 update->section = *section; 1510 1511 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1512 } 1513 1514 static void kvm_region_commit(MemoryListener *listener) 1515 { 1516 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1517 listener); 1518 KVMMemoryUpdate *u1, *u2; 1519 bool need_inhibit = false; 1520 1521 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1522 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1523 return; 1524 } 1525 1526 /* 1527 * We have to be careful when regions to add overlap with ranges to remove. 1528 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1529 * is currently active. 1530 * 1531 * The lists are order by addresses, so it's easy to find overlaps. 1532 */ 1533 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1534 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1535 while (u1 && u2) { 1536 Range r1, r2; 1537 1538 range_init_nofail(&r1, u1->section.offset_within_address_space, 1539 int128_get64(u1->section.size)); 1540 range_init_nofail(&r2, u2->section.offset_within_address_space, 1541 int128_get64(u2->section.size)); 1542 1543 if (range_overlaps_range(&r1, &r2)) { 1544 need_inhibit = true; 1545 break; 1546 } 1547 if (range_lob(&r1) < range_lob(&r2)) { 1548 u1 = QSIMPLEQ_NEXT(u1, next); 1549 } else { 1550 u2 = QSIMPLEQ_NEXT(u2, next); 1551 } 1552 } 1553 1554 kvm_slots_lock(); 1555 if (need_inhibit) { 1556 accel_ioctl_inhibit_begin(); 1557 } 1558 1559 /* Remove all memslots before adding the new ones. */ 1560 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1561 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1562 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1563 1564 kvm_set_phys_mem(kml, &u1->section, false); 1565 memory_region_unref(u1->section.mr); 1566 1567 g_free(u1); 1568 } 1569 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1570 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1571 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1572 1573 memory_region_ref(u1->section.mr); 1574 kvm_set_phys_mem(kml, &u1->section, true); 1575 1576 g_free(u1); 1577 } 1578 1579 if (need_inhibit) { 1580 accel_ioctl_inhibit_end(); 1581 } 1582 kvm_slots_unlock(); 1583 } 1584 1585 static void kvm_log_sync(MemoryListener *listener, 1586 MemoryRegionSection *section) 1587 { 1588 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1589 1590 kvm_slots_lock(); 1591 kvm_physical_sync_dirty_bitmap(kml, section); 1592 kvm_slots_unlock(); 1593 } 1594 1595 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1596 { 1597 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1598 KVMState *s = kvm_state; 1599 KVMSlot *mem; 1600 int i; 1601 1602 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1603 kvm_dirty_ring_flush(); 1604 1605 /* 1606 * TODO: make this faster when nr_slots is big while there are 1607 * only a few used slots (small VMs). 1608 */ 1609 kvm_slots_lock(); 1610 for (i = 0; i < s->nr_slots; i++) { 1611 mem = &kml->slots[i]; 1612 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1613 kvm_slot_sync_dirty_pages(mem); 1614 1615 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1616 kvm_slot_get_dirty_log(s, mem)) { 1617 kvm_slot_sync_dirty_pages(mem); 1618 } 1619 1620 /* 1621 * This is not needed by KVM_GET_DIRTY_LOG because the 1622 * ioctl will unconditionally overwrite the whole region. 1623 * However kvm dirty ring has no such side effect. 1624 */ 1625 kvm_slot_reset_dirty_pages(mem); 1626 } 1627 } 1628 kvm_slots_unlock(); 1629 } 1630 1631 static void kvm_log_clear(MemoryListener *listener, 1632 MemoryRegionSection *section) 1633 { 1634 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1635 int r; 1636 1637 r = kvm_physical_log_clear(kml, section); 1638 if (r < 0) { 1639 error_report_once("%s: kvm log clear failed: mr=%s " 1640 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1641 section->mr->name, section->offset_within_region, 1642 int128_get64(section->size)); 1643 abort(); 1644 } 1645 } 1646 1647 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1648 MemoryRegionSection *section, 1649 bool match_data, uint64_t data, 1650 EventNotifier *e) 1651 { 1652 int fd = event_notifier_get_fd(e); 1653 int r; 1654 1655 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1656 data, true, int128_get64(section->size), 1657 match_data); 1658 if (r < 0) { 1659 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1660 __func__, strerror(-r), -r); 1661 abort(); 1662 } 1663 } 1664 1665 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1666 MemoryRegionSection *section, 1667 bool match_data, uint64_t data, 1668 EventNotifier *e) 1669 { 1670 int fd = event_notifier_get_fd(e); 1671 int r; 1672 1673 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1674 data, false, int128_get64(section->size), 1675 match_data); 1676 if (r < 0) { 1677 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1678 __func__, strerror(-r), -r); 1679 abort(); 1680 } 1681 } 1682 1683 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1684 MemoryRegionSection *section, 1685 bool match_data, uint64_t data, 1686 EventNotifier *e) 1687 { 1688 int fd = event_notifier_get_fd(e); 1689 int r; 1690 1691 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1692 data, true, int128_get64(section->size), 1693 match_data); 1694 if (r < 0) { 1695 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1696 __func__, strerror(-r), -r); 1697 abort(); 1698 } 1699 } 1700 1701 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1702 MemoryRegionSection *section, 1703 bool match_data, uint64_t data, 1704 EventNotifier *e) 1705 1706 { 1707 int fd = event_notifier_get_fd(e); 1708 int r; 1709 1710 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1711 data, false, int128_get64(section->size), 1712 match_data); 1713 if (r < 0) { 1714 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1715 __func__, strerror(-r), -r); 1716 abort(); 1717 } 1718 } 1719 1720 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1721 AddressSpace *as, int as_id, const char *name) 1722 { 1723 int i; 1724 1725 kml->slots = g_new0(KVMSlot, s->nr_slots); 1726 kml->as_id = as_id; 1727 1728 for (i = 0; i < s->nr_slots; i++) { 1729 kml->slots[i].slot = i; 1730 } 1731 1732 QSIMPLEQ_INIT(&kml->transaction_add); 1733 QSIMPLEQ_INIT(&kml->transaction_del); 1734 1735 kml->listener.region_add = kvm_region_add; 1736 kml->listener.region_del = kvm_region_del; 1737 kml->listener.commit = kvm_region_commit; 1738 kml->listener.log_start = kvm_log_start; 1739 kml->listener.log_stop = kvm_log_stop; 1740 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1741 kml->listener.name = name; 1742 1743 if (s->kvm_dirty_ring_size) { 1744 kml->listener.log_sync_global = kvm_log_sync_global; 1745 } else { 1746 kml->listener.log_sync = kvm_log_sync; 1747 kml->listener.log_clear = kvm_log_clear; 1748 } 1749 1750 memory_listener_register(&kml->listener, as); 1751 1752 for (i = 0; i < s->nr_as; ++i) { 1753 if (!s->as[i].as) { 1754 s->as[i].as = as; 1755 s->as[i].ml = kml; 1756 break; 1757 } 1758 } 1759 } 1760 1761 static MemoryListener kvm_io_listener = { 1762 .name = "kvm-io", 1763 .coalesced_io_add = kvm_coalesce_pio_add, 1764 .coalesced_io_del = kvm_coalesce_pio_del, 1765 .eventfd_add = kvm_io_ioeventfd_add, 1766 .eventfd_del = kvm_io_ioeventfd_del, 1767 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1768 }; 1769 1770 int kvm_set_irq(KVMState *s, int irq, int level) 1771 { 1772 struct kvm_irq_level event; 1773 int ret; 1774 1775 assert(kvm_async_interrupts_enabled()); 1776 1777 event.level = level; 1778 event.irq = irq; 1779 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1780 if (ret < 0) { 1781 perror("kvm_set_irq"); 1782 abort(); 1783 } 1784 1785 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1786 } 1787 1788 #ifdef KVM_CAP_IRQ_ROUTING 1789 typedef struct KVMMSIRoute { 1790 struct kvm_irq_routing_entry kroute; 1791 QTAILQ_ENTRY(KVMMSIRoute) entry; 1792 } KVMMSIRoute; 1793 1794 static void set_gsi(KVMState *s, unsigned int gsi) 1795 { 1796 set_bit(gsi, s->used_gsi_bitmap); 1797 } 1798 1799 static void clear_gsi(KVMState *s, unsigned int gsi) 1800 { 1801 clear_bit(gsi, s->used_gsi_bitmap); 1802 } 1803 1804 void kvm_init_irq_routing(KVMState *s) 1805 { 1806 int gsi_count; 1807 1808 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1809 if (gsi_count > 0) { 1810 /* Round up so we can search ints using ffs */ 1811 s->used_gsi_bitmap = bitmap_new(gsi_count); 1812 s->gsi_count = gsi_count; 1813 } 1814 1815 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1816 s->nr_allocated_irq_routes = 0; 1817 1818 kvm_arch_init_irq_routing(s); 1819 } 1820 1821 void kvm_irqchip_commit_routes(KVMState *s) 1822 { 1823 int ret; 1824 1825 if (kvm_gsi_direct_mapping()) { 1826 return; 1827 } 1828 1829 if (!kvm_gsi_routing_enabled()) { 1830 return; 1831 } 1832 1833 s->irq_routes->flags = 0; 1834 trace_kvm_irqchip_commit_routes(); 1835 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1836 assert(ret == 0); 1837 } 1838 1839 static void kvm_add_routing_entry(KVMState *s, 1840 struct kvm_irq_routing_entry *entry) 1841 { 1842 struct kvm_irq_routing_entry *new; 1843 int n, size; 1844 1845 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1846 n = s->nr_allocated_irq_routes * 2; 1847 if (n < 64) { 1848 n = 64; 1849 } 1850 size = sizeof(struct kvm_irq_routing); 1851 size += n * sizeof(*new); 1852 s->irq_routes = g_realloc(s->irq_routes, size); 1853 s->nr_allocated_irq_routes = n; 1854 } 1855 n = s->irq_routes->nr++; 1856 new = &s->irq_routes->entries[n]; 1857 1858 *new = *entry; 1859 1860 set_gsi(s, entry->gsi); 1861 } 1862 1863 static int kvm_update_routing_entry(KVMState *s, 1864 struct kvm_irq_routing_entry *new_entry) 1865 { 1866 struct kvm_irq_routing_entry *entry; 1867 int n; 1868 1869 for (n = 0; n < s->irq_routes->nr; n++) { 1870 entry = &s->irq_routes->entries[n]; 1871 if (entry->gsi != new_entry->gsi) { 1872 continue; 1873 } 1874 1875 if(!memcmp(entry, new_entry, sizeof *entry)) { 1876 return 0; 1877 } 1878 1879 *entry = *new_entry; 1880 1881 return 0; 1882 } 1883 1884 return -ESRCH; 1885 } 1886 1887 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1888 { 1889 struct kvm_irq_routing_entry e = {}; 1890 1891 assert(pin < s->gsi_count); 1892 1893 e.gsi = irq; 1894 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1895 e.flags = 0; 1896 e.u.irqchip.irqchip = irqchip; 1897 e.u.irqchip.pin = pin; 1898 kvm_add_routing_entry(s, &e); 1899 } 1900 1901 void kvm_irqchip_release_virq(KVMState *s, int virq) 1902 { 1903 struct kvm_irq_routing_entry *e; 1904 int i; 1905 1906 if (kvm_gsi_direct_mapping()) { 1907 return; 1908 } 1909 1910 for (i = 0; i < s->irq_routes->nr; i++) { 1911 e = &s->irq_routes->entries[i]; 1912 if (e->gsi == virq) { 1913 s->irq_routes->nr--; 1914 *e = s->irq_routes->entries[s->irq_routes->nr]; 1915 } 1916 } 1917 clear_gsi(s, virq); 1918 kvm_arch_release_virq_post(virq); 1919 trace_kvm_irqchip_release_virq(virq); 1920 } 1921 1922 void kvm_irqchip_add_change_notifier(Notifier *n) 1923 { 1924 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1925 } 1926 1927 void kvm_irqchip_remove_change_notifier(Notifier *n) 1928 { 1929 notifier_remove(n); 1930 } 1931 1932 void kvm_irqchip_change_notify(void) 1933 { 1934 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1935 } 1936 1937 static int kvm_irqchip_get_virq(KVMState *s) 1938 { 1939 int next_virq; 1940 1941 /* Return the lowest unused GSI in the bitmap */ 1942 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1943 if (next_virq >= s->gsi_count) { 1944 return -ENOSPC; 1945 } else { 1946 return next_virq; 1947 } 1948 } 1949 1950 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1951 { 1952 struct kvm_msi msi; 1953 1954 msi.address_lo = (uint32_t)msg.address; 1955 msi.address_hi = msg.address >> 32; 1956 msi.data = le32_to_cpu(msg.data); 1957 msi.flags = 0; 1958 memset(msi.pad, 0, sizeof(msi.pad)); 1959 1960 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1961 } 1962 1963 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 1964 { 1965 struct kvm_irq_routing_entry kroute = {}; 1966 int virq; 1967 KVMState *s = c->s; 1968 MSIMessage msg = {0, 0}; 1969 1970 if (pci_available && dev) { 1971 msg = pci_get_msi_message(dev, vector); 1972 } 1973 1974 if (kvm_gsi_direct_mapping()) { 1975 return kvm_arch_msi_data_to_gsi(msg.data); 1976 } 1977 1978 if (!kvm_gsi_routing_enabled()) { 1979 return -ENOSYS; 1980 } 1981 1982 virq = kvm_irqchip_get_virq(s); 1983 if (virq < 0) { 1984 return virq; 1985 } 1986 1987 kroute.gsi = virq; 1988 kroute.type = KVM_IRQ_ROUTING_MSI; 1989 kroute.flags = 0; 1990 kroute.u.msi.address_lo = (uint32_t)msg.address; 1991 kroute.u.msi.address_hi = msg.address >> 32; 1992 kroute.u.msi.data = le32_to_cpu(msg.data); 1993 if (pci_available && kvm_msi_devid_required()) { 1994 kroute.flags = KVM_MSI_VALID_DEVID; 1995 kroute.u.msi.devid = pci_requester_id(dev); 1996 } 1997 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1998 kvm_irqchip_release_virq(s, virq); 1999 return -EINVAL; 2000 } 2001 2002 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2003 vector, virq); 2004 2005 kvm_add_routing_entry(s, &kroute); 2006 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2007 c->changes++; 2008 2009 return virq; 2010 } 2011 2012 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2013 PCIDevice *dev) 2014 { 2015 struct kvm_irq_routing_entry kroute = {}; 2016 2017 if (kvm_gsi_direct_mapping()) { 2018 return 0; 2019 } 2020 2021 if (!kvm_irqchip_in_kernel()) { 2022 return -ENOSYS; 2023 } 2024 2025 kroute.gsi = virq; 2026 kroute.type = KVM_IRQ_ROUTING_MSI; 2027 kroute.flags = 0; 2028 kroute.u.msi.address_lo = (uint32_t)msg.address; 2029 kroute.u.msi.address_hi = msg.address >> 32; 2030 kroute.u.msi.data = le32_to_cpu(msg.data); 2031 if (pci_available && kvm_msi_devid_required()) { 2032 kroute.flags = KVM_MSI_VALID_DEVID; 2033 kroute.u.msi.devid = pci_requester_id(dev); 2034 } 2035 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2036 return -EINVAL; 2037 } 2038 2039 trace_kvm_irqchip_update_msi_route(virq); 2040 2041 return kvm_update_routing_entry(s, &kroute); 2042 } 2043 2044 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2045 EventNotifier *resample, int virq, 2046 bool assign) 2047 { 2048 int fd = event_notifier_get_fd(event); 2049 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2050 2051 struct kvm_irqfd irqfd = { 2052 .fd = fd, 2053 .gsi = virq, 2054 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2055 }; 2056 2057 if (rfd != -1) { 2058 assert(assign); 2059 if (kvm_irqchip_is_split()) { 2060 /* 2061 * When the slow irqchip (e.g. IOAPIC) is in the 2062 * userspace, KVM kernel resamplefd will not work because 2063 * the EOI of the interrupt will be delivered to userspace 2064 * instead, so the KVM kernel resamplefd kick will be 2065 * skipped. The userspace here mimics what the kernel 2066 * provides with resamplefd, remember the resamplefd and 2067 * kick it when we receive EOI of this IRQ. 2068 * 2069 * This is hackery because IOAPIC is mostly bypassed 2070 * (except EOI broadcasts) when irqfd is used. However 2071 * this can bring much performance back for split irqchip 2072 * with INTx IRQs (for VFIO, this gives 93% perf of the 2073 * full fast path, which is 46% perf boost comparing to 2074 * the INTx slow path). 2075 */ 2076 kvm_resample_fd_insert(virq, resample); 2077 } else { 2078 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2079 irqfd.resamplefd = rfd; 2080 } 2081 } else if (!assign) { 2082 if (kvm_irqchip_is_split()) { 2083 kvm_resample_fd_remove(virq); 2084 } 2085 } 2086 2087 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2088 } 2089 2090 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2091 { 2092 struct kvm_irq_routing_entry kroute = {}; 2093 int virq; 2094 2095 if (!kvm_gsi_routing_enabled()) { 2096 return -ENOSYS; 2097 } 2098 2099 virq = kvm_irqchip_get_virq(s); 2100 if (virq < 0) { 2101 return virq; 2102 } 2103 2104 kroute.gsi = virq; 2105 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2106 kroute.flags = 0; 2107 kroute.u.adapter.summary_addr = adapter->summary_addr; 2108 kroute.u.adapter.ind_addr = adapter->ind_addr; 2109 kroute.u.adapter.summary_offset = adapter->summary_offset; 2110 kroute.u.adapter.ind_offset = adapter->ind_offset; 2111 kroute.u.adapter.adapter_id = adapter->adapter_id; 2112 2113 kvm_add_routing_entry(s, &kroute); 2114 2115 return virq; 2116 } 2117 2118 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2119 { 2120 struct kvm_irq_routing_entry kroute = {}; 2121 int virq; 2122 2123 if (!kvm_gsi_routing_enabled()) { 2124 return -ENOSYS; 2125 } 2126 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2127 return -ENOSYS; 2128 } 2129 virq = kvm_irqchip_get_virq(s); 2130 if (virq < 0) { 2131 return virq; 2132 } 2133 2134 kroute.gsi = virq; 2135 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2136 kroute.flags = 0; 2137 kroute.u.hv_sint.vcpu = vcpu; 2138 kroute.u.hv_sint.sint = sint; 2139 2140 kvm_add_routing_entry(s, &kroute); 2141 kvm_irqchip_commit_routes(s); 2142 2143 return virq; 2144 } 2145 2146 #else /* !KVM_CAP_IRQ_ROUTING */ 2147 2148 void kvm_init_irq_routing(KVMState *s) 2149 { 2150 } 2151 2152 void kvm_irqchip_release_virq(KVMState *s, int virq) 2153 { 2154 } 2155 2156 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2157 { 2158 abort(); 2159 } 2160 2161 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2162 { 2163 return -ENOSYS; 2164 } 2165 2166 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2167 { 2168 return -ENOSYS; 2169 } 2170 2171 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2172 { 2173 return -ENOSYS; 2174 } 2175 2176 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2177 EventNotifier *resample, int virq, 2178 bool assign) 2179 { 2180 abort(); 2181 } 2182 2183 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2184 { 2185 return -ENOSYS; 2186 } 2187 #endif /* !KVM_CAP_IRQ_ROUTING */ 2188 2189 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2190 EventNotifier *rn, int virq) 2191 { 2192 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2193 } 2194 2195 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2196 int virq) 2197 { 2198 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2199 } 2200 2201 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2202 EventNotifier *rn, qemu_irq irq) 2203 { 2204 gpointer key, gsi; 2205 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2206 2207 if (!found) { 2208 return -ENXIO; 2209 } 2210 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2211 } 2212 2213 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2214 qemu_irq irq) 2215 { 2216 gpointer key, gsi; 2217 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2218 2219 if (!found) { 2220 return -ENXIO; 2221 } 2222 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2223 } 2224 2225 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2226 { 2227 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2228 } 2229 2230 static void kvm_irqchip_create(KVMState *s) 2231 { 2232 int ret; 2233 2234 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2235 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2236 ; 2237 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2238 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2239 if (ret < 0) { 2240 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2241 exit(1); 2242 } 2243 } else { 2244 return; 2245 } 2246 2247 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2248 fprintf(stderr, "kvm: irqfd not implemented\n"); 2249 exit(1); 2250 } 2251 2252 /* First probe and see if there's a arch-specific hook to create the 2253 * in-kernel irqchip for us */ 2254 ret = kvm_arch_irqchip_create(s); 2255 if (ret == 0) { 2256 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2257 error_report("Split IRQ chip mode not supported."); 2258 exit(1); 2259 } else { 2260 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2261 } 2262 } 2263 if (ret < 0) { 2264 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2265 exit(1); 2266 } 2267 2268 kvm_kernel_irqchip = true; 2269 /* If we have an in-kernel IRQ chip then we must have asynchronous 2270 * interrupt delivery (though the reverse is not necessarily true) 2271 */ 2272 kvm_async_interrupts_allowed = true; 2273 kvm_halt_in_kernel_allowed = true; 2274 2275 kvm_init_irq_routing(s); 2276 2277 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2278 } 2279 2280 /* Find number of supported CPUs using the recommended 2281 * procedure from the kernel API documentation to cope with 2282 * older kernels that may be missing capabilities. 2283 */ 2284 static int kvm_recommended_vcpus(KVMState *s) 2285 { 2286 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2287 return (ret) ? ret : 4; 2288 } 2289 2290 static int kvm_max_vcpus(KVMState *s) 2291 { 2292 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2293 return (ret) ? ret : kvm_recommended_vcpus(s); 2294 } 2295 2296 static int kvm_max_vcpu_id(KVMState *s) 2297 { 2298 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2299 return (ret) ? ret : kvm_max_vcpus(s); 2300 } 2301 2302 bool kvm_vcpu_id_is_valid(int vcpu_id) 2303 { 2304 KVMState *s = KVM_STATE(current_accel()); 2305 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2306 } 2307 2308 bool kvm_dirty_ring_enabled(void) 2309 { 2310 return kvm_state->kvm_dirty_ring_size ? true : false; 2311 } 2312 2313 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2314 strList *names, strList *targets, Error **errp); 2315 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2316 2317 uint32_t kvm_dirty_ring_size(void) 2318 { 2319 return kvm_state->kvm_dirty_ring_size; 2320 } 2321 2322 static int kvm_init(MachineState *ms) 2323 { 2324 MachineClass *mc = MACHINE_GET_CLASS(ms); 2325 static const char upgrade_note[] = 2326 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2327 "(see http://sourceforge.net/projects/kvm).\n"; 2328 const struct { 2329 const char *name; 2330 int num; 2331 } num_cpus[] = { 2332 { "SMP", ms->smp.cpus }, 2333 { "hotpluggable", ms->smp.max_cpus }, 2334 { /* end of list */ } 2335 }, *nc = num_cpus; 2336 int soft_vcpus_limit, hard_vcpus_limit; 2337 KVMState *s; 2338 const KVMCapabilityInfo *missing_cap; 2339 int ret; 2340 int type; 2341 uint64_t dirty_log_manual_caps; 2342 2343 qemu_mutex_init(&kml_slots_lock); 2344 2345 s = KVM_STATE(ms->accelerator); 2346 2347 /* 2348 * On systems where the kernel can support different base page 2349 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2350 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2351 * page size for the system though. 2352 */ 2353 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2354 2355 s->sigmask_len = 8; 2356 accel_blocker_init(); 2357 2358 #ifdef KVM_CAP_SET_GUEST_DEBUG 2359 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2360 #endif 2361 QLIST_INIT(&s->kvm_parked_vcpus); 2362 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2363 if (s->fd == -1) { 2364 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2365 ret = -errno; 2366 goto err; 2367 } 2368 2369 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2370 if (ret < KVM_API_VERSION) { 2371 if (ret >= 0) { 2372 ret = -EINVAL; 2373 } 2374 fprintf(stderr, "kvm version too old\n"); 2375 goto err; 2376 } 2377 2378 if (ret > KVM_API_VERSION) { 2379 ret = -EINVAL; 2380 fprintf(stderr, "kvm version not supported\n"); 2381 goto err; 2382 } 2383 2384 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2385 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2386 2387 /* If unspecified, use the default value */ 2388 if (!s->nr_slots) { 2389 s->nr_slots = 32; 2390 } 2391 2392 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2393 if (s->nr_as <= 1) { 2394 s->nr_as = 1; 2395 } 2396 s->as = g_new0(struct KVMAs, s->nr_as); 2397 2398 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2399 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2400 "kvm-type", 2401 &error_abort); 2402 type = mc->kvm_type(ms, kvm_type); 2403 } else if (mc->kvm_type) { 2404 type = mc->kvm_type(ms, NULL); 2405 } else { 2406 type = kvm_arch_get_default_type(ms); 2407 } 2408 2409 if (type < 0) { 2410 ret = -EINVAL; 2411 goto err; 2412 } 2413 2414 do { 2415 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2416 } while (ret == -EINTR); 2417 2418 if (ret < 0) { 2419 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2420 strerror(-ret)); 2421 2422 #ifdef TARGET_S390X 2423 if (ret == -EINVAL) { 2424 fprintf(stderr, 2425 "Host kernel setup problem detected. Please verify:\n"); 2426 fprintf(stderr, "- for kernels supporting the switch_amode or" 2427 " user_mode parameters, whether\n"); 2428 fprintf(stderr, 2429 " user space is running in primary address space\n"); 2430 fprintf(stderr, 2431 "- for kernels supporting the vm.allocate_pgste sysctl, " 2432 "whether it is enabled\n"); 2433 } 2434 #elif defined(TARGET_PPC) 2435 if (ret == -EINVAL) { 2436 fprintf(stderr, 2437 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2438 (type == 2) ? "pr" : "hv"); 2439 } 2440 #endif 2441 goto err; 2442 } 2443 2444 s->vmfd = ret; 2445 2446 /* check the vcpu limits */ 2447 soft_vcpus_limit = kvm_recommended_vcpus(s); 2448 hard_vcpus_limit = kvm_max_vcpus(s); 2449 2450 while (nc->name) { 2451 if (nc->num > soft_vcpus_limit) { 2452 warn_report("Number of %s cpus requested (%d) exceeds " 2453 "the recommended cpus supported by KVM (%d)", 2454 nc->name, nc->num, soft_vcpus_limit); 2455 2456 if (nc->num > hard_vcpus_limit) { 2457 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2458 "the maximum cpus supported by KVM (%d)\n", 2459 nc->name, nc->num, hard_vcpus_limit); 2460 exit(1); 2461 } 2462 } 2463 nc++; 2464 } 2465 2466 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2467 if (!missing_cap) { 2468 missing_cap = 2469 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2470 } 2471 if (missing_cap) { 2472 ret = -EINVAL; 2473 fprintf(stderr, "kvm does not support %s\n%s", 2474 missing_cap->name, upgrade_note); 2475 goto err; 2476 } 2477 2478 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2479 s->coalesced_pio = s->coalesced_mmio && 2480 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2481 2482 /* 2483 * Enable KVM dirty ring if supported, otherwise fall back to 2484 * dirty logging mode 2485 */ 2486 ret = kvm_dirty_ring_init(s); 2487 if (ret < 0) { 2488 goto err; 2489 } 2490 2491 /* 2492 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2493 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2494 * page is wr-protected initially, which is against how kvm dirty ring is 2495 * usage - kvm dirty ring requires all pages are wr-protected at the very 2496 * beginning. Enabling this feature for dirty ring causes data corruption. 2497 * 2498 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2499 * we may expect a higher stall time when starting the migration. In the 2500 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2501 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2502 * guest pages. 2503 */ 2504 if (!s->kvm_dirty_ring_size) { 2505 dirty_log_manual_caps = 2506 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2507 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2508 KVM_DIRTY_LOG_INITIALLY_SET); 2509 s->manual_dirty_log_protect = dirty_log_manual_caps; 2510 if (dirty_log_manual_caps) { 2511 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2512 dirty_log_manual_caps); 2513 if (ret) { 2514 warn_report("Trying to enable capability %"PRIu64" of " 2515 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2516 "Falling back to the legacy mode. ", 2517 dirty_log_manual_caps); 2518 s->manual_dirty_log_protect = 0; 2519 } 2520 } 2521 } 2522 2523 #ifdef KVM_CAP_VCPU_EVENTS 2524 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2525 #endif 2526 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2527 2528 s->irq_set_ioctl = KVM_IRQ_LINE; 2529 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2530 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2531 } 2532 2533 kvm_readonly_mem_allowed = 2534 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2535 2536 kvm_resamplefds_allowed = 2537 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2538 2539 kvm_vm_attributes_allowed = 2540 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2541 2542 #ifdef KVM_CAP_SET_GUEST_DEBUG 2543 kvm_has_guest_debug = 2544 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2545 #endif 2546 2547 kvm_sstep_flags = 0; 2548 if (kvm_has_guest_debug) { 2549 kvm_sstep_flags = SSTEP_ENABLE; 2550 2551 #if defined KVM_CAP_SET_GUEST_DEBUG2 2552 int guest_debug_flags = 2553 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2554 2555 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2556 kvm_sstep_flags |= SSTEP_NOIRQ; 2557 } 2558 #endif 2559 } 2560 2561 kvm_state = s; 2562 2563 ret = kvm_arch_init(ms, s); 2564 if (ret < 0) { 2565 goto err; 2566 } 2567 2568 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2569 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2570 } 2571 2572 qemu_register_reset(kvm_unpoison_all, NULL); 2573 2574 if (s->kernel_irqchip_allowed) { 2575 kvm_irqchip_create(s); 2576 } 2577 2578 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2579 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2580 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2581 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2582 2583 kvm_memory_listener_register(s, &s->memory_listener, 2584 &address_space_memory, 0, "kvm-memory"); 2585 memory_listener_register(&kvm_io_listener, 2586 &address_space_io); 2587 2588 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2589 if (!s->sync_mmu) { 2590 ret = ram_block_discard_disable(true); 2591 assert(!ret); 2592 } 2593 2594 if (s->kvm_dirty_ring_size) { 2595 kvm_dirty_ring_reaper_init(s); 2596 } 2597 2598 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2599 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2600 query_stats_schemas_cb); 2601 } 2602 2603 return 0; 2604 2605 err: 2606 assert(ret < 0); 2607 if (s->vmfd >= 0) { 2608 close(s->vmfd); 2609 } 2610 if (s->fd != -1) { 2611 close(s->fd); 2612 } 2613 g_free(s->as); 2614 g_free(s->memory_listener.slots); 2615 2616 return ret; 2617 } 2618 2619 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2620 { 2621 s->sigmask_len = sigmask_len; 2622 } 2623 2624 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2625 int size, uint32_t count) 2626 { 2627 int i; 2628 uint8_t *ptr = data; 2629 2630 for (i = 0; i < count; i++) { 2631 address_space_rw(&address_space_io, port, attrs, 2632 ptr, size, 2633 direction == KVM_EXIT_IO_OUT); 2634 ptr += size; 2635 } 2636 } 2637 2638 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2639 { 2640 int i; 2641 2642 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2643 run->internal.suberror); 2644 2645 for (i = 0; i < run->internal.ndata; ++i) { 2646 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2647 i, (uint64_t)run->internal.data[i]); 2648 } 2649 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2650 fprintf(stderr, "emulation failure\n"); 2651 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2652 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2653 return EXCP_INTERRUPT; 2654 } 2655 } 2656 /* FIXME: Should trigger a qmp message to let management know 2657 * something went wrong. 2658 */ 2659 return -1; 2660 } 2661 2662 void kvm_flush_coalesced_mmio_buffer(void) 2663 { 2664 KVMState *s = kvm_state; 2665 2666 if (!s || s->coalesced_flush_in_progress) { 2667 return; 2668 } 2669 2670 s->coalesced_flush_in_progress = true; 2671 2672 if (s->coalesced_mmio_ring) { 2673 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2674 while (ring->first != ring->last) { 2675 struct kvm_coalesced_mmio *ent; 2676 2677 ent = &ring->coalesced_mmio[ring->first]; 2678 2679 if (ent->pio == 1) { 2680 address_space_write(&address_space_io, ent->phys_addr, 2681 MEMTXATTRS_UNSPECIFIED, ent->data, 2682 ent->len); 2683 } else { 2684 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2685 } 2686 smp_wmb(); 2687 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2688 } 2689 } 2690 2691 s->coalesced_flush_in_progress = false; 2692 } 2693 2694 bool kvm_cpu_check_are_resettable(void) 2695 { 2696 return kvm_arch_cpu_check_are_resettable(); 2697 } 2698 2699 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2700 { 2701 if (!cpu->vcpu_dirty) { 2702 int ret = kvm_arch_get_registers(cpu); 2703 if (ret) { 2704 error_report("Failed to get registers: %s", strerror(-ret)); 2705 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2706 vm_stop(RUN_STATE_INTERNAL_ERROR); 2707 } 2708 2709 cpu->vcpu_dirty = true; 2710 } 2711 } 2712 2713 void kvm_cpu_synchronize_state(CPUState *cpu) 2714 { 2715 if (!cpu->vcpu_dirty) { 2716 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2717 } 2718 } 2719 2720 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2721 { 2722 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2723 if (ret) { 2724 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2725 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2726 vm_stop(RUN_STATE_INTERNAL_ERROR); 2727 } 2728 2729 cpu->vcpu_dirty = false; 2730 } 2731 2732 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2733 { 2734 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2735 } 2736 2737 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2738 { 2739 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2740 if (ret) { 2741 error_report("Failed to put registers after init: %s", strerror(-ret)); 2742 exit(1); 2743 } 2744 2745 cpu->vcpu_dirty = false; 2746 } 2747 2748 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2749 { 2750 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2751 } 2752 2753 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2754 { 2755 cpu->vcpu_dirty = true; 2756 } 2757 2758 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2759 { 2760 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2761 } 2762 2763 #ifdef KVM_HAVE_MCE_INJECTION 2764 static __thread void *pending_sigbus_addr; 2765 static __thread int pending_sigbus_code; 2766 static __thread bool have_sigbus_pending; 2767 #endif 2768 2769 static void kvm_cpu_kick(CPUState *cpu) 2770 { 2771 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2772 } 2773 2774 static void kvm_cpu_kick_self(void) 2775 { 2776 if (kvm_immediate_exit) { 2777 kvm_cpu_kick(current_cpu); 2778 } else { 2779 qemu_cpu_kick_self(); 2780 } 2781 } 2782 2783 static void kvm_eat_signals(CPUState *cpu) 2784 { 2785 struct timespec ts = { 0, 0 }; 2786 siginfo_t siginfo; 2787 sigset_t waitset; 2788 sigset_t chkset; 2789 int r; 2790 2791 if (kvm_immediate_exit) { 2792 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2793 /* Write kvm_run->immediate_exit before the cpu->exit_request 2794 * write in kvm_cpu_exec. 2795 */ 2796 smp_wmb(); 2797 return; 2798 } 2799 2800 sigemptyset(&waitset); 2801 sigaddset(&waitset, SIG_IPI); 2802 2803 do { 2804 r = sigtimedwait(&waitset, &siginfo, &ts); 2805 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2806 perror("sigtimedwait"); 2807 exit(1); 2808 } 2809 2810 r = sigpending(&chkset); 2811 if (r == -1) { 2812 perror("sigpending"); 2813 exit(1); 2814 } 2815 } while (sigismember(&chkset, SIG_IPI)); 2816 } 2817 2818 int kvm_cpu_exec(CPUState *cpu) 2819 { 2820 struct kvm_run *run = cpu->kvm_run; 2821 int ret, run_ret; 2822 2823 trace_kvm_cpu_exec(); 2824 2825 if (kvm_arch_process_async_events(cpu)) { 2826 qatomic_set(&cpu->exit_request, 0); 2827 return EXCP_HLT; 2828 } 2829 2830 bql_unlock(); 2831 cpu_exec_start(cpu); 2832 2833 do { 2834 MemTxAttrs attrs; 2835 2836 if (cpu->vcpu_dirty) { 2837 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2838 if (ret) { 2839 error_report("Failed to put registers after init: %s", 2840 strerror(-ret)); 2841 ret = -1; 2842 break; 2843 } 2844 2845 cpu->vcpu_dirty = false; 2846 } 2847 2848 kvm_arch_pre_run(cpu, run); 2849 if (qatomic_read(&cpu->exit_request)) { 2850 trace_kvm_interrupt_exit_request(); 2851 /* 2852 * KVM requires us to reenter the kernel after IO exits to complete 2853 * instruction emulation. This self-signal will ensure that we 2854 * leave ASAP again. 2855 */ 2856 kvm_cpu_kick_self(); 2857 } 2858 2859 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2860 * Matching barrier in kvm_eat_signals. 2861 */ 2862 smp_rmb(); 2863 2864 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2865 2866 attrs = kvm_arch_post_run(cpu, run); 2867 2868 #ifdef KVM_HAVE_MCE_INJECTION 2869 if (unlikely(have_sigbus_pending)) { 2870 bql_lock(); 2871 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2872 pending_sigbus_addr); 2873 have_sigbus_pending = false; 2874 bql_unlock(); 2875 } 2876 #endif 2877 2878 if (run_ret < 0) { 2879 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2880 trace_kvm_io_window_exit(); 2881 kvm_eat_signals(cpu); 2882 ret = EXCP_INTERRUPT; 2883 break; 2884 } 2885 fprintf(stderr, "error: kvm run failed %s\n", 2886 strerror(-run_ret)); 2887 #ifdef TARGET_PPC 2888 if (run_ret == -EBUSY) { 2889 fprintf(stderr, 2890 "This is probably because your SMT is enabled.\n" 2891 "VCPU can only run on primary threads with all " 2892 "secondary threads offline.\n"); 2893 } 2894 #endif 2895 ret = -1; 2896 break; 2897 } 2898 2899 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2900 switch (run->exit_reason) { 2901 case KVM_EXIT_IO: 2902 /* Called outside BQL */ 2903 kvm_handle_io(run->io.port, attrs, 2904 (uint8_t *)run + run->io.data_offset, 2905 run->io.direction, 2906 run->io.size, 2907 run->io.count); 2908 ret = 0; 2909 break; 2910 case KVM_EXIT_MMIO: 2911 /* Called outside BQL */ 2912 address_space_rw(&address_space_memory, 2913 run->mmio.phys_addr, attrs, 2914 run->mmio.data, 2915 run->mmio.len, 2916 run->mmio.is_write); 2917 ret = 0; 2918 break; 2919 case KVM_EXIT_IRQ_WINDOW_OPEN: 2920 ret = EXCP_INTERRUPT; 2921 break; 2922 case KVM_EXIT_SHUTDOWN: 2923 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2924 ret = EXCP_INTERRUPT; 2925 break; 2926 case KVM_EXIT_UNKNOWN: 2927 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2928 (uint64_t)run->hw.hardware_exit_reason); 2929 ret = -1; 2930 break; 2931 case KVM_EXIT_INTERNAL_ERROR: 2932 ret = kvm_handle_internal_error(cpu, run); 2933 break; 2934 case KVM_EXIT_DIRTY_RING_FULL: 2935 /* 2936 * We shouldn't continue if the dirty ring of this vcpu is 2937 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2938 */ 2939 trace_kvm_dirty_ring_full(cpu->cpu_index); 2940 bql_lock(); 2941 /* 2942 * We throttle vCPU by making it sleep once it exit from kernel 2943 * due to dirty ring full. In the dirtylimit scenario, reaping 2944 * all vCPUs after a single vCPU dirty ring get full result in 2945 * the miss of sleep, so just reap the ring-fulled vCPU. 2946 */ 2947 if (dirtylimit_in_service()) { 2948 kvm_dirty_ring_reap(kvm_state, cpu); 2949 } else { 2950 kvm_dirty_ring_reap(kvm_state, NULL); 2951 } 2952 bql_unlock(); 2953 dirtylimit_vcpu_execute(cpu); 2954 ret = 0; 2955 break; 2956 case KVM_EXIT_SYSTEM_EVENT: 2957 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 2958 switch (run->system_event.type) { 2959 case KVM_SYSTEM_EVENT_SHUTDOWN: 2960 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2961 ret = EXCP_INTERRUPT; 2962 break; 2963 case KVM_SYSTEM_EVENT_RESET: 2964 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2965 ret = EXCP_INTERRUPT; 2966 break; 2967 case KVM_SYSTEM_EVENT_CRASH: 2968 kvm_cpu_synchronize_state(cpu); 2969 bql_lock(); 2970 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2971 bql_unlock(); 2972 ret = 0; 2973 break; 2974 default: 2975 ret = kvm_arch_handle_exit(cpu, run); 2976 break; 2977 } 2978 break; 2979 default: 2980 ret = kvm_arch_handle_exit(cpu, run); 2981 break; 2982 } 2983 } while (ret == 0); 2984 2985 cpu_exec_end(cpu); 2986 bql_lock(); 2987 2988 if (ret < 0) { 2989 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2990 vm_stop(RUN_STATE_INTERNAL_ERROR); 2991 } 2992 2993 qatomic_set(&cpu->exit_request, 0); 2994 return ret; 2995 } 2996 2997 int kvm_ioctl(KVMState *s, int type, ...) 2998 { 2999 int ret; 3000 void *arg; 3001 va_list ap; 3002 3003 va_start(ap, type); 3004 arg = va_arg(ap, void *); 3005 va_end(ap); 3006 3007 trace_kvm_ioctl(type, arg); 3008 ret = ioctl(s->fd, type, arg); 3009 if (ret == -1) { 3010 ret = -errno; 3011 } 3012 return ret; 3013 } 3014 3015 int kvm_vm_ioctl(KVMState *s, int type, ...) 3016 { 3017 int ret; 3018 void *arg; 3019 va_list ap; 3020 3021 va_start(ap, type); 3022 arg = va_arg(ap, void *); 3023 va_end(ap); 3024 3025 trace_kvm_vm_ioctl(type, arg); 3026 accel_ioctl_begin(); 3027 ret = ioctl(s->vmfd, type, arg); 3028 accel_ioctl_end(); 3029 if (ret == -1) { 3030 ret = -errno; 3031 } 3032 return ret; 3033 } 3034 3035 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3036 { 3037 int ret; 3038 void *arg; 3039 va_list ap; 3040 3041 va_start(ap, type); 3042 arg = va_arg(ap, void *); 3043 va_end(ap); 3044 3045 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3046 accel_cpu_ioctl_begin(cpu); 3047 ret = ioctl(cpu->kvm_fd, type, arg); 3048 accel_cpu_ioctl_end(cpu); 3049 if (ret == -1) { 3050 ret = -errno; 3051 } 3052 return ret; 3053 } 3054 3055 int kvm_device_ioctl(int fd, int type, ...) 3056 { 3057 int ret; 3058 void *arg; 3059 va_list ap; 3060 3061 va_start(ap, type); 3062 arg = va_arg(ap, void *); 3063 va_end(ap); 3064 3065 trace_kvm_device_ioctl(fd, type, arg); 3066 accel_ioctl_begin(); 3067 ret = ioctl(fd, type, arg); 3068 accel_ioctl_end(); 3069 if (ret == -1) { 3070 ret = -errno; 3071 } 3072 return ret; 3073 } 3074 3075 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3076 { 3077 int ret; 3078 struct kvm_device_attr attribute = { 3079 .group = group, 3080 .attr = attr, 3081 }; 3082 3083 if (!kvm_vm_attributes_allowed) { 3084 return 0; 3085 } 3086 3087 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3088 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3089 return ret ? 0 : 1; 3090 } 3091 3092 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3093 { 3094 struct kvm_device_attr attribute = { 3095 .group = group, 3096 .attr = attr, 3097 .flags = 0, 3098 }; 3099 3100 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3101 } 3102 3103 int kvm_device_access(int fd, int group, uint64_t attr, 3104 void *val, bool write, Error **errp) 3105 { 3106 struct kvm_device_attr kvmattr; 3107 int err; 3108 3109 kvmattr.flags = 0; 3110 kvmattr.group = group; 3111 kvmattr.attr = attr; 3112 kvmattr.addr = (uintptr_t)val; 3113 3114 err = kvm_device_ioctl(fd, 3115 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3116 &kvmattr); 3117 if (err < 0) { 3118 error_setg_errno(errp, -err, 3119 "KVM_%s_DEVICE_ATTR failed: Group %d " 3120 "attr 0x%016" PRIx64, 3121 write ? "SET" : "GET", group, attr); 3122 } 3123 return err; 3124 } 3125 3126 bool kvm_has_sync_mmu(void) 3127 { 3128 return kvm_state->sync_mmu; 3129 } 3130 3131 int kvm_has_vcpu_events(void) 3132 { 3133 return kvm_state->vcpu_events; 3134 } 3135 3136 int kvm_max_nested_state_length(void) 3137 { 3138 return kvm_state->max_nested_state_len; 3139 } 3140 3141 int kvm_has_gsi_routing(void) 3142 { 3143 #ifdef KVM_CAP_IRQ_ROUTING 3144 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3145 #else 3146 return false; 3147 #endif 3148 } 3149 3150 bool kvm_arm_supports_user_irq(void) 3151 { 3152 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3153 } 3154 3155 #ifdef KVM_CAP_SET_GUEST_DEBUG 3156 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3157 { 3158 struct kvm_sw_breakpoint *bp; 3159 3160 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3161 if (bp->pc == pc) { 3162 return bp; 3163 } 3164 } 3165 return NULL; 3166 } 3167 3168 int kvm_sw_breakpoints_active(CPUState *cpu) 3169 { 3170 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3171 } 3172 3173 struct kvm_set_guest_debug_data { 3174 struct kvm_guest_debug dbg; 3175 int err; 3176 }; 3177 3178 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3179 { 3180 struct kvm_set_guest_debug_data *dbg_data = 3181 (struct kvm_set_guest_debug_data *) data.host_ptr; 3182 3183 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3184 &dbg_data->dbg); 3185 } 3186 3187 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3188 { 3189 struct kvm_set_guest_debug_data data; 3190 3191 data.dbg.control = reinject_trap; 3192 3193 if (cpu->singlestep_enabled) { 3194 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3195 3196 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3197 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3198 } 3199 } 3200 kvm_arch_update_guest_debug(cpu, &data.dbg); 3201 3202 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3203 RUN_ON_CPU_HOST_PTR(&data)); 3204 return data.err; 3205 } 3206 3207 bool kvm_supports_guest_debug(void) 3208 { 3209 /* probed during kvm_init() */ 3210 return kvm_has_guest_debug; 3211 } 3212 3213 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3214 { 3215 struct kvm_sw_breakpoint *bp; 3216 int err; 3217 3218 if (type == GDB_BREAKPOINT_SW) { 3219 bp = kvm_find_sw_breakpoint(cpu, addr); 3220 if (bp) { 3221 bp->use_count++; 3222 return 0; 3223 } 3224 3225 bp = g_new(struct kvm_sw_breakpoint, 1); 3226 bp->pc = addr; 3227 bp->use_count = 1; 3228 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3229 if (err) { 3230 g_free(bp); 3231 return err; 3232 } 3233 3234 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3235 } else { 3236 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3237 if (err) { 3238 return err; 3239 } 3240 } 3241 3242 CPU_FOREACH(cpu) { 3243 err = kvm_update_guest_debug(cpu, 0); 3244 if (err) { 3245 return err; 3246 } 3247 } 3248 return 0; 3249 } 3250 3251 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3252 { 3253 struct kvm_sw_breakpoint *bp; 3254 int err; 3255 3256 if (type == GDB_BREAKPOINT_SW) { 3257 bp = kvm_find_sw_breakpoint(cpu, addr); 3258 if (!bp) { 3259 return -ENOENT; 3260 } 3261 3262 if (bp->use_count > 1) { 3263 bp->use_count--; 3264 return 0; 3265 } 3266 3267 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3268 if (err) { 3269 return err; 3270 } 3271 3272 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3273 g_free(bp); 3274 } else { 3275 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3276 if (err) { 3277 return err; 3278 } 3279 } 3280 3281 CPU_FOREACH(cpu) { 3282 err = kvm_update_guest_debug(cpu, 0); 3283 if (err) { 3284 return err; 3285 } 3286 } 3287 return 0; 3288 } 3289 3290 void kvm_remove_all_breakpoints(CPUState *cpu) 3291 { 3292 struct kvm_sw_breakpoint *bp, *next; 3293 KVMState *s = cpu->kvm_state; 3294 CPUState *tmpcpu; 3295 3296 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3297 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3298 /* Try harder to find a CPU that currently sees the breakpoint. */ 3299 CPU_FOREACH(tmpcpu) { 3300 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3301 break; 3302 } 3303 } 3304 } 3305 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3306 g_free(bp); 3307 } 3308 kvm_arch_remove_all_hw_breakpoints(); 3309 3310 CPU_FOREACH(cpu) { 3311 kvm_update_guest_debug(cpu, 0); 3312 } 3313 } 3314 3315 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3316 3317 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3318 { 3319 KVMState *s = kvm_state; 3320 struct kvm_signal_mask *sigmask; 3321 int r; 3322 3323 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3324 3325 sigmask->len = s->sigmask_len; 3326 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3327 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3328 g_free(sigmask); 3329 3330 return r; 3331 } 3332 3333 static void kvm_ipi_signal(int sig) 3334 { 3335 if (current_cpu) { 3336 assert(kvm_immediate_exit); 3337 kvm_cpu_kick(current_cpu); 3338 } 3339 } 3340 3341 void kvm_init_cpu_signals(CPUState *cpu) 3342 { 3343 int r; 3344 sigset_t set; 3345 struct sigaction sigact; 3346 3347 memset(&sigact, 0, sizeof(sigact)); 3348 sigact.sa_handler = kvm_ipi_signal; 3349 sigaction(SIG_IPI, &sigact, NULL); 3350 3351 pthread_sigmask(SIG_BLOCK, NULL, &set); 3352 #if defined KVM_HAVE_MCE_INJECTION 3353 sigdelset(&set, SIGBUS); 3354 pthread_sigmask(SIG_SETMASK, &set, NULL); 3355 #endif 3356 sigdelset(&set, SIG_IPI); 3357 if (kvm_immediate_exit) { 3358 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3359 } else { 3360 r = kvm_set_signal_mask(cpu, &set); 3361 } 3362 if (r) { 3363 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3364 exit(1); 3365 } 3366 } 3367 3368 /* Called asynchronously in VCPU thread. */ 3369 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3370 { 3371 #ifdef KVM_HAVE_MCE_INJECTION 3372 if (have_sigbus_pending) { 3373 return 1; 3374 } 3375 have_sigbus_pending = true; 3376 pending_sigbus_addr = addr; 3377 pending_sigbus_code = code; 3378 qatomic_set(&cpu->exit_request, 1); 3379 return 0; 3380 #else 3381 return 1; 3382 #endif 3383 } 3384 3385 /* Called synchronously (via signalfd) in main thread. */ 3386 int kvm_on_sigbus(int code, void *addr) 3387 { 3388 #ifdef KVM_HAVE_MCE_INJECTION 3389 /* Action required MCE kills the process if SIGBUS is blocked. Because 3390 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3391 * we can only get action optional here. 3392 */ 3393 assert(code != BUS_MCEERR_AR); 3394 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3395 return 0; 3396 #else 3397 return 1; 3398 #endif 3399 } 3400 3401 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3402 { 3403 int ret; 3404 struct kvm_create_device create_dev; 3405 3406 create_dev.type = type; 3407 create_dev.fd = -1; 3408 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3409 3410 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3411 return -ENOTSUP; 3412 } 3413 3414 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3415 if (ret) { 3416 return ret; 3417 } 3418 3419 return test ? 0 : create_dev.fd; 3420 } 3421 3422 bool kvm_device_supported(int vmfd, uint64_t type) 3423 { 3424 struct kvm_create_device create_dev = { 3425 .type = type, 3426 .fd = -1, 3427 .flags = KVM_CREATE_DEVICE_TEST, 3428 }; 3429 3430 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3431 return false; 3432 } 3433 3434 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3435 } 3436 3437 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3438 { 3439 struct kvm_one_reg reg; 3440 int r; 3441 3442 reg.id = id; 3443 reg.addr = (uintptr_t) source; 3444 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3445 if (r) { 3446 trace_kvm_failed_reg_set(id, strerror(-r)); 3447 } 3448 return r; 3449 } 3450 3451 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3452 { 3453 struct kvm_one_reg reg; 3454 int r; 3455 3456 reg.id = id; 3457 reg.addr = (uintptr_t) target; 3458 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3459 if (r) { 3460 trace_kvm_failed_reg_get(id, strerror(-r)); 3461 } 3462 return r; 3463 } 3464 3465 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3466 hwaddr start_addr, hwaddr size) 3467 { 3468 KVMState *kvm = KVM_STATE(ms->accelerator); 3469 int i; 3470 3471 for (i = 0; i < kvm->nr_as; ++i) { 3472 if (kvm->as[i].as == as && kvm->as[i].ml) { 3473 size = MIN(kvm_max_slot_size, size); 3474 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3475 start_addr, size); 3476 } 3477 } 3478 3479 return false; 3480 } 3481 3482 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3483 const char *name, void *opaque, 3484 Error **errp) 3485 { 3486 KVMState *s = KVM_STATE(obj); 3487 int64_t value = s->kvm_shadow_mem; 3488 3489 visit_type_int(v, name, &value, errp); 3490 } 3491 3492 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3493 const char *name, void *opaque, 3494 Error **errp) 3495 { 3496 KVMState *s = KVM_STATE(obj); 3497 int64_t value; 3498 3499 if (s->fd != -1) { 3500 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3501 return; 3502 } 3503 3504 if (!visit_type_int(v, name, &value, errp)) { 3505 return; 3506 } 3507 3508 s->kvm_shadow_mem = value; 3509 } 3510 3511 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3512 const char *name, void *opaque, 3513 Error **errp) 3514 { 3515 KVMState *s = KVM_STATE(obj); 3516 OnOffSplit mode; 3517 3518 if (s->fd != -1) { 3519 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3520 return; 3521 } 3522 3523 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3524 return; 3525 } 3526 switch (mode) { 3527 case ON_OFF_SPLIT_ON: 3528 s->kernel_irqchip_allowed = true; 3529 s->kernel_irqchip_required = true; 3530 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3531 break; 3532 case ON_OFF_SPLIT_OFF: 3533 s->kernel_irqchip_allowed = false; 3534 s->kernel_irqchip_required = false; 3535 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3536 break; 3537 case ON_OFF_SPLIT_SPLIT: 3538 s->kernel_irqchip_allowed = true; 3539 s->kernel_irqchip_required = true; 3540 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3541 break; 3542 default: 3543 /* The value was checked in visit_type_OnOffSplit() above. If 3544 * we get here, then something is wrong in QEMU. 3545 */ 3546 abort(); 3547 } 3548 } 3549 3550 bool kvm_kernel_irqchip_allowed(void) 3551 { 3552 return kvm_state->kernel_irqchip_allowed; 3553 } 3554 3555 bool kvm_kernel_irqchip_required(void) 3556 { 3557 return kvm_state->kernel_irqchip_required; 3558 } 3559 3560 bool kvm_kernel_irqchip_split(void) 3561 { 3562 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3563 } 3564 3565 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3566 const char *name, void *opaque, 3567 Error **errp) 3568 { 3569 KVMState *s = KVM_STATE(obj); 3570 uint32_t value = s->kvm_dirty_ring_size; 3571 3572 visit_type_uint32(v, name, &value, errp); 3573 } 3574 3575 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3576 const char *name, void *opaque, 3577 Error **errp) 3578 { 3579 KVMState *s = KVM_STATE(obj); 3580 uint32_t value; 3581 3582 if (s->fd != -1) { 3583 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3584 return; 3585 } 3586 3587 if (!visit_type_uint32(v, name, &value, errp)) { 3588 return; 3589 } 3590 if (value & (value - 1)) { 3591 error_setg(errp, "dirty-ring-size must be a power of two."); 3592 return; 3593 } 3594 3595 s->kvm_dirty_ring_size = value; 3596 } 3597 3598 static char *kvm_get_device(Object *obj, 3599 Error **errp G_GNUC_UNUSED) 3600 { 3601 KVMState *s = KVM_STATE(obj); 3602 3603 return g_strdup(s->device); 3604 } 3605 3606 static void kvm_set_device(Object *obj, 3607 const char *value, 3608 Error **errp G_GNUC_UNUSED) 3609 { 3610 KVMState *s = KVM_STATE(obj); 3611 3612 g_free(s->device); 3613 s->device = g_strdup(value); 3614 } 3615 3616 static void kvm_accel_instance_init(Object *obj) 3617 { 3618 KVMState *s = KVM_STATE(obj); 3619 3620 s->fd = -1; 3621 s->vmfd = -1; 3622 s->kvm_shadow_mem = -1; 3623 s->kernel_irqchip_allowed = true; 3624 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3625 /* KVM dirty ring is by default off */ 3626 s->kvm_dirty_ring_size = 0; 3627 s->kvm_dirty_ring_with_bitmap = false; 3628 s->kvm_eager_split_size = 0; 3629 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3630 s->notify_window = 0; 3631 s->xen_version = 0; 3632 s->xen_gnttab_max_frames = 64; 3633 s->xen_evtchn_max_pirq = 256; 3634 s->device = NULL; 3635 } 3636 3637 /** 3638 * kvm_gdbstub_sstep_flags(): 3639 * 3640 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3641 * support is probed during kvm_init() 3642 */ 3643 static int kvm_gdbstub_sstep_flags(void) 3644 { 3645 return kvm_sstep_flags; 3646 } 3647 3648 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3649 { 3650 AccelClass *ac = ACCEL_CLASS(oc); 3651 ac->name = "KVM"; 3652 ac->init_machine = kvm_init; 3653 ac->has_memory = kvm_accel_has_memory; 3654 ac->allowed = &kvm_allowed; 3655 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3656 3657 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3658 NULL, kvm_set_kernel_irqchip, 3659 NULL, NULL); 3660 object_class_property_set_description(oc, "kernel-irqchip", 3661 "Configure KVM in-kernel irqchip"); 3662 3663 object_class_property_add(oc, "kvm-shadow-mem", "int", 3664 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3665 NULL, NULL); 3666 object_class_property_set_description(oc, "kvm-shadow-mem", 3667 "KVM shadow MMU size"); 3668 3669 object_class_property_add(oc, "dirty-ring-size", "uint32", 3670 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3671 NULL, NULL); 3672 object_class_property_set_description(oc, "dirty-ring-size", 3673 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3674 3675 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3676 object_class_property_set_description(oc, "device", 3677 "Path to the device node to use (default: /dev/kvm)"); 3678 3679 kvm_arch_accel_class_init(oc); 3680 } 3681 3682 static const TypeInfo kvm_accel_type = { 3683 .name = TYPE_KVM_ACCEL, 3684 .parent = TYPE_ACCEL, 3685 .instance_init = kvm_accel_instance_init, 3686 .class_init = kvm_accel_class_init, 3687 .instance_size = sizeof(KVMState), 3688 }; 3689 3690 static void kvm_type_init(void) 3691 { 3692 type_register_static(&kvm_accel_type); 3693 } 3694 3695 type_init(kvm_type_init); 3696 3697 typedef struct StatsArgs { 3698 union StatsResultsType { 3699 StatsResultList **stats; 3700 StatsSchemaList **schema; 3701 } result; 3702 strList *names; 3703 Error **errp; 3704 } StatsArgs; 3705 3706 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3707 uint64_t *stats_data, 3708 StatsList *stats_list, 3709 Error **errp) 3710 { 3711 3712 Stats *stats; 3713 uint64List *val_list = NULL; 3714 3715 /* Only add stats that we understand. */ 3716 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3717 case KVM_STATS_TYPE_CUMULATIVE: 3718 case KVM_STATS_TYPE_INSTANT: 3719 case KVM_STATS_TYPE_PEAK: 3720 case KVM_STATS_TYPE_LINEAR_HIST: 3721 case KVM_STATS_TYPE_LOG_HIST: 3722 break; 3723 default: 3724 return stats_list; 3725 } 3726 3727 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3728 case KVM_STATS_UNIT_NONE: 3729 case KVM_STATS_UNIT_BYTES: 3730 case KVM_STATS_UNIT_CYCLES: 3731 case KVM_STATS_UNIT_SECONDS: 3732 case KVM_STATS_UNIT_BOOLEAN: 3733 break; 3734 default: 3735 return stats_list; 3736 } 3737 3738 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3739 case KVM_STATS_BASE_POW10: 3740 case KVM_STATS_BASE_POW2: 3741 break; 3742 default: 3743 return stats_list; 3744 } 3745 3746 /* Alloc and populate data list */ 3747 stats = g_new0(Stats, 1); 3748 stats->name = g_strdup(pdesc->name); 3749 stats->value = g_new0(StatsValue, 1);; 3750 3751 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3752 stats->value->u.boolean = *stats_data; 3753 stats->value->type = QTYPE_QBOOL; 3754 } else if (pdesc->size == 1) { 3755 stats->value->u.scalar = *stats_data; 3756 stats->value->type = QTYPE_QNUM; 3757 } else { 3758 int i; 3759 for (i = 0; i < pdesc->size; i++) { 3760 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3761 } 3762 stats->value->u.list = val_list; 3763 stats->value->type = QTYPE_QLIST; 3764 } 3765 3766 QAPI_LIST_PREPEND(stats_list, stats); 3767 return stats_list; 3768 } 3769 3770 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3771 StatsSchemaValueList *list, 3772 Error **errp) 3773 { 3774 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3775 schema_entry->value = g_new0(StatsSchemaValue, 1); 3776 3777 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3778 case KVM_STATS_TYPE_CUMULATIVE: 3779 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3780 break; 3781 case KVM_STATS_TYPE_INSTANT: 3782 schema_entry->value->type = STATS_TYPE_INSTANT; 3783 break; 3784 case KVM_STATS_TYPE_PEAK: 3785 schema_entry->value->type = STATS_TYPE_PEAK; 3786 break; 3787 case KVM_STATS_TYPE_LINEAR_HIST: 3788 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3789 schema_entry->value->bucket_size = pdesc->bucket_size; 3790 schema_entry->value->has_bucket_size = true; 3791 break; 3792 case KVM_STATS_TYPE_LOG_HIST: 3793 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3794 break; 3795 default: 3796 goto exit; 3797 } 3798 3799 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3800 case KVM_STATS_UNIT_NONE: 3801 break; 3802 case KVM_STATS_UNIT_BOOLEAN: 3803 schema_entry->value->has_unit = true; 3804 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3805 break; 3806 case KVM_STATS_UNIT_BYTES: 3807 schema_entry->value->has_unit = true; 3808 schema_entry->value->unit = STATS_UNIT_BYTES; 3809 break; 3810 case KVM_STATS_UNIT_CYCLES: 3811 schema_entry->value->has_unit = true; 3812 schema_entry->value->unit = STATS_UNIT_CYCLES; 3813 break; 3814 case KVM_STATS_UNIT_SECONDS: 3815 schema_entry->value->has_unit = true; 3816 schema_entry->value->unit = STATS_UNIT_SECONDS; 3817 break; 3818 default: 3819 goto exit; 3820 } 3821 3822 schema_entry->value->exponent = pdesc->exponent; 3823 if (pdesc->exponent) { 3824 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3825 case KVM_STATS_BASE_POW10: 3826 schema_entry->value->has_base = true; 3827 schema_entry->value->base = 10; 3828 break; 3829 case KVM_STATS_BASE_POW2: 3830 schema_entry->value->has_base = true; 3831 schema_entry->value->base = 2; 3832 break; 3833 default: 3834 goto exit; 3835 } 3836 } 3837 3838 schema_entry->value->name = g_strdup(pdesc->name); 3839 schema_entry->next = list; 3840 return schema_entry; 3841 exit: 3842 g_free(schema_entry->value); 3843 g_free(schema_entry); 3844 return list; 3845 } 3846 3847 /* Cached stats descriptors */ 3848 typedef struct StatsDescriptors { 3849 const char *ident; /* cache key, currently the StatsTarget */ 3850 struct kvm_stats_desc *kvm_stats_desc; 3851 struct kvm_stats_header kvm_stats_header; 3852 QTAILQ_ENTRY(StatsDescriptors) next; 3853 } StatsDescriptors; 3854 3855 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3856 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3857 3858 /* 3859 * Return the descriptors for 'target', that either have already been read 3860 * or are retrieved from 'stats_fd'. 3861 */ 3862 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3863 Error **errp) 3864 { 3865 StatsDescriptors *descriptors; 3866 const char *ident; 3867 struct kvm_stats_desc *kvm_stats_desc; 3868 struct kvm_stats_header *kvm_stats_header; 3869 size_t size_desc; 3870 ssize_t ret; 3871 3872 ident = StatsTarget_str(target); 3873 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3874 if (g_str_equal(descriptors->ident, ident)) { 3875 return descriptors; 3876 } 3877 } 3878 3879 descriptors = g_new0(StatsDescriptors, 1); 3880 3881 /* Read stats header */ 3882 kvm_stats_header = &descriptors->kvm_stats_header; 3883 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 3884 if (ret != sizeof(*kvm_stats_header)) { 3885 error_setg(errp, "KVM stats: failed to read stats header: " 3886 "expected %zu actual %zu", 3887 sizeof(*kvm_stats_header), ret); 3888 g_free(descriptors); 3889 return NULL; 3890 } 3891 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3892 3893 /* Read stats descriptors */ 3894 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3895 ret = pread(stats_fd, kvm_stats_desc, 3896 size_desc * kvm_stats_header->num_desc, 3897 kvm_stats_header->desc_offset); 3898 3899 if (ret != size_desc * kvm_stats_header->num_desc) { 3900 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3901 "expected %zu actual %zu", 3902 size_desc * kvm_stats_header->num_desc, ret); 3903 g_free(descriptors); 3904 g_free(kvm_stats_desc); 3905 return NULL; 3906 } 3907 descriptors->kvm_stats_desc = kvm_stats_desc; 3908 descriptors->ident = ident; 3909 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3910 return descriptors; 3911 } 3912 3913 static void query_stats(StatsResultList **result, StatsTarget target, 3914 strList *names, int stats_fd, CPUState *cpu, 3915 Error **errp) 3916 { 3917 struct kvm_stats_desc *kvm_stats_desc; 3918 struct kvm_stats_header *kvm_stats_header; 3919 StatsDescriptors *descriptors; 3920 g_autofree uint64_t *stats_data = NULL; 3921 struct kvm_stats_desc *pdesc; 3922 StatsList *stats_list = NULL; 3923 size_t size_desc, size_data = 0; 3924 ssize_t ret; 3925 int i; 3926 3927 descriptors = find_stats_descriptors(target, stats_fd, errp); 3928 if (!descriptors) { 3929 return; 3930 } 3931 3932 kvm_stats_header = &descriptors->kvm_stats_header; 3933 kvm_stats_desc = descriptors->kvm_stats_desc; 3934 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3935 3936 /* Tally the total data size; read schema data */ 3937 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3938 pdesc = (void *)kvm_stats_desc + i * size_desc; 3939 size_data += pdesc->size * sizeof(*stats_data); 3940 } 3941 3942 stats_data = g_malloc0(size_data); 3943 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 3944 3945 if (ret != size_data) { 3946 error_setg(errp, "KVM stats: failed to read data: " 3947 "expected %zu actual %zu", size_data, ret); 3948 return; 3949 } 3950 3951 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3952 uint64_t *stats; 3953 pdesc = (void *)kvm_stats_desc + i * size_desc; 3954 3955 /* Add entry to the list */ 3956 stats = (void *)stats_data + pdesc->offset; 3957 if (!apply_str_list_filter(pdesc->name, names)) { 3958 continue; 3959 } 3960 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 3961 } 3962 3963 if (!stats_list) { 3964 return; 3965 } 3966 3967 switch (target) { 3968 case STATS_TARGET_VM: 3969 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 3970 break; 3971 case STATS_TARGET_VCPU: 3972 add_stats_entry(result, STATS_PROVIDER_KVM, 3973 cpu->parent_obj.canonical_path, 3974 stats_list); 3975 break; 3976 default: 3977 g_assert_not_reached(); 3978 } 3979 } 3980 3981 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 3982 int stats_fd, Error **errp) 3983 { 3984 struct kvm_stats_desc *kvm_stats_desc; 3985 struct kvm_stats_header *kvm_stats_header; 3986 StatsDescriptors *descriptors; 3987 struct kvm_stats_desc *pdesc; 3988 StatsSchemaValueList *stats_list = NULL; 3989 size_t size_desc; 3990 int i; 3991 3992 descriptors = find_stats_descriptors(target, stats_fd, errp); 3993 if (!descriptors) { 3994 return; 3995 } 3996 3997 kvm_stats_header = &descriptors->kvm_stats_header; 3998 kvm_stats_desc = descriptors->kvm_stats_desc; 3999 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4000 4001 /* Tally the total data size; read schema data */ 4002 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4003 pdesc = (void *)kvm_stats_desc + i * size_desc; 4004 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4005 } 4006 4007 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4008 } 4009 4010 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4011 { 4012 int stats_fd = cpu->kvm_vcpu_stats_fd; 4013 Error *local_err = NULL; 4014 4015 if (stats_fd == -1) { 4016 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4017 error_propagate(kvm_stats_args->errp, local_err); 4018 return; 4019 } 4020 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4021 kvm_stats_args->names, stats_fd, cpu, 4022 kvm_stats_args->errp); 4023 } 4024 4025 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4026 { 4027 int stats_fd = cpu->kvm_vcpu_stats_fd; 4028 Error *local_err = NULL; 4029 4030 if (stats_fd == -1) { 4031 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4032 error_propagate(kvm_stats_args->errp, local_err); 4033 return; 4034 } 4035 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4036 kvm_stats_args->errp); 4037 } 4038 4039 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4040 strList *names, strList *targets, Error **errp) 4041 { 4042 KVMState *s = kvm_state; 4043 CPUState *cpu; 4044 int stats_fd; 4045 4046 switch (target) { 4047 case STATS_TARGET_VM: 4048 { 4049 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4050 if (stats_fd == -1) { 4051 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4052 return; 4053 } 4054 query_stats(result, target, names, stats_fd, NULL, errp); 4055 close(stats_fd); 4056 break; 4057 } 4058 case STATS_TARGET_VCPU: 4059 { 4060 StatsArgs stats_args; 4061 stats_args.result.stats = result; 4062 stats_args.names = names; 4063 stats_args.errp = errp; 4064 CPU_FOREACH(cpu) { 4065 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4066 continue; 4067 } 4068 query_stats_vcpu(cpu, &stats_args); 4069 } 4070 break; 4071 } 4072 default: 4073 break; 4074 } 4075 } 4076 4077 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4078 { 4079 StatsArgs stats_args; 4080 KVMState *s = kvm_state; 4081 int stats_fd; 4082 4083 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4084 if (stats_fd == -1) { 4085 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4086 return; 4087 } 4088 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4089 close(stats_fd); 4090 4091 if (first_cpu) { 4092 stats_args.result.schema = result; 4093 stats_args.errp = errp; 4094 query_stats_schema_vcpu(first_cpu, &stats_args); 4095 } 4096 } 4097