1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "sysemu/reset.h" 47 #include "qemu/guest-random.h" 48 #include "sysemu/hw_accel.h" 49 #include "kvm-cpus.h" 50 51 #include "hw/boards.h" 52 53 /* This check must be after config-host.h is included */ 54 #ifdef CONFIG_EVENTFD 55 #include <sys/eventfd.h> 56 #endif 57 58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 59 * need to use the real host PAGE_SIZE, as that's what KVM will use. 60 */ 61 #ifdef PAGE_SIZE 62 #undef PAGE_SIZE 63 #endif 64 #define PAGE_SIZE qemu_real_host_page_size 65 66 //#define DEBUG_KVM 67 68 #ifdef DEBUG_KVM 69 #define DPRINTF(fmt, ...) \ 70 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 71 #else 72 #define DPRINTF(fmt, ...) \ 73 do { } while (0) 74 #endif 75 76 #define KVM_MSI_HASHTAB_SIZE 256 77 78 struct KVMParkedVcpu { 79 unsigned long vcpu_id; 80 int kvm_fd; 81 QLIST_ENTRY(KVMParkedVcpu) node; 82 }; 83 84 struct KVMState 85 { 86 AccelState parent_obj; 87 88 int nr_slots; 89 int fd; 90 int vmfd; 91 int coalesced_mmio; 92 int coalesced_pio; 93 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 94 bool coalesced_flush_in_progress; 95 int vcpu_events; 96 int robust_singlestep; 97 int debugregs; 98 #ifdef KVM_CAP_SET_GUEST_DEBUG 99 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 100 #endif 101 int max_nested_state_len; 102 int many_ioeventfds; 103 int intx_set_mask; 104 int kvm_shadow_mem; 105 bool kernel_irqchip_allowed; 106 bool kernel_irqchip_required; 107 OnOffAuto kernel_irqchip_split; 108 bool sync_mmu; 109 uint64_t manual_dirty_log_protect; 110 /* The man page (and posix) say ioctl numbers are signed int, but 111 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 112 * unsigned, and treating them as signed here can break things */ 113 unsigned irq_set_ioctl; 114 unsigned int sigmask_len; 115 GHashTable *gsimap; 116 #ifdef KVM_CAP_IRQ_ROUTING 117 struct kvm_irq_routing *irq_routes; 118 int nr_allocated_irq_routes; 119 unsigned long *used_gsi_bitmap; 120 unsigned int gsi_count; 121 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 122 #endif 123 KVMMemoryListener memory_listener; 124 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 125 126 /* For "info mtree -f" to tell if an MR is registered in KVM */ 127 int nr_as; 128 struct KVMAs { 129 KVMMemoryListener *ml; 130 AddressSpace *as; 131 } *as; 132 }; 133 134 KVMState *kvm_state; 135 bool kvm_kernel_irqchip; 136 bool kvm_split_irqchip; 137 bool kvm_async_interrupts_allowed; 138 bool kvm_halt_in_kernel_allowed; 139 bool kvm_eventfds_allowed; 140 bool kvm_irqfds_allowed; 141 bool kvm_resamplefds_allowed; 142 bool kvm_msi_via_irqfd_allowed; 143 bool kvm_gsi_routing_allowed; 144 bool kvm_gsi_direct_mapping; 145 bool kvm_allowed; 146 bool kvm_readonly_mem_allowed; 147 bool kvm_vm_attributes_allowed; 148 bool kvm_direct_msi_allowed; 149 bool kvm_ioeventfd_any_length_allowed; 150 bool kvm_msi_use_devid; 151 static bool kvm_immediate_exit; 152 static hwaddr kvm_max_slot_size = ~0; 153 154 static const KVMCapabilityInfo kvm_required_capabilites[] = { 155 KVM_CAP_INFO(USER_MEMORY), 156 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 157 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 158 KVM_CAP_LAST_INFO 159 }; 160 161 static NotifierList kvm_irqchip_change_notifiers = 162 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 163 164 struct KVMResampleFd { 165 int gsi; 166 EventNotifier *resample_event; 167 QLIST_ENTRY(KVMResampleFd) node; 168 }; 169 typedef struct KVMResampleFd KVMResampleFd; 170 171 /* 172 * Only used with split irqchip where we need to do the resample fd 173 * kick for the kernel from userspace. 174 */ 175 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 176 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 177 178 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 179 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 180 181 static inline void kvm_resample_fd_remove(int gsi) 182 { 183 KVMResampleFd *rfd; 184 185 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 186 if (rfd->gsi == gsi) { 187 QLIST_REMOVE(rfd, node); 188 g_free(rfd); 189 break; 190 } 191 } 192 } 193 194 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 195 { 196 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 197 198 rfd->gsi = gsi; 199 rfd->resample_event = event; 200 201 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 202 } 203 204 void kvm_resample_fd_notify(int gsi) 205 { 206 KVMResampleFd *rfd; 207 208 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 209 if (rfd->gsi == gsi) { 210 event_notifier_set(rfd->resample_event); 211 trace_kvm_resample_fd_notify(gsi); 212 return; 213 } 214 } 215 } 216 217 int kvm_get_max_memslots(void) 218 { 219 KVMState *s = KVM_STATE(current_accel()); 220 221 return s->nr_slots; 222 } 223 224 /* Called with KVMMemoryListener.slots_lock held */ 225 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 226 { 227 KVMState *s = kvm_state; 228 int i; 229 230 for (i = 0; i < s->nr_slots; i++) { 231 if (kml->slots[i].memory_size == 0) { 232 return &kml->slots[i]; 233 } 234 } 235 236 return NULL; 237 } 238 239 bool kvm_has_free_slot(MachineState *ms) 240 { 241 KVMState *s = KVM_STATE(ms->accelerator); 242 bool result; 243 KVMMemoryListener *kml = &s->memory_listener; 244 245 kvm_slots_lock(kml); 246 result = !!kvm_get_free_slot(kml); 247 kvm_slots_unlock(kml); 248 249 return result; 250 } 251 252 /* Called with KVMMemoryListener.slots_lock held */ 253 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 254 { 255 KVMSlot *slot = kvm_get_free_slot(kml); 256 257 if (slot) { 258 return slot; 259 } 260 261 fprintf(stderr, "%s: no free slot available\n", __func__); 262 abort(); 263 } 264 265 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 266 hwaddr start_addr, 267 hwaddr size) 268 { 269 KVMState *s = kvm_state; 270 int i; 271 272 for (i = 0; i < s->nr_slots; i++) { 273 KVMSlot *mem = &kml->slots[i]; 274 275 if (start_addr == mem->start_addr && size == mem->memory_size) { 276 return mem; 277 } 278 } 279 280 return NULL; 281 } 282 283 /* 284 * Calculate and align the start address and the size of the section. 285 * Return the size. If the size is 0, the aligned section is empty. 286 */ 287 static hwaddr kvm_align_section(MemoryRegionSection *section, 288 hwaddr *start) 289 { 290 hwaddr size = int128_get64(section->size); 291 hwaddr delta, aligned; 292 293 /* kvm works in page size chunks, but the function may be called 294 with sub-page size and unaligned start address. Pad the start 295 address to next and truncate size to previous page boundary. */ 296 aligned = ROUND_UP(section->offset_within_address_space, 297 qemu_real_host_page_size); 298 delta = aligned - section->offset_within_address_space; 299 *start = aligned; 300 if (delta > size) { 301 return 0; 302 } 303 304 return (size - delta) & qemu_real_host_page_mask; 305 } 306 307 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 308 hwaddr *phys_addr) 309 { 310 KVMMemoryListener *kml = &s->memory_listener; 311 int i, ret = 0; 312 313 kvm_slots_lock(kml); 314 for (i = 0; i < s->nr_slots; i++) { 315 KVMSlot *mem = &kml->slots[i]; 316 317 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 318 *phys_addr = mem->start_addr + (ram - mem->ram); 319 ret = 1; 320 break; 321 } 322 } 323 kvm_slots_unlock(kml); 324 325 return ret; 326 } 327 328 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 329 { 330 KVMState *s = kvm_state; 331 struct kvm_userspace_memory_region mem; 332 int ret; 333 334 mem.slot = slot->slot | (kml->as_id << 16); 335 mem.guest_phys_addr = slot->start_addr; 336 mem.userspace_addr = (unsigned long)slot->ram; 337 mem.flags = slot->flags; 338 339 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 340 /* Set the slot size to 0 before setting the slot to the desired 341 * value. This is needed based on KVM commit 75d61fbc. */ 342 mem.memory_size = 0; 343 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 344 if (ret < 0) { 345 goto err; 346 } 347 } 348 mem.memory_size = slot->memory_size; 349 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 350 slot->old_flags = mem.flags; 351 err: 352 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 353 mem.memory_size, mem.userspace_addr, ret); 354 if (ret < 0) { 355 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 356 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 357 __func__, mem.slot, slot->start_addr, 358 (uint64_t)mem.memory_size, strerror(errno)); 359 } 360 return ret; 361 } 362 363 static int do_kvm_destroy_vcpu(CPUState *cpu) 364 { 365 KVMState *s = kvm_state; 366 long mmap_size; 367 struct KVMParkedVcpu *vcpu = NULL; 368 int ret = 0; 369 370 DPRINTF("kvm_destroy_vcpu\n"); 371 372 ret = kvm_arch_destroy_vcpu(cpu); 373 if (ret < 0) { 374 goto err; 375 } 376 377 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 378 if (mmap_size < 0) { 379 ret = mmap_size; 380 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 381 goto err; 382 } 383 384 ret = munmap(cpu->kvm_run, mmap_size); 385 if (ret < 0) { 386 goto err; 387 } 388 389 vcpu = g_malloc0(sizeof(*vcpu)); 390 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 391 vcpu->kvm_fd = cpu->kvm_fd; 392 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 393 err: 394 return ret; 395 } 396 397 void kvm_destroy_vcpu(CPUState *cpu) 398 { 399 if (do_kvm_destroy_vcpu(cpu) < 0) { 400 error_report("kvm_destroy_vcpu failed"); 401 exit(EXIT_FAILURE); 402 } 403 } 404 405 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 406 { 407 struct KVMParkedVcpu *cpu; 408 409 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 410 if (cpu->vcpu_id == vcpu_id) { 411 int kvm_fd; 412 413 QLIST_REMOVE(cpu, node); 414 kvm_fd = cpu->kvm_fd; 415 g_free(cpu); 416 return kvm_fd; 417 } 418 } 419 420 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 421 } 422 423 int kvm_init_vcpu(CPUState *cpu, Error **errp) 424 { 425 KVMState *s = kvm_state; 426 long mmap_size; 427 int ret; 428 429 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 430 431 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 432 if (ret < 0) { 433 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 434 kvm_arch_vcpu_id(cpu)); 435 goto err; 436 } 437 438 cpu->kvm_fd = ret; 439 cpu->kvm_state = s; 440 cpu->vcpu_dirty = true; 441 442 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 443 if (mmap_size < 0) { 444 ret = mmap_size; 445 error_setg_errno(errp, -mmap_size, 446 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 447 goto err; 448 } 449 450 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 451 cpu->kvm_fd, 0); 452 if (cpu->kvm_run == MAP_FAILED) { 453 ret = -errno; 454 error_setg_errno(errp, ret, 455 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 456 kvm_arch_vcpu_id(cpu)); 457 goto err; 458 } 459 460 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 461 s->coalesced_mmio_ring = 462 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 463 } 464 465 ret = kvm_arch_init_vcpu(cpu); 466 if (ret < 0) { 467 error_setg_errno(errp, -ret, 468 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 469 kvm_arch_vcpu_id(cpu)); 470 } 471 err: 472 return ret; 473 } 474 475 /* 476 * dirty pages logging control 477 */ 478 479 static int kvm_mem_flags(MemoryRegion *mr) 480 { 481 bool readonly = mr->readonly || memory_region_is_romd(mr); 482 int flags = 0; 483 484 if (memory_region_get_dirty_log_mask(mr) != 0) { 485 flags |= KVM_MEM_LOG_DIRTY_PAGES; 486 } 487 if (readonly && kvm_readonly_mem_allowed) { 488 flags |= KVM_MEM_READONLY; 489 } 490 return flags; 491 } 492 493 /* Called with KVMMemoryListener.slots_lock held */ 494 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 495 MemoryRegion *mr) 496 { 497 mem->flags = kvm_mem_flags(mr); 498 499 /* If nothing changed effectively, no need to issue ioctl */ 500 if (mem->flags == mem->old_flags) { 501 return 0; 502 } 503 504 return kvm_set_user_memory_region(kml, mem, false); 505 } 506 507 static int kvm_section_update_flags(KVMMemoryListener *kml, 508 MemoryRegionSection *section) 509 { 510 hwaddr start_addr, size, slot_size; 511 KVMSlot *mem; 512 int ret = 0; 513 514 size = kvm_align_section(section, &start_addr); 515 if (!size) { 516 return 0; 517 } 518 519 kvm_slots_lock(kml); 520 521 while (size && !ret) { 522 slot_size = MIN(kvm_max_slot_size, size); 523 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 524 if (!mem) { 525 /* We don't have a slot if we want to trap every access. */ 526 goto out; 527 } 528 529 ret = kvm_slot_update_flags(kml, mem, section->mr); 530 start_addr += slot_size; 531 size -= slot_size; 532 } 533 534 out: 535 kvm_slots_unlock(kml); 536 return ret; 537 } 538 539 static void kvm_log_start(MemoryListener *listener, 540 MemoryRegionSection *section, 541 int old, int new) 542 { 543 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 544 int r; 545 546 if (old != 0) { 547 return; 548 } 549 550 r = kvm_section_update_flags(kml, section); 551 if (r < 0) { 552 abort(); 553 } 554 } 555 556 static void kvm_log_stop(MemoryListener *listener, 557 MemoryRegionSection *section, 558 int old, int new) 559 { 560 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 561 int r; 562 563 if (new != 0) { 564 return; 565 } 566 567 r = kvm_section_update_flags(kml, section); 568 if (r < 0) { 569 abort(); 570 } 571 } 572 573 /* get kvm's dirty pages bitmap and update qemu's */ 574 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 575 unsigned long *bitmap) 576 { 577 ram_addr_t start = section->offset_within_region + 578 memory_region_get_ram_addr(section->mr); 579 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 580 581 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 582 return 0; 583 } 584 585 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 586 587 /* Allocate the dirty bitmap for a slot */ 588 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 589 { 590 /* 591 * XXX bad kernel interface alert 592 * For dirty bitmap, kernel allocates array of size aligned to 593 * bits-per-long. But for case when the kernel is 64bits and 594 * the userspace is 32bits, userspace can't align to the same 595 * bits-per-long, since sizeof(long) is different between kernel 596 * and user space. This way, userspace will provide buffer which 597 * may be 4 bytes less than the kernel will use, resulting in 598 * userspace memory corruption (which is not detectable by valgrind 599 * too, in most cases). 600 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 601 * a hope that sizeof(long) won't become >8 any time soon. 602 */ 603 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 604 /*HOST_LONG_BITS*/ 64) / 8; 605 mem->dirty_bmap = g_malloc0(bitmap_size); 606 } 607 608 /** 609 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 610 * 611 * This function will first try to fetch dirty bitmap from the kernel, 612 * and then updates qemu's dirty bitmap. 613 * 614 * NOTE: caller must be with kml->slots_lock held. 615 * 616 * @kml: the KVM memory listener object 617 * @section: the memory section to sync the dirty bitmap with 618 */ 619 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 620 MemoryRegionSection *section) 621 { 622 KVMState *s = kvm_state; 623 struct kvm_dirty_log d = {}; 624 KVMSlot *mem; 625 hwaddr start_addr, size; 626 hwaddr slot_size, slot_offset = 0; 627 int ret = 0; 628 629 size = kvm_align_section(section, &start_addr); 630 while (size) { 631 MemoryRegionSection subsection = *section; 632 633 slot_size = MIN(kvm_max_slot_size, size); 634 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 635 if (!mem) { 636 /* We don't have a slot if we want to trap every access. */ 637 goto out; 638 } 639 640 if (!mem->dirty_bmap) { 641 /* Allocate on the first log_sync, once and for all */ 642 kvm_memslot_init_dirty_bitmap(mem); 643 } 644 645 d.dirty_bitmap = mem->dirty_bmap; 646 d.slot = mem->slot | (kml->as_id << 16); 647 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 648 DPRINTF("ioctl failed %d\n", errno); 649 ret = -1; 650 goto out; 651 } 652 653 subsection.offset_within_region += slot_offset; 654 subsection.size = int128_make64(slot_size); 655 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 656 657 slot_offset += slot_size; 658 start_addr += slot_size; 659 size -= slot_size; 660 } 661 out: 662 return ret; 663 } 664 665 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 666 #define KVM_CLEAR_LOG_SHIFT 6 667 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 668 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 669 670 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 671 uint64_t size) 672 { 673 KVMState *s = kvm_state; 674 uint64_t end, bmap_start, start_delta, bmap_npages; 675 struct kvm_clear_dirty_log d; 676 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 677 int ret; 678 679 /* 680 * We need to extend either the start or the size or both to 681 * satisfy the KVM interface requirement. Firstly, do the start 682 * page alignment on 64 host pages 683 */ 684 bmap_start = start & KVM_CLEAR_LOG_MASK; 685 start_delta = start - bmap_start; 686 bmap_start /= psize; 687 688 /* 689 * The kernel interface has restriction on the size too, that either: 690 * 691 * (1) the size is 64 host pages aligned (just like the start), or 692 * (2) the size fills up until the end of the KVM memslot. 693 */ 694 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 695 << KVM_CLEAR_LOG_SHIFT; 696 end = mem->memory_size / psize; 697 if (bmap_npages > end - bmap_start) { 698 bmap_npages = end - bmap_start; 699 } 700 start_delta /= psize; 701 702 /* 703 * Prepare the bitmap to clear dirty bits. Here we must guarantee 704 * that we won't clear any unknown dirty bits otherwise we might 705 * accidentally clear some set bits which are not yet synced from 706 * the kernel into QEMU's bitmap, then we'll lose track of the 707 * guest modifications upon those pages (which can directly lead 708 * to guest data loss or panic after migration). 709 * 710 * Layout of the KVMSlot.dirty_bmap: 711 * 712 * |<-------- bmap_npages -----------..>| 713 * [1] 714 * start_delta size 715 * |----------------|-------------|------------------|------------| 716 * ^ ^ ^ ^ 717 * | | | | 718 * start bmap_start (start) end 719 * of memslot of memslot 720 * 721 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 722 */ 723 724 assert(bmap_start % BITS_PER_LONG == 0); 725 /* We should never do log_clear before log_sync */ 726 assert(mem->dirty_bmap); 727 if (start_delta || bmap_npages - size / psize) { 728 /* Slow path - we need to manipulate a temp bitmap */ 729 bmap_clear = bitmap_new(bmap_npages); 730 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 731 bmap_start, start_delta + size / psize); 732 /* 733 * We need to fill the holes at start because that was not 734 * specified by the caller and we extended the bitmap only for 735 * 64 pages alignment 736 */ 737 bitmap_clear(bmap_clear, 0, start_delta); 738 d.dirty_bitmap = bmap_clear; 739 } else { 740 /* 741 * Fast path - both start and size align well with BITS_PER_LONG 742 * (or the end of memory slot) 743 */ 744 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 745 } 746 747 d.first_page = bmap_start; 748 /* It should never overflow. If it happens, say something */ 749 assert(bmap_npages <= UINT32_MAX); 750 d.num_pages = bmap_npages; 751 d.slot = mem->slot | (as_id << 16); 752 753 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 754 ret = -errno; 755 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 756 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 757 __func__, d.slot, (uint64_t)d.first_page, 758 (uint32_t)d.num_pages, ret); 759 } else { 760 ret = 0; 761 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 762 } 763 764 /* 765 * After we have updated the remote dirty bitmap, we update the 766 * cached bitmap as well for the memslot, then if another user 767 * clears the same region we know we shouldn't clear it again on 768 * the remote otherwise it's data loss as well. 769 */ 770 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 771 size / psize); 772 /* This handles the NULL case well */ 773 g_free(bmap_clear); 774 return ret; 775 } 776 777 778 /** 779 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 780 * 781 * NOTE: this will be a no-op if we haven't enabled manual dirty log 782 * protection in the host kernel because in that case this operation 783 * will be done within log_sync(). 784 * 785 * @kml: the kvm memory listener 786 * @section: the memory range to clear dirty bitmap 787 */ 788 static int kvm_physical_log_clear(KVMMemoryListener *kml, 789 MemoryRegionSection *section) 790 { 791 KVMState *s = kvm_state; 792 uint64_t start, size, offset, count; 793 KVMSlot *mem; 794 int ret = 0, i; 795 796 if (!s->manual_dirty_log_protect) { 797 /* No need to do explicit clear */ 798 return ret; 799 } 800 801 start = section->offset_within_address_space; 802 size = int128_get64(section->size); 803 804 if (!size) { 805 /* Nothing more we can do... */ 806 return ret; 807 } 808 809 kvm_slots_lock(kml); 810 811 for (i = 0; i < s->nr_slots; i++) { 812 mem = &kml->slots[i]; 813 /* Discard slots that are empty or do not overlap the section */ 814 if (!mem->memory_size || 815 mem->start_addr > start + size - 1 || 816 start > mem->start_addr + mem->memory_size - 1) { 817 continue; 818 } 819 820 if (start >= mem->start_addr) { 821 /* The slot starts before section or is aligned to it. */ 822 offset = start - mem->start_addr; 823 count = MIN(mem->memory_size - offset, size); 824 } else { 825 /* The slot starts after section. */ 826 offset = 0; 827 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 828 } 829 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 830 if (ret < 0) { 831 break; 832 } 833 } 834 835 kvm_slots_unlock(kml); 836 837 return ret; 838 } 839 840 static void kvm_coalesce_mmio_region(MemoryListener *listener, 841 MemoryRegionSection *secion, 842 hwaddr start, hwaddr size) 843 { 844 KVMState *s = kvm_state; 845 846 if (s->coalesced_mmio) { 847 struct kvm_coalesced_mmio_zone zone; 848 849 zone.addr = start; 850 zone.size = size; 851 zone.pad = 0; 852 853 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 854 } 855 } 856 857 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 858 MemoryRegionSection *secion, 859 hwaddr start, hwaddr size) 860 { 861 KVMState *s = kvm_state; 862 863 if (s->coalesced_mmio) { 864 struct kvm_coalesced_mmio_zone zone; 865 866 zone.addr = start; 867 zone.size = size; 868 zone.pad = 0; 869 870 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 871 } 872 } 873 874 static void kvm_coalesce_pio_add(MemoryListener *listener, 875 MemoryRegionSection *section, 876 hwaddr start, hwaddr size) 877 { 878 KVMState *s = kvm_state; 879 880 if (s->coalesced_pio) { 881 struct kvm_coalesced_mmio_zone zone; 882 883 zone.addr = start; 884 zone.size = size; 885 zone.pio = 1; 886 887 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 888 } 889 } 890 891 static void kvm_coalesce_pio_del(MemoryListener *listener, 892 MemoryRegionSection *section, 893 hwaddr start, hwaddr size) 894 { 895 KVMState *s = kvm_state; 896 897 if (s->coalesced_pio) { 898 struct kvm_coalesced_mmio_zone zone; 899 900 zone.addr = start; 901 zone.size = size; 902 zone.pio = 1; 903 904 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 905 } 906 } 907 908 static MemoryListener kvm_coalesced_pio_listener = { 909 .coalesced_io_add = kvm_coalesce_pio_add, 910 .coalesced_io_del = kvm_coalesce_pio_del, 911 }; 912 913 int kvm_check_extension(KVMState *s, unsigned int extension) 914 { 915 int ret; 916 917 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 918 if (ret < 0) { 919 ret = 0; 920 } 921 922 return ret; 923 } 924 925 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 926 { 927 int ret; 928 929 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 930 if (ret < 0) { 931 /* VM wide version not implemented, use global one instead */ 932 ret = kvm_check_extension(s, extension); 933 } 934 935 return ret; 936 } 937 938 typedef struct HWPoisonPage { 939 ram_addr_t ram_addr; 940 QLIST_ENTRY(HWPoisonPage) list; 941 } HWPoisonPage; 942 943 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 944 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 945 946 static void kvm_unpoison_all(void *param) 947 { 948 HWPoisonPage *page, *next_page; 949 950 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 951 QLIST_REMOVE(page, list); 952 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 953 g_free(page); 954 } 955 } 956 957 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 958 { 959 HWPoisonPage *page; 960 961 QLIST_FOREACH(page, &hwpoison_page_list, list) { 962 if (page->ram_addr == ram_addr) { 963 return; 964 } 965 } 966 page = g_new(HWPoisonPage, 1); 967 page->ram_addr = ram_addr; 968 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 969 } 970 971 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 972 { 973 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 974 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 975 * endianness, but the memory core hands them in target endianness. 976 * For example, PPC is always treated as big-endian even if running 977 * on KVM and on PPC64LE. Correct here. 978 */ 979 switch (size) { 980 case 2: 981 val = bswap16(val); 982 break; 983 case 4: 984 val = bswap32(val); 985 break; 986 } 987 #endif 988 return val; 989 } 990 991 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 992 bool assign, uint32_t size, bool datamatch) 993 { 994 int ret; 995 struct kvm_ioeventfd iofd = { 996 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 997 .addr = addr, 998 .len = size, 999 .flags = 0, 1000 .fd = fd, 1001 }; 1002 1003 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1004 datamatch); 1005 if (!kvm_enabled()) { 1006 return -ENOSYS; 1007 } 1008 1009 if (datamatch) { 1010 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1011 } 1012 if (!assign) { 1013 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1014 } 1015 1016 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1017 1018 if (ret < 0) { 1019 return -errno; 1020 } 1021 1022 return 0; 1023 } 1024 1025 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1026 bool assign, uint32_t size, bool datamatch) 1027 { 1028 struct kvm_ioeventfd kick = { 1029 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1030 .addr = addr, 1031 .flags = KVM_IOEVENTFD_FLAG_PIO, 1032 .len = size, 1033 .fd = fd, 1034 }; 1035 int r; 1036 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1037 if (!kvm_enabled()) { 1038 return -ENOSYS; 1039 } 1040 if (datamatch) { 1041 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1042 } 1043 if (!assign) { 1044 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1045 } 1046 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1047 if (r < 0) { 1048 return r; 1049 } 1050 return 0; 1051 } 1052 1053 1054 static int kvm_check_many_ioeventfds(void) 1055 { 1056 /* Userspace can use ioeventfd for io notification. This requires a host 1057 * that supports eventfd(2) and an I/O thread; since eventfd does not 1058 * support SIGIO it cannot interrupt the vcpu. 1059 * 1060 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1061 * can avoid creating too many ioeventfds. 1062 */ 1063 #if defined(CONFIG_EVENTFD) 1064 int ioeventfds[7]; 1065 int i, ret = 0; 1066 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1067 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1068 if (ioeventfds[i] < 0) { 1069 break; 1070 } 1071 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1072 if (ret < 0) { 1073 close(ioeventfds[i]); 1074 break; 1075 } 1076 } 1077 1078 /* Decide whether many devices are supported or not */ 1079 ret = i == ARRAY_SIZE(ioeventfds); 1080 1081 while (i-- > 0) { 1082 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1083 close(ioeventfds[i]); 1084 } 1085 return ret; 1086 #else 1087 return 0; 1088 #endif 1089 } 1090 1091 static const KVMCapabilityInfo * 1092 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1093 { 1094 while (list->name) { 1095 if (!kvm_check_extension(s, list->value)) { 1096 return list; 1097 } 1098 list++; 1099 } 1100 return NULL; 1101 } 1102 1103 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1104 { 1105 g_assert( 1106 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1107 ); 1108 kvm_max_slot_size = max_slot_size; 1109 } 1110 1111 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1112 MemoryRegionSection *section, bool add) 1113 { 1114 KVMSlot *mem; 1115 int err; 1116 MemoryRegion *mr = section->mr; 1117 bool writeable = !mr->readonly && !mr->rom_device; 1118 hwaddr start_addr, size, slot_size; 1119 void *ram; 1120 1121 if (!memory_region_is_ram(mr)) { 1122 if (writeable || !kvm_readonly_mem_allowed) { 1123 return; 1124 } else if (!mr->romd_mode) { 1125 /* If the memory device is not in romd_mode, then we actually want 1126 * to remove the kvm memory slot so all accesses will trap. */ 1127 add = false; 1128 } 1129 } 1130 1131 size = kvm_align_section(section, &start_addr); 1132 if (!size) { 1133 return; 1134 } 1135 1136 /* use aligned delta to align the ram address */ 1137 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1138 (start_addr - section->offset_within_address_space); 1139 1140 kvm_slots_lock(kml); 1141 1142 if (!add) { 1143 do { 1144 slot_size = MIN(kvm_max_slot_size, size); 1145 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1146 if (!mem) { 1147 goto out; 1148 } 1149 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1150 kvm_physical_sync_dirty_bitmap(kml, section); 1151 } 1152 1153 /* unregister the slot */ 1154 g_free(mem->dirty_bmap); 1155 mem->dirty_bmap = NULL; 1156 mem->memory_size = 0; 1157 mem->flags = 0; 1158 err = kvm_set_user_memory_region(kml, mem, false); 1159 if (err) { 1160 fprintf(stderr, "%s: error unregistering slot: %s\n", 1161 __func__, strerror(-err)); 1162 abort(); 1163 } 1164 start_addr += slot_size; 1165 size -= slot_size; 1166 } while (size); 1167 goto out; 1168 } 1169 1170 /* register the new slot */ 1171 do { 1172 slot_size = MIN(kvm_max_slot_size, size); 1173 mem = kvm_alloc_slot(kml); 1174 mem->memory_size = slot_size; 1175 mem->start_addr = start_addr; 1176 mem->ram = ram; 1177 mem->flags = kvm_mem_flags(mr); 1178 1179 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1180 /* 1181 * Reallocate the bmap; it means it doesn't disappear in 1182 * middle of a migrate. 1183 */ 1184 kvm_memslot_init_dirty_bitmap(mem); 1185 } 1186 err = kvm_set_user_memory_region(kml, mem, true); 1187 if (err) { 1188 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1189 strerror(-err)); 1190 abort(); 1191 } 1192 start_addr += slot_size; 1193 ram += slot_size; 1194 size -= slot_size; 1195 } while (size); 1196 1197 out: 1198 kvm_slots_unlock(kml); 1199 } 1200 1201 static void kvm_region_add(MemoryListener *listener, 1202 MemoryRegionSection *section) 1203 { 1204 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1205 1206 memory_region_ref(section->mr); 1207 kvm_set_phys_mem(kml, section, true); 1208 } 1209 1210 static void kvm_region_del(MemoryListener *listener, 1211 MemoryRegionSection *section) 1212 { 1213 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1214 1215 kvm_set_phys_mem(kml, section, false); 1216 memory_region_unref(section->mr); 1217 } 1218 1219 static void kvm_log_sync(MemoryListener *listener, 1220 MemoryRegionSection *section) 1221 { 1222 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1223 int r; 1224 1225 kvm_slots_lock(kml); 1226 r = kvm_physical_sync_dirty_bitmap(kml, section); 1227 kvm_slots_unlock(kml); 1228 if (r < 0) { 1229 abort(); 1230 } 1231 } 1232 1233 static void kvm_log_clear(MemoryListener *listener, 1234 MemoryRegionSection *section) 1235 { 1236 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1237 int r; 1238 1239 r = kvm_physical_log_clear(kml, section); 1240 if (r < 0) { 1241 error_report_once("%s: kvm log clear failed: mr=%s " 1242 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1243 section->mr->name, section->offset_within_region, 1244 int128_get64(section->size)); 1245 abort(); 1246 } 1247 } 1248 1249 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1250 MemoryRegionSection *section, 1251 bool match_data, uint64_t data, 1252 EventNotifier *e) 1253 { 1254 int fd = event_notifier_get_fd(e); 1255 int r; 1256 1257 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1258 data, true, int128_get64(section->size), 1259 match_data); 1260 if (r < 0) { 1261 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1262 __func__, strerror(-r), -r); 1263 abort(); 1264 } 1265 } 1266 1267 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1268 MemoryRegionSection *section, 1269 bool match_data, uint64_t data, 1270 EventNotifier *e) 1271 { 1272 int fd = event_notifier_get_fd(e); 1273 int r; 1274 1275 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1276 data, false, int128_get64(section->size), 1277 match_data); 1278 if (r < 0) { 1279 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1280 __func__, strerror(-r), -r); 1281 abort(); 1282 } 1283 } 1284 1285 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1286 MemoryRegionSection *section, 1287 bool match_data, uint64_t data, 1288 EventNotifier *e) 1289 { 1290 int fd = event_notifier_get_fd(e); 1291 int r; 1292 1293 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1294 data, true, int128_get64(section->size), 1295 match_data); 1296 if (r < 0) { 1297 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1298 __func__, strerror(-r), -r); 1299 abort(); 1300 } 1301 } 1302 1303 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1304 MemoryRegionSection *section, 1305 bool match_data, uint64_t data, 1306 EventNotifier *e) 1307 1308 { 1309 int fd = event_notifier_get_fd(e); 1310 int r; 1311 1312 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1313 data, false, int128_get64(section->size), 1314 match_data); 1315 if (r < 0) { 1316 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1317 __func__, strerror(-r), -r); 1318 abort(); 1319 } 1320 } 1321 1322 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1323 AddressSpace *as, int as_id) 1324 { 1325 int i; 1326 1327 qemu_mutex_init(&kml->slots_lock); 1328 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1329 kml->as_id = as_id; 1330 1331 for (i = 0; i < s->nr_slots; i++) { 1332 kml->slots[i].slot = i; 1333 } 1334 1335 kml->listener.region_add = kvm_region_add; 1336 kml->listener.region_del = kvm_region_del; 1337 kml->listener.log_start = kvm_log_start; 1338 kml->listener.log_stop = kvm_log_stop; 1339 kml->listener.log_sync = kvm_log_sync; 1340 kml->listener.log_clear = kvm_log_clear; 1341 kml->listener.priority = 10; 1342 1343 memory_listener_register(&kml->listener, as); 1344 1345 for (i = 0; i < s->nr_as; ++i) { 1346 if (!s->as[i].as) { 1347 s->as[i].as = as; 1348 s->as[i].ml = kml; 1349 break; 1350 } 1351 } 1352 } 1353 1354 static MemoryListener kvm_io_listener = { 1355 .eventfd_add = kvm_io_ioeventfd_add, 1356 .eventfd_del = kvm_io_ioeventfd_del, 1357 .priority = 10, 1358 }; 1359 1360 int kvm_set_irq(KVMState *s, int irq, int level) 1361 { 1362 struct kvm_irq_level event; 1363 int ret; 1364 1365 assert(kvm_async_interrupts_enabled()); 1366 1367 event.level = level; 1368 event.irq = irq; 1369 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1370 if (ret < 0) { 1371 perror("kvm_set_irq"); 1372 abort(); 1373 } 1374 1375 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1376 } 1377 1378 #ifdef KVM_CAP_IRQ_ROUTING 1379 typedef struct KVMMSIRoute { 1380 struct kvm_irq_routing_entry kroute; 1381 QTAILQ_ENTRY(KVMMSIRoute) entry; 1382 } KVMMSIRoute; 1383 1384 static void set_gsi(KVMState *s, unsigned int gsi) 1385 { 1386 set_bit(gsi, s->used_gsi_bitmap); 1387 } 1388 1389 static void clear_gsi(KVMState *s, unsigned int gsi) 1390 { 1391 clear_bit(gsi, s->used_gsi_bitmap); 1392 } 1393 1394 void kvm_init_irq_routing(KVMState *s) 1395 { 1396 int gsi_count, i; 1397 1398 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1399 if (gsi_count > 0) { 1400 /* Round up so we can search ints using ffs */ 1401 s->used_gsi_bitmap = bitmap_new(gsi_count); 1402 s->gsi_count = gsi_count; 1403 } 1404 1405 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1406 s->nr_allocated_irq_routes = 0; 1407 1408 if (!kvm_direct_msi_allowed) { 1409 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1410 QTAILQ_INIT(&s->msi_hashtab[i]); 1411 } 1412 } 1413 1414 kvm_arch_init_irq_routing(s); 1415 } 1416 1417 void kvm_irqchip_commit_routes(KVMState *s) 1418 { 1419 int ret; 1420 1421 if (kvm_gsi_direct_mapping()) { 1422 return; 1423 } 1424 1425 if (!kvm_gsi_routing_enabled()) { 1426 return; 1427 } 1428 1429 s->irq_routes->flags = 0; 1430 trace_kvm_irqchip_commit_routes(); 1431 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1432 assert(ret == 0); 1433 } 1434 1435 static void kvm_add_routing_entry(KVMState *s, 1436 struct kvm_irq_routing_entry *entry) 1437 { 1438 struct kvm_irq_routing_entry *new; 1439 int n, size; 1440 1441 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1442 n = s->nr_allocated_irq_routes * 2; 1443 if (n < 64) { 1444 n = 64; 1445 } 1446 size = sizeof(struct kvm_irq_routing); 1447 size += n * sizeof(*new); 1448 s->irq_routes = g_realloc(s->irq_routes, size); 1449 s->nr_allocated_irq_routes = n; 1450 } 1451 n = s->irq_routes->nr++; 1452 new = &s->irq_routes->entries[n]; 1453 1454 *new = *entry; 1455 1456 set_gsi(s, entry->gsi); 1457 } 1458 1459 static int kvm_update_routing_entry(KVMState *s, 1460 struct kvm_irq_routing_entry *new_entry) 1461 { 1462 struct kvm_irq_routing_entry *entry; 1463 int n; 1464 1465 for (n = 0; n < s->irq_routes->nr; n++) { 1466 entry = &s->irq_routes->entries[n]; 1467 if (entry->gsi != new_entry->gsi) { 1468 continue; 1469 } 1470 1471 if(!memcmp(entry, new_entry, sizeof *entry)) { 1472 return 0; 1473 } 1474 1475 *entry = *new_entry; 1476 1477 return 0; 1478 } 1479 1480 return -ESRCH; 1481 } 1482 1483 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1484 { 1485 struct kvm_irq_routing_entry e = {}; 1486 1487 assert(pin < s->gsi_count); 1488 1489 e.gsi = irq; 1490 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1491 e.flags = 0; 1492 e.u.irqchip.irqchip = irqchip; 1493 e.u.irqchip.pin = pin; 1494 kvm_add_routing_entry(s, &e); 1495 } 1496 1497 void kvm_irqchip_release_virq(KVMState *s, int virq) 1498 { 1499 struct kvm_irq_routing_entry *e; 1500 int i; 1501 1502 if (kvm_gsi_direct_mapping()) { 1503 return; 1504 } 1505 1506 for (i = 0; i < s->irq_routes->nr; i++) { 1507 e = &s->irq_routes->entries[i]; 1508 if (e->gsi == virq) { 1509 s->irq_routes->nr--; 1510 *e = s->irq_routes->entries[s->irq_routes->nr]; 1511 } 1512 } 1513 clear_gsi(s, virq); 1514 kvm_arch_release_virq_post(virq); 1515 trace_kvm_irqchip_release_virq(virq); 1516 } 1517 1518 void kvm_irqchip_add_change_notifier(Notifier *n) 1519 { 1520 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1521 } 1522 1523 void kvm_irqchip_remove_change_notifier(Notifier *n) 1524 { 1525 notifier_remove(n); 1526 } 1527 1528 void kvm_irqchip_change_notify(void) 1529 { 1530 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1531 } 1532 1533 static unsigned int kvm_hash_msi(uint32_t data) 1534 { 1535 /* This is optimized for IA32 MSI layout. However, no other arch shall 1536 * repeat the mistake of not providing a direct MSI injection API. */ 1537 return data & 0xff; 1538 } 1539 1540 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1541 { 1542 KVMMSIRoute *route, *next; 1543 unsigned int hash; 1544 1545 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1546 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1547 kvm_irqchip_release_virq(s, route->kroute.gsi); 1548 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1549 g_free(route); 1550 } 1551 } 1552 } 1553 1554 static int kvm_irqchip_get_virq(KVMState *s) 1555 { 1556 int next_virq; 1557 1558 /* 1559 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1560 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1561 * number can succeed even though a new route entry cannot be added. 1562 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1563 */ 1564 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1565 kvm_flush_dynamic_msi_routes(s); 1566 } 1567 1568 /* Return the lowest unused GSI in the bitmap */ 1569 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1570 if (next_virq >= s->gsi_count) { 1571 return -ENOSPC; 1572 } else { 1573 return next_virq; 1574 } 1575 } 1576 1577 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1578 { 1579 unsigned int hash = kvm_hash_msi(msg.data); 1580 KVMMSIRoute *route; 1581 1582 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1583 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1584 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1585 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1586 return route; 1587 } 1588 } 1589 return NULL; 1590 } 1591 1592 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1593 { 1594 struct kvm_msi msi; 1595 KVMMSIRoute *route; 1596 1597 if (kvm_direct_msi_allowed) { 1598 msi.address_lo = (uint32_t)msg.address; 1599 msi.address_hi = msg.address >> 32; 1600 msi.data = le32_to_cpu(msg.data); 1601 msi.flags = 0; 1602 memset(msi.pad, 0, sizeof(msi.pad)); 1603 1604 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1605 } 1606 1607 route = kvm_lookup_msi_route(s, msg); 1608 if (!route) { 1609 int virq; 1610 1611 virq = kvm_irqchip_get_virq(s); 1612 if (virq < 0) { 1613 return virq; 1614 } 1615 1616 route = g_malloc0(sizeof(KVMMSIRoute)); 1617 route->kroute.gsi = virq; 1618 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1619 route->kroute.flags = 0; 1620 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1621 route->kroute.u.msi.address_hi = msg.address >> 32; 1622 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1623 1624 kvm_add_routing_entry(s, &route->kroute); 1625 kvm_irqchip_commit_routes(s); 1626 1627 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1628 entry); 1629 } 1630 1631 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1632 1633 return kvm_set_irq(s, route->kroute.gsi, 1); 1634 } 1635 1636 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1637 { 1638 struct kvm_irq_routing_entry kroute = {}; 1639 int virq; 1640 MSIMessage msg = {0, 0}; 1641 1642 if (pci_available && dev) { 1643 msg = pci_get_msi_message(dev, vector); 1644 } 1645 1646 if (kvm_gsi_direct_mapping()) { 1647 return kvm_arch_msi_data_to_gsi(msg.data); 1648 } 1649 1650 if (!kvm_gsi_routing_enabled()) { 1651 return -ENOSYS; 1652 } 1653 1654 virq = kvm_irqchip_get_virq(s); 1655 if (virq < 0) { 1656 return virq; 1657 } 1658 1659 kroute.gsi = virq; 1660 kroute.type = KVM_IRQ_ROUTING_MSI; 1661 kroute.flags = 0; 1662 kroute.u.msi.address_lo = (uint32_t)msg.address; 1663 kroute.u.msi.address_hi = msg.address >> 32; 1664 kroute.u.msi.data = le32_to_cpu(msg.data); 1665 if (pci_available && kvm_msi_devid_required()) { 1666 kroute.flags = KVM_MSI_VALID_DEVID; 1667 kroute.u.msi.devid = pci_requester_id(dev); 1668 } 1669 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1670 kvm_irqchip_release_virq(s, virq); 1671 return -EINVAL; 1672 } 1673 1674 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1675 vector, virq); 1676 1677 kvm_add_routing_entry(s, &kroute); 1678 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1679 kvm_irqchip_commit_routes(s); 1680 1681 return virq; 1682 } 1683 1684 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1685 PCIDevice *dev) 1686 { 1687 struct kvm_irq_routing_entry kroute = {}; 1688 1689 if (kvm_gsi_direct_mapping()) { 1690 return 0; 1691 } 1692 1693 if (!kvm_irqchip_in_kernel()) { 1694 return -ENOSYS; 1695 } 1696 1697 kroute.gsi = virq; 1698 kroute.type = KVM_IRQ_ROUTING_MSI; 1699 kroute.flags = 0; 1700 kroute.u.msi.address_lo = (uint32_t)msg.address; 1701 kroute.u.msi.address_hi = msg.address >> 32; 1702 kroute.u.msi.data = le32_to_cpu(msg.data); 1703 if (pci_available && kvm_msi_devid_required()) { 1704 kroute.flags = KVM_MSI_VALID_DEVID; 1705 kroute.u.msi.devid = pci_requester_id(dev); 1706 } 1707 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1708 return -EINVAL; 1709 } 1710 1711 trace_kvm_irqchip_update_msi_route(virq); 1712 1713 return kvm_update_routing_entry(s, &kroute); 1714 } 1715 1716 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1717 EventNotifier *resample, int virq, 1718 bool assign) 1719 { 1720 int fd = event_notifier_get_fd(event); 1721 int rfd = resample ? event_notifier_get_fd(resample) : -1; 1722 1723 struct kvm_irqfd irqfd = { 1724 .fd = fd, 1725 .gsi = virq, 1726 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1727 }; 1728 1729 if (rfd != -1) { 1730 assert(assign); 1731 if (kvm_irqchip_is_split()) { 1732 /* 1733 * When the slow irqchip (e.g. IOAPIC) is in the 1734 * userspace, KVM kernel resamplefd will not work because 1735 * the EOI of the interrupt will be delivered to userspace 1736 * instead, so the KVM kernel resamplefd kick will be 1737 * skipped. The userspace here mimics what the kernel 1738 * provides with resamplefd, remember the resamplefd and 1739 * kick it when we receive EOI of this IRQ. 1740 * 1741 * This is hackery because IOAPIC is mostly bypassed 1742 * (except EOI broadcasts) when irqfd is used. However 1743 * this can bring much performance back for split irqchip 1744 * with INTx IRQs (for VFIO, this gives 93% perf of the 1745 * full fast path, which is 46% perf boost comparing to 1746 * the INTx slow path). 1747 */ 1748 kvm_resample_fd_insert(virq, resample); 1749 } else { 1750 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1751 irqfd.resamplefd = rfd; 1752 } 1753 } else if (!assign) { 1754 if (kvm_irqchip_is_split()) { 1755 kvm_resample_fd_remove(virq); 1756 } 1757 } 1758 1759 if (!kvm_irqfds_enabled()) { 1760 return -ENOSYS; 1761 } 1762 1763 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1764 } 1765 1766 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1767 { 1768 struct kvm_irq_routing_entry kroute = {}; 1769 int virq; 1770 1771 if (!kvm_gsi_routing_enabled()) { 1772 return -ENOSYS; 1773 } 1774 1775 virq = kvm_irqchip_get_virq(s); 1776 if (virq < 0) { 1777 return virq; 1778 } 1779 1780 kroute.gsi = virq; 1781 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1782 kroute.flags = 0; 1783 kroute.u.adapter.summary_addr = adapter->summary_addr; 1784 kroute.u.adapter.ind_addr = adapter->ind_addr; 1785 kroute.u.adapter.summary_offset = adapter->summary_offset; 1786 kroute.u.adapter.ind_offset = adapter->ind_offset; 1787 kroute.u.adapter.adapter_id = adapter->adapter_id; 1788 1789 kvm_add_routing_entry(s, &kroute); 1790 1791 return virq; 1792 } 1793 1794 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1795 { 1796 struct kvm_irq_routing_entry kroute = {}; 1797 int virq; 1798 1799 if (!kvm_gsi_routing_enabled()) { 1800 return -ENOSYS; 1801 } 1802 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1803 return -ENOSYS; 1804 } 1805 virq = kvm_irqchip_get_virq(s); 1806 if (virq < 0) { 1807 return virq; 1808 } 1809 1810 kroute.gsi = virq; 1811 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1812 kroute.flags = 0; 1813 kroute.u.hv_sint.vcpu = vcpu; 1814 kroute.u.hv_sint.sint = sint; 1815 1816 kvm_add_routing_entry(s, &kroute); 1817 kvm_irqchip_commit_routes(s); 1818 1819 return virq; 1820 } 1821 1822 #else /* !KVM_CAP_IRQ_ROUTING */ 1823 1824 void kvm_init_irq_routing(KVMState *s) 1825 { 1826 } 1827 1828 void kvm_irqchip_release_virq(KVMState *s, int virq) 1829 { 1830 } 1831 1832 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1833 { 1834 abort(); 1835 } 1836 1837 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1838 { 1839 return -ENOSYS; 1840 } 1841 1842 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1843 { 1844 return -ENOSYS; 1845 } 1846 1847 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1848 { 1849 return -ENOSYS; 1850 } 1851 1852 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1853 EventNotifier *resample, int virq, 1854 bool assign) 1855 { 1856 abort(); 1857 } 1858 1859 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1860 { 1861 return -ENOSYS; 1862 } 1863 #endif /* !KVM_CAP_IRQ_ROUTING */ 1864 1865 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1866 EventNotifier *rn, int virq) 1867 { 1868 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 1869 } 1870 1871 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1872 int virq) 1873 { 1874 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 1875 } 1876 1877 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1878 EventNotifier *rn, qemu_irq irq) 1879 { 1880 gpointer key, gsi; 1881 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1882 1883 if (!found) { 1884 return -ENXIO; 1885 } 1886 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1887 } 1888 1889 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1890 qemu_irq irq) 1891 { 1892 gpointer key, gsi; 1893 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1894 1895 if (!found) { 1896 return -ENXIO; 1897 } 1898 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1899 } 1900 1901 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1902 { 1903 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1904 } 1905 1906 static void kvm_irqchip_create(KVMState *s) 1907 { 1908 int ret; 1909 1910 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1911 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1912 ; 1913 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1914 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1915 if (ret < 0) { 1916 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1917 exit(1); 1918 } 1919 } else { 1920 return; 1921 } 1922 1923 /* First probe and see if there's a arch-specific hook to create the 1924 * in-kernel irqchip for us */ 1925 ret = kvm_arch_irqchip_create(s); 1926 if (ret == 0) { 1927 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1928 perror("Split IRQ chip mode not supported."); 1929 exit(1); 1930 } else { 1931 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1932 } 1933 } 1934 if (ret < 0) { 1935 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1936 exit(1); 1937 } 1938 1939 kvm_kernel_irqchip = true; 1940 /* If we have an in-kernel IRQ chip then we must have asynchronous 1941 * interrupt delivery (though the reverse is not necessarily true) 1942 */ 1943 kvm_async_interrupts_allowed = true; 1944 kvm_halt_in_kernel_allowed = true; 1945 1946 kvm_init_irq_routing(s); 1947 1948 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1949 } 1950 1951 /* Find number of supported CPUs using the recommended 1952 * procedure from the kernel API documentation to cope with 1953 * older kernels that may be missing capabilities. 1954 */ 1955 static int kvm_recommended_vcpus(KVMState *s) 1956 { 1957 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1958 return (ret) ? ret : 4; 1959 } 1960 1961 static int kvm_max_vcpus(KVMState *s) 1962 { 1963 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1964 return (ret) ? ret : kvm_recommended_vcpus(s); 1965 } 1966 1967 static int kvm_max_vcpu_id(KVMState *s) 1968 { 1969 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1970 return (ret) ? ret : kvm_max_vcpus(s); 1971 } 1972 1973 bool kvm_vcpu_id_is_valid(int vcpu_id) 1974 { 1975 KVMState *s = KVM_STATE(current_accel()); 1976 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1977 } 1978 1979 static int kvm_init(MachineState *ms) 1980 { 1981 MachineClass *mc = MACHINE_GET_CLASS(ms); 1982 static const char upgrade_note[] = 1983 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1984 "(see http://sourceforge.net/projects/kvm).\n"; 1985 struct { 1986 const char *name; 1987 int num; 1988 } num_cpus[] = { 1989 { "SMP", ms->smp.cpus }, 1990 { "hotpluggable", ms->smp.max_cpus }, 1991 { NULL, } 1992 }, *nc = num_cpus; 1993 int soft_vcpus_limit, hard_vcpus_limit; 1994 KVMState *s; 1995 const KVMCapabilityInfo *missing_cap; 1996 int ret; 1997 int type = 0; 1998 uint64_t dirty_log_manual_caps; 1999 2000 s = KVM_STATE(ms->accelerator); 2001 2002 /* 2003 * On systems where the kernel can support different base page 2004 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2005 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2006 * page size for the system though. 2007 */ 2008 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2009 2010 s->sigmask_len = 8; 2011 2012 #ifdef KVM_CAP_SET_GUEST_DEBUG 2013 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2014 #endif 2015 QLIST_INIT(&s->kvm_parked_vcpus); 2016 s->vmfd = -1; 2017 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2018 if (s->fd == -1) { 2019 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2020 ret = -errno; 2021 goto err; 2022 } 2023 2024 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2025 if (ret < KVM_API_VERSION) { 2026 if (ret >= 0) { 2027 ret = -EINVAL; 2028 } 2029 fprintf(stderr, "kvm version too old\n"); 2030 goto err; 2031 } 2032 2033 if (ret > KVM_API_VERSION) { 2034 ret = -EINVAL; 2035 fprintf(stderr, "kvm version not supported\n"); 2036 goto err; 2037 } 2038 2039 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2040 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2041 2042 /* If unspecified, use the default value */ 2043 if (!s->nr_slots) { 2044 s->nr_slots = 32; 2045 } 2046 2047 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2048 if (s->nr_as <= 1) { 2049 s->nr_as = 1; 2050 } 2051 s->as = g_new0(struct KVMAs, s->nr_as); 2052 2053 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2054 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2055 "kvm-type", 2056 &error_abort); 2057 type = mc->kvm_type(ms, kvm_type); 2058 } 2059 2060 do { 2061 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2062 } while (ret == -EINTR); 2063 2064 if (ret < 0) { 2065 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2066 strerror(-ret)); 2067 2068 #ifdef TARGET_S390X 2069 if (ret == -EINVAL) { 2070 fprintf(stderr, 2071 "Host kernel setup problem detected. Please verify:\n"); 2072 fprintf(stderr, "- for kernels supporting the switch_amode or" 2073 " user_mode parameters, whether\n"); 2074 fprintf(stderr, 2075 " user space is running in primary address space\n"); 2076 fprintf(stderr, 2077 "- for kernels supporting the vm.allocate_pgste sysctl, " 2078 "whether it is enabled\n"); 2079 } 2080 #endif 2081 goto err; 2082 } 2083 2084 s->vmfd = ret; 2085 2086 /* check the vcpu limits */ 2087 soft_vcpus_limit = kvm_recommended_vcpus(s); 2088 hard_vcpus_limit = kvm_max_vcpus(s); 2089 2090 while (nc->name) { 2091 if (nc->num > soft_vcpus_limit) { 2092 warn_report("Number of %s cpus requested (%d) exceeds " 2093 "the recommended cpus supported by KVM (%d)", 2094 nc->name, nc->num, soft_vcpus_limit); 2095 2096 if (nc->num > hard_vcpus_limit) { 2097 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2098 "the maximum cpus supported by KVM (%d)\n", 2099 nc->name, nc->num, hard_vcpus_limit); 2100 exit(1); 2101 } 2102 } 2103 nc++; 2104 } 2105 2106 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2107 if (!missing_cap) { 2108 missing_cap = 2109 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2110 } 2111 if (missing_cap) { 2112 ret = -EINVAL; 2113 fprintf(stderr, "kvm does not support %s\n%s", 2114 missing_cap->name, upgrade_note); 2115 goto err; 2116 } 2117 2118 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2119 s->coalesced_pio = s->coalesced_mmio && 2120 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2121 2122 dirty_log_manual_caps = 2123 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2124 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2125 KVM_DIRTY_LOG_INITIALLY_SET); 2126 s->manual_dirty_log_protect = dirty_log_manual_caps; 2127 if (dirty_log_manual_caps) { 2128 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2129 dirty_log_manual_caps); 2130 if (ret) { 2131 warn_report("Trying to enable capability %"PRIu64" of " 2132 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2133 "Falling back to the legacy mode. ", 2134 dirty_log_manual_caps); 2135 s->manual_dirty_log_protect = 0; 2136 } 2137 } 2138 2139 #ifdef KVM_CAP_VCPU_EVENTS 2140 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2141 #endif 2142 2143 s->robust_singlestep = 2144 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2145 2146 #ifdef KVM_CAP_DEBUGREGS 2147 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2148 #endif 2149 2150 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2151 2152 #ifdef KVM_CAP_IRQ_ROUTING 2153 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2154 #endif 2155 2156 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2157 2158 s->irq_set_ioctl = KVM_IRQ_LINE; 2159 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2160 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2161 } 2162 2163 kvm_readonly_mem_allowed = 2164 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2165 2166 kvm_eventfds_allowed = 2167 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2168 2169 kvm_irqfds_allowed = 2170 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2171 2172 kvm_resamplefds_allowed = 2173 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2174 2175 kvm_vm_attributes_allowed = 2176 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2177 2178 kvm_ioeventfd_any_length_allowed = 2179 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2180 2181 kvm_state = s; 2182 2183 ret = kvm_arch_init(ms, s); 2184 if (ret < 0) { 2185 goto err; 2186 } 2187 2188 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2189 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2190 } 2191 2192 qemu_register_reset(kvm_unpoison_all, NULL); 2193 2194 if (s->kernel_irqchip_allowed) { 2195 kvm_irqchip_create(s); 2196 } 2197 2198 if (kvm_eventfds_allowed) { 2199 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2200 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2201 } 2202 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2203 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2204 2205 kvm_memory_listener_register(s, &s->memory_listener, 2206 &address_space_memory, 0); 2207 if (kvm_eventfds_allowed) { 2208 memory_listener_register(&kvm_io_listener, 2209 &address_space_io); 2210 } 2211 memory_listener_register(&kvm_coalesced_pio_listener, 2212 &address_space_io); 2213 2214 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2215 2216 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2217 if (!s->sync_mmu) { 2218 ret = ram_block_discard_disable(true); 2219 assert(!ret); 2220 } 2221 return 0; 2222 2223 err: 2224 assert(ret < 0); 2225 if (s->vmfd >= 0) { 2226 close(s->vmfd); 2227 } 2228 if (s->fd != -1) { 2229 close(s->fd); 2230 } 2231 g_free(s->memory_listener.slots); 2232 2233 return ret; 2234 } 2235 2236 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2237 { 2238 s->sigmask_len = sigmask_len; 2239 } 2240 2241 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2242 int size, uint32_t count) 2243 { 2244 int i; 2245 uint8_t *ptr = data; 2246 2247 for (i = 0; i < count; i++) { 2248 address_space_rw(&address_space_io, port, attrs, 2249 ptr, size, 2250 direction == KVM_EXIT_IO_OUT); 2251 ptr += size; 2252 } 2253 } 2254 2255 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2256 { 2257 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2258 run->internal.suberror); 2259 2260 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2261 int i; 2262 2263 for (i = 0; i < run->internal.ndata; ++i) { 2264 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2265 i, (uint64_t)run->internal.data[i]); 2266 } 2267 } 2268 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2269 fprintf(stderr, "emulation failure\n"); 2270 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2271 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2272 return EXCP_INTERRUPT; 2273 } 2274 } 2275 /* FIXME: Should trigger a qmp message to let management know 2276 * something went wrong. 2277 */ 2278 return -1; 2279 } 2280 2281 void kvm_flush_coalesced_mmio_buffer(void) 2282 { 2283 KVMState *s = kvm_state; 2284 2285 if (s->coalesced_flush_in_progress) { 2286 return; 2287 } 2288 2289 s->coalesced_flush_in_progress = true; 2290 2291 if (s->coalesced_mmio_ring) { 2292 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2293 while (ring->first != ring->last) { 2294 struct kvm_coalesced_mmio *ent; 2295 2296 ent = &ring->coalesced_mmio[ring->first]; 2297 2298 if (ent->pio == 1) { 2299 address_space_write(&address_space_io, ent->phys_addr, 2300 MEMTXATTRS_UNSPECIFIED, ent->data, 2301 ent->len); 2302 } else { 2303 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2304 } 2305 smp_wmb(); 2306 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2307 } 2308 } 2309 2310 s->coalesced_flush_in_progress = false; 2311 } 2312 2313 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2314 { 2315 if (!cpu->vcpu_dirty) { 2316 kvm_arch_get_registers(cpu); 2317 cpu->vcpu_dirty = true; 2318 } 2319 } 2320 2321 void kvm_cpu_synchronize_state(CPUState *cpu) 2322 { 2323 if (!cpu->vcpu_dirty) { 2324 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2325 } 2326 } 2327 2328 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2329 { 2330 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2331 cpu->vcpu_dirty = false; 2332 } 2333 2334 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2335 { 2336 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2337 } 2338 2339 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2340 { 2341 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2342 cpu->vcpu_dirty = false; 2343 } 2344 2345 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2346 { 2347 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2348 } 2349 2350 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2351 { 2352 cpu->vcpu_dirty = true; 2353 } 2354 2355 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2356 { 2357 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2358 } 2359 2360 #ifdef KVM_HAVE_MCE_INJECTION 2361 static __thread void *pending_sigbus_addr; 2362 static __thread int pending_sigbus_code; 2363 static __thread bool have_sigbus_pending; 2364 #endif 2365 2366 static void kvm_cpu_kick(CPUState *cpu) 2367 { 2368 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2369 } 2370 2371 static void kvm_cpu_kick_self(void) 2372 { 2373 if (kvm_immediate_exit) { 2374 kvm_cpu_kick(current_cpu); 2375 } else { 2376 qemu_cpu_kick_self(); 2377 } 2378 } 2379 2380 static void kvm_eat_signals(CPUState *cpu) 2381 { 2382 struct timespec ts = { 0, 0 }; 2383 siginfo_t siginfo; 2384 sigset_t waitset; 2385 sigset_t chkset; 2386 int r; 2387 2388 if (kvm_immediate_exit) { 2389 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2390 /* Write kvm_run->immediate_exit before the cpu->exit_request 2391 * write in kvm_cpu_exec. 2392 */ 2393 smp_wmb(); 2394 return; 2395 } 2396 2397 sigemptyset(&waitset); 2398 sigaddset(&waitset, SIG_IPI); 2399 2400 do { 2401 r = sigtimedwait(&waitset, &siginfo, &ts); 2402 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2403 perror("sigtimedwait"); 2404 exit(1); 2405 } 2406 2407 r = sigpending(&chkset); 2408 if (r == -1) { 2409 perror("sigpending"); 2410 exit(1); 2411 } 2412 } while (sigismember(&chkset, SIG_IPI)); 2413 } 2414 2415 int kvm_cpu_exec(CPUState *cpu) 2416 { 2417 struct kvm_run *run = cpu->kvm_run; 2418 int ret, run_ret; 2419 2420 DPRINTF("kvm_cpu_exec()\n"); 2421 2422 if (kvm_arch_process_async_events(cpu)) { 2423 qatomic_set(&cpu->exit_request, 0); 2424 return EXCP_HLT; 2425 } 2426 2427 qemu_mutex_unlock_iothread(); 2428 cpu_exec_start(cpu); 2429 2430 do { 2431 MemTxAttrs attrs; 2432 2433 if (cpu->vcpu_dirty) { 2434 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2435 cpu->vcpu_dirty = false; 2436 } 2437 2438 kvm_arch_pre_run(cpu, run); 2439 if (qatomic_read(&cpu->exit_request)) { 2440 DPRINTF("interrupt exit requested\n"); 2441 /* 2442 * KVM requires us to reenter the kernel after IO exits to complete 2443 * instruction emulation. This self-signal will ensure that we 2444 * leave ASAP again. 2445 */ 2446 kvm_cpu_kick_self(); 2447 } 2448 2449 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2450 * Matching barrier in kvm_eat_signals. 2451 */ 2452 smp_rmb(); 2453 2454 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2455 2456 attrs = kvm_arch_post_run(cpu, run); 2457 2458 #ifdef KVM_HAVE_MCE_INJECTION 2459 if (unlikely(have_sigbus_pending)) { 2460 qemu_mutex_lock_iothread(); 2461 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2462 pending_sigbus_addr); 2463 have_sigbus_pending = false; 2464 qemu_mutex_unlock_iothread(); 2465 } 2466 #endif 2467 2468 if (run_ret < 0) { 2469 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2470 DPRINTF("io window exit\n"); 2471 kvm_eat_signals(cpu); 2472 ret = EXCP_INTERRUPT; 2473 break; 2474 } 2475 fprintf(stderr, "error: kvm run failed %s\n", 2476 strerror(-run_ret)); 2477 #ifdef TARGET_PPC 2478 if (run_ret == -EBUSY) { 2479 fprintf(stderr, 2480 "This is probably because your SMT is enabled.\n" 2481 "VCPU can only run on primary threads with all " 2482 "secondary threads offline.\n"); 2483 } 2484 #endif 2485 ret = -1; 2486 break; 2487 } 2488 2489 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2490 switch (run->exit_reason) { 2491 case KVM_EXIT_IO: 2492 DPRINTF("handle_io\n"); 2493 /* Called outside BQL */ 2494 kvm_handle_io(run->io.port, attrs, 2495 (uint8_t *)run + run->io.data_offset, 2496 run->io.direction, 2497 run->io.size, 2498 run->io.count); 2499 ret = 0; 2500 break; 2501 case KVM_EXIT_MMIO: 2502 DPRINTF("handle_mmio\n"); 2503 /* Called outside BQL */ 2504 address_space_rw(&address_space_memory, 2505 run->mmio.phys_addr, attrs, 2506 run->mmio.data, 2507 run->mmio.len, 2508 run->mmio.is_write); 2509 ret = 0; 2510 break; 2511 case KVM_EXIT_IRQ_WINDOW_OPEN: 2512 DPRINTF("irq_window_open\n"); 2513 ret = EXCP_INTERRUPT; 2514 break; 2515 case KVM_EXIT_SHUTDOWN: 2516 DPRINTF("shutdown\n"); 2517 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2518 ret = EXCP_INTERRUPT; 2519 break; 2520 case KVM_EXIT_UNKNOWN: 2521 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2522 (uint64_t)run->hw.hardware_exit_reason); 2523 ret = -1; 2524 break; 2525 case KVM_EXIT_INTERNAL_ERROR: 2526 ret = kvm_handle_internal_error(cpu, run); 2527 break; 2528 case KVM_EXIT_SYSTEM_EVENT: 2529 switch (run->system_event.type) { 2530 case KVM_SYSTEM_EVENT_SHUTDOWN: 2531 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2532 ret = EXCP_INTERRUPT; 2533 break; 2534 case KVM_SYSTEM_EVENT_RESET: 2535 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2536 ret = EXCP_INTERRUPT; 2537 break; 2538 case KVM_SYSTEM_EVENT_CRASH: 2539 kvm_cpu_synchronize_state(cpu); 2540 qemu_mutex_lock_iothread(); 2541 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2542 qemu_mutex_unlock_iothread(); 2543 ret = 0; 2544 break; 2545 default: 2546 DPRINTF("kvm_arch_handle_exit\n"); 2547 ret = kvm_arch_handle_exit(cpu, run); 2548 break; 2549 } 2550 break; 2551 default: 2552 DPRINTF("kvm_arch_handle_exit\n"); 2553 ret = kvm_arch_handle_exit(cpu, run); 2554 break; 2555 } 2556 } while (ret == 0); 2557 2558 cpu_exec_end(cpu); 2559 qemu_mutex_lock_iothread(); 2560 2561 if (ret < 0) { 2562 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2563 vm_stop(RUN_STATE_INTERNAL_ERROR); 2564 } 2565 2566 qatomic_set(&cpu->exit_request, 0); 2567 return ret; 2568 } 2569 2570 int kvm_ioctl(KVMState *s, int type, ...) 2571 { 2572 int ret; 2573 void *arg; 2574 va_list ap; 2575 2576 va_start(ap, type); 2577 arg = va_arg(ap, void *); 2578 va_end(ap); 2579 2580 trace_kvm_ioctl(type, arg); 2581 ret = ioctl(s->fd, type, arg); 2582 if (ret == -1) { 2583 ret = -errno; 2584 } 2585 return ret; 2586 } 2587 2588 int kvm_vm_ioctl(KVMState *s, int type, ...) 2589 { 2590 int ret; 2591 void *arg; 2592 va_list ap; 2593 2594 va_start(ap, type); 2595 arg = va_arg(ap, void *); 2596 va_end(ap); 2597 2598 trace_kvm_vm_ioctl(type, arg); 2599 ret = ioctl(s->vmfd, type, arg); 2600 if (ret == -1) { 2601 ret = -errno; 2602 } 2603 return ret; 2604 } 2605 2606 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2607 { 2608 int ret; 2609 void *arg; 2610 va_list ap; 2611 2612 va_start(ap, type); 2613 arg = va_arg(ap, void *); 2614 va_end(ap); 2615 2616 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2617 ret = ioctl(cpu->kvm_fd, type, arg); 2618 if (ret == -1) { 2619 ret = -errno; 2620 } 2621 return ret; 2622 } 2623 2624 int kvm_device_ioctl(int fd, int type, ...) 2625 { 2626 int ret; 2627 void *arg; 2628 va_list ap; 2629 2630 va_start(ap, type); 2631 arg = va_arg(ap, void *); 2632 va_end(ap); 2633 2634 trace_kvm_device_ioctl(fd, type, arg); 2635 ret = ioctl(fd, type, arg); 2636 if (ret == -1) { 2637 ret = -errno; 2638 } 2639 return ret; 2640 } 2641 2642 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2643 { 2644 int ret; 2645 struct kvm_device_attr attribute = { 2646 .group = group, 2647 .attr = attr, 2648 }; 2649 2650 if (!kvm_vm_attributes_allowed) { 2651 return 0; 2652 } 2653 2654 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2655 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2656 return ret ? 0 : 1; 2657 } 2658 2659 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2660 { 2661 struct kvm_device_attr attribute = { 2662 .group = group, 2663 .attr = attr, 2664 .flags = 0, 2665 }; 2666 2667 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2668 } 2669 2670 int kvm_device_access(int fd, int group, uint64_t attr, 2671 void *val, bool write, Error **errp) 2672 { 2673 struct kvm_device_attr kvmattr; 2674 int err; 2675 2676 kvmattr.flags = 0; 2677 kvmattr.group = group; 2678 kvmattr.attr = attr; 2679 kvmattr.addr = (uintptr_t)val; 2680 2681 err = kvm_device_ioctl(fd, 2682 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2683 &kvmattr); 2684 if (err < 0) { 2685 error_setg_errno(errp, -err, 2686 "KVM_%s_DEVICE_ATTR failed: Group %d " 2687 "attr 0x%016" PRIx64, 2688 write ? "SET" : "GET", group, attr); 2689 } 2690 return err; 2691 } 2692 2693 bool kvm_has_sync_mmu(void) 2694 { 2695 return kvm_state->sync_mmu; 2696 } 2697 2698 int kvm_has_vcpu_events(void) 2699 { 2700 return kvm_state->vcpu_events; 2701 } 2702 2703 int kvm_has_robust_singlestep(void) 2704 { 2705 return kvm_state->robust_singlestep; 2706 } 2707 2708 int kvm_has_debugregs(void) 2709 { 2710 return kvm_state->debugregs; 2711 } 2712 2713 int kvm_max_nested_state_length(void) 2714 { 2715 return kvm_state->max_nested_state_len; 2716 } 2717 2718 int kvm_has_many_ioeventfds(void) 2719 { 2720 if (!kvm_enabled()) { 2721 return 0; 2722 } 2723 return kvm_state->many_ioeventfds; 2724 } 2725 2726 int kvm_has_gsi_routing(void) 2727 { 2728 #ifdef KVM_CAP_IRQ_ROUTING 2729 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2730 #else 2731 return false; 2732 #endif 2733 } 2734 2735 int kvm_has_intx_set_mask(void) 2736 { 2737 return kvm_state->intx_set_mask; 2738 } 2739 2740 bool kvm_arm_supports_user_irq(void) 2741 { 2742 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2743 } 2744 2745 #ifdef KVM_CAP_SET_GUEST_DEBUG 2746 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2747 target_ulong pc) 2748 { 2749 struct kvm_sw_breakpoint *bp; 2750 2751 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2752 if (bp->pc == pc) { 2753 return bp; 2754 } 2755 } 2756 return NULL; 2757 } 2758 2759 int kvm_sw_breakpoints_active(CPUState *cpu) 2760 { 2761 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2762 } 2763 2764 struct kvm_set_guest_debug_data { 2765 struct kvm_guest_debug dbg; 2766 int err; 2767 }; 2768 2769 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2770 { 2771 struct kvm_set_guest_debug_data *dbg_data = 2772 (struct kvm_set_guest_debug_data *) data.host_ptr; 2773 2774 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2775 &dbg_data->dbg); 2776 } 2777 2778 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2779 { 2780 struct kvm_set_guest_debug_data data; 2781 2782 data.dbg.control = reinject_trap; 2783 2784 if (cpu->singlestep_enabled) { 2785 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2786 } 2787 kvm_arch_update_guest_debug(cpu, &data.dbg); 2788 2789 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2790 RUN_ON_CPU_HOST_PTR(&data)); 2791 return data.err; 2792 } 2793 2794 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2795 target_ulong len, int type) 2796 { 2797 struct kvm_sw_breakpoint *bp; 2798 int err; 2799 2800 if (type == GDB_BREAKPOINT_SW) { 2801 bp = kvm_find_sw_breakpoint(cpu, addr); 2802 if (bp) { 2803 bp->use_count++; 2804 return 0; 2805 } 2806 2807 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2808 bp->pc = addr; 2809 bp->use_count = 1; 2810 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2811 if (err) { 2812 g_free(bp); 2813 return err; 2814 } 2815 2816 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2817 } else { 2818 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2819 if (err) { 2820 return err; 2821 } 2822 } 2823 2824 CPU_FOREACH(cpu) { 2825 err = kvm_update_guest_debug(cpu, 0); 2826 if (err) { 2827 return err; 2828 } 2829 } 2830 return 0; 2831 } 2832 2833 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2834 target_ulong len, int type) 2835 { 2836 struct kvm_sw_breakpoint *bp; 2837 int err; 2838 2839 if (type == GDB_BREAKPOINT_SW) { 2840 bp = kvm_find_sw_breakpoint(cpu, addr); 2841 if (!bp) { 2842 return -ENOENT; 2843 } 2844 2845 if (bp->use_count > 1) { 2846 bp->use_count--; 2847 return 0; 2848 } 2849 2850 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2851 if (err) { 2852 return err; 2853 } 2854 2855 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2856 g_free(bp); 2857 } else { 2858 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2859 if (err) { 2860 return err; 2861 } 2862 } 2863 2864 CPU_FOREACH(cpu) { 2865 err = kvm_update_guest_debug(cpu, 0); 2866 if (err) { 2867 return err; 2868 } 2869 } 2870 return 0; 2871 } 2872 2873 void kvm_remove_all_breakpoints(CPUState *cpu) 2874 { 2875 struct kvm_sw_breakpoint *bp, *next; 2876 KVMState *s = cpu->kvm_state; 2877 CPUState *tmpcpu; 2878 2879 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2880 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2881 /* Try harder to find a CPU that currently sees the breakpoint. */ 2882 CPU_FOREACH(tmpcpu) { 2883 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2884 break; 2885 } 2886 } 2887 } 2888 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2889 g_free(bp); 2890 } 2891 kvm_arch_remove_all_hw_breakpoints(); 2892 2893 CPU_FOREACH(cpu) { 2894 kvm_update_guest_debug(cpu, 0); 2895 } 2896 } 2897 2898 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2899 2900 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2901 { 2902 return -EINVAL; 2903 } 2904 2905 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2906 target_ulong len, int type) 2907 { 2908 return -EINVAL; 2909 } 2910 2911 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2912 target_ulong len, int type) 2913 { 2914 return -EINVAL; 2915 } 2916 2917 void kvm_remove_all_breakpoints(CPUState *cpu) 2918 { 2919 } 2920 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2921 2922 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2923 { 2924 KVMState *s = kvm_state; 2925 struct kvm_signal_mask *sigmask; 2926 int r; 2927 2928 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2929 2930 sigmask->len = s->sigmask_len; 2931 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2932 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2933 g_free(sigmask); 2934 2935 return r; 2936 } 2937 2938 static void kvm_ipi_signal(int sig) 2939 { 2940 if (current_cpu) { 2941 assert(kvm_immediate_exit); 2942 kvm_cpu_kick(current_cpu); 2943 } 2944 } 2945 2946 void kvm_init_cpu_signals(CPUState *cpu) 2947 { 2948 int r; 2949 sigset_t set; 2950 struct sigaction sigact; 2951 2952 memset(&sigact, 0, sizeof(sigact)); 2953 sigact.sa_handler = kvm_ipi_signal; 2954 sigaction(SIG_IPI, &sigact, NULL); 2955 2956 pthread_sigmask(SIG_BLOCK, NULL, &set); 2957 #if defined KVM_HAVE_MCE_INJECTION 2958 sigdelset(&set, SIGBUS); 2959 pthread_sigmask(SIG_SETMASK, &set, NULL); 2960 #endif 2961 sigdelset(&set, SIG_IPI); 2962 if (kvm_immediate_exit) { 2963 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2964 } else { 2965 r = kvm_set_signal_mask(cpu, &set); 2966 } 2967 if (r) { 2968 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2969 exit(1); 2970 } 2971 } 2972 2973 /* Called asynchronously in VCPU thread. */ 2974 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2975 { 2976 #ifdef KVM_HAVE_MCE_INJECTION 2977 if (have_sigbus_pending) { 2978 return 1; 2979 } 2980 have_sigbus_pending = true; 2981 pending_sigbus_addr = addr; 2982 pending_sigbus_code = code; 2983 qatomic_set(&cpu->exit_request, 1); 2984 return 0; 2985 #else 2986 return 1; 2987 #endif 2988 } 2989 2990 /* Called synchronously (via signalfd) in main thread. */ 2991 int kvm_on_sigbus(int code, void *addr) 2992 { 2993 #ifdef KVM_HAVE_MCE_INJECTION 2994 /* Action required MCE kills the process if SIGBUS is blocked. Because 2995 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2996 * we can only get action optional here. 2997 */ 2998 assert(code != BUS_MCEERR_AR); 2999 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3000 return 0; 3001 #else 3002 return 1; 3003 #endif 3004 } 3005 3006 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3007 { 3008 int ret; 3009 struct kvm_create_device create_dev; 3010 3011 create_dev.type = type; 3012 create_dev.fd = -1; 3013 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3014 3015 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3016 return -ENOTSUP; 3017 } 3018 3019 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3020 if (ret) { 3021 return ret; 3022 } 3023 3024 return test ? 0 : create_dev.fd; 3025 } 3026 3027 bool kvm_device_supported(int vmfd, uint64_t type) 3028 { 3029 struct kvm_create_device create_dev = { 3030 .type = type, 3031 .fd = -1, 3032 .flags = KVM_CREATE_DEVICE_TEST, 3033 }; 3034 3035 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3036 return false; 3037 } 3038 3039 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3040 } 3041 3042 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3043 { 3044 struct kvm_one_reg reg; 3045 int r; 3046 3047 reg.id = id; 3048 reg.addr = (uintptr_t) source; 3049 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3050 if (r) { 3051 trace_kvm_failed_reg_set(id, strerror(-r)); 3052 } 3053 return r; 3054 } 3055 3056 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3057 { 3058 struct kvm_one_reg reg; 3059 int r; 3060 3061 reg.id = id; 3062 reg.addr = (uintptr_t) target; 3063 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3064 if (r) { 3065 trace_kvm_failed_reg_get(id, strerror(-r)); 3066 } 3067 return r; 3068 } 3069 3070 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3071 hwaddr start_addr, hwaddr size) 3072 { 3073 KVMState *kvm = KVM_STATE(ms->accelerator); 3074 int i; 3075 3076 for (i = 0; i < kvm->nr_as; ++i) { 3077 if (kvm->as[i].as == as && kvm->as[i].ml) { 3078 size = MIN(kvm_max_slot_size, size); 3079 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3080 start_addr, size); 3081 } 3082 } 3083 3084 return false; 3085 } 3086 3087 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3088 const char *name, void *opaque, 3089 Error **errp) 3090 { 3091 KVMState *s = KVM_STATE(obj); 3092 int64_t value = s->kvm_shadow_mem; 3093 3094 visit_type_int(v, name, &value, errp); 3095 } 3096 3097 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3098 const char *name, void *opaque, 3099 Error **errp) 3100 { 3101 KVMState *s = KVM_STATE(obj); 3102 int64_t value; 3103 3104 if (!visit_type_int(v, name, &value, errp)) { 3105 return; 3106 } 3107 3108 s->kvm_shadow_mem = value; 3109 } 3110 3111 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3112 const char *name, void *opaque, 3113 Error **errp) 3114 { 3115 KVMState *s = KVM_STATE(obj); 3116 OnOffSplit mode; 3117 3118 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3119 return; 3120 } 3121 switch (mode) { 3122 case ON_OFF_SPLIT_ON: 3123 s->kernel_irqchip_allowed = true; 3124 s->kernel_irqchip_required = true; 3125 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3126 break; 3127 case ON_OFF_SPLIT_OFF: 3128 s->kernel_irqchip_allowed = false; 3129 s->kernel_irqchip_required = false; 3130 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3131 break; 3132 case ON_OFF_SPLIT_SPLIT: 3133 s->kernel_irqchip_allowed = true; 3134 s->kernel_irqchip_required = true; 3135 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3136 break; 3137 default: 3138 /* The value was checked in visit_type_OnOffSplit() above. If 3139 * we get here, then something is wrong in QEMU. 3140 */ 3141 abort(); 3142 } 3143 } 3144 3145 bool kvm_kernel_irqchip_allowed(void) 3146 { 3147 return kvm_state->kernel_irqchip_allowed; 3148 } 3149 3150 bool kvm_kernel_irqchip_required(void) 3151 { 3152 return kvm_state->kernel_irqchip_required; 3153 } 3154 3155 bool kvm_kernel_irqchip_split(void) 3156 { 3157 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3158 } 3159 3160 static void kvm_accel_instance_init(Object *obj) 3161 { 3162 KVMState *s = KVM_STATE(obj); 3163 3164 s->kvm_shadow_mem = -1; 3165 s->kernel_irqchip_allowed = true; 3166 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3167 } 3168 3169 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3170 { 3171 AccelClass *ac = ACCEL_CLASS(oc); 3172 ac->name = "KVM"; 3173 ac->init_machine = kvm_init; 3174 ac->has_memory = kvm_accel_has_memory; 3175 ac->allowed = &kvm_allowed; 3176 3177 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3178 NULL, kvm_set_kernel_irqchip, 3179 NULL, NULL); 3180 object_class_property_set_description(oc, "kernel-irqchip", 3181 "Configure KVM in-kernel irqchip"); 3182 3183 object_class_property_add(oc, "kvm-shadow-mem", "int", 3184 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3185 NULL, NULL); 3186 object_class_property_set_description(oc, "kvm-shadow-mem", 3187 "KVM shadow MMU size"); 3188 } 3189 3190 static const TypeInfo kvm_accel_type = { 3191 .name = TYPE_KVM_ACCEL, 3192 .parent = TYPE_ACCEL, 3193 .instance_init = kvm_accel_instance_init, 3194 .class_init = kvm_accel_class_init, 3195 .instance_size = sizeof(KVMState), 3196 }; 3197 3198 static void kvm_type_init(void) 3199 { 3200 type_register_static(&kvm_accel_type); 3201 } 3202 3203 type_init(kvm_type_init); 3204