1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "sysemu/balloon.h" 44 45 #include "hw/boards.h" 46 47 /* This check must be after config-host.h is included */ 48 #ifdef CONFIG_EVENTFD 49 #include <sys/eventfd.h> 50 #endif 51 52 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 53 * need to use the real host PAGE_SIZE, as that's what KVM will use. 54 */ 55 #define PAGE_SIZE qemu_real_host_page_size 56 57 //#define DEBUG_KVM 58 59 #ifdef DEBUG_KVM 60 #define DPRINTF(fmt, ...) \ 61 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 62 #else 63 #define DPRINTF(fmt, ...) \ 64 do { } while (0) 65 #endif 66 67 #define KVM_MSI_HASHTAB_SIZE 256 68 69 struct KVMParkedVcpu { 70 unsigned long vcpu_id; 71 int kvm_fd; 72 QLIST_ENTRY(KVMParkedVcpu) node; 73 }; 74 75 struct KVMState 76 { 77 AccelState parent_obj; 78 79 int nr_slots; 80 int fd; 81 int vmfd; 82 int coalesced_mmio; 83 int coalesced_pio; 84 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 85 bool coalesced_flush_in_progress; 86 int vcpu_events; 87 int robust_singlestep; 88 int debugregs; 89 #ifdef KVM_CAP_SET_GUEST_DEBUG 90 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 91 #endif 92 int max_nested_state_len; 93 int many_ioeventfds; 94 int intx_set_mask; 95 bool sync_mmu; 96 bool manual_dirty_log_protect; 97 /* The man page (and posix) say ioctl numbers are signed int, but 98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 99 * unsigned, and treating them as signed here can break things */ 100 unsigned irq_set_ioctl; 101 unsigned int sigmask_len; 102 GHashTable *gsimap; 103 #ifdef KVM_CAP_IRQ_ROUTING 104 struct kvm_irq_routing *irq_routes; 105 int nr_allocated_irq_routes; 106 unsigned long *used_gsi_bitmap; 107 unsigned int gsi_count; 108 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 109 #endif 110 KVMMemoryListener memory_listener; 111 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 112 113 /* memory encryption */ 114 void *memcrypt_handle; 115 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 116 117 /* For "info mtree -f" to tell if an MR is registered in KVM */ 118 int nr_as; 119 struct KVMAs { 120 KVMMemoryListener *ml; 121 AddressSpace *as; 122 } *as; 123 }; 124 125 KVMState *kvm_state; 126 bool kvm_kernel_irqchip; 127 bool kvm_split_irqchip; 128 bool kvm_async_interrupts_allowed; 129 bool kvm_halt_in_kernel_allowed; 130 bool kvm_eventfds_allowed; 131 bool kvm_irqfds_allowed; 132 bool kvm_resamplefds_allowed; 133 bool kvm_msi_via_irqfd_allowed; 134 bool kvm_gsi_routing_allowed; 135 bool kvm_gsi_direct_mapping; 136 bool kvm_allowed; 137 bool kvm_readonly_mem_allowed; 138 bool kvm_vm_attributes_allowed; 139 bool kvm_direct_msi_allowed; 140 bool kvm_ioeventfd_any_length_allowed; 141 bool kvm_msi_use_devid; 142 static bool kvm_immediate_exit; 143 static hwaddr kvm_max_slot_size = ~0; 144 145 static const KVMCapabilityInfo kvm_required_capabilites[] = { 146 KVM_CAP_INFO(USER_MEMORY), 147 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 148 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 149 KVM_CAP_LAST_INFO 150 }; 151 152 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 153 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 154 155 int kvm_get_max_memslots(void) 156 { 157 KVMState *s = KVM_STATE(current_machine->accelerator); 158 159 return s->nr_slots; 160 } 161 162 bool kvm_memcrypt_enabled(void) 163 { 164 if (kvm_state && kvm_state->memcrypt_handle) { 165 return true; 166 } 167 168 return false; 169 } 170 171 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 172 { 173 if (kvm_state->memcrypt_handle && 174 kvm_state->memcrypt_encrypt_data) { 175 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 176 ptr, len); 177 } 178 179 return 1; 180 } 181 182 /* Called with KVMMemoryListener.slots_lock held */ 183 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 184 { 185 KVMState *s = kvm_state; 186 int i; 187 188 for (i = 0; i < s->nr_slots; i++) { 189 if (kml->slots[i].memory_size == 0) { 190 return &kml->slots[i]; 191 } 192 } 193 194 return NULL; 195 } 196 197 bool kvm_has_free_slot(MachineState *ms) 198 { 199 KVMState *s = KVM_STATE(ms->accelerator); 200 bool result; 201 KVMMemoryListener *kml = &s->memory_listener; 202 203 kvm_slots_lock(kml); 204 result = !!kvm_get_free_slot(kml); 205 kvm_slots_unlock(kml); 206 207 return result; 208 } 209 210 /* Called with KVMMemoryListener.slots_lock held */ 211 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 212 { 213 KVMSlot *slot = kvm_get_free_slot(kml); 214 215 if (slot) { 216 return slot; 217 } 218 219 fprintf(stderr, "%s: no free slot available\n", __func__); 220 abort(); 221 } 222 223 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 224 hwaddr start_addr, 225 hwaddr size) 226 { 227 KVMState *s = kvm_state; 228 int i; 229 230 for (i = 0; i < s->nr_slots; i++) { 231 KVMSlot *mem = &kml->slots[i]; 232 233 if (start_addr == mem->start_addr && size == mem->memory_size) { 234 return mem; 235 } 236 } 237 238 return NULL; 239 } 240 241 /* 242 * Calculate and align the start address and the size of the section. 243 * Return the size. If the size is 0, the aligned section is empty. 244 */ 245 static hwaddr kvm_align_section(MemoryRegionSection *section, 246 hwaddr *start) 247 { 248 hwaddr size = int128_get64(section->size); 249 hwaddr delta, aligned; 250 251 /* kvm works in page size chunks, but the function may be called 252 with sub-page size and unaligned start address. Pad the start 253 address to next and truncate size to previous page boundary. */ 254 aligned = ROUND_UP(section->offset_within_address_space, 255 qemu_real_host_page_size); 256 delta = aligned - section->offset_within_address_space; 257 *start = aligned; 258 if (delta > size) { 259 return 0; 260 } 261 262 return (size - delta) & qemu_real_host_page_mask; 263 } 264 265 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 266 hwaddr *phys_addr) 267 { 268 KVMMemoryListener *kml = &s->memory_listener; 269 int i, ret = 0; 270 271 kvm_slots_lock(kml); 272 for (i = 0; i < s->nr_slots; i++) { 273 KVMSlot *mem = &kml->slots[i]; 274 275 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 276 *phys_addr = mem->start_addr + (ram - mem->ram); 277 ret = 1; 278 break; 279 } 280 } 281 kvm_slots_unlock(kml); 282 283 return ret; 284 } 285 286 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 287 { 288 KVMState *s = kvm_state; 289 struct kvm_userspace_memory_region mem; 290 int ret; 291 292 mem.slot = slot->slot | (kml->as_id << 16); 293 mem.guest_phys_addr = slot->start_addr; 294 mem.userspace_addr = (unsigned long)slot->ram; 295 mem.flags = slot->flags; 296 297 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 298 /* Set the slot size to 0 before setting the slot to the desired 299 * value. This is needed based on KVM commit 75d61fbc. */ 300 mem.memory_size = 0; 301 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 302 } 303 mem.memory_size = slot->memory_size; 304 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 305 slot->old_flags = mem.flags; 306 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 307 mem.memory_size, mem.userspace_addr, ret); 308 return ret; 309 } 310 311 int kvm_destroy_vcpu(CPUState *cpu) 312 { 313 KVMState *s = kvm_state; 314 long mmap_size; 315 struct KVMParkedVcpu *vcpu = NULL; 316 int ret = 0; 317 318 DPRINTF("kvm_destroy_vcpu\n"); 319 320 ret = kvm_arch_destroy_vcpu(cpu); 321 if (ret < 0) { 322 goto err; 323 } 324 325 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 326 if (mmap_size < 0) { 327 ret = mmap_size; 328 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 329 goto err; 330 } 331 332 ret = munmap(cpu->kvm_run, mmap_size); 333 if (ret < 0) { 334 goto err; 335 } 336 337 vcpu = g_malloc0(sizeof(*vcpu)); 338 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 339 vcpu->kvm_fd = cpu->kvm_fd; 340 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 341 err: 342 return ret; 343 } 344 345 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 346 { 347 struct KVMParkedVcpu *cpu; 348 349 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 350 if (cpu->vcpu_id == vcpu_id) { 351 int kvm_fd; 352 353 QLIST_REMOVE(cpu, node); 354 kvm_fd = cpu->kvm_fd; 355 g_free(cpu); 356 return kvm_fd; 357 } 358 } 359 360 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 361 } 362 363 int kvm_init_vcpu(CPUState *cpu) 364 { 365 KVMState *s = kvm_state; 366 long mmap_size; 367 int ret; 368 369 DPRINTF("kvm_init_vcpu\n"); 370 371 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 372 if (ret < 0) { 373 DPRINTF("kvm_create_vcpu failed\n"); 374 goto err; 375 } 376 377 cpu->kvm_fd = ret; 378 cpu->kvm_state = s; 379 cpu->vcpu_dirty = true; 380 381 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 382 if (mmap_size < 0) { 383 ret = mmap_size; 384 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 385 goto err; 386 } 387 388 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 389 cpu->kvm_fd, 0); 390 if (cpu->kvm_run == MAP_FAILED) { 391 ret = -errno; 392 DPRINTF("mmap'ing vcpu state failed\n"); 393 goto err; 394 } 395 396 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 397 s->coalesced_mmio_ring = 398 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 399 } 400 401 ret = kvm_arch_init_vcpu(cpu); 402 err: 403 return ret; 404 } 405 406 /* 407 * dirty pages logging control 408 */ 409 410 static int kvm_mem_flags(MemoryRegion *mr) 411 { 412 bool readonly = mr->readonly || memory_region_is_romd(mr); 413 int flags = 0; 414 415 if (memory_region_get_dirty_log_mask(mr) != 0) { 416 flags |= KVM_MEM_LOG_DIRTY_PAGES; 417 } 418 if (readonly && kvm_readonly_mem_allowed) { 419 flags |= KVM_MEM_READONLY; 420 } 421 return flags; 422 } 423 424 /* Called with KVMMemoryListener.slots_lock held */ 425 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 426 MemoryRegion *mr) 427 { 428 mem->flags = kvm_mem_flags(mr); 429 430 /* If nothing changed effectively, no need to issue ioctl */ 431 if (mem->flags == mem->old_flags) { 432 return 0; 433 } 434 435 return kvm_set_user_memory_region(kml, mem, false); 436 } 437 438 static int kvm_section_update_flags(KVMMemoryListener *kml, 439 MemoryRegionSection *section) 440 { 441 hwaddr start_addr, size, slot_size; 442 KVMSlot *mem; 443 int ret = 0; 444 445 size = kvm_align_section(section, &start_addr); 446 if (!size) { 447 return 0; 448 } 449 450 kvm_slots_lock(kml); 451 452 while (size && !ret) { 453 slot_size = MIN(kvm_max_slot_size, size); 454 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 455 if (!mem) { 456 /* We don't have a slot if we want to trap every access. */ 457 goto out; 458 } 459 460 ret = kvm_slot_update_flags(kml, mem, section->mr); 461 start_addr += slot_size; 462 size -= slot_size; 463 } 464 465 out: 466 kvm_slots_unlock(kml); 467 return ret; 468 } 469 470 static void kvm_log_start(MemoryListener *listener, 471 MemoryRegionSection *section, 472 int old, int new) 473 { 474 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 475 int r; 476 477 if (old != 0) { 478 return; 479 } 480 481 r = kvm_section_update_flags(kml, section); 482 if (r < 0) { 483 abort(); 484 } 485 } 486 487 static void kvm_log_stop(MemoryListener *listener, 488 MemoryRegionSection *section, 489 int old, int new) 490 { 491 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 492 int r; 493 494 if (new != 0) { 495 return; 496 } 497 498 r = kvm_section_update_flags(kml, section); 499 if (r < 0) { 500 abort(); 501 } 502 } 503 504 /* get kvm's dirty pages bitmap and update qemu's */ 505 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 506 unsigned long *bitmap) 507 { 508 ram_addr_t start = section->offset_within_region + 509 memory_region_get_ram_addr(section->mr); 510 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 511 512 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 513 return 0; 514 } 515 516 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 517 518 /** 519 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 520 * 521 * This function will first try to fetch dirty bitmap from the kernel, 522 * and then updates qemu's dirty bitmap. 523 * 524 * NOTE: caller must be with kml->slots_lock held. 525 * 526 * @kml: the KVM memory listener object 527 * @section: the memory section to sync the dirty bitmap with 528 */ 529 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 530 MemoryRegionSection *section) 531 { 532 KVMState *s = kvm_state; 533 struct kvm_dirty_log d = {}; 534 KVMSlot *mem; 535 hwaddr start_addr, size; 536 hwaddr slot_size, slot_offset = 0; 537 int ret = 0; 538 539 size = kvm_align_section(section, &start_addr); 540 while (size) { 541 MemoryRegionSection subsection = *section; 542 543 slot_size = MIN(kvm_max_slot_size, size); 544 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 545 if (!mem) { 546 /* We don't have a slot if we want to trap every access. */ 547 goto out; 548 } 549 550 /* XXX bad kernel interface alert 551 * For dirty bitmap, kernel allocates array of size aligned to 552 * bits-per-long. But for case when the kernel is 64bits and 553 * the userspace is 32bits, userspace can't align to the same 554 * bits-per-long, since sizeof(long) is different between kernel 555 * and user space. This way, userspace will provide buffer which 556 * may be 4 bytes less than the kernel will use, resulting in 557 * userspace memory corruption (which is not detectable by valgrind 558 * too, in most cases). 559 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 560 * a hope that sizeof(long) won't become >8 any time soon. 561 */ 562 if (!mem->dirty_bmap) { 563 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 564 /*HOST_LONG_BITS*/ 64) / 8; 565 /* Allocate on the first log_sync, once and for all */ 566 mem->dirty_bmap = g_malloc0(bitmap_size); 567 } 568 569 d.dirty_bitmap = mem->dirty_bmap; 570 d.slot = mem->slot | (kml->as_id << 16); 571 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 572 DPRINTF("ioctl failed %d\n", errno); 573 ret = -1; 574 goto out; 575 } 576 577 subsection.offset_within_region += slot_offset; 578 subsection.size = int128_make64(slot_size); 579 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 580 581 slot_offset += slot_size; 582 start_addr += slot_size; 583 size -= slot_size; 584 } 585 out: 586 return ret; 587 } 588 589 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 590 #define KVM_CLEAR_LOG_SHIFT 6 591 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 592 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 593 594 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 595 uint64_t size) 596 { 597 KVMState *s = kvm_state; 598 uint64_t end, bmap_start, start_delta, bmap_npages; 599 struct kvm_clear_dirty_log d; 600 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 601 int ret; 602 603 /* 604 * We need to extend either the start or the size or both to 605 * satisfy the KVM interface requirement. Firstly, do the start 606 * page alignment on 64 host pages 607 */ 608 bmap_start = start & KVM_CLEAR_LOG_MASK; 609 start_delta = start - bmap_start; 610 bmap_start /= psize; 611 612 /* 613 * The kernel interface has restriction on the size too, that either: 614 * 615 * (1) the size is 64 host pages aligned (just like the start), or 616 * (2) the size fills up until the end of the KVM memslot. 617 */ 618 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 619 << KVM_CLEAR_LOG_SHIFT; 620 end = mem->memory_size / psize; 621 if (bmap_npages > end - bmap_start) { 622 bmap_npages = end - bmap_start; 623 } 624 start_delta /= psize; 625 626 /* 627 * Prepare the bitmap to clear dirty bits. Here we must guarantee 628 * that we won't clear any unknown dirty bits otherwise we might 629 * accidentally clear some set bits which are not yet synced from 630 * the kernel into QEMU's bitmap, then we'll lose track of the 631 * guest modifications upon those pages (which can directly lead 632 * to guest data loss or panic after migration). 633 * 634 * Layout of the KVMSlot.dirty_bmap: 635 * 636 * |<-------- bmap_npages -----------..>| 637 * [1] 638 * start_delta size 639 * |----------------|-------------|------------------|------------| 640 * ^ ^ ^ ^ 641 * | | | | 642 * start bmap_start (start) end 643 * of memslot of memslot 644 * 645 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 646 */ 647 648 assert(bmap_start % BITS_PER_LONG == 0); 649 /* We should never do log_clear before log_sync */ 650 assert(mem->dirty_bmap); 651 if (start_delta) { 652 /* Slow path - we need to manipulate a temp bitmap */ 653 bmap_clear = bitmap_new(bmap_npages); 654 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 655 bmap_start, start_delta + size / psize); 656 /* 657 * We need to fill the holes at start because that was not 658 * specified by the caller and we extended the bitmap only for 659 * 64 pages alignment 660 */ 661 bitmap_clear(bmap_clear, 0, start_delta); 662 d.dirty_bitmap = bmap_clear; 663 } else { 664 /* Fast path - start address aligns well with BITS_PER_LONG */ 665 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 666 } 667 668 d.first_page = bmap_start; 669 /* It should never overflow. If it happens, say something */ 670 assert(bmap_npages <= UINT32_MAX); 671 d.num_pages = bmap_npages; 672 d.slot = mem->slot | (as_id << 16); 673 674 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 675 ret = -errno; 676 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 677 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 678 __func__, d.slot, (uint64_t)d.first_page, 679 (uint32_t)d.num_pages, ret); 680 } else { 681 ret = 0; 682 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 683 } 684 685 /* 686 * After we have updated the remote dirty bitmap, we update the 687 * cached bitmap as well for the memslot, then if another user 688 * clears the same region we know we shouldn't clear it again on 689 * the remote otherwise it's data loss as well. 690 */ 691 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 692 size / psize); 693 /* This handles the NULL case well */ 694 g_free(bmap_clear); 695 return ret; 696 } 697 698 699 /** 700 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 701 * 702 * NOTE: this will be a no-op if we haven't enabled manual dirty log 703 * protection in the host kernel because in that case this operation 704 * will be done within log_sync(). 705 * 706 * @kml: the kvm memory listener 707 * @section: the memory range to clear dirty bitmap 708 */ 709 static int kvm_physical_log_clear(KVMMemoryListener *kml, 710 MemoryRegionSection *section) 711 { 712 KVMState *s = kvm_state; 713 uint64_t start, size, offset, count; 714 KVMSlot *mem; 715 int ret = 0, i; 716 717 if (!s->manual_dirty_log_protect) { 718 /* No need to do explicit clear */ 719 return ret; 720 } 721 722 start = section->offset_within_address_space; 723 size = int128_get64(section->size); 724 725 if (!size) { 726 /* Nothing more we can do... */ 727 return ret; 728 } 729 730 kvm_slots_lock(kml); 731 732 for (i = 0; i < s->nr_slots; i++) { 733 mem = &kml->slots[i]; 734 /* Discard slots that are empty or do not overlap the section */ 735 if (!mem->memory_size || 736 mem->start_addr > start + size - 1 || 737 start > mem->start_addr + mem->memory_size - 1) { 738 continue; 739 } 740 741 if (start >= mem->start_addr) { 742 /* The slot starts before section or is aligned to it. */ 743 offset = start - mem->start_addr; 744 count = MIN(mem->memory_size - offset, size); 745 } else { 746 /* The slot starts after section. */ 747 offset = 0; 748 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 749 } 750 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 751 if (ret < 0) { 752 break; 753 } 754 } 755 756 kvm_slots_unlock(kml); 757 758 return ret; 759 } 760 761 static void kvm_coalesce_mmio_region(MemoryListener *listener, 762 MemoryRegionSection *secion, 763 hwaddr start, hwaddr size) 764 { 765 KVMState *s = kvm_state; 766 767 if (s->coalesced_mmio) { 768 struct kvm_coalesced_mmio_zone zone; 769 770 zone.addr = start; 771 zone.size = size; 772 zone.pad = 0; 773 774 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 775 } 776 } 777 778 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 779 MemoryRegionSection *secion, 780 hwaddr start, hwaddr size) 781 { 782 KVMState *s = kvm_state; 783 784 if (s->coalesced_mmio) { 785 struct kvm_coalesced_mmio_zone zone; 786 787 zone.addr = start; 788 zone.size = size; 789 zone.pad = 0; 790 791 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 792 } 793 } 794 795 static void kvm_coalesce_pio_add(MemoryListener *listener, 796 MemoryRegionSection *section, 797 hwaddr start, hwaddr size) 798 { 799 KVMState *s = kvm_state; 800 801 if (s->coalesced_pio) { 802 struct kvm_coalesced_mmio_zone zone; 803 804 zone.addr = start; 805 zone.size = size; 806 zone.pio = 1; 807 808 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 809 } 810 } 811 812 static void kvm_coalesce_pio_del(MemoryListener *listener, 813 MemoryRegionSection *section, 814 hwaddr start, hwaddr size) 815 { 816 KVMState *s = kvm_state; 817 818 if (s->coalesced_pio) { 819 struct kvm_coalesced_mmio_zone zone; 820 821 zone.addr = start; 822 zone.size = size; 823 zone.pio = 1; 824 825 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 826 } 827 } 828 829 static MemoryListener kvm_coalesced_pio_listener = { 830 .coalesced_io_add = kvm_coalesce_pio_add, 831 .coalesced_io_del = kvm_coalesce_pio_del, 832 }; 833 834 int kvm_check_extension(KVMState *s, unsigned int extension) 835 { 836 int ret; 837 838 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 839 if (ret < 0) { 840 ret = 0; 841 } 842 843 return ret; 844 } 845 846 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 847 { 848 int ret; 849 850 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 851 if (ret < 0) { 852 /* VM wide version not implemented, use global one instead */ 853 ret = kvm_check_extension(s, extension); 854 } 855 856 return ret; 857 } 858 859 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 860 { 861 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 862 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 863 * endianness, but the memory core hands them in target endianness. 864 * For example, PPC is always treated as big-endian even if running 865 * on KVM and on PPC64LE. Correct here. 866 */ 867 switch (size) { 868 case 2: 869 val = bswap16(val); 870 break; 871 case 4: 872 val = bswap32(val); 873 break; 874 } 875 #endif 876 return val; 877 } 878 879 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 880 bool assign, uint32_t size, bool datamatch) 881 { 882 int ret; 883 struct kvm_ioeventfd iofd = { 884 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 885 .addr = addr, 886 .len = size, 887 .flags = 0, 888 .fd = fd, 889 }; 890 891 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 892 datamatch); 893 if (!kvm_enabled()) { 894 return -ENOSYS; 895 } 896 897 if (datamatch) { 898 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 899 } 900 if (!assign) { 901 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 902 } 903 904 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 905 906 if (ret < 0) { 907 return -errno; 908 } 909 910 return 0; 911 } 912 913 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 914 bool assign, uint32_t size, bool datamatch) 915 { 916 struct kvm_ioeventfd kick = { 917 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 918 .addr = addr, 919 .flags = KVM_IOEVENTFD_FLAG_PIO, 920 .len = size, 921 .fd = fd, 922 }; 923 int r; 924 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 925 if (!kvm_enabled()) { 926 return -ENOSYS; 927 } 928 if (datamatch) { 929 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 930 } 931 if (!assign) { 932 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 933 } 934 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 935 if (r < 0) { 936 return r; 937 } 938 return 0; 939 } 940 941 942 static int kvm_check_many_ioeventfds(void) 943 { 944 /* Userspace can use ioeventfd for io notification. This requires a host 945 * that supports eventfd(2) and an I/O thread; since eventfd does not 946 * support SIGIO it cannot interrupt the vcpu. 947 * 948 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 949 * can avoid creating too many ioeventfds. 950 */ 951 #if defined(CONFIG_EVENTFD) 952 int ioeventfds[7]; 953 int i, ret = 0; 954 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 955 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 956 if (ioeventfds[i] < 0) { 957 break; 958 } 959 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 960 if (ret < 0) { 961 close(ioeventfds[i]); 962 break; 963 } 964 } 965 966 /* Decide whether many devices are supported or not */ 967 ret = i == ARRAY_SIZE(ioeventfds); 968 969 while (i-- > 0) { 970 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 971 close(ioeventfds[i]); 972 } 973 return ret; 974 #else 975 return 0; 976 #endif 977 } 978 979 static const KVMCapabilityInfo * 980 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 981 { 982 while (list->name) { 983 if (!kvm_check_extension(s, list->value)) { 984 return list; 985 } 986 list++; 987 } 988 return NULL; 989 } 990 991 void kvm_set_max_memslot_size(hwaddr max_slot_size) 992 { 993 g_assert( 994 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 995 ); 996 kvm_max_slot_size = max_slot_size; 997 } 998 999 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1000 MemoryRegionSection *section, bool add) 1001 { 1002 KVMSlot *mem; 1003 int err; 1004 MemoryRegion *mr = section->mr; 1005 bool writeable = !mr->readonly && !mr->rom_device; 1006 hwaddr start_addr, size, slot_size; 1007 void *ram; 1008 1009 if (!memory_region_is_ram(mr)) { 1010 if (writeable || !kvm_readonly_mem_allowed) { 1011 return; 1012 } else if (!mr->romd_mode) { 1013 /* If the memory device is not in romd_mode, then we actually want 1014 * to remove the kvm memory slot so all accesses will trap. */ 1015 add = false; 1016 } 1017 } 1018 1019 size = kvm_align_section(section, &start_addr); 1020 if (!size) { 1021 return; 1022 } 1023 1024 /* use aligned delta to align the ram address */ 1025 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1026 (start_addr - section->offset_within_address_space); 1027 1028 kvm_slots_lock(kml); 1029 1030 if (!add) { 1031 do { 1032 slot_size = MIN(kvm_max_slot_size, size); 1033 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1034 if (!mem) { 1035 goto out; 1036 } 1037 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1038 kvm_physical_sync_dirty_bitmap(kml, section); 1039 } 1040 1041 /* unregister the slot */ 1042 g_free(mem->dirty_bmap); 1043 mem->dirty_bmap = NULL; 1044 mem->memory_size = 0; 1045 mem->flags = 0; 1046 err = kvm_set_user_memory_region(kml, mem, false); 1047 if (err) { 1048 fprintf(stderr, "%s: error unregistering slot: %s\n", 1049 __func__, strerror(-err)); 1050 abort(); 1051 } 1052 start_addr += slot_size; 1053 size -= slot_size; 1054 } while (size); 1055 goto out; 1056 } 1057 1058 /* register the new slot */ 1059 do { 1060 slot_size = MIN(kvm_max_slot_size, size); 1061 mem = kvm_alloc_slot(kml); 1062 mem->memory_size = slot_size; 1063 mem->start_addr = start_addr; 1064 mem->ram = ram; 1065 mem->flags = kvm_mem_flags(mr); 1066 1067 err = kvm_set_user_memory_region(kml, mem, true); 1068 if (err) { 1069 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1070 strerror(-err)); 1071 abort(); 1072 } 1073 start_addr += slot_size; 1074 ram += slot_size; 1075 size -= slot_size; 1076 } while (size); 1077 1078 out: 1079 kvm_slots_unlock(kml); 1080 } 1081 1082 static void kvm_region_add(MemoryListener *listener, 1083 MemoryRegionSection *section) 1084 { 1085 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1086 1087 memory_region_ref(section->mr); 1088 kvm_set_phys_mem(kml, section, true); 1089 } 1090 1091 static void kvm_region_del(MemoryListener *listener, 1092 MemoryRegionSection *section) 1093 { 1094 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1095 1096 kvm_set_phys_mem(kml, section, false); 1097 memory_region_unref(section->mr); 1098 } 1099 1100 static void kvm_log_sync(MemoryListener *listener, 1101 MemoryRegionSection *section) 1102 { 1103 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1104 int r; 1105 1106 kvm_slots_lock(kml); 1107 r = kvm_physical_sync_dirty_bitmap(kml, section); 1108 kvm_slots_unlock(kml); 1109 if (r < 0) { 1110 abort(); 1111 } 1112 } 1113 1114 static void kvm_log_clear(MemoryListener *listener, 1115 MemoryRegionSection *section) 1116 { 1117 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1118 int r; 1119 1120 r = kvm_physical_log_clear(kml, section); 1121 if (r < 0) { 1122 error_report_once("%s: kvm log clear failed: mr=%s " 1123 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1124 section->mr->name, section->offset_within_region, 1125 int128_get64(section->size)); 1126 abort(); 1127 } 1128 } 1129 1130 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1131 MemoryRegionSection *section, 1132 bool match_data, uint64_t data, 1133 EventNotifier *e) 1134 { 1135 int fd = event_notifier_get_fd(e); 1136 int r; 1137 1138 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1139 data, true, int128_get64(section->size), 1140 match_data); 1141 if (r < 0) { 1142 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1143 __func__, strerror(-r), -r); 1144 abort(); 1145 } 1146 } 1147 1148 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1149 MemoryRegionSection *section, 1150 bool match_data, uint64_t data, 1151 EventNotifier *e) 1152 { 1153 int fd = event_notifier_get_fd(e); 1154 int r; 1155 1156 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1157 data, false, int128_get64(section->size), 1158 match_data); 1159 if (r < 0) { 1160 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1161 __func__, strerror(-r), -r); 1162 abort(); 1163 } 1164 } 1165 1166 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1167 MemoryRegionSection *section, 1168 bool match_data, uint64_t data, 1169 EventNotifier *e) 1170 { 1171 int fd = event_notifier_get_fd(e); 1172 int r; 1173 1174 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1175 data, true, int128_get64(section->size), 1176 match_data); 1177 if (r < 0) { 1178 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1179 __func__, strerror(-r), -r); 1180 abort(); 1181 } 1182 } 1183 1184 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1185 MemoryRegionSection *section, 1186 bool match_data, uint64_t data, 1187 EventNotifier *e) 1188 1189 { 1190 int fd = event_notifier_get_fd(e); 1191 int r; 1192 1193 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1194 data, false, int128_get64(section->size), 1195 match_data); 1196 if (r < 0) { 1197 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1198 __func__, strerror(-r), -r); 1199 abort(); 1200 } 1201 } 1202 1203 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1204 AddressSpace *as, int as_id) 1205 { 1206 int i; 1207 1208 qemu_mutex_init(&kml->slots_lock); 1209 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1210 kml->as_id = as_id; 1211 1212 for (i = 0; i < s->nr_slots; i++) { 1213 kml->slots[i].slot = i; 1214 } 1215 1216 kml->listener.region_add = kvm_region_add; 1217 kml->listener.region_del = kvm_region_del; 1218 kml->listener.log_start = kvm_log_start; 1219 kml->listener.log_stop = kvm_log_stop; 1220 kml->listener.log_sync = kvm_log_sync; 1221 kml->listener.log_clear = kvm_log_clear; 1222 kml->listener.priority = 10; 1223 1224 memory_listener_register(&kml->listener, as); 1225 1226 for (i = 0; i < s->nr_as; ++i) { 1227 if (!s->as[i].as) { 1228 s->as[i].as = as; 1229 s->as[i].ml = kml; 1230 break; 1231 } 1232 } 1233 } 1234 1235 static MemoryListener kvm_io_listener = { 1236 .eventfd_add = kvm_io_ioeventfd_add, 1237 .eventfd_del = kvm_io_ioeventfd_del, 1238 .priority = 10, 1239 }; 1240 1241 int kvm_set_irq(KVMState *s, int irq, int level) 1242 { 1243 struct kvm_irq_level event; 1244 int ret; 1245 1246 assert(kvm_async_interrupts_enabled()); 1247 1248 event.level = level; 1249 event.irq = irq; 1250 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1251 if (ret < 0) { 1252 perror("kvm_set_irq"); 1253 abort(); 1254 } 1255 1256 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1257 } 1258 1259 #ifdef KVM_CAP_IRQ_ROUTING 1260 typedef struct KVMMSIRoute { 1261 struct kvm_irq_routing_entry kroute; 1262 QTAILQ_ENTRY(KVMMSIRoute) entry; 1263 } KVMMSIRoute; 1264 1265 static void set_gsi(KVMState *s, unsigned int gsi) 1266 { 1267 set_bit(gsi, s->used_gsi_bitmap); 1268 } 1269 1270 static void clear_gsi(KVMState *s, unsigned int gsi) 1271 { 1272 clear_bit(gsi, s->used_gsi_bitmap); 1273 } 1274 1275 void kvm_init_irq_routing(KVMState *s) 1276 { 1277 int gsi_count, i; 1278 1279 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1280 if (gsi_count > 0) { 1281 /* Round up so we can search ints using ffs */ 1282 s->used_gsi_bitmap = bitmap_new(gsi_count); 1283 s->gsi_count = gsi_count; 1284 } 1285 1286 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1287 s->nr_allocated_irq_routes = 0; 1288 1289 if (!kvm_direct_msi_allowed) { 1290 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1291 QTAILQ_INIT(&s->msi_hashtab[i]); 1292 } 1293 } 1294 1295 kvm_arch_init_irq_routing(s); 1296 } 1297 1298 void kvm_irqchip_commit_routes(KVMState *s) 1299 { 1300 int ret; 1301 1302 if (kvm_gsi_direct_mapping()) { 1303 return; 1304 } 1305 1306 if (!kvm_gsi_routing_enabled()) { 1307 return; 1308 } 1309 1310 s->irq_routes->flags = 0; 1311 trace_kvm_irqchip_commit_routes(); 1312 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1313 assert(ret == 0); 1314 } 1315 1316 static void kvm_add_routing_entry(KVMState *s, 1317 struct kvm_irq_routing_entry *entry) 1318 { 1319 struct kvm_irq_routing_entry *new; 1320 int n, size; 1321 1322 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1323 n = s->nr_allocated_irq_routes * 2; 1324 if (n < 64) { 1325 n = 64; 1326 } 1327 size = sizeof(struct kvm_irq_routing); 1328 size += n * sizeof(*new); 1329 s->irq_routes = g_realloc(s->irq_routes, size); 1330 s->nr_allocated_irq_routes = n; 1331 } 1332 n = s->irq_routes->nr++; 1333 new = &s->irq_routes->entries[n]; 1334 1335 *new = *entry; 1336 1337 set_gsi(s, entry->gsi); 1338 } 1339 1340 static int kvm_update_routing_entry(KVMState *s, 1341 struct kvm_irq_routing_entry *new_entry) 1342 { 1343 struct kvm_irq_routing_entry *entry; 1344 int n; 1345 1346 for (n = 0; n < s->irq_routes->nr; n++) { 1347 entry = &s->irq_routes->entries[n]; 1348 if (entry->gsi != new_entry->gsi) { 1349 continue; 1350 } 1351 1352 if(!memcmp(entry, new_entry, sizeof *entry)) { 1353 return 0; 1354 } 1355 1356 *entry = *new_entry; 1357 1358 return 0; 1359 } 1360 1361 return -ESRCH; 1362 } 1363 1364 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1365 { 1366 struct kvm_irq_routing_entry e = {}; 1367 1368 assert(pin < s->gsi_count); 1369 1370 e.gsi = irq; 1371 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1372 e.flags = 0; 1373 e.u.irqchip.irqchip = irqchip; 1374 e.u.irqchip.pin = pin; 1375 kvm_add_routing_entry(s, &e); 1376 } 1377 1378 void kvm_irqchip_release_virq(KVMState *s, int virq) 1379 { 1380 struct kvm_irq_routing_entry *e; 1381 int i; 1382 1383 if (kvm_gsi_direct_mapping()) { 1384 return; 1385 } 1386 1387 for (i = 0; i < s->irq_routes->nr; i++) { 1388 e = &s->irq_routes->entries[i]; 1389 if (e->gsi == virq) { 1390 s->irq_routes->nr--; 1391 *e = s->irq_routes->entries[s->irq_routes->nr]; 1392 } 1393 } 1394 clear_gsi(s, virq); 1395 kvm_arch_release_virq_post(virq); 1396 trace_kvm_irqchip_release_virq(virq); 1397 } 1398 1399 static unsigned int kvm_hash_msi(uint32_t data) 1400 { 1401 /* This is optimized for IA32 MSI layout. However, no other arch shall 1402 * repeat the mistake of not providing a direct MSI injection API. */ 1403 return data & 0xff; 1404 } 1405 1406 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1407 { 1408 KVMMSIRoute *route, *next; 1409 unsigned int hash; 1410 1411 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1412 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1413 kvm_irqchip_release_virq(s, route->kroute.gsi); 1414 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1415 g_free(route); 1416 } 1417 } 1418 } 1419 1420 static int kvm_irqchip_get_virq(KVMState *s) 1421 { 1422 int next_virq; 1423 1424 /* 1425 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1426 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1427 * number can succeed even though a new route entry cannot be added. 1428 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1429 */ 1430 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1431 kvm_flush_dynamic_msi_routes(s); 1432 } 1433 1434 /* Return the lowest unused GSI in the bitmap */ 1435 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1436 if (next_virq >= s->gsi_count) { 1437 return -ENOSPC; 1438 } else { 1439 return next_virq; 1440 } 1441 } 1442 1443 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1444 { 1445 unsigned int hash = kvm_hash_msi(msg.data); 1446 KVMMSIRoute *route; 1447 1448 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1449 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1450 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1451 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1452 return route; 1453 } 1454 } 1455 return NULL; 1456 } 1457 1458 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1459 { 1460 struct kvm_msi msi; 1461 KVMMSIRoute *route; 1462 1463 if (kvm_direct_msi_allowed) { 1464 msi.address_lo = (uint32_t)msg.address; 1465 msi.address_hi = msg.address >> 32; 1466 msi.data = le32_to_cpu(msg.data); 1467 msi.flags = 0; 1468 memset(msi.pad, 0, sizeof(msi.pad)); 1469 1470 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1471 } 1472 1473 route = kvm_lookup_msi_route(s, msg); 1474 if (!route) { 1475 int virq; 1476 1477 virq = kvm_irqchip_get_virq(s); 1478 if (virq < 0) { 1479 return virq; 1480 } 1481 1482 route = g_malloc0(sizeof(KVMMSIRoute)); 1483 route->kroute.gsi = virq; 1484 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1485 route->kroute.flags = 0; 1486 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1487 route->kroute.u.msi.address_hi = msg.address >> 32; 1488 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1489 1490 kvm_add_routing_entry(s, &route->kroute); 1491 kvm_irqchip_commit_routes(s); 1492 1493 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1494 entry); 1495 } 1496 1497 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1498 1499 return kvm_set_irq(s, route->kroute.gsi, 1); 1500 } 1501 1502 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1503 { 1504 struct kvm_irq_routing_entry kroute = {}; 1505 int virq; 1506 MSIMessage msg = {0, 0}; 1507 1508 if (pci_available && dev) { 1509 msg = pci_get_msi_message(dev, vector); 1510 } 1511 1512 if (kvm_gsi_direct_mapping()) { 1513 return kvm_arch_msi_data_to_gsi(msg.data); 1514 } 1515 1516 if (!kvm_gsi_routing_enabled()) { 1517 return -ENOSYS; 1518 } 1519 1520 virq = kvm_irqchip_get_virq(s); 1521 if (virq < 0) { 1522 return virq; 1523 } 1524 1525 kroute.gsi = virq; 1526 kroute.type = KVM_IRQ_ROUTING_MSI; 1527 kroute.flags = 0; 1528 kroute.u.msi.address_lo = (uint32_t)msg.address; 1529 kroute.u.msi.address_hi = msg.address >> 32; 1530 kroute.u.msi.data = le32_to_cpu(msg.data); 1531 if (pci_available && kvm_msi_devid_required()) { 1532 kroute.flags = KVM_MSI_VALID_DEVID; 1533 kroute.u.msi.devid = pci_requester_id(dev); 1534 } 1535 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1536 kvm_irqchip_release_virq(s, virq); 1537 return -EINVAL; 1538 } 1539 1540 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1541 vector, virq); 1542 1543 kvm_add_routing_entry(s, &kroute); 1544 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1545 kvm_irqchip_commit_routes(s); 1546 1547 return virq; 1548 } 1549 1550 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1551 PCIDevice *dev) 1552 { 1553 struct kvm_irq_routing_entry kroute = {}; 1554 1555 if (kvm_gsi_direct_mapping()) { 1556 return 0; 1557 } 1558 1559 if (!kvm_irqchip_in_kernel()) { 1560 return -ENOSYS; 1561 } 1562 1563 kroute.gsi = virq; 1564 kroute.type = KVM_IRQ_ROUTING_MSI; 1565 kroute.flags = 0; 1566 kroute.u.msi.address_lo = (uint32_t)msg.address; 1567 kroute.u.msi.address_hi = msg.address >> 32; 1568 kroute.u.msi.data = le32_to_cpu(msg.data); 1569 if (pci_available && kvm_msi_devid_required()) { 1570 kroute.flags = KVM_MSI_VALID_DEVID; 1571 kroute.u.msi.devid = pci_requester_id(dev); 1572 } 1573 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1574 return -EINVAL; 1575 } 1576 1577 trace_kvm_irqchip_update_msi_route(virq); 1578 1579 return kvm_update_routing_entry(s, &kroute); 1580 } 1581 1582 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1583 bool assign) 1584 { 1585 struct kvm_irqfd irqfd = { 1586 .fd = fd, 1587 .gsi = virq, 1588 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1589 }; 1590 1591 if (rfd != -1) { 1592 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1593 irqfd.resamplefd = rfd; 1594 } 1595 1596 if (!kvm_irqfds_enabled()) { 1597 return -ENOSYS; 1598 } 1599 1600 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1601 } 1602 1603 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1604 { 1605 struct kvm_irq_routing_entry kroute = {}; 1606 int virq; 1607 1608 if (!kvm_gsi_routing_enabled()) { 1609 return -ENOSYS; 1610 } 1611 1612 virq = kvm_irqchip_get_virq(s); 1613 if (virq < 0) { 1614 return virq; 1615 } 1616 1617 kroute.gsi = virq; 1618 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1619 kroute.flags = 0; 1620 kroute.u.adapter.summary_addr = adapter->summary_addr; 1621 kroute.u.adapter.ind_addr = adapter->ind_addr; 1622 kroute.u.adapter.summary_offset = adapter->summary_offset; 1623 kroute.u.adapter.ind_offset = adapter->ind_offset; 1624 kroute.u.adapter.adapter_id = adapter->adapter_id; 1625 1626 kvm_add_routing_entry(s, &kroute); 1627 1628 return virq; 1629 } 1630 1631 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1632 { 1633 struct kvm_irq_routing_entry kroute = {}; 1634 int virq; 1635 1636 if (!kvm_gsi_routing_enabled()) { 1637 return -ENOSYS; 1638 } 1639 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1640 return -ENOSYS; 1641 } 1642 virq = kvm_irqchip_get_virq(s); 1643 if (virq < 0) { 1644 return virq; 1645 } 1646 1647 kroute.gsi = virq; 1648 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1649 kroute.flags = 0; 1650 kroute.u.hv_sint.vcpu = vcpu; 1651 kroute.u.hv_sint.sint = sint; 1652 1653 kvm_add_routing_entry(s, &kroute); 1654 kvm_irqchip_commit_routes(s); 1655 1656 return virq; 1657 } 1658 1659 #else /* !KVM_CAP_IRQ_ROUTING */ 1660 1661 void kvm_init_irq_routing(KVMState *s) 1662 { 1663 } 1664 1665 void kvm_irqchip_release_virq(KVMState *s, int virq) 1666 { 1667 } 1668 1669 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1670 { 1671 abort(); 1672 } 1673 1674 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1675 { 1676 return -ENOSYS; 1677 } 1678 1679 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1680 { 1681 return -ENOSYS; 1682 } 1683 1684 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1685 { 1686 return -ENOSYS; 1687 } 1688 1689 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1690 { 1691 abort(); 1692 } 1693 1694 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1695 { 1696 return -ENOSYS; 1697 } 1698 #endif /* !KVM_CAP_IRQ_ROUTING */ 1699 1700 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1701 EventNotifier *rn, int virq) 1702 { 1703 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1704 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1705 } 1706 1707 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1708 int virq) 1709 { 1710 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1711 false); 1712 } 1713 1714 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1715 EventNotifier *rn, qemu_irq irq) 1716 { 1717 gpointer key, gsi; 1718 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1719 1720 if (!found) { 1721 return -ENXIO; 1722 } 1723 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1724 } 1725 1726 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1727 qemu_irq irq) 1728 { 1729 gpointer key, gsi; 1730 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1731 1732 if (!found) { 1733 return -ENXIO; 1734 } 1735 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1736 } 1737 1738 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1739 { 1740 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1741 } 1742 1743 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1744 { 1745 int ret; 1746 1747 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1748 ; 1749 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1750 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1751 if (ret < 0) { 1752 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1753 exit(1); 1754 } 1755 } else { 1756 return; 1757 } 1758 1759 /* First probe and see if there's a arch-specific hook to create the 1760 * in-kernel irqchip for us */ 1761 ret = kvm_arch_irqchip_create(machine, s); 1762 if (ret == 0) { 1763 if (machine_kernel_irqchip_split(machine)) { 1764 perror("Split IRQ chip mode not supported."); 1765 exit(1); 1766 } else { 1767 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1768 } 1769 } 1770 if (ret < 0) { 1771 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1772 exit(1); 1773 } 1774 1775 kvm_kernel_irqchip = true; 1776 /* If we have an in-kernel IRQ chip then we must have asynchronous 1777 * interrupt delivery (though the reverse is not necessarily true) 1778 */ 1779 kvm_async_interrupts_allowed = true; 1780 kvm_halt_in_kernel_allowed = true; 1781 1782 kvm_init_irq_routing(s); 1783 1784 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1785 } 1786 1787 /* Find number of supported CPUs using the recommended 1788 * procedure from the kernel API documentation to cope with 1789 * older kernels that may be missing capabilities. 1790 */ 1791 static int kvm_recommended_vcpus(KVMState *s) 1792 { 1793 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1794 return (ret) ? ret : 4; 1795 } 1796 1797 static int kvm_max_vcpus(KVMState *s) 1798 { 1799 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1800 return (ret) ? ret : kvm_recommended_vcpus(s); 1801 } 1802 1803 static int kvm_max_vcpu_id(KVMState *s) 1804 { 1805 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1806 return (ret) ? ret : kvm_max_vcpus(s); 1807 } 1808 1809 bool kvm_vcpu_id_is_valid(int vcpu_id) 1810 { 1811 KVMState *s = KVM_STATE(current_machine->accelerator); 1812 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1813 } 1814 1815 static int kvm_init(MachineState *ms) 1816 { 1817 MachineClass *mc = MACHINE_GET_CLASS(ms); 1818 static const char upgrade_note[] = 1819 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1820 "(see http://sourceforge.net/projects/kvm).\n"; 1821 struct { 1822 const char *name; 1823 int num; 1824 } num_cpus[] = { 1825 { "SMP", ms->smp.cpus }, 1826 { "hotpluggable", ms->smp.max_cpus }, 1827 { NULL, } 1828 }, *nc = num_cpus; 1829 int soft_vcpus_limit, hard_vcpus_limit; 1830 KVMState *s; 1831 const KVMCapabilityInfo *missing_cap; 1832 int ret; 1833 int type = 0; 1834 const char *kvm_type; 1835 1836 s = KVM_STATE(ms->accelerator); 1837 1838 /* 1839 * On systems where the kernel can support different base page 1840 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1841 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1842 * page size for the system though. 1843 */ 1844 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 1845 1846 s->sigmask_len = 8; 1847 1848 #ifdef KVM_CAP_SET_GUEST_DEBUG 1849 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1850 #endif 1851 QLIST_INIT(&s->kvm_parked_vcpus); 1852 s->vmfd = -1; 1853 s->fd = qemu_open("/dev/kvm", O_RDWR); 1854 if (s->fd == -1) { 1855 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1856 ret = -errno; 1857 goto err; 1858 } 1859 1860 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1861 if (ret < KVM_API_VERSION) { 1862 if (ret >= 0) { 1863 ret = -EINVAL; 1864 } 1865 fprintf(stderr, "kvm version too old\n"); 1866 goto err; 1867 } 1868 1869 if (ret > KVM_API_VERSION) { 1870 ret = -EINVAL; 1871 fprintf(stderr, "kvm version not supported\n"); 1872 goto err; 1873 } 1874 1875 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1876 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1877 1878 /* If unspecified, use the default value */ 1879 if (!s->nr_slots) { 1880 s->nr_slots = 32; 1881 } 1882 1883 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 1884 if (s->nr_as <= 1) { 1885 s->nr_as = 1; 1886 } 1887 s->as = g_new0(struct KVMAs, s->nr_as); 1888 1889 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1890 if (mc->kvm_type) { 1891 type = mc->kvm_type(ms, kvm_type); 1892 } else if (kvm_type) { 1893 ret = -EINVAL; 1894 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1895 goto err; 1896 } 1897 1898 do { 1899 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1900 } while (ret == -EINTR); 1901 1902 if (ret < 0) { 1903 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1904 strerror(-ret)); 1905 1906 #ifdef TARGET_S390X 1907 if (ret == -EINVAL) { 1908 fprintf(stderr, 1909 "Host kernel setup problem detected. Please verify:\n"); 1910 fprintf(stderr, "- for kernels supporting the switch_amode or" 1911 " user_mode parameters, whether\n"); 1912 fprintf(stderr, 1913 " user space is running in primary address space\n"); 1914 fprintf(stderr, 1915 "- for kernels supporting the vm.allocate_pgste sysctl, " 1916 "whether it is enabled\n"); 1917 } 1918 #endif 1919 goto err; 1920 } 1921 1922 s->vmfd = ret; 1923 1924 /* check the vcpu limits */ 1925 soft_vcpus_limit = kvm_recommended_vcpus(s); 1926 hard_vcpus_limit = kvm_max_vcpus(s); 1927 1928 while (nc->name) { 1929 if (nc->num > soft_vcpus_limit) { 1930 warn_report("Number of %s cpus requested (%d) exceeds " 1931 "the recommended cpus supported by KVM (%d)", 1932 nc->name, nc->num, soft_vcpus_limit); 1933 1934 if (nc->num > hard_vcpus_limit) { 1935 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1936 "the maximum cpus supported by KVM (%d)\n", 1937 nc->name, nc->num, hard_vcpus_limit); 1938 exit(1); 1939 } 1940 } 1941 nc++; 1942 } 1943 1944 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1945 if (!missing_cap) { 1946 missing_cap = 1947 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1948 } 1949 if (missing_cap) { 1950 ret = -EINVAL; 1951 fprintf(stderr, "kvm does not support %s\n%s", 1952 missing_cap->name, upgrade_note); 1953 goto err; 1954 } 1955 1956 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1957 s->coalesced_pio = s->coalesced_mmio && 1958 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1959 1960 s->manual_dirty_log_protect = 1961 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 1962 if (s->manual_dirty_log_protect) { 1963 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); 1964 if (ret) { 1965 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " 1966 "but failed. Falling back to the legacy mode. "); 1967 s->manual_dirty_log_protect = false; 1968 } 1969 } 1970 1971 #ifdef KVM_CAP_VCPU_EVENTS 1972 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1973 #endif 1974 1975 s->robust_singlestep = 1976 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1977 1978 #ifdef KVM_CAP_DEBUGREGS 1979 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1980 #endif 1981 1982 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 1983 1984 #ifdef KVM_CAP_IRQ_ROUTING 1985 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1986 #endif 1987 1988 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1989 1990 s->irq_set_ioctl = KVM_IRQ_LINE; 1991 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1992 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1993 } 1994 1995 kvm_readonly_mem_allowed = 1996 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1997 1998 kvm_eventfds_allowed = 1999 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2000 2001 kvm_irqfds_allowed = 2002 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2003 2004 kvm_resamplefds_allowed = 2005 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2006 2007 kvm_vm_attributes_allowed = 2008 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2009 2010 kvm_ioeventfd_any_length_allowed = 2011 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2012 2013 kvm_state = s; 2014 2015 /* 2016 * if memory encryption object is specified then initialize the memory 2017 * encryption context. 2018 */ 2019 if (ms->memory_encryption) { 2020 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 2021 if (!kvm_state->memcrypt_handle) { 2022 ret = -1; 2023 goto err; 2024 } 2025 2026 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 2027 } 2028 2029 ret = kvm_arch_init(ms, s); 2030 if (ret < 0) { 2031 goto err; 2032 } 2033 2034 if (machine_kernel_irqchip_allowed(ms)) { 2035 kvm_irqchip_create(ms, s); 2036 } 2037 2038 if (kvm_eventfds_allowed) { 2039 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2040 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2041 } 2042 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2043 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2044 2045 kvm_memory_listener_register(s, &s->memory_listener, 2046 &address_space_memory, 0); 2047 memory_listener_register(&kvm_io_listener, 2048 &address_space_io); 2049 memory_listener_register(&kvm_coalesced_pio_listener, 2050 &address_space_io); 2051 2052 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2053 2054 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2055 if (!s->sync_mmu) { 2056 qemu_balloon_inhibit(true); 2057 } 2058 2059 return 0; 2060 2061 err: 2062 assert(ret < 0); 2063 if (s->vmfd >= 0) { 2064 close(s->vmfd); 2065 } 2066 if (s->fd != -1) { 2067 close(s->fd); 2068 } 2069 g_free(s->memory_listener.slots); 2070 2071 return ret; 2072 } 2073 2074 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2075 { 2076 s->sigmask_len = sigmask_len; 2077 } 2078 2079 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2080 int size, uint32_t count) 2081 { 2082 int i; 2083 uint8_t *ptr = data; 2084 2085 for (i = 0; i < count; i++) { 2086 address_space_rw(&address_space_io, port, attrs, 2087 ptr, size, 2088 direction == KVM_EXIT_IO_OUT); 2089 ptr += size; 2090 } 2091 } 2092 2093 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2094 { 2095 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2096 run->internal.suberror); 2097 2098 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2099 int i; 2100 2101 for (i = 0; i < run->internal.ndata; ++i) { 2102 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2103 i, (uint64_t)run->internal.data[i]); 2104 } 2105 } 2106 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2107 fprintf(stderr, "emulation failure\n"); 2108 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2109 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2110 return EXCP_INTERRUPT; 2111 } 2112 } 2113 /* FIXME: Should trigger a qmp message to let management know 2114 * something went wrong. 2115 */ 2116 return -1; 2117 } 2118 2119 void kvm_flush_coalesced_mmio_buffer(void) 2120 { 2121 KVMState *s = kvm_state; 2122 2123 if (s->coalesced_flush_in_progress) { 2124 return; 2125 } 2126 2127 s->coalesced_flush_in_progress = true; 2128 2129 if (s->coalesced_mmio_ring) { 2130 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2131 while (ring->first != ring->last) { 2132 struct kvm_coalesced_mmio *ent; 2133 2134 ent = &ring->coalesced_mmio[ring->first]; 2135 2136 if (ent->pio == 1) { 2137 address_space_rw(&address_space_io, ent->phys_addr, 2138 MEMTXATTRS_UNSPECIFIED, ent->data, 2139 ent->len, true); 2140 } else { 2141 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2142 } 2143 smp_wmb(); 2144 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2145 } 2146 } 2147 2148 s->coalesced_flush_in_progress = false; 2149 } 2150 2151 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2152 { 2153 if (!cpu->vcpu_dirty) { 2154 kvm_arch_get_registers(cpu); 2155 cpu->vcpu_dirty = true; 2156 } 2157 } 2158 2159 void kvm_cpu_synchronize_state(CPUState *cpu) 2160 { 2161 if (!cpu->vcpu_dirty) { 2162 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2163 } 2164 } 2165 2166 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2167 { 2168 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2169 cpu->vcpu_dirty = false; 2170 } 2171 2172 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2173 { 2174 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2175 } 2176 2177 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2178 { 2179 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2180 cpu->vcpu_dirty = false; 2181 } 2182 2183 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2184 { 2185 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2186 } 2187 2188 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2189 { 2190 cpu->vcpu_dirty = true; 2191 } 2192 2193 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2194 { 2195 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2196 } 2197 2198 #ifdef KVM_HAVE_MCE_INJECTION 2199 static __thread void *pending_sigbus_addr; 2200 static __thread int pending_sigbus_code; 2201 static __thread bool have_sigbus_pending; 2202 #endif 2203 2204 static void kvm_cpu_kick(CPUState *cpu) 2205 { 2206 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2207 } 2208 2209 static void kvm_cpu_kick_self(void) 2210 { 2211 if (kvm_immediate_exit) { 2212 kvm_cpu_kick(current_cpu); 2213 } else { 2214 qemu_cpu_kick_self(); 2215 } 2216 } 2217 2218 static void kvm_eat_signals(CPUState *cpu) 2219 { 2220 struct timespec ts = { 0, 0 }; 2221 siginfo_t siginfo; 2222 sigset_t waitset; 2223 sigset_t chkset; 2224 int r; 2225 2226 if (kvm_immediate_exit) { 2227 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2228 /* Write kvm_run->immediate_exit before the cpu->exit_request 2229 * write in kvm_cpu_exec. 2230 */ 2231 smp_wmb(); 2232 return; 2233 } 2234 2235 sigemptyset(&waitset); 2236 sigaddset(&waitset, SIG_IPI); 2237 2238 do { 2239 r = sigtimedwait(&waitset, &siginfo, &ts); 2240 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2241 perror("sigtimedwait"); 2242 exit(1); 2243 } 2244 2245 r = sigpending(&chkset); 2246 if (r == -1) { 2247 perror("sigpending"); 2248 exit(1); 2249 } 2250 } while (sigismember(&chkset, SIG_IPI)); 2251 } 2252 2253 int kvm_cpu_exec(CPUState *cpu) 2254 { 2255 struct kvm_run *run = cpu->kvm_run; 2256 int ret, run_ret; 2257 2258 DPRINTF("kvm_cpu_exec()\n"); 2259 2260 if (kvm_arch_process_async_events(cpu)) { 2261 atomic_set(&cpu->exit_request, 0); 2262 return EXCP_HLT; 2263 } 2264 2265 qemu_mutex_unlock_iothread(); 2266 cpu_exec_start(cpu); 2267 2268 do { 2269 MemTxAttrs attrs; 2270 2271 if (cpu->vcpu_dirty) { 2272 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2273 cpu->vcpu_dirty = false; 2274 } 2275 2276 kvm_arch_pre_run(cpu, run); 2277 if (atomic_read(&cpu->exit_request)) { 2278 DPRINTF("interrupt exit requested\n"); 2279 /* 2280 * KVM requires us to reenter the kernel after IO exits to complete 2281 * instruction emulation. This self-signal will ensure that we 2282 * leave ASAP again. 2283 */ 2284 kvm_cpu_kick_self(); 2285 } 2286 2287 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2288 * Matching barrier in kvm_eat_signals. 2289 */ 2290 smp_rmb(); 2291 2292 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2293 2294 attrs = kvm_arch_post_run(cpu, run); 2295 2296 #ifdef KVM_HAVE_MCE_INJECTION 2297 if (unlikely(have_sigbus_pending)) { 2298 qemu_mutex_lock_iothread(); 2299 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2300 pending_sigbus_addr); 2301 have_sigbus_pending = false; 2302 qemu_mutex_unlock_iothread(); 2303 } 2304 #endif 2305 2306 if (run_ret < 0) { 2307 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2308 DPRINTF("io window exit\n"); 2309 kvm_eat_signals(cpu); 2310 ret = EXCP_INTERRUPT; 2311 break; 2312 } 2313 fprintf(stderr, "error: kvm run failed %s\n", 2314 strerror(-run_ret)); 2315 #ifdef TARGET_PPC 2316 if (run_ret == -EBUSY) { 2317 fprintf(stderr, 2318 "This is probably because your SMT is enabled.\n" 2319 "VCPU can only run on primary threads with all " 2320 "secondary threads offline.\n"); 2321 } 2322 #endif 2323 ret = -1; 2324 break; 2325 } 2326 2327 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2328 switch (run->exit_reason) { 2329 case KVM_EXIT_IO: 2330 DPRINTF("handle_io\n"); 2331 /* Called outside BQL */ 2332 kvm_handle_io(run->io.port, attrs, 2333 (uint8_t *)run + run->io.data_offset, 2334 run->io.direction, 2335 run->io.size, 2336 run->io.count); 2337 ret = 0; 2338 break; 2339 case KVM_EXIT_MMIO: 2340 DPRINTF("handle_mmio\n"); 2341 /* Called outside BQL */ 2342 address_space_rw(&address_space_memory, 2343 run->mmio.phys_addr, attrs, 2344 run->mmio.data, 2345 run->mmio.len, 2346 run->mmio.is_write); 2347 ret = 0; 2348 break; 2349 case KVM_EXIT_IRQ_WINDOW_OPEN: 2350 DPRINTF("irq_window_open\n"); 2351 ret = EXCP_INTERRUPT; 2352 break; 2353 case KVM_EXIT_SHUTDOWN: 2354 DPRINTF("shutdown\n"); 2355 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2356 ret = EXCP_INTERRUPT; 2357 break; 2358 case KVM_EXIT_UNKNOWN: 2359 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2360 (uint64_t)run->hw.hardware_exit_reason); 2361 ret = -1; 2362 break; 2363 case KVM_EXIT_INTERNAL_ERROR: 2364 ret = kvm_handle_internal_error(cpu, run); 2365 break; 2366 case KVM_EXIT_SYSTEM_EVENT: 2367 switch (run->system_event.type) { 2368 case KVM_SYSTEM_EVENT_SHUTDOWN: 2369 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2370 ret = EXCP_INTERRUPT; 2371 break; 2372 case KVM_SYSTEM_EVENT_RESET: 2373 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2374 ret = EXCP_INTERRUPT; 2375 break; 2376 case KVM_SYSTEM_EVENT_CRASH: 2377 kvm_cpu_synchronize_state(cpu); 2378 qemu_mutex_lock_iothread(); 2379 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2380 qemu_mutex_unlock_iothread(); 2381 ret = 0; 2382 break; 2383 default: 2384 DPRINTF("kvm_arch_handle_exit\n"); 2385 ret = kvm_arch_handle_exit(cpu, run); 2386 break; 2387 } 2388 break; 2389 default: 2390 DPRINTF("kvm_arch_handle_exit\n"); 2391 ret = kvm_arch_handle_exit(cpu, run); 2392 break; 2393 } 2394 } while (ret == 0); 2395 2396 cpu_exec_end(cpu); 2397 qemu_mutex_lock_iothread(); 2398 2399 if (ret < 0) { 2400 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2401 vm_stop(RUN_STATE_INTERNAL_ERROR); 2402 } 2403 2404 atomic_set(&cpu->exit_request, 0); 2405 return ret; 2406 } 2407 2408 int kvm_ioctl(KVMState *s, int type, ...) 2409 { 2410 int ret; 2411 void *arg; 2412 va_list ap; 2413 2414 va_start(ap, type); 2415 arg = va_arg(ap, void *); 2416 va_end(ap); 2417 2418 trace_kvm_ioctl(type, arg); 2419 ret = ioctl(s->fd, type, arg); 2420 if (ret == -1) { 2421 ret = -errno; 2422 } 2423 return ret; 2424 } 2425 2426 int kvm_vm_ioctl(KVMState *s, int type, ...) 2427 { 2428 int ret; 2429 void *arg; 2430 va_list ap; 2431 2432 va_start(ap, type); 2433 arg = va_arg(ap, void *); 2434 va_end(ap); 2435 2436 trace_kvm_vm_ioctl(type, arg); 2437 ret = ioctl(s->vmfd, type, arg); 2438 if (ret == -1) { 2439 ret = -errno; 2440 } 2441 return ret; 2442 } 2443 2444 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2445 { 2446 int ret; 2447 void *arg; 2448 va_list ap; 2449 2450 va_start(ap, type); 2451 arg = va_arg(ap, void *); 2452 va_end(ap); 2453 2454 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2455 ret = ioctl(cpu->kvm_fd, type, arg); 2456 if (ret == -1) { 2457 ret = -errno; 2458 } 2459 return ret; 2460 } 2461 2462 int kvm_device_ioctl(int fd, int type, ...) 2463 { 2464 int ret; 2465 void *arg; 2466 va_list ap; 2467 2468 va_start(ap, type); 2469 arg = va_arg(ap, void *); 2470 va_end(ap); 2471 2472 trace_kvm_device_ioctl(fd, type, arg); 2473 ret = ioctl(fd, type, arg); 2474 if (ret == -1) { 2475 ret = -errno; 2476 } 2477 return ret; 2478 } 2479 2480 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2481 { 2482 int ret; 2483 struct kvm_device_attr attribute = { 2484 .group = group, 2485 .attr = attr, 2486 }; 2487 2488 if (!kvm_vm_attributes_allowed) { 2489 return 0; 2490 } 2491 2492 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2493 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2494 return ret ? 0 : 1; 2495 } 2496 2497 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2498 { 2499 struct kvm_device_attr attribute = { 2500 .group = group, 2501 .attr = attr, 2502 .flags = 0, 2503 }; 2504 2505 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2506 } 2507 2508 int kvm_device_access(int fd, int group, uint64_t attr, 2509 void *val, bool write, Error **errp) 2510 { 2511 struct kvm_device_attr kvmattr; 2512 int err; 2513 2514 kvmattr.flags = 0; 2515 kvmattr.group = group; 2516 kvmattr.attr = attr; 2517 kvmattr.addr = (uintptr_t)val; 2518 2519 err = kvm_device_ioctl(fd, 2520 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2521 &kvmattr); 2522 if (err < 0) { 2523 error_setg_errno(errp, -err, 2524 "KVM_%s_DEVICE_ATTR failed: Group %d " 2525 "attr 0x%016" PRIx64, 2526 write ? "SET" : "GET", group, attr); 2527 } 2528 return err; 2529 } 2530 2531 bool kvm_has_sync_mmu(void) 2532 { 2533 return kvm_state->sync_mmu; 2534 } 2535 2536 int kvm_has_vcpu_events(void) 2537 { 2538 return kvm_state->vcpu_events; 2539 } 2540 2541 int kvm_has_robust_singlestep(void) 2542 { 2543 return kvm_state->robust_singlestep; 2544 } 2545 2546 int kvm_has_debugregs(void) 2547 { 2548 return kvm_state->debugregs; 2549 } 2550 2551 int kvm_max_nested_state_length(void) 2552 { 2553 return kvm_state->max_nested_state_len; 2554 } 2555 2556 int kvm_has_many_ioeventfds(void) 2557 { 2558 if (!kvm_enabled()) { 2559 return 0; 2560 } 2561 return kvm_state->many_ioeventfds; 2562 } 2563 2564 int kvm_has_gsi_routing(void) 2565 { 2566 #ifdef KVM_CAP_IRQ_ROUTING 2567 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2568 #else 2569 return false; 2570 #endif 2571 } 2572 2573 int kvm_has_intx_set_mask(void) 2574 { 2575 return kvm_state->intx_set_mask; 2576 } 2577 2578 bool kvm_arm_supports_user_irq(void) 2579 { 2580 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2581 } 2582 2583 #ifdef KVM_CAP_SET_GUEST_DEBUG 2584 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2585 target_ulong pc) 2586 { 2587 struct kvm_sw_breakpoint *bp; 2588 2589 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2590 if (bp->pc == pc) { 2591 return bp; 2592 } 2593 } 2594 return NULL; 2595 } 2596 2597 int kvm_sw_breakpoints_active(CPUState *cpu) 2598 { 2599 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2600 } 2601 2602 struct kvm_set_guest_debug_data { 2603 struct kvm_guest_debug dbg; 2604 int err; 2605 }; 2606 2607 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2608 { 2609 struct kvm_set_guest_debug_data *dbg_data = 2610 (struct kvm_set_guest_debug_data *) data.host_ptr; 2611 2612 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2613 &dbg_data->dbg); 2614 } 2615 2616 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2617 { 2618 struct kvm_set_guest_debug_data data; 2619 2620 data.dbg.control = reinject_trap; 2621 2622 if (cpu->singlestep_enabled) { 2623 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2624 } 2625 kvm_arch_update_guest_debug(cpu, &data.dbg); 2626 2627 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2628 RUN_ON_CPU_HOST_PTR(&data)); 2629 return data.err; 2630 } 2631 2632 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2633 target_ulong len, int type) 2634 { 2635 struct kvm_sw_breakpoint *bp; 2636 int err; 2637 2638 if (type == GDB_BREAKPOINT_SW) { 2639 bp = kvm_find_sw_breakpoint(cpu, addr); 2640 if (bp) { 2641 bp->use_count++; 2642 return 0; 2643 } 2644 2645 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2646 bp->pc = addr; 2647 bp->use_count = 1; 2648 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2649 if (err) { 2650 g_free(bp); 2651 return err; 2652 } 2653 2654 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2655 } else { 2656 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2657 if (err) { 2658 return err; 2659 } 2660 } 2661 2662 CPU_FOREACH(cpu) { 2663 err = kvm_update_guest_debug(cpu, 0); 2664 if (err) { 2665 return err; 2666 } 2667 } 2668 return 0; 2669 } 2670 2671 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2672 target_ulong len, int type) 2673 { 2674 struct kvm_sw_breakpoint *bp; 2675 int err; 2676 2677 if (type == GDB_BREAKPOINT_SW) { 2678 bp = kvm_find_sw_breakpoint(cpu, addr); 2679 if (!bp) { 2680 return -ENOENT; 2681 } 2682 2683 if (bp->use_count > 1) { 2684 bp->use_count--; 2685 return 0; 2686 } 2687 2688 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2689 if (err) { 2690 return err; 2691 } 2692 2693 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2694 g_free(bp); 2695 } else { 2696 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2697 if (err) { 2698 return err; 2699 } 2700 } 2701 2702 CPU_FOREACH(cpu) { 2703 err = kvm_update_guest_debug(cpu, 0); 2704 if (err) { 2705 return err; 2706 } 2707 } 2708 return 0; 2709 } 2710 2711 void kvm_remove_all_breakpoints(CPUState *cpu) 2712 { 2713 struct kvm_sw_breakpoint *bp, *next; 2714 KVMState *s = cpu->kvm_state; 2715 CPUState *tmpcpu; 2716 2717 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2718 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2719 /* Try harder to find a CPU that currently sees the breakpoint. */ 2720 CPU_FOREACH(tmpcpu) { 2721 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2722 break; 2723 } 2724 } 2725 } 2726 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2727 g_free(bp); 2728 } 2729 kvm_arch_remove_all_hw_breakpoints(); 2730 2731 CPU_FOREACH(cpu) { 2732 kvm_update_guest_debug(cpu, 0); 2733 } 2734 } 2735 2736 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2737 2738 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2739 { 2740 return -EINVAL; 2741 } 2742 2743 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2744 target_ulong len, int type) 2745 { 2746 return -EINVAL; 2747 } 2748 2749 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2750 target_ulong len, int type) 2751 { 2752 return -EINVAL; 2753 } 2754 2755 void kvm_remove_all_breakpoints(CPUState *cpu) 2756 { 2757 } 2758 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2759 2760 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2761 { 2762 KVMState *s = kvm_state; 2763 struct kvm_signal_mask *sigmask; 2764 int r; 2765 2766 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2767 2768 sigmask->len = s->sigmask_len; 2769 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2770 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2771 g_free(sigmask); 2772 2773 return r; 2774 } 2775 2776 static void kvm_ipi_signal(int sig) 2777 { 2778 if (current_cpu) { 2779 assert(kvm_immediate_exit); 2780 kvm_cpu_kick(current_cpu); 2781 } 2782 } 2783 2784 void kvm_init_cpu_signals(CPUState *cpu) 2785 { 2786 int r; 2787 sigset_t set; 2788 struct sigaction sigact; 2789 2790 memset(&sigact, 0, sizeof(sigact)); 2791 sigact.sa_handler = kvm_ipi_signal; 2792 sigaction(SIG_IPI, &sigact, NULL); 2793 2794 pthread_sigmask(SIG_BLOCK, NULL, &set); 2795 #if defined KVM_HAVE_MCE_INJECTION 2796 sigdelset(&set, SIGBUS); 2797 pthread_sigmask(SIG_SETMASK, &set, NULL); 2798 #endif 2799 sigdelset(&set, SIG_IPI); 2800 if (kvm_immediate_exit) { 2801 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2802 } else { 2803 r = kvm_set_signal_mask(cpu, &set); 2804 } 2805 if (r) { 2806 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2807 exit(1); 2808 } 2809 } 2810 2811 /* Called asynchronously in VCPU thread. */ 2812 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2813 { 2814 #ifdef KVM_HAVE_MCE_INJECTION 2815 if (have_sigbus_pending) { 2816 return 1; 2817 } 2818 have_sigbus_pending = true; 2819 pending_sigbus_addr = addr; 2820 pending_sigbus_code = code; 2821 atomic_set(&cpu->exit_request, 1); 2822 return 0; 2823 #else 2824 return 1; 2825 #endif 2826 } 2827 2828 /* Called synchronously (via signalfd) in main thread. */ 2829 int kvm_on_sigbus(int code, void *addr) 2830 { 2831 #ifdef KVM_HAVE_MCE_INJECTION 2832 /* Action required MCE kills the process if SIGBUS is blocked. Because 2833 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2834 * we can only get action optional here. 2835 */ 2836 assert(code != BUS_MCEERR_AR); 2837 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2838 return 0; 2839 #else 2840 return 1; 2841 #endif 2842 } 2843 2844 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2845 { 2846 int ret; 2847 struct kvm_create_device create_dev; 2848 2849 create_dev.type = type; 2850 create_dev.fd = -1; 2851 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2852 2853 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2854 return -ENOTSUP; 2855 } 2856 2857 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2858 if (ret) { 2859 return ret; 2860 } 2861 2862 return test ? 0 : create_dev.fd; 2863 } 2864 2865 bool kvm_device_supported(int vmfd, uint64_t type) 2866 { 2867 struct kvm_create_device create_dev = { 2868 .type = type, 2869 .fd = -1, 2870 .flags = KVM_CREATE_DEVICE_TEST, 2871 }; 2872 2873 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2874 return false; 2875 } 2876 2877 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2878 } 2879 2880 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2881 { 2882 struct kvm_one_reg reg; 2883 int r; 2884 2885 reg.id = id; 2886 reg.addr = (uintptr_t) source; 2887 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2888 if (r) { 2889 trace_kvm_failed_reg_set(id, strerror(-r)); 2890 } 2891 return r; 2892 } 2893 2894 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2895 { 2896 struct kvm_one_reg reg; 2897 int r; 2898 2899 reg.id = id; 2900 reg.addr = (uintptr_t) target; 2901 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2902 if (r) { 2903 trace_kvm_failed_reg_get(id, strerror(-r)); 2904 } 2905 return r; 2906 } 2907 2908 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 2909 hwaddr start_addr, hwaddr size) 2910 { 2911 KVMState *kvm = KVM_STATE(ms->accelerator); 2912 int i; 2913 2914 for (i = 0; i < kvm->nr_as; ++i) { 2915 if (kvm->as[i].as == as && kvm->as[i].ml) { 2916 size = MIN(kvm_max_slot_size, size); 2917 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 2918 start_addr, size); 2919 } 2920 } 2921 2922 return false; 2923 } 2924 2925 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2926 { 2927 AccelClass *ac = ACCEL_CLASS(oc); 2928 ac->name = "KVM"; 2929 ac->init_machine = kvm_init; 2930 ac->has_memory = kvm_accel_has_memory; 2931 ac->allowed = &kvm_allowed; 2932 } 2933 2934 static const TypeInfo kvm_accel_type = { 2935 .name = TYPE_KVM_ACCEL, 2936 .parent = TYPE_ACCEL, 2937 .class_init = kvm_accel_class_init, 2938 .instance_size = sizeof(KVMState), 2939 }; 2940 2941 static void kvm_type_init(void) 2942 { 2943 type_register_static(&kvm_accel_type); 2944 } 2945 2946 type_init(kvm_type_init); 2947