1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 /* Default num of memslots to be allocated when VM starts */ 73 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 74 75 struct KVMParkedVcpu { 76 unsigned long vcpu_id; 77 int kvm_fd; 78 QLIST_ENTRY(KVMParkedVcpu) node; 79 }; 80 81 KVMState *kvm_state; 82 bool kvm_kernel_irqchip; 83 bool kvm_split_irqchip; 84 bool kvm_async_interrupts_allowed; 85 bool kvm_halt_in_kernel_allowed; 86 bool kvm_resamplefds_allowed; 87 bool kvm_msi_via_irqfd_allowed; 88 bool kvm_gsi_routing_allowed; 89 bool kvm_gsi_direct_mapping; 90 bool kvm_allowed; 91 bool kvm_readonly_mem_allowed; 92 bool kvm_vm_attributes_allowed; 93 bool kvm_msi_use_devid; 94 static bool kvm_has_guest_debug; 95 static int kvm_sstep_flags; 96 static bool kvm_immediate_exit; 97 static uint64_t kvm_supported_memory_attributes; 98 static bool kvm_guest_memfd_supported; 99 static hwaddr kvm_max_slot_size = ~0; 100 101 static const KVMCapabilityInfo kvm_required_capabilites[] = { 102 KVM_CAP_INFO(USER_MEMORY), 103 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 104 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 105 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 106 KVM_CAP_INFO(IOEVENTFD), 107 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 108 KVM_CAP_LAST_INFO 109 }; 110 111 static NotifierList kvm_irqchip_change_notifiers = 112 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 113 114 struct KVMResampleFd { 115 int gsi; 116 EventNotifier *resample_event; 117 QLIST_ENTRY(KVMResampleFd) node; 118 }; 119 typedef struct KVMResampleFd KVMResampleFd; 120 121 /* 122 * Only used with split irqchip where we need to do the resample fd 123 * kick for the kernel from userspace. 124 */ 125 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 126 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 127 128 static QemuMutex kml_slots_lock; 129 130 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 131 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 132 133 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 134 135 static inline void kvm_resample_fd_remove(int gsi) 136 { 137 KVMResampleFd *rfd; 138 139 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 140 if (rfd->gsi == gsi) { 141 QLIST_REMOVE(rfd, node); 142 g_free(rfd); 143 break; 144 } 145 } 146 } 147 148 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 149 { 150 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 151 152 rfd->gsi = gsi; 153 rfd->resample_event = event; 154 155 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 156 } 157 158 void kvm_resample_fd_notify(int gsi) 159 { 160 KVMResampleFd *rfd; 161 162 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 163 if (rfd->gsi == gsi) { 164 event_notifier_set(rfd->resample_event); 165 trace_kvm_resample_fd_notify(gsi); 166 return; 167 } 168 } 169 } 170 171 /** 172 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 173 * 174 * @kml: The KVMMemoryListener* to grow the slots[] array 175 * @nr_slots_new: The new size of slots[] array 176 * 177 * Returns: True if the array grows larger, false otherwise. 178 */ 179 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 180 { 181 unsigned int i, cur = kml->nr_slots_allocated; 182 KVMSlot *slots; 183 184 if (nr_slots_new > kvm_state->nr_slots) { 185 nr_slots_new = kvm_state->nr_slots; 186 } 187 188 if (cur >= nr_slots_new) { 189 /* Big enough, no need to grow, or we reached max */ 190 return false; 191 } 192 193 if (cur == 0) { 194 slots = g_new0(KVMSlot, nr_slots_new); 195 } else { 196 assert(kml->slots); 197 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 198 /* 199 * g_renew() doesn't initialize extended buffers, however kvm 200 * memslots require fields to be zero-initialized. E.g. pointers, 201 * memory_size field, etc. 202 */ 203 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 204 } 205 206 for (i = cur; i < nr_slots_new; i++) { 207 slots[i].slot = i; 208 } 209 210 kml->slots = slots; 211 kml->nr_slots_allocated = nr_slots_new; 212 trace_kvm_slots_grow(cur, nr_slots_new); 213 214 return true; 215 } 216 217 static bool kvm_slots_double(KVMMemoryListener *kml) 218 { 219 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 220 } 221 222 unsigned int kvm_get_max_memslots(void) 223 { 224 KVMState *s = KVM_STATE(current_accel()); 225 226 return s->nr_slots; 227 } 228 229 unsigned int kvm_get_free_memslots(void) 230 { 231 unsigned int used_slots = 0; 232 KVMState *s = kvm_state; 233 int i; 234 235 kvm_slots_lock(); 236 for (i = 0; i < s->nr_as; i++) { 237 if (!s->as[i].ml) { 238 continue; 239 } 240 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 241 } 242 kvm_slots_unlock(); 243 244 return s->nr_slots - used_slots; 245 } 246 247 /* Called with KVMMemoryListener.slots_lock held */ 248 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 249 { 250 unsigned int n; 251 int i; 252 253 for (i = 0; i < kml->nr_slots_allocated; i++) { 254 if (kml->slots[i].memory_size == 0) { 255 return &kml->slots[i]; 256 } 257 } 258 259 /* 260 * If no free slots, try to grow first by doubling. Cache the old size 261 * here to avoid another round of search: if the grow succeeded, it 262 * means slots[] now must have the existing "n" slots occupied, 263 * followed by one or more free slots starting from slots[n]. 264 */ 265 n = kml->nr_slots_allocated; 266 if (kvm_slots_double(kml)) { 267 return &kml->slots[n]; 268 } 269 270 return NULL; 271 } 272 273 /* Called with KVMMemoryListener.slots_lock held */ 274 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 275 { 276 KVMSlot *slot = kvm_get_free_slot(kml); 277 278 if (slot) { 279 return slot; 280 } 281 282 fprintf(stderr, "%s: no free slot available\n", __func__); 283 abort(); 284 } 285 286 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 287 hwaddr start_addr, 288 hwaddr size) 289 { 290 int i; 291 292 for (i = 0; i < kml->nr_slots_allocated; i++) { 293 KVMSlot *mem = &kml->slots[i]; 294 295 if (start_addr == mem->start_addr && size == mem->memory_size) { 296 return mem; 297 } 298 } 299 300 return NULL; 301 } 302 303 /* 304 * Calculate and align the start address and the size of the section. 305 * Return the size. If the size is 0, the aligned section is empty. 306 */ 307 static hwaddr kvm_align_section(MemoryRegionSection *section, 308 hwaddr *start) 309 { 310 hwaddr size = int128_get64(section->size); 311 hwaddr delta, aligned; 312 313 /* kvm works in page size chunks, but the function may be called 314 with sub-page size and unaligned start address. Pad the start 315 address to next and truncate size to previous page boundary. */ 316 aligned = ROUND_UP(section->offset_within_address_space, 317 qemu_real_host_page_size()); 318 delta = aligned - section->offset_within_address_space; 319 *start = aligned; 320 if (delta > size) { 321 return 0; 322 } 323 324 return (size - delta) & qemu_real_host_page_mask(); 325 } 326 327 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 328 hwaddr *phys_addr) 329 { 330 KVMMemoryListener *kml = &s->memory_listener; 331 int i, ret = 0; 332 333 kvm_slots_lock(); 334 for (i = 0; i < kml->nr_slots_allocated; i++) { 335 KVMSlot *mem = &kml->slots[i]; 336 337 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 338 *phys_addr = mem->start_addr + (ram - mem->ram); 339 ret = 1; 340 break; 341 } 342 } 343 kvm_slots_unlock(); 344 345 return ret; 346 } 347 348 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 349 { 350 KVMState *s = kvm_state; 351 struct kvm_userspace_memory_region2 mem; 352 int ret; 353 354 mem.slot = slot->slot | (kml->as_id << 16); 355 mem.guest_phys_addr = slot->start_addr; 356 mem.userspace_addr = (unsigned long)slot->ram; 357 mem.flags = slot->flags; 358 mem.guest_memfd = slot->guest_memfd; 359 mem.guest_memfd_offset = slot->guest_memfd_offset; 360 361 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 362 /* Set the slot size to 0 before setting the slot to the desired 363 * value. This is needed based on KVM commit 75d61fbc. */ 364 mem.memory_size = 0; 365 366 if (kvm_guest_memfd_supported) { 367 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 368 } else { 369 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 370 } 371 if (ret < 0) { 372 goto err; 373 } 374 } 375 mem.memory_size = slot->memory_size; 376 if (kvm_guest_memfd_supported) { 377 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 378 } else { 379 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 380 } 381 slot->old_flags = mem.flags; 382 err: 383 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 384 mem.guest_phys_addr, mem.memory_size, 385 mem.userspace_addr, mem.guest_memfd, 386 mem.guest_memfd_offset, ret); 387 if (ret < 0) { 388 if (kvm_guest_memfd_supported) { 389 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 390 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 391 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 392 " guest_memfd_offset=0x%" PRIx64 ": %s", 393 __func__, mem.slot, slot->start_addr, 394 (uint64_t)mem.memory_size, mem.flags, 395 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 396 strerror(errno)); 397 } else { 398 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 399 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 400 __func__, mem.slot, slot->start_addr, 401 (uint64_t)mem.memory_size, strerror(errno)); 402 } 403 } 404 return ret; 405 } 406 407 void kvm_park_vcpu(CPUState *cpu) 408 { 409 struct KVMParkedVcpu *vcpu; 410 411 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 412 413 vcpu = g_malloc0(sizeof(*vcpu)); 414 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 415 vcpu->kvm_fd = cpu->kvm_fd; 416 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 417 } 418 419 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 420 { 421 struct KVMParkedVcpu *cpu; 422 int kvm_fd = -ENOENT; 423 424 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 425 if (cpu->vcpu_id == vcpu_id) { 426 QLIST_REMOVE(cpu, node); 427 kvm_fd = cpu->kvm_fd; 428 g_free(cpu); 429 break; 430 } 431 } 432 433 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 434 435 return kvm_fd; 436 } 437 438 int kvm_create_vcpu(CPUState *cpu) 439 { 440 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 441 KVMState *s = kvm_state; 442 int kvm_fd; 443 444 /* check if the KVM vCPU already exist but is parked */ 445 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 446 if (kvm_fd < 0) { 447 /* vCPU not parked: create a new KVM vCPU */ 448 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 449 if (kvm_fd < 0) { 450 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 451 return kvm_fd; 452 } 453 } 454 455 cpu->kvm_fd = kvm_fd; 456 cpu->kvm_state = s; 457 cpu->vcpu_dirty = true; 458 cpu->dirty_pages = 0; 459 cpu->throttle_us_per_full = 0; 460 461 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 462 463 return 0; 464 } 465 466 int kvm_create_and_park_vcpu(CPUState *cpu) 467 { 468 int ret = 0; 469 470 ret = kvm_create_vcpu(cpu); 471 if (!ret) { 472 kvm_park_vcpu(cpu); 473 } 474 475 return ret; 476 } 477 478 static int do_kvm_destroy_vcpu(CPUState *cpu) 479 { 480 KVMState *s = kvm_state; 481 long mmap_size; 482 int ret = 0; 483 484 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 485 486 ret = kvm_arch_destroy_vcpu(cpu); 487 if (ret < 0) { 488 goto err; 489 } 490 491 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 492 if (mmap_size < 0) { 493 ret = mmap_size; 494 trace_kvm_failed_get_vcpu_mmap_size(); 495 goto err; 496 } 497 498 ret = munmap(cpu->kvm_run, mmap_size); 499 if (ret < 0) { 500 goto err; 501 } 502 503 if (cpu->kvm_dirty_gfns) { 504 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 505 if (ret < 0) { 506 goto err; 507 } 508 } 509 510 kvm_park_vcpu(cpu); 511 err: 512 return ret; 513 } 514 515 void kvm_destroy_vcpu(CPUState *cpu) 516 { 517 if (do_kvm_destroy_vcpu(cpu) < 0) { 518 error_report("kvm_destroy_vcpu failed"); 519 exit(EXIT_FAILURE); 520 } 521 } 522 523 int kvm_init_vcpu(CPUState *cpu, Error **errp) 524 { 525 KVMState *s = kvm_state; 526 long mmap_size; 527 int ret; 528 529 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 530 531 ret = kvm_create_vcpu(cpu); 532 if (ret < 0) { 533 error_setg_errno(errp, -ret, 534 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 535 kvm_arch_vcpu_id(cpu)); 536 goto err; 537 } 538 539 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 540 if (mmap_size < 0) { 541 ret = mmap_size; 542 error_setg_errno(errp, -mmap_size, 543 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 544 goto err; 545 } 546 547 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 548 cpu->kvm_fd, 0); 549 if (cpu->kvm_run == MAP_FAILED) { 550 ret = -errno; 551 error_setg_errno(errp, ret, 552 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 553 kvm_arch_vcpu_id(cpu)); 554 goto err; 555 } 556 557 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 558 s->coalesced_mmio_ring = 559 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 560 } 561 562 if (s->kvm_dirty_ring_size) { 563 /* Use MAP_SHARED to share pages with the kernel */ 564 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 565 PROT_READ | PROT_WRITE, MAP_SHARED, 566 cpu->kvm_fd, 567 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 568 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 569 ret = -errno; 570 goto err; 571 } 572 } 573 574 ret = kvm_arch_init_vcpu(cpu); 575 if (ret < 0) { 576 error_setg_errno(errp, -ret, 577 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 578 kvm_arch_vcpu_id(cpu)); 579 } 580 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 581 582 err: 583 return ret; 584 } 585 586 /* 587 * dirty pages logging control 588 */ 589 590 static int kvm_mem_flags(MemoryRegion *mr) 591 { 592 bool readonly = mr->readonly || memory_region_is_romd(mr); 593 int flags = 0; 594 595 if (memory_region_get_dirty_log_mask(mr) != 0) { 596 flags |= KVM_MEM_LOG_DIRTY_PAGES; 597 } 598 if (readonly && kvm_readonly_mem_allowed) { 599 flags |= KVM_MEM_READONLY; 600 } 601 if (memory_region_has_guest_memfd(mr)) { 602 assert(kvm_guest_memfd_supported); 603 flags |= KVM_MEM_GUEST_MEMFD; 604 } 605 return flags; 606 } 607 608 /* Called with KVMMemoryListener.slots_lock held */ 609 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 610 MemoryRegion *mr) 611 { 612 mem->flags = kvm_mem_flags(mr); 613 614 /* If nothing changed effectively, no need to issue ioctl */ 615 if (mem->flags == mem->old_flags) { 616 return 0; 617 } 618 619 kvm_slot_init_dirty_bitmap(mem); 620 return kvm_set_user_memory_region(kml, mem, false); 621 } 622 623 static int kvm_section_update_flags(KVMMemoryListener *kml, 624 MemoryRegionSection *section) 625 { 626 hwaddr start_addr, size, slot_size; 627 KVMSlot *mem; 628 int ret = 0; 629 630 size = kvm_align_section(section, &start_addr); 631 if (!size) { 632 return 0; 633 } 634 635 kvm_slots_lock(); 636 637 while (size && !ret) { 638 slot_size = MIN(kvm_max_slot_size, size); 639 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 640 if (!mem) { 641 /* We don't have a slot if we want to trap every access. */ 642 goto out; 643 } 644 645 ret = kvm_slot_update_flags(kml, mem, section->mr); 646 start_addr += slot_size; 647 size -= slot_size; 648 } 649 650 out: 651 kvm_slots_unlock(); 652 return ret; 653 } 654 655 static void kvm_log_start(MemoryListener *listener, 656 MemoryRegionSection *section, 657 int old, int new) 658 { 659 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 660 int r; 661 662 if (old != 0) { 663 return; 664 } 665 666 r = kvm_section_update_flags(kml, section); 667 if (r < 0) { 668 abort(); 669 } 670 } 671 672 static void kvm_log_stop(MemoryListener *listener, 673 MemoryRegionSection *section, 674 int old, int new) 675 { 676 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 677 int r; 678 679 if (new != 0) { 680 return; 681 } 682 683 r = kvm_section_update_flags(kml, section); 684 if (r < 0) { 685 abort(); 686 } 687 } 688 689 /* get kvm's dirty pages bitmap and update qemu's */ 690 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 691 { 692 ram_addr_t start = slot->ram_start_offset; 693 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 694 695 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 696 } 697 698 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 699 { 700 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 701 } 702 703 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 704 705 /* Allocate the dirty bitmap for a slot */ 706 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 707 { 708 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 709 return; 710 } 711 712 /* 713 * XXX bad kernel interface alert 714 * For dirty bitmap, kernel allocates array of size aligned to 715 * bits-per-long. But for case when the kernel is 64bits and 716 * the userspace is 32bits, userspace can't align to the same 717 * bits-per-long, since sizeof(long) is different between kernel 718 * and user space. This way, userspace will provide buffer which 719 * may be 4 bytes less than the kernel will use, resulting in 720 * userspace memory corruption (which is not detectable by valgrind 721 * too, in most cases). 722 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 723 * a hope that sizeof(long) won't become >8 any time soon. 724 * 725 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 726 * And mem->memory_size is aligned to it (otherwise this mem can't 727 * be registered to KVM). 728 */ 729 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 730 /*HOST_LONG_BITS*/ 64) / 8; 731 mem->dirty_bmap = g_malloc0(bitmap_size); 732 mem->dirty_bmap_size = bitmap_size; 733 } 734 735 /* 736 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 737 * succeeded, false otherwise 738 */ 739 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 740 { 741 struct kvm_dirty_log d = {}; 742 int ret; 743 744 d.dirty_bitmap = slot->dirty_bmap; 745 d.slot = slot->slot | (slot->as_id << 16); 746 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 747 748 if (ret == -ENOENT) { 749 /* kernel does not have dirty bitmap in this slot */ 750 ret = 0; 751 } 752 if (ret) { 753 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 754 __func__, ret); 755 } 756 return ret == 0; 757 } 758 759 /* Should be with all slots_lock held for the address spaces. */ 760 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 761 uint32_t slot_id, uint64_t offset) 762 { 763 KVMMemoryListener *kml; 764 KVMSlot *mem; 765 766 if (as_id >= s->nr_as) { 767 return; 768 } 769 770 kml = s->as[as_id].ml; 771 mem = &kml->slots[slot_id]; 772 773 if (!mem->memory_size || offset >= 774 (mem->memory_size / qemu_real_host_page_size())) { 775 return; 776 } 777 778 set_bit(offset, mem->dirty_bmap); 779 } 780 781 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 782 { 783 /* 784 * Read the flags before the value. Pairs with barrier in 785 * KVM's kvm_dirty_ring_push() function. 786 */ 787 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 788 } 789 790 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 791 { 792 /* 793 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 794 * sees the full content of the ring: 795 * 796 * CPU0 CPU1 CPU2 797 * ------------------------------------------------------------------------------ 798 * fill gfn0 799 * store-rel flags for gfn0 800 * load-acq flags for gfn0 801 * store-rel RESET for gfn0 802 * ioctl(RESET_RINGS) 803 * load-acq flags for gfn0 804 * check if flags have RESET 805 * 806 * The synchronization goes from CPU2 to CPU0 to CPU1. 807 */ 808 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 809 } 810 811 /* 812 * Should be with all slots_lock held for the address spaces. It returns the 813 * dirty page we've collected on this dirty ring. 814 */ 815 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 816 { 817 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 818 uint32_t ring_size = s->kvm_dirty_ring_size; 819 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 820 821 /* 822 * It's possible that we race with vcpu creation code where the vcpu is 823 * put onto the vcpus list but not yet initialized the dirty ring 824 * structures. If so, skip it. 825 */ 826 if (!cpu->created) { 827 return 0; 828 } 829 830 assert(dirty_gfns && ring_size); 831 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 832 833 while (true) { 834 cur = &dirty_gfns[fetch % ring_size]; 835 if (!dirty_gfn_is_dirtied(cur)) { 836 break; 837 } 838 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 839 cur->offset); 840 dirty_gfn_set_collected(cur); 841 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 842 fetch++; 843 count++; 844 } 845 cpu->kvm_fetch_index = fetch; 846 cpu->dirty_pages += count; 847 848 return count; 849 } 850 851 /* Must be with slots_lock held */ 852 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 853 { 854 int ret; 855 uint64_t total = 0; 856 int64_t stamp; 857 858 stamp = get_clock(); 859 860 if (cpu) { 861 total = kvm_dirty_ring_reap_one(s, cpu); 862 } else { 863 CPU_FOREACH(cpu) { 864 total += kvm_dirty_ring_reap_one(s, cpu); 865 } 866 } 867 868 if (total) { 869 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 870 assert(ret == total); 871 } 872 873 stamp = get_clock() - stamp; 874 875 if (total) { 876 trace_kvm_dirty_ring_reap(total, stamp / 1000); 877 } 878 879 return total; 880 } 881 882 /* 883 * Currently for simplicity, we must hold BQL before calling this. We can 884 * consider to drop the BQL if we're clear with all the race conditions. 885 */ 886 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 887 { 888 uint64_t total; 889 890 /* 891 * We need to lock all kvm slots for all address spaces here, 892 * because: 893 * 894 * (1) We need to mark dirty for dirty bitmaps in multiple slots 895 * and for tons of pages, so it's better to take the lock here 896 * once rather than once per page. And more importantly, 897 * 898 * (2) We must _NOT_ publish dirty bits to the other threads 899 * (e.g., the migration thread) via the kvm memory slot dirty 900 * bitmaps before correctly re-protect those dirtied pages. 901 * Otherwise we can have potential risk of data corruption if 902 * the page data is read in the other thread before we do 903 * reset below. 904 */ 905 kvm_slots_lock(); 906 total = kvm_dirty_ring_reap_locked(s, cpu); 907 kvm_slots_unlock(); 908 909 return total; 910 } 911 912 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 913 { 914 /* No need to do anything */ 915 } 916 917 /* 918 * Kick all vcpus out in a synchronized way. When returned, we 919 * guarantee that every vcpu has been kicked and at least returned to 920 * userspace once. 921 */ 922 static void kvm_cpu_synchronize_kick_all(void) 923 { 924 CPUState *cpu; 925 926 CPU_FOREACH(cpu) { 927 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 928 } 929 } 930 931 /* 932 * Flush all the existing dirty pages to the KVM slot buffers. When 933 * this call returns, we guarantee that all the touched dirty pages 934 * before calling this function have been put into the per-kvmslot 935 * dirty bitmap. 936 * 937 * This function must be called with BQL held. 938 */ 939 static void kvm_dirty_ring_flush(void) 940 { 941 trace_kvm_dirty_ring_flush(0); 942 /* 943 * The function needs to be serialized. Since this function 944 * should always be with BQL held, serialization is guaranteed. 945 * However, let's be sure of it. 946 */ 947 assert(bql_locked()); 948 /* 949 * First make sure to flush the hardware buffers by kicking all 950 * vcpus out in a synchronous way. 951 */ 952 kvm_cpu_synchronize_kick_all(); 953 kvm_dirty_ring_reap(kvm_state, NULL); 954 trace_kvm_dirty_ring_flush(1); 955 } 956 957 /** 958 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 959 * 960 * This function will first try to fetch dirty bitmap from the kernel, 961 * and then updates qemu's dirty bitmap. 962 * 963 * NOTE: caller must be with kml->slots_lock held. 964 * 965 * @kml: the KVM memory listener object 966 * @section: the memory section to sync the dirty bitmap with 967 */ 968 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 969 MemoryRegionSection *section) 970 { 971 KVMState *s = kvm_state; 972 KVMSlot *mem; 973 hwaddr start_addr, size; 974 hwaddr slot_size; 975 976 size = kvm_align_section(section, &start_addr); 977 while (size) { 978 slot_size = MIN(kvm_max_slot_size, size); 979 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 980 if (!mem) { 981 /* We don't have a slot if we want to trap every access. */ 982 return; 983 } 984 if (kvm_slot_get_dirty_log(s, mem)) { 985 kvm_slot_sync_dirty_pages(mem); 986 } 987 start_addr += slot_size; 988 size -= slot_size; 989 } 990 } 991 992 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 993 #define KVM_CLEAR_LOG_SHIFT 6 994 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 995 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 996 997 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 998 uint64_t size) 999 { 1000 KVMState *s = kvm_state; 1001 uint64_t end, bmap_start, start_delta, bmap_npages; 1002 struct kvm_clear_dirty_log d; 1003 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1004 int ret; 1005 1006 /* 1007 * We need to extend either the start or the size or both to 1008 * satisfy the KVM interface requirement. Firstly, do the start 1009 * page alignment on 64 host pages 1010 */ 1011 bmap_start = start & KVM_CLEAR_LOG_MASK; 1012 start_delta = start - bmap_start; 1013 bmap_start /= psize; 1014 1015 /* 1016 * The kernel interface has restriction on the size too, that either: 1017 * 1018 * (1) the size is 64 host pages aligned (just like the start), or 1019 * (2) the size fills up until the end of the KVM memslot. 1020 */ 1021 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1022 << KVM_CLEAR_LOG_SHIFT; 1023 end = mem->memory_size / psize; 1024 if (bmap_npages > end - bmap_start) { 1025 bmap_npages = end - bmap_start; 1026 } 1027 start_delta /= psize; 1028 1029 /* 1030 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1031 * that we won't clear any unknown dirty bits otherwise we might 1032 * accidentally clear some set bits which are not yet synced from 1033 * the kernel into QEMU's bitmap, then we'll lose track of the 1034 * guest modifications upon those pages (which can directly lead 1035 * to guest data loss or panic after migration). 1036 * 1037 * Layout of the KVMSlot.dirty_bmap: 1038 * 1039 * |<-------- bmap_npages -----------..>| 1040 * [1] 1041 * start_delta size 1042 * |----------------|-------------|------------------|------------| 1043 * ^ ^ ^ ^ 1044 * | | | | 1045 * start bmap_start (start) end 1046 * of memslot of memslot 1047 * 1048 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1049 */ 1050 1051 assert(bmap_start % BITS_PER_LONG == 0); 1052 /* We should never do log_clear before log_sync */ 1053 assert(mem->dirty_bmap); 1054 if (start_delta || bmap_npages - size / psize) { 1055 /* Slow path - we need to manipulate a temp bitmap */ 1056 bmap_clear = bitmap_new(bmap_npages); 1057 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1058 bmap_start, start_delta + size / psize); 1059 /* 1060 * We need to fill the holes at start because that was not 1061 * specified by the caller and we extended the bitmap only for 1062 * 64 pages alignment 1063 */ 1064 bitmap_clear(bmap_clear, 0, start_delta); 1065 d.dirty_bitmap = bmap_clear; 1066 } else { 1067 /* 1068 * Fast path - both start and size align well with BITS_PER_LONG 1069 * (or the end of memory slot) 1070 */ 1071 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1072 } 1073 1074 d.first_page = bmap_start; 1075 /* It should never overflow. If it happens, say something */ 1076 assert(bmap_npages <= UINT32_MAX); 1077 d.num_pages = bmap_npages; 1078 d.slot = mem->slot | (as_id << 16); 1079 1080 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1081 if (ret < 0 && ret != -ENOENT) { 1082 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1083 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1084 __func__, d.slot, (uint64_t)d.first_page, 1085 (uint32_t)d.num_pages, ret); 1086 } else { 1087 ret = 0; 1088 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1089 } 1090 1091 /* 1092 * After we have updated the remote dirty bitmap, we update the 1093 * cached bitmap as well for the memslot, then if another user 1094 * clears the same region we know we shouldn't clear it again on 1095 * the remote otherwise it's data loss as well. 1096 */ 1097 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1098 size / psize); 1099 /* This handles the NULL case well */ 1100 g_free(bmap_clear); 1101 return ret; 1102 } 1103 1104 1105 /** 1106 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1107 * 1108 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1109 * protection in the host kernel because in that case this operation 1110 * will be done within log_sync(). 1111 * 1112 * @kml: the kvm memory listener 1113 * @section: the memory range to clear dirty bitmap 1114 */ 1115 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1116 MemoryRegionSection *section) 1117 { 1118 KVMState *s = kvm_state; 1119 uint64_t start, size, offset, count; 1120 KVMSlot *mem; 1121 int ret = 0, i; 1122 1123 if (!s->manual_dirty_log_protect) { 1124 /* No need to do explicit clear */ 1125 return ret; 1126 } 1127 1128 start = section->offset_within_address_space; 1129 size = int128_get64(section->size); 1130 1131 if (!size) { 1132 /* Nothing more we can do... */ 1133 return ret; 1134 } 1135 1136 kvm_slots_lock(); 1137 1138 for (i = 0; i < kml->nr_slots_allocated; i++) { 1139 mem = &kml->slots[i]; 1140 /* Discard slots that are empty or do not overlap the section */ 1141 if (!mem->memory_size || 1142 mem->start_addr > start + size - 1 || 1143 start > mem->start_addr + mem->memory_size - 1) { 1144 continue; 1145 } 1146 1147 if (start >= mem->start_addr) { 1148 /* The slot starts before section or is aligned to it. */ 1149 offset = start - mem->start_addr; 1150 count = MIN(mem->memory_size - offset, size); 1151 } else { 1152 /* The slot starts after section. */ 1153 offset = 0; 1154 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1155 } 1156 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1157 if (ret < 0) { 1158 break; 1159 } 1160 } 1161 1162 kvm_slots_unlock(); 1163 1164 return ret; 1165 } 1166 1167 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1168 MemoryRegionSection *secion, 1169 hwaddr start, hwaddr size) 1170 { 1171 KVMState *s = kvm_state; 1172 1173 if (s->coalesced_mmio) { 1174 struct kvm_coalesced_mmio_zone zone; 1175 1176 zone.addr = start; 1177 zone.size = size; 1178 zone.pad = 0; 1179 1180 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1181 } 1182 } 1183 1184 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1185 MemoryRegionSection *secion, 1186 hwaddr start, hwaddr size) 1187 { 1188 KVMState *s = kvm_state; 1189 1190 if (s->coalesced_mmio) { 1191 struct kvm_coalesced_mmio_zone zone; 1192 1193 zone.addr = start; 1194 zone.size = size; 1195 zone.pad = 0; 1196 1197 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1198 } 1199 } 1200 1201 static void kvm_coalesce_pio_add(MemoryListener *listener, 1202 MemoryRegionSection *section, 1203 hwaddr start, hwaddr size) 1204 { 1205 KVMState *s = kvm_state; 1206 1207 if (s->coalesced_pio) { 1208 struct kvm_coalesced_mmio_zone zone; 1209 1210 zone.addr = start; 1211 zone.size = size; 1212 zone.pio = 1; 1213 1214 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1215 } 1216 } 1217 1218 static void kvm_coalesce_pio_del(MemoryListener *listener, 1219 MemoryRegionSection *section, 1220 hwaddr start, hwaddr size) 1221 { 1222 KVMState *s = kvm_state; 1223 1224 if (s->coalesced_pio) { 1225 struct kvm_coalesced_mmio_zone zone; 1226 1227 zone.addr = start; 1228 zone.size = size; 1229 zone.pio = 1; 1230 1231 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1232 } 1233 } 1234 1235 int kvm_check_extension(KVMState *s, unsigned int extension) 1236 { 1237 int ret; 1238 1239 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1240 if (ret < 0) { 1241 ret = 0; 1242 } 1243 1244 return ret; 1245 } 1246 1247 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1248 { 1249 int ret; 1250 1251 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1252 if (ret < 0) { 1253 /* VM wide version not implemented, use global one instead */ 1254 ret = kvm_check_extension(s, extension); 1255 } 1256 1257 return ret; 1258 } 1259 1260 /* 1261 * We track the poisoned pages to be able to: 1262 * - replace them on VM reset 1263 * - block a migration for a VM with a poisoned page 1264 */ 1265 typedef struct HWPoisonPage { 1266 ram_addr_t ram_addr; 1267 QLIST_ENTRY(HWPoisonPage) list; 1268 } HWPoisonPage; 1269 1270 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1271 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1272 1273 static void kvm_unpoison_all(void *param) 1274 { 1275 HWPoisonPage *page, *next_page; 1276 1277 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1278 QLIST_REMOVE(page, list); 1279 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1280 g_free(page); 1281 } 1282 } 1283 1284 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1285 { 1286 HWPoisonPage *page; 1287 1288 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1289 if (page->ram_addr == ram_addr) { 1290 return; 1291 } 1292 } 1293 page = g_new(HWPoisonPage, 1); 1294 page->ram_addr = ram_addr; 1295 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1296 } 1297 1298 bool kvm_hwpoisoned_mem(void) 1299 { 1300 return !QLIST_EMPTY(&hwpoison_page_list); 1301 } 1302 1303 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1304 { 1305 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1306 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1307 * endianness, but the memory core hands them in target endianness. 1308 * For example, PPC is always treated as big-endian even if running 1309 * on KVM and on PPC64LE. Correct here. 1310 */ 1311 switch (size) { 1312 case 2: 1313 val = bswap16(val); 1314 break; 1315 case 4: 1316 val = bswap32(val); 1317 break; 1318 } 1319 #endif 1320 return val; 1321 } 1322 1323 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1324 bool assign, uint32_t size, bool datamatch) 1325 { 1326 int ret; 1327 struct kvm_ioeventfd iofd = { 1328 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1329 .addr = addr, 1330 .len = size, 1331 .flags = 0, 1332 .fd = fd, 1333 }; 1334 1335 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1336 datamatch); 1337 if (!kvm_enabled()) { 1338 return -ENOSYS; 1339 } 1340 1341 if (datamatch) { 1342 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1343 } 1344 if (!assign) { 1345 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1346 } 1347 1348 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1349 1350 if (ret < 0) { 1351 return -errno; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1358 bool assign, uint32_t size, bool datamatch) 1359 { 1360 struct kvm_ioeventfd kick = { 1361 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1362 .addr = addr, 1363 .flags = KVM_IOEVENTFD_FLAG_PIO, 1364 .len = size, 1365 .fd = fd, 1366 }; 1367 int r; 1368 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1369 if (!kvm_enabled()) { 1370 return -ENOSYS; 1371 } 1372 if (datamatch) { 1373 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1374 } 1375 if (!assign) { 1376 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1377 } 1378 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1379 if (r < 0) { 1380 return r; 1381 } 1382 return 0; 1383 } 1384 1385 1386 static const KVMCapabilityInfo * 1387 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1388 { 1389 while (list->name) { 1390 if (!kvm_check_extension(s, list->value)) { 1391 return list; 1392 } 1393 list++; 1394 } 1395 return NULL; 1396 } 1397 1398 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1399 { 1400 g_assert( 1401 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1402 ); 1403 kvm_max_slot_size = max_slot_size; 1404 } 1405 1406 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1407 { 1408 struct kvm_memory_attributes attrs; 1409 int r; 1410 1411 assert((attr & kvm_supported_memory_attributes) == attr); 1412 attrs.attributes = attr; 1413 attrs.address = start; 1414 attrs.size = size; 1415 attrs.flags = 0; 1416 1417 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1418 if (r) { 1419 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1420 "with attr 0x%" PRIx64 " error '%s'", 1421 start, size, attr, strerror(errno)); 1422 } 1423 return r; 1424 } 1425 1426 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1427 { 1428 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1429 } 1430 1431 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1432 { 1433 return kvm_set_memory_attributes(start, size, 0); 1434 } 1435 1436 /* Called with KVMMemoryListener.slots_lock held */ 1437 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1438 MemoryRegionSection *section, bool add) 1439 { 1440 KVMSlot *mem; 1441 int err; 1442 MemoryRegion *mr = section->mr; 1443 bool writable = !mr->readonly && !mr->rom_device; 1444 hwaddr start_addr, size, slot_size, mr_offset; 1445 ram_addr_t ram_start_offset; 1446 void *ram; 1447 1448 if (!memory_region_is_ram(mr)) { 1449 if (writable || !kvm_readonly_mem_allowed) { 1450 return; 1451 } else if (!mr->romd_mode) { 1452 /* If the memory device is not in romd_mode, then we actually want 1453 * to remove the kvm memory slot so all accesses will trap. */ 1454 add = false; 1455 } 1456 } 1457 1458 size = kvm_align_section(section, &start_addr); 1459 if (!size) { 1460 return; 1461 } 1462 1463 /* The offset of the kvmslot within the memory region */ 1464 mr_offset = section->offset_within_region + start_addr - 1465 section->offset_within_address_space; 1466 1467 /* use aligned delta to align the ram address and offset */ 1468 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1469 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1470 1471 if (!add) { 1472 do { 1473 slot_size = MIN(kvm_max_slot_size, size); 1474 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1475 if (!mem) { 1476 return; 1477 } 1478 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1479 /* 1480 * NOTE: We should be aware of the fact that here we're only 1481 * doing a best effort to sync dirty bits. No matter whether 1482 * we're using dirty log or dirty ring, we ignored two facts: 1483 * 1484 * (1) dirty bits can reside in hardware buffers (PML) 1485 * 1486 * (2) after we collected dirty bits here, pages can be dirtied 1487 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1488 * remove the slot. 1489 * 1490 * Not easy. Let's cross the fingers until it's fixed. 1491 */ 1492 if (kvm_state->kvm_dirty_ring_size) { 1493 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1494 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1495 kvm_slot_sync_dirty_pages(mem); 1496 kvm_slot_get_dirty_log(kvm_state, mem); 1497 } 1498 } else { 1499 kvm_slot_get_dirty_log(kvm_state, mem); 1500 } 1501 kvm_slot_sync_dirty_pages(mem); 1502 } 1503 1504 /* unregister the slot */ 1505 g_free(mem->dirty_bmap); 1506 mem->dirty_bmap = NULL; 1507 mem->memory_size = 0; 1508 mem->flags = 0; 1509 err = kvm_set_user_memory_region(kml, mem, false); 1510 if (err) { 1511 fprintf(stderr, "%s: error unregistering slot: %s\n", 1512 __func__, strerror(-err)); 1513 abort(); 1514 } 1515 start_addr += slot_size; 1516 size -= slot_size; 1517 kml->nr_used_slots--; 1518 } while (size); 1519 return; 1520 } 1521 1522 /* register the new slot */ 1523 do { 1524 slot_size = MIN(kvm_max_slot_size, size); 1525 mem = kvm_alloc_slot(kml); 1526 mem->as_id = kml->as_id; 1527 mem->memory_size = slot_size; 1528 mem->start_addr = start_addr; 1529 mem->ram_start_offset = ram_start_offset; 1530 mem->ram = ram; 1531 mem->flags = kvm_mem_flags(mr); 1532 mem->guest_memfd = mr->ram_block->guest_memfd; 1533 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1534 1535 kvm_slot_init_dirty_bitmap(mem); 1536 err = kvm_set_user_memory_region(kml, mem, true); 1537 if (err) { 1538 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1539 strerror(-err)); 1540 abort(); 1541 } 1542 1543 if (memory_region_has_guest_memfd(mr)) { 1544 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1545 if (err) { 1546 error_report("%s: failed to set memory attribute private: %s", 1547 __func__, strerror(-err)); 1548 exit(1); 1549 } 1550 } 1551 1552 start_addr += slot_size; 1553 ram_start_offset += slot_size; 1554 ram += slot_size; 1555 size -= slot_size; 1556 kml->nr_used_slots++; 1557 } while (size); 1558 } 1559 1560 static void *kvm_dirty_ring_reaper_thread(void *data) 1561 { 1562 KVMState *s = data; 1563 struct KVMDirtyRingReaper *r = &s->reaper; 1564 1565 rcu_register_thread(); 1566 1567 trace_kvm_dirty_ring_reaper("init"); 1568 1569 while (true) { 1570 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1571 trace_kvm_dirty_ring_reaper("wait"); 1572 /* 1573 * TODO: provide a smarter timeout rather than a constant? 1574 */ 1575 sleep(1); 1576 1577 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1578 if (dirtylimit_in_service()) { 1579 continue; 1580 } 1581 1582 trace_kvm_dirty_ring_reaper("wakeup"); 1583 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1584 1585 bql_lock(); 1586 kvm_dirty_ring_reap(s, NULL); 1587 bql_unlock(); 1588 1589 r->reaper_iteration++; 1590 } 1591 1592 trace_kvm_dirty_ring_reaper("exit"); 1593 1594 rcu_unregister_thread(); 1595 1596 return NULL; 1597 } 1598 1599 static void kvm_dirty_ring_reaper_init(KVMState *s) 1600 { 1601 struct KVMDirtyRingReaper *r = &s->reaper; 1602 1603 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1604 kvm_dirty_ring_reaper_thread, 1605 s, QEMU_THREAD_JOINABLE); 1606 } 1607 1608 static int kvm_dirty_ring_init(KVMState *s) 1609 { 1610 uint32_t ring_size = s->kvm_dirty_ring_size; 1611 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1612 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1613 int ret; 1614 1615 s->kvm_dirty_ring_size = 0; 1616 s->kvm_dirty_ring_bytes = 0; 1617 1618 /* Bail if the dirty ring size isn't specified */ 1619 if (!ring_size) { 1620 return 0; 1621 } 1622 1623 /* 1624 * Read the max supported pages. Fall back to dirty logging mode 1625 * if the dirty ring isn't supported. 1626 */ 1627 ret = kvm_vm_check_extension(s, capability); 1628 if (ret <= 0) { 1629 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1630 ret = kvm_vm_check_extension(s, capability); 1631 } 1632 1633 if (ret <= 0) { 1634 warn_report("KVM dirty ring not available, using bitmap method"); 1635 return 0; 1636 } 1637 1638 if (ring_bytes > ret) { 1639 error_report("KVM dirty ring size %" PRIu32 " too big " 1640 "(maximum is %ld). Please use a smaller value.", 1641 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1642 return -EINVAL; 1643 } 1644 1645 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1646 if (ret) { 1647 error_report("Enabling of KVM dirty ring failed: %s. " 1648 "Suggested minimum value is 1024.", strerror(-ret)); 1649 return -EIO; 1650 } 1651 1652 /* Enable the backup bitmap if it is supported */ 1653 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1654 if (ret > 0) { 1655 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1656 if (ret) { 1657 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1658 "%s. ", strerror(-ret)); 1659 return -EIO; 1660 } 1661 1662 s->kvm_dirty_ring_with_bitmap = true; 1663 } 1664 1665 s->kvm_dirty_ring_size = ring_size; 1666 s->kvm_dirty_ring_bytes = ring_bytes; 1667 1668 return 0; 1669 } 1670 1671 static void kvm_region_add(MemoryListener *listener, 1672 MemoryRegionSection *section) 1673 { 1674 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1675 KVMMemoryUpdate *update; 1676 1677 update = g_new0(KVMMemoryUpdate, 1); 1678 update->section = *section; 1679 1680 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1681 } 1682 1683 static void kvm_region_del(MemoryListener *listener, 1684 MemoryRegionSection *section) 1685 { 1686 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1687 KVMMemoryUpdate *update; 1688 1689 update = g_new0(KVMMemoryUpdate, 1); 1690 update->section = *section; 1691 1692 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1693 } 1694 1695 static void kvm_region_commit(MemoryListener *listener) 1696 { 1697 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1698 listener); 1699 KVMMemoryUpdate *u1, *u2; 1700 bool need_inhibit = false; 1701 1702 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1703 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1704 return; 1705 } 1706 1707 /* 1708 * We have to be careful when regions to add overlap with ranges to remove. 1709 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1710 * is currently active. 1711 * 1712 * The lists are order by addresses, so it's easy to find overlaps. 1713 */ 1714 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1715 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1716 while (u1 && u2) { 1717 Range r1, r2; 1718 1719 range_init_nofail(&r1, u1->section.offset_within_address_space, 1720 int128_get64(u1->section.size)); 1721 range_init_nofail(&r2, u2->section.offset_within_address_space, 1722 int128_get64(u2->section.size)); 1723 1724 if (range_overlaps_range(&r1, &r2)) { 1725 need_inhibit = true; 1726 break; 1727 } 1728 if (range_lob(&r1) < range_lob(&r2)) { 1729 u1 = QSIMPLEQ_NEXT(u1, next); 1730 } else { 1731 u2 = QSIMPLEQ_NEXT(u2, next); 1732 } 1733 } 1734 1735 kvm_slots_lock(); 1736 if (need_inhibit) { 1737 accel_ioctl_inhibit_begin(); 1738 } 1739 1740 /* Remove all memslots before adding the new ones. */ 1741 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1742 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1743 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1744 1745 kvm_set_phys_mem(kml, &u1->section, false); 1746 memory_region_unref(u1->section.mr); 1747 1748 g_free(u1); 1749 } 1750 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1751 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1752 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1753 1754 memory_region_ref(u1->section.mr); 1755 kvm_set_phys_mem(kml, &u1->section, true); 1756 1757 g_free(u1); 1758 } 1759 1760 if (need_inhibit) { 1761 accel_ioctl_inhibit_end(); 1762 } 1763 kvm_slots_unlock(); 1764 } 1765 1766 static void kvm_log_sync(MemoryListener *listener, 1767 MemoryRegionSection *section) 1768 { 1769 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1770 1771 kvm_slots_lock(); 1772 kvm_physical_sync_dirty_bitmap(kml, section); 1773 kvm_slots_unlock(); 1774 } 1775 1776 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1777 { 1778 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1779 KVMState *s = kvm_state; 1780 KVMSlot *mem; 1781 int i; 1782 1783 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1784 kvm_dirty_ring_flush(); 1785 1786 kvm_slots_lock(); 1787 for (i = 0; i < kml->nr_slots_allocated; i++) { 1788 mem = &kml->slots[i]; 1789 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1790 kvm_slot_sync_dirty_pages(mem); 1791 1792 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1793 kvm_slot_get_dirty_log(s, mem)) { 1794 kvm_slot_sync_dirty_pages(mem); 1795 } 1796 1797 /* 1798 * This is not needed by KVM_GET_DIRTY_LOG because the 1799 * ioctl will unconditionally overwrite the whole region. 1800 * However kvm dirty ring has no such side effect. 1801 */ 1802 kvm_slot_reset_dirty_pages(mem); 1803 } 1804 } 1805 kvm_slots_unlock(); 1806 } 1807 1808 static void kvm_log_clear(MemoryListener *listener, 1809 MemoryRegionSection *section) 1810 { 1811 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1812 int r; 1813 1814 r = kvm_physical_log_clear(kml, section); 1815 if (r < 0) { 1816 error_report_once("%s: kvm log clear failed: mr=%s " 1817 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1818 section->mr->name, section->offset_within_region, 1819 int128_get64(section->size)); 1820 abort(); 1821 } 1822 } 1823 1824 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1825 MemoryRegionSection *section, 1826 bool match_data, uint64_t data, 1827 EventNotifier *e) 1828 { 1829 int fd = event_notifier_get_fd(e); 1830 int r; 1831 1832 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1833 data, true, int128_get64(section->size), 1834 match_data); 1835 if (r < 0) { 1836 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1837 __func__, strerror(-r), -r); 1838 abort(); 1839 } 1840 } 1841 1842 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1843 MemoryRegionSection *section, 1844 bool match_data, uint64_t data, 1845 EventNotifier *e) 1846 { 1847 int fd = event_notifier_get_fd(e); 1848 int r; 1849 1850 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1851 data, false, int128_get64(section->size), 1852 match_data); 1853 if (r < 0) { 1854 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1855 __func__, strerror(-r), -r); 1856 abort(); 1857 } 1858 } 1859 1860 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1861 MemoryRegionSection *section, 1862 bool match_data, uint64_t data, 1863 EventNotifier *e) 1864 { 1865 int fd = event_notifier_get_fd(e); 1866 int r; 1867 1868 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1869 data, true, int128_get64(section->size), 1870 match_data); 1871 if (r < 0) { 1872 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1873 __func__, strerror(-r), -r); 1874 abort(); 1875 } 1876 } 1877 1878 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1879 MemoryRegionSection *section, 1880 bool match_data, uint64_t data, 1881 EventNotifier *e) 1882 1883 { 1884 int fd = event_notifier_get_fd(e); 1885 int r; 1886 1887 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1888 data, false, int128_get64(section->size), 1889 match_data); 1890 if (r < 0) { 1891 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1892 __func__, strerror(-r), -r); 1893 abort(); 1894 } 1895 } 1896 1897 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1898 AddressSpace *as, int as_id, const char *name) 1899 { 1900 int i; 1901 1902 kml->as_id = as_id; 1903 1904 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1905 1906 QSIMPLEQ_INIT(&kml->transaction_add); 1907 QSIMPLEQ_INIT(&kml->transaction_del); 1908 1909 kml->listener.region_add = kvm_region_add; 1910 kml->listener.region_del = kvm_region_del; 1911 kml->listener.commit = kvm_region_commit; 1912 kml->listener.log_start = kvm_log_start; 1913 kml->listener.log_stop = kvm_log_stop; 1914 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1915 kml->listener.name = name; 1916 1917 if (s->kvm_dirty_ring_size) { 1918 kml->listener.log_sync_global = kvm_log_sync_global; 1919 } else { 1920 kml->listener.log_sync = kvm_log_sync; 1921 kml->listener.log_clear = kvm_log_clear; 1922 } 1923 1924 memory_listener_register(&kml->listener, as); 1925 1926 for (i = 0; i < s->nr_as; ++i) { 1927 if (!s->as[i].as) { 1928 s->as[i].as = as; 1929 s->as[i].ml = kml; 1930 break; 1931 } 1932 } 1933 } 1934 1935 static MemoryListener kvm_io_listener = { 1936 .name = "kvm-io", 1937 .coalesced_io_add = kvm_coalesce_pio_add, 1938 .coalesced_io_del = kvm_coalesce_pio_del, 1939 .eventfd_add = kvm_io_ioeventfd_add, 1940 .eventfd_del = kvm_io_ioeventfd_del, 1941 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1942 }; 1943 1944 int kvm_set_irq(KVMState *s, int irq, int level) 1945 { 1946 struct kvm_irq_level event; 1947 int ret; 1948 1949 assert(kvm_async_interrupts_enabled()); 1950 1951 event.level = level; 1952 event.irq = irq; 1953 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1954 if (ret < 0) { 1955 perror("kvm_set_irq"); 1956 abort(); 1957 } 1958 1959 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1960 } 1961 1962 #ifdef KVM_CAP_IRQ_ROUTING 1963 typedef struct KVMMSIRoute { 1964 struct kvm_irq_routing_entry kroute; 1965 QTAILQ_ENTRY(KVMMSIRoute) entry; 1966 } KVMMSIRoute; 1967 1968 static void set_gsi(KVMState *s, unsigned int gsi) 1969 { 1970 set_bit(gsi, s->used_gsi_bitmap); 1971 } 1972 1973 static void clear_gsi(KVMState *s, unsigned int gsi) 1974 { 1975 clear_bit(gsi, s->used_gsi_bitmap); 1976 } 1977 1978 void kvm_init_irq_routing(KVMState *s) 1979 { 1980 int gsi_count; 1981 1982 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1983 if (gsi_count > 0) { 1984 /* Round up so we can search ints using ffs */ 1985 s->used_gsi_bitmap = bitmap_new(gsi_count); 1986 s->gsi_count = gsi_count; 1987 } 1988 1989 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1990 s->nr_allocated_irq_routes = 0; 1991 1992 kvm_arch_init_irq_routing(s); 1993 } 1994 1995 void kvm_irqchip_commit_routes(KVMState *s) 1996 { 1997 int ret; 1998 1999 if (kvm_gsi_direct_mapping()) { 2000 return; 2001 } 2002 2003 if (!kvm_gsi_routing_enabled()) { 2004 return; 2005 } 2006 2007 s->irq_routes->flags = 0; 2008 trace_kvm_irqchip_commit_routes(); 2009 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2010 assert(ret == 0); 2011 } 2012 2013 void kvm_add_routing_entry(KVMState *s, 2014 struct kvm_irq_routing_entry *entry) 2015 { 2016 struct kvm_irq_routing_entry *new; 2017 int n, size; 2018 2019 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2020 n = s->nr_allocated_irq_routes * 2; 2021 if (n < 64) { 2022 n = 64; 2023 } 2024 size = sizeof(struct kvm_irq_routing); 2025 size += n * sizeof(*new); 2026 s->irq_routes = g_realloc(s->irq_routes, size); 2027 s->nr_allocated_irq_routes = n; 2028 } 2029 n = s->irq_routes->nr++; 2030 new = &s->irq_routes->entries[n]; 2031 2032 *new = *entry; 2033 2034 set_gsi(s, entry->gsi); 2035 } 2036 2037 static int kvm_update_routing_entry(KVMState *s, 2038 struct kvm_irq_routing_entry *new_entry) 2039 { 2040 struct kvm_irq_routing_entry *entry; 2041 int n; 2042 2043 for (n = 0; n < s->irq_routes->nr; n++) { 2044 entry = &s->irq_routes->entries[n]; 2045 if (entry->gsi != new_entry->gsi) { 2046 continue; 2047 } 2048 2049 if(!memcmp(entry, new_entry, sizeof *entry)) { 2050 return 0; 2051 } 2052 2053 *entry = *new_entry; 2054 2055 return 0; 2056 } 2057 2058 return -ESRCH; 2059 } 2060 2061 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2062 { 2063 struct kvm_irq_routing_entry e = {}; 2064 2065 assert(pin < s->gsi_count); 2066 2067 e.gsi = irq; 2068 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2069 e.flags = 0; 2070 e.u.irqchip.irqchip = irqchip; 2071 e.u.irqchip.pin = pin; 2072 kvm_add_routing_entry(s, &e); 2073 } 2074 2075 void kvm_irqchip_release_virq(KVMState *s, int virq) 2076 { 2077 struct kvm_irq_routing_entry *e; 2078 int i; 2079 2080 if (kvm_gsi_direct_mapping()) { 2081 return; 2082 } 2083 2084 for (i = 0; i < s->irq_routes->nr; i++) { 2085 e = &s->irq_routes->entries[i]; 2086 if (e->gsi == virq) { 2087 s->irq_routes->nr--; 2088 *e = s->irq_routes->entries[s->irq_routes->nr]; 2089 } 2090 } 2091 clear_gsi(s, virq); 2092 kvm_arch_release_virq_post(virq); 2093 trace_kvm_irqchip_release_virq(virq); 2094 } 2095 2096 void kvm_irqchip_add_change_notifier(Notifier *n) 2097 { 2098 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2099 } 2100 2101 void kvm_irqchip_remove_change_notifier(Notifier *n) 2102 { 2103 notifier_remove(n); 2104 } 2105 2106 void kvm_irqchip_change_notify(void) 2107 { 2108 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2109 } 2110 2111 int kvm_irqchip_get_virq(KVMState *s) 2112 { 2113 int next_virq; 2114 2115 /* Return the lowest unused GSI in the bitmap */ 2116 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2117 if (next_virq >= s->gsi_count) { 2118 return -ENOSPC; 2119 } else { 2120 return next_virq; 2121 } 2122 } 2123 2124 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2125 { 2126 struct kvm_msi msi; 2127 2128 msi.address_lo = (uint32_t)msg.address; 2129 msi.address_hi = msg.address >> 32; 2130 msi.data = le32_to_cpu(msg.data); 2131 msi.flags = 0; 2132 memset(msi.pad, 0, sizeof(msi.pad)); 2133 2134 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2135 } 2136 2137 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2138 { 2139 struct kvm_irq_routing_entry kroute = {}; 2140 int virq; 2141 KVMState *s = c->s; 2142 MSIMessage msg = {0, 0}; 2143 2144 if (pci_available && dev) { 2145 msg = pci_get_msi_message(dev, vector); 2146 } 2147 2148 if (kvm_gsi_direct_mapping()) { 2149 return kvm_arch_msi_data_to_gsi(msg.data); 2150 } 2151 2152 if (!kvm_gsi_routing_enabled()) { 2153 return -ENOSYS; 2154 } 2155 2156 virq = kvm_irqchip_get_virq(s); 2157 if (virq < 0) { 2158 return virq; 2159 } 2160 2161 kroute.gsi = virq; 2162 kroute.type = KVM_IRQ_ROUTING_MSI; 2163 kroute.flags = 0; 2164 kroute.u.msi.address_lo = (uint32_t)msg.address; 2165 kroute.u.msi.address_hi = msg.address >> 32; 2166 kroute.u.msi.data = le32_to_cpu(msg.data); 2167 if (pci_available && kvm_msi_devid_required()) { 2168 kroute.flags = KVM_MSI_VALID_DEVID; 2169 kroute.u.msi.devid = pci_requester_id(dev); 2170 } 2171 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2172 kvm_irqchip_release_virq(s, virq); 2173 return -EINVAL; 2174 } 2175 2176 if (s->irq_routes->nr < s->gsi_count) { 2177 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2178 vector, virq); 2179 2180 kvm_add_routing_entry(s, &kroute); 2181 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2182 c->changes++; 2183 } else { 2184 kvm_irqchip_release_virq(s, virq); 2185 return -ENOSPC; 2186 } 2187 2188 return virq; 2189 } 2190 2191 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2192 PCIDevice *dev) 2193 { 2194 struct kvm_irq_routing_entry kroute = {}; 2195 2196 if (kvm_gsi_direct_mapping()) { 2197 return 0; 2198 } 2199 2200 if (!kvm_irqchip_in_kernel()) { 2201 return -ENOSYS; 2202 } 2203 2204 kroute.gsi = virq; 2205 kroute.type = KVM_IRQ_ROUTING_MSI; 2206 kroute.flags = 0; 2207 kroute.u.msi.address_lo = (uint32_t)msg.address; 2208 kroute.u.msi.address_hi = msg.address >> 32; 2209 kroute.u.msi.data = le32_to_cpu(msg.data); 2210 if (pci_available && kvm_msi_devid_required()) { 2211 kroute.flags = KVM_MSI_VALID_DEVID; 2212 kroute.u.msi.devid = pci_requester_id(dev); 2213 } 2214 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2215 return -EINVAL; 2216 } 2217 2218 trace_kvm_irqchip_update_msi_route(virq); 2219 2220 return kvm_update_routing_entry(s, &kroute); 2221 } 2222 2223 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2224 EventNotifier *resample, int virq, 2225 bool assign) 2226 { 2227 int fd = event_notifier_get_fd(event); 2228 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2229 2230 struct kvm_irqfd irqfd = { 2231 .fd = fd, 2232 .gsi = virq, 2233 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2234 }; 2235 2236 if (rfd != -1) { 2237 assert(assign); 2238 if (kvm_irqchip_is_split()) { 2239 /* 2240 * When the slow irqchip (e.g. IOAPIC) is in the 2241 * userspace, KVM kernel resamplefd will not work because 2242 * the EOI of the interrupt will be delivered to userspace 2243 * instead, so the KVM kernel resamplefd kick will be 2244 * skipped. The userspace here mimics what the kernel 2245 * provides with resamplefd, remember the resamplefd and 2246 * kick it when we receive EOI of this IRQ. 2247 * 2248 * This is hackery because IOAPIC is mostly bypassed 2249 * (except EOI broadcasts) when irqfd is used. However 2250 * this can bring much performance back for split irqchip 2251 * with INTx IRQs (for VFIO, this gives 93% perf of the 2252 * full fast path, which is 46% perf boost comparing to 2253 * the INTx slow path). 2254 */ 2255 kvm_resample_fd_insert(virq, resample); 2256 } else { 2257 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2258 irqfd.resamplefd = rfd; 2259 } 2260 } else if (!assign) { 2261 if (kvm_irqchip_is_split()) { 2262 kvm_resample_fd_remove(virq); 2263 } 2264 } 2265 2266 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2267 } 2268 2269 #else /* !KVM_CAP_IRQ_ROUTING */ 2270 2271 void kvm_init_irq_routing(KVMState *s) 2272 { 2273 } 2274 2275 void kvm_irqchip_release_virq(KVMState *s, int virq) 2276 { 2277 } 2278 2279 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2280 { 2281 abort(); 2282 } 2283 2284 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2285 { 2286 return -ENOSYS; 2287 } 2288 2289 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2290 { 2291 return -ENOSYS; 2292 } 2293 2294 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2295 { 2296 return -ENOSYS; 2297 } 2298 2299 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2300 EventNotifier *resample, int virq, 2301 bool assign) 2302 { 2303 abort(); 2304 } 2305 2306 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2307 { 2308 return -ENOSYS; 2309 } 2310 #endif /* !KVM_CAP_IRQ_ROUTING */ 2311 2312 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2313 EventNotifier *rn, int virq) 2314 { 2315 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2316 } 2317 2318 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2319 int virq) 2320 { 2321 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2322 } 2323 2324 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2325 EventNotifier *rn, qemu_irq irq) 2326 { 2327 gpointer key, gsi; 2328 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2329 2330 if (!found) { 2331 return -ENXIO; 2332 } 2333 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2334 } 2335 2336 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2337 qemu_irq irq) 2338 { 2339 gpointer key, gsi; 2340 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2341 2342 if (!found) { 2343 return -ENXIO; 2344 } 2345 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2346 } 2347 2348 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2349 { 2350 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2351 } 2352 2353 static void kvm_irqchip_create(KVMState *s) 2354 { 2355 int ret; 2356 2357 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2358 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2359 ; 2360 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2361 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2362 if (ret < 0) { 2363 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2364 exit(1); 2365 } 2366 } else { 2367 return; 2368 } 2369 2370 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2371 fprintf(stderr, "kvm: irqfd not implemented\n"); 2372 exit(1); 2373 } 2374 2375 /* First probe and see if there's a arch-specific hook to create the 2376 * in-kernel irqchip for us */ 2377 ret = kvm_arch_irqchip_create(s); 2378 if (ret == 0) { 2379 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2380 error_report("Split IRQ chip mode not supported."); 2381 exit(1); 2382 } else { 2383 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2384 } 2385 } 2386 if (ret < 0) { 2387 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2388 exit(1); 2389 } 2390 2391 kvm_kernel_irqchip = true; 2392 /* If we have an in-kernel IRQ chip then we must have asynchronous 2393 * interrupt delivery (though the reverse is not necessarily true) 2394 */ 2395 kvm_async_interrupts_allowed = true; 2396 kvm_halt_in_kernel_allowed = true; 2397 2398 kvm_init_irq_routing(s); 2399 2400 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2401 } 2402 2403 /* Find number of supported CPUs using the recommended 2404 * procedure from the kernel API documentation to cope with 2405 * older kernels that may be missing capabilities. 2406 */ 2407 static int kvm_recommended_vcpus(KVMState *s) 2408 { 2409 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2410 return (ret) ? ret : 4; 2411 } 2412 2413 static int kvm_max_vcpus(KVMState *s) 2414 { 2415 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2416 return (ret) ? ret : kvm_recommended_vcpus(s); 2417 } 2418 2419 static int kvm_max_vcpu_id(KVMState *s) 2420 { 2421 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2422 return (ret) ? ret : kvm_max_vcpus(s); 2423 } 2424 2425 bool kvm_vcpu_id_is_valid(int vcpu_id) 2426 { 2427 KVMState *s = KVM_STATE(current_accel()); 2428 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2429 } 2430 2431 bool kvm_dirty_ring_enabled(void) 2432 { 2433 return kvm_state && kvm_state->kvm_dirty_ring_size; 2434 } 2435 2436 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2437 strList *names, strList *targets, Error **errp); 2438 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2439 2440 uint32_t kvm_dirty_ring_size(void) 2441 { 2442 return kvm_state->kvm_dirty_ring_size; 2443 } 2444 2445 static int kvm_init(MachineState *ms) 2446 { 2447 MachineClass *mc = MACHINE_GET_CLASS(ms); 2448 static const char upgrade_note[] = 2449 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2450 "(see http://sourceforge.net/projects/kvm).\n"; 2451 const struct { 2452 const char *name; 2453 int num; 2454 } num_cpus[] = { 2455 { "SMP", ms->smp.cpus }, 2456 { "hotpluggable", ms->smp.max_cpus }, 2457 { /* end of list */ } 2458 }, *nc = num_cpus; 2459 int soft_vcpus_limit, hard_vcpus_limit; 2460 KVMState *s; 2461 const KVMCapabilityInfo *missing_cap; 2462 int ret; 2463 int type; 2464 uint64_t dirty_log_manual_caps; 2465 2466 qemu_mutex_init(&kml_slots_lock); 2467 2468 s = KVM_STATE(ms->accelerator); 2469 2470 /* 2471 * On systems where the kernel can support different base page 2472 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2473 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2474 * page size for the system though. 2475 */ 2476 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2477 2478 s->sigmask_len = 8; 2479 accel_blocker_init(); 2480 2481 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2482 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2483 #endif 2484 QLIST_INIT(&s->kvm_parked_vcpus); 2485 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2486 if (s->fd == -1) { 2487 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2488 ret = -errno; 2489 goto err; 2490 } 2491 2492 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2493 if (ret < KVM_API_VERSION) { 2494 if (ret >= 0) { 2495 ret = -EINVAL; 2496 } 2497 fprintf(stderr, "kvm version too old\n"); 2498 goto err; 2499 } 2500 2501 if (ret > KVM_API_VERSION) { 2502 ret = -EINVAL; 2503 fprintf(stderr, "kvm version not supported\n"); 2504 goto err; 2505 } 2506 2507 kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2508 kvm_guest_memfd_supported = 2509 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2510 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2511 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2512 2513 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2514 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2515 2516 /* If unspecified, use the default value */ 2517 if (!s->nr_slots) { 2518 s->nr_slots = 32; 2519 } 2520 2521 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2522 if (s->nr_as <= 1) { 2523 s->nr_as = 1; 2524 } 2525 s->as = g_new0(struct KVMAs, s->nr_as); 2526 2527 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2528 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2529 "kvm-type", 2530 &error_abort); 2531 type = mc->kvm_type(ms, kvm_type); 2532 } else if (mc->kvm_type) { 2533 type = mc->kvm_type(ms, NULL); 2534 } else { 2535 type = kvm_arch_get_default_type(ms); 2536 } 2537 2538 if (type < 0) { 2539 ret = -EINVAL; 2540 goto err; 2541 } 2542 2543 do { 2544 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2545 } while (ret == -EINTR); 2546 2547 if (ret < 0) { 2548 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2549 strerror(-ret)); 2550 2551 #ifdef TARGET_S390X 2552 if (ret == -EINVAL) { 2553 fprintf(stderr, 2554 "Host kernel setup problem detected. Please verify:\n"); 2555 fprintf(stderr, "- for kernels supporting the switch_amode or" 2556 " user_mode parameters, whether\n"); 2557 fprintf(stderr, 2558 " user space is running in primary address space\n"); 2559 fprintf(stderr, 2560 "- for kernels supporting the vm.allocate_pgste sysctl, " 2561 "whether it is enabled\n"); 2562 } 2563 #elif defined(TARGET_PPC) 2564 if (ret == -EINVAL) { 2565 fprintf(stderr, 2566 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2567 (type == 2) ? "pr" : "hv"); 2568 } 2569 #endif 2570 goto err; 2571 } 2572 2573 s->vmfd = ret; 2574 2575 /* check the vcpu limits */ 2576 soft_vcpus_limit = kvm_recommended_vcpus(s); 2577 hard_vcpus_limit = kvm_max_vcpus(s); 2578 2579 while (nc->name) { 2580 if (nc->num > soft_vcpus_limit) { 2581 warn_report("Number of %s cpus requested (%d) exceeds " 2582 "the recommended cpus supported by KVM (%d)", 2583 nc->name, nc->num, soft_vcpus_limit); 2584 2585 if (nc->num > hard_vcpus_limit) { 2586 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2587 "the maximum cpus supported by KVM (%d)\n", 2588 nc->name, nc->num, hard_vcpus_limit); 2589 exit(1); 2590 } 2591 } 2592 nc++; 2593 } 2594 2595 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2596 if (!missing_cap) { 2597 missing_cap = 2598 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2599 } 2600 if (missing_cap) { 2601 ret = -EINVAL; 2602 fprintf(stderr, "kvm does not support %s\n%s", 2603 missing_cap->name, upgrade_note); 2604 goto err; 2605 } 2606 2607 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2608 s->coalesced_pio = s->coalesced_mmio && 2609 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2610 2611 /* 2612 * Enable KVM dirty ring if supported, otherwise fall back to 2613 * dirty logging mode 2614 */ 2615 ret = kvm_dirty_ring_init(s); 2616 if (ret < 0) { 2617 goto err; 2618 } 2619 2620 /* 2621 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2622 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2623 * page is wr-protected initially, which is against how kvm dirty ring is 2624 * usage - kvm dirty ring requires all pages are wr-protected at the very 2625 * beginning. Enabling this feature for dirty ring causes data corruption. 2626 * 2627 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2628 * we may expect a higher stall time when starting the migration. In the 2629 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2630 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2631 * guest pages. 2632 */ 2633 if (!s->kvm_dirty_ring_size) { 2634 dirty_log_manual_caps = 2635 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2636 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2637 KVM_DIRTY_LOG_INITIALLY_SET); 2638 s->manual_dirty_log_protect = dirty_log_manual_caps; 2639 if (dirty_log_manual_caps) { 2640 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2641 dirty_log_manual_caps); 2642 if (ret) { 2643 warn_report("Trying to enable capability %"PRIu64" of " 2644 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2645 "Falling back to the legacy mode. ", 2646 dirty_log_manual_caps); 2647 s->manual_dirty_log_protect = 0; 2648 } 2649 } 2650 } 2651 2652 #ifdef KVM_CAP_VCPU_EVENTS 2653 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2654 #endif 2655 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2656 2657 s->irq_set_ioctl = KVM_IRQ_LINE; 2658 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2659 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2660 } 2661 2662 kvm_readonly_mem_allowed = 2663 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2664 2665 kvm_resamplefds_allowed = 2666 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2667 2668 kvm_vm_attributes_allowed = 2669 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2670 2671 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2672 kvm_has_guest_debug = 2673 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2674 #endif 2675 2676 kvm_sstep_flags = 0; 2677 if (kvm_has_guest_debug) { 2678 kvm_sstep_flags = SSTEP_ENABLE; 2679 2680 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2681 int guest_debug_flags = 2682 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2683 2684 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2685 kvm_sstep_flags |= SSTEP_NOIRQ; 2686 } 2687 #endif 2688 } 2689 2690 kvm_state = s; 2691 2692 ret = kvm_arch_init(ms, s); 2693 if (ret < 0) { 2694 goto err; 2695 } 2696 2697 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2698 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2699 } 2700 2701 qemu_register_reset(kvm_unpoison_all, NULL); 2702 2703 if (s->kernel_irqchip_allowed) { 2704 kvm_irqchip_create(s); 2705 } 2706 2707 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2708 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2709 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2710 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2711 2712 kvm_memory_listener_register(s, &s->memory_listener, 2713 &address_space_memory, 0, "kvm-memory"); 2714 memory_listener_register(&kvm_io_listener, 2715 &address_space_io); 2716 2717 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2718 if (!s->sync_mmu) { 2719 ret = ram_block_discard_disable(true); 2720 assert(!ret); 2721 } 2722 2723 if (s->kvm_dirty_ring_size) { 2724 kvm_dirty_ring_reaper_init(s); 2725 } 2726 2727 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2728 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2729 query_stats_schemas_cb); 2730 } 2731 2732 return 0; 2733 2734 err: 2735 assert(ret < 0); 2736 if (s->vmfd >= 0) { 2737 close(s->vmfd); 2738 } 2739 if (s->fd != -1) { 2740 close(s->fd); 2741 } 2742 g_free(s->as); 2743 g_free(s->memory_listener.slots); 2744 2745 return ret; 2746 } 2747 2748 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2749 { 2750 s->sigmask_len = sigmask_len; 2751 } 2752 2753 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2754 int size, uint32_t count) 2755 { 2756 int i; 2757 uint8_t *ptr = data; 2758 2759 for (i = 0; i < count; i++) { 2760 address_space_rw(&address_space_io, port, attrs, 2761 ptr, size, 2762 direction == KVM_EXIT_IO_OUT); 2763 ptr += size; 2764 } 2765 } 2766 2767 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2768 { 2769 int i; 2770 2771 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2772 run->internal.suberror); 2773 2774 for (i = 0; i < run->internal.ndata; ++i) { 2775 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2776 i, (uint64_t)run->internal.data[i]); 2777 } 2778 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2779 fprintf(stderr, "emulation failure\n"); 2780 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2781 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2782 return EXCP_INTERRUPT; 2783 } 2784 } 2785 /* FIXME: Should trigger a qmp message to let management know 2786 * something went wrong. 2787 */ 2788 return -1; 2789 } 2790 2791 void kvm_flush_coalesced_mmio_buffer(void) 2792 { 2793 KVMState *s = kvm_state; 2794 2795 if (!s || s->coalesced_flush_in_progress) { 2796 return; 2797 } 2798 2799 s->coalesced_flush_in_progress = true; 2800 2801 if (s->coalesced_mmio_ring) { 2802 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2803 while (ring->first != ring->last) { 2804 struct kvm_coalesced_mmio *ent; 2805 2806 ent = &ring->coalesced_mmio[ring->first]; 2807 2808 if (ent->pio == 1) { 2809 address_space_write(&address_space_io, ent->phys_addr, 2810 MEMTXATTRS_UNSPECIFIED, ent->data, 2811 ent->len); 2812 } else { 2813 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2814 } 2815 smp_wmb(); 2816 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2817 } 2818 } 2819 2820 s->coalesced_flush_in_progress = false; 2821 } 2822 2823 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2824 { 2825 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2826 int ret = kvm_arch_get_registers(cpu); 2827 if (ret) { 2828 error_report("Failed to get registers: %s", strerror(-ret)); 2829 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2830 vm_stop(RUN_STATE_INTERNAL_ERROR); 2831 } 2832 2833 cpu->vcpu_dirty = true; 2834 } 2835 } 2836 2837 void kvm_cpu_synchronize_state(CPUState *cpu) 2838 { 2839 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2840 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2841 } 2842 } 2843 2844 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2845 { 2846 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2847 if (ret) { 2848 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2849 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2850 vm_stop(RUN_STATE_INTERNAL_ERROR); 2851 } 2852 2853 cpu->vcpu_dirty = false; 2854 } 2855 2856 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2857 { 2858 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2859 } 2860 2861 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2862 { 2863 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2864 if (ret) { 2865 error_report("Failed to put registers after init: %s", strerror(-ret)); 2866 exit(1); 2867 } 2868 2869 cpu->vcpu_dirty = false; 2870 } 2871 2872 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2873 { 2874 if (!kvm_state->guest_state_protected) { 2875 /* 2876 * This runs before the machine_init_done notifiers, and is the last 2877 * opportunity to synchronize the state of confidential guests. 2878 */ 2879 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2880 } 2881 } 2882 2883 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2884 { 2885 cpu->vcpu_dirty = true; 2886 } 2887 2888 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2889 { 2890 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2891 } 2892 2893 #ifdef KVM_HAVE_MCE_INJECTION 2894 static __thread void *pending_sigbus_addr; 2895 static __thread int pending_sigbus_code; 2896 static __thread bool have_sigbus_pending; 2897 #endif 2898 2899 static void kvm_cpu_kick(CPUState *cpu) 2900 { 2901 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2902 } 2903 2904 static void kvm_cpu_kick_self(void) 2905 { 2906 if (kvm_immediate_exit) { 2907 kvm_cpu_kick(current_cpu); 2908 } else { 2909 qemu_cpu_kick_self(); 2910 } 2911 } 2912 2913 static void kvm_eat_signals(CPUState *cpu) 2914 { 2915 struct timespec ts = { 0, 0 }; 2916 siginfo_t siginfo; 2917 sigset_t waitset; 2918 sigset_t chkset; 2919 int r; 2920 2921 if (kvm_immediate_exit) { 2922 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2923 /* Write kvm_run->immediate_exit before the cpu->exit_request 2924 * write in kvm_cpu_exec. 2925 */ 2926 smp_wmb(); 2927 return; 2928 } 2929 2930 sigemptyset(&waitset); 2931 sigaddset(&waitset, SIG_IPI); 2932 2933 do { 2934 r = sigtimedwait(&waitset, &siginfo, &ts); 2935 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2936 perror("sigtimedwait"); 2937 exit(1); 2938 } 2939 2940 r = sigpending(&chkset); 2941 if (r == -1) { 2942 perror("sigpending"); 2943 exit(1); 2944 } 2945 } while (sigismember(&chkset, SIG_IPI)); 2946 } 2947 2948 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 2949 { 2950 MemoryRegionSection section; 2951 ram_addr_t offset; 2952 MemoryRegion *mr; 2953 RAMBlock *rb; 2954 void *addr; 2955 int ret = -1; 2956 2957 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 2958 2959 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 2960 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 2961 return -1; 2962 } 2963 2964 if (!size) { 2965 return -1; 2966 } 2967 2968 section = memory_region_find(get_system_memory(), start, size); 2969 mr = section.mr; 2970 if (!mr) { 2971 /* 2972 * Ignore converting non-assigned region to shared. 2973 * 2974 * TDX requires vMMIO region to be shared to inject #VE to guest. 2975 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 2976 * and vIO-APIC 0xFEC00000 4K page. 2977 * OVMF assigns 32bit PCI MMIO region to 2978 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 2979 */ 2980 if (!to_private) { 2981 return 0; 2982 } 2983 return -1; 2984 } 2985 2986 if (!memory_region_has_guest_memfd(mr)) { 2987 /* 2988 * Because vMMIO region must be shared, guest TD may convert vMMIO 2989 * region to shared explicitly. Don't complain such case. See 2990 * memory_region_type() for checking if the region is MMIO region. 2991 */ 2992 if (!to_private && 2993 !memory_region_is_ram(mr) && 2994 !memory_region_is_ram_device(mr) && 2995 !memory_region_is_rom(mr) && 2996 !memory_region_is_romd(mr)) { 2997 ret = 0; 2998 } else { 2999 error_report("Convert non guest_memfd backed memory region " 3000 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3001 start, size, to_private ? "private" : "shared"); 3002 } 3003 goto out_unref; 3004 } 3005 3006 if (to_private) { 3007 ret = kvm_set_memory_attributes_private(start, size); 3008 } else { 3009 ret = kvm_set_memory_attributes_shared(start, size); 3010 } 3011 if (ret) { 3012 goto out_unref; 3013 } 3014 3015 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3016 rb = qemu_ram_block_from_host(addr, false, &offset); 3017 3018 if (to_private) { 3019 if (rb->page_size != qemu_real_host_page_size()) { 3020 /* 3021 * shared memory is backed by hugetlb, which is supposed to be 3022 * pre-allocated and doesn't need to be discarded 3023 */ 3024 goto out_unref; 3025 } 3026 ret = ram_block_discard_range(rb, offset, size); 3027 } else { 3028 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3029 } 3030 3031 out_unref: 3032 memory_region_unref(mr); 3033 return ret; 3034 } 3035 3036 int kvm_cpu_exec(CPUState *cpu) 3037 { 3038 struct kvm_run *run = cpu->kvm_run; 3039 int ret, run_ret; 3040 3041 trace_kvm_cpu_exec(); 3042 3043 if (kvm_arch_process_async_events(cpu)) { 3044 qatomic_set(&cpu->exit_request, 0); 3045 return EXCP_HLT; 3046 } 3047 3048 bql_unlock(); 3049 cpu_exec_start(cpu); 3050 3051 do { 3052 MemTxAttrs attrs; 3053 3054 if (cpu->vcpu_dirty) { 3055 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 3056 if (ret) { 3057 error_report("Failed to put registers after init: %s", 3058 strerror(-ret)); 3059 ret = -1; 3060 break; 3061 } 3062 3063 cpu->vcpu_dirty = false; 3064 } 3065 3066 kvm_arch_pre_run(cpu, run); 3067 if (qatomic_read(&cpu->exit_request)) { 3068 trace_kvm_interrupt_exit_request(); 3069 /* 3070 * KVM requires us to reenter the kernel after IO exits to complete 3071 * instruction emulation. This self-signal will ensure that we 3072 * leave ASAP again. 3073 */ 3074 kvm_cpu_kick_self(); 3075 } 3076 3077 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3078 * Matching barrier in kvm_eat_signals. 3079 */ 3080 smp_rmb(); 3081 3082 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3083 3084 attrs = kvm_arch_post_run(cpu, run); 3085 3086 #ifdef KVM_HAVE_MCE_INJECTION 3087 if (unlikely(have_sigbus_pending)) { 3088 bql_lock(); 3089 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3090 pending_sigbus_addr); 3091 have_sigbus_pending = false; 3092 bql_unlock(); 3093 } 3094 #endif 3095 3096 if (run_ret < 0) { 3097 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3098 trace_kvm_io_window_exit(); 3099 kvm_eat_signals(cpu); 3100 ret = EXCP_INTERRUPT; 3101 break; 3102 } 3103 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3104 fprintf(stderr, "error: kvm run failed %s\n", 3105 strerror(-run_ret)); 3106 #ifdef TARGET_PPC 3107 if (run_ret == -EBUSY) { 3108 fprintf(stderr, 3109 "This is probably because your SMT is enabled.\n" 3110 "VCPU can only run on primary threads with all " 3111 "secondary threads offline.\n"); 3112 } 3113 #endif 3114 ret = -1; 3115 break; 3116 } 3117 } 3118 3119 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3120 switch (run->exit_reason) { 3121 case KVM_EXIT_IO: 3122 /* Called outside BQL */ 3123 kvm_handle_io(run->io.port, attrs, 3124 (uint8_t *)run + run->io.data_offset, 3125 run->io.direction, 3126 run->io.size, 3127 run->io.count); 3128 ret = 0; 3129 break; 3130 case KVM_EXIT_MMIO: 3131 /* Called outside BQL */ 3132 address_space_rw(&address_space_memory, 3133 run->mmio.phys_addr, attrs, 3134 run->mmio.data, 3135 run->mmio.len, 3136 run->mmio.is_write); 3137 ret = 0; 3138 break; 3139 case KVM_EXIT_IRQ_WINDOW_OPEN: 3140 ret = EXCP_INTERRUPT; 3141 break; 3142 case KVM_EXIT_SHUTDOWN: 3143 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3144 ret = EXCP_INTERRUPT; 3145 break; 3146 case KVM_EXIT_UNKNOWN: 3147 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3148 (uint64_t)run->hw.hardware_exit_reason); 3149 ret = -1; 3150 break; 3151 case KVM_EXIT_INTERNAL_ERROR: 3152 ret = kvm_handle_internal_error(cpu, run); 3153 break; 3154 case KVM_EXIT_DIRTY_RING_FULL: 3155 /* 3156 * We shouldn't continue if the dirty ring of this vcpu is 3157 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3158 */ 3159 trace_kvm_dirty_ring_full(cpu->cpu_index); 3160 bql_lock(); 3161 /* 3162 * We throttle vCPU by making it sleep once it exit from kernel 3163 * due to dirty ring full. In the dirtylimit scenario, reaping 3164 * all vCPUs after a single vCPU dirty ring get full result in 3165 * the miss of sleep, so just reap the ring-fulled vCPU. 3166 */ 3167 if (dirtylimit_in_service()) { 3168 kvm_dirty_ring_reap(kvm_state, cpu); 3169 } else { 3170 kvm_dirty_ring_reap(kvm_state, NULL); 3171 } 3172 bql_unlock(); 3173 dirtylimit_vcpu_execute(cpu); 3174 ret = 0; 3175 break; 3176 case KVM_EXIT_SYSTEM_EVENT: 3177 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3178 switch (run->system_event.type) { 3179 case KVM_SYSTEM_EVENT_SHUTDOWN: 3180 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3181 ret = EXCP_INTERRUPT; 3182 break; 3183 case KVM_SYSTEM_EVENT_RESET: 3184 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3185 ret = EXCP_INTERRUPT; 3186 break; 3187 case KVM_SYSTEM_EVENT_CRASH: 3188 kvm_cpu_synchronize_state(cpu); 3189 bql_lock(); 3190 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3191 bql_unlock(); 3192 ret = 0; 3193 break; 3194 default: 3195 ret = kvm_arch_handle_exit(cpu, run); 3196 break; 3197 } 3198 break; 3199 case KVM_EXIT_MEMORY_FAULT: 3200 trace_kvm_memory_fault(run->memory_fault.gpa, 3201 run->memory_fault.size, 3202 run->memory_fault.flags); 3203 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3204 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3205 (uint64_t)run->memory_fault.flags); 3206 ret = -1; 3207 break; 3208 } 3209 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3210 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3211 break; 3212 default: 3213 ret = kvm_arch_handle_exit(cpu, run); 3214 break; 3215 } 3216 } while (ret == 0); 3217 3218 cpu_exec_end(cpu); 3219 bql_lock(); 3220 3221 if (ret < 0) { 3222 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3223 vm_stop(RUN_STATE_INTERNAL_ERROR); 3224 } 3225 3226 qatomic_set(&cpu->exit_request, 0); 3227 return ret; 3228 } 3229 3230 int kvm_ioctl(KVMState *s, int type, ...) 3231 { 3232 int ret; 3233 void *arg; 3234 va_list ap; 3235 3236 va_start(ap, type); 3237 arg = va_arg(ap, void *); 3238 va_end(ap); 3239 3240 trace_kvm_ioctl(type, arg); 3241 ret = ioctl(s->fd, type, arg); 3242 if (ret == -1) { 3243 ret = -errno; 3244 } 3245 return ret; 3246 } 3247 3248 int kvm_vm_ioctl(KVMState *s, int type, ...) 3249 { 3250 int ret; 3251 void *arg; 3252 va_list ap; 3253 3254 va_start(ap, type); 3255 arg = va_arg(ap, void *); 3256 va_end(ap); 3257 3258 trace_kvm_vm_ioctl(type, arg); 3259 accel_ioctl_begin(); 3260 ret = ioctl(s->vmfd, type, arg); 3261 accel_ioctl_end(); 3262 if (ret == -1) { 3263 ret = -errno; 3264 } 3265 return ret; 3266 } 3267 3268 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3269 { 3270 int ret; 3271 void *arg; 3272 va_list ap; 3273 3274 va_start(ap, type); 3275 arg = va_arg(ap, void *); 3276 va_end(ap); 3277 3278 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3279 accel_cpu_ioctl_begin(cpu); 3280 ret = ioctl(cpu->kvm_fd, type, arg); 3281 accel_cpu_ioctl_end(cpu); 3282 if (ret == -1) { 3283 ret = -errno; 3284 } 3285 return ret; 3286 } 3287 3288 int kvm_device_ioctl(int fd, int type, ...) 3289 { 3290 int ret; 3291 void *arg; 3292 va_list ap; 3293 3294 va_start(ap, type); 3295 arg = va_arg(ap, void *); 3296 va_end(ap); 3297 3298 trace_kvm_device_ioctl(fd, type, arg); 3299 accel_ioctl_begin(); 3300 ret = ioctl(fd, type, arg); 3301 accel_ioctl_end(); 3302 if (ret == -1) { 3303 ret = -errno; 3304 } 3305 return ret; 3306 } 3307 3308 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3309 { 3310 int ret; 3311 struct kvm_device_attr attribute = { 3312 .group = group, 3313 .attr = attr, 3314 }; 3315 3316 if (!kvm_vm_attributes_allowed) { 3317 return 0; 3318 } 3319 3320 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3321 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3322 return ret ? 0 : 1; 3323 } 3324 3325 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3326 { 3327 struct kvm_device_attr attribute = { 3328 .group = group, 3329 .attr = attr, 3330 .flags = 0, 3331 }; 3332 3333 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3334 } 3335 3336 int kvm_device_access(int fd, int group, uint64_t attr, 3337 void *val, bool write, Error **errp) 3338 { 3339 struct kvm_device_attr kvmattr; 3340 int err; 3341 3342 kvmattr.flags = 0; 3343 kvmattr.group = group; 3344 kvmattr.attr = attr; 3345 kvmattr.addr = (uintptr_t)val; 3346 3347 err = kvm_device_ioctl(fd, 3348 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3349 &kvmattr); 3350 if (err < 0) { 3351 error_setg_errno(errp, -err, 3352 "KVM_%s_DEVICE_ATTR failed: Group %d " 3353 "attr 0x%016" PRIx64, 3354 write ? "SET" : "GET", group, attr); 3355 } 3356 return err; 3357 } 3358 3359 bool kvm_has_sync_mmu(void) 3360 { 3361 return kvm_state->sync_mmu; 3362 } 3363 3364 int kvm_has_vcpu_events(void) 3365 { 3366 return kvm_state->vcpu_events; 3367 } 3368 3369 int kvm_max_nested_state_length(void) 3370 { 3371 return kvm_state->max_nested_state_len; 3372 } 3373 3374 int kvm_has_gsi_routing(void) 3375 { 3376 #ifdef KVM_CAP_IRQ_ROUTING 3377 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3378 #else 3379 return false; 3380 #endif 3381 } 3382 3383 bool kvm_arm_supports_user_irq(void) 3384 { 3385 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3386 } 3387 3388 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3389 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3390 { 3391 struct kvm_sw_breakpoint *bp; 3392 3393 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3394 if (bp->pc == pc) { 3395 return bp; 3396 } 3397 } 3398 return NULL; 3399 } 3400 3401 int kvm_sw_breakpoints_active(CPUState *cpu) 3402 { 3403 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3404 } 3405 3406 struct kvm_set_guest_debug_data { 3407 struct kvm_guest_debug dbg; 3408 int err; 3409 }; 3410 3411 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3412 { 3413 struct kvm_set_guest_debug_data *dbg_data = 3414 (struct kvm_set_guest_debug_data *) data.host_ptr; 3415 3416 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3417 &dbg_data->dbg); 3418 } 3419 3420 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3421 { 3422 struct kvm_set_guest_debug_data data; 3423 3424 data.dbg.control = reinject_trap; 3425 3426 if (cpu->singlestep_enabled) { 3427 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3428 3429 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3430 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3431 } 3432 } 3433 kvm_arch_update_guest_debug(cpu, &data.dbg); 3434 3435 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3436 RUN_ON_CPU_HOST_PTR(&data)); 3437 return data.err; 3438 } 3439 3440 bool kvm_supports_guest_debug(void) 3441 { 3442 /* probed during kvm_init() */ 3443 return kvm_has_guest_debug; 3444 } 3445 3446 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3447 { 3448 struct kvm_sw_breakpoint *bp; 3449 int err; 3450 3451 if (type == GDB_BREAKPOINT_SW) { 3452 bp = kvm_find_sw_breakpoint(cpu, addr); 3453 if (bp) { 3454 bp->use_count++; 3455 return 0; 3456 } 3457 3458 bp = g_new(struct kvm_sw_breakpoint, 1); 3459 bp->pc = addr; 3460 bp->use_count = 1; 3461 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3462 if (err) { 3463 g_free(bp); 3464 return err; 3465 } 3466 3467 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3468 } else { 3469 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3470 if (err) { 3471 return err; 3472 } 3473 } 3474 3475 CPU_FOREACH(cpu) { 3476 err = kvm_update_guest_debug(cpu, 0); 3477 if (err) { 3478 return err; 3479 } 3480 } 3481 return 0; 3482 } 3483 3484 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3485 { 3486 struct kvm_sw_breakpoint *bp; 3487 int err; 3488 3489 if (type == GDB_BREAKPOINT_SW) { 3490 bp = kvm_find_sw_breakpoint(cpu, addr); 3491 if (!bp) { 3492 return -ENOENT; 3493 } 3494 3495 if (bp->use_count > 1) { 3496 bp->use_count--; 3497 return 0; 3498 } 3499 3500 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3501 if (err) { 3502 return err; 3503 } 3504 3505 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3506 g_free(bp); 3507 } else { 3508 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3509 if (err) { 3510 return err; 3511 } 3512 } 3513 3514 CPU_FOREACH(cpu) { 3515 err = kvm_update_guest_debug(cpu, 0); 3516 if (err) { 3517 return err; 3518 } 3519 } 3520 return 0; 3521 } 3522 3523 void kvm_remove_all_breakpoints(CPUState *cpu) 3524 { 3525 struct kvm_sw_breakpoint *bp, *next; 3526 KVMState *s = cpu->kvm_state; 3527 CPUState *tmpcpu; 3528 3529 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3530 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3531 /* Try harder to find a CPU that currently sees the breakpoint. */ 3532 CPU_FOREACH(tmpcpu) { 3533 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3534 break; 3535 } 3536 } 3537 } 3538 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3539 g_free(bp); 3540 } 3541 kvm_arch_remove_all_hw_breakpoints(); 3542 3543 CPU_FOREACH(cpu) { 3544 kvm_update_guest_debug(cpu, 0); 3545 } 3546 } 3547 3548 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3549 3550 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3551 { 3552 KVMState *s = kvm_state; 3553 struct kvm_signal_mask *sigmask; 3554 int r; 3555 3556 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3557 3558 sigmask->len = s->sigmask_len; 3559 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3560 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3561 g_free(sigmask); 3562 3563 return r; 3564 } 3565 3566 static void kvm_ipi_signal(int sig) 3567 { 3568 if (current_cpu) { 3569 assert(kvm_immediate_exit); 3570 kvm_cpu_kick(current_cpu); 3571 } 3572 } 3573 3574 void kvm_init_cpu_signals(CPUState *cpu) 3575 { 3576 int r; 3577 sigset_t set; 3578 struct sigaction sigact; 3579 3580 memset(&sigact, 0, sizeof(sigact)); 3581 sigact.sa_handler = kvm_ipi_signal; 3582 sigaction(SIG_IPI, &sigact, NULL); 3583 3584 pthread_sigmask(SIG_BLOCK, NULL, &set); 3585 #if defined KVM_HAVE_MCE_INJECTION 3586 sigdelset(&set, SIGBUS); 3587 pthread_sigmask(SIG_SETMASK, &set, NULL); 3588 #endif 3589 sigdelset(&set, SIG_IPI); 3590 if (kvm_immediate_exit) { 3591 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3592 } else { 3593 r = kvm_set_signal_mask(cpu, &set); 3594 } 3595 if (r) { 3596 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3597 exit(1); 3598 } 3599 } 3600 3601 /* Called asynchronously in VCPU thread. */ 3602 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3603 { 3604 #ifdef KVM_HAVE_MCE_INJECTION 3605 if (have_sigbus_pending) { 3606 return 1; 3607 } 3608 have_sigbus_pending = true; 3609 pending_sigbus_addr = addr; 3610 pending_sigbus_code = code; 3611 qatomic_set(&cpu->exit_request, 1); 3612 return 0; 3613 #else 3614 return 1; 3615 #endif 3616 } 3617 3618 /* Called synchronously (via signalfd) in main thread. */ 3619 int kvm_on_sigbus(int code, void *addr) 3620 { 3621 #ifdef KVM_HAVE_MCE_INJECTION 3622 /* Action required MCE kills the process if SIGBUS is blocked. Because 3623 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3624 * we can only get action optional here. 3625 */ 3626 assert(code != BUS_MCEERR_AR); 3627 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3628 return 0; 3629 #else 3630 return 1; 3631 #endif 3632 } 3633 3634 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3635 { 3636 int ret; 3637 struct kvm_create_device create_dev; 3638 3639 create_dev.type = type; 3640 create_dev.fd = -1; 3641 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3642 3643 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3644 return -ENOTSUP; 3645 } 3646 3647 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3648 if (ret) { 3649 return ret; 3650 } 3651 3652 return test ? 0 : create_dev.fd; 3653 } 3654 3655 bool kvm_device_supported(int vmfd, uint64_t type) 3656 { 3657 struct kvm_create_device create_dev = { 3658 .type = type, 3659 .fd = -1, 3660 .flags = KVM_CREATE_DEVICE_TEST, 3661 }; 3662 3663 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3664 return false; 3665 } 3666 3667 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3668 } 3669 3670 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3671 { 3672 struct kvm_one_reg reg; 3673 int r; 3674 3675 reg.id = id; 3676 reg.addr = (uintptr_t) source; 3677 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3678 if (r) { 3679 trace_kvm_failed_reg_set(id, strerror(-r)); 3680 } 3681 return r; 3682 } 3683 3684 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3685 { 3686 struct kvm_one_reg reg; 3687 int r; 3688 3689 reg.id = id; 3690 reg.addr = (uintptr_t) target; 3691 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3692 if (r) { 3693 trace_kvm_failed_reg_get(id, strerror(-r)); 3694 } 3695 return r; 3696 } 3697 3698 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3699 hwaddr start_addr, hwaddr size) 3700 { 3701 KVMState *kvm = KVM_STATE(ms->accelerator); 3702 int i; 3703 3704 for (i = 0; i < kvm->nr_as; ++i) { 3705 if (kvm->as[i].as == as && kvm->as[i].ml) { 3706 size = MIN(kvm_max_slot_size, size); 3707 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3708 start_addr, size); 3709 } 3710 } 3711 3712 return false; 3713 } 3714 3715 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3716 const char *name, void *opaque, 3717 Error **errp) 3718 { 3719 KVMState *s = KVM_STATE(obj); 3720 int64_t value = s->kvm_shadow_mem; 3721 3722 visit_type_int(v, name, &value, errp); 3723 } 3724 3725 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3726 const char *name, void *opaque, 3727 Error **errp) 3728 { 3729 KVMState *s = KVM_STATE(obj); 3730 int64_t value; 3731 3732 if (s->fd != -1) { 3733 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3734 return; 3735 } 3736 3737 if (!visit_type_int(v, name, &value, errp)) { 3738 return; 3739 } 3740 3741 s->kvm_shadow_mem = value; 3742 } 3743 3744 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3745 const char *name, void *opaque, 3746 Error **errp) 3747 { 3748 KVMState *s = KVM_STATE(obj); 3749 OnOffSplit mode; 3750 3751 if (s->fd != -1) { 3752 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3753 return; 3754 } 3755 3756 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3757 return; 3758 } 3759 switch (mode) { 3760 case ON_OFF_SPLIT_ON: 3761 s->kernel_irqchip_allowed = true; 3762 s->kernel_irqchip_required = true; 3763 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3764 break; 3765 case ON_OFF_SPLIT_OFF: 3766 s->kernel_irqchip_allowed = false; 3767 s->kernel_irqchip_required = false; 3768 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3769 break; 3770 case ON_OFF_SPLIT_SPLIT: 3771 s->kernel_irqchip_allowed = true; 3772 s->kernel_irqchip_required = true; 3773 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3774 break; 3775 default: 3776 /* The value was checked in visit_type_OnOffSplit() above. If 3777 * we get here, then something is wrong in QEMU. 3778 */ 3779 abort(); 3780 } 3781 } 3782 3783 bool kvm_kernel_irqchip_allowed(void) 3784 { 3785 return kvm_state->kernel_irqchip_allowed; 3786 } 3787 3788 bool kvm_kernel_irqchip_required(void) 3789 { 3790 return kvm_state->kernel_irqchip_required; 3791 } 3792 3793 bool kvm_kernel_irqchip_split(void) 3794 { 3795 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3796 } 3797 3798 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3799 const char *name, void *opaque, 3800 Error **errp) 3801 { 3802 KVMState *s = KVM_STATE(obj); 3803 uint32_t value = s->kvm_dirty_ring_size; 3804 3805 visit_type_uint32(v, name, &value, errp); 3806 } 3807 3808 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3809 const char *name, void *opaque, 3810 Error **errp) 3811 { 3812 KVMState *s = KVM_STATE(obj); 3813 uint32_t value; 3814 3815 if (s->fd != -1) { 3816 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3817 return; 3818 } 3819 3820 if (!visit_type_uint32(v, name, &value, errp)) { 3821 return; 3822 } 3823 if (value & (value - 1)) { 3824 error_setg(errp, "dirty-ring-size must be a power of two."); 3825 return; 3826 } 3827 3828 s->kvm_dirty_ring_size = value; 3829 } 3830 3831 static char *kvm_get_device(Object *obj, 3832 Error **errp G_GNUC_UNUSED) 3833 { 3834 KVMState *s = KVM_STATE(obj); 3835 3836 return g_strdup(s->device); 3837 } 3838 3839 static void kvm_set_device(Object *obj, 3840 const char *value, 3841 Error **errp G_GNUC_UNUSED) 3842 { 3843 KVMState *s = KVM_STATE(obj); 3844 3845 g_free(s->device); 3846 s->device = g_strdup(value); 3847 } 3848 3849 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3850 { 3851 KVMState *s = KVM_STATE(obj); 3852 s->msr_energy.enable = value; 3853 } 3854 3855 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3856 const char *str, 3857 Error **errp) 3858 { 3859 KVMState *s = KVM_STATE(obj); 3860 g_free(s->msr_energy.socket_path); 3861 s->msr_energy.socket_path = g_strdup(str); 3862 } 3863 3864 static void kvm_accel_instance_init(Object *obj) 3865 { 3866 KVMState *s = KVM_STATE(obj); 3867 3868 s->fd = -1; 3869 s->vmfd = -1; 3870 s->kvm_shadow_mem = -1; 3871 s->kernel_irqchip_allowed = true; 3872 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3873 /* KVM dirty ring is by default off */ 3874 s->kvm_dirty_ring_size = 0; 3875 s->kvm_dirty_ring_with_bitmap = false; 3876 s->kvm_eager_split_size = 0; 3877 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3878 s->notify_window = 0; 3879 s->xen_version = 0; 3880 s->xen_gnttab_max_frames = 64; 3881 s->xen_evtchn_max_pirq = 256; 3882 s->device = NULL; 3883 s->msr_energy.enable = false; 3884 } 3885 3886 /** 3887 * kvm_gdbstub_sstep_flags(): 3888 * 3889 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3890 * support is probed during kvm_init() 3891 */ 3892 static int kvm_gdbstub_sstep_flags(void) 3893 { 3894 return kvm_sstep_flags; 3895 } 3896 3897 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3898 { 3899 AccelClass *ac = ACCEL_CLASS(oc); 3900 ac->name = "KVM"; 3901 ac->init_machine = kvm_init; 3902 ac->has_memory = kvm_accel_has_memory; 3903 ac->allowed = &kvm_allowed; 3904 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3905 3906 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3907 NULL, kvm_set_kernel_irqchip, 3908 NULL, NULL); 3909 object_class_property_set_description(oc, "kernel-irqchip", 3910 "Configure KVM in-kernel irqchip"); 3911 3912 object_class_property_add(oc, "kvm-shadow-mem", "int", 3913 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3914 NULL, NULL); 3915 object_class_property_set_description(oc, "kvm-shadow-mem", 3916 "KVM shadow MMU size"); 3917 3918 object_class_property_add(oc, "dirty-ring-size", "uint32", 3919 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3920 NULL, NULL); 3921 object_class_property_set_description(oc, "dirty-ring-size", 3922 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3923 3924 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3925 object_class_property_set_description(oc, "device", 3926 "Path to the device node to use (default: /dev/kvm)"); 3927 3928 object_class_property_add_bool(oc, "rapl", 3929 NULL, 3930 kvm_set_kvm_rapl); 3931 object_class_property_set_description(oc, "rapl", 3932 "Allow energy related MSRs for RAPL interface in Guest"); 3933 3934 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 3935 kvm_set_kvm_rapl_socket_path); 3936 object_class_property_set_description(oc, "rapl-helper-socket", 3937 "Socket Path for comminucating with the Virtual MSR helper daemon"); 3938 3939 kvm_arch_accel_class_init(oc); 3940 } 3941 3942 static const TypeInfo kvm_accel_type = { 3943 .name = TYPE_KVM_ACCEL, 3944 .parent = TYPE_ACCEL, 3945 .instance_init = kvm_accel_instance_init, 3946 .class_init = kvm_accel_class_init, 3947 .instance_size = sizeof(KVMState), 3948 }; 3949 3950 static void kvm_type_init(void) 3951 { 3952 type_register_static(&kvm_accel_type); 3953 } 3954 3955 type_init(kvm_type_init); 3956 3957 typedef struct StatsArgs { 3958 union StatsResultsType { 3959 StatsResultList **stats; 3960 StatsSchemaList **schema; 3961 } result; 3962 strList *names; 3963 Error **errp; 3964 } StatsArgs; 3965 3966 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3967 uint64_t *stats_data, 3968 StatsList *stats_list, 3969 Error **errp) 3970 { 3971 3972 Stats *stats; 3973 uint64List *val_list = NULL; 3974 3975 /* Only add stats that we understand. */ 3976 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3977 case KVM_STATS_TYPE_CUMULATIVE: 3978 case KVM_STATS_TYPE_INSTANT: 3979 case KVM_STATS_TYPE_PEAK: 3980 case KVM_STATS_TYPE_LINEAR_HIST: 3981 case KVM_STATS_TYPE_LOG_HIST: 3982 break; 3983 default: 3984 return stats_list; 3985 } 3986 3987 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3988 case KVM_STATS_UNIT_NONE: 3989 case KVM_STATS_UNIT_BYTES: 3990 case KVM_STATS_UNIT_CYCLES: 3991 case KVM_STATS_UNIT_SECONDS: 3992 case KVM_STATS_UNIT_BOOLEAN: 3993 break; 3994 default: 3995 return stats_list; 3996 } 3997 3998 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3999 case KVM_STATS_BASE_POW10: 4000 case KVM_STATS_BASE_POW2: 4001 break; 4002 default: 4003 return stats_list; 4004 } 4005 4006 /* Alloc and populate data list */ 4007 stats = g_new0(Stats, 1); 4008 stats->name = g_strdup(pdesc->name); 4009 stats->value = g_new0(StatsValue, 1); 4010 4011 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4012 stats->value->u.boolean = *stats_data; 4013 stats->value->type = QTYPE_QBOOL; 4014 } else if (pdesc->size == 1) { 4015 stats->value->u.scalar = *stats_data; 4016 stats->value->type = QTYPE_QNUM; 4017 } else { 4018 int i; 4019 for (i = 0; i < pdesc->size; i++) { 4020 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4021 } 4022 stats->value->u.list = val_list; 4023 stats->value->type = QTYPE_QLIST; 4024 } 4025 4026 QAPI_LIST_PREPEND(stats_list, stats); 4027 return stats_list; 4028 } 4029 4030 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4031 StatsSchemaValueList *list, 4032 Error **errp) 4033 { 4034 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4035 schema_entry->value = g_new0(StatsSchemaValue, 1); 4036 4037 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4038 case KVM_STATS_TYPE_CUMULATIVE: 4039 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4040 break; 4041 case KVM_STATS_TYPE_INSTANT: 4042 schema_entry->value->type = STATS_TYPE_INSTANT; 4043 break; 4044 case KVM_STATS_TYPE_PEAK: 4045 schema_entry->value->type = STATS_TYPE_PEAK; 4046 break; 4047 case KVM_STATS_TYPE_LINEAR_HIST: 4048 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4049 schema_entry->value->bucket_size = pdesc->bucket_size; 4050 schema_entry->value->has_bucket_size = true; 4051 break; 4052 case KVM_STATS_TYPE_LOG_HIST: 4053 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4054 break; 4055 default: 4056 goto exit; 4057 } 4058 4059 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4060 case KVM_STATS_UNIT_NONE: 4061 break; 4062 case KVM_STATS_UNIT_BOOLEAN: 4063 schema_entry->value->has_unit = true; 4064 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4065 break; 4066 case KVM_STATS_UNIT_BYTES: 4067 schema_entry->value->has_unit = true; 4068 schema_entry->value->unit = STATS_UNIT_BYTES; 4069 break; 4070 case KVM_STATS_UNIT_CYCLES: 4071 schema_entry->value->has_unit = true; 4072 schema_entry->value->unit = STATS_UNIT_CYCLES; 4073 break; 4074 case KVM_STATS_UNIT_SECONDS: 4075 schema_entry->value->has_unit = true; 4076 schema_entry->value->unit = STATS_UNIT_SECONDS; 4077 break; 4078 default: 4079 goto exit; 4080 } 4081 4082 schema_entry->value->exponent = pdesc->exponent; 4083 if (pdesc->exponent) { 4084 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4085 case KVM_STATS_BASE_POW10: 4086 schema_entry->value->has_base = true; 4087 schema_entry->value->base = 10; 4088 break; 4089 case KVM_STATS_BASE_POW2: 4090 schema_entry->value->has_base = true; 4091 schema_entry->value->base = 2; 4092 break; 4093 default: 4094 goto exit; 4095 } 4096 } 4097 4098 schema_entry->value->name = g_strdup(pdesc->name); 4099 schema_entry->next = list; 4100 return schema_entry; 4101 exit: 4102 g_free(schema_entry->value); 4103 g_free(schema_entry); 4104 return list; 4105 } 4106 4107 /* Cached stats descriptors */ 4108 typedef struct StatsDescriptors { 4109 const char *ident; /* cache key, currently the StatsTarget */ 4110 struct kvm_stats_desc *kvm_stats_desc; 4111 struct kvm_stats_header kvm_stats_header; 4112 QTAILQ_ENTRY(StatsDescriptors) next; 4113 } StatsDescriptors; 4114 4115 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4116 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4117 4118 /* 4119 * Return the descriptors for 'target', that either have already been read 4120 * or are retrieved from 'stats_fd'. 4121 */ 4122 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4123 Error **errp) 4124 { 4125 StatsDescriptors *descriptors; 4126 const char *ident; 4127 struct kvm_stats_desc *kvm_stats_desc; 4128 struct kvm_stats_header *kvm_stats_header; 4129 size_t size_desc; 4130 ssize_t ret; 4131 4132 ident = StatsTarget_str(target); 4133 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4134 if (g_str_equal(descriptors->ident, ident)) { 4135 return descriptors; 4136 } 4137 } 4138 4139 descriptors = g_new0(StatsDescriptors, 1); 4140 4141 /* Read stats header */ 4142 kvm_stats_header = &descriptors->kvm_stats_header; 4143 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4144 if (ret != sizeof(*kvm_stats_header)) { 4145 error_setg(errp, "KVM stats: failed to read stats header: " 4146 "expected %zu actual %zu", 4147 sizeof(*kvm_stats_header), ret); 4148 g_free(descriptors); 4149 return NULL; 4150 } 4151 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4152 4153 /* Read stats descriptors */ 4154 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4155 ret = pread(stats_fd, kvm_stats_desc, 4156 size_desc * kvm_stats_header->num_desc, 4157 kvm_stats_header->desc_offset); 4158 4159 if (ret != size_desc * kvm_stats_header->num_desc) { 4160 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4161 "expected %zu actual %zu", 4162 size_desc * kvm_stats_header->num_desc, ret); 4163 g_free(descriptors); 4164 g_free(kvm_stats_desc); 4165 return NULL; 4166 } 4167 descriptors->kvm_stats_desc = kvm_stats_desc; 4168 descriptors->ident = ident; 4169 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4170 return descriptors; 4171 } 4172 4173 static void query_stats(StatsResultList **result, StatsTarget target, 4174 strList *names, int stats_fd, CPUState *cpu, 4175 Error **errp) 4176 { 4177 struct kvm_stats_desc *kvm_stats_desc; 4178 struct kvm_stats_header *kvm_stats_header; 4179 StatsDescriptors *descriptors; 4180 g_autofree uint64_t *stats_data = NULL; 4181 struct kvm_stats_desc *pdesc; 4182 StatsList *stats_list = NULL; 4183 size_t size_desc, size_data = 0; 4184 ssize_t ret; 4185 int i; 4186 4187 descriptors = find_stats_descriptors(target, stats_fd, errp); 4188 if (!descriptors) { 4189 return; 4190 } 4191 4192 kvm_stats_header = &descriptors->kvm_stats_header; 4193 kvm_stats_desc = descriptors->kvm_stats_desc; 4194 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4195 4196 /* Tally the total data size; read schema data */ 4197 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4198 pdesc = (void *)kvm_stats_desc + i * size_desc; 4199 size_data += pdesc->size * sizeof(*stats_data); 4200 } 4201 4202 stats_data = g_malloc0(size_data); 4203 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4204 4205 if (ret != size_data) { 4206 error_setg(errp, "KVM stats: failed to read data: " 4207 "expected %zu actual %zu", size_data, ret); 4208 return; 4209 } 4210 4211 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4212 uint64_t *stats; 4213 pdesc = (void *)kvm_stats_desc + i * size_desc; 4214 4215 /* Add entry to the list */ 4216 stats = (void *)stats_data + pdesc->offset; 4217 if (!apply_str_list_filter(pdesc->name, names)) { 4218 continue; 4219 } 4220 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4221 } 4222 4223 if (!stats_list) { 4224 return; 4225 } 4226 4227 switch (target) { 4228 case STATS_TARGET_VM: 4229 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4230 break; 4231 case STATS_TARGET_VCPU: 4232 add_stats_entry(result, STATS_PROVIDER_KVM, 4233 cpu->parent_obj.canonical_path, 4234 stats_list); 4235 break; 4236 default: 4237 g_assert_not_reached(); 4238 } 4239 } 4240 4241 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4242 int stats_fd, Error **errp) 4243 { 4244 struct kvm_stats_desc *kvm_stats_desc; 4245 struct kvm_stats_header *kvm_stats_header; 4246 StatsDescriptors *descriptors; 4247 struct kvm_stats_desc *pdesc; 4248 StatsSchemaValueList *stats_list = NULL; 4249 size_t size_desc; 4250 int i; 4251 4252 descriptors = find_stats_descriptors(target, stats_fd, errp); 4253 if (!descriptors) { 4254 return; 4255 } 4256 4257 kvm_stats_header = &descriptors->kvm_stats_header; 4258 kvm_stats_desc = descriptors->kvm_stats_desc; 4259 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4260 4261 /* Tally the total data size; read schema data */ 4262 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4263 pdesc = (void *)kvm_stats_desc + i * size_desc; 4264 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4265 } 4266 4267 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4268 } 4269 4270 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4271 { 4272 int stats_fd = cpu->kvm_vcpu_stats_fd; 4273 Error *local_err = NULL; 4274 4275 if (stats_fd == -1) { 4276 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4277 error_propagate(kvm_stats_args->errp, local_err); 4278 return; 4279 } 4280 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4281 kvm_stats_args->names, stats_fd, cpu, 4282 kvm_stats_args->errp); 4283 } 4284 4285 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4286 { 4287 int stats_fd = cpu->kvm_vcpu_stats_fd; 4288 Error *local_err = NULL; 4289 4290 if (stats_fd == -1) { 4291 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4292 error_propagate(kvm_stats_args->errp, local_err); 4293 return; 4294 } 4295 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4296 kvm_stats_args->errp); 4297 } 4298 4299 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4300 strList *names, strList *targets, Error **errp) 4301 { 4302 KVMState *s = kvm_state; 4303 CPUState *cpu; 4304 int stats_fd; 4305 4306 switch (target) { 4307 case STATS_TARGET_VM: 4308 { 4309 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4310 if (stats_fd == -1) { 4311 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4312 return; 4313 } 4314 query_stats(result, target, names, stats_fd, NULL, errp); 4315 close(stats_fd); 4316 break; 4317 } 4318 case STATS_TARGET_VCPU: 4319 { 4320 StatsArgs stats_args; 4321 stats_args.result.stats = result; 4322 stats_args.names = names; 4323 stats_args.errp = errp; 4324 CPU_FOREACH(cpu) { 4325 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4326 continue; 4327 } 4328 query_stats_vcpu(cpu, &stats_args); 4329 } 4330 break; 4331 } 4332 default: 4333 break; 4334 } 4335 } 4336 4337 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4338 { 4339 StatsArgs stats_args; 4340 KVMState *s = kvm_state; 4341 int stats_fd; 4342 4343 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4344 if (stats_fd == -1) { 4345 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4346 return; 4347 } 4348 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4349 close(stats_fd); 4350 4351 if (first_cpu) { 4352 stats_args.result.schema = result; 4353 stats_args.errp = errp; 4354 query_stats_schema_vcpu(first_cpu, &stats_args); 4355 } 4356 } 4357 4358 void kvm_mark_guest_state_protected(void) 4359 { 4360 kvm_state->guest_state_protected = true; 4361 } 4362 4363 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4364 { 4365 int fd; 4366 struct kvm_create_guest_memfd guest_memfd = { 4367 .size = size, 4368 .flags = flags, 4369 }; 4370 4371 if (!kvm_guest_memfd_supported) { 4372 error_setg(errp, "KVM does not support guest_memfd"); 4373 return -1; 4374 } 4375 4376 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4377 if (fd < 0) { 4378 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4379 return -1; 4380 } 4381 4382 return fd; 4383 } 4384