xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision e69b2c67)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "gdbstub/enums.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 /* Default num of memslots to be allocated when VM starts */
73 #define  KVM_MEMSLOTS_NR_ALLOC_DEFAULT                      16
74 
75 struct KVMParkedVcpu {
76     unsigned long vcpu_id;
77     int kvm_fd;
78     QLIST_ENTRY(KVMParkedVcpu) node;
79 };
80 
81 KVMState *kvm_state;
82 bool kvm_kernel_irqchip;
83 bool kvm_split_irqchip;
84 bool kvm_async_interrupts_allowed;
85 bool kvm_halt_in_kernel_allowed;
86 bool kvm_resamplefds_allowed;
87 bool kvm_msi_via_irqfd_allowed;
88 bool kvm_gsi_routing_allowed;
89 bool kvm_gsi_direct_mapping;
90 bool kvm_allowed;
91 bool kvm_readonly_mem_allowed;
92 bool kvm_vm_attributes_allowed;
93 bool kvm_msi_use_devid;
94 static bool kvm_has_guest_debug;
95 static int kvm_sstep_flags;
96 static bool kvm_immediate_exit;
97 static uint64_t kvm_supported_memory_attributes;
98 static bool kvm_guest_memfd_supported;
99 static hwaddr kvm_max_slot_size = ~0;
100 
101 static const KVMCapabilityInfo kvm_required_capabilites[] = {
102     KVM_CAP_INFO(USER_MEMORY),
103     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
104     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
105     KVM_CAP_INFO(INTERNAL_ERROR_DATA),
106     KVM_CAP_INFO(IOEVENTFD),
107     KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
108     KVM_CAP_LAST_INFO
109 };
110 
111 static NotifierList kvm_irqchip_change_notifiers =
112     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
113 
114 struct KVMResampleFd {
115     int gsi;
116     EventNotifier *resample_event;
117     QLIST_ENTRY(KVMResampleFd) node;
118 };
119 typedef struct KVMResampleFd KVMResampleFd;
120 
121 /*
122  * Only used with split irqchip where we need to do the resample fd
123  * kick for the kernel from userspace.
124  */
125 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
126     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
127 
128 static QemuMutex kml_slots_lock;
129 
130 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
131 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
132 
133 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
134 
135 static inline void kvm_resample_fd_remove(int gsi)
136 {
137     KVMResampleFd *rfd;
138 
139     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
140         if (rfd->gsi == gsi) {
141             QLIST_REMOVE(rfd, node);
142             g_free(rfd);
143             break;
144         }
145     }
146 }
147 
148 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
149 {
150     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
151 
152     rfd->gsi = gsi;
153     rfd->resample_event = event;
154 
155     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
156 }
157 
158 void kvm_resample_fd_notify(int gsi)
159 {
160     KVMResampleFd *rfd;
161 
162     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
163         if (rfd->gsi == gsi) {
164             event_notifier_set(rfd->resample_event);
165             trace_kvm_resample_fd_notify(gsi);
166             return;
167         }
168     }
169 }
170 
171 /**
172  * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener
173  *
174  * @kml: The KVMMemoryListener* to grow the slots[] array
175  * @nr_slots_new: The new size of slots[] array
176  *
177  * Returns: True if the array grows larger, false otherwise.
178  */
179 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new)
180 {
181     unsigned int i, cur = kml->nr_slots_allocated;
182     KVMSlot *slots;
183 
184     if (nr_slots_new > kvm_state->nr_slots) {
185         nr_slots_new = kvm_state->nr_slots;
186     }
187 
188     if (cur >= nr_slots_new) {
189         /* Big enough, no need to grow, or we reached max */
190         return false;
191     }
192 
193     if (cur == 0) {
194         slots = g_new0(KVMSlot, nr_slots_new);
195     } else {
196         assert(kml->slots);
197         slots = g_renew(KVMSlot, kml->slots, nr_slots_new);
198         /*
199          * g_renew() doesn't initialize extended buffers, however kvm
200          * memslots require fields to be zero-initialized. E.g. pointers,
201          * memory_size field, etc.
202          */
203         memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur));
204     }
205 
206     for (i = cur; i < nr_slots_new; i++) {
207         slots[i].slot = i;
208     }
209 
210     kml->slots = slots;
211     kml->nr_slots_allocated = nr_slots_new;
212     trace_kvm_slots_grow(cur, nr_slots_new);
213 
214     return true;
215 }
216 
217 static bool kvm_slots_double(KVMMemoryListener *kml)
218 {
219     return kvm_slots_grow(kml, kml->nr_slots_allocated * 2);
220 }
221 
222 unsigned int kvm_get_max_memslots(void)
223 {
224     KVMState *s = KVM_STATE(current_accel());
225 
226     return s->nr_slots;
227 }
228 
229 unsigned int kvm_get_free_memslots(void)
230 {
231     unsigned int used_slots = 0;
232     KVMState *s = kvm_state;
233     int i;
234 
235     kvm_slots_lock();
236     for (i = 0; i < s->nr_as; i++) {
237         if (!s->as[i].ml) {
238             continue;
239         }
240         used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
241     }
242     kvm_slots_unlock();
243 
244     return s->nr_slots - used_slots;
245 }
246 
247 /* Called with KVMMemoryListener.slots_lock held */
248 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
249 {
250     unsigned int n;
251     int i;
252 
253     for (i = 0; i < kml->nr_slots_allocated; i++) {
254         if (kml->slots[i].memory_size == 0) {
255             return &kml->slots[i];
256         }
257     }
258 
259     /*
260      * If no free slots, try to grow first by doubling.  Cache the old size
261      * here to avoid another round of search: if the grow succeeded, it
262      * means slots[] now must have the existing "n" slots occupied,
263      * followed by one or more free slots starting from slots[n].
264      */
265     n = kml->nr_slots_allocated;
266     if (kvm_slots_double(kml)) {
267         return &kml->slots[n];
268     }
269 
270     return NULL;
271 }
272 
273 /* Called with KVMMemoryListener.slots_lock held */
274 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
275 {
276     KVMSlot *slot = kvm_get_free_slot(kml);
277 
278     if (slot) {
279         return slot;
280     }
281 
282     fprintf(stderr, "%s: no free slot available\n", __func__);
283     abort();
284 }
285 
286 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
287                                          hwaddr start_addr,
288                                          hwaddr size)
289 {
290     int i;
291 
292     for (i = 0; i < kml->nr_slots_allocated; i++) {
293         KVMSlot *mem = &kml->slots[i];
294 
295         if (start_addr == mem->start_addr && size == mem->memory_size) {
296             return mem;
297         }
298     }
299 
300     return NULL;
301 }
302 
303 /*
304  * Calculate and align the start address and the size of the section.
305  * Return the size. If the size is 0, the aligned section is empty.
306  */
307 static hwaddr kvm_align_section(MemoryRegionSection *section,
308                                 hwaddr *start)
309 {
310     hwaddr size = int128_get64(section->size);
311     hwaddr delta, aligned;
312 
313     /* kvm works in page size chunks, but the function may be called
314        with sub-page size and unaligned start address. Pad the start
315        address to next and truncate size to previous page boundary. */
316     aligned = ROUND_UP(section->offset_within_address_space,
317                        qemu_real_host_page_size());
318     delta = aligned - section->offset_within_address_space;
319     *start = aligned;
320     if (delta > size) {
321         return 0;
322     }
323 
324     return (size - delta) & qemu_real_host_page_mask();
325 }
326 
327 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
328                                        hwaddr *phys_addr)
329 {
330     KVMMemoryListener *kml = &s->memory_listener;
331     int i, ret = 0;
332 
333     kvm_slots_lock();
334     for (i = 0; i < kml->nr_slots_allocated; i++) {
335         KVMSlot *mem = &kml->slots[i];
336 
337         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
338             *phys_addr = mem->start_addr + (ram - mem->ram);
339             ret = 1;
340             break;
341         }
342     }
343     kvm_slots_unlock();
344 
345     return ret;
346 }
347 
348 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
349 {
350     KVMState *s = kvm_state;
351     struct kvm_userspace_memory_region2 mem;
352     int ret;
353 
354     mem.slot = slot->slot | (kml->as_id << 16);
355     mem.guest_phys_addr = slot->start_addr;
356     mem.userspace_addr = (unsigned long)slot->ram;
357     mem.flags = slot->flags;
358     mem.guest_memfd = slot->guest_memfd;
359     mem.guest_memfd_offset = slot->guest_memfd_offset;
360 
361     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
362         /* Set the slot size to 0 before setting the slot to the desired
363          * value. This is needed based on KVM commit 75d61fbc. */
364         mem.memory_size = 0;
365 
366         if (kvm_guest_memfd_supported) {
367             ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
368         } else {
369             ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
370         }
371         if (ret < 0) {
372             goto err;
373         }
374     }
375     mem.memory_size = slot->memory_size;
376     if (kvm_guest_memfd_supported) {
377         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
378     } else {
379         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
380     }
381     slot->old_flags = mem.flags;
382 err:
383     trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags,
384                               mem.guest_phys_addr, mem.memory_size,
385                               mem.userspace_addr, mem.guest_memfd,
386                               mem.guest_memfd_offset, ret);
387     if (ret < 0) {
388         if (kvm_guest_memfd_supported) {
389                 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d,"
390                         " start=0x%" PRIx64 ", size=0x%" PRIx64 ","
391                         " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 ","
392                         " guest_memfd_offset=0x%" PRIx64 ": %s",
393                         __func__, mem.slot, slot->start_addr,
394                         (uint64_t)mem.memory_size, mem.flags,
395                         mem.guest_memfd, (uint64_t)mem.guest_memfd_offset,
396                         strerror(errno));
397         } else {
398                 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
399                             " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
400                             __func__, mem.slot, slot->start_addr,
401                             (uint64_t)mem.memory_size, strerror(errno));
402         }
403     }
404     return ret;
405 }
406 
407 void kvm_park_vcpu(CPUState *cpu)
408 {
409     struct KVMParkedVcpu *vcpu;
410 
411     trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
412 
413     vcpu = g_malloc0(sizeof(*vcpu));
414     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
415     vcpu->kvm_fd = cpu->kvm_fd;
416     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
417 }
418 
419 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id)
420 {
421     struct KVMParkedVcpu *cpu;
422     int kvm_fd = -ENOENT;
423 
424     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
425         if (cpu->vcpu_id == vcpu_id) {
426             QLIST_REMOVE(cpu, node);
427             kvm_fd = cpu->kvm_fd;
428             g_free(cpu);
429             break;
430         }
431     }
432 
433     trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked");
434 
435     return kvm_fd;
436 }
437 
438 int kvm_create_vcpu(CPUState *cpu)
439 {
440     unsigned long vcpu_id = kvm_arch_vcpu_id(cpu);
441     KVMState *s = kvm_state;
442     int kvm_fd;
443 
444     /* check if the KVM vCPU already exist but is parked */
445     kvm_fd = kvm_unpark_vcpu(s, vcpu_id);
446     if (kvm_fd < 0) {
447         /* vCPU not parked: create a new KVM vCPU */
448         kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id);
449         if (kvm_fd < 0) {
450             error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id);
451             return kvm_fd;
452         }
453     }
454 
455     cpu->kvm_fd = kvm_fd;
456     cpu->kvm_state = s;
457     cpu->vcpu_dirty = true;
458     cpu->dirty_pages = 0;
459     cpu->throttle_us_per_full = 0;
460 
461     trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd);
462 
463     return 0;
464 }
465 
466 int kvm_create_and_park_vcpu(CPUState *cpu)
467 {
468     int ret = 0;
469 
470     ret = kvm_create_vcpu(cpu);
471     if (!ret) {
472         kvm_park_vcpu(cpu);
473     }
474 
475     return ret;
476 }
477 
478 static int do_kvm_destroy_vcpu(CPUState *cpu)
479 {
480     KVMState *s = kvm_state;
481     long mmap_size;
482     int ret = 0;
483 
484     trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
485 
486     ret = kvm_arch_destroy_vcpu(cpu);
487     if (ret < 0) {
488         goto err;
489     }
490 
491     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
492     if (mmap_size < 0) {
493         ret = mmap_size;
494         trace_kvm_failed_get_vcpu_mmap_size();
495         goto err;
496     }
497 
498     ret = munmap(cpu->kvm_run, mmap_size);
499     if (ret < 0) {
500         goto err;
501     }
502 
503     if (cpu->kvm_dirty_gfns) {
504         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
505         if (ret < 0) {
506             goto err;
507         }
508     }
509 
510     kvm_park_vcpu(cpu);
511 err:
512     return ret;
513 }
514 
515 void kvm_destroy_vcpu(CPUState *cpu)
516 {
517     if (do_kvm_destroy_vcpu(cpu) < 0) {
518         error_report("kvm_destroy_vcpu failed");
519         exit(EXIT_FAILURE);
520     }
521 }
522 
523 int kvm_init_vcpu(CPUState *cpu, Error **errp)
524 {
525     KVMState *s = kvm_state;
526     long mmap_size;
527     int ret;
528 
529     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
530 
531     ret = kvm_create_vcpu(cpu);
532     if (ret < 0) {
533         error_setg_errno(errp, -ret,
534                          "kvm_init_vcpu: kvm_create_vcpu failed (%lu)",
535                          kvm_arch_vcpu_id(cpu));
536         goto err;
537     }
538 
539     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
540     if (mmap_size < 0) {
541         ret = mmap_size;
542         error_setg_errno(errp, -mmap_size,
543                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
544         goto err;
545     }
546 
547     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
548                         cpu->kvm_fd, 0);
549     if (cpu->kvm_run == MAP_FAILED) {
550         ret = -errno;
551         error_setg_errno(errp, ret,
552                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
553                          kvm_arch_vcpu_id(cpu));
554         goto err;
555     }
556 
557     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
558         s->coalesced_mmio_ring =
559             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
560     }
561 
562     if (s->kvm_dirty_ring_size) {
563         /* Use MAP_SHARED to share pages with the kernel */
564         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
565                                    PROT_READ | PROT_WRITE, MAP_SHARED,
566                                    cpu->kvm_fd,
567                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
568         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
569             ret = -errno;
570             goto err;
571         }
572     }
573 
574     ret = kvm_arch_init_vcpu(cpu);
575     if (ret < 0) {
576         error_setg_errno(errp, -ret,
577                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
578                          kvm_arch_vcpu_id(cpu));
579     }
580     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
581 
582 err:
583     return ret;
584 }
585 
586 /*
587  * dirty pages logging control
588  */
589 
590 static int kvm_mem_flags(MemoryRegion *mr)
591 {
592     bool readonly = mr->readonly || memory_region_is_romd(mr);
593     int flags = 0;
594 
595     if (memory_region_get_dirty_log_mask(mr) != 0) {
596         flags |= KVM_MEM_LOG_DIRTY_PAGES;
597     }
598     if (readonly && kvm_readonly_mem_allowed) {
599         flags |= KVM_MEM_READONLY;
600     }
601     if (memory_region_has_guest_memfd(mr)) {
602         assert(kvm_guest_memfd_supported);
603         flags |= KVM_MEM_GUEST_MEMFD;
604     }
605     return flags;
606 }
607 
608 /* Called with KVMMemoryListener.slots_lock held */
609 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
610                                  MemoryRegion *mr)
611 {
612     mem->flags = kvm_mem_flags(mr);
613 
614     /* If nothing changed effectively, no need to issue ioctl */
615     if (mem->flags == mem->old_flags) {
616         return 0;
617     }
618 
619     kvm_slot_init_dirty_bitmap(mem);
620     return kvm_set_user_memory_region(kml, mem, false);
621 }
622 
623 static int kvm_section_update_flags(KVMMemoryListener *kml,
624                                     MemoryRegionSection *section)
625 {
626     hwaddr start_addr, size, slot_size;
627     KVMSlot *mem;
628     int ret = 0;
629 
630     size = kvm_align_section(section, &start_addr);
631     if (!size) {
632         return 0;
633     }
634 
635     kvm_slots_lock();
636 
637     while (size && !ret) {
638         slot_size = MIN(kvm_max_slot_size, size);
639         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
640         if (!mem) {
641             /* We don't have a slot if we want to trap every access. */
642             goto out;
643         }
644 
645         ret = kvm_slot_update_flags(kml, mem, section->mr);
646         start_addr += slot_size;
647         size -= slot_size;
648     }
649 
650 out:
651     kvm_slots_unlock();
652     return ret;
653 }
654 
655 static void kvm_log_start(MemoryListener *listener,
656                           MemoryRegionSection *section,
657                           int old, int new)
658 {
659     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
660     int r;
661 
662     if (old != 0) {
663         return;
664     }
665 
666     r = kvm_section_update_flags(kml, section);
667     if (r < 0) {
668         abort();
669     }
670 }
671 
672 static void kvm_log_stop(MemoryListener *listener,
673                           MemoryRegionSection *section,
674                           int old, int new)
675 {
676     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
677     int r;
678 
679     if (new != 0) {
680         return;
681     }
682 
683     r = kvm_section_update_flags(kml, section);
684     if (r < 0) {
685         abort();
686     }
687 }
688 
689 /* get kvm's dirty pages bitmap and update qemu's */
690 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
691 {
692     ram_addr_t start = slot->ram_start_offset;
693     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
694 
695     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
696 }
697 
698 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
699 {
700     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
701 }
702 
703 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
704 
705 /* Allocate the dirty bitmap for a slot  */
706 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
707 {
708     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
709         return;
710     }
711 
712     /*
713      * XXX bad kernel interface alert
714      * For dirty bitmap, kernel allocates array of size aligned to
715      * bits-per-long.  But for case when the kernel is 64bits and
716      * the userspace is 32bits, userspace can't align to the same
717      * bits-per-long, since sizeof(long) is different between kernel
718      * and user space.  This way, userspace will provide buffer which
719      * may be 4 bytes less than the kernel will use, resulting in
720      * userspace memory corruption (which is not detectable by valgrind
721      * too, in most cases).
722      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
723      * a hope that sizeof(long) won't become >8 any time soon.
724      *
725      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
726      * And mem->memory_size is aligned to it (otherwise this mem can't
727      * be registered to KVM).
728      */
729     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
730                                         /*HOST_LONG_BITS*/ 64) / 8;
731     mem->dirty_bmap = g_malloc0(bitmap_size);
732     mem->dirty_bmap_size = bitmap_size;
733 }
734 
735 /*
736  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
737  * succeeded, false otherwise
738  */
739 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
740 {
741     struct kvm_dirty_log d = {};
742     int ret;
743 
744     d.dirty_bitmap = slot->dirty_bmap;
745     d.slot = slot->slot | (slot->as_id << 16);
746     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
747 
748     if (ret == -ENOENT) {
749         /* kernel does not have dirty bitmap in this slot */
750         ret = 0;
751     }
752     if (ret) {
753         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
754                           __func__, ret);
755     }
756     return ret == 0;
757 }
758 
759 /* Should be with all slots_lock held for the address spaces. */
760 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
761                                      uint32_t slot_id, uint64_t offset)
762 {
763     KVMMemoryListener *kml;
764     KVMSlot *mem;
765 
766     if (as_id >= s->nr_as) {
767         return;
768     }
769 
770     kml = s->as[as_id].ml;
771     mem = &kml->slots[slot_id];
772 
773     if (!mem->memory_size || offset >=
774         (mem->memory_size / qemu_real_host_page_size())) {
775         return;
776     }
777 
778     set_bit(offset, mem->dirty_bmap);
779 }
780 
781 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
782 {
783     /*
784      * Read the flags before the value.  Pairs with barrier in
785      * KVM's kvm_dirty_ring_push() function.
786      */
787     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
788 }
789 
790 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
791 {
792     /*
793      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
794      * sees the full content of the ring:
795      *
796      * CPU0                     CPU1                         CPU2
797      * ------------------------------------------------------------------------------
798      *                                                       fill gfn0
799      *                                                       store-rel flags for gfn0
800      * load-acq flags for gfn0
801      * store-rel RESET for gfn0
802      *                          ioctl(RESET_RINGS)
803      *                            load-acq flags for gfn0
804      *                            check if flags have RESET
805      *
806      * The synchronization goes from CPU2 to CPU0 to CPU1.
807      */
808     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
809 }
810 
811 /*
812  * Should be with all slots_lock held for the address spaces.  It returns the
813  * dirty page we've collected on this dirty ring.
814  */
815 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
816 {
817     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
818     uint32_t ring_size = s->kvm_dirty_ring_size;
819     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
820 
821     /*
822      * It's possible that we race with vcpu creation code where the vcpu is
823      * put onto the vcpus list but not yet initialized the dirty ring
824      * structures.  If so, skip it.
825      */
826     if (!cpu->created) {
827         return 0;
828     }
829 
830     assert(dirty_gfns && ring_size);
831     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
832 
833     while (true) {
834         cur = &dirty_gfns[fetch % ring_size];
835         if (!dirty_gfn_is_dirtied(cur)) {
836             break;
837         }
838         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
839                                  cur->offset);
840         dirty_gfn_set_collected(cur);
841         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
842         fetch++;
843         count++;
844     }
845     cpu->kvm_fetch_index = fetch;
846     cpu->dirty_pages += count;
847 
848     return count;
849 }
850 
851 /* Must be with slots_lock held */
852 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
853 {
854     int ret;
855     uint64_t total = 0;
856     int64_t stamp;
857 
858     stamp = get_clock();
859 
860     if (cpu) {
861         total = kvm_dirty_ring_reap_one(s, cpu);
862     } else {
863         CPU_FOREACH(cpu) {
864             total += kvm_dirty_ring_reap_one(s, cpu);
865         }
866     }
867 
868     if (total) {
869         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
870         assert(ret == total);
871     }
872 
873     stamp = get_clock() - stamp;
874 
875     if (total) {
876         trace_kvm_dirty_ring_reap(total, stamp / 1000);
877     }
878 
879     return total;
880 }
881 
882 /*
883  * Currently for simplicity, we must hold BQL before calling this.  We can
884  * consider to drop the BQL if we're clear with all the race conditions.
885  */
886 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
887 {
888     uint64_t total;
889 
890     /*
891      * We need to lock all kvm slots for all address spaces here,
892      * because:
893      *
894      * (1) We need to mark dirty for dirty bitmaps in multiple slots
895      *     and for tons of pages, so it's better to take the lock here
896      *     once rather than once per page.  And more importantly,
897      *
898      * (2) We must _NOT_ publish dirty bits to the other threads
899      *     (e.g., the migration thread) via the kvm memory slot dirty
900      *     bitmaps before correctly re-protect those dirtied pages.
901      *     Otherwise we can have potential risk of data corruption if
902      *     the page data is read in the other thread before we do
903      *     reset below.
904      */
905     kvm_slots_lock();
906     total = kvm_dirty_ring_reap_locked(s, cpu);
907     kvm_slots_unlock();
908 
909     return total;
910 }
911 
912 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
913 {
914     /* No need to do anything */
915 }
916 
917 /*
918  * Kick all vcpus out in a synchronized way.  When returned, we
919  * guarantee that every vcpu has been kicked and at least returned to
920  * userspace once.
921  */
922 static void kvm_cpu_synchronize_kick_all(void)
923 {
924     CPUState *cpu;
925 
926     CPU_FOREACH(cpu) {
927         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
928     }
929 }
930 
931 /*
932  * Flush all the existing dirty pages to the KVM slot buffers.  When
933  * this call returns, we guarantee that all the touched dirty pages
934  * before calling this function have been put into the per-kvmslot
935  * dirty bitmap.
936  *
937  * This function must be called with BQL held.
938  */
939 static void kvm_dirty_ring_flush(void)
940 {
941     trace_kvm_dirty_ring_flush(0);
942     /*
943      * The function needs to be serialized.  Since this function
944      * should always be with BQL held, serialization is guaranteed.
945      * However, let's be sure of it.
946      */
947     assert(bql_locked());
948     /*
949      * First make sure to flush the hardware buffers by kicking all
950      * vcpus out in a synchronous way.
951      */
952     kvm_cpu_synchronize_kick_all();
953     kvm_dirty_ring_reap(kvm_state, NULL);
954     trace_kvm_dirty_ring_flush(1);
955 }
956 
957 /**
958  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
959  *
960  * This function will first try to fetch dirty bitmap from the kernel,
961  * and then updates qemu's dirty bitmap.
962  *
963  * NOTE: caller must be with kml->slots_lock held.
964  *
965  * @kml: the KVM memory listener object
966  * @section: the memory section to sync the dirty bitmap with
967  */
968 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
969                                            MemoryRegionSection *section)
970 {
971     KVMState *s = kvm_state;
972     KVMSlot *mem;
973     hwaddr start_addr, size;
974     hwaddr slot_size;
975 
976     size = kvm_align_section(section, &start_addr);
977     while (size) {
978         slot_size = MIN(kvm_max_slot_size, size);
979         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
980         if (!mem) {
981             /* We don't have a slot if we want to trap every access. */
982             return;
983         }
984         if (kvm_slot_get_dirty_log(s, mem)) {
985             kvm_slot_sync_dirty_pages(mem);
986         }
987         start_addr += slot_size;
988         size -= slot_size;
989     }
990 }
991 
992 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
993 #define KVM_CLEAR_LOG_SHIFT  6
994 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
995 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
996 
997 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
998                                   uint64_t size)
999 {
1000     KVMState *s = kvm_state;
1001     uint64_t end, bmap_start, start_delta, bmap_npages;
1002     struct kvm_clear_dirty_log d;
1003     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
1004     int ret;
1005 
1006     /*
1007      * We need to extend either the start or the size or both to
1008      * satisfy the KVM interface requirement.  Firstly, do the start
1009      * page alignment on 64 host pages
1010      */
1011     bmap_start = start & KVM_CLEAR_LOG_MASK;
1012     start_delta = start - bmap_start;
1013     bmap_start /= psize;
1014 
1015     /*
1016      * The kernel interface has restriction on the size too, that either:
1017      *
1018      * (1) the size is 64 host pages aligned (just like the start), or
1019      * (2) the size fills up until the end of the KVM memslot.
1020      */
1021     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
1022         << KVM_CLEAR_LOG_SHIFT;
1023     end = mem->memory_size / psize;
1024     if (bmap_npages > end - bmap_start) {
1025         bmap_npages = end - bmap_start;
1026     }
1027     start_delta /= psize;
1028 
1029     /*
1030      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
1031      * that we won't clear any unknown dirty bits otherwise we might
1032      * accidentally clear some set bits which are not yet synced from
1033      * the kernel into QEMU's bitmap, then we'll lose track of the
1034      * guest modifications upon those pages (which can directly lead
1035      * to guest data loss or panic after migration).
1036      *
1037      * Layout of the KVMSlot.dirty_bmap:
1038      *
1039      *                   |<-------- bmap_npages -----------..>|
1040      *                                                     [1]
1041      *                     start_delta         size
1042      *  |----------------|-------------|------------------|------------|
1043      *  ^                ^             ^                               ^
1044      *  |                |             |                               |
1045      * start          bmap_start     (start)                         end
1046      * of memslot                                             of memslot
1047      *
1048      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
1049      */
1050 
1051     assert(bmap_start % BITS_PER_LONG == 0);
1052     /* We should never do log_clear before log_sync */
1053     assert(mem->dirty_bmap);
1054     if (start_delta || bmap_npages - size / psize) {
1055         /* Slow path - we need to manipulate a temp bitmap */
1056         bmap_clear = bitmap_new(bmap_npages);
1057         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
1058                                     bmap_start, start_delta + size / psize);
1059         /*
1060          * We need to fill the holes at start because that was not
1061          * specified by the caller and we extended the bitmap only for
1062          * 64 pages alignment
1063          */
1064         bitmap_clear(bmap_clear, 0, start_delta);
1065         d.dirty_bitmap = bmap_clear;
1066     } else {
1067         /*
1068          * Fast path - both start and size align well with BITS_PER_LONG
1069          * (or the end of memory slot)
1070          */
1071         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
1072     }
1073 
1074     d.first_page = bmap_start;
1075     /* It should never overflow.  If it happens, say something */
1076     assert(bmap_npages <= UINT32_MAX);
1077     d.num_pages = bmap_npages;
1078     d.slot = mem->slot | (as_id << 16);
1079 
1080     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
1081     if (ret < 0 && ret != -ENOENT) {
1082         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
1083                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
1084                      __func__, d.slot, (uint64_t)d.first_page,
1085                      (uint32_t)d.num_pages, ret);
1086     } else {
1087         ret = 0;
1088         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
1089     }
1090 
1091     /*
1092      * After we have updated the remote dirty bitmap, we update the
1093      * cached bitmap as well for the memslot, then if another user
1094      * clears the same region we know we shouldn't clear it again on
1095      * the remote otherwise it's data loss as well.
1096      */
1097     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1098                  size / psize);
1099     /* This handles the NULL case well */
1100     g_free(bmap_clear);
1101     return ret;
1102 }
1103 
1104 
1105 /**
1106  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1107  *
1108  * NOTE: this will be a no-op if we haven't enabled manual dirty log
1109  * protection in the host kernel because in that case this operation
1110  * will be done within log_sync().
1111  *
1112  * @kml:     the kvm memory listener
1113  * @section: the memory range to clear dirty bitmap
1114  */
1115 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1116                                   MemoryRegionSection *section)
1117 {
1118     KVMState *s = kvm_state;
1119     uint64_t start, size, offset, count;
1120     KVMSlot *mem;
1121     int ret = 0, i;
1122 
1123     if (!s->manual_dirty_log_protect) {
1124         /* No need to do explicit clear */
1125         return ret;
1126     }
1127 
1128     start = section->offset_within_address_space;
1129     size = int128_get64(section->size);
1130 
1131     if (!size) {
1132         /* Nothing more we can do... */
1133         return ret;
1134     }
1135 
1136     kvm_slots_lock();
1137 
1138     for (i = 0; i < kml->nr_slots_allocated; i++) {
1139         mem = &kml->slots[i];
1140         /* Discard slots that are empty or do not overlap the section */
1141         if (!mem->memory_size ||
1142             mem->start_addr > start + size - 1 ||
1143             start > mem->start_addr + mem->memory_size - 1) {
1144             continue;
1145         }
1146 
1147         if (start >= mem->start_addr) {
1148             /* The slot starts before section or is aligned to it.  */
1149             offset = start - mem->start_addr;
1150             count = MIN(mem->memory_size - offset, size);
1151         } else {
1152             /* The slot starts after section.  */
1153             offset = 0;
1154             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1155         }
1156         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1157         if (ret < 0) {
1158             break;
1159         }
1160     }
1161 
1162     kvm_slots_unlock();
1163 
1164     return ret;
1165 }
1166 
1167 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1168                                      MemoryRegionSection *secion,
1169                                      hwaddr start, hwaddr size)
1170 {
1171     KVMState *s = kvm_state;
1172 
1173     if (s->coalesced_mmio) {
1174         struct kvm_coalesced_mmio_zone zone;
1175 
1176         zone.addr = start;
1177         zone.size = size;
1178         zone.pad = 0;
1179 
1180         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1181     }
1182 }
1183 
1184 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1185                                        MemoryRegionSection *secion,
1186                                        hwaddr start, hwaddr size)
1187 {
1188     KVMState *s = kvm_state;
1189 
1190     if (s->coalesced_mmio) {
1191         struct kvm_coalesced_mmio_zone zone;
1192 
1193         zone.addr = start;
1194         zone.size = size;
1195         zone.pad = 0;
1196 
1197         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1198     }
1199 }
1200 
1201 static void kvm_coalesce_pio_add(MemoryListener *listener,
1202                                 MemoryRegionSection *section,
1203                                 hwaddr start, hwaddr size)
1204 {
1205     KVMState *s = kvm_state;
1206 
1207     if (s->coalesced_pio) {
1208         struct kvm_coalesced_mmio_zone zone;
1209 
1210         zone.addr = start;
1211         zone.size = size;
1212         zone.pio = 1;
1213 
1214         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1215     }
1216 }
1217 
1218 static void kvm_coalesce_pio_del(MemoryListener *listener,
1219                                 MemoryRegionSection *section,
1220                                 hwaddr start, hwaddr size)
1221 {
1222     KVMState *s = kvm_state;
1223 
1224     if (s->coalesced_pio) {
1225         struct kvm_coalesced_mmio_zone zone;
1226 
1227         zone.addr = start;
1228         zone.size = size;
1229         zone.pio = 1;
1230 
1231         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1232      }
1233 }
1234 
1235 int kvm_check_extension(KVMState *s, unsigned int extension)
1236 {
1237     int ret;
1238 
1239     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1240     if (ret < 0) {
1241         ret = 0;
1242     }
1243 
1244     return ret;
1245 }
1246 
1247 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1248 {
1249     int ret;
1250 
1251     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1252     if (ret < 0) {
1253         /* VM wide version not implemented, use global one instead */
1254         ret = kvm_check_extension(s, extension);
1255     }
1256 
1257     return ret;
1258 }
1259 
1260 /*
1261  * We track the poisoned pages to be able to:
1262  * - replace them on VM reset
1263  * - block a migration for a VM with a poisoned page
1264  */
1265 typedef struct HWPoisonPage {
1266     ram_addr_t ram_addr;
1267     QLIST_ENTRY(HWPoisonPage) list;
1268 } HWPoisonPage;
1269 
1270 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1271     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1272 
1273 static void kvm_unpoison_all(void *param)
1274 {
1275     HWPoisonPage *page, *next_page;
1276 
1277     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1278         QLIST_REMOVE(page, list);
1279         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1280         g_free(page);
1281     }
1282 }
1283 
1284 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1285 {
1286     HWPoisonPage *page;
1287 
1288     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1289         if (page->ram_addr == ram_addr) {
1290             return;
1291         }
1292     }
1293     page = g_new(HWPoisonPage, 1);
1294     page->ram_addr = ram_addr;
1295     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1296 }
1297 
1298 bool kvm_hwpoisoned_mem(void)
1299 {
1300     return !QLIST_EMPTY(&hwpoison_page_list);
1301 }
1302 
1303 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1304 {
1305 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1306     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1307      * endianness, but the memory core hands them in target endianness.
1308      * For example, PPC is always treated as big-endian even if running
1309      * on KVM and on PPC64LE.  Correct here.
1310      */
1311     switch (size) {
1312     case 2:
1313         val = bswap16(val);
1314         break;
1315     case 4:
1316         val = bswap32(val);
1317         break;
1318     }
1319 #endif
1320     return val;
1321 }
1322 
1323 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1324                                   bool assign, uint32_t size, bool datamatch)
1325 {
1326     int ret;
1327     struct kvm_ioeventfd iofd = {
1328         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1329         .addr = addr,
1330         .len = size,
1331         .flags = 0,
1332         .fd = fd,
1333     };
1334 
1335     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1336                                  datamatch);
1337     if (!kvm_enabled()) {
1338         return -ENOSYS;
1339     }
1340 
1341     if (datamatch) {
1342         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1343     }
1344     if (!assign) {
1345         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1346     }
1347 
1348     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1349 
1350     if (ret < 0) {
1351         return -errno;
1352     }
1353 
1354     return 0;
1355 }
1356 
1357 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1358                                  bool assign, uint32_t size, bool datamatch)
1359 {
1360     struct kvm_ioeventfd kick = {
1361         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1362         .addr = addr,
1363         .flags = KVM_IOEVENTFD_FLAG_PIO,
1364         .len = size,
1365         .fd = fd,
1366     };
1367     int r;
1368     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1369     if (!kvm_enabled()) {
1370         return -ENOSYS;
1371     }
1372     if (datamatch) {
1373         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1374     }
1375     if (!assign) {
1376         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1377     }
1378     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1379     if (r < 0) {
1380         return r;
1381     }
1382     return 0;
1383 }
1384 
1385 
1386 static const KVMCapabilityInfo *
1387 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1388 {
1389     while (list->name) {
1390         if (!kvm_check_extension(s, list->value)) {
1391             return list;
1392         }
1393         list++;
1394     }
1395     return NULL;
1396 }
1397 
1398 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1399 {
1400     g_assert(
1401         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1402     );
1403     kvm_max_slot_size = max_slot_size;
1404 }
1405 
1406 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr)
1407 {
1408     struct kvm_memory_attributes attrs;
1409     int r;
1410 
1411     assert((attr & kvm_supported_memory_attributes) == attr);
1412     attrs.attributes = attr;
1413     attrs.address = start;
1414     attrs.size = size;
1415     attrs.flags = 0;
1416 
1417     r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs);
1418     if (r) {
1419         error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") "
1420                      "with attr 0x%" PRIx64 " error '%s'",
1421                      start, size, attr, strerror(errno));
1422     }
1423     return r;
1424 }
1425 
1426 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size)
1427 {
1428     return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
1429 }
1430 
1431 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size)
1432 {
1433     return kvm_set_memory_attributes(start, size, 0);
1434 }
1435 
1436 /* Called with KVMMemoryListener.slots_lock held */
1437 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1438                              MemoryRegionSection *section, bool add)
1439 {
1440     KVMSlot *mem;
1441     int err;
1442     MemoryRegion *mr = section->mr;
1443     bool writable = !mr->readonly && !mr->rom_device;
1444     hwaddr start_addr, size, slot_size, mr_offset;
1445     ram_addr_t ram_start_offset;
1446     void *ram;
1447 
1448     if (!memory_region_is_ram(mr)) {
1449         if (writable || !kvm_readonly_mem_allowed) {
1450             return;
1451         } else if (!mr->romd_mode) {
1452             /* If the memory device is not in romd_mode, then we actually want
1453              * to remove the kvm memory slot so all accesses will trap. */
1454             add = false;
1455         }
1456     }
1457 
1458     size = kvm_align_section(section, &start_addr);
1459     if (!size) {
1460         return;
1461     }
1462 
1463     /* The offset of the kvmslot within the memory region */
1464     mr_offset = section->offset_within_region + start_addr -
1465         section->offset_within_address_space;
1466 
1467     /* use aligned delta to align the ram address and offset */
1468     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1469     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1470 
1471     if (!add) {
1472         do {
1473             slot_size = MIN(kvm_max_slot_size, size);
1474             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1475             if (!mem) {
1476                 return;
1477             }
1478             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1479                 /*
1480                  * NOTE: We should be aware of the fact that here we're only
1481                  * doing a best effort to sync dirty bits.  No matter whether
1482                  * we're using dirty log or dirty ring, we ignored two facts:
1483                  *
1484                  * (1) dirty bits can reside in hardware buffers (PML)
1485                  *
1486                  * (2) after we collected dirty bits here, pages can be dirtied
1487                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1488                  * remove the slot.
1489                  *
1490                  * Not easy.  Let's cross the fingers until it's fixed.
1491                  */
1492                 if (kvm_state->kvm_dirty_ring_size) {
1493                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1494                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1495                         kvm_slot_sync_dirty_pages(mem);
1496                         kvm_slot_get_dirty_log(kvm_state, mem);
1497                     }
1498                 } else {
1499                     kvm_slot_get_dirty_log(kvm_state, mem);
1500                 }
1501                 kvm_slot_sync_dirty_pages(mem);
1502             }
1503 
1504             /* unregister the slot */
1505             g_free(mem->dirty_bmap);
1506             mem->dirty_bmap = NULL;
1507             mem->memory_size = 0;
1508             mem->flags = 0;
1509             err = kvm_set_user_memory_region(kml, mem, false);
1510             if (err) {
1511                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1512                         __func__, strerror(-err));
1513                 abort();
1514             }
1515             start_addr += slot_size;
1516             size -= slot_size;
1517             kml->nr_used_slots--;
1518         } while (size);
1519         return;
1520     }
1521 
1522     /* register the new slot */
1523     do {
1524         slot_size = MIN(kvm_max_slot_size, size);
1525         mem = kvm_alloc_slot(kml);
1526         mem->as_id = kml->as_id;
1527         mem->memory_size = slot_size;
1528         mem->start_addr = start_addr;
1529         mem->ram_start_offset = ram_start_offset;
1530         mem->ram = ram;
1531         mem->flags = kvm_mem_flags(mr);
1532         mem->guest_memfd = mr->ram_block->guest_memfd;
1533         mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host;
1534 
1535         kvm_slot_init_dirty_bitmap(mem);
1536         err = kvm_set_user_memory_region(kml, mem, true);
1537         if (err) {
1538             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1539                     strerror(-err));
1540             abort();
1541         }
1542 
1543         if (memory_region_has_guest_memfd(mr)) {
1544             err = kvm_set_memory_attributes_private(start_addr, slot_size);
1545             if (err) {
1546                 error_report("%s: failed to set memory attribute private: %s",
1547                              __func__, strerror(-err));
1548                 exit(1);
1549             }
1550         }
1551 
1552         start_addr += slot_size;
1553         ram_start_offset += slot_size;
1554         ram += slot_size;
1555         size -= slot_size;
1556         kml->nr_used_slots++;
1557     } while (size);
1558 }
1559 
1560 static void *kvm_dirty_ring_reaper_thread(void *data)
1561 {
1562     KVMState *s = data;
1563     struct KVMDirtyRingReaper *r = &s->reaper;
1564 
1565     rcu_register_thread();
1566 
1567     trace_kvm_dirty_ring_reaper("init");
1568 
1569     while (true) {
1570         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1571         trace_kvm_dirty_ring_reaper("wait");
1572         /*
1573          * TODO: provide a smarter timeout rather than a constant?
1574          */
1575         sleep(1);
1576 
1577         /* keep sleeping so that dirtylimit not be interfered by reaper */
1578         if (dirtylimit_in_service()) {
1579             continue;
1580         }
1581 
1582         trace_kvm_dirty_ring_reaper("wakeup");
1583         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1584 
1585         bql_lock();
1586         kvm_dirty_ring_reap(s, NULL);
1587         bql_unlock();
1588 
1589         r->reaper_iteration++;
1590     }
1591 
1592     trace_kvm_dirty_ring_reaper("exit");
1593 
1594     rcu_unregister_thread();
1595 
1596     return NULL;
1597 }
1598 
1599 static void kvm_dirty_ring_reaper_init(KVMState *s)
1600 {
1601     struct KVMDirtyRingReaper *r = &s->reaper;
1602 
1603     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1604                        kvm_dirty_ring_reaper_thread,
1605                        s, QEMU_THREAD_JOINABLE);
1606 }
1607 
1608 static int kvm_dirty_ring_init(KVMState *s)
1609 {
1610     uint32_t ring_size = s->kvm_dirty_ring_size;
1611     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1612     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1613     int ret;
1614 
1615     s->kvm_dirty_ring_size = 0;
1616     s->kvm_dirty_ring_bytes = 0;
1617 
1618     /* Bail if the dirty ring size isn't specified */
1619     if (!ring_size) {
1620         return 0;
1621     }
1622 
1623     /*
1624      * Read the max supported pages. Fall back to dirty logging mode
1625      * if the dirty ring isn't supported.
1626      */
1627     ret = kvm_vm_check_extension(s, capability);
1628     if (ret <= 0) {
1629         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1630         ret = kvm_vm_check_extension(s, capability);
1631     }
1632 
1633     if (ret <= 0) {
1634         warn_report("KVM dirty ring not available, using bitmap method");
1635         return 0;
1636     }
1637 
1638     if (ring_bytes > ret) {
1639         error_report("KVM dirty ring size %" PRIu32 " too big "
1640                      "(maximum is %ld).  Please use a smaller value.",
1641                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1642         return -EINVAL;
1643     }
1644 
1645     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1646     if (ret) {
1647         error_report("Enabling of KVM dirty ring failed: %s. "
1648                      "Suggested minimum value is 1024.", strerror(-ret));
1649         return -EIO;
1650     }
1651 
1652     /* Enable the backup bitmap if it is supported */
1653     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1654     if (ret > 0) {
1655         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1656         if (ret) {
1657             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1658                          "%s. ", strerror(-ret));
1659             return -EIO;
1660         }
1661 
1662         s->kvm_dirty_ring_with_bitmap = true;
1663     }
1664 
1665     s->kvm_dirty_ring_size = ring_size;
1666     s->kvm_dirty_ring_bytes = ring_bytes;
1667 
1668     return 0;
1669 }
1670 
1671 static void kvm_region_add(MemoryListener *listener,
1672                            MemoryRegionSection *section)
1673 {
1674     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1675     KVMMemoryUpdate *update;
1676 
1677     update = g_new0(KVMMemoryUpdate, 1);
1678     update->section = *section;
1679 
1680     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1681 }
1682 
1683 static void kvm_region_del(MemoryListener *listener,
1684                            MemoryRegionSection *section)
1685 {
1686     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1687     KVMMemoryUpdate *update;
1688 
1689     update = g_new0(KVMMemoryUpdate, 1);
1690     update->section = *section;
1691 
1692     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1693 }
1694 
1695 static void kvm_region_commit(MemoryListener *listener)
1696 {
1697     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1698                                           listener);
1699     KVMMemoryUpdate *u1, *u2;
1700     bool need_inhibit = false;
1701 
1702     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1703         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1704         return;
1705     }
1706 
1707     /*
1708      * We have to be careful when regions to add overlap with ranges to remove.
1709      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1710      * is currently active.
1711      *
1712      * The lists are order by addresses, so it's easy to find overlaps.
1713      */
1714     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1715     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1716     while (u1 && u2) {
1717         Range r1, r2;
1718 
1719         range_init_nofail(&r1, u1->section.offset_within_address_space,
1720                           int128_get64(u1->section.size));
1721         range_init_nofail(&r2, u2->section.offset_within_address_space,
1722                           int128_get64(u2->section.size));
1723 
1724         if (range_overlaps_range(&r1, &r2)) {
1725             need_inhibit = true;
1726             break;
1727         }
1728         if (range_lob(&r1) < range_lob(&r2)) {
1729             u1 = QSIMPLEQ_NEXT(u1, next);
1730         } else {
1731             u2 = QSIMPLEQ_NEXT(u2, next);
1732         }
1733     }
1734 
1735     kvm_slots_lock();
1736     if (need_inhibit) {
1737         accel_ioctl_inhibit_begin();
1738     }
1739 
1740     /* Remove all memslots before adding the new ones. */
1741     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1742         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1743         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1744 
1745         kvm_set_phys_mem(kml, &u1->section, false);
1746         memory_region_unref(u1->section.mr);
1747 
1748         g_free(u1);
1749     }
1750     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1751         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1752         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1753 
1754         memory_region_ref(u1->section.mr);
1755         kvm_set_phys_mem(kml, &u1->section, true);
1756 
1757         g_free(u1);
1758     }
1759 
1760     if (need_inhibit) {
1761         accel_ioctl_inhibit_end();
1762     }
1763     kvm_slots_unlock();
1764 }
1765 
1766 static void kvm_log_sync(MemoryListener *listener,
1767                          MemoryRegionSection *section)
1768 {
1769     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1770 
1771     kvm_slots_lock();
1772     kvm_physical_sync_dirty_bitmap(kml, section);
1773     kvm_slots_unlock();
1774 }
1775 
1776 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1777 {
1778     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1779     KVMState *s = kvm_state;
1780     KVMSlot *mem;
1781     int i;
1782 
1783     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1784     kvm_dirty_ring_flush();
1785 
1786     kvm_slots_lock();
1787     for (i = 0; i < kml->nr_slots_allocated; i++) {
1788         mem = &kml->slots[i];
1789         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1790             kvm_slot_sync_dirty_pages(mem);
1791 
1792             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1793                 kvm_slot_get_dirty_log(s, mem)) {
1794                 kvm_slot_sync_dirty_pages(mem);
1795             }
1796 
1797             /*
1798              * This is not needed by KVM_GET_DIRTY_LOG because the
1799              * ioctl will unconditionally overwrite the whole region.
1800              * However kvm dirty ring has no such side effect.
1801              */
1802             kvm_slot_reset_dirty_pages(mem);
1803         }
1804     }
1805     kvm_slots_unlock();
1806 }
1807 
1808 static void kvm_log_clear(MemoryListener *listener,
1809                           MemoryRegionSection *section)
1810 {
1811     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1812     int r;
1813 
1814     r = kvm_physical_log_clear(kml, section);
1815     if (r < 0) {
1816         error_report_once("%s: kvm log clear failed: mr=%s "
1817                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1818                           section->mr->name, section->offset_within_region,
1819                           int128_get64(section->size));
1820         abort();
1821     }
1822 }
1823 
1824 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1825                                   MemoryRegionSection *section,
1826                                   bool match_data, uint64_t data,
1827                                   EventNotifier *e)
1828 {
1829     int fd = event_notifier_get_fd(e);
1830     int r;
1831 
1832     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1833                                data, true, int128_get64(section->size),
1834                                match_data);
1835     if (r < 0) {
1836         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1837                 __func__, strerror(-r), -r);
1838         abort();
1839     }
1840 }
1841 
1842 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1843                                   MemoryRegionSection *section,
1844                                   bool match_data, uint64_t data,
1845                                   EventNotifier *e)
1846 {
1847     int fd = event_notifier_get_fd(e);
1848     int r;
1849 
1850     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1851                                data, false, int128_get64(section->size),
1852                                match_data);
1853     if (r < 0) {
1854         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1855                 __func__, strerror(-r), -r);
1856         abort();
1857     }
1858 }
1859 
1860 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1861                                  MemoryRegionSection *section,
1862                                  bool match_data, uint64_t data,
1863                                  EventNotifier *e)
1864 {
1865     int fd = event_notifier_get_fd(e);
1866     int r;
1867 
1868     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1869                               data, true, int128_get64(section->size),
1870                               match_data);
1871     if (r < 0) {
1872         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1873                 __func__, strerror(-r), -r);
1874         abort();
1875     }
1876 }
1877 
1878 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1879                                  MemoryRegionSection *section,
1880                                  bool match_data, uint64_t data,
1881                                  EventNotifier *e)
1882 
1883 {
1884     int fd = event_notifier_get_fd(e);
1885     int r;
1886 
1887     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1888                               data, false, int128_get64(section->size),
1889                               match_data);
1890     if (r < 0) {
1891         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1892                 __func__, strerror(-r), -r);
1893         abort();
1894     }
1895 }
1896 
1897 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1898                                   AddressSpace *as, int as_id, const char *name)
1899 {
1900     int i;
1901 
1902     kml->as_id = as_id;
1903 
1904     kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT);
1905 
1906     QSIMPLEQ_INIT(&kml->transaction_add);
1907     QSIMPLEQ_INIT(&kml->transaction_del);
1908 
1909     kml->listener.region_add = kvm_region_add;
1910     kml->listener.region_del = kvm_region_del;
1911     kml->listener.commit = kvm_region_commit;
1912     kml->listener.log_start = kvm_log_start;
1913     kml->listener.log_stop = kvm_log_stop;
1914     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1915     kml->listener.name = name;
1916 
1917     if (s->kvm_dirty_ring_size) {
1918         kml->listener.log_sync_global = kvm_log_sync_global;
1919     } else {
1920         kml->listener.log_sync = kvm_log_sync;
1921         kml->listener.log_clear = kvm_log_clear;
1922     }
1923 
1924     memory_listener_register(&kml->listener, as);
1925 
1926     for (i = 0; i < s->nr_as; ++i) {
1927         if (!s->as[i].as) {
1928             s->as[i].as = as;
1929             s->as[i].ml = kml;
1930             break;
1931         }
1932     }
1933 }
1934 
1935 static MemoryListener kvm_io_listener = {
1936     .name = "kvm-io",
1937     .coalesced_io_add = kvm_coalesce_pio_add,
1938     .coalesced_io_del = kvm_coalesce_pio_del,
1939     .eventfd_add = kvm_io_ioeventfd_add,
1940     .eventfd_del = kvm_io_ioeventfd_del,
1941     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1942 };
1943 
1944 int kvm_set_irq(KVMState *s, int irq, int level)
1945 {
1946     struct kvm_irq_level event;
1947     int ret;
1948 
1949     assert(kvm_async_interrupts_enabled());
1950 
1951     event.level = level;
1952     event.irq = irq;
1953     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1954     if (ret < 0) {
1955         perror("kvm_set_irq");
1956         abort();
1957     }
1958 
1959     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1960 }
1961 
1962 #ifdef KVM_CAP_IRQ_ROUTING
1963 typedef struct KVMMSIRoute {
1964     struct kvm_irq_routing_entry kroute;
1965     QTAILQ_ENTRY(KVMMSIRoute) entry;
1966 } KVMMSIRoute;
1967 
1968 static void set_gsi(KVMState *s, unsigned int gsi)
1969 {
1970     set_bit(gsi, s->used_gsi_bitmap);
1971 }
1972 
1973 static void clear_gsi(KVMState *s, unsigned int gsi)
1974 {
1975     clear_bit(gsi, s->used_gsi_bitmap);
1976 }
1977 
1978 void kvm_init_irq_routing(KVMState *s)
1979 {
1980     int gsi_count;
1981 
1982     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1983     if (gsi_count > 0) {
1984         /* Round up so we can search ints using ffs */
1985         s->used_gsi_bitmap = bitmap_new(gsi_count);
1986         s->gsi_count = gsi_count;
1987     }
1988 
1989     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1990     s->nr_allocated_irq_routes = 0;
1991 
1992     kvm_arch_init_irq_routing(s);
1993 }
1994 
1995 void kvm_irqchip_commit_routes(KVMState *s)
1996 {
1997     int ret;
1998 
1999     if (kvm_gsi_direct_mapping()) {
2000         return;
2001     }
2002 
2003     if (!kvm_gsi_routing_enabled()) {
2004         return;
2005     }
2006 
2007     s->irq_routes->flags = 0;
2008     trace_kvm_irqchip_commit_routes();
2009     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
2010     assert(ret == 0);
2011 }
2012 
2013 void kvm_add_routing_entry(KVMState *s,
2014                            struct kvm_irq_routing_entry *entry)
2015 {
2016     struct kvm_irq_routing_entry *new;
2017     int n, size;
2018 
2019     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
2020         n = s->nr_allocated_irq_routes * 2;
2021         if (n < 64) {
2022             n = 64;
2023         }
2024         size = sizeof(struct kvm_irq_routing);
2025         size += n * sizeof(*new);
2026         s->irq_routes = g_realloc(s->irq_routes, size);
2027         s->nr_allocated_irq_routes = n;
2028     }
2029     n = s->irq_routes->nr++;
2030     new = &s->irq_routes->entries[n];
2031 
2032     *new = *entry;
2033 
2034     set_gsi(s, entry->gsi);
2035 }
2036 
2037 static int kvm_update_routing_entry(KVMState *s,
2038                                     struct kvm_irq_routing_entry *new_entry)
2039 {
2040     struct kvm_irq_routing_entry *entry;
2041     int n;
2042 
2043     for (n = 0; n < s->irq_routes->nr; n++) {
2044         entry = &s->irq_routes->entries[n];
2045         if (entry->gsi != new_entry->gsi) {
2046             continue;
2047         }
2048 
2049         if(!memcmp(entry, new_entry, sizeof *entry)) {
2050             return 0;
2051         }
2052 
2053         *entry = *new_entry;
2054 
2055         return 0;
2056     }
2057 
2058     return -ESRCH;
2059 }
2060 
2061 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
2062 {
2063     struct kvm_irq_routing_entry e = {};
2064 
2065     assert(pin < s->gsi_count);
2066 
2067     e.gsi = irq;
2068     e.type = KVM_IRQ_ROUTING_IRQCHIP;
2069     e.flags = 0;
2070     e.u.irqchip.irqchip = irqchip;
2071     e.u.irqchip.pin = pin;
2072     kvm_add_routing_entry(s, &e);
2073 }
2074 
2075 void kvm_irqchip_release_virq(KVMState *s, int virq)
2076 {
2077     struct kvm_irq_routing_entry *e;
2078     int i;
2079 
2080     if (kvm_gsi_direct_mapping()) {
2081         return;
2082     }
2083 
2084     for (i = 0; i < s->irq_routes->nr; i++) {
2085         e = &s->irq_routes->entries[i];
2086         if (e->gsi == virq) {
2087             s->irq_routes->nr--;
2088             *e = s->irq_routes->entries[s->irq_routes->nr];
2089         }
2090     }
2091     clear_gsi(s, virq);
2092     kvm_arch_release_virq_post(virq);
2093     trace_kvm_irqchip_release_virq(virq);
2094 }
2095 
2096 void kvm_irqchip_add_change_notifier(Notifier *n)
2097 {
2098     notifier_list_add(&kvm_irqchip_change_notifiers, n);
2099 }
2100 
2101 void kvm_irqchip_remove_change_notifier(Notifier *n)
2102 {
2103     notifier_remove(n);
2104 }
2105 
2106 void kvm_irqchip_change_notify(void)
2107 {
2108     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
2109 }
2110 
2111 int kvm_irqchip_get_virq(KVMState *s)
2112 {
2113     int next_virq;
2114 
2115     /* Return the lowest unused GSI in the bitmap */
2116     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2117     if (next_virq >= s->gsi_count) {
2118         return -ENOSPC;
2119     } else {
2120         return next_virq;
2121     }
2122 }
2123 
2124 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2125 {
2126     struct kvm_msi msi;
2127 
2128     msi.address_lo = (uint32_t)msg.address;
2129     msi.address_hi = msg.address >> 32;
2130     msi.data = le32_to_cpu(msg.data);
2131     msi.flags = 0;
2132     memset(msi.pad, 0, sizeof(msi.pad));
2133 
2134     return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2135 }
2136 
2137 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2138 {
2139     struct kvm_irq_routing_entry kroute = {};
2140     int virq;
2141     KVMState *s = c->s;
2142     MSIMessage msg = {0, 0};
2143 
2144     if (pci_available && dev) {
2145         msg = pci_get_msi_message(dev, vector);
2146     }
2147 
2148     if (kvm_gsi_direct_mapping()) {
2149         return kvm_arch_msi_data_to_gsi(msg.data);
2150     }
2151 
2152     if (!kvm_gsi_routing_enabled()) {
2153         return -ENOSYS;
2154     }
2155 
2156     virq = kvm_irqchip_get_virq(s);
2157     if (virq < 0) {
2158         return virq;
2159     }
2160 
2161     kroute.gsi = virq;
2162     kroute.type = KVM_IRQ_ROUTING_MSI;
2163     kroute.flags = 0;
2164     kroute.u.msi.address_lo = (uint32_t)msg.address;
2165     kroute.u.msi.address_hi = msg.address >> 32;
2166     kroute.u.msi.data = le32_to_cpu(msg.data);
2167     if (pci_available && kvm_msi_devid_required()) {
2168         kroute.flags = KVM_MSI_VALID_DEVID;
2169         kroute.u.msi.devid = pci_requester_id(dev);
2170     }
2171     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2172         kvm_irqchip_release_virq(s, virq);
2173         return -EINVAL;
2174     }
2175 
2176     if (s->irq_routes->nr < s->gsi_count) {
2177         trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2178                                         vector, virq);
2179 
2180         kvm_add_routing_entry(s, &kroute);
2181         kvm_arch_add_msi_route_post(&kroute, vector, dev);
2182         c->changes++;
2183     } else {
2184         kvm_irqchip_release_virq(s, virq);
2185         return -ENOSPC;
2186     }
2187 
2188     return virq;
2189 }
2190 
2191 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2192                                  PCIDevice *dev)
2193 {
2194     struct kvm_irq_routing_entry kroute = {};
2195 
2196     if (kvm_gsi_direct_mapping()) {
2197         return 0;
2198     }
2199 
2200     if (!kvm_irqchip_in_kernel()) {
2201         return -ENOSYS;
2202     }
2203 
2204     kroute.gsi = virq;
2205     kroute.type = KVM_IRQ_ROUTING_MSI;
2206     kroute.flags = 0;
2207     kroute.u.msi.address_lo = (uint32_t)msg.address;
2208     kroute.u.msi.address_hi = msg.address >> 32;
2209     kroute.u.msi.data = le32_to_cpu(msg.data);
2210     if (pci_available && kvm_msi_devid_required()) {
2211         kroute.flags = KVM_MSI_VALID_DEVID;
2212         kroute.u.msi.devid = pci_requester_id(dev);
2213     }
2214     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2215         return -EINVAL;
2216     }
2217 
2218     trace_kvm_irqchip_update_msi_route(virq);
2219 
2220     return kvm_update_routing_entry(s, &kroute);
2221 }
2222 
2223 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2224                                     EventNotifier *resample, int virq,
2225                                     bool assign)
2226 {
2227     int fd = event_notifier_get_fd(event);
2228     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2229 
2230     struct kvm_irqfd irqfd = {
2231         .fd = fd,
2232         .gsi = virq,
2233         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2234     };
2235 
2236     if (rfd != -1) {
2237         assert(assign);
2238         if (kvm_irqchip_is_split()) {
2239             /*
2240              * When the slow irqchip (e.g. IOAPIC) is in the
2241              * userspace, KVM kernel resamplefd will not work because
2242              * the EOI of the interrupt will be delivered to userspace
2243              * instead, so the KVM kernel resamplefd kick will be
2244              * skipped.  The userspace here mimics what the kernel
2245              * provides with resamplefd, remember the resamplefd and
2246              * kick it when we receive EOI of this IRQ.
2247              *
2248              * This is hackery because IOAPIC is mostly bypassed
2249              * (except EOI broadcasts) when irqfd is used.  However
2250              * this can bring much performance back for split irqchip
2251              * with INTx IRQs (for VFIO, this gives 93% perf of the
2252              * full fast path, which is 46% perf boost comparing to
2253              * the INTx slow path).
2254              */
2255             kvm_resample_fd_insert(virq, resample);
2256         } else {
2257             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2258             irqfd.resamplefd = rfd;
2259         }
2260     } else if (!assign) {
2261         if (kvm_irqchip_is_split()) {
2262             kvm_resample_fd_remove(virq);
2263         }
2264     }
2265 
2266     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2267 }
2268 
2269 #else /* !KVM_CAP_IRQ_ROUTING */
2270 
2271 void kvm_init_irq_routing(KVMState *s)
2272 {
2273 }
2274 
2275 void kvm_irqchip_release_virq(KVMState *s, int virq)
2276 {
2277 }
2278 
2279 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2280 {
2281     abort();
2282 }
2283 
2284 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2285 {
2286     return -ENOSYS;
2287 }
2288 
2289 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2290 {
2291     return -ENOSYS;
2292 }
2293 
2294 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2295 {
2296     return -ENOSYS;
2297 }
2298 
2299 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2300                                     EventNotifier *resample, int virq,
2301                                     bool assign)
2302 {
2303     abort();
2304 }
2305 
2306 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2307 {
2308     return -ENOSYS;
2309 }
2310 #endif /* !KVM_CAP_IRQ_ROUTING */
2311 
2312 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2313                                        EventNotifier *rn, int virq)
2314 {
2315     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2316 }
2317 
2318 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2319                                           int virq)
2320 {
2321     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2322 }
2323 
2324 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2325                                    EventNotifier *rn, qemu_irq irq)
2326 {
2327     gpointer key, gsi;
2328     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2329 
2330     if (!found) {
2331         return -ENXIO;
2332     }
2333     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2334 }
2335 
2336 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2337                                       qemu_irq irq)
2338 {
2339     gpointer key, gsi;
2340     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2341 
2342     if (!found) {
2343         return -ENXIO;
2344     }
2345     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2346 }
2347 
2348 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2349 {
2350     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2351 }
2352 
2353 static void kvm_irqchip_create(KVMState *s)
2354 {
2355     int ret;
2356 
2357     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2358     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2359         ;
2360     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2361         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2362         if (ret < 0) {
2363             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2364             exit(1);
2365         }
2366     } else {
2367         return;
2368     }
2369 
2370     if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2371         fprintf(stderr, "kvm: irqfd not implemented\n");
2372         exit(1);
2373     }
2374 
2375     /* First probe and see if there's a arch-specific hook to create the
2376      * in-kernel irqchip for us */
2377     ret = kvm_arch_irqchip_create(s);
2378     if (ret == 0) {
2379         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2380             error_report("Split IRQ chip mode not supported.");
2381             exit(1);
2382         } else {
2383             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2384         }
2385     }
2386     if (ret < 0) {
2387         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2388         exit(1);
2389     }
2390 
2391     kvm_kernel_irqchip = true;
2392     /* If we have an in-kernel IRQ chip then we must have asynchronous
2393      * interrupt delivery (though the reverse is not necessarily true)
2394      */
2395     kvm_async_interrupts_allowed = true;
2396     kvm_halt_in_kernel_allowed = true;
2397 
2398     kvm_init_irq_routing(s);
2399 
2400     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2401 }
2402 
2403 /* Find number of supported CPUs using the recommended
2404  * procedure from the kernel API documentation to cope with
2405  * older kernels that may be missing capabilities.
2406  */
2407 static int kvm_recommended_vcpus(KVMState *s)
2408 {
2409     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2410     return (ret) ? ret : 4;
2411 }
2412 
2413 static int kvm_max_vcpus(KVMState *s)
2414 {
2415     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2416     return (ret) ? ret : kvm_recommended_vcpus(s);
2417 }
2418 
2419 static int kvm_max_vcpu_id(KVMState *s)
2420 {
2421     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2422     return (ret) ? ret : kvm_max_vcpus(s);
2423 }
2424 
2425 bool kvm_vcpu_id_is_valid(int vcpu_id)
2426 {
2427     KVMState *s = KVM_STATE(current_accel());
2428     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2429 }
2430 
2431 bool kvm_dirty_ring_enabled(void)
2432 {
2433     return kvm_state && kvm_state->kvm_dirty_ring_size;
2434 }
2435 
2436 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2437                            strList *names, strList *targets, Error **errp);
2438 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2439 
2440 uint32_t kvm_dirty_ring_size(void)
2441 {
2442     return kvm_state->kvm_dirty_ring_size;
2443 }
2444 
2445 static int kvm_init(MachineState *ms)
2446 {
2447     MachineClass *mc = MACHINE_GET_CLASS(ms);
2448     static const char upgrade_note[] =
2449         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2450         "(see http://sourceforge.net/projects/kvm).\n";
2451     const struct {
2452         const char *name;
2453         int num;
2454     } num_cpus[] = {
2455         { "SMP",          ms->smp.cpus },
2456         { "hotpluggable", ms->smp.max_cpus },
2457         { /* end of list */ }
2458     }, *nc = num_cpus;
2459     int soft_vcpus_limit, hard_vcpus_limit;
2460     KVMState *s;
2461     const KVMCapabilityInfo *missing_cap;
2462     int ret;
2463     int type;
2464     uint64_t dirty_log_manual_caps;
2465 
2466     qemu_mutex_init(&kml_slots_lock);
2467 
2468     s = KVM_STATE(ms->accelerator);
2469 
2470     /*
2471      * On systems where the kernel can support different base page
2472      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2473      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2474      * page size for the system though.
2475      */
2476     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2477 
2478     s->sigmask_len = 8;
2479     accel_blocker_init();
2480 
2481 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2482     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2483 #endif
2484     QLIST_INIT(&s->kvm_parked_vcpus);
2485     s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2486     if (s->fd == -1) {
2487         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2488         ret = -errno;
2489         goto err;
2490     }
2491 
2492     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2493     if (ret < KVM_API_VERSION) {
2494         if (ret >= 0) {
2495             ret = -EINVAL;
2496         }
2497         fprintf(stderr, "kvm version too old\n");
2498         goto err;
2499     }
2500 
2501     if (ret > KVM_API_VERSION) {
2502         ret = -EINVAL;
2503         fprintf(stderr, "kvm version not supported\n");
2504         goto err;
2505     }
2506 
2507     kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES);
2508     kvm_guest_memfd_supported =
2509         kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) &&
2510         kvm_check_extension(s, KVM_CAP_USER_MEMORY2) &&
2511         (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE);
2512 
2513     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2514     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2515 
2516     /* If unspecified, use the default value */
2517     if (!s->nr_slots) {
2518         s->nr_slots = 32;
2519     }
2520 
2521     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2522     if (s->nr_as <= 1) {
2523         s->nr_as = 1;
2524     }
2525     s->as = g_new0(struct KVMAs, s->nr_as);
2526 
2527     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2528         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2529                                                             "kvm-type",
2530                                                             &error_abort);
2531         type = mc->kvm_type(ms, kvm_type);
2532     } else if (mc->kvm_type) {
2533         type = mc->kvm_type(ms, NULL);
2534     } else {
2535         type = kvm_arch_get_default_type(ms);
2536     }
2537 
2538     if (type < 0) {
2539         ret = -EINVAL;
2540         goto err;
2541     }
2542 
2543     do {
2544         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2545     } while (ret == -EINTR);
2546 
2547     if (ret < 0) {
2548         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2549                 strerror(-ret));
2550 
2551 #ifdef TARGET_S390X
2552         if (ret == -EINVAL) {
2553             fprintf(stderr,
2554                     "Host kernel setup problem detected. Please verify:\n");
2555             fprintf(stderr, "- for kernels supporting the switch_amode or"
2556                     " user_mode parameters, whether\n");
2557             fprintf(stderr,
2558                     "  user space is running in primary address space\n");
2559             fprintf(stderr,
2560                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2561                     "whether it is enabled\n");
2562         }
2563 #elif defined(TARGET_PPC)
2564         if (ret == -EINVAL) {
2565             fprintf(stderr,
2566                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2567                     (type == 2) ? "pr" : "hv");
2568         }
2569 #endif
2570         goto err;
2571     }
2572 
2573     s->vmfd = ret;
2574 
2575     /* check the vcpu limits */
2576     soft_vcpus_limit = kvm_recommended_vcpus(s);
2577     hard_vcpus_limit = kvm_max_vcpus(s);
2578 
2579     while (nc->name) {
2580         if (nc->num > soft_vcpus_limit) {
2581             warn_report("Number of %s cpus requested (%d) exceeds "
2582                         "the recommended cpus supported by KVM (%d)",
2583                         nc->name, nc->num, soft_vcpus_limit);
2584 
2585             if (nc->num > hard_vcpus_limit) {
2586                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2587                         "the maximum cpus supported by KVM (%d)\n",
2588                         nc->name, nc->num, hard_vcpus_limit);
2589                 exit(1);
2590             }
2591         }
2592         nc++;
2593     }
2594 
2595     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2596     if (!missing_cap) {
2597         missing_cap =
2598             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2599     }
2600     if (missing_cap) {
2601         ret = -EINVAL;
2602         fprintf(stderr, "kvm does not support %s\n%s",
2603                 missing_cap->name, upgrade_note);
2604         goto err;
2605     }
2606 
2607     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2608     s->coalesced_pio = s->coalesced_mmio &&
2609                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2610 
2611     /*
2612      * Enable KVM dirty ring if supported, otherwise fall back to
2613      * dirty logging mode
2614      */
2615     ret = kvm_dirty_ring_init(s);
2616     if (ret < 0) {
2617         goto err;
2618     }
2619 
2620     /*
2621      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2622      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2623      * page is wr-protected initially, which is against how kvm dirty ring is
2624      * usage - kvm dirty ring requires all pages are wr-protected at the very
2625      * beginning.  Enabling this feature for dirty ring causes data corruption.
2626      *
2627      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2628      * we may expect a higher stall time when starting the migration.  In the
2629      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2630      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2631      * guest pages.
2632      */
2633     if (!s->kvm_dirty_ring_size) {
2634         dirty_log_manual_caps =
2635             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2636         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2637                                   KVM_DIRTY_LOG_INITIALLY_SET);
2638         s->manual_dirty_log_protect = dirty_log_manual_caps;
2639         if (dirty_log_manual_caps) {
2640             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2641                                     dirty_log_manual_caps);
2642             if (ret) {
2643                 warn_report("Trying to enable capability %"PRIu64" of "
2644                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2645                             "Falling back to the legacy mode. ",
2646                             dirty_log_manual_caps);
2647                 s->manual_dirty_log_protect = 0;
2648             }
2649         }
2650     }
2651 
2652 #ifdef KVM_CAP_VCPU_EVENTS
2653     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2654 #endif
2655     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2656 
2657     s->irq_set_ioctl = KVM_IRQ_LINE;
2658     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2659         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2660     }
2661 
2662     kvm_readonly_mem_allowed =
2663         (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2664 
2665     kvm_resamplefds_allowed =
2666         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2667 
2668     kvm_vm_attributes_allowed =
2669         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2670 
2671 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2672     kvm_has_guest_debug =
2673         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2674 #endif
2675 
2676     kvm_sstep_flags = 0;
2677     if (kvm_has_guest_debug) {
2678         kvm_sstep_flags = SSTEP_ENABLE;
2679 
2680 #if defined TARGET_KVM_HAVE_GUEST_DEBUG
2681         int guest_debug_flags =
2682             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2683 
2684         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2685             kvm_sstep_flags |= SSTEP_NOIRQ;
2686         }
2687 #endif
2688     }
2689 
2690     kvm_state = s;
2691 
2692     ret = kvm_arch_init(ms, s);
2693     if (ret < 0) {
2694         goto err;
2695     }
2696 
2697     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2698         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2699     }
2700 
2701     qemu_register_reset(kvm_unpoison_all, NULL);
2702 
2703     if (s->kernel_irqchip_allowed) {
2704         kvm_irqchip_create(s);
2705     }
2706 
2707     s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2708     s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2709     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2710     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2711 
2712     kvm_memory_listener_register(s, &s->memory_listener,
2713                                  &address_space_memory, 0, "kvm-memory");
2714     memory_listener_register(&kvm_io_listener,
2715                              &address_space_io);
2716 
2717     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2718     if (!s->sync_mmu) {
2719         ret = ram_block_discard_disable(true);
2720         assert(!ret);
2721     }
2722 
2723     if (s->kvm_dirty_ring_size) {
2724         kvm_dirty_ring_reaper_init(s);
2725     }
2726 
2727     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2728         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2729                             query_stats_schemas_cb);
2730     }
2731 
2732     return 0;
2733 
2734 err:
2735     assert(ret < 0);
2736     if (s->vmfd >= 0) {
2737         close(s->vmfd);
2738     }
2739     if (s->fd != -1) {
2740         close(s->fd);
2741     }
2742     g_free(s->as);
2743     g_free(s->memory_listener.slots);
2744 
2745     return ret;
2746 }
2747 
2748 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2749 {
2750     s->sigmask_len = sigmask_len;
2751 }
2752 
2753 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2754                           int size, uint32_t count)
2755 {
2756     int i;
2757     uint8_t *ptr = data;
2758 
2759     for (i = 0; i < count; i++) {
2760         address_space_rw(&address_space_io, port, attrs,
2761                          ptr, size,
2762                          direction == KVM_EXIT_IO_OUT);
2763         ptr += size;
2764     }
2765 }
2766 
2767 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2768 {
2769     int i;
2770 
2771     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2772             run->internal.suberror);
2773 
2774     for (i = 0; i < run->internal.ndata; ++i) {
2775         fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2776                 i, (uint64_t)run->internal.data[i]);
2777     }
2778     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2779         fprintf(stderr, "emulation failure\n");
2780         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2781             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2782             return EXCP_INTERRUPT;
2783         }
2784     }
2785     /* FIXME: Should trigger a qmp message to let management know
2786      * something went wrong.
2787      */
2788     return -1;
2789 }
2790 
2791 void kvm_flush_coalesced_mmio_buffer(void)
2792 {
2793     KVMState *s = kvm_state;
2794 
2795     if (!s || s->coalesced_flush_in_progress) {
2796         return;
2797     }
2798 
2799     s->coalesced_flush_in_progress = true;
2800 
2801     if (s->coalesced_mmio_ring) {
2802         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2803         while (ring->first != ring->last) {
2804             struct kvm_coalesced_mmio *ent;
2805 
2806             ent = &ring->coalesced_mmio[ring->first];
2807 
2808             if (ent->pio == 1) {
2809                 address_space_write(&address_space_io, ent->phys_addr,
2810                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2811                                     ent->len);
2812             } else {
2813                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2814             }
2815             smp_wmb();
2816             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2817         }
2818     }
2819 
2820     s->coalesced_flush_in_progress = false;
2821 }
2822 
2823 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2824 {
2825     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2826         int ret = kvm_arch_get_registers(cpu);
2827         if (ret) {
2828             error_report("Failed to get registers: %s", strerror(-ret));
2829             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2830             vm_stop(RUN_STATE_INTERNAL_ERROR);
2831         }
2832 
2833         cpu->vcpu_dirty = true;
2834     }
2835 }
2836 
2837 void kvm_cpu_synchronize_state(CPUState *cpu)
2838 {
2839     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2840         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2841     }
2842 }
2843 
2844 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2845 {
2846     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2847     if (ret) {
2848         error_report("Failed to put registers after reset: %s", strerror(-ret));
2849         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2850         vm_stop(RUN_STATE_INTERNAL_ERROR);
2851     }
2852 
2853     cpu->vcpu_dirty = false;
2854 }
2855 
2856 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2857 {
2858     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2859 }
2860 
2861 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2862 {
2863     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2864     if (ret) {
2865         error_report("Failed to put registers after init: %s", strerror(-ret));
2866         exit(1);
2867     }
2868 
2869     cpu->vcpu_dirty = false;
2870 }
2871 
2872 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2873 {
2874     if (!kvm_state->guest_state_protected) {
2875         /*
2876          * This runs before the machine_init_done notifiers, and is the last
2877          * opportunity to synchronize the state of confidential guests.
2878          */
2879         run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2880     }
2881 }
2882 
2883 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2884 {
2885     cpu->vcpu_dirty = true;
2886 }
2887 
2888 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2889 {
2890     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2891 }
2892 
2893 #ifdef KVM_HAVE_MCE_INJECTION
2894 static __thread void *pending_sigbus_addr;
2895 static __thread int pending_sigbus_code;
2896 static __thread bool have_sigbus_pending;
2897 #endif
2898 
2899 static void kvm_cpu_kick(CPUState *cpu)
2900 {
2901     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2902 }
2903 
2904 static void kvm_cpu_kick_self(void)
2905 {
2906     if (kvm_immediate_exit) {
2907         kvm_cpu_kick(current_cpu);
2908     } else {
2909         qemu_cpu_kick_self();
2910     }
2911 }
2912 
2913 static void kvm_eat_signals(CPUState *cpu)
2914 {
2915     struct timespec ts = { 0, 0 };
2916     siginfo_t siginfo;
2917     sigset_t waitset;
2918     sigset_t chkset;
2919     int r;
2920 
2921     if (kvm_immediate_exit) {
2922         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2923         /* Write kvm_run->immediate_exit before the cpu->exit_request
2924          * write in kvm_cpu_exec.
2925          */
2926         smp_wmb();
2927         return;
2928     }
2929 
2930     sigemptyset(&waitset);
2931     sigaddset(&waitset, SIG_IPI);
2932 
2933     do {
2934         r = sigtimedwait(&waitset, &siginfo, &ts);
2935         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2936             perror("sigtimedwait");
2937             exit(1);
2938         }
2939 
2940         r = sigpending(&chkset);
2941         if (r == -1) {
2942             perror("sigpending");
2943             exit(1);
2944         }
2945     } while (sigismember(&chkset, SIG_IPI));
2946 }
2947 
2948 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private)
2949 {
2950     MemoryRegionSection section;
2951     ram_addr_t offset;
2952     MemoryRegion *mr;
2953     RAMBlock *rb;
2954     void *addr;
2955     int ret = -1;
2956 
2957     trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared");
2958 
2959     if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) ||
2960         !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) {
2961         return -1;
2962     }
2963 
2964     if (!size) {
2965         return -1;
2966     }
2967 
2968     section = memory_region_find(get_system_memory(), start, size);
2969     mr = section.mr;
2970     if (!mr) {
2971         /*
2972          * Ignore converting non-assigned region to shared.
2973          *
2974          * TDX requires vMMIO region to be shared to inject #VE to guest.
2975          * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region,
2976          * and vIO-APIC 0xFEC00000 4K page.
2977          * OVMF assigns 32bit PCI MMIO region to
2978          * [top of low memory: typically 2GB=0xC000000,  0xFC00000)
2979          */
2980         if (!to_private) {
2981             return 0;
2982         }
2983         return -1;
2984     }
2985 
2986     if (!memory_region_has_guest_memfd(mr)) {
2987         /*
2988          * Because vMMIO region must be shared, guest TD may convert vMMIO
2989          * region to shared explicitly.  Don't complain such case.  See
2990          * memory_region_type() for checking if the region is MMIO region.
2991          */
2992         if (!to_private &&
2993             !memory_region_is_ram(mr) &&
2994             !memory_region_is_ram_device(mr) &&
2995             !memory_region_is_rom(mr) &&
2996             !memory_region_is_romd(mr)) {
2997             ret = 0;
2998         } else {
2999             error_report("Convert non guest_memfd backed memory region "
3000                         "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s",
3001                         start, size, to_private ? "private" : "shared");
3002         }
3003         goto out_unref;
3004     }
3005 
3006     if (to_private) {
3007         ret = kvm_set_memory_attributes_private(start, size);
3008     } else {
3009         ret = kvm_set_memory_attributes_shared(start, size);
3010     }
3011     if (ret) {
3012         goto out_unref;
3013     }
3014 
3015     addr = memory_region_get_ram_ptr(mr) + section.offset_within_region;
3016     rb = qemu_ram_block_from_host(addr, false, &offset);
3017 
3018     if (to_private) {
3019         if (rb->page_size != qemu_real_host_page_size()) {
3020             /*
3021              * shared memory is backed by hugetlb, which is supposed to be
3022              * pre-allocated and doesn't need to be discarded
3023              */
3024             goto out_unref;
3025         }
3026         ret = ram_block_discard_range(rb, offset, size);
3027     } else {
3028         ret = ram_block_discard_guest_memfd_range(rb, offset, size);
3029     }
3030 
3031 out_unref:
3032     memory_region_unref(mr);
3033     return ret;
3034 }
3035 
3036 int kvm_cpu_exec(CPUState *cpu)
3037 {
3038     struct kvm_run *run = cpu->kvm_run;
3039     int ret, run_ret;
3040 
3041     trace_kvm_cpu_exec();
3042 
3043     if (kvm_arch_process_async_events(cpu)) {
3044         qatomic_set(&cpu->exit_request, 0);
3045         return EXCP_HLT;
3046     }
3047 
3048     bql_unlock();
3049     cpu_exec_start(cpu);
3050 
3051     do {
3052         MemTxAttrs attrs;
3053 
3054         if (cpu->vcpu_dirty) {
3055             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
3056             if (ret) {
3057                 error_report("Failed to put registers after init: %s",
3058                              strerror(-ret));
3059                 ret = -1;
3060                 break;
3061             }
3062 
3063             cpu->vcpu_dirty = false;
3064         }
3065 
3066         kvm_arch_pre_run(cpu, run);
3067         if (qatomic_read(&cpu->exit_request)) {
3068             trace_kvm_interrupt_exit_request();
3069             /*
3070              * KVM requires us to reenter the kernel after IO exits to complete
3071              * instruction emulation. This self-signal will ensure that we
3072              * leave ASAP again.
3073              */
3074             kvm_cpu_kick_self();
3075         }
3076 
3077         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
3078          * Matching barrier in kvm_eat_signals.
3079          */
3080         smp_rmb();
3081 
3082         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
3083 
3084         attrs = kvm_arch_post_run(cpu, run);
3085 
3086 #ifdef KVM_HAVE_MCE_INJECTION
3087         if (unlikely(have_sigbus_pending)) {
3088             bql_lock();
3089             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
3090                                     pending_sigbus_addr);
3091             have_sigbus_pending = false;
3092             bql_unlock();
3093         }
3094 #endif
3095 
3096         if (run_ret < 0) {
3097             if (run_ret == -EINTR || run_ret == -EAGAIN) {
3098                 trace_kvm_io_window_exit();
3099                 kvm_eat_signals(cpu);
3100                 ret = EXCP_INTERRUPT;
3101                 break;
3102             }
3103             if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) {
3104                 fprintf(stderr, "error: kvm run failed %s\n",
3105                         strerror(-run_ret));
3106 #ifdef TARGET_PPC
3107                 if (run_ret == -EBUSY) {
3108                     fprintf(stderr,
3109                             "This is probably because your SMT is enabled.\n"
3110                             "VCPU can only run on primary threads with all "
3111                             "secondary threads offline.\n");
3112                 }
3113 #endif
3114                 ret = -1;
3115                 break;
3116             }
3117         }
3118 
3119         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3120         switch (run->exit_reason) {
3121         case KVM_EXIT_IO:
3122             /* Called outside BQL */
3123             kvm_handle_io(run->io.port, attrs,
3124                           (uint8_t *)run + run->io.data_offset,
3125                           run->io.direction,
3126                           run->io.size,
3127                           run->io.count);
3128             ret = 0;
3129             break;
3130         case KVM_EXIT_MMIO:
3131             /* Called outside BQL */
3132             address_space_rw(&address_space_memory,
3133                              run->mmio.phys_addr, attrs,
3134                              run->mmio.data,
3135                              run->mmio.len,
3136                              run->mmio.is_write);
3137             ret = 0;
3138             break;
3139         case KVM_EXIT_IRQ_WINDOW_OPEN:
3140             ret = EXCP_INTERRUPT;
3141             break;
3142         case KVM_EXIT_SHUTDOWN:
3143             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3144             ret = EXCP_INTERRUPT;
3145             break;
3146         case KVM_EXIT_UNKNOWN:
3147             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3148                     (uint64_t)run->hw.hardware_exit_reason);
3149             ret = -1;
3150             break;
3151         case KVM_EXIT_INTERNAL_ERROR:
3152             ret = kvm_handle_internal_error(cpu, run);
3153             break;
3154         case KVM_EXIT_DIRTY_RING_FULL:
3155             /*
3156              * We shouldn't continue if the dirty ring of this vcpu is
3157              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
3158              */
3159             trace_kvm_dirty_ring_full(cpu->cpu_index);
3160             bql_lock();
3161             /*
3162              * We throttle vCPU by making it sleep once it exit from kernel
3163              * due to dirty ring full. In the dirtylimit scenario, reaping
3164              * all vCPUs after a single vCPU dirty ring get full result in
3165              * the miss of sleep, so just reap the ring-fulled vCPU.
3166              */
3167             if (dirtylimit_in_service()) {
3168                 kvm_dirty_ring_reap(kvm_state, cpu);
3169             } else {
3170                 kvm_dirty_ring_reap(kvm_state, NULL);
3171             }
3172             bql_unlock();
3173             dirtylimit_vcpu_execute(cpu);
3174             ret = 0;
3175             break;
3176         case KVM_EXIT_SYSTEM_EVENT:
3177             trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
3178             switch (run->system_event.type) {
3179             case KVM_SYSTEM_EVENT_SHUTDOWN:
3180                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3181                 ret = EXCP_INTERRUPT;
3182                 break;
3183             case KVM_SYSTEM_EVENT_RESET:
3184                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3185                 ret = EXCP_INTERRUPT;
3186                 break;
3187             case KVM_SYSTEM_EVENT_CRASH:
3188                 kvm_cpu_synchronize_state(cpu);
3189                 bql_lock();
3190                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3191                 bql_unlock();
3192                 ret = 0;
3193                 break;
3194             default:
3195                 ret = kvm_arch_handle_exit(cpu, run);
3196                 break;
3197             }
3198             break;
3199         case KVM_EXIT_MEMORY_FAULT:
3200             trace_kvm_memory_fault(run->memory_fault.gpa,
3201                                    run->memory_fault.size,
3202                                    run->memory_fault.flags);
3203             if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) {
3204                 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64,
3205                              (uint64_t)run->memory_fault.flags);
3206                 ret = -1;
3207                 break;
3208             }
3209             ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size,
3210                                      run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE);
3211             break;
3212         default:
3213             ret = kvm_arch_handle_exit(cpu, run);
3214             break;
3215         }
3216     } while (ret == 0);
3217 
3218     cpu_exec_end(cpu);
3219     bql_lock();
3220 
3221     if (ret < 0) {
3222         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3223         vm_stop(RUN_STATE_INTERNAL_ERROR);
3224     }
3225 
3226     qatomic_set(&cpu->exit_request, 0);
3227     return ret;
3228 }
3229 
3230 int kvm_ioctl(KVMState *s, int type, ...)
3231 {
3232     int ret;
3233     void *arg;
3234     va_list ap;
3235 
3236     va_start(ap, type);
3237     arg = va_arg(ap, void *);
3238     va_end(ap);
3239 
3240     trace_kvm_ioctl(type, arg);
3241     ret = ioctl(s->fd, type, arg);
3242     if (ret == -1) {
3243         ret = -errno;
3244     }
3245     return ret;
3246 }
3247 
3248 int kvm_vm_ioctl(KVMState *s, int type, ...)
3249 {
3250     int ret;
3251     void *arg;
3252     va_list ap;
3253 
3254     va_start(ap, type);
3255     arg = va_arg(ap, void *);
3256     va_end(ap);
3257 
3258     trace_kvm_vm_ioctl(type, arg);
3259     accel_ioctl_begin();
3260     ret = ioctl(s->vmfd, type, arg);
3261     accel_ioctl_end();
3262     if (ret == -1) {
3263         ret = -errno;
3264     }
3265     return ret;
3266 }
3267 
3268 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3269 {
3270     int ret;
3271     void *arg;
3272     va_list ap;
3273 
3274     va_start(ap, type);
3275     arg = va_arg(ap, void *);
3276     va_end(ap);
3277 
3278     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3279     accel_cpu_ioctl_begin(cpu);
3280     ret = ioctl(cpu->kvm_fd, type, arg);
3281     accel_cpu_ioctl_end(cpu);
3282     if (ret == -1) {
3283         ret = -errno;
3284     }
3285     return ret;
3286 }
3287 
3288 int kvm_device_ioctl(int fd, int type, ...)
3289 {
3290     int ret;
3291     void *arg;
3292     va_list ap;
3293 
3294     va_start(ap, type);
3295     arg = va_arg(ap, void *);
3296     va_end(ap);
3297 
3298     trace_kvm_device_ioctl(fd, type, arg);
3299     accel_ioctl_begin();
3300     ret = ioctl(fd, type, arg);
3301     accel_ioctl_end();
3302     if (ret == -1) {
3303         ret = -errno;
3304     }
3305     return ret;
3306 }
3307 
3308 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3309 {
3310     int ret;
3311     struct kvm_device_attr attribute = {
3312         .group = group,
3313         .attr = attr,
3314     };
3315 
3316     if (!kvm_vm_attributes_allowed) {
3317         return 0;
3318     }
3319 
3320     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3321     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3322     return ret ? 0 : 1;
3323 }
3324 
3325 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3326 {
3327     struct kvm_device_attr attribute = {
3328         .group = group,
3329         .attr = attr,
3330         .flags = 0,
3331     };
3332 
3333     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3334 }
3335 
3336 int kvm_device_access(int fd, int group, uint64_t attr,
3337                       void *val, bool write, Error **errp)
3338 {
3339     struct kvm_device_attr kvmattr;
3340     int err;
3341 
3342     kvmattr.flags = 0;
3343     kvmattr.group = group;
3344     kvmattr.attr = attr;
3345     kvmattr.addr = (uintptr_t)val;
3346 
3347     err = kvm_device_ioctl(fd,
3348                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3349                            &kvmattr);
3350     if (err < 0) {
3351         error_setg_errno(errp, -err,
3352                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3353                          "attr 0x%016" PRIx64,
3354                          write ? "SET" : "GET", group, attr);
3355     }
3356     return err;
3357 }
3358 
3359 bool kvm_has_sync_mmu(void)
3360 {
3361     return kvm_state->sync_mmu;
3362 }
3363 
3364 int kvm_has_vcpu_events(void)
3365 {
3366     return kvm_state->vcpu_events;
3367 }
3368 
3369 int kvm_max_nested_state_length(void)
3370 {
3371     return kvm_state->max_nested_state_len;
3372 }
3373 
3374 int kvm_has_gsi_routing(void)
3375 {
3376 #ifdef KVM_CAP_IRQ_ROUTING
3377     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3378 #else
3379     return false;
3380 #endif
3381 }
3382 
3383 bool kvm_arm_supports_user_irq(void)
3384 {
3385     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3386 }
3387 
3388 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
3389 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3390 {
3391     struct kvm_sw_breakpoint *bp;
3392 
3393     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3394         if (bp->pc == pc) {
3395             return bp;
3396         }
3397     }
3398     return NULL;
3399 }
3400 
3401 int kvm_sw_breakpoints_active(CPUState *cpu)
3402 {
3403     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3404 }
3405 
3406 struct kvm_set_guest_debug_data {
3407     struct kvm_guest_debug dbg;
3408     int err;
3409 };
3410 
3411 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3412 {
3413     struct kvm_set_guest_debug_data *dbg_data =
3414         (struct kvm_set_guest_debug_data *) data.host_ptr;
3415 
3416     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3417                                    &dbg_data->dbg);
3418 }
3419 
3420 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3421 {
3422     struct kvm_set_guest_debug_data data;
3423 
3424     data.dbg.control = reinject_trap;
3425 
3426     if (cpu->singlestep_enabled) {
3427         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3428 
3429         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3430             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3431         }
3432     }
3433     kvm_arch_update_guest_debug(cpu, &data.dbg);
3434 
3435     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3436                RUN_ON_CPU_HOST_PTR(&data));
3437     return data.err;
3438 }
3439 
3440 bool kvm_supports_guest_debug(void)
3441 {
3442     /* probed during kvm_init() */
3443     return kvm_has_guest_debug;
3444 }
3445 
3446 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3447 {
3448     struct kvm_sw_breakpoint *bp;
3449     int err;
3450 
3451     if (type == GDB_BREAKPOINT_SW) {
3452         bp = kvm_find_sw_breakpoint(cpu, addr);
3453         if (bp) {
3454             bp->use_count++;
3455             return 0;
3456         }
3457 
3458         bp = g_new(struct kvm_sw_breakpoint, 1);
3459         bp->pc = addr;
3460         bp->use_count = 1;
3461         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3462         if (err) {
3463             g_free(bp);
3464             return err;
3465         }
3466 
3467         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3468     } else {
3469         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3470         if (err) {
3471             return err;
3472         }
3473     }
3474 
3475     CPU_FOREACH(cpu) {
3476         err = kvm_update_guest_debug(cpu, 0);
3477         if (err) {
3478             return err;
3479         }
3480     }
3481     return 0;
3482 }
3483 
3484 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3485 {
3486     struct kvm_sw_breakpoint *bp;
3487     int err;
3488 
3489     if (type == GDB_BREAKPOINT_SW) {
3490         bp = kvm_find_sw_breakpoint(cpu, addr);
3491         if (!bp) {
3492             return -ENOENT;
3493         }
3494 
3495         if (bp->use_count > 1) {
3496             bp->use_count--;
3497             return 0;
3498         }
3499 
3500         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3501         if (err) {
3502             return err;
3503         }
3504 
3505         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3506         g_free(bp);
3507     } else {
3508         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3509         if (err) {
3510             return err;
3511         }
3512     }
3513 
3514     CPU_FOREACH(cpu) {
3515         err = kvm_update_guest_debug(cpu, 0);
3516         if (err) {
3517             return err;
3518         }
3519     }
3520     return 0;
3521 }
3522 
3523 void kvm_remove_all_breakpoints(CPUState *cpu)
3524 {
3525     struct kvm_sw_breakpoint *bp, *next;
3526     KVMState *s = cpu->kvm_state;
3527     CPUState *tmpcpu;
3528 
3529     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3530         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3531             /* Try harder to find a CPU that currently sees the breakpoint. */
3532             CPU_FOREACH(tmpcpu) {
3533                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3534                     break;
3535                 }
3536             }
3537         }
3538         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3539         g_free(bp);
3540     }
3541     kvm_arch_remove_all_hw_breakpoints();
3542 
3543     CPU_FOREACH(cpu) {
3544         kvm_update_guest_debug(cpu, 0);
3545     }
3546 }
3547 
3548 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */
3549 
3550 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3551 {
3552     KVMState *s = kvm_state;
3553     struct kvm_signal_mask *sigmask;
3554     int r;
3555 
3556     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3557 
3558     sigmask->len = s->sigmask_len;
3559     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3560     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3561     g_free(sigmask);
3562 
3563     return r;
3564 }
3565 
3566 static void kvm_ipi_signal(int sig)
3567 {
3568     if (current_cpu) {
3569         assert(kvm_immediate_exit);
3570         kvm_cpu_kick(current_cpu);
3571     }
3572 }
3573 
3574 void kvm_init_cpu_signals(CPUState *cpu)
3575 {
3576     int r;
3577     sigset_t set;
3578     struct sigaction sigact;
3579 
3580     memset(&sigact, 0, sizeof(sigact));
3581     sigact.sa_handler = kvm_ipi_signal;
3582     sigaction(SIG_IPI, &sigact, NULL);
3583 
3584     pthread_sigmask(SIG_BLOCK, NULL, &set);
3585 #if defined KVM_HAVE_MCE_INJECTION
3586     sigdelset(&set, SIGBUS);
3587     pthread_sigmask(SIG_SETMASK, &set, NULL);
3588 #endif
3589     sigdelset(&set, SIG_IPI);
3590     if (kvm_immediate_exit) {
3591         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3592     } else {
3593         r = kvm_set_signal_mask(cpu, &set);
3594     }
3595     if (r) {
3596         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3597         exit(1);
3598     }
3599 }
3600 
3601 /* Called asynchronously in VCPU thread.  */
3602 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3603 {
3604 #ifdef KVM_HAVE_MCE_INJECTION
3605     if (have_sigbus_pending) {
3606         return 1;
3607     }
3608     have_sigbus_pending = true;
3609     pending_sigbus_addr = addr;
3610     pending_sigbus_code = code;
3611     qatomic_set(&cpu->exit_request, 1);
3612     return 0;
3613 #else
3614     return 1;
3615 #endif
3616 }
3617 
3618 /* Called synchronously (via signalfd) in main thread.  */
3619 int kvm_on_sigbus(int code, void *addr)
3620 {
3621 #ifdef KVM_HAVE_MCE_INJECTION
3622     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3623      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3624      * we can only get action optional here.
3625      */
3626     assert(code != BUS_MCEERR_AR);
3627     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3628     return 0;
3629 #else
3630     return 1;
3631 #endif
3632 }
3633 
3634 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3635 {
3636     int ret;
3637     struct kvm_create_device create_dev;
3638 
3639     create_dev.type = type;
3640     create_dev.fd = -1;
3641     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3642 
3643     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3644         return -ENOTSUP;
3645     }
3646 
3647     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3648     if (ret) {
3649         return ret;
3650     }
3651 
3652     return test ? 0 : create_dev.fd;
3653 }
3654 
3655 bool kvm_device_supported(int vmfd, uint64_t type)
3656 {
3657     struct kvm_create_device create_dev = {
3658         .type = type,
3659         .fd = -1,
3660         .flags = KVM_CREATE_DEVICE_TEST,
3661     };
3662 
3663     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3664         return false;
3665     }
3666 
3667     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3668 }
3669 
3670 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3671 {
3672     struct kvm_one_reg reg;
3673     int r;
3674 
3675     reg.id = id;
3676     reg.addr = (uintptr_t) source;
3677     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3678     if (r) {
3679         trace_kvm_failed_reg_set(id, strerror(-r));
3680     }
3681     return r;
3682 }
3683 
3684 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3685 {
3686     struct kvm_one_reg reg;
3687     int r;
3688 
3689     reg.id = id;
3690     reg.addr = (uintptr_t) target;
3691     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3692     if (r) {
3693         trace_kvm_failed_reg_get(id, strerror(-r));
3694     }
3695     return r;
3696 }
3697 
3698 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3699                                  hwaddr start_addr, hwaddr size)
3700 {
3701     KVMState *kvm = KVM_STATE(ms->accelerator);
3702     int i;
3703 
3704     for (i = 0; i < kvm->nr_as; ++i) {
3705         if (kvm->as[i].as == as && kvm->as[i].ml) {
3706             size = MIN(kvm_max_slot_size, size);
3707             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3708                                                     start_addr, size);
3709         }
3710     }
3711 
3712     return false;
3713 }
3714 
3715 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3716                                    const char *name, void *opaque,
3717                                    Error **errp)
3718 {
3719     KVMState *s = KVM_STATE(obj);
3720     int64_t value = s->kvm_shadow_mem;
3721 
3722     visit_type_int(v, name, &value, errp);
3723 }
3724 
3725 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3726                                    const char *name, void *opaque,
3727                                    Error **errp)
3728 {
3729     KVMState *s = KVM_STATE(obj);
3730     int64_t value;
3731 
3732     if (s->fd != -1) {
3733         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3734         return;
3735     }
3736 
3737     if (!visit_type_int(v, name, &value, errp)) {
3738         return;
3739     }
3740 
3741     s->kvm_shadow_mem = value;
3742 }
3743 
3744 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3745                                    const char *name, void *opaque,
3746                                    Error **errp)
3747 {
3748     KVMState *s = KVM_STATE(obj);
3749     OnOffSplit mode;
3750 
3751     if (s->fd != -1) {
3752         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3753         return;
3754     }
3755 
3756     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3757         return;
3758     }
3759     switch (mode) {
3760     case ON_OFF_SPLIT_ON:
3761         s->kernel_irqchip_allowed = true;
3762         s->kernel_irqchip_required = true;
3763         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3764         break;
3765     case ON_OFF_SPLIT_OFF:
3766         s->kernel_irqchip_allowed = false;
3767         s->kernel_irqchip_required = false;
3768         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3769         break;
3770     case ON_OFF_SPLIT_SPLIT:
3771         s->kernel_irqchip_allowed = true;
3772         s->kernel_irqchip_required = true;
3773         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3774         break;
3775     default:
3776         /* The value was checked in visit_type_OnOffSplit() above. If
3777          * we get here, then something is wrong in QEMU.
3778          */
3779         abort();
3780     }
3781 }
3782 
3783 bool kvm_kernel_irqchip_allowed(void)
3784 {
3785     return kvm_state->kernel_irqchip_allowed;
3786 }
3787 
3788 bool kvm_kernel_irqchip_required(void)
3789 {
3790     return kvm_state->kernel_irqchip_required;
3791 }
3792 
3793 bool kvm_kernel_irqchip_split(void)
3794 {
3795     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3796 }
3797 
3798 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3799                                     const char *name, void *opaque,
3800                                     Error **errp)
3801 {
3802     KVMState *s = KVM_STATE(obj);
3803     uint32_t value = s->kvm_dirty_ring_size;
3804 
3805     visit_type_uint32(v, name, &value, errp);
3806 }
3807 
3808 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3809                                     const char *name, void *opaque,
3810                                     Error **errp)
3811 {
3812     KVMState *s = KVM_STATE(obj);
3813     uint32_t value;
3814 
3815     if (s->fd != -1) {
3816         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3817         return;
3818     }
3819 
3820     if (!visit_type_uint32(v, name, &value, errp)) {
3821         return;
3822     }
3823     if (value & (value - 1)) {
3824         error_setg(errp, "dirty-ring-size must be a power of two.");
3825         return;
3826     }
3827 
3828     s->kvm_dirty_ring_size = value;
3829 }
3830 
3831 static char *kvm_get_device(Object *obj,
3832                             Error **errp G_GNUC_UNUSED)
3833 {
3834     KVMState *s = KVM_STATE(obj);
3835 
3836     return g_strdup(s->device);
3837 }
3838 
3839 static void kvm_set_device(Object *obj,
3840                            const char *value,
3841                            Error **errp G_GNUC_UNUSED)
3842 {
3843     KVMState *s = KVM_STATE(obj);
3844 
3845     g_free(s->device);
3846     s->device = g_strdup(value);
3847 }
3848 
3849 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp)
3850 {
3851     KVMState *s = KVM_STATE(obj);
3852     s->msr_energy.enable = value;
3853 }
3854 
3855 static void kvm_set_kvm_rapl_socket_path(Object *obj,
3856                                          const char *str,
3857                                          Error **errp)
3858 {
3859     KVMState *s = KVM_STATE(obj);
3860     g_free(s->msr_energy.socket_path);
3861     s->msr_energy.socket_path = g_strdup(str);
3862 }
3863 
3864 static void kvm_accel_instance_init(Object *obj)
3865 {
3866     KVMState *s = KVM_STATE(obj);
3867 
3868     s->fd = -1;
3869     s->vmfd = -1;
3870     s->kvm_shadow_mem = -1;
3871     s->kernel_irqchip_allowed = true;
3872     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3873     /* KVM dirty ring is by default off */
3874     s->kvm_dirty_ring_size = 0;
3875     s->kvm_dirty_ring_with_bitmap = false;
3876     s->kvm_eager_split_size = 0;
3877     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3878     s->notify_window = 0;
3879     s->xen_version = 0;
3880     s->xen_gnttab_max_frames = 64;
3881     s->xen_evtchn_max_pirq = 256;
3882     s->device = NULL;
3883     s->msr_energy.enable = false;
3884 }
3885 
3886 /**
3887  * kvm_gdbstub_sstep_flags():
3888  *
3889  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3890  * support is probed during kvm_init()
3891  */
3892 static int kvm_gdbstub_sstep_flags(void)
3893 {
3894     return kvm_sstep_flags;
3895 }
3896 
3897 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3898 {
3899     AccelClass *ac = ACCEL_CLASS(oc);
3900     ac->name = "KVM";
3901     ac->init_machine = kvm_init;
3902     ac->has_memory = kvm_accel_has_memory;
3903     ac->allowed = &kvm_allowed;
3904     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3905 
3906     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3907         NULL, kvm_set_kernel_irqchip,
3908         NULL, NULL);
3909     object_class_property_set_description(oc, "kernel-irqchip",
3910         "Configure KVM in-kernel irqchip");
3911 
3912     object_class_property_add(oc, "kvm-shadow-mem", "int",
3913         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3914         NULL, NULL);
3915     object_class_property_set_description(oc, "kvm-shadow-mem",
3916         "KVM shadow MMU size");
3917 
3918     object_class_property_add(oc, "dirty-ring-size", "uint32",
3919         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3920         NULL, NULL);
3921     object_class_property_set_description(oc, "dirty-ring-size",
3922         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3923 
3924     object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3925     object_class_property_set_description(oc, "device",
3926         "Path to the device node to use (default: /dev/kvm)");
3927 
3928     object_class_property_add_bool(oc, "rapl",
3929                                    NULL,
3930                                    kvm_set_kvm_rapl);
3931     object_class_property_set_description(oc, "rapl",
3932         "Allow energy related MSRs for RAPL interface in Guest");
3933 
3934     object_class_property_add_str(oc, "rapl-helper-socket", NULL,
3935                                   kvm_set_kvm_rapl_socket_path);
3936     object_class_property_set_description(oc, "rapl-helper-socket",
3937         "Socket Path for comminucating with the Virtual MSR helper daemon");
3938 
3939     kvm_arch_accel_class_init(oc);
3940 }
3941 
3942 static const TypeInfo kvm_accel_type = {
3943     .name = TYPE_KVM_ACCEL,
3944     .parent = TYPE_ACCEL,
3945     .instance_init = kvm_accel_instance_init,
3946     .class_init = kvm_accel_class_init,
3947     .instance_size = sizeof(KVMState),
3948 };
3949 
3950 static void kvm_type_init(void)
3951 {
3952     type_register_static(&kvm_accel_type);
3953 }
3954 
3955 type_init(kvm_type_init);
3956 
3957 typedef struct StatsArgs {
3958     union StatsResultsType {
3959         StatsResultList **stats;
3960         StatsSchemaList **schema;
3961     } result;
3962     strList *names;
3963     Error **errp;
3964 } StatsArgs;
3965 
3966 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3967                                     uint64_t *stats_data,
3968                                     StatsList *stats_list,
3969                                     Error **errp)
3970 {
3971 
3972     Stats *stats;
3973     uint64List *val_list = NULL;
3974 
3975     /* Only add stats that we understand.  */
3976     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3977     case KVM_STATS_TYPE_CUMULATIVE:
3978     case KVM_STATS_TYPE_INSTANT:
3979     case KVM_STATS_TYPE_PEAK:
3980     case KVM_STATS_TYPE_LINEAR_HIST:
3981     case KVM_STATS_TYPE_LOG_HIST:
3982         break;
3983     default:
3984         return stats_list;
3985     }
3986 
3987     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3988     case KVM_STATS_UNIT_NONE:
3989     case KVM_STATS_UNIT_BYTES:
3990     case KVM_STATS_UNIT_CYCLES:
3991     case KVM_STATS_UNIT_SECONDS:
3992     case KVM_STATS_UNIT_BOOLEAN:
3993         break;
3994     default:
3995         return stats_list;
3996     }
3997 
3998     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3999     case KVM_STATS_BASE_POW10:
4000     case KVM_STATS_BASE_POW2:
4001         break;
4002     default:
4003         return stats_list;
4004     }
4005 
4006     /* Alloc and populate data list */
4007     stats = g_new0(Stats, 1);
4008     stats->name = g_strdup(pdesc->name);
4009     stats->value = g_new0(StatsValue, 1);
4010 
4011     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
4012         stats->value->u.boolean = *stats_data;
4013         stats->value->type = QTYPE_QBOOL;
4014     } else if (pdesc->size == 1) {
4015         stats->value->u.scalar = *stats_data;
4016         stats->value->type = QTYPE_QNUM;
4017     } else {
4018         int i;
4019         for (i = 0; i < pdesc->size; i++) {
4020             QAPI_LIST_PREPEND(val_list, stats_data[i]);
4021         }
4022         stats->value->u.list = val_list;
4023         stats->value->type = QTYPE_QLIST;
4024     }
4025 
4026     QAPI_LIST_PREPEND(stats_list, stats);
4027     return stats_list;
4028 }
4029 
4030 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
4031                                                  StatsSchemaValueList *list,
4032                                                  Error **errp)
4033 {
4034     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
4035     schema_entry->value = g_new0(StatsSchemaValue, 1);
4036 
4037     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
4038     case KVM_STATS_TYPE_CUMULATIVE:
4039         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
4040         break;
4041     case KVM_STATS_TYPE_INSTANT:
4042         schema_entry->value->type = STATS_TYPE_INSTANT;
4043         break;
4044     case KVM_STATS_TYPE_PEAK:
4045         schema_entry->value->type = STATS_TYPE_PEAK;
4046         break;
4047     case KVM_STATS_TYPE_LINEAR_HIST:
4048         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
4049         schema_entry->value->bucket_size = pdesc->bucket_size;
4050         schema_entry->value->has_bucket_size = true;
4051         break;
4052     case KVM_STATS_TYPE_LOG_HIST:
4053         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
4054         break;
4055     default:
4056         goto exit;
4057     }
4058 
4059     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
4060     case KVM_STATS_UNIT_NONE:
4061         break;
4062     case KVM_STATS_UNIT_BOOLEAN:
4063         schema_entry->value->has_unit = true;
4064         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
4065         break;
4066     case KVM_STATS_UNIT_BYTES:
4067         schema_entry->value->has_unit = true;
4068         schema_entry->value->unit = STATS_UNIT_BYTES;
4069         break;
4070     case KVM_STATS_UNIT_CYCLES:
4071         schema_entry->value->has_unit = true;
4072         schema_entry->value->unit = STATS_UNIT_CYCLES;
4073         break;
4074     case KVM_STATS_UNIT_SECONDS:
4075         schema_entry->value->has_unit = true;
4076         schema_entry->value->unit = STATS_UNIT_SECONDS;
4077         break;
4078     default:
4079         goto exit;
4080     }
4081 
4082     schema_entry->value->exponent = pdesc->exponent;
4083     if (pdesc->exponent) {
4084         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
4085         case KVM_STATS_BASE_POW10:
4086             schema_entry->value->has_base = true;
4087             schema_entry->value->base = 10;
4088             break;
4089         case KVM_STATS_BASE_POW2:
4090             schema_entry->value->has_base = true;
4091             schema_entry->value->base = 2;
4092             break;
4093         default:
4094             goto exit;
4095         }
4096     }
4097 
4098     schema_entry->value->name = g_strdup(pdesc->name);
4099     schema_entry->next = list;
4100     return schema_entry;
4101 exit:
4102     g_free(schema_entry->value);
4103     g_free(schema_entry);
4104     return list;
4105 }
4106 
4107 /* Cached stats descriptors */
4108 typedef struct StatsDescriptors {
4109     const char *ident; /* cache key, currently the StatsTarget */
4110     struct kvm_stats_desc *kvm_stats_desc;
4111     struct kvm_stats_header kvm_stats_header;
4112     QTAILQ_ENTRY(StatsDescriptors) next;
4113 } StatsDescriptors;
4114 
4115 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
4116     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
4117 
4118 /*
4119  * Return the descriptors for 'target', that either have already been read
4120  * or are retrieved from 'stats_fd'.
4121  */
4122 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
4123                                                 Error **errp)
4124 {
4125     StatsDescriptors *descriptors;
4126     const char *ident;
4127     struct kvm_stats_desc *kvm_stats_desc;
4128     struct kvm_stats_header *kvm_stats_header;
4129     size_t size_desc;
4130     ssize_t ret;
4131 
4132     ident = StatsTarget_str(target);
4133     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4134         if (g_str_equal(descriptors->ident, ident)) {
4135             return descriptors;
4136         }
4137     }
4138 
4139     descriptors = g_new0(StatsDescriptors, 1);
4140 
4141     /* Read stats header */
4142     kvm_stats_header = &descriptors->kvm_stats_header;
4143     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4144     if (ret != sizeof(*kvm_stats_header)) {
4145         error_setg(errp, "KVM stats: failed to read stats header: "
4146                    "expected %zu actual %zu",
4147                    sizeof(*kvm_stats_header), ret);
4148         g_free(descriptors);
4149         return NULL;
4150     }
4151     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4152 
4153     /* Read stats descriptors */
4154     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4155     ret = pread(stats_fd, kvm_stats_desc,
4156                 size_desc * kvm_stats_header->num_desc,
4157                 kvm_stats_header->desc_offset);
4158 
4159     if (ret != size_desc * kvm_stats_header->num_desc) {
4160         error_setg(errp, "KVM stats: failed to read stats descriptors: "
4161                    "expected %zu actual %zu",
4162                    size_desc * kvm_stats_header->num_desc, ret);
4163         g_free(descriptors);
4164         g_free(kvm_stats_desc);
4165         return NULL;
4166     }
4167     descriptors->kvm_stats_desc = kvm_stats_desc;
4168     descriptors->ident = ident;
4169     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4170     return descriptors;
4171 }
4172 
4173 static void query_stats(StatsResultList **result, StatsTarget target,
4174                         strList *names, int stats_fd, CPUState *cpu,
4175                         Error **errp)
4176 {
4177     struct kvm_stats_desc *kvm_stats_desc;
4178     struct kvm_stats_header *kvm_stats_header;
4179     StatsDescriptors *descriptors;
4180     g_autofree uint64_t *stats_data = NULL;
4181     struct kvm_stats_desc *pdesc;
4182     StatsList *stats_list = NULL;
4183     size_t size_desc, size_data = 0;
4184     ssize_t ret;
4185     int i;
4186 
4187     descriptors = find_stats_descriptors(target, stats_fd, errp);
4188     if (!descriptors) {
4189         return;
4190     }
4191 
4192     kvm_stats_header = &descriptors->kvm_stats_header;
4193     kvm_stats_desc = descriptors->kvm_stats_desc;
4194     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4195 
4196     /* Tally the total data size; read schema data */
4197     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4198         pdesc = (void *)kvm_stats_desc + i * size_desc;
4199         size_data += pdesc->size * sizeof(*stats_data);
4200     }
4201 
4202     stats_data = g_malloc0(size_data);
4203     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4204 
4205     if (ret != size_data) {
4206         error_setg(errp, "KVM stats: failed to read data: "
4207                    "expected %zu actual %zu", size_data, ret);
4208         return;
4209     }
4210 
4211     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4212         uint64_t *stats;
4213         pdesc = (void *)kvm_stats_desc + i * size_desc;
4214 
4215         /* Add entry to the list */
4216         stats = (void *)stats_data + pdesc->offset;
4217         if (!apply_str_list_filter(pdesc->name, names)) {
4218             continue;
4219         }
4220         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4221     }
4222 
4223     if (!stats_list) {
4224         return;
4225     }
4226 
4227     switch (target) {
4228     case STATS_TARGET_VM:
4229         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4230         break;
4231     case STATS_TARGET_VCPU:
4232         add_stats_entry(result, STATS_PROVIDER_KVM,
4233                         cpu->parent_obj.canonical_path,
4234                         stats_list);
4235         break;
4236     default:
4237         g_assert_not_reached();
4238     }
4239 }
4240 
4241 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4242                                int stats_fd, Error **errp)
4243 {
4244     struct kvm_stats_desc *kvm_stats_desc;
4245     struct kvm_stats_header *kvm_stats_header;
4246     StatsDescriptors *descriptors;
4247     struct kvm_stats_desc *pdesc;
4248     StatsSchemaValueList *stats_list = NULL;
4249     size_t size_desc;
4250     int i;
4251 
4252     descriptors = find_stats_descriptors(target, stats_fd, errp);
4253     if (!descriptors) {
4254         return;
4255     }
4256 
4257     kvm_stats_header = &descriptors->kvm_stats_header;
4258     kvm_stats_desc = descriptors->kvm_stats_desc;
4259     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4260 
4261     /* Tally the total data size; read schema data */
4262     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4263         pdesc = (void *)kvm_stats_desc + i * size_desc;
4264         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4265     }
4266 
4267     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4268 }
4269 
4270 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4271 {
4272     int stats_fd = cpu->kvm_vcpu_stats_fd;
4273     Error *local_err = NULL;
4274 
4275     if (stats_fd == -1) {
4276         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4277         error_propagate(kvm_stats_args->errp, local_err);
4278         return;
4279     }
4280     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4281                 kvm_stats_args->names, stats_fd, cpu,
4282                 kvm_stats_args->errp);
4283 }
4284 
4285 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4286 {
4287     int stats_fd = cpu->kvm_vcpu_stats_fd;
4288     Error *local_err = NULL;
4289 
4290     if (stats_fd == -1) {
4291         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4292         error_propagate(kvm_stats_args->errp, local_err);
4293         return;
4294     }
4295     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4296                        kvm_stats_args->errp);
4297 }
4298 
4299 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4300                            strList *names, strList *targets, Error **errp)
4301 {
4302     KVMState *s = kvm_state;
4303     CPUState *cpu;
4304     int stats_fd;
4305 
4306     switch (target) {
4307     case STATS_TARGET_VM:
4308     {
4309         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4310         if (stats_fd == -1) {
4311             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4312             return;
4313         }
4314         query_stats(result, target, names, stats_fd, NULL, errp);
4315         close(stats_fd);
4316         break;
4317     }
4318     case STATS_TARGET_VCPU:
4319     {
4320         StatsArgs stats_args;
4321         stats_args.result.stats = result;
4322         stats_args.names = names;
4323         stats_args.errp = errp;
4324         CPU_FOREACH(cpu) {
4325             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4326                 continue;
4327             }
4328             query_stats_vcpu(cpu, &stats_args);
4329         }
4330         break;
4331     }
4332     default:
4333         break;
4334     }
4335 }
4336 
4337 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4338 {
4339     StatsArgs stats_args;
4340     KVMState *s = kvm_state;
4341     int stats_fd;
4342 
4343     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4344     if (stats_fd == -1) {
4345         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4346         return;
4347     }
4348     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4349     close(stats_fd);
4350 
4351     if (first_cpu) {
4352         stats_args.result.schema = result;
4353         stats_args.errp = errp;
4354         query_stats_schema_vcpu(first_cpu, &stats_args);
4355     }
4356 }
4357 
4358 void kvm_mark_guest_state_protected(void)
4359 {
4360     kvm_state->guest_state_protected = true;
4361 }
4362 
4363 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp)
4364 {
4365     int fd;
4366     struct kvm_create_guest_memfd guest_memfd = {
4367         .size = size,
4368         .flags = flags,
4369     };
4370 
4371     if (!kvm_guest_memfd_supported) {
4372         error_setg(errp, "KVM does not support guest_memfd");
4373         return -1;
4374     }
4375 
4376     fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
4377     if (fd < 0) {
4378         error_setg_errno(errp, errno, "Error creating KVM guest_memfd");
4379         return -1;
4380     }
4381 
4382     return fd;
4383 }
4384