1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "sysemu/balloon.h" 44 #include "qapi/visitor.h" 45 #include "qapi/qapi-types-common.h" 46 #include "qapi/qapi-visit-common.h" 47 48 #include "hw/boards.h" 49 50 /* This check must be after config-host.h is included */ 51 #ifdef CONFIG_EVENTFD 52 #include <sys/eventfd.h> 53 #endif 54 55 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 56 * need to use the real host PAGE_SIZE, as that's what KVM will use. 57 */ 58 #define PAGE_SIZE qemu_real_host_page_size 59 60 //#define DEBUG_KVM 61 62 #ifdef DEBUG_KVM 63 #define DPRINTF(fmt, ...) \ 64 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 65 #else 66 #define DPRINTF(fmt, ...) \ 67 do { } while (0) 68 #endif 69 70 #define KVM_MSI_HASHTAB_SIZE 256 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 struct KVMState 79 { 80 AccelState parent_obj; 81 82 int nr_slots; 83 int fd; 84 int vmfd; 85 int coalesced_mmio; 86 int coalesced_pio; 87 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 88 bool coalesced_flush_in_progress; 89 int vcpu_events; 90 int robust_singlestep; 91 int debugregs; 92 #ifdef KVM_CAP_SET_GUEST_DEBUG 93 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 94 #endif 95 int max_nested_state_len; 96 int many_ioeventfds; 97 int intx_set_mask; 98 int kvm_shadow_mem; 99 bool kernel_irqchip_allowed; 100 bool kernel_irqchip_required; 101 bool kernel_irqchip_split; 102 bool sync_mmu; 103 bool manual_dirty_log_protect; 104 /* The man page (and posix) say ioctl numbers are signed int, but 105 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 106 * unsigned, and treating them as signed here can break things */ 107 unsigned irq_set_ioctl; 108 unsigned int sigmask_len; 109 GHashTable *gsimap; 110 #ifdef KVM_CAP_IRQ_ROUTING 111 struct kvm_irq_routing *irq_routes; 112 int nr_allocated_irq_routes; 113 unsigned long *used_gsi_bitmap; 114 unsigned int gsi_count; 115 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 116 #endif 117 KVMMemoryListener memory_listener; 118 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 119 120 /* memory encryption */ 121 void *memcrypt_handle; 122 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 123 124 /* For "info mtree -f" to tell if an MR is registered in KVM */ 125 int nr_as; 126 struct KVMAs { 127 KVMMemoryListener *ml; 128 AddressSpace *as; 129 } *as; 130 }; 131 132 KVMState *kvm_state; 133 bool kvm_kernel_irqchip; 134 bool kvm_split_irqchip; 135 bool kvm_async_interrupts_allowed; 136 bool kvm_halt_in_kernel_allowed; 137 bool kvm_eventfds_allowed; 138 bool kvm_irqfds_allowed; 139 bool kvm_resamplefds_allowed; 140 bool kvm_msi_via_irqfd_allowed; 141 bool kvm_gsi_routing_allowed; 142 bool kvm_gsi_direct_mapping; 143 bool kvm_allowed; 144 bool kvm_readonly_mem_allowed; 145 bool kvm_vm_attributes_allowed; 146 bool kvm_direct_msi_allowed; 147 bool kvm_ioeventfd_any_length_allowed; 148 bool kvm_msi_use_devid; 149 static bool kvm_immediate_exit; 150 static hwaddr kvm_max_slot_size = ~0; 151 152 static const KVMCapabilityInfo kvm_required_capabilites[] = { 153 KVM_CAP_INFO(USER_MEMORY), 154 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 155 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 156 KVM_CAP_LAST_INFO 157 }; 158 159 static NotifierList kvm_irqchip_change_notifiers = 160 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 161 162 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 163 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 164 165 int kvm_get_max_memslots(void) 166 { 167 KVMState *s = KVM_STATE(current_machine->accelerator); 168 169 return s->nr_slots; 170 } 171 172 bool kvm_memcrypt_enabled(void) 173 { 174 if (kvm_state && kvm_state->memcrypt_handle) { 175 return true; 176 } 177 178 return false; 179 } 180 181 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 182 { 183 if (kvm_state->memcrypt_handle && 184 kvm_state->memcrypt_encrypt_data) { 185 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 186 ptr, len); 187 } 188 189 return 1; 190 } 191 192 /* Called with KVMMemoryListener.slots_lock held */ 193 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 194 { 195 KVMState *s = kvm_state; 196 int i; 197 198 for (i = 0; i < s->nr_slots; i++) { 199 if (kml->slots[i].memory_size == 0) { 200 return &kml->slots[i]; 201 } 202 } 203 204 return NULL; 205 } 206 207 bool kvm_has_free_slot(MachineState *ms) 208 { 209 KVMState *s = KVM_STATE(ms->accelerator); 210 bool result; 211 KVMMemoryListener *kml = &s->memory_listener; 212 213 kvm_slots_lock(kml); 214 result = !!kvm_get_free_slot(kml); 215 kvm_slots_unlock(kml); 216 217 return result; 218 } 219 220 /* Called with KVMMemoryListener.slots_lock held */ 221 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 222 { 223 KVMSlot *slot = kvm_get_free_slot(kml); 224 225 if (slot) { 226 return slot; 227 } 228 229 fprintf(stderr, "%s: no free slot available\n", __func__); 230 abort(); 231 } 232 233 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 234 hwaddr start_addr, 235 hwaddr size) 236 { 237 KVMState *s = kvm_state; 238 int i; 239 240 for (i = 0; i < s->nr_slots; i++) { 241 KVMSlot *mem = &kml->slots[i]; 242 243 if (start_addr == mem->start_addr && size == mem->memory_size) { 244 return mem; 245 } 246 } 247 248 return NULL; 249 } 250 251 /* 252 * Calculate and align the start address and the size of the section. 253 * Return the size. If the size is 0, the aligned section is empty. 254 */ 255 static hwaddr kvm_align_section(MemoryRegionSection *section, 256 hwaddr *start) 257 { 258 hwaddr size = int128_get64(section->size); 259 hwaddr delta, aligned; 260 261 /* kvm works in page size chunks, but the function may be called 262 with sub-page size and unaligned start address. Pad the start 263 address to next and truncate size to previous page boundary. */ 264 aligned = ROUND_UP(section->offset_within_address_space, 265 qemu_real_host_page_size); 266 delta = aligned - section->offset_within_address_space; 267 *start = aligned; 268 if (delta > size) { 269 return 0; 270 } 271 272 return (size - delta) & qemu_real_host_page_mask; 273 } 274 275 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 276 hwaddr *phys_addr) 277 { 278 KVMMemoryListener *kml = &s->memory_listener; 279 int i, ret = 0; 280 281 kvm_slots_lock(kml); 282 for (i = 0; i < s->nr_slots; i++) { 283 KVMSlot *mem = &kml->slots[i]; 284 285 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 286 *phys_addr = mem->start_addr + (ram - mem->ram); 287 ret = 1; 288 break; 289 } 290 } 291 kvm_slots_unlock(kml); 292 293 return ret; 294 } 295 296 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 297 { 298 KVMState *s = kvm_state; 299 struct kvm_userspace_memory_region mem; 300 int ret; 301 302 mem.slot = slot->slot | (kml->as_id << 16); 303 mem.guest_phys_addr = slot->start_addr; 304 mem.userspace_addr = (unsigned long)slot->ram; 305 mem.flags = slot->flags; 306 307 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 308 /* Set the slot size to 0 before setting the slot to the desired 309 * value. This is needed based on KVM commit 75d61fbc. */ 310 mem.memory_size = 0; 311 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 312 } 313 mem.memory_size = slot->memory_size; 314 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 315 slot->old_flags = mem.flags; 316 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 317 mem.memory_size, mem.userspace_addr, ret); 318 return ret; 319 } 320 321 int kvm_destroy_vcpu(CPUState *cpu) 322 { 323 KVMState *s = kvm_state; 324 long mmap_size; 325 struct KVMParkedVcpu *vcpu = NULL; 326 int ret = 0; 327 328 DPRINTF("kvm_destroy_vcpu\n"); 329 330 ret = kvm_arch_destroy_vcpu(cpu); 331 if (ret < 0) { 332 goto err; 333 } 334 335 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 336 if (mmap_size < 0) { 337 ret = mmap_size; 338 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 339 goto err; 340 } 341 342 ret = munmap(cpu->kvm_run, mmap_size); 343 if (ret < 0) { 344 goto err; 345 } 346 347 vcpu = g_malloc0(sizeof(*vcpu)); 348 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 349 vcpu->kvm_fd = cpu->kvm_fd; 350 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 351 err: 352 return ret; 353 } 354 355 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 356 { 357 struct KVMParkedVcpu *cpu; 358 359 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 360 if (cpu->vcpu_id == vcpu_id) { 361 int kvm_fd; 362 363 QLIST_REMOVE(cpu, node); 364 kvm_fd = cpu->kvm_fd; 365 g_free(cpu); 366 return kvm_fd; 367 } 368 } 369 370 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 371 } 372 373 int kvm_init_vcpu(CPUState *cpu) 374 { 375 KVMState *s = kvm_state; 376 long mmap_size; 377 int ret; 378 379 DPRINTF("kvm_init_vcpu\n"); 380 381 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 382 if (ret < 0) { 383 DPRINTF("kvm_create_vcpu failed\n"); 384 goto err; 385 } 386 387 cpu->kvm_fd = ret; 388 cpu->kvm_state = s; 389 cpu->vcpu_dirty = true; 390 391 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 392 if (mmap_size < 0) { 393 ret = mmap_size; 394 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 395 goto err; 396 } 397 398 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 399 cpu->kvm_fd, 0); 400 if (cpu->kvm_run == MAP_FAILED) { 401 ret = -errno; 402 DPRINTF("mmap'ing vcpu state failed\n"); 403 goto err; 404 } 405 406 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 407 s->coalesced_mmio_ring = 408 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 409 } 410 411 ret = kvm_arch_init_vcpu(cpu); 412 err: 413 return ret; 414 } 415 416 /* 417 * dirty pages logging control 418 */ 419 420 static int kvm_mem_flags(MemoryRegion *mr) 421 { 422 bool readonly = mr->readonly || memory_region_is_romd(mr); 423 int flags = 0; 424 425 if (memory_region_get_dirty_log_mask(mr) != 0) { 426 flags |= KVM_MEM_LOG_DIRTY_PAGES; 427 } 428 if (readonly && kvm_readonly_mem_allowed) { 429 flags |= KVM_MEM_READONLY; 430 } 431 return flags; 432 } 433 434 /* Called with KVMMemoryListener.slots_lock held */ 435 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 436 MemoryRegion *mr) 437 { 438 mem->flags = kvm_mem_flags(mr); 439 440 /* If nothing changed effectively, no need to issue ioctl */ 441 if (mem->flags == mem->old_flags) { 442 return 0; 443 } 444 445 return kvm_set_user_memory_region(kml, mem, false); 446 } 447 448 static int kvm_section_update_flags(KVMMemoryListener *kml, 449 MemoryRegionSection *section) 450 { 451 hwaddr start_addr, size, slot_size; 452 KVMSlot *mem; 453 int ret = 0; 454 455 size = kvm_align_section(section, &start_addr); 456 if (!size) { 457 return 0; 458 } 459 460 kvm_slots_lock(kml); 461 462 while (size && !ret) { 463 slot_size = MIN(kvm_max_slot_size, size); 464 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 465 if (!mem) { 466 /* We don't have a slot if we want to trap every access. */ 467 goto out; 468 } 469 470 ret = kvm_slot_update_flags(kml, mem, section->mr); 471 start_addr += slot_size; 472 size -= slot_size; 473 } 474 475 out: 476 kvm_slots_unlock(kml); 477 return ret; 478 } 479 480 static void kvm_log_start(MemoryListener *listener, 481 MemoryRegionSection *section, 482 int old, int new) 483 { 484 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 485 int r; 486 487 if (old != 0) { 488 return; 489 } 490 491 r = kvm_section_update_flags(kml, section); 492 if (r < 0) { 493 abort(); 494 } 495 } 496 497 static void kvm_log_stop(MemoryListener *listener, 498 MemoryRegionSection *section, 499 int old, int new) 500 { 501 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 502 int r; 503 504 if (new != 0) { 505 return; 506 } 507 508 r = kvm_section_update_flags(kml, section); 509 if (r < 0) { 510 abort(); 511 } 512 } 513 514 /* get kvm's dirty pages bitmap and update qemu's */ 515 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 516 unsigned long *bitmap) 517 { 518 ram_addr_t start = section->offset_within_region + 519 memory_region_get_ram_addr(section->mr); 520 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 521 522 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 523 return 0; 524 } 525 526 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 527 528 /* Allocate the dirty bitmap for a slot */ 529 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 530 { 531 /* 532 * XXX bad kernel interface alert 533 * For dirty bitmap, kernel allocates array of size aligned to 534 * bits-per-long. But for case when the kernel is 64bits and 535 * the userspace is 32bits, userspace can't align to the same 536 * bits-per-long, since sizeof(long) is different between kernel 537 * and user space. This way, userspace will provide buffer which 538 * may be 4 bytes less than the kernel will use, resulting in 539 * userspace memory corruption (which is not detectable by valgrind 540 * too, in most cases). 541 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 542 * a hope that sizeof(long) won't become >8 any time soon. 543 */ 544 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 545 /*HOST_LONG_BITS*/ 64) / 8; 546 mem->dirty_bmap = g_malloc0(bitmap_size); 547 } 548 549 /** 550 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 551 * 552 * This function will first try to fetch dirty bitmap from the kernel, 553 * and then updates qemu's dirty bitmap. 554 * 555 * NOTE: caller must be with kml->slots_lock held. 556 * 557 * @kml: the KVM memory listener object 558 * @section: the memory section to sync the dirty bitmap with 559 */ 560 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 561 MemoryRegionSection *section) 562 { 563 KVMState *s = kvm_state; 564 struct kvm_dirty_log d = {}; 565 KVMSlot *mem; 566 hwaddr start_addr, size; 567 hwaddr slot_size, slot_offset = 0; 568 int ret = 0; 569 570 size = kvm_align_section(section, &start_addr); 571 while (size) { 572 MemoryRegionSection subsection = *section; 573 574 slot_size = MIN(kvm_max_slot_size, size); 575 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 576 if (!mem) { 577 /* We don't have a slot if we want to trap every access. */ 578 goto out; 579 } 580 581 if (!mem->dirty_bmap) { 582 /* Allocate on the first log_sync, once and for all */ 583 kvm_memslot_init_dirty_bitmap(mem); 584 } 585 586 d.dirty_bitmap = mem->dirty_bmap; 587 d.slot = mem->slot | (kml->as_id << 16); 588 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 589 DPRINTF("ioctl failed %d\n", errno); 590 ret = -1; 591 goto out; 592 } 593 594 subsection.offset_within_region += slot_offset; 595 subsection.size = int128_make64(slot_size); 596 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 597 598 slot_offset += slot_size; 599 start_addr += slot_size; 600 size -= slot_size; 601 } 602 out: 603 return ret; 604 } 605 606 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 607 #define KVM_CLEAR_LOG_SHIFT 6 608 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 609 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 610 611 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 612 uint64_t size) 613 { 614 KVMState *s = kvm_state; 615 uint64_t end, bmap_start, start_delta, bmap_npages; 616 struct kvm_clear_dirty_log d; 617 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 618 int ret; 619 620 /* 621 * We need to extend either the start or the size or both to 622 * satisfy the KVM interface requirement. Firstly, do the start 623 * page alignment on 64 host pages 624 */ 625 bmap_start = start & KVM_CLEAR_LOG_MASK; 626 start_delta = start - bmap_start; 627 bmap_start /= psize; 628 629 /* 630 * The kernel interface has restriction on the size too, that either: 631 * 632 * (1) the size is 64 host pages aligned (just like the start), or 633 * (2) the size fills up until the end of the KVM memslot. 634 */ 635 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 636 << KVM_CLEAR_LOG_SHIFT; 637 end = mem->memory_size / psize; 638 if (bmap_npages > end - bmap_start) { 639 bmap_npages = end - bmap_start; 640 } 641 start_delta /= psize; 642 643 /* 644 * Prepare the bitmap to clear dirty bits. Here we must guarantee 645 * that we won't clear any unknown dirty bits otherwise we might 646 * accidentally clear some set bits which are not yet synced from 647 * the kernel into QEMU's bitmap, then we'll lose track of the 648 * guest modifications upon those pages (which can directly lead 649 * to guest data loss or panic after migration). 650 * 651 * Layout of the KVMSlot.dirty_bmap: 652 * 653 * |<-------- bmap_npages -----------..>| 654 * [1] 655 * start_delta size 656 * |----------------|-------------|------------------|------------| 657 * ^ ^ ^ ^ 658 * | | | | 659 * start bmap_start (start) end 660 * of memslot of memslot 661 * 662 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 663 */ 664 665 assert(bmap_start % BITS_PER_LONG == 0); 666 /* We should never do log_clear before log_sync */ 667 assert(mem->dirty_bmap); 668 if (start_delta) { 669 /* Slow path - we need to manipulate a temp bitmap */ 670 bmap_clear = bitmap_new(bmap_npages); 671 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 672 bmap_start, start_delta + size / psize); 673 /* 674 * We need to fill the holes at start because that was not 675 * specified by the caller and we extended the bitmap only for 676 * 64 pages alignment 677 */ 678 bitmap_clear(bmap_clear, 0, start_delta); 679 d.dirty_bitmap = bmap_clear; 680 } else { 681 /* Fast path - start address aligns well with BITS_PER_LONG */ 682 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 683 } 684 685 d.first_page = bmap_start; 686 /* It should never overflow. If it happens, say something */ 687 assert(bmap_npages <= UINT32_MAX); 688 d.num_pages = bmap_npages; 689 d.slot = mem->slot | (as_id << 16); 690 691 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 692 ret = -errno; 693 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 694 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 695 __func__, d.slot, (uint64_t)d.first_page, 696 (uint32_t)d.num_pages, ret); 697 } else { 698 ret = 0; 699 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 700 } 701 702 /* 703 * After we have updated the remote dirty bitmap, we update the 704 * cached bitmap as well for the memslot, then if another user 705 * clears the same region we know we shouldn't clear it again on 706 * the remote otherwise it's data loss as well. 707 */ 708 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 709 size / psize); 710 /* This handles the NULL case well */ 711 g_free(bmap_clear); 712 return ret; 713 } 714 715 716 /** 717 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 718 * 719 * NOTE: this will be a no-op if we haven't enabled manual dirty log 720 * protection in the host kernel because in that case this operation 721 * will be done within log_sync(). 722 * 723 * @kml: the kvm memory listener 724 * @section: the memory range to clear dirty bitmap 725 */ 726 static int kvm_physical_log_clear(KVMMemoryListener *kml, 727 MemoryRegionSection *section) 728 { 729 KVMState *s = kvm_state; 730 uint64_t start, size, offset, count; 731 KVMSlot *mem; 732 int ret = 0, i; 733 734 if (!s->manual_dirty_log_protect) { 735 /* No need to do explicit clear */ 736 return ret; 737 } 738 739 start = section->offset_within_address_space; 740 size = int128_get64(section->size); 741 742 if (!size) { 743 /* Nothing more we can do... */ 744 return ret; 745 } 746 747 kvm_slots_lock(kml); 748 749 for (i = 0; i < s->nr_slots; i++) { 750 mem = &kml->slots[i]; 751 /* Discard slots that are empty or do not overlap the section */ 752 if (!mem->memory_size || 753 mem->start_addr > start + size - 1 || 754 start > mem->start_addr + mem->memory_size - 1) { 755 continue; 756 } 757 758 if (start >= mem->start_addr) { 759 /* The slot starts before section or is aligned to it. */ 760 offset = start - mem->start_addr; 761 count = MIN(mem->memory_size - offset, size); 762 } else { 763 /* The slot starts after section. */ 764 offset = 0; 765 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 766 } 767 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 768 if (ret < 0) { 769 break; 770 } 771 } 772 773 kvm_slots_unlock(kml); 774 775 return ret; 776 } 777 778 static void kvm_coalesce_mmio_region(MemoryListener *listener, 779 MemoryRegionSection *secion, 780 hwaddr start, hwaddr size) 781 { 782 KVMState *s = kvm_state; 783 784 if (s->coalesced_mmio) { 785 struct kvm_coalesced_mmio_zone zone; 786 787 zone.addr = start; 788 zone.size = size; 789 zone.pad = 0; 790 791 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 792 } 793 } 794 795 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 796 MemoryRegionSection *secion, 797 hwaddr start, hwaddr size) 798 { 799 KVMState *s = kvm_state; 800 801 if (s->coalesced_mmio) { 802 struct kvm_coalesced_mmio_zone zone; 803 804 zone.addr = start; 805 zone.size = size; 806 zone.pad = 0; 807 808 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 809 } 810 } 811 812 static void kvm_coalesce_pio_add(MemoryListener *listener, 813 MemoryRegionSection *section, 814 hwaddr start, hwaddr size) 815 { 816 KVMState *s = kvm_state; 817 818 if (s->coalesced_pio) { 819 struct kvm_coalesced_mmio_zone zone; 820 821 zone.addr = start; 822 zone.size = size; 823 zone.pio = 1; 824 825 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 826 } 827 } 828 829 static void kvm_coalesce_pio_del(MemoryListener *listener, 830 MemoryRegionSection *section, 831 hwaddr start, hwaddr size) 832 { 833 KVMState *s = kvm_state; 834 835 if (s->coalesced_pio) { 836 struct kvm_coalesced_mmio_zone zone; 837 838 zone.addr = start; 839 zone.size = size; 840 zone.pio = 1; 841 842 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 843 } 844 } 845 846 static MemoryListener kvm_coalesced_pio_listener = { 847 .coalesced_io_add = kvm_coalesce_pio_add, 848 .coalesced_io_del = kvm_coalesce_pio_del, 849 }; 850 851 int kvm_check_extension(KVMState *s, unsigned int extension) 852 { 853 int ret; 854 855 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 856 if (ret < 0) { 857 ret = 0; 858 } 859 860 return ret; 861 } 862 863 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 864 { 865 int ret; 866 867 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 868 if (ret < 0) { 869 /* VM wide version not implemented, use global one instead */ 870 ret = kvm_check_extension(s, extension); 871 } 872 873 return ret; 874 } 875 876 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 877 { 878 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 879 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 880 * endianness, but the memory core hands them in target endianness. 881 * For example, PPC is always treated as big-endian even if running 882 * on KVM and on PPC64LE. Correct here. 883 */ 884 switch (size) { 885 case 2: 886 val = bswap16(val); 887 break; 888 case 4: 889 val = bswap32(val); 890 break; 891 } 892 #endif 893 return val; 894 } 895 896 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 897 bool assign, uint32_t size, bool datamatch) 898 { 899 int ret; 900 struct kvm_ioeventfd iofd = { 901 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 902 .addr = addr, 903 .len = size, 904 .flags = 0, 905 .fd = fd, 906 }; 907 908 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 909 datamatch); 910 if (!kvm_enabled()) { 911 return -ENOSYS; 912 } 913 914 if (datamatch) { 915 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 916 } 917 if (!assign) { 918 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 919 } 920 921 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 922 923 if (ret < 0) { 924 return -errno; 925 } 926 927 return 0; 928 } 929 930 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 931 bool assign, uint32_t size, bool datamatch) 932 { 933 struct kvm_ioeventfd kick = { 934 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 935 .addr = addr, 936 .flags = KVM_IOEVENTFD_FLAG_PIO, 937 .len = size, 938 .fd = fd, 939 }; 940 int r; 941 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 942 if (!kvm_enabled()) { 943 return -ENOSYS; 944 } 945 if (datamatch) { 946 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 947 } 948 if (!assign) { 949 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 950 } 951 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 952 if (r < 0) { 953 return r; 954 } 955 return 0; 956 } 957 958 959 static int kvm_check_many_ioeventfds(void) 960 { 961 /* Userspace can use ioeventfd for io notification. This requires a host 962 * that supports eventfd(2) and an I/O thread; since eventfd does not 963 * support SIGIO it cannot interrupt the vcpu. 964 * 965 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 966 * can avoid creating too many ioeventfds. 967 */ 968 #if defined(CONFIG_EVENTFD) 969 int ioeventfds[7]; 970 int i, ret = 0; 971 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 972 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 973 if (ioeventfds[i] < 0) { 974 break; 975 } 976 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 977 if (ret < 0) { 978 close(ioeventfds[i]); 979 break; 980 } 981 } 982 983 /* Decide whether many devices are supported or not */ 984 ret = i == ARRAY_SIZE(ioeventfds); 985 986 while (i-- > 0) { 987 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 988 close(ioeventfds[i]); 989 } 990 return ret; 991 #else 992 return 0; 993 #endif 994 } 995 996 static const KVMCapabilityInfo * 997 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 998 { 999 while (list->name) { 1000 if (!kvm_check_extension(s, list->value)) { 1001 return list; 1002 } 1003 list++; 1004 } 1005 return NULL; 1006 } 1007 1008 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1009 { 1010 g_assert( 1011 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1012 ); 1013 kvm_max_slot_size = max_slot_size; 1014 } 1015 1016 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1017 MemoryRegionSection *section, bool add) 1018 { 1019 KVMSlot *mem; 1020 int err; 1021 MemoryRegion *mr = section->mr; 1022 bool writeable = !mr->readonly && !mr->rom_device; 1023 hwaddr start_addr, size, slot_size; 1024 void *ram; 1025 1026 if (!memory_region_is_ram(mr)) { 1027 if (writeable || !kvm_readonly_mem_allowed) { 1028 return; 1029 } else if (!mr->romd_mode) { 1030 /* If the memory device is not in romd_mode, then we actually want 1031 * to remove the kvm memory slot so all accesses will trap. */ 1032 add = false; 1033 } 1034 } 1035 1036 size = kvm_align_section(section, &start_addr); 1037 if (!size) { 1038 return; 1039 } 1040 1041 /* use aligned delta to align the ram address */ 1042 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1043 (start_addr - section->offset_within_address_space); 1044 1045 kvm_slots_lock(kml); 1046 1047 if (!add) { 1048 do { 1049 slot_size = MIN(kvm_max_slot_size, size); 1050 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1051 if (!mem) { 1052 goto out; 1053 } 1054 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1055 kvm_physical_sync_dirty_bitmap(kml, section); 1056 } 1057 1058 /* unregister the slot */ 1059 g_free(mem->dirty_bmap); 1060 mem->dirty_bmap = NULL; 1061 mem->memory_size = 0; 1062 mem->flags = 0; 1063 err = kvm_set_user_memory_region(kml, mem, false); 1064 if (err) { 1065 fprintf(stderr, "%s: error unregistering slot: %s\n", 1066 __func__, strerror(-err)); 1067 abort(); 1068 } 1069 start_addr += slot_size; 1070 size -= slot_size; 1071 } while (size); 1072 goto out; 1073 } 1074 1075 /* register the new slot */ 1076 do { 1077 slot_size = MIN(kvm_max_slot_size, size); 1078 mem = kvm_alloc_slot(kml); 1079 mem->memory_size = slot_size; 1080 mem->start_addr = start_addr; 1081 mem->ram = ram; 1082 mem->flags = kvm_mem_flags(mr); 1083 1084 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1085 /* 1086 * Reallocate the bmap; it means it doesn't disappear in 1087 * middle of a migrate. 1088 */ 1089 kvm_memslot_init_dirty_bitmap(mem); 1090 } 1091 err = kvm_set_user_memory_region(kml, mem, true); 1092 if (err) { 1093 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1094 strerror(-err)); 1095 abort(); 1096 } 1097 start_addr += slot_size; 1098 ram += slot_size; 1099 size -= slot_size; 1100 } while (size); 1101 1102 out: 1103 kvm_slots_unlock(kml); 1104 } 1105 1106 static void kvm_region_add(MemoryListener *listener, 1107 MemoryRegionSection *section) 1108 { 1109 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1110 1111 memory_region_ref(section->mr); 1112 kvm_set_phys_mem(kml, section, true); 1113 } 1114 1115 static void kvm_region_del(MemoryListener *listener, 1116 MemoryRegionSection *section) 1117 { 1118 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1119 1120 kvm_set_phys_mem(kml, section, false); 1121 memory_region_unref(section->mr); 1122 } 1123 1124 static void kvm_log_sync(MemoryListener *listener, 1125 MemoryRegionSection *section) 1126 { 1127 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1128 int r; 1129 1130 kvm_slots_lock(kml); 1131 r = kvm_physical_sync_dirty_bitmap(kml, section); 1132 kvm_slots_unlock(kml); 1133 if (r < 0) { 1134 abort(); 1135 } 1136 } 1137 1138 static void kvm_log_clear(MemoryListener *listener, 1139 MemoryRegionSection *section) 1140 { 1141 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1142 int r; 1143 1144 r = kvm_physical_log_clear(kml, section); 1145 if (r < 0) { 1146 error_report_once("%s: kvm log clear failed: mr=%s " 1147 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1148 section->mr->name, section->offset_within_region, 1149 int128_get64(section->size)); 1150 abort(); 1151 } 1152 } 1153 1154 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1155 MemoryRegionSection *section, 1156 bool match_data, uint64_t data, 1157 EventNotifier *e) 1158 { 1159 int fd = event_notifier_get_fd(e); 1160 int r; 1161 1162 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1163 data, true, int128_get64(section->size), 1164 match_data); 1165 if (r < 0) { 1166 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1167 __func__, strerror(-r), -r); 1168 abort(); 1169 } 1170 } 1171 1172 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1173 MemoryRegionSection *section, 1174 bool match_data, uint64_t data, 1175 EventNotifier *e) 1176 { 1177 int fd = event_notifier_get_fd(e); 1178 int r; 1179 1180 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1181 data, false, int128_get64(section->size), 1182 match_data); 1183 if (r < 0) { 1184 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1185 __func__, strerror(-r), -r); 1186 abort(); 1187 } 1188 } 1189 1190 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1191 MemoryRegionSection *section, 1192 bool match_data, uint64_t data, 1193 EventNotifier *e) 1194 { 1195 int fd = event_notifier_get_fd(e); 1196 int r; 1197 1198 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1199 data, true, int128_get64(section->size), 1200 match_data); 1201 if (r < 0) { 1202 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1203 __func__, strerror(-r), -r); 1204 abort(); 1205 } 1206 } 1207 1208 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1209 MemoryRegionSection *section, 1210 bool match_data, uint64_t data, 1211 EventNotifier *e) 1212 1213 { 1214 int fd = event_notifier_get_fd(e); 1215 int r; 1216 1217 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1218 data, false, int128_get64(section->size), 1219 match_data); 1220 if (r < 0) { 1221 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1222 __func__, strerror(-r), -r); 1223 abort(); 1224 } 1225 } 1226 1227 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1228 AddressSpace *as, int as_id) 1229 { 1230 int i; 1231 1232 qemu_mutex_init(&kml->slots_lock); 1233 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1234 kml->as_id = as_id; 1235 1236 for (i = 0; i < s->nr_slots; i++) { 1237 kml->slots[i].slot = i; 1238 } 1239 1240 kml->listener.region_add = kvm_region_add; 1241 kml->listener.region_del = kvm_region_del; 1242 kml->listener.log_start = kvm_log_start; 1243 kml->listener.log_stop = kvm_log_stop; 1244 kml->listener.log_sync = kvm_log_sync; 1245 kml->listener.log_clear = kvm_log_clear; 1246 kml->listener.priority = 10; 1247 1248 memory_listener_register(&kml->listener, as); 1249 1250 for (i = 0; i < s->nr_as; ++i) { 1251 if (!s->as[i].as) { 1252 s->as[i].as = as; 1253 s->as[i].ml = kml; 1254 break; 1255 } 1256 } 1257 } 1258 1259 static MemoryListener kvm_io_listener = { 1260 .eventfd_add = kvm_io_ioeventfd_add, 1261 .eventfd_del = kvm_io_ioeventfd_del, 1262 .priority = 10, 1263 }; 1264 1265 int kvm_set_irq(KVMState *s, int irq, int level) 1266 { 1267 struct kvm_irq_level event; 1268 int ret; 1269 1270 assert(kvm_async_interrupts_enabled()); 1271 1272 event.level = level; 1273 event.irq = irq; 1274 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1275 if (ret < 0) { 1276 perror("kvm_set_irq"); 1277 abort(); 1278 } 1279 1280 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1281 } 1282 1283 #ifdef KVM_CAP_IRQ_ROUTING 1284 typedef struct KVMMSIRoute { 1285 struct kvm_irq_routing_entry kroute; 1286 QTAILQ_ENTRY(KVMMSIRoute) entry; 1287 } KVMMSIRoute; 1288 1289 static void set_gsi(KVMState *s, unsigned int gsi) 1290 { 1291 set_bit(gsi, s->used_gsi_bitmap); 1292 } 1293 1294 static void clear_gsi(KVMState *s, unsigned int gsi) 1295 { 1296 clear_bit(gsi, s->used_gsi_bitmap); 1297 } 1298 1299 void kvm_init_irq_routing(KVMState *s) 1300 { 1301 int gsi_count, i; 1302 1303 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1304 if (gsi_count > 0) { 1305 /* Round up so we can search ints using ffs */ 1306 s->used_gsi_bitmap = bitmap_new(gsi_count); 1307 s->gsi_count = gsi_count; 1308 } 1309 1310 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1311 s->nr_allocated_irq_routes = 0; 1312 1313 if (!kvm_direct_msi_allowed) { 1314 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1315 QTAILQ_INIT(&s->msi_hashtab[i]); 1316 } 1317 } 1318 1319 kvm_arch_init_irq_routing(s); 1320 } 1321 1322 void kvm_irqchip_commit_routes(KVMState *s) 1323 { 1324 int ret; 1325 1326 if (kvm_gsi_direct_mapping()) { 1327 return; 1328 } 1329 1330 if (!kvm_gsi_routing_enabled()) { 1331 return; 1332 } 1333 1334 s->irq_routes->flags = 0; 1335 trace_kvm_irqchip_commit_routes(); 1336 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1337 assert(ret == 0); 1338 } 1339 1340 static void kvm_add_routing_entry(KVMState *s, 1341 struct kvm_irq_routing_entry *entry) 1342 { 1343 struct kvm_irq_routing_entry *new; 1344 int n, size; 1345 1346 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1347 n = s->nr_allocated_irq_routes * 2; 1348 if (n < 64) { 1349 n = 64; 1350 } 1351 size = sizeof(struct kvm_irq_routing); 1352 size += n * sizeof(*new); 1353 s->irq_routes = g_realloc(s->irq_routes, size); 1354 s->nr_allocated_irq_routes = n; 1355 } 1356 n = s->irq_routes->nr++; 1357 new = &s->irq_routes->entries[n]; 1358 1359 *new = *entry; 1360 1361 set_gsi(s, entry->gsi); 1362 } 1363 1364 static int kvm_update_routing_entry(KVMState *s, 1365 struct kvm_irq_routing_entry *new_entry) 1366 { 1367 struct kvm_irq_routing_entry *entry; 1368 int n; 1369 1370 for (n = 0; n < s->irq_routes->nr; n++) { 1371 entry = &s->irq_routes->entries[n]; 1372 if (entry->gsi != new_entry->gsi) { 1373 continue; 1374 } 1375 1376 if(!memcmp(entry, new_entry, sizeof *entry)) { 1377 return 0; 1378 } 1379 1380 *entry = *new_entry; 1381 1382 return 0; 1383 } 1384 1385 return -ESRCH; 1386 } 1387 1388 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1389 { 1390 struct kvm_irq_routing_entry e = {}; 1391 1392 assert(pin < s->gsi_count); 1393 1394 e.gsi = irq; 1395 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1396 e.flags = 0; 1397 e.u.irqchip.irqchip = irqchip; 1398 e.u.irqchip.pin = pin; 1399 kvm_add_routing_entry(s, &e); 1400 } 1401 1402 void kvm_irqchip_release_virq(KVMState *s, int virq) 1403 { 1404 struct kvm_irq_routing_entry *e; 1405 int i; 1406 1407 if (kvm_gsi_direct_mapping()) { 1408 return; 1409 } 1410 1411 for (i = 0; i < s->irq_routes->nr; i++) { 1412 e = &s->irq_routes->entries[i]; 1413 if (e->gsi == virq) { 1414 s->irq_routes->nr--; 1415 *e = s->irq_routes->entries[s->irq_routes->nr]; 1416 } 1417 } 1418 clear_gsi(s, virq); 1419 kvm_arch_release_virq_post(virq); 1420 trace_kvm_irqchip_release_virq(virq); 1421 } 1422 1423 void kvm_irqchip_add_change_notifier(Notifier *n) 1424 { 1425 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1426 } 1427 1428 void kvm_irqchip_remove_change_notifier(Notifier *n) 1429 { 1430 notifier_remove(n); 1431 } 1432 1433 void kvm_irqchip_change_notify(void) 1434 { 1435 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1436 } 1437 1438 static unsigned int kvm_hash_msi(uint32_t data) 1439 { 1440 /* This is optimized for IA32 MSI layout. However, no other arch shall 1441 * repeat the mistake of not providing a direct MSI injection API. */ 1442 return data & 0xff; 1443 } 1444 1445 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1446 { 1447 KVMMSIRoute *route, *next; 1448 unsigned int hash; 1449 1450 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1451 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1452 kvm_irqchip_release_virq(s, route->kroute.gsi); 1453 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1454 g_free(route); 1455 } 1456 } 1457 } 1458 1459 static int kvm_irqchip_get_virq(KVMState *s) 1460 { 1461 int next_virq; 1462 1463 /* 1464 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1465 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1466 * number can succeed even though a new route entry cannot be added. 1467 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1468 */ 1469 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1470 kvm_flush_dynamic_msi_routes(s); 1471 } 1472 1473 /* Return the lowest unused GSI in the bitmap */ 1474 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1475 if (next_virq >= s->gsi_count) { 1476 return -ENOSPC; 1477 } else { 1478 return next_virq; 1479 } 1480 } 1481 1482 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1483 { 1484 unsigned int hash = kvm_hash_msi(msg.data); 1485 KVMMSIRoute *route; 1486 1487 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1488 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1489 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1490 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1491 return route; 1492 } 1493 } 1494 return NULL; 1495 } 1496 1497 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1498 { 1499 struct kvm_msi msi; 1500 KVMMSIRoute *route; 1501 1502 if (kvm_direct_msi_allowed) { 1503 msi.address_lo = (uint32_t)msg.address; 1504 msi.address_hi = msg.address >> 32; 1505 msi.data = le32_to_cpu(msg.data); 1506 msi.flags = 0; 1507 memset(msi.pad, 0, sizeof(msi.pad)); 1508 1509 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1510 } 1511 1512 route = kvm_lookup_msi_route(s, msg); 1513 if (!route) { 1514 int virq; 1515 1516 virq = kvm_irqchip_get_virq(s); 1517 if (virq < 0) { 1518 return virq; 1519 } 1520 1521 route = g_malloc0(sizeof(KVMMSIRoute)); 1522 route->kroute.gsi = virq; 1523 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1524 route->kroute.flags = 0; 1525 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1526 route->kroute.u.msi.address_hi = msg.address >> 32; 1527 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1528 1529 kvm_add_routing_entry(s, &route->kroute); 1530 kvm_irqchip_commit_routes(s); 1531 1532 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1533 entry); 1534 } 1535 1536 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1537 1538 return kvm_set_irq(s, route->kroute.gsi, 1); 1539 } 1540 1541 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1542 { 1543 struct kvm_irq_routing_entry kroute = {}; 1544 int virq; 1545 MSIMessage msg = {0, 0}; 1546 1547 if (pci_available && dev) { 1548 msg = pci_get_msi_message(dev, vector); 1549 } 1550 1551 if (kvm_gsi_direct_mapping()) { 1552 return kvm_arch_msi_data_to_gsi(msg.data); 1553 } 1554 1555 if (!kvm_gsi_routing_enabled()) { 1556 return -ENOSYS; 1557 } 1558 1559 virq = kvm_irqchip_get_virq(s); 1560 if (virq < 0) { 1561 return virq; 1562 } 1563 1564 kroute.gsi = virq; 1565 kroute.type = KVM_IRQ_ROUTING_MSI; 1566 kroute.flags = 0; 1567 kroute.u.msi.address_lo = (uint32_t)msg.address; 1568 kroute.u.msi.address_hi = msg.address >> 32; 1569 kroute.u.msi.data = le32_to_cpu(msg.data); 1570 if (pci_available && kvm_msi_devid_required()) { 1571 kroute.flags = KVM_MSI_VALID_DEVID; 1572 kroute.u.msi.devid = pci_requester_id(dev); 1573 } 1574 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1575 kvm_irqchip_release_virq(s, virq); 1576 return -EINVAL; 1577 } 1578 1579 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1580 vector, virq); 1581 1582 kvm_add_routing_entry(s, &kroute); 1583 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1584 kvm_irqchip_commit_routes(s); 1585 1586 return virq; 1587 } 1588 1589 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1590 PCIDevice *dev) 1591 { 1592 struct kvm_irq_routing_entry kroute = {}; 1593 1594 if (kvm_gsi_direct_mapping()) { 1595 return 0; 1596 } 1597 1598 if (!kvm_irqchip_in_kernel()) { 1599 return -ENOSYS; 1600 } 1601 1602 kroute.gsi = virq; 1603 kroute.type = KVM_IRQ_ROUTING_MSI; 1604 kroute.flags = 0; 1605 kroute.u.msi.address_lo = (uint32_t)msg.address; 1606 kroute.u.msi.address_hi = msg.address >> 32; 1607 kroute.u.msi.data = le32_to_cpu(msg.data); 1608 if (pci_available && kvm_msi_devid_required()) { 1609 kroute.flags = KVM_MSI_VALID_DEVID; 1610 kroute.u.msi.devid = pci_requester_id(dev); 1611 } 1612 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1613 return -EINVAL; 1614 } 1615 1616 trace_kvm_irqchip_update_msi_route(virq); 1617 1618 return kvm_update_routing_entry(s, &kroute); 1619 } 1620 1621 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1622 bool assign) 1623 { 1624 struct kvm_irqfd irqfd = { 1625 .fd = fd, 1626 .gsi = virq, 1627 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1628 }; 1629 1630 if (rfd != -1) { 1631 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1632 irqfd.resamplefd = rfd; 1633 } 1634 1635 if (!kvm_irqfds_enabled()) { 1636 return -ENOSYS; 1637 } 1638 1639 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1640 } 1641 1642 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1643 { 1644 struct kvm_irq_routing_entry kroute = {}; 1645 int virq; 1646 1647 if (!kvm_gsi_routing_enabled()) { 1648 return -ENOSYS; 1649 } 1650 1651 virq = kvm_irqchip_get_virq(s); 1652 if (virq < 0) { 1653 return virq; 1654 } 1655 1656 kroute.gsi = virq; 1657 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1658 kroute.flags = 0; 1659 kroute.u.adapter.summary_addr = adapter->summary_addr; 1660 kroute.u.adapter.ind_addr = adapter->ind_addr; 1661 kroute.u.adapter.summary_offset = adapter->summary_offset; 1662 kroute.u.adapter.ind_offset = adapter->ind_offset; 1663 kroute.u.adapter.adapter_id = adapter->adapter_id; 1664 1665 kvm_add_routing_entry(s, &kroute); 1666 1667 return virq; 1668 } 1669 1670 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1671 { 1672 struct kvm_irq_routing_entry kroute = {}; 1673 int virq; 1674 1675 if (!kvm_gsi_routing_enabled()) { 1676 return -ENOSYS; 1677 } 1678 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1679 return -ENOSYS; 1680 } 1681 virq = kvm_irqchip_get_virq(s); 1682 if (virq < 0) { 1683 return virq; 1684 } 1685 1686 kroute.gsi = virq; 1687 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1688 kroute.flags = 0; 1689 kroute.u.hv_sint.vcpu = vcpu; 1690 kroute.u.hv_sint.sint = sint; 1691 1692 kvm_add_routing_entry(s, &kroute); 1693 kvm_irqchip_commit_routes(s); 1694 1695 return virq; 1696 } 1697 1698 #else /* !KVM_CAP_IRQ_ROUTING */ 1699 1700 void kvm_init_irq_routing(KVMState *s) 1701 { 1702 } 1703 1704 void kvm_irqchip_release_virq(KVMState *s, int virq) 1705 { 1706 } 1707 1708 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1709 { 1710 abort(); 1711 } 1712 1713 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1714 { 1715 return -ENOSYS; 1716 } 1717 1718 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1719 { 1720 return -ENOSYS; 1721 } 1722 1723 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1724 { 1725 return -ENOSYS; 1726 } 1727 1728 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1729 { 1730 abort(); 1731 } 1732 1733 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1734 { 1735 return -ENOSYS; 1736 } 1737 #endif /* !KVM_CAP_IRQ_ROUTING */ 1738 1739 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1740 EventNotifier *rn, int virq) 1741 { 1742 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1743 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1744 } 1745 1746 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1747 int virq) 1748 { 1749 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1750 false); 1751 } 1752 1753 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1754 EventNotifier *rn, qemu_irq irq) 1755 { 1756 gpointer key, gsi; 1757 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1758 1759 if (!found) { 1760 return -ENXIO; 1761 } 1762 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1763 } 1764 1765 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1766 qemu_irq irq) 1767 { 1768 gpointer key, gsi; 1769 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1770 1771 if (!found) { 1772 return -ENXIO; 1773 } 1774 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1775 } 1776 1777 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1778 { 1779 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1780 } 1781 1782 static void kvm_irqchip_create(KVMState *s) 1783 { 1784 int ret; 1785 1786 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1787 ; 1788 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1789 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1790 if (ret < 0) { 1791 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1792 exit(1); 1793 } 1794 } else { 1795 return; 1796 } 1797 1798 /* First probe and see if there's a arch-specific hook to create the 1799 * in-kernel irqchip for us */ 1800 ret = kvm_arch_irqchip_create(s); 1801 if (ret == 0) { 1802 if (s->kernel_irqchip_split) { 1803 perror("Split IRQ chip mode not supported."); 1804 exit(1); 1805 } else { 1806 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1807 } 1808 } 1809 if (ret < 0) { 1810 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1811 exit(1); 1812 } 1813 1814 kvm_kernel_irqchip = true; 1815 /* If we have an in-kernel IRQ chip then we must have asynchronous 1816 * interrupt delivery (though the reverse is not necessarily true) 1817 */ 1818 kvm_async_interrupts_allowed = true; 1819 kvm_halt_in_kernel_allowed = true; 1820 1821 kvm_init_irq_routing(s); 1822 1823 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1824 } 1825 1826 /* Find number of supported CPUs using the recommended 1827 * procedure from the kernel API documentation to cope with 1828 * older kernels that may be missing capabilities. 1829 */ 1830 static int kvm_recommended_vcpus(KVMState *s) 1831 { 1832 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1833 return (ret) ? ret : 4; 1834 } 1835 1836 static int kvm_max_vcpus(KVMState *s) 1837 { 1838 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1839 return (ret) ? ret : kvm_recommended_vcpus(s); 1840 } 1841 1842 static int kvm_max_vcpu_id(KVMState *s) 1843 { 1844 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1845 return (ret) ? ret : kvm_max_vcpus(s); 1846 } 1847 1848 bool kvm_vcpu_id_is_valid(int vcpu_id) 1849 { 1850 KVMState *s = KVM_STATE(current_machine->accelerator); 1851 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1852 } 1853 1854 static int kvm_init(MachineState *ms) 1855 { 1856 MachineClass *mc = MACHINE_GET_CLASS(ms); 1857 static const char upgrade_note[] = 1858 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1859 "(see http://sourceforge.net/projects/kvm).\n"; 1860 struct { 1861 const char *name; 1862 int num; 1863 } num_cpus[] = { 1864 { "SMP", ms->smp.cpus }, 1865 { "hotpluggable", ms->smp.max_cpus }, 1866 { NULL, } 1867 }, *nc = num_cpus; 1868 int soft_vcpus_limit, hard_vcpus_limit; 1869 KVMState *s; 1870 const KVMCapabilityInfo *missing_cap; 1871 int ret; 1872 int type = 0; 1873 const char *kvm_type; 1874 1875 s = KVM_STATE(ms->accelerator); 1876 1877 /* 1878 * On systems where the kernel can support different base page 1879 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1880 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1881 * page size for the system though. 1882 */ 1883 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 1884 1885 s->sigmask_len = 8; 1886 1887 #ifdef KVM_CAP_SET_GUEST_DEBUG 1888 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1889 #endif 1890 QLIST_INIT(&s->kvm_parked_vcpus); 1891 s->vmfd = -1; 1892 s->fd = qemu_open("/dev/kvm", O_RDWR); 1893 if (s->fd == -1) { 1894 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1895 ret = -errno; 1896 goto err; 1897 } 1898 1899 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1900 if (ret < KVM_API_VERSION) { 1901 if (ret >= 0) { 1902 ret = -EINVAL; 1903 } 1904 fprintf(stderr, "kvm version too old\n"); 1905 goto err; 1906 } 1907 1908 if (ret > KVM_API_VERSION) { 1909 ret = -EINVAL; 1910 fprintf(stderr, "kvm version not supported\n"); 1911 goto err; 1912 } 1913 1914 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1915 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1916 1917 /* If unspecified, use the default value */ 1918 if (!s->nr_slots) { 1919 s->nr_slots = 32; 1920 } 1921 1922 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 1923 if (s->nr_as <= 1) { 1924 s->nr_as = 1; 1925 } 1926 s->as = g_new0(struct KVMAs, s->nr_as); 1927 1928 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1929 if (mc->kvm_type) { 1930 type = mc->kvm_type(ms, kvm_type); 1931 } else if (kvm_type) { 1932 ret = -EINVAL; 1933 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1934 goto err; 1935 } 1936 1937 do { 1938 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1939 } while (ret == -EINTR); 1940 1941 if (ret < 0) { 1942 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1943 strerror(-ret)); 1944 1945 #ifdef TARGET_S390X 1946 if (ret == -EINVAL) { 1947 fprintf(stderr, 1948 "Host kernel setup problem detected. Please verify:\n"); 1949 fprintf(stderr, "- for kernels supporting the switch_amode or" 1950 " user_mode parameters, whether\n"); 1951 fprintf(stderr, 1952 " user space is running in primary address space\n"); 1953 fprintf(stderr, 1954 "- for kernels supporting the vm.allocate_pgste sysctl, " 1955 "whether it is enabled\n"); 1956 } 1957 #endif 1958 goto err; 1959 } 1960 1961 s->vmfd = ret; 1962 1963 /* check the vcpu limits */ 1964 soft_vcpus_limit = kvm_recommended_vcpus(s); 1965 hard_vcpus_limit = kvm_max_vcpus(s); 1966 1967 while (nc->name) { 1968 if (nc->num > soft_vcpus_limit) { 1969 warn_report("Number of %s cpus requested (%d) exceeds " 1970 "the recommended cpus supported by KVM (%d)", 1971 nc->name, nc->num, soft_vcpus_limit); 1972 1973 if (nc->num > hard_vcpus_limit) { 1974 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1975 "the maximum cpus supported by KVM (%d)\n", 1976 nc->name, nc->num, hard_vcpus_limit); 1977 exit(1); 1978 } 1979 } 1980 nc++; 1981 } 1982 1983 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1984 if (!missing_cap) { 1985 missing_cap = 1986 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1987 } 1988 if (missing_cap) { 1989 ret = -EINVAL; 1990 fprintf(stderr, "kvm does not support %s\n%s", 1991 missing_cap->name, upgrade_note); 1992 goto err; 1993 } 1994 1995 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1996 s->coalesced_pio = s->coalesced_mmio && 1997 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1998 1999 s->manual_dirty_log_protect = 2000 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2001 if (s->manual_dirty_log_protect) { 2002 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); 2003 if (ret) { 2004 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " 2005 "but failed. Falling back to the legacy mode. "); 2006 s->manual_dirty_log_protect = false; 2007 } 2008 } 2009 2010 #ifdef KVM_CAP_VCPU_EVENTS 2011 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2012 #endif 2013 2014 s->robust_singlestep = 2015 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2016 2017 #ifdef KVM_CAP_DEBUGREGS 2018 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2019 #endif 2020 2021 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2022 2023 #ifdef KVM_CAP_IRQ_ROUTING 2024 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2025 #endif 2026 2027 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2028 2029 s->irq_set_ioctl = KVM_IRQ_LINE; 2030 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2031 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2032 } 2033 2034 kvm_readonly_mem_allowed = 2035 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2036 2037 kvm_eventfds_allowed = 2038 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2039 2040 kvm_irqfds_allowed = 2041 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2042 2043 kvm_resamplefds_allowed = 2044 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2045 2046 kvm_vm_attributes_allowed = 2047 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2048 2049 kvm_ioeventfd_any_length_allowed = 2050 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2051 2052 kvm_state = s; 2053 2054 /* 2055 * if memory encryption object is specified then initialize the memory 2056 * encryption context. 2057 */ 2058 if (ms->memory_encryption) { 2059 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 2060 if (!kvm_state->memcrypt_handle) { 2061 ret = -1; 2062 goto err; 2063 } 2064 2065 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 2066 } 2067 2068 ret = kvm_arch_init(ms, s); 2069 if (ret < 0) { 2070 goto err; 2071 } 2072 2073 if (s->kernel_irqchip_allowed) { 2074 kvm_irqchip_create(s); 2075 } 2076 2077 if (kvm_eventfds_allowed) { 2078 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2079 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2080 } 2081 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2082 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2083 2084 kvm_memory_listener_register(s, &s->memory_listener, 2085 &address_space_memory, 0); 2086 memory_listener_register(&kvm_io_listener, 2087 &address_space_io); 2088 memory_listener_register(&kvm_coalesced_pio_listener, 2089 &address_space_io); 2090 2091 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2092 2093 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2094 if (!s->sync_mmu) { 2095 qemu_balloon_inhibit(true); 2096 } 2097 2098 return 0; 2099 2100 err: 2101 assert(ret < 0); 2102 if (s->vmfd >= 0) { 2103 close(s->vmfd); 2104 } 2105 if (s->fd != -1) { 2106 close(s->fd); 2107 } 2108 g_free(s->memory_listener.slots); 2109 2110 return ret; 2111 } 2112 2113 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2114 { 2115 s->sigmask_len = sigmask_len; 2116 } 2117 2118 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2119 int size, uint32_t count) 2120 { 2121 int i; 2122 uint8_t *ptr = data; 2123 2124 for (i = 0; i < count; i++) { 2125 address_space_rw(&address_space_io, port, attrs, 2126 ptr, size, 2127 direction == KVM_EXIT_IO_OUT); 2128 ptr += size; 2129 } 2130 } 2131 2132 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2133 { 2134 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2135 run->internal.suberror); 2136 2137 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2138 int i; 2139 2140 for (i = 0; i < run->internal.ndata; ++i) { 2141 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2142 i, (uint64_t)run->internal.data[i]); 2143 } 2144 } 2145 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2146 fprintf(stderr, "emulation failure\n"); 2147 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2148 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2149 return EXCP_INTERRUPT; 2150 } 2151 } 2152 /* FIXME: Should trigger a qmp message to let management know 2153 * something went wrong. 2154 */ 2155 return -1; 2156 } 2157 2158 void kvm_flush_coalesced_mmio_buffer(void) 2159 { 2160 KVMState *s = kvm_state; 2161 2162 if (s->coalesced_flush_in_progress) { 2163 return; 2164 } 2165 2166 s->coalesced_flush_in_progress = true; 2167 2168 if (s->coalesced_mmio_ring) { 2169 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2170 while (ring->first != ring->last) { 2171 struct kvm_coalesced_mmio *ent; 2172 2173 ent = &ring->coalesced_mmio[ring->first]; 2174 2175 if (ent->pio == 1) { 2176 address_space_rw(&address_space_io, ent->phys_addr, 2177 MEMTXATTRS_UNSPECIFIED, ent->data, 2178 ent->len, true); 2179 } else { 2180 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2181 } 2182 smp_wmb(); 2183 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2184 } 2185 } 2186 2187 s->coalesced_flush_in_progress = false; 2188 } 2189 2190 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2191 { 2192 if (!cpu->vcpu_dirty) { 2193 kvm_arch_get_registers(cpu); 2194 cpu->vcpu_dirty = true; 2195 } 2196 } 2197 2198 void kvm_cpu_synchronize_state(CPUState *cpu) 2199 { 2200 if (!cpu->vcpu_dirty) { 2201 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2202 } 2203 } 2204 2205 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2206 { 2207 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2208 cpu->vcpu_dirty = false; 2209 } 2210 2211 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2212 { 2213 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2214 } 2215 2216 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2217 { 2218 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2219 cpu->vcpu_dirty = false; 2220 } 2221 2222 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2223 { 2224 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2225 } 2226 2227 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2228 { 2229 cpu->vcpu_dirty = true; 2230 } 2231 2232 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2233 { 2234 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2235 } 2236 2237 #ifdef KVM_HAVE_MCE_INJECTION 2238 static __thread void *pending_sigbus_addr; 2239 static __thread int pending_sigbus_code; 2240 static __thread bool have_sigbus_pending; 2241 #endif 2242 2243 static void kvm_cpu_kick(CPUState *cpu) 2244 { 2245 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2246 } 2247 2248 static void kvm_cpu_kick_self(void) 2249 { 2250 if (kvm_immediate_exit) { 2251 kvm_cpu_kick(current_cpu); 2252 } else { 2253 qemu_cpu_kick_self(); 2254 } 2255 } 2256 2257 static void kvm_eat_signals(CPUState *cpu) 2258 { 2259 struct timespec ts = { 0, 0 }; 2260 siginfo_t siginfo; 2261 sigset_t waitset; 2262 sigset_t chkset; 2263 int r; 2264 2265 if (kvm_immediate_exit) { 2266 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2267 /* Write kvm_run->immediate_exit before the cpu->exit_request 2268 * write in kvm_cpu_exec. 2269 */ 2270 smp_wmb(); 2271 return; 2272 } 2273 2274 sigemptyset(&waitset); 2275 sigaddset(&waitset, SIG_IPI); 2276 2277 do { 2278 r = sigtimedwait(&waitset, &siginfo, &ts); 2279 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2280 perror("sigtimedwait"); 2281 exit(1); 2282 } 2283 2284 r = sigpending(&chkset); 2285 if (r == -1) { 2286 perror("sigpending"); 2287 exit(1); 2288 } 2289 } while (sigismember(&chkset, SIG_IPI)); 2290 } 2291 2292 int kvm_cpu_exec(CPUState *cpu) 2293 { 2294 struct kvm_run *run = cpu->kvm_run; 2295 int ret, run_ret; 2296 2297 DPRINTF("kvm_cpu_exec()\n"); 2298 2299 if (kvm_arch_process_async_events(cpu)) { 2300 atomic_set(&cpu->exit_request, 0); 2301 return EXCP_HLT; 2302 } 2303 2304 qemu_mutex_unlock_iothread(); 2305 cpu_exec_start(cpu); 2306 2307 do { 2308 MemTxAttrs attrs; 2309 2310 if (cpu->vcpu_dirty) { 2311 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2312 cpu->vcpu_dirty = false; 2313 } 2314 2315 kvm_arch_pre_run(cpu, run); 2316 if (atomic_read(&cpu->exit_request)) { 2317 DPRINTF("interrupt exit requested\n"); 2318 /* 2319 * KVM requires us to reenter the kernel after IO exits to complete 2320 * instruction emulation. This self-signal will ensure that we 2321 * leave ASAP again. 2322 */ 2323 kvm_cpu_kick_self(); 2324 } 2325 2326 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2327 * Matching barrier in kvm_eat_signals. 2328 */ 2329 smp_rmb(); 2330 2331 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2332 2333 attrs = kvm_arch_post_run(cpu, run); 2334 2335 #ifdef KVM_HAVE_MCE_INJECTION 2336 if (unlikely(have_sigbus_pending)) { 2337 qemu_mutex_lock_iothread(); 2338 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2339 pending_sigbus_addr); 2340 have_sigbus_pending = false; 2341 qemu_mutex_unlock_iothread(); 2342 } 2343 #endif 2344 2345 if (run_ret < 0) { 2346 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2347 DPRINTF("io window exit\n"); 2348 kvm_eat_signals(cpu); 2349 ret = EXCP_INTERRUPT; 2350 break; 2351 } 2352 fprintf(stderr, "error: kvm run failed %s\n", 2353 strerror(-run_ret)); 2354 #ifdef TARGET_PPC 2355 if (run_ret == -EBUSY) { 2356 fprintf(stderr, 2357 "This is probably because your SMT is enabled.\n" 2358 "VCPU can only run on primary threads with all " 2359 "secondary threads offline.\n"); 2360 } 2361 #endif 2362 ret = -1; 2363 break; 2364 } 2365 2366 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2367 switch (run->exit_reason) { 2368 case KVM_EXIT_IO: 2369 DPRINTF("handle_io\n"); 2370 /* Called outside BQL */ 2371 kvm_handle_io(run->io.port, attrs, 2372 (uint8_t *)run + run->io.data_offset, 2373 run->io.direction, 2374 run->io.size, 2375 run->io.count); 2376 ret = 0; 2377 break; 2378 case KVM_EXIT_MMIO: 2379 DPRINTF("handle_mmio\n"); 2380 /* Called outside BQL */ 2381 address_space_rw(&address_space_memory, 2382 run->mmio.phys_addr, attrs, 2383 run->mmio.data, 2384 run->mmio.len, 2385 run->mmio.is_write); 2386 ret = 0; 2387 break; 2388 case KVM_EXIT_IRQ_WINDOW_OPEN: 2389 DPRINTF("irq_window_open\n"); 2390 ret = EXCP_INTERRUPT; 2391 break; 2392 case KVM_EXIT_SHUTDOWN: 2393 DPRINTF("shutdown\n"); 2394 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2395 ret = EXCP_INTERRUPT; 2396 break; 2397 case KVM_EXIT_UNKNOWN: 2398 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2399 (uint64_t)run->hw.hardware_exit_reason); 2400 ret = -1; 2401 break; 2402 case KVM_EXIT_INTERNAL_ERROR: 2403 ret = kvm_handle_internal_error(cpu, run); 2404 break; 2405 case KVM_EXIT_SYSTEM_EVENT: 2406 switch (run->system_event.type) { 2407 case KVM_SYSTEM_EVENT_SHUTDOWN: 2408 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2409 ret = EXCP_INTERRUPT; 2410 break; 2411 case KVM_SYSTEM_EVENT_RESET: 2412 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2413 ret = EXCP_INTERRUPT; 2414 break; 2415 case KVM_SYSTEM_EVENT_CRASH: 2416 kvm_cpu_synchronize_state(cpu); 2417 qemu_mutex_lock_iothread(); 2418 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2419 qemu_mutex_unlock_iothread(); 2420 ret = 0; 2421 break; 2422 default: 2423 DPRINTF("kvm_arch_handle_exit\n"); 2424 ret = kvm_arch_handle_exit(cpu, run); 2425 break; 2426 } 2427 break; 2428 default: 2429 DPRINTF("kvm_arch_handle_exit\n"); 2430 ret = kvm_arch_handle_exit(cpu, run); 2431 break; 2432 } 2433 } while (ret == 0); 2434 2435 cpu_exec_end(cpu); 2436 qemu_mutex_lock_iothread(); 2437 2438 if (ret < 0) { 2439 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2440 vm_stop(RUN_STATE_INTERNAL_ERROR); 2441 } 2442 2443 atomic_set(&cpu->exit_request, 0); 2444 return ret; 2445 } 2446 2447 int kvm_ioctl(KVMState *s, int type, ...) 2448 { 2449 int ret; 2450 void *arg; 2451 va_list ap; 2452 2453 va_start(ap, type); 2454 arg = va_arg(ap, void *); 2455 va_end(ap); 2456 2457 trace_kvm_ioctl(type, arg); 2458 ret = ioctl(s->fd, type, arg); 2459 if (ret == -1) { 2460 ret = -errno; 2461 } 2462 return ret; 2463 } 2464 2465 int kvm_vm_ioctl(KVMState *s, int type, ...) 2466 { 2467 int ret; 2468 void *arg; 2469 va_list ap; 2470 2471 va_start(ap, type); 2472 arg = va_arg(ap, void *); 2473 va_end(ap); 2474 2475 trace_kvm_vm_ioctl(type, arg); 2476 ret = ioctl(s->vmfd, type, arg); 2477 if (ret == -1) { 2478 ret = -errno; 2479 } 2480 return ret; 2481 } 2482 2483 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2484 { 2485 int ret; 2486 void *arg; 2487 va_list ap; 2488 2489 va_start(ap, type); 2490 arg = va_arg(ap, void *); 2491 va_end(ap); 2492 2493 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2494 ret = ioctl(cpu->kvm_fd, type, arg); 2495 if (ret == -1) { 2496 ret = -errno; 2497 } 2498 return ret; 2499 } 2500 2501 int kvm_device_ioctl(int fd, int type, ...) 2502 { 2503 int ret; 2504 void *arg; 2505 va_list ap; 2506 2507 va_start(ap, type); 2508 arg = va_arg(ap, void *); 2509 va_end(ap); 2510 2511 trace_kvm_device_ioctl(fd, type, arg); 2512 ret = ioctl(fd, type, arg); 2513 if (ret == -1) { 2514 ret = -errno; 2515 } 2516 return ret; 2517 } 2518 2519 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2520 { 2521 int ret; 2522 struct kvm_device_attr attribute = { 2523 .group = group, 2524 .attr = attr, 2525 }; 2526 2527 if (!kvm_vm_attributes_allowed) { 2528 return 0; 2529 } 2530 2531 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2532 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2533 return ret ? 0 : 1; 2534 } 2535 2536 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2537 { 2538 struct kvm_device_attr attribute = { 2539 .group = group, 2540 .attr = attr, 2541 .flags = 0, 2542 }; 2543 2544 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2545 } 2546 2547 int kvm_device_access(int fd, int group, uint64_t attr, 2548 void *val, bool write, Error **errp) 2549 { 2550 struct kvm_device_attr kvmattr; 2551 int err; 2552 2553 kvmattr.flags = 0; 2554 kvmattr.group = group; 2555 kvmattr.attr = attr; 2556 kvmattr.addr = (uintptr_t)val; 2557 2558 err = kvm_device_ioctl(fd, 2559 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2560 &kvmattr); 2561 if (err < 0) { 2562 error_setg_errno(errp, -err, 2563 "KVM_%s_DEVICE_ATTR failed: Group %d " 2564 "attr 0x%016" PRIx64, 2565 write ? "SET" : "GET", group, attr); 2566 } 2567 return err; 2568 } 2569 2570 bool kvm_has_sync_mmu(void) 2571 { 2572 return kvm_state->sync_mmu; 2573 } 2574 2575 int kvm_has_vcpu_events(void) 2576 { 2577 return kvm_state->vcpu_events; 2578 } 2579 2580 int kvm_has_robust_singlestep(void) 2581 { 2582 return kvm_state->robust_singlestep; 2583 } 2584 2585 int kvm_has_debugregs(void) 2586 { 2587 return kvm_state->debugregs; 2588 } 2589 2590 int kvm_max_nested_state_length(void) 2591 { 2592 return kvm_state->max_nested_state_len; 2593 } 2594 2595 int kvm_has_many_ioeventfds(void) 2596 { 2597 if (!kvm_enabled()) { 2598 return 0; 2599 } 2600 return kvm_state->many_ioeventfds; 2601 } 2602 2603 int kvm_has_gsi_routing(void) 2604 { 2605 #ifdef KVM_CAP_IRQ_ROUTING 2606 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2607 #else 2608 return false; 2609 #endif 2610 } 2611 2612 int kvm_has_intx_set_mask(void) 2613 { 2614 return kvm_state->intx_set_mask; 2615 } 2616 2617 bool kvm_arm_supports_user_irq(void) 2618 { 2619 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2620 } 2621 2622 #ifdef KVM_CAP_SET_GUEST_DEBUG 2623 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2624 target_ulong pc) 2625 { 2626 struct kvm_sw_breakpoint *bp; 2627 2628 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2629 if (bp->pc == pc) { 2630 return bp; 2631 } 2632 } 2633 return NULL; 2634 } 2635 2636 int kvm_sw_breakpoints_active(CPUState *cpu) 2637 { 2638 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2639 } 2640 2641 struct kvm_set_guest_debug_data { 2642 struct kvm_guest_debug dbg; 2643 int err; 2644 }; 2645 2646 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2647 { 2648 struct kvm_set_guest_debug_data *dbg_data = 2649 (struct kvm_set_guest_debug_data *) data.host_ptr; 2650 2651 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2652 &dbg_data->dbg); 2653 } 2654 2655 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2656 { 2657 struct kvm_set_guest_debug_data data; 2658 2659 data.dbg.control = reinject_trap; 2660 2661 if (cpu->singlestep_enabled) { 2662 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2663 } 2664 kvm_arch_update_guest_debug(cpu, &data.dbg); 2665 2666 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2667 RUN_ON_CPU_HOST_PTR(&data)); 2668 return data.err; 2669 } 2670 2671 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2672 target_ulong len, int type) 2673 { 2674 struct kvm_sw_breakpoint *bp; 2675 int err; 2676 2677 if (type == GDB_BREAKPOINT_SW) { 2678 bp = kvm_find_sw_breakpoint(cpu, addr); 2679 if (bp) { 2680 bp->use_count++; 2681 return 0; 2682 } 2683 2684 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2685 bp->pc = addr; 2686 bp->use_count = 1; 2687 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2688 if (err) { 2689 g_free(bp); 2690 return err; 2691 } 2692 2693 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2694 } else { 2695 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2696 if (err) { 2697 return err; 2698 } 2699 } 2700 2701 CPU_FOREACH(cpu) { 2702 err = kvm_update_guest_debug(cpu, 0); 2703 if (err) { 2704 return err; 2705 } 2706 } 2707 return 0; 2708 } 2709 2710 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2711 target_ulong len, int type) 2712 { 2713 struct kvm_sw_breakpoint *bp; 2714 int err; 2715 2716 if (type == GDB_BREAKPOINT_SW) { 2717 bp = kvm_find_sw_breakpoint(cpu, addr); 2718 if (!bp) { 2719 return -ENOENT; 2720 } 2721 2722 if (bp->use_count > 1) { 2723 bp->use_count--; 2724 return 0; 2725 } 2726 2727 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2728 if (err) { 2729 return err; 2730 } 2731 2732 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2733 g_free(bp); 2734 } else { 2735 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2736 if (err) { 2737 return err; 2738 } 2739 } 2740 2741 CPU_FOREACH(cpu) { 2742 err = kvm_update_guest_debug(cpu, 0); 2743 if (err) { 2744 return err; 2745 } 2746 } 2747 return 0; 2748 } 2749 2750 void kvm_remove_all_breakpoints(CPUState *cpu) 2751 { 2752 struct kvm_sw_breakpoint *bp, *next; 2753 KVMState *s = cpu->kvm_state; 2754 CPUState *tmpcpu; 2755 2756 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2757 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2758 /* Try harder to find a CPU that currently sees the breakpoint. */ 2759 CPU_FOREACH(tmpcpu) { 2760 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2761 break; 2762 } 2763 } 2764 } 2765 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2766 g_free(bp); 2767 } 2768 kvm_arch_remove_all_hw_breakpoints(); 2769 2770 CPU_FOREACH(cpu) { 2771 kvm_update_guest_debug(cpu, 0); 2772 } 2773 } 2774 2775 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2776 2777 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2778 { 2779 return -EINVAL; 2780 } 2781 2782 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2783 target_ulong len, int type) 2784 { 2785 return -EINVAL; 2786 } 2787 2788 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2789 target_ulong len, int type) 2790 { 2791 return -EINVAL; 2792 } 2793 2794 void kvm_remove_all_breakpoints(CPUState *cpu) 2795 { 2796 } 2797 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2798 2799 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2800 { 2801 KVMState *s = kvm_state; 2802 struct kvm_signal_mask *sigmask; 2803 int r; 2804 2805 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2806 2807 sigmask->len = s->sigmask_len; 2808 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2809 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2810 g_free(sigmask); 2811 2812 return r; 2813 } 2814 2815 static void kvm_ipi_signal(int sig) 2816 { 2817 if (current_cpu) { 2818 assert(kvm_immediate_exit); 2819 kvm_cpu_kick(current_cpu); 2820 } 2821 } 2822 2823 void kvm_init_cpu_signals(CPUState *cpu) 2824 { 2825 int r; 2826 sigset_t set; 2827 struct sigaction sigact; 2828 2829 memset(&sigact, 0, sizeof(sigact)); 2830 sigact.sa_handler = kvm_ipi_signal; 2831 sigaction(SIG_IPI, &sigact, NULL); 2832 2833 pthread_sigmask(SIG_BLOCK, NULL, &set); 2834 #if defined KVM_HAVE_MCE_INJECTION 2835 sigdelset(&set, SIGBUS); 2836 pthread_sigmask(SIG_SETMASK, &set, NULL); 2837 #endif 2838 sigdelset(&set, SIG_IPI); 2839 if (kvm_immediate_exit) { 2840 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2841 } else { 2842 r = kvm_set_signal_mask(cpu, &set); 2843 } 2844 if (r) { 2845 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2846 exit(1); 2847 } 2848 } 2849 2850 /* Called asynchronously in VCPU thread. */ 2851 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2852 { 2853 #ifdef KVM_HAVE_MCE_INJECTION 2854 if (have_sigbus_pending) { 2855 return 1; 2856 } 2857 have_sigbus_pending = true; 2858 pending_sigbus_addr = addr; 2859 pending_sigbus_code = code; 2860 atomic_set(&cpu->exit_request, 1); 2861 return 0; 2862 #else 2863 return 1; 2864 #endif 2865 } 2866 2867 /* Called synchronously (via signalfd) in main thread. */ 2868 int kvm_on_sigbus(int code, void *addr) 2869 { 2870 #ifdef KVM_HAVE_MCE_INJECTION 2871 /* Action required MCE kills the process if SIGBUS is blocked. Because 2872 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2873 * we can only get action optional here. 2874 */ 2875 assert(code != BUS_MCEERR_AR); 2876 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2877 return 0; 2878 #else 2879 return 1; 2880 #endif 2881 } 2882 2883 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2884 { 2885 int ret; 2886 struct kvm_create_device create_dev; 2887 2888 create_dev.type = type; 2889 create_dev.fd = -1; 2890 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2891 2892 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2893 return -ENOTSUP; 2894 } 2895 2896 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2897 if (ret) { 2898 return ret; 2899 } 2900 2901 return test ? 0 : create_dev.fd; 2902 } 2903 2904 bool kvm_device_supported(int vmfd, uint64_t type) 2905 { 2906 struct kvm_create_device create_dev = { 2907 .type = type, 2908 .fd = -1, 2909 .flags = KVM_CREATE_DEVICE_TEST, 2910 }; 2911 2912 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2913 return false; 2914 } 2915 2916 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2917 } 2918 2919 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2920 { 2921 struct kvm_one_reg reg; 2922 int r; 2923 2924 reg.id = id; 2925 reg.addr = (uintptr_t) source; 2926 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2927 if (r) { 2928 trace_kvm_failed_reg_set(id, strerror(-r)); 2929 } 2930 return r; 2931 } 2932 2933 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2934 { 2935 struct kvm_one_reg reg; 2936 int r; 2937 2938 reg.id = id; 2939 reg.addr = (uintptr_t) target; 2940 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2941 if (r) { 2942 trace_kvm_failed_reg_get(id, strerror(-r)); 2943 } 2944 return r; 2945 } 2946 2947 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 2948 hwaddr start_addr, hwaddr size) 2949 { 2950 KVMState *kvm = KVM_STATE(ms->accelerator); 2951 int i; 2952 2953 for (i = 0; i < kvm->nr_as; ++i) { 2954 if (kvm->as[i].as == as && kvm->as[i].ml) { 2955 size = MIN(kvm_max_slot_size, size); 2956 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 2957 start_addr, size); 2958 } 2959 } 2960 2961 return false; 2962 } 2963 2964 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 2965 const char *name, void *opaque, 2966 Error **errp) 2967 { 2968 KVMState *s = KVM_STATE(obj); 2969 int64_t value = s->kvm_shadow_mem; 2970 2971 visit_type_int(v, name, &value, errp); 2972 } 2973 2974 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 2975 const char *name, void *opaque, 2976 Error **errp) 2977 { 2978 KVMState *s = KVM_STATE(obj); 2979 Error *error = NULL; 2980 int64_t value; 2981 2982 visit_type_int(v, name, &value, &error); 2983 if (error) { 2984 error_propagate(errp, error); 2985 return; 2986 } 2987 2988 s->kvm_shadow_mem = value; 2989 } 2990 2991 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 2992 const char *name, void *opaque, 2993 Error **errp) 2994 { 2995 Error *err = NULL; 2996 KVMState *s = KVM_STATE(obj); 2997 OnOffSplit mode; 2998 2999 visit_type_OnOffSplit(v, name, &mode, &err); 3000 if (err) { 3001 error_propagate(errp, err); 3002 return; 3003 } else { 3004 switch (mode) { 3005 case ON_OFF_SPLIT_ON: 3006 s->kernel_irqchip_allowed = true; 3007 s->kernel_irqchip_required = true; 3008 s->kernel_irqchip_split = false; 3009 break; 3010 case ON_OFF_SPLIT_OFF: 3011 s->kernel_irqchip_allowed = false; 3012 s->kernel_irqchip_required = false; 3013 s->kernel_irqchip_split = false; 3014 break; 3015 case ON_OFF_SPLIT_SPLIT: 3016 s->kernel_irqchip_allowed = true; 3017 s->kernel_irqchip_required = true; 3018 s->kernel_irqchip_split = true; 3019 break; 3020 default: 3021 /* The value was checked in visit_type_OnOffSplit() above. If 3022 * we get here, then something is wrong in QEMU. 3023 */ 3024 abort(); 3025 } 3026 } 3027 } 3028 3029 bool kvm_kernel_irqchip_allowed(void) 3030 { 3031 return kvm_state->kernel_irqchip_allowed; 3032 } 3033 3034 bool kvm_kernel_irqchip_required(void) 3035 { 3036 return kvm_state->kernel_irqchip_required; 3037 } 3038 3039 bool kvm_kernel_irqchip_split(void) 3040 { 3041 return kvm_state->kernel_irqchip_split; 3042 } 3043 3044 static void kvm_accel_instance_init(Object *obj) 3045 { 3046 KVMState *s = KVM_STATE(obj); 3047 3048 s->kvm_shadow_mem = -1; 3049 } 3050 3051 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3052 { 3053 AccelClass *ac = ACCEL_CLASS(oc); 3054 ac->name = "KVM"; 3055 ac->init_machine = kvm_init; 3056 ac->has_memory = kvm_accel_has_memory; 3057 ac->allowed = &kvm_allowed; 3058 3059 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3060 NULL, kvm_set_kernel_irqchip, 3061 NULL, NULL, &error_abort); 3062 object_class_property_set_description(oc, "kernel-irqchip", 3063 "Configure KVM in-kernel irqchip", &error_abort); 3064 3065 object_class_property_add(oc, "kvm-shadow-mem", "int", 3066 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3067 NULL, NULL, &error_abort); 3068 object_class_property_set_description(oc, "kvm-shadow-mem", 3069 "KVM shadow MMU size", &error_abort); 3070 } 3071 3072 static const TypeInfo kvm_accel_type = { 3073 .name = TYPE_KVM_ACCEL, 3074 .parent = TYPE_ACCEL, 3075 .instance_init = kvm_accel_instance_init, 3076 .class_init = kvm_accel_class_init, 3077 .instance_size = sizeof(KVMState), 3078 }; 3079 3080 static void kvm_type_init(void) 3081 { 3082 type_register_static(&kvm_accel_type); 3083 } 3084 3085 type_init(kvm_type_init); 3086