1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/hw.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/cpus.h" 33 #include "qemu/bswap.h" 34 #include "exec/memory.h" 35 #include "exec/ram_addr.h" 36 #include "exec/address-spaces.h" 37 #include "qemu/event_notifier.h" 38 #include "trace.h" 39 #include "hw/irq.h" 40 #include "sysemu/sev.h" 41 #include "sysemu/balloon.h" 42 43 #include "hw/boards.h" 44 45 /* This check must be after config-host.h is included */ 46 #ifdef CONFIG_EVENTFD 47 #include <sys/eventfd.h> 48 #endif 49 50 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 51 * need to use the real host PAGE_SIZE, as that's what KVM will use. 52 */ 53 #define PAGE_SIZE getpagesize() 54 55 //#define DEBUG_KVM 56 57 #ifdef DEBUG_KVM 58 #define DPRINTF(fmt, ...) \ 59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 60 #else 61 #define DPRINTF(fmt, ...) \ 62 do { } while (0) 63 #endif 64 65 #define KVM_MSI_HASHTAB_SIZE 256 66 67 struct KVMParkedVcpu { 68 unsigned long vcpu_id; 69 int kvm_fd; 70 QLIST_ENTRY(KVMParkedVcpu) node; 71 }; 72 73 struct KVMState 74 { 75 AccelState parent_obj; 76 77 int nr_slots; 78 int fd; 79 int vmfd; 80 int coalesced_mmio; 81 int coalesced_pio; 82 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 83 bool coalesced_flush_in_progress; 84 int vcpu_events; 85 int robust_singlestep; 86 int debugregs; 87 #ifdef KVM_CAP_SET_GUEST_DEBUG 88 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 89 #endif 90 int many_ioeventfds; 91 int intx_set_mask; 92 bool sync_mmu; 93 /* The man page (and posix) say ioctl numbers are signed int, but 94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 95 * unsigned, and treating them as signed here can break things */ 96 unsigned irq_set_ioctl; 97 unsigned int sigmask_len; 98 GHashTable *gsimap; 99 #ifdef KVM_CAP_IRQ_ROUTING 100 struct kvm_irq_routing *irq_routes; 101 int nr_allocated_irq_routes; 102 unsigned long *used_gsi_bitmap; 103 unsigned int gsi_count; 104 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 105 #endif 106 KVMMemoryListener memory_listener; 107 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 108 109 /* memory encryption */ 110 void *memcrypt_handle; 111 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 112 }; 113 114 KVMState *kvm_state; 115 bool kvm_kernel_irqchip; 116 bool kvm_split_irqchip; 117 bool kvm_async_interrupts_allowed; 118 bool kvm_halt_in_kernel_allowed; 119 bool kvm_eventfds_allowed; 120 bool kvm_irqfds_allowed; 121 bool kvm_resamplefds_allowed; 122 bool kvm_msi_via_irqfd_allowed; 123 bool kvm_gsi_routing_allowed; 124 bool kvm_gsi_direct_mapping; 125 bool kvm_allowed; 126 bool kvm_readonly_mem_allowed; 127 bool kvm_vm_attributes_allowed; 128 bool kvm_direct_msi_allowed; 129 bool kvm_ioeventfd_any_length_allowed; 130 bool kvm_msi_use_devid; 131 static bool kvm_immediate_exit; 132 133 static const KVMCapabilityInfo kvm_required_capabilites[] = { 134 KVM_CAP_INFO(USER_MEMORY), 135 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 136 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 137 KVM_CAP_LAST_INFO 138 }; 139 140 int kvm_get_max_memslots(void) 141 { 142 KVMState *s = KVM_STATE(current_machine->accelerator); 143 144 return s->nr_slots; 145 } 146 147 bool kvm_memcrypt_enabled(void) 148 { 149 if (kvm_state && kvm_state->memcrypt_handle) { 150 return true; 151 } 152 153 return false; 154 } 155 156 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 157 { 158 if (kvm_state->memcrypt_handle && 159 kvm_state->memcrypt_encrypt_data) { 160 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 161 ptr, len); 162 } 163 164 return 1; 165 } 166 167 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 168 { 169 KVMState *s = kvm_state; 170 int i; 171 172 for (i = 0; i < s->nr_slots; i++) { 173 if (kml->slots[i].memory_size == 0) { 174 return &kml->slots[i]; 175 } 176 } 177 178 return NULL; 179 } 180 181 bool kvm_has_free_slot(MachineState *ms) 182 { 183 KVMState *s = KVM_STATE(ms->accelerator); 184 185 return kvm_get_free_slot(&s->memory_listener); 186 } 187 188 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 189 { 190 KVMSlot *slot = kvm_get_free_slot(kml); 191 192 if (slot) { 193 return slot; 194 } 195 196 fprintf(stderr, "%s: no free slot available\n", __func__); 197 abort(); 198 } 199 200 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 201 hwaddr start_addr, 202 hwaddr size) 203 { 204 KVMState *s = kvm_state; 205 int i; 206 207 for (i = 0; i < s->nr_slots; i++) { 208 KVMSlot *mem = &kml->slots[i]; 209 210 if (start_addr == mem->start_addr && size == mem->memory_size) { 211 return mem; 212 } 213 } 214 215 return NULL; 216 } 217 218 /* 219 * Calculate and align the start address and the size of the section. 220 * Return the size. If the size is 0, the aligned section is empty. 221 */ 222 static hwaddr kvm_align_section(MemoryRegionSection *section, 223 hwaddr *start) 224 { 225 hwaddr size = int128_get64(section->size); 226 hwaddr delta, aligned; 227 228 /* kvm works in page size chunks, but the function may be called 229 with sub-page size and unaligned start address. Pad the start 230 address to next and truncate size to previous page boundary. */ 231 aligned = ROUND_UP(section->offset_within_address_space, 232 qemu_real_host_page_size); 233 delta = aligned - section->offset_within_address_space; 234 *start = aligned; 235 if (delta > size) { 236 return 0; 237 } 238 239 return (size - delta) & qemu_real_host_page_mask; 240 } 241 242 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 243 hwaddr *phys_addr) 244 { 245 KVMMemoryListener *kml = &s->memory_listener; 246 int i; 247 248 for (i = 0; i < s->nr_slots; i++) { 249 KVMSlot *mem = &kml->slots[i]; 250 251 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 252 *phys_addr = mem->start_addr + (ram - mem->ram); 253 return 1; 254 } 255 } 256 257 return 0; 258 } 259 260 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 261 { 262 KVMState *s = kvm_state; 263 struct kvm_userspace_memory_region mem; 264 int ret; 265 266 mem.slot = slot->slot | (kml->as_id << 16); 267 mem.guest_phys_addr = slot->start_addr; 268 mem.userspace_addr = (unsigned long)slot->ram; 269 mem.flags = slot->flags; 270 271 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 272 /* Set the slot size to 0 before setting the slot to the desired 273 * value. This is needed based on KVM commit 75d61fbc. */ 274 mem.memory_size = 0; 275 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 276 } 277 mem.memory_size = slot->memory_size; 278 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 279 slot->old_flags = mem.flags; 280 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 281 mem.memory_size, mem.userspace_addr, ret); 282 return ret; 283 } 284 285 int kvm_destroy_vcpu(CPUState *cpu) 286 { 287 KVMState *s = kvm_state; 288 long mmap_size; 289 struct KVMParkedVcpu *vcpu = NULL; 290 int ret = 0; 291 292 DPRINTF("kvm_destroy_vcpu\n"); 293 294 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 295 if (mmap_size < 0) { 296 ret = mmap_size; 297 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 298 goto err; 299 } 300 301 ret = munmap(cpu->kvm_run, mmap_size); 302 if (ret < 0) { 303 goto err; 304 } 305 306 vcpu = g_malloc0(sizeof(*vcpu)); 307 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 308 vcpu->kvm_fd = cpu->kvm_fd; 309 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 310 err: 311 return ret; 312 } 313 314 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 315 { 316 struct KVMParkedVcpu *cpu; 317 318 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 319 if (cpu->vcpu_id == vcpu_id) { 320 int kvm_fd; 321 322 QLIST_REMOVE(cpu, node); 323 kvm_fd = cpu->kvm_fd; 324 g_free(cpu); 325 return kvm_fd; 326 } 327 } 328 329 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 330 } 331 332 int kvm_init_vcpu(CPUState *cpu) 333 { 334 KVMState *s = kvm_state; 335 long mmap_size; 336 int ret; 337 338 DPRINTF("kvm_init_vcpu\n"); 339 340 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 341 if (ret < 0) { 342 DPRINTF("kvm_create_vcpu failed\n"); 343 goto err; 344 } 345 346 cpu->kvm_fd = ret; 347 cpu->kvm_state = s; 348 cpu->vcpu_dirty = true; 349 350 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 351 if (mmap_size < 0) { 352 ret = mmap_size; 353 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 354 goto err; 355 } 356 357 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 358 cpu->kvm_fd, 0); 359 if (cpu->kvm_run == MAP_FAILED) { 360 ret = -errno; 361 DPRINTF("mmap'ing vcpu state failed\n"); 362 goto err; 363 } 364 365 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 366 s->coalesced_mmio_ring = 367 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 368 } 369 370 ret = kvm_arch_init_vcpu(cpu); 371 err: 372 return ret; 373 } 374 375 /* 376 * dirty pages logging control 377 */ 378 379 static int kvm_mem_flags(MemoryRegion *mr) 380 { 381 bool readonly = mr->readonly || memory_region_is_romd(mr); 382 int flags = 0; 383 384 if (memory_region_get_dirty_log_mask(mr) != 0) { 385 flags |= KVM_MEM_LOG_DIRTY_PAGES; 386 } 387 if (readonly && kvm_readonly_mem_allowed) { 388 flags |= KVM_MEM_READONLY; 389 } 390 return flags; 391 } 392 393 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 394 MemoryRegion *mr) 395 { 396 mem->flags = kvm_mem_flags(mr); 397 398 /* If nothing changed effectively, no need to issue ioctl */ 399 if (mem->flags == mem->old_flags) { 400 return 0; 401 } 402 403 return kvm_set_user_memory_region(kml, mem, false); 404 } 405 406 static int kvm_section_update_flags(KVMMemoryListener *kml, 407 MemoryRegionSection *section) 408 { 409 hwaddr start_addr, size; 410 KVMSlot *mem; 411 412 size = kvm_align_section(section, &start_addr); 413 if (!size) { 414 return 0; 415 } 416 417 mem = kvm_lookup_matching_slot(kml, start_addr, size); 418 if (!mem) { 419 /* We don't have a slot if we want to trap every access. */ 420 return 0; 421 } 422 423 return kvm_slot_update_flags(kml, mem, section->mr); 424 } 425 426 static void kvm_log_start(MemoryListener *listener, 427 MemoryRegionSection *section, 428 int old, int new) 429 { 430 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 431 int r; 432 433 if (old != 0) { 434 return; 435 } 436 437 r = kvm_section_update_flags(kml, section); 438 if (r < 0) { 439 abort(); 440 } 441 } 442 443 static void kvm_log_stop(MemoryListener *listener, 444 MemoryRegionSection *section, 445 int old, int new) 446 { 447 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 448 int r; 449 450 if (new != 0) { 451 return; 452 } 453 454 r = kvm_section_update_flags(kml, section); 455 if (r < 0) { 456 abort(); 457 } 458 } 459 460 /* get kvm's dirty pages bitmap and update qemu's */ 461 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 462 unsigned long *bitmap) 463 { 464 ram_addr_t start = section->offset_within_region + 465 memory_region_get_ram_addr(section->mr); 466 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 467 468 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 469 return 0; 470 } 471 472 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 473 474 /** 475 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 476 * This function updates qemu's dirty bitmap using 477 * memory_region_set_dirty(). This means all bits are set 478 * to dirty. 479 * 480 * @start_add: start of logged region. 481 * @end_addr: end of logged region. 482 */ 483 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 484 MemoryRegionSection *section) 485 { 486 KVMState *s = kvm_state; 487 struct kvm_dirty_log d = {}; 488 KVMSlot *mem; 489 hwaddr start_addr, size; 490 491 size = kvm_align_section(section, &start_addr); 492 if (size) { 493 mem = kvm_lookup_matching_slot(kml, start_addr, size); 494 if (!mem) { 495 /* We don't have a slot if we want to trap every access. */ 496 return 0; 497 } 498 499 /* XXX bad kernel interface alert 500 * For dirty bitmap, kernel allocates array of size aligned to 501 * bits-per-long. But for case when the kernel is 64bits and 502 * the userspace is 32bits, userspace can't align to the same 503 * bits-per-long, since sizeof(long) is different between kernel 504 * and user space. This way, userspace will provide buffer which 505 * may be 4 bytes less than the kernel will use, resulting in 506 * userspace memory corruption (which is not detectable by valgrind 507 * too, in most cases). 508 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 509 * a hope that sizeof(long) won't become >8 any time soon. 510 */ 511 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 512 /*HOST_LONG_BITS*/ 64) / 8; 513 d.dirty_bitmap = g_malloc0(size); 514 515 d.slot = mem->slot | (kml->as_id << 16); 516 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 517 DPRINTF("ioctl failed %d\n", errno); 518 g_free(d.dirty_bitmap); 519 return -1; 520 } 521 522 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 523 g_free(d.dirty_bitmap); 524 } 525 526 return 0; 527 } 528 529 static void kvm_coalesce_mmio_region(MemoryListener *listener, 530 MemoryRegionSection *secion, 531 hwaddr start, hwaddr size) 532 { 533 KVMState *s = kvm_state; 534 535 if (s->coalesced_mmio) { 536 struct kvm_coalesced_mmio_zone zone; 537 538 zone.addr = start; 539 zone.size = size; 540 zone.pad = 0; 541 542 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 543 } 544 } 545 546 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 547 MemoryRegionSection *secion, 548 hwaddr start, hwaddr size) 549 { 550 KVMState *s = kvm_state; 551 552 if (s->coalesced_mmio) { 553 struct kvm_coalesced_mmio_zone zone; 554 555 zone.addr = start; 556 zone.size = size; 557 zone.pad = 0; 558 559 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 560 } 561 } 562 563 static void kvm_coalesce_pio_add(MemoryListener *listener, 564 MemoryRegionSection *section, 565 hwaddr start, hwaddr size) 566 { 567 KVMState *s = kvm_state; 568 569 if (s->coalesced_pio) { 570 struct kvm_coalesced_mmio_zone zone; 571 572 zone.addr = start; 573 zone.size = size; 574 zone.pio = 1; 575 576 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 577 } 578 } 579 580 static void kvm_coalesce_pio_del(MemoryListener *listener, 581 MemoryRegionSection *section, 582 hwaddr start, hwaddr size) 583 { 584 KVMState *s = kvm_state; 585 586 if (s->coalesced_pio) { 587 struct kvm_coalesced_mmio_zone zone; 588 589 zone.addr = start; 590 zone.size = size; 591 zone.pio = 1; 592 593 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 594 } 595 } 596 597 static MemoryListener kvm_coalesced_pio_listener = { 598 .coalesced_io_add = kvm_coalesce_pio_add, 599 .coalesced_io_del = kvm_coalesce_pio_del, 600 }; 601 602 int kvm_check_extension(KVMState *s, unsigned int extension) 603 { 604 int ret; 605 606 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 607 if (ret < 0) { 608 ret = 0; 609 } 610 611 return ret; 612 } 613 614 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 615 { 616 int ret; 617 618 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 619 if (ret < 0) { 620 /* VM wide version not implemented, use global one instead */ 621 ret = kvm_check_extension(s, extension); 622 } 623 624 return ret; 625 } 626 627 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 628 { 629 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 630 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 631 * endianness, but the memory core hands them in target endianness. 632 * For example, PPC is always treated as big-endian even if running 633 * on KVM and on PPC64LE. Correct here. 634 */ 635 switch (size) { 636 case 2: 637 val = bswap16(val); 638 break; 639 case 4: 640 val = bswap32(val); 641 break; 642 } 643 #endif 644 return val; 645 } 646 647 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 648 bool assign, uint32_t size, bool datamatch) 649 { 650 int ret; 651 struct kvm_ioeventfd iofd = { 652 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 653 .addr = addr, 654 .len = size, 655 .flags = 0, 656 .fd = fd, 657 }; 658 659 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 660 datamatch); 661 if (!kvm_enabled()) { 662 return -ENOSYS; 663 } 664 665 if (datamatch) { 666 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 667 } 668 if (!assign) { 669 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 670 } 671 672 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 673 674 if (ret < 0) { 675 return -errno; 676 } 677 678 return 0; 679 } 680 681 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 682 bool assign, uint32_t size, bool datamatch) 683 { 684 struct kvm_ioeventfd kick = { 685 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 686 .addr = addr, 687 .flags = KVM_IOEVENTFD_FLAG_PIO, 688 .len = size, 689 .fd = fd, 690 }; 691 int r; 692 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 693 if (!kvm_enabled()) { 694 return -ENOSYS; 695 } 696 if (datamatch) { 697 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 698 } 699 if (!assign) { 700 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 701 } 702 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 703 if (r < 0) { 704 return r; 705 } 706 return 0; 707 } 708 709 710 static int kvm_check_many_ioeventfds(void) 711 { 712 /* Userspace can use ioeventfd for io notification. This requires a host 713 * that supports eventfd(2) and an I/O thread; since eventfd does not 714 * support SIGIO it cannot interrupt the vcpu. 715 * 716 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 717 * can avoid creating too many ioeventfds. 718 */ 719 #if defined(CONFIG_EVENTFD) 720 int ioeventfds[7]; 721 int i, ret = 0; 722 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 723 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 724 if (ioeventfds[i] < 0) { 725 break; 726 } 727 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 728 if (ret < 0) { 729 close(ioeventfds[i]); 730 break; 731 } 732 } 733 734 /* Decide whether many devices are supported or not */ 735 ret = i == ARRAY_SIZE(ioeventfds); 736 737 while (i-- > 0) { 738 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 739 close(ioeventfds[i]); 740 } 741 return ret; 742 #else 743 return 0; 744 #endif 745 } 746 747 static const KVMCapabilityInfo * 748 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 749 { 750 while (list->name) { 751 if (!kvm_check_extension(s, list->value)) { 752 return list; 753 } 754 list++; 755 } 756 return NULL; 757 } 758 759 static void kvm_set_phys_mem(KVMMemoryListener *kml, 760 MemoryRegionSection *section, bool add) 761 { 762 KVMSlot *mem; 763 int err; 764 MemoryRegion *mr = section->mr; 765 bool writeable = !mr->readonly && !mr->rom_device; 766 hwaddr start_addr, size; 767 void *ram; 768 769 if (!memory_region_is_ram(mr)) { 770 if (writeable || !kvm_readonly_mem_allowed) { 771 return; 772 } else if (!mr->romd_mode) { 773 /* If the memory device is not in romd_mode, then we actually want 774 * to remove the kvm memory slot so all accesses will trap. */ 775 add = false; 776 } 777 } 778 779 size = kvm_align_section(section, &start_addr); 780 if (!size) { 781 return; 782 } 783 784 /* use aligned delta to align the ram address */ 785 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 786 (start_addr - section->offset_within_address_space); 787 788 if (!add) { 789 mem = kvm_lookup_matching_slot(kml, start_addr, size); 790 if (!mem) { 791 return; 792 } 793 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 794 kvm_physical_sync_dirty_bitmap(kml, section); 795 } 796 797 /* unregister the slot */ 798 mem->memory_size = 0; 799 mem->flags = 0; 800 err = kvm_set_user_memory_region(kml, mem, false); 801 if (err) { 802 fprintf(stderr, "%s: error unregistering slot: %s\n", 803 __func__, strerror(-err)); 804 abort(); 805 } 806 return; 807 } 808 809 /* register the new slot */ 810 mem = kvm_alloc_slot(kml); 811 mem->memory_size = size; 812 mem->start_addr = start_addr; 813 mem->ram = ram; 814 mem->flags = kvm_mem_flags(mr); 815 816 err = kvm_set_user_memory_region(kml, mem, true); 817 if (err) { 818 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 819 strerror(-err)); 820 abort(); 821 } 822 } 823 824 static void kvm_region_add(MemoryListener *listener, 825 MemoryRegionSection *section) 826 { 827 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 828 829 memory_region_ref(section->mr); 830 kvm_set_phys_mem(kml, section, true); 831 } 832 833 static void kvm_region_del(MemoryListener *listener, 834 MemoryRegionSection *section) 835 { 836 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 837 838 kvm_set_phys_mem(kml, section, false); 839 memory_region_unref(section->mr); 840 } 841 842 static void kvm_log_sync(MemoryListener *listener, 843 MemoryRegionSection *section) 844 { 845 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 846 int r; 847 848 r = kvm_physical_sync_dirty_bitmap(kml, section); 849 if (r < 0) { 850 abort(); 851 } 852 } 853 854 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 855 MemoryRegionSection *section, 856 bool match_data, uint64_t data, 857 EventNotifier *e) 858 { 859 int fd = event_notifier_get_fd(e); 860 int r; 861 862 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 863 data, true, int128_get64(section->size), 864 match_data); 865 if (r < 0) { 866 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 867 __func__, strerror(-r), -r); 868 abort(); 869 } 870 } 871 872 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 873 MemoryRegionSection *section, 874 bool match_data, uint64_t data, 875 EventNotifier *e) 876 { 877 int fd = event_notifier_get_fd(e); 878 int r; 879 880 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 881 data, false, int128_get64(section->size), 882 match_data); 883 if (r < 0) { 884 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 885 __func__, strerror(-r), -r); 886 abort(); 887 } 888 } 889 890 static void kvm_io_ioeventfd_add(MemoryListener *listener, 891 MemoryRegionSection *section, 892 bool match_data, uint64_t data, 893 EventNotifier *e) 894 { 895 int fd = event_notifier_get_fd(e); 896 int r; 897 898 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 899 data, true, int128_get64(section->size), 900 match_data); 901 if (r < 0) { 902 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 903 __func__, strerror(-r), -r); 904 abort(); 905 } 906 } 907 908 static void kvm_io_ioeventfd_del(MemoryListener *listener, 909 MemoryRegionSection *section, 910 bool match_data, uint64_t data, 911 EventNotifier *e) 912 913 { 914 int fd = event_notifier_get_fd(e); 915 int r; 916 917 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 918 data, false, int128_get64(section->size), 919 match_data); 920 if (r < 0) { 921 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 922 __func__, strerror(-r), -r); 923 abort(); 924 } 925 } 926 927 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 928 AddressSpace *as, int as_id) 929 { 930 int i; 931 932 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 933 kml->as_id = as_id; 934 935 for (i = 0; i < s->nr_slots; i++) { 936 kml->slots[i].slot = i; 937 } 938 939 kml->listener.region_add = kvm_region_add; 940 kml->listener.region_del = kvm_region_del; 941 kml->listener.log_start = kvm_log_start; 942 kml->listener.log_stop = kvm_log_stop; 943 kml->listener.log_sync = kvm_log_sync; 944 kml->listener.priority = 10; 945 946 memory_listener_register(&kml->listener, as); 947 } 948 949 static MemoryListener kvm_io_listener = { 950 .eventfd_add = kvm_io_ioeventfd_add, 951 .eventfd_del = kvm_io_ioeventfd_del, 952 .priority = 10, 953 }; 954 955 int kvm_set_irq(KVMState *s, int irq, int level) 956 { 957 struct kvm_irq_level event; 958 int ret; 959 960 assert(kvm_async_interrupts_enabled()); 961 962 event.level = level; 963 event.irq = irq; 964 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 965 if (ret < 0) { 966 perror("kvm_set_irq"); 967 abort(); 968 } 969 970 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 971 } 972 973 #ifdef KVM_CAP_IRQ_ROUTING 974 typedef struct KVMMSIRoute { 975 struct kvm_irq_routing_entry kroute; 976 QTAILQ_ENTRY(KVMMSIRoute) entry; 977 } KVMMSIRoute; 978 979 static void set_gsi(KVMState *s, unsigned int gsi) 980 { 981 set_bit(gsi, s->used_gsi_bitmap); 982 } 983 984 static void clear_gsi(KVMState *s, unsigned int gsi) 985 { 986 clear_bit(gsi, s->used_gsi_bitmap); 987 } 988 989 void kvm_init_irq_routing(KVMState *s) 990 { 991 int gsi_count, i; 992 993 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 994 if (gsi_count > 0) { 995 /* Round up so we can search ints using ffs */ 996 s->used_gsi_bitmap = bitmap_new(gsi_count); 997 s->gsi_count = gsi_count; 998 } 999 1000 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1001 s->nr_allocated_irq_routes = 0; 1002 1003 if (!kvm_direct_msi_allowed) { 1004 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1005 QTAILQ_INIT(&s->msi_hashtab[i]); 1006 } 1007 } 1008 1009 kvm_arch_init_irq_routing(s); 1010 } 1011 1012 void kvm_irqchip_commit_routes(KVMState *s) 1013 { 1014 int ret; 1015 1016 if (kvm_gsi_direct_mapping()) { 1017 return; 1018 } 1019 1020 if (!kvm_gsi_routing_enabled()) { 1021 return; 1022 } 1023 1024 s->irq_routes->flags = 0; 1025 trace_kvm_irqchip_commit_routes(); 1026 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1027 assert(ret == 0); 1028 } 1029 1030 static void kvm_add_routing_entry(KVMState *s, 1031 struct kvm_irq_routing_entry *entry) 1032 { 1033 struct kvm_irq_routing_entry *new; 1034 int n, size; 1035 1036 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1037 n = s->nr_allocated_irq_routes * 2; 1038 if (n < 64) { 1039 n = 64; 1040 } 1041 size = sizeof(struct kvm_irq_routing); 1042 size += n * sizeof(*new); 1043 s->irq_routes = g_realloc(s->irq_routes, size); 1044 s->nr_allocated_irq_routes = n; 1045 } 1046 n = s->irq_routes->nr++; 1047 new = &s->irq_routes->entries[n]; 1048 1049 *new = *entry; 1050 1051 set_gsi(s, entry->gsi); 1052 } 1053 1054 static int kvm_update_routing_entry(KVMState *s, 1055 struct kvm_irq_routing_entry *new_entry) 1056 { 1057 struct kvm_irq_routing_entry *entry; 1058 int n; 1059 1060 for (n = 0; n < s->irq_routes->nr; n++) { 1061 entry = &s->irq_routes->entries[n]; 1062 if (entry->gsi != new_entry->gsi) { 1063 continue; 1064 } 1065 1066 if(!memcmp(entry, new_entry, sizeof *entry)) { 1067 return 0; 1068 } 1069 1070 *entry = *new_entry; 1071 1072 return 0; 1073 } 1074 1075 return -ESRCH; 1076 } 1077 1078 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1079 { 1080 struct kvm_irq_routing_entry e = {}; 1081 1082 assert(pin < s->gsi_count); 1083 1084 e.gsi = irq; 1085 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1086 e.flags = 0; 1087 e.u.irqchip.irqchip = irqchip; 1088 e.u.irqchip.pin = pin; 1089 kvm_add_routing_entry(s, &e); 1090 } 1091 1092 void kvm_irqchip_release_virq(KVMState *s, int virq) 1093 { 1094 struct kvm_irq_routing_entry *e; 1095 int i; 1096 1097 if (kvm_gsi_direct_mapping()) { 1098 return; 1099 } 1100 1101 for (i = 0; i < s->irq_routes->nr; i++) { 1102 e = &s->irq_routes->entries[i]; 1103 if (e->gsi == virq) { 1104 s->irq_routes->nr--; 1105 *e = s->irq_routes->entries[s->irq_routes->nr]; 1106 } 1107 } 1108 clear_gsi(s, virq); 1109 kvm_arch_release_virq_post(virq); 1110 trace_kvm_irqchip_release_virq(virq); 1111 } 1112 1113 static unsigned int kvm_hash_msi(uint32_t data) 1114 { 1115 /* This is optimized for IA32 MSI layout. However, no other arch shall 1116 * repeat the mistake of not providing a direct MSI injection API. */ 1117 return data & 0xff; 1118 } 1119 1120 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1121 { 1122 KVMMSIRoute *route, *next; 1123 unsigned int hash; 1124 1125 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1126 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1127 kvm_irqchip_release_virq(s, route->kroute.gsi); 1128 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1129 g_free(route); 1130 } 1131 } 1132 } 1133 1134 static int kvm_irqchip_get_virq(KVMState *s) 1135 { 1136 int next_virq; 1137 1138 /* 1139 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1140 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1141 * number can succeed even though a new route entry cannot be added. 1142 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1143 */ 1144 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1145 kvm_flush_dynamic_msi_routes(s); 1146 } 1147 1148 /* Return the lowest unused GSI in the bitmap */ 1149 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1150 if (next_virq >= s->gsi_count) { 1151 return -ENOSPC; 1152 } else { 1153 return next_virq; 1154 } 1155 } 1156 1157 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1158 { 1159 unsigned int hash = kvm_hash_msi(msg.data); 1160 KVMMSIRoute *route; 1161 1162 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1163 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1164 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1165 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1166 return route; 1167 } 1168 } 1169 return NULL; 1170 } 1171 1172 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1173 { 1174 struct kvm_msi msi; 1175 KVMMSIRoute *route; 1176 1177 if (kvm_direct_msi_allowed) { 1178 msi.address_lo = (uint32_t)msg.address; 1179 msi.address_hi = msg.address >> 32; 1180 msi.data = le32_to_cpu(msg.data); 1181 msi.flags = 0; 1182 memset(msi.pad, 0, sizeof(msi.pad)); 1183 1184 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1185 } 1186 1187 route = kvm_lookup_msi_route(s, msg); 1188 if (!route) { 1189 int virq; 1190 1191 virq = kvm_irqchip_get_virq(s); 1192 if (virq < 0) { 1193 return virq; 1194 } 1195 1196 route = g_malloc0(sizeof(KVMMSIRoute)); 1197 route->kroute.gsi = virq; 1198 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1199 route->kroute.flags = 0; 1200 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1201 route->kroute.u.msi.address_hi = msg.address >> 32; 1202 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1203 1204 kvm_add_routing_entry(s, &route->kroute); 1205 kvm_irqchip_commit_routes(s); 1206 1207 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1208 entry); 1209 } 1210 1211 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1212 1213 return kvm_set_irq(s, route->kroute.gsi, 1); 1214 } 1215 1216 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1217 { 1218 struct kvm_irq_routing_entry kroute = {}; 1219 int virq; 1220 MSIMessage msg = {0, 0}; 1221 1222 if (pci_available && dev) { 1223 msg = pci_get_msi_message(dev, vector); 1224 } 1225 1226 if (kvm_gsi_direct_mapping()) { 1227 return kvm_arch_msi_data_to_gsi(msg.data); 1228 } 1229 1230 if (!kvm_gsi_routing_enabled()) { 1231 return -ENOSYS; 1232 } 1233 1234 virq = kvm_irqchip_get_virq(s); 1235 if (virq < 0) { 1236 return virq; 1237 } 1238 1239 kroute.gsi = virq; 1240 kroute.type = KVM_IRQ_ROUTING_MSI; 1241 kroute.flags = 0; 1242 kroute.u.msi.address_lo = (uint32_t)msg.address; 1243 kroute.u.msi.address_hi = msg.address >> 32; 1244 kroute.u.msi.data = le32_to_cpu(msg.data); 1245 if (pci_available && kvm_msi_devid_required()) { 1246 kroute.flags = KVM_MSI_VALID_DEVID; 1247 kroute.u.msi.devid = pci_requester_id(dev); 1248 } 1249 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1250 kvm_irqchip_release_virq(s, virq); 1251 return -EINVAL; 1252 } 1253 1254 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1255 vector, virq); 1256 1257 kvm_add_routing_entry(s, &kroute); 1258 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1259 kvm_irqchip_commit_routes(s); 1260 1261 return virq; 1262 } 1263 1264 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1265 PCIDevice *dev) 1266 { 1267 struct kvm_irq_routing_entry kroute = {}; 1268 1269 if (kvm_gsi_direct_mapping()) { 1270 return 0; 1271 } 1272 1273 if (!kvm_irqchip_in_kernel()) { 1274 return -ENOSYS; 1275 } 1276 1277 kroute.gsi = virq; 1278 kroute.type = KVM_IRQ_ROUTING_MSI; 1279 kroute.flags = 0; 1280 kroute.u.msi.address_lo = (uint32_t)msg.address; 1281 kroute.u.msi.address_hi = msg.address >> 32; 1282 kroute.u.msi.data = le32_to_cpu(msg.data); 1283 if (pci_available && kvm_msi_devid_required()) { 1284 kroute.flags = KVM_MSI_VALID_DEVID; 1285 kroute.u.msi.devid = pci_requester_id(dev); 1286 } 1287 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1288 return -EINVAL; 1289 } 1290 1291 trace_kvm_irqchip_update_msi_route(virq); 1292 1293 return kvm_update_routing_entry(s, &kroute); 1294 } 1295 1296 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1297 bool assign) 1298 { 1299 struct kvm_irqfd irqfd = { 1300 .fd = fd, 1301 .gsi = virq, 1302 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1303 }; 1304 1305 if (rfd != -1) { 1306 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1307 irqfd.resamplefd = rfd; 1308 } 1309 1310 if (!kvm_irqfds_enabled()) { 1311 return -ENOSYS; 1312 } 1313 1314 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1315 } 1316 1317 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1318 { 1319 struct kvm_irq_routing_entry kroute = {}; 1320 int virq; 1321 1322 if (!kvm_gsi_routing_enabled()) { 1323 return -ENOSYS; 1324 } 1325 1326 virq = kvm_irqchip_get_virq(s); 1327 if (virq < 0) { 1328 return virq; 1329 } 1330 1331 kroute.gsi = virq; 1332 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1333 kroute.flags = 0; 1334 kroute.u.adapter.summary_addr = adapter->summary_addr; 1335 kroute.u.adapter.ind_addr = adapter->ind_addr; 1336 kroute.u.adapter.summary_offset = adapter->summary_offset; 1337 kroute.u.adapter.ind_offset = adapter->ind_offset; 1338 kroute.u.adapter.adapter_id = adapter->adapter_id; 1339 1340 kvm_add_routing_entry(s, &kroute); 1341 1342 return virq; 1343 } 1344 1345 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1346 { 1347 struct kvm_irq_routing_entry kroute = {}; 1348 int virq; 1349 1350 if (!kvm_gsi_routing_enabled()) { 1351 return -ENOSYS; 1352 } 1353 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1354 return -ENOSYS; 1355 } 1356 virq = kvm_irqchip_get_virq(s); 1357 if (virq < 0) { 1358 return virq; 1359 } 1360 1361 kroute.gsi = virq; 1362 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1363 kroute.flags = 0; 1364 kroute.u.hv_sint.vcpu = vcpu; 1365 kroute.u.hv_sint.sint = sint; 1366 1367 kvm_add_routing_entry(s, &kroute); 1368 kvm_irqchip_commit_routes(s); 1369 1370 return virq; 1371 } 1372 1373 #else /* !KVM_CAP_IRQ_ROUTING */ 1374 1375 void kvm_init_irq_routing(KVMState *s) 1376 { 1377 } 1378 1379 void kvm_irqchip_release_virq(KVMState *s, int virq) 1380 { 1381 } 1382 1383 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1384 { 1385 abort(); 1386 } 1387 1388 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1389 { 1390 return -ENOSYS; 1391 } 1392 1393 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1394 { 1395 return -ENOSYS; 1396 } 1397 1398 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1399 { 1400 return -ENOSYS; 1401 } 1402 1403 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1404 { 1405 abort(); 1406 } 1407 1408 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1409 { 1410 return -ENOSYS; 1411 } 1412 #endif /* !KVM_CAP_IRQ_ROUTING */ 1413 1414 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1415 EventNotifier *rn, int virq) 1416 { 1417 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1418 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1419 } 1420 1421 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1422 int virq) 1423 { 1424 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1425 false); 1426 } 1427 1428 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1429 EventNotifier *rn, qemu_irq irq) 1430 { 1431 gpointer key, gsi; 1432 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1433 1434 if (!found) { 1435 return -ENXIO; 1436 } 1437 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1438 } 1439 1440 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1441 qemu_irq irq) 1442 { 1443 gpointer key, gsi; 1444 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1445 1446 if (!found) { 1447 return -ENXIO; 1448 } 1449 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1450 } 1451 1452 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1453 { 1454 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1455 } 1456 1457 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1458 { 1459 int ret; 1460 1461 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1462 ; 1463 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1464 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1465 if (ret < 0) { 1466 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1467 exit(1); 1468 } 1469 } else { 1470 return; 1471 } 1472 1473 /* First probe and see if there's a arch-specific hook to create the 1474 * in-kernel irqchip for us */ 1475 ret = kvm_arch_irqchip_create(machine, s); 1476 if (ret == 0) { 1477 if (machine_kernel_irqchip_split(machine)) { 1478 perror("Split IRQ chip mode not supported."); 1479 exit(1); 1480 } else { 1481 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1482 } 1483 } 1484 if (ret < 0) { 1485 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1486 exit(1); 1487 } 1488 1489 kvm_kernel_irqchip = true; 1490 /* If we have an in-kernel IRQ chip then we must have asynchronous 1491 * interrupt delivery (though the reverse is not necessarily true) 1492 */ 1493 kvm_async_interrupts_allowed = true; 1494 kvm_halt_in_kernel_allowed = true; 1495 1496 kvm_init_irq_routing(s); 1497 1498 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1499 } 1500 1501 /* Find number of supported CPUs using the recommended 1502 * procedure from the kernel API documentation to cope with 1503 * older kernels that may be missing capabilities. 1504 */ 1505 static int kvm_recommended_vcpus(KVMState *s) 1506 { 1507 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1508 return (ret) ? ret : 4; 1509 } 1510 1511 static int kvm_max_vcpus(KVMState *s) 1512 { 1513 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1514 return (ret) ? ret : kvm_recommended_vcpus(s); 1515 } 1516 1517 static int kvm_max_vcpu_id(KVMState *s) 1518 { 1519 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1520 return (ret) ? ret : kvm_max_vcpus(s); 1521 } 1522 1523 bool kvm_vcpu_id_is_valid(int vcpu_id) 1524 { 1525 KVMState *s = KVM_STATE(current_machine->accelerator); 1526 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1527 } 1528 1529 static int kvm_init(MachineState *ms) 1530 { 1531 MachineClass *mc = MACHINE_GET_CLASS(ms); 1532 static const char upgrade_note[] = 1533 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1534 "(see http://sourceforge.net/projects/kvm).\n"; 1535 struct { 1536 const char *name; 1537 int num; 1538 } num_cpus[] = { 1539 { "SMP", smp_cpus }, 1540 { "hotpluggable", max_cpus }, 1541 { NULL, } 1542 }, *nc = num_cpus; 1543 int soft_vcpus_limit, hard_vcpus_limit; 1544 KVMState *s; 1545 const KVMCapabilityInfo *missing_cap; 1546 int ret; 1547 int type = 0; 1548 const char *kvm_type; 1549 1550 s = KVM_STATE(ms->accelerator); 1551 1552 /* 1553 * On systems where the kernel can support different base page 1554 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1555 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1556 * page size for the system though. 1557 */ 1558 assert(TARGET_PAGE_SIZE <= getpagesize()); 1559 1560 s->sigmask_len = 8; 1561 1562 #ifdef KVM_CAP_SET_GUEST_DEBUG 1563 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1564 #endif 1565 QLIST_INIT(&s->kvm_parked_vcpus); 1566 s->vmfd = -1; 1567 s->fd = qemu_open("/dev/kvm", O_RDWR); 1568 if (s->fd == -1) { 1569 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1570 ret = -errno; 1571 goto err; 1572 } 1573 1574 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1575 if (ret < KVM_API_VERSION) { 1576 if (ret >= 0) { 1577 ret = -EINVAL; 1578 } 1579 fprintf(stderr, "kvm version too old\n"); 1580 goto err; 1581 } 1582 1583 if (ret > KVM_API_VERSION) { 1584 ret = -EINVAL; 1585 fprintf(stderr, "kvm version not supported\n"); 1586 goto err; 1587 } 1588 1589 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1590 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1591 1592 /* If unspecified, use the default value */ 1593 if (!s->nr_slots) { 1594 s->nr_slots = 32; 1595 } 1596 1597 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1598 if (mc->kvm_type) { 1599 type = mc->kvm_type(ms, kvm_type); 1600 } else if (kvm_type) { 1601 ret = -EINVAL; 1602 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1603 goto err; 1604 } 1605 1606 do { 1607 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1608 } while (ret == -EINTR); 1609 1610 if (ret < 0) { 1611 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1612 strerror(-ret)); 1613 1614 #ifdef TARGET_S390X 1615 if (ret == -EINVAL) { 1616 fprintf(stderr, 1617 "Host kernel setup problem detected. Please verify:\n"); 1618 fprintf(stderr, "- for kernels supporting the switch_amode or" 1619 " user_mode parameters, whether\n"); 1620 fprintf(stderr, 1621 " user space is running in primary address space\n"); 1622 fprintf(stderr, 1623 "- for kernels supporting the vm.allocate_pgste sysctl, " 1624 "whether it is enabled\n"); 1625 } 1626 #endif 1627 goto err; 1628 } 1629 1630 s->vmfd = ret; 1631 1632 /* check the vcpu limits */ 1633 soft_vcpus_limit = kvm_recommended_vcpus(s); 1634 hard_vcpus_limit = kvm_max_vcpus(s); 1635 1636 while (nc->name) { 1637 if (nc->num > soft_vcpus_limit) { 1638 warn_report("Number of %s cpus requested (%d) exceeds " 1639 "the recommended cpus supported by KVM (%d)", 1640 nc->name, nc->num, soft_vcpus_limit); 1641 1642 if (nc->num > hard_vcpus_limit) { 1643 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1644 "the maximum cpus supported by KVM (%d)\n", 1645 nc->name, nc->num, hard_vcpus_limit); 1646 exit(1); 1647 } 1648 } 1649 nc++; 1650 } 1651 1652 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1653 if (!missing_cap) { 1654 missing_cap = 1655 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1656 } 1657 if (missing_cap) { 1658 ret = -EINVAL; 1659 fprintf(stderr, "kvm does not support %s\n%s", 1660 missing_cap->name, upgrade_note); 1661 goto err; 1662 } 1663 1664 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1665 s->coalesced_pio = s->coalesced_mmio && 1666 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1667 1668 #ifdef KVM_CAP_VCPU_EVENTS 1669 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1670 #endif 1671 1672 s->robust_singlestep = 1673 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1674 1675 #ifdef KVM_CAP_DEBUGREGS 1676 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1677 #endif 1678 1679 #ifdef KVM_CAP_IRQ_ROUTING 1680 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1681 #endif 1682 1683 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1684 1685 s->irq_set_ioctl = KVM_IRQ_LINE; 1686 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1687 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1688 } 1689 1690 kvm_readonly_mem_allowed = 1691 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1692 1693 kvm_eventfds_allowed = 1694 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1695 1696 kvm_irqfds_allowed = 1697 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1698 1699 kvm_resamplefds_allowed = 1700 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1701 1702 kvm_vm_attributes_allowed = 1703 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1704 1705 kvm_ioeventfd_any_length_allowed = 1706 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1707 1708 kvm_state = s; 1709 1710 /* 1711 * if memory encryption object is specified then initialize the memory 1712 * encryption context. 1713 */ 1714 if (ms->memory_encryption) { 1715 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 1716 if (!kvm_state->memcrypt_handle) { 1717 ret = -1; 1718 goto err; 1719 } 1720 1721 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 1722 } 1723 1724 ret = kvm_arch_init(ms, s); 1725 if (ret < 0) { 1726 goto err; 1727 } 1728 1729 if (machine_kernel_irqchip_allowed(ms)) { 1730 kvm_irqchip_create(ms, s); 1731 } 1732 1733 if (kvm_eventfds_allowed) { 1734 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1735 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1736 } 1737 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 1738 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 1739 1740 kvm_memory_listener_register(s, &s->memory_listener, 1741 &address_space_memory, 0); 1742 memory_listener_register(&kvm_io_listener, 1743 &address_space_io); 1744 memory_listener_register(&kvm_coalesced_pio_listener, 1745 &address_space_io); 1746 1747 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1748 1749 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 1750 if (!s->sync_mmu) { 1751 qemu_balloon_inhibit(true); 1752 } 1753 1754 return 0; 1755 1756 err: 1757 assert(ret < 0); 1758 if (s->vmfd >= 0) { 1759 close(s->vmfd); 1760 } 1761 if (s->fd != -1) { 1762 close(s->fd); 1763 } 1764 g_free(s->memory_listener.slots); 1765 1766 return ret; 1767 } 1768 1769 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1770 { 1771 s->sigmask_len = sigmask_len; 1772 } 1773 1774 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1775 int size, uint32_t count) 1776 { 1777 int i; 1778 uint8_t *ptr = data; 1779 1780 for (i = 0; i < count; i++) { 1781 address_space_rw(&address_space_io, port, attrs, 1782 ptr, size, 1783 direction == KVM_EXIT_IO_OUT); 1784 ptr += size; 1785 } 1786 } 1787 1788 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1789 { 1790 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1791 run->internal.suberror); 1792 1793 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1794 int i; 1795 1796 for (i = 0; i < run->internal.ndata; ++i) { 1797 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1798 i, (uint64_t)run->internal.data[i]); 1799 } 1800 } 1801 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1802 fprintf(stderr, "emulation failure\n"); 1803 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1804 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 1805 return EXCP_INTERRUPT; 1806 } 1807 } 1808 /* FIXME: Should trigger a qmp message to let management know 1809 * something went wrong. 1810 */ 1811 return -1; 1812 } 1813 1814 void kvm_flush_coalesced_mmio_buffer(void) 1815 { 1816 KVMState *s = kvm_state; 1817 1818 if (s->coalesced_flush_in_progress) { 1819 return; 1820 } 1821 1822 s->coalesced_flush_in_progress = true; 1823 1824 if (s->coalesced_mmio_ring) { 1825 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1826 while (ring->first != ring->last) { 1827 struct kvm_coalesced_mmio *ent; 1828 1829 ent = &ring->coalesced_mmio[ring->first]; 1830 1831 if (ent->pio == 1) { 1832 address_space_rw(&address_space_io, ent->phys_addr, 1833 MEMTXATTRS_UNSPECIFIED, ent->data, 1834 ent->len, true); 1835 } else { 1836 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1837 } 1838 smp_wmb(); 1839 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1840 } 1841 } 1842 1843 s->coalesced_flush_in_progress = false; 1844 } 1845 1846 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1847 { 1848 if (!cpu->vcpu_dirty) { 1849 kvm_arch_get_registers(cpu); 1850 cpu->vcpu_dirty = true; 1851 } 1852 } 1853 1854 void kvm_cpu_synchronize_state(CPUState *cpu) 1855 { 1856 if (!cpu->vcpu_dirty) { 1857 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1858 } 1859 } 1860 1861 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1862 { 1863 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1864 cpu->vcpu_dirty = false; 1865 } 1866 1867 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1868 { 1869 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1870 } 1871 1872 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1873 { 1874 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1875 cpu->vcpu_dirty = false; 1876 } 1877 1878 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1879 { 1880 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1881 } 1882 1883 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1884 { 1885 cpu->vcpu_dirty = true; 1886 } 1887 1888 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1889 { 1890 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1891 } 1892 1893 #ifdef KVM_HAVE_MCE_INJECTION 1894 static __thread void *pending_sigbus_addr; 1895 static __thread int pending_sigbus_code; 1896 static __thread bool have_sigbus_pending; 1897 #endif 1898 1899 static void kvm_cpu_kick(CPUState *cpu) 1900 { 1901 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1902 } 1903 1904 static void kvm_cpu_kick_self(void) 1905 { 1906 if (kvm_immediate_exit) { 1907 kvm_cpu_kick(current_cpu); 1908 } else { 1909 qemu_cpu_kick_self(); 1910 } 1911 } 1912 1913 static void kvm_eat_signals(CPUState *cpu) 1914 { 1915 struct timespec ts = { 0, 0 }; 1916 siginfo_t siginfo; 1917 sigset_t waitset; 1918 sigset_t chkset; 1919 int r; 1920 1921 if (kvm_immediate_exit) { 1922 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1923 /* Write kvm_run->immediate_exit before the cpu->exit_request 1924 * write in kvm_cpu_exec. 1925 */ 1926 smp_wmb(); 1927 return; 1928 } 1929 1930 sigemptyset(&waitset); 1931 sigaddset(&waitset, SIG_IPI); 1932 1933 do { 1934 r = sigtimedwait(&waitset, &siginfo, &ts); 1935 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1936 perror("sigtimedwait"); 1937 exit(1); 1938 } 1939 1940 r = sigpending(&chkset); 1941 if (r == -1) { 1942 perror("sigpending"); 1943 exit(1); 1944 } 1945 } while (sigismember(&chkset, SIG_IPI)); 1946 } 1947 1948 int kvm_cpu_exec(CPUState *cpu) 1949 { 1950 struct kvm_run *run = cpu->kvm_run; 1951 int ret, run_ret; 1952 1953 DPRINTF("kvm_cpu_exec()\n"); 1954 1955 if (kvm_arch_process_async_events(cpu)) { 1956 atomic_set(&cpu->exit_request, 0); 1957 return EXCP_HLT; 1958 } 1959 1960 qemu_mutex_unlock_iothread(); 1961 cpu_exec_start(cpu); 1962 1963 do { 1964 MemTxAttrs attrs; 1965 1966 if (cpu->vcpu_dirty) { 1967 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1968 cpu->vcpu_dirty = false; 1969 } 1970 1971 kvm_arch_pre_run(cpu, run); 1972 if (atomic_read(&cpu->exit_request)) { 1973 DPRINTF("interrupt exit requested\n"); 1974 /* 1975 * KVM requires us to reenter the kernel after IO exits to complete 1976 * instruction emulation. This self-signal will ensure that we 1977 * leave ASAP again. 1978 */ 1979 kvm_cpu_kick_self(); 1980 } 1981 1982 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1983 * Matching barrier in kvm_eat_signals. 1984 */ 1985 smp_rmb(); 1986 1987 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1988 1989 attrs = kvm_arch_post_run(cpu, run); 1990 1991 #ifdef KVM_HAVE_MCE_INJECTION 1992 if (unlikely(have_sigbus_pending)) { 1993 qemu_mutex_lock_iothread(); 1994 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1995 pending_sigbus_addr); 1996 have_sigbus_pending = false; 1997 qemu_mutex_unlock_iothread(); 1998 } 1999 #endif 2000 2001 if (run_ret < 0) { 2002 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2003 DPRINTF("io window exit\n"); 2004 kvm_eat_signals(cpu); 2005 ret = EXCP_INTERRUPT; 2006 break; 2007 } 2008 fprintf(stderr, "error: kvm run failed %s\n", 2009 strerror(-run_ret)); 2010 #ifdef TARGET_PPC 2011 if (run_ret == -EBUSY) { 2012 fprintf(stderr, 2013 "This is probably because your SMT is enabled.\n" 2014 "VCPU can only run on primary threads with all " 2015 "secondary threads offline.\n"); 2016 } 2017 #endif 2018 ret = -1; 2019 break; 2020 } 2021 2022 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2023 switch (run->exit_reason) { 2024 case KVM_EXIT_IO: 2025 DPRINTF("handle_io\n"); 2026 /* Called outside BQL */ 2027 kvm_handle_io(run->io.port, attrs, 2028 (uint8_t *)run + run->io.data_offset, 2029 run->io.direction, 2030 run->io.size, 2031 run->io.count); 2032 ret = 0; 2033 break; 2034 case KVM_EXIT_MMIO: 2035 DPRINTF("handle_mmio\n"); 2036 /* Called outside BQL */ 2037 address_space_rw(&address_space_memory, 2038 run->mmio.phys_addr, attrs, 2039 run->mmio.data, 2040 run->mmio.len, 2041 run->mmio.is_write); 2042 ret = 0; 2043 break; 2044 case KVM_EXIT_IRQ_WINDOW_OPEN: 2045 DPRINTF("irq_window_open\n"); 2046 ret = EXCP_INTERRUPT; 2047 break; 2048 case KVM_EXIT_SHUTDOWN: 2049 DPRINTF("shutdown\n"); 2050 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2051 ret = EXCP_INTERRUPT; 2052 break; 2053 case KVM_EXIT_UNKNOWN: 2054 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2055 (uint64_t)run->hw.hardware_exit_reason); 2056 ret = -1; 2057 break; 2058 case KVM_EXIT_INTERNAL_ERROR: 2059 ret = kvm_handle_internal_error(cpu, run); 2060 break; 2061 case KVM_EXIT_SYSTEM_EVENT: 2062 switch (run->system_event.type) { 2063 case KVM_SYSTEM_EVENT_SHUTDOWN: 2064 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2065 ret = EXCP_INTERRUPT; 2066 break; 2067 case KVM_SYSTEM_EVENT_RESET: 2068 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2069 ret = EXCP_INTERRUPT; 2070 break; 2071 case KVM_SYSTEM_EVENT_CRASH: 2072 kvm_cpu_synchronize_state(cpu); 2073 qemu_mutex_lock_iothread(); 2074 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2075 qemu_mutex_unlock_iothread(); 2076 ret = 0; 2077 break; 2078 default: 2079 DPRINTF("kvm_arch_handle_exit\n"); 2080 ret = kvm_arch_handle_exit(cpu, run); 2081 break; 2082 } 2083 break; 2084 default: 2085 DPRINTF("kvm_arch_handle_exit\n"); 2086 ret = kvm_arch_handle_exit(cpu, run); 2087 break; 2088 } 2089 } while (ret == 0); 2090 2091 cpu_exec_end(cpu); 2092 qemu_mutex_lock_iothread(); 2093 2094 if (ret < 0) { 2095 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2096 vm_stop(RUN_STATE_INTERNAL_ERROR); 2097 } 2098 2099 atomic_set(&cpu->exit_request, 0); 2100 return ret; 2101 } 2102 2103 int kvm_ioctl(KVMState *s, int type, ...) 2104 { 2105 int ret; 2106 void *arg; 2107 va_list ap; 2108 2109 va_start(ap, type); 2110 arg = va_arg(ap, void *); 2111 va_end(ap); 2112 2113 trace_kvm_ioctl(type, arg); 2114 ret = ioctl(s->fd, type, arg); 2115 if (ret == -1) { 2116 ret = -errno; 2117 } 2118 return ret; 2119 } 2120 2121 int kvm_vm_ioctl(KVMState *s, int type, ...) 2122 { 2123 int ret; 2124 void *arg; 2125 va_list ap; 2126 2127 va_start(ap, type); 2128 arg = va_arg(ap, void *); 2129 va_end(ap); 2130 2131 trace_kvm_vm_ioctl(type, arg); 2132 ret = ioctl(s->vmfd, type, arg); 2133 if (ret == -1) { 2134 ret = -errno; 2135 } 2136 return ret; 2137 } 2138 2139 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2140 { 2141 int ret; 2142 void *arg; 2143 va_list ap; 2144 2145 va_start(ap, type); 2146 arg = va_arg(ap, void *); 2147 va_end(ap); 2148 2149 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2150 ret = ioctl(cpu->kvm_fd, type, arg); 2151 if (ret == -1) { 2152 ret = -errno; 2153 } 2154 return ret; 2155 } 2156 2157 int kvm_device_ioctl(int fd, int type, ...) 2158 { 2159 int ret; 2160 void *arg; 2161 va_list ap; 2162 2163 va_start(ap, type); 2164 arg = va_arg(ap, void *); 2165 va_end(ap); 2166 2167 trace_kvm_device_ioctl(fd, type, arg); 2168 ret = ioctl(fd, type, arg); 2169 if (ret == -1) { 2170 ret = -errno; 2171 } 2172 return ret; 2173 } 2174 2175 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2176 { 2177 int ret; 2178 struct kvm_device_attr attribute = { 2179 .group = group, 2180 .attr = attr, 2181 }; 2182 2183 if (!kvm_vm_attributes_allowed) { 2184 return 0; 2185 } 2186 2187 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2188 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2189 return ret ? 0 : 1; 2190 } 2191 2192 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2193 { 2194 struct kvm_device_attr attribute = { 2195 .group = group, 2196 .attr = attr, 2197 .flags = 0, 2198 }; 2199 2200 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2201 } 2202 2203 int kvm_device_access(int fd, int group, uint64_t attr, 2204 void *val, bool write, Error **errp) 2205 { 2206 struct kvm_device_attr kvmattr; 2207 int err; 2208 2209 kvmattr.flags = 0; 2210 kvmattr.group = group; 2211 kvmattr.attr = attr; 2212 kvmattr.addr = (uintptr_t)val; 2213 2214 err = kvm_device_ioctl(fd, 2215 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2216 &kvmattr); 2217 if (err < 0) { 2218 error_setg_errno(errp, -err, 2219 "KVM_%s_DEVICE_ATTR failed: Group %d " 2220 "attr 0x%016" PRIx64, 2221 write ? "SET" : "GET", group, attr); 2222 } 2223 return err; 2224 } 2225 2226 bool kvm_has_sync_mmu(void) 2227 { 2228 return kvm_state->sync_mmu; 2229 } 2230 2231 int kvm_has_vcpu_events(void) 2232 { 2233 return kvm_state->vcpu_events; 2234 } 2235 2236 int kvm_has_robust_singlestep(void) 2237 { 2238 return kvm_state->robust_singlestep; 2239 } 2240 2241 int kvm_has_debugregs(void) 2242 { 2243 return kvm_state->debugregs; 2244 } 2245 2246 int kvm_has_many_ioeventfds(void) 2247 { 2248 if (!kvm_enabled()) { 2249 return 0; 2250 } 2251 return kvm_state->many_ioeventfds; 2252 } 2253 2254 int kvm_has_gsi_routing(void) 2255 { 2256 #ifdef KVM_CAP_IRQ_ROUTING 2257 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2258 #else 2259 return false; 2260 #endif 2261 } 2262 2263 int kvm_has_intx_set_mask(void) 2264 { 2265 return kvm_state->intx_set_mask; 2266 } 2267 2268 bool kvm_arm_supports_user_irq(void) 2269 { 2270 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2271 } 2272 2273 #ifdef KVM_CAP_SET_GUEST_DEBUG 2274 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2275 target_ulong pc) 2276 { 2277 struct kvm_sw_breakpoint *bp; 2278 2279 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2280 if (bp->pc == pc) { 2281 return bp; 2282 } 2283 } 2284 return NULL; 2285 } 2286 2287 int kvm_sw_breakpoints_active(CPUState *cpu) 2288 { 2289 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2290 } 2291 2292 struct kvm_set_guest_debug_data { 2293 struct kvm_guest_debug dbg; 2294 int err; 2295 }; 2296 2297 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2298 { 2299 struct kvm_set_guest_debug_data *dbg_data = 2300 (struct kvm_set_guest_debug_data *) data.host_ptr; 2301 2302 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2303 &dbg_data->dbg); 2304 } 2305 2306 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2307 { 2308 struct kvm_set_guest_debug_data data; 2309 2310 data.dbg.control = reinject_trap; 2311 2312 if (cpu->singlestep_enabled) { 2313 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2314 } 2315 kvm_arch_update_guest_debug(cpu, &data.dbg); 2316 2317 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2318 RUN_ON_CPU_HOST_PTR(&data)); 2319 return data.err; 2320 } 2321 2322 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2323 target_ulong len, int type) 2324 { 2325 struct kvm_sw_breakpoint *bp; 2326 int err; 2327 2328 if (type == GDB_BREAKPOINT_SW) { 2329 bp = kvm_find_sw_breakpoint(cpu, addr); 2330 if (bp) { 2331 bp->use_count++; 2332 return 0; 2333 } 2334 2335 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2336 bp->pc = addr; 2337 bp->use_count = 1; 2338 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2339 if (err) { 2340 g_free(bp); 2341 return err; 2342 } 2343 2344 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2345 } else { 2346 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2347 if (err) { 2348 return err; 2349 } 2350 } 2351 2352 CPU_FOREACH(cpu) { 2353 err = kvm_update_guest_debug(cpu, 0); 2354 if (err) { 2355 return err; 2356 } 2357 } 2358 return 0; 2359 } 2360 2361 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2362 target_ulong len, int type) 2363 { 2364 struct kvm_sw_breakpoint *bp; 2365 int err; 2366 2367 if (type == GDB_BREAKPOINT_SW) { 2368 bp = kvm_find_sw_breakpoint(cpu, addr); 2369 if (!bp) { 2370 return -ENOENT; 2371 } 2372 2373 if (bp->use_count > 1) { 2374 bp->use_count--; 2375 return 0; 2376 } 2377 2378 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2379 if (err) { 2380 return err; 2381 } 2382 2383 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2384 g_free(bp); 2385 } else { 2386 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2387 if (err) { 2388 return err; 2389 } 2390 } 2391 2392 CPU_FOREACH(cpu) { 2393 err = kvm_update_guest_debug(cpu, 0); 2394 if (err) { 2395 return err; 2396 } 2397 } 2398 return 0; 2399 } 2400 2401 void kvm_remove_all_breakpoints(CPUState *cpu) 2402 { 2403 struct kvm_sw_breakpoint *bp, *next; 2404 KVMState *s = cpu->kvm_state; 2405 CPUState *tmpcpu; 2406 2407 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2408 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2409 /* Try harder to find a CPU that currently sees the breakpoint. */ 2410 CPU_FOREACH(tmpcpu) { 2411 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2412 break; 2413 } 2414 } 2415 } 2416 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2417 g_free(bp); 2418 } 2419 kvm_arch_remove_all_hw_breakpoints(); 2420 2421 CPU_FOREACH(cpu) { 2422 kvm_update_guest_debug(cpu, 0); 2423 } 2424 } 2425 2426 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2427 2428 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2429 { 2430 return -EINVAL; 2431 } 2432 2433 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2434 target_ulong len, int type) 2435 { 2436 return -EINVAL; 2437 } 2438 2439 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2440 target_ulong len, int type) 2441 { 2442 return -EINVAL; 2443 } 2444 2445 void kvm_remove_all_breakpoints(CPUState *cpu) 2446 { 2447 } 2448 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2449 2450 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2451 { 2452 KVMState *s = kvm_state; 2453 struct kvm_signal_mask *sigmask; 2454 int r; 2455 2456 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2457 2458 sigmask->len = s->sigmask_len; 2459 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2460 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2461 g_free(sigmask); 2462 2463 return r; 2464 } 2465 2466 static void kvm_ipi_signal(int sig) 2467 { 2468 if (current_cpu) { 2469 assert(kvm_immediate_exit); 2470 kvm_cpu_kick(current_cpu); 2471 } 2472 } 2473 2474 void kvm_init_cpu_signals(CPUState *cpu) 2475 { 2476 int r; 2477 sigset_t set; 2478 struct sigaction sigact; 2479 2480 memset(&sigact, 0, sizeof(sigact)); 2481 sigact.sa_handler = kvm_ipi_signal; 2482 sigaction(SIG_IPI, &sigact, NULL); 2483 2484 pthread_sigmask(SIG_BLOCK, NULL, &set); 2485 #if defined KVM_HAVE_MCE_INJECTION 2486 sigdelset(&set, SIGBUS); 2487 pthread_sigmask(SIG_SETMASK, &set, NULL); 2488 #endif 2489 sigdelset(&set, SIG_IPI); 2490 if (kvm_immediate_exit) { 2491 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2492 } else { 2493 r = kvm_set_signal_mask(cpu, &set); 2494 } 2495 if (r) { 2496 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2497 exit(1); 2498 } 2499 } 2500 2501 /* Called asynchronously in VCPU thread. */ 2502 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2503 { 2504 #ifdef KVM_HAVE_MCE_INJECTION 2505 if (have_sigbus_pending) { 2506 return 1; 2507 } 2508 have_sigbus_pending = true; 2509 pending_sigbus_addr = addr; 2510 pending_sigbus_code = code; 2511 atomic_set(&cpu->exit_request, 1); 2512 return 0; 2513 #else 2514 return 1; 2515 #endif 2516 } 2517 2518 /* Called synchronously (via signalfd) in main thread. */ 2519 int kvm_on_sigbus(int code, void *addr) 2520 { 2521 #ifdef KVM_HAVE_MCE_INJECTION 2522 /* Action required MCE kills the process if SIGBUS is blocked. Because 2523 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2524 * we can only get action optional here. 2525 */ 2526 assert(code != BUS_MCEERR_AR); 2527 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2528 return 0; 2529 #else 2530 return 1; 2531 #endif 2532 } 2533 2534 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2535 { 2536 int ret; 2537 struct kvm_create_device create_dev; 2538 2539 create_dev.type = type; 2540 create_dev.fd = -1; 2541 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2542 2543 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2544 return -ENOTSUP; 2545 } 2546 2547 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2548 if (ret) { 2549 return ret; 2550 } 2551 2552 return test ? 0 : create_dev.fd; 2553 } 2554 2555 bool kvm_device_supported(int vmfd, uint64_t type) 2556 { 2557 struct kvm_create_device create_dev = { 2558 .type = type, 2559 .fd = -1, 2560 .flags = KVM_CREATE_DEVICE_TEST, 2561 }; 2562 2563 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2564 return false; 2565 } 2566 2567 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2568 } 2569 2570 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2571 { 2572 struct kvm_one_reg reg; 2573 int r; 2574 2575 reg.id = id; 2576 reg.addr = (uintptr_t) source; 2577 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2578 if (r) { 2579 trace_kvm_failed_reg_set(id, strerror(-r)); 2580 } 2581 return r; 2582 } 2583 2584 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2585 { 2586 struct kvm_one_reg reg; 2587 int r; 2588 2589 reg.id = id; 2590 reg.addr = (uintptr_t) target; 2591 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2592 if (r) { 2593 trace_kvm_failed_reg_get(id, strerror(-r)); 2594 } 2595 return r; 2596 } 2597 2598 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2599 { 2600 AccelClass *ac = ACCEL_CLASS(oc); 2601 ac->name = "KVM"; 2602 ac->init_machine = kvm_init; 2603 ac->allowed = &kvm_allowed; 2604 } 2605 2606 static const TypeInfo kvm_accel_type = { 2607 .name = TYPE_KVM_ACCEL, 2608 .parent = TYPE_ACCEL, 2609 .class_init = kvm_accel_class_init, 2610 .instance_size = sizeof(KVMState), 2611 }; 2612 2613 static void kvm_type_init(void) 2614 { 2615 type_register_static(&kvm_accel_type); 2616 } 2617 2618 type_init(kvm_type_init); 2619