xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision dc8d6cf2033c813ade9863a926f2d71a22edd249)
1  /*
2   * QEMU KVM support
3   *
4   * Copyright IBM, Corp. 2008
5   *           Red Hat, Inc. 2008
6   *
7   * Authors:
8   *  Anthony Liguori   <aliguori@us.ibm.com>
9   *  Glauber Costa     <gcosta@redhat.com>
10   *
11   * This work is licensed under the terms of the GNU GPL, version 2 or later.
12   * See the COPYING file in the top-level directory.
13   *
14   */
15  
16  #include "qemu/osdep.h"
17  #include <sys/ioctl.h>
18  #include <poll.h>
19  
20  #include <linux/kvm.h>
21  
22  #include "qemu/atomic.h"
23  #include "qemu/option.h"
24  #include "qemu/config-file.h"
25  #include "qemu/error-report.h"
26  #include "qapi/error.h"
27  #include "hw/pci/msi.h"
28  #include "hw/pci/msix.h"
29  #include "hw/s390x/adapter.h"
30  #include "exec/gdbstub.h"
31  #include "sysemu/kvm_int.h"
32  #include "sysemu/runstate.h"
33  #include "sysemu/cpus.h"
34  #include "sysemu/accel-blocker.h"
35  #include "qemu/bswap.h"
36  #include "exec/memory.h"
37  #include "exec/ram_addr.h"
38  #include "qemu/event_notifier.h"
39  #include "qemu/main-loop.h"
40  #include "trace.h"
41  #include "hw/irq.h"
42  #include "qapi/visitor.h"
43  #include "qapi/qapi-types-common.h"
44  #include "qapi/qapi-visit-common.h"
45  #include "sysemu/reset.h"
46  #include "qemu/guest-random.h"
47  #include "sysemu/hw_accel.h"
48  #include "kvm-cpus.h"
49  #include "sysemu/dirtylimit.h"
50  #include "qemu/range.h"
51  
52  #include "hw/boards.h"
53  #include "sysemu/stats.h"
54  
55  /* This check must be after config-host.h is included */
56  #ifdef CONFIG_EVENTFD
57  #include <sys/eventfd.h>
58  #endif
59  
60  /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61   * need to use the real host PAGE_SIZE, as that's what KVM will use.
62   */
63  #ifdef PAGE_SIZE
64  #undef PAGE_SIZE
65  #endif
66  #define PAGE_SIZE qemu_real_host_page_size()
67  
68  #ifndef KVM_GUESTDBG_BLOCKIRQ
69  #define KVM_GUESTDBG_BLOCKIRQ 0
70  #endif
71  
72  //#define DEBUG_KVM
73  
74  #ifdef DEBUG_KVM
75  #define DPRINTF(fmt, ...) \
76      do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
77  #else
78  #define DPRINTF(fmt, ...) \
79      do { } while (0)
80  #endif
81  
82  struct KVMParkedVcpu {
83      unsigned long vcpu_id;
84      int kvm_fd;
85      QLIST_ENTRY(KVMParkedVcpu) node;
86  };
87  
88  KVMState *kvm_state;
89  bool kvm_kernel_irqchip;
90  bool kvm_split_irqchip;
91  bool kvm_async_interrupts_allowed;
92  bool kvm_halt_in_kernel_allowed;
93  bool kvm_eventfds_allowed;
94  bool kvm_irqfds_allowed;
95  bool kvm_resamplefds_allowed;
96  bool kvm_msi_via_irqfd_allowed;
97  bool kvm_gsi_routing_allowed;
98  bool kvm_gsi_direct_mapping;
99  bool kvm_allowed;
100  bool kvm_readonly_mem_allowed;
101  bool kvm_vm_attributes_allowed;
102  bool kvm_direct_msi_allowed;
103  bool kvm_ioeventfd_any_length_allowed;
104  bool kvm_msi_use_devid;
105  bool kvm_has_guest_debug;
106  static int kvm_sstep_flags;
107  static bool kvm_immediate_exit;
108  static hwaddr kvm_max_slot_size = ~0;
109  
110  static const KVMCapabilityInfo kvm_required_capabilites[] = {
111      KVM_CAP_INFO(USER_MEMORY),
112      KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
113      KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
114      KVM_CAP_LAST_INFO
115  };
116  
117  static NotifierList kvm_irqchip_change_notifiers =
118      NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
119  
120  struct KVMResampleFd {
121      int gsi;
122      EventNotifier *resample_event;
123      QLIST_ENTRY(KVMResampleFd) node;
124  };
125  typedef struct KVMResampleFd KVMResampleFd;
126  
127  /*
128   * Only used with split irqchip where we need to do the resample fd
129   * kick for the kernel from userspace.
130   */
131  static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
132      QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
133  
134  static QemuMutex kml_slots_lock;
135  
136  #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
137  #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
138  
139  static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
140  
141  static inline void kvm_resample_fd_remove(int gsi)
142  {
143      KVMResampleFd *rfd;
144  
145      QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
146          if (rfd->gsi == gsi) {
147              QLIST_REMOVE(rfd, node);
148              g_free(rfd);
149              break;
150          }
151      }
152  }
153  
154  static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
155  {
156      KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
157  
158      rfd->gsi = gsi;
159      rfd->resample_event = event;
160  
161      QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
162  }
163  
164  void kvm_resample_fd_notify(int gsi)
165  {
166      KVMResampleFd *rfd;
167  
168      QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
169          if (rfd->gsi == gsi) {
170              event_notifier_set(rfd->resample_event);
171              trace_kvm_resample_fd_notify(gsi);
172              return;
173          }
174      }
175  }
176  
177  int kvm_get_max_memslots(void)
178  {
179      KVMState *s = KVM_STATE(current_accel());
180  
181      return s->nr_slots;
182  }
183  
184  /* Called with KVMMemoryListener.slots_lock held */
185  static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
186  {
187      KVMState *s = kvm_state;
188      int i;
189  
190      for (i = 0; i < s->nr_slots; i++) {
191          if (kml->slots[i].memory_size == 0) {
192              return &kml->slots[i];
193          }
194      }
195  
196      return NULL;
197  }
198  
199  bool kvm_has_free_slot(MachineState *ms)
200  {
201      KVMState *s = KVM_STATE(ms->accelerator);
202      bool result;
203      KVMMemoryListener *kml = &s->memory_listener;
204  
205      kvm_slots_lock();
206      result = !!kvm_get_free_slot(kml);
207      kvm_slots_unlock();
208  
209      return result;
210  }
211  
212  /* Called with KVMMemoryListener.slots_lock held */
213  static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
214  {
215      KVMSlot *slot = kvm_get_free_slot(kml);
216  
217      if (slot) {
218          return slot;
219      }
220  
221      fprintf(stderr, "%s: no free slot available\n", __func__);
222      abort();
223  }
224  
225  static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
226                                           hwaddr start_addr,
227                                           hwaddr size)
228  {
229      KVMState *s = kvm_state;
230      int i;
231  
232      for (i = 0; i < s->nr_slots; i++) {
233          KVMSlot *mem = &kml->slots[i];
234  
235          if (start_addr == mem->start_addr && size == mem->memory_size) {
236              return mem;
237          }
238      }
239  
240      return NULL;
241  }
242  
243  /*
244   * Calculate and align the start address and the size of the section.
245   * Return the size. If the size is 0, the aligned section is empty.
246   */
247  static hwaddr kvm_align_section(MemoryRegionSection *section,
248                                  hwaddr *start)
249  {
250      hwaddr size = int128_get64(section->size);
251      hwaddr delta, aligned;
252  
253      /* kvm works in page size chunks, but the function may be called
254         with sub-page size and unaligned start address. Pad the start
255         address to next and truncate size to previous page boundary. */
256      aligned = ROUND_UP(section->offset_within_address_space,
257                         qemu_real_host_page_size());
258      delta = aligned - section->offset_within_address_space;
259      *start = aligned;
260      if (delta > size) {
261          return 0;
262      }
263  
264      return (size - delta) & qemu_real_host_page_mask();
265  }
266  
267  int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
268                                         hwaddr *phys_addr)
269  {
270      KVMMemoryListener *kml = &s->memory_listener;
271      int i, ret = 0;
272  
273      kvm_slots_lock();
274      for (i = 0; i < s->nr_slots; i++) {
275          KVMSlot *mem = &kml->slots[i];
276  
277          if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
278              *phys_addr = mem->start_addr + (ram - mem->ram);
279              ret = 1;
280              break;
281          }
282      }
283      kvm_slots_unlock();
284  
285      return ret;
286  }
287  
288  static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
289  {
290      KVMState *s = kvm_state;
291      struct kvm_userspace_memory_region mem;
292      int ret;
293  
294      mem.slot = slot->slot | (kml->as_id << 16);
295      mem.guest_phys_addr = slot->start_addr;
296      mem.userspace_addr = (unsigned long)slot->ram;
297      mem.flags = slot->flags;
298  
299      if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
300          /* Set the slot size to 0 before setting the slot to the desired
301           * value. This is needed based on KVM commit 75d61fbc. */
302          mem.memory_size = 0;
303          ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304          if (ret < 0) {
305              goto err;
306          }
307      }
308      mem.memory_size = slot->memory_size;
309      ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
310      slot->old_flags = mem.flags;
311  err:
312      trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
313                                mem.memory_size, mem.userspace_addr, ret);
314      if (ret < 0) {
315          error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
316                       " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
317                       __func__, mem.slot, slot->start_addr,
318                       (uint64_t)mem.memory_size, strerror(errno));
319      }
320      return ret;
321  }
322  
323  static int do_kvm_destroy_vcpu(CPUState *cpu)
324  {
325      KVMState *s = kvm_state;
326      long mmap_size;
327      struct KVMParkedVcpu *vcpu = NULL;
328      int ret = 0;
329  
330      DPRINTF("kvm_destroy_vcpu\n");
331  
332      ret = kvm_arch_destroy_vcpu(cpu);
333      if (ret < 0) {
334          goto err;
335      }
336  
337      mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
338      if (mmap_size < 0) {
339          ret = mmap_size;
340          DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
341          goto err;
342      }
343  
344      ret = munmap(cpu->kvm_run, mmap_size);
345      if (ret < 0) {
346          goto err;
347      }
348  
349      if (cpu->kvm_dirty_gfns) {
350          ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
351          if (ret < 0) {
352              goto err;
353          }
354      }
355  
356      vcpu = g_malloc0(sizeof(*vcpu));
357      vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
358      vcpu->kvm_fd = cpu->kvm_fd;
359      QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
360  err:
361      return ret;
362  }
363  
364  void kvm_destroy_vcpu(CPUState *cpu)
365  {
366      if (do_kvm_destroy_vcpu(cpu) < 0) {
367          error_report("kvm_destroy_vcpu failed");
368          exit(EXIT_FAILURE);
369      }
370  }
371  
372  static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
373  {
374      struct KVMParkedVcpu *cpu;
375  
376      QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
377          if (cpu->vcpu_id == vcpu_id) {
378              int kvm_fd;
379  
380              QLIST_REMOVE(cpu, node);
381              kvm_fd = cpu->kvm_fd;
382              g_free(cpu);
383              return kvm_fd;
384          }
385      }
386  
387      return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
388  }
389  
390  int kvm_init_vcpu(CPUState *cpu, Error **errp)
391  {
392      KVMState *s = kvm_state;
393      long mmap_size;
394      int ret;
395  
396      trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
397  
398      ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
399      if (ret < 0) {
400          error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
401                           kvm_arch_vcpu_id(cpu));
402          goto err;
403      }
404  
405      cpu->kvm_fd = ret;
406      cpu->kvm_state = s;
407      cpu->vcpu_dirty = true;
408      cpu->dirty_pages = 0;
409      cpu->throttle_us_per_full = 0;
410  
411      mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
412      if (mmap_size < 0) {
413          ret = mmap_size;
414          error_setg_errno(errp, -mmap_size,
415                           "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
416          goto err;
417      }
418  
419      cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
420                          cpu->kvm_fd, 0);
421      if (cpu->kvm_run == MAP_FAILED) {
422          ret = -errno;
423          error_setg_errno(errp, ret,
424                           "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
425                           kvm_arch_vcpu_id(cpu));
426          goto err;
427      }
428  
429      if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
430          s->coalesced_mmio_ring =
431              (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
432      }
433  
434      if (s->kvm_dirty_ring_size) {
435          /* Use MAP_SHARED to share pages with the kernel */
436          cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
437                                     PROT_READ | PROT_WRITE, MAP_SHARED,
438                                     cpu->kvm_fd,
439                                     PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
440          if (cpu->kvm_dirty_gfns == MAP_FAILED) {
441              ret = -errno;
442              DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
443              goto err;
444          }
445      }
446  
447      ret = kvm_arch_init_vcpu(cpu);
448      if (ret < 0) {
449          error_setg_errno(errp, -ret,
450                           "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
451                           kvm_arch_vcpu_id(cpu));
452      }
453  err:
454      return ret;
455  }
456  
457  /*
458   * dirty pages logging control
459   */
460  
461  static int kvm_mem_flags(MemoryRegion *mr)
462  {
463      bool readonly = mr->readonly || memory_region_is_romd(mr);
464      int flags = 0;
465  
466      if (memory_region_get_dirty_log_mask(mr) != 0) {
467          flags |= KVM_MEM_LOG_DIRTY_PAGES;
468      }
469      if (readonly && kvm_readonly_mem_allowed) {
470          flags |= KVM_MEM_READONLY;
471      }
472      return flags;
473  }
474  
475  /* Called with KVMMemoryListener.slots_lock held */
476  static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
477                                   MemoryRegion *mr)
478  {
479      mem->flags = kvm_mem_flags(mr);
480  
481      /* If nothing changed effectively, no need to issue ioctl */
482      if (mem->flags == mem->old_flags) {
483          return 0;
484      }
485  
486      kvm_slot_init_dirty_bitmap(mem);
487      return kvm_set_user_memory_region(kml, mem, false);
488  }
489  
490  static int kvm_section_update_flags(KVMMemoryListener *kml,
491                                      MemoryRegionSection *section)
492  {
493      hwaddr start_addr, size, slot_size;
494      KVMSlot *mem;
495      int ret = 0;
496  
497      size = kvm_align_section(section, &start_addr);
498      if (!size) {
499          return 0;
500      }
501  
502      kvm_slots_lock();
503  
504      while (size && !ret) {
505          slot_size = MIN(kvm_max_slot_size, size);
506          mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
507          if (!mem) {
508              /* We don't have a slot if we want to trap every access. */
509              goto out;
510          }
511  
512          ret = kvm_slot_update_flags(kml, mem, section->mr);
513          start_addr += slot_size;
514          size -= slot_size;
515      }
516  
517  out:
518      kvm_slots_unlock();
519      return ret;
520  }
521  
522  static void kvm_log_start(MemoryListener *listener,
523                            MemoryRegionSection *section,
524                            int old, int new)
525  {
526      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
527      int r;
528  
529      if (old != 0) {
530          return;
531      }
532  
533      r = kvm_section_update_flags(kml, section);
534      if (r < 0) {
535          abort();
536      }
537  }
538  
539  static void kvm_log_stop(MemoryListener *listener,
540                            MemoryRegionSection *section,
541                            int old, int new)
542  {
543      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
544      int r;
545  
546      if (new != 0) {
547          return;
548      }
549  
550      r = kvm_section_update_flags(kml, section);
551      if (r < 0) {
552          abort();
553      }
554  }
555  
556  /* get kvm's dirty pages bitmap and update qemu's */
557  static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
558  {
559      ram_addr_t start = slot->ram_start_offset;
560      ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
561  
562      cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
563  }
564  
565  static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
566  {
567      memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
568  }
569  
570  #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
571  
572  /* Allocate the dirty bitmap for a slot  */
573  static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
574  {
575      if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
576          return;
577      }
578  
579      /*
580       * XXX bad kernel interface alert
581       * For dirty bitmap, kernel allocates array of size aligned to
582       * bits-per-long.  But for case when the kernel is 64bits and
583       * the userspace is 32bits, userspace can't align to the same
584       * bits-per-long, since sizeof(long) is different between kernel
585       * and user space.  This way, userspace will provide buffer which
586       * may be 4 bytes less than the kernel will use, resulting in
587       * userspace memory corruption (which is not detectable by valgrind
588       * too, in most cases).
589       * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
590       * a hope that sizeof(long) won't become >8 any time soon.
591       *
592       * Note: the granule of kvm dirty log is qemu_real_host_page_size.
593       * And mem->memory_size is aligned to it (otherwise this mem can't
594       * be registered to KVM).
595       */
596      hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
597                                          /*HOST_LONG_BITS*/ 64) / 8;
598      mem->dirty_bmap = g_malloc0(bitmap_size);
599      mem->dirty_bmap_size = bitmap_size;
600  }
601  
602  /*
603   * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
604   * succeeded, false otherwise
605   */
606  static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
607  {
608      struct kvm_dirty_log d = {};
609      int ret;
610  
611      d.dirty_bitmap = slot->dirty_bmap;
612      d.slot = slot->slot | (slot->as_id << 16);
613      ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
614  
615      if (ret == -ENOENT) {
616          /* kernel does not have dirty bitmap in this slot */
617          ret = 0;
618      }
619      if (ret) {
620          error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
621                            __func__, ret);
622      }
623      return ret == 0;
624  }
625  
626  /* Should be with all slots_lock held for the address spaces. */
627  static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
628                                       uint32_t slot_id, uint64_t offset)
629  {
630      KVMMemoryListener *kml;
631      KVMSlot *mem;
632  
633      if (as_id >= s->nr_as) {
634          return;
635      }
636  
637      kml = s->as[as_id].ml;
638      mem = &kml->slots[slot_id];
639  
640      if (!mem->memory_size || offset >=
641          (mem->memory_size / qemu_real_host_page_size())) {
642          return;
643      }
644  
645      set_bit(offset, mem->dirty_bmap);
646  }
647  
648  static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
649  {
650      /*
651       * Read the flags before the value.  Pairs with barrier in
652       * KVM's kvm_dirty_ring_push() function.
653       */
654      return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
655  }
656  
657  static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
658  {
659      /*
660       * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
661       * sees the full content of the ring:
662       *
663       * CPU0                     CPU1                         CPU2
664       * ------------------------------------------------------------------------------
665       *                                                       fill gfn0
666       *                                                       store-rel flags for gfn0
667       * load-acq flags for gfn0
668       * store-rel RESET for gfn0
669       *                          ioctl(RESET_RINGS)
670       *                            load-acq flags for gfn0
671       *                            check if flags have RESET
672       *
673       * The synchronization goes from CPU2 to CPU0 to CPU1.
674       */
675      qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
676  }
677  
678  /*
679   * Should be with all slots_lock held for the address spaces.  It returns the
680   * dirty page we've collected on this dirty ring.
681   */
682  static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
683  {
684      struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
685      uint32_t ring_size = s->kvm_dirty_ring_size;
686      uint32_t count = 0, fetch = cpu->kvm_fetch_index;
687  
688      assert(dirty_gfns && ring_size);
689      trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
690  
691      while (true) {
692          cur = &dirty_gfns[fetch % ring_size];
693          if (!dirty_gfn_is_dirtied(cur)) {
694              break;
695          }
696          kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
697                                   cur->offset);
698          dirty_gfn_set_collected(cur);
699          trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
700          fetch++;
701          count++;
702      }
703      cpu->kvm_fetch_index = fetch;
704      cpu->dirty_pages += count;
705  
706      return count;
707  }
708  
709  /* Must be with slots_lock held */
710  static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
711  {
712      int ret;
713      uint64_t total = 0;
714      int64_t stamp;
715  
716      stamp = get_clock();
717  
718      if (cpu) {
719          total = kvm_dirty_ring_reap_one(s, cpu);
720      } else {
721          CPU_FOREACH(cpu) {
722              total += kvm_dirty_ring_reap_one(s, cpu);
723          }
724      }
725  
726      if (total) {
727          ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
728          assert(ret == total);
729      }
730  
731      stamp = get_clock() - stamp;
732  
733      if (total) {
734          trace_kvm_dirty_ring_reap(total, stamp / 1000);
735      }
736  
737      return total;
738  }
739  
740  /*
741   * Currently for simplicity, we must hold BQL before calling this.  We can
742   * consider to drop the BQL if we're clear with all the race conditions.
743   */
744  static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
745  {
746      uint64_t total;
747  
748      /*
749       * We need to lock all kvm slots for all address spaces here,
750       * because:
751       *
752       * (1) We need to mark dirty for dirty bitmaps in multiple slots
753       *     and for tons of pages, so it's better to take the lock here
754       *     once rather than once per page.  And more importantly,
755       *
756       * (2) We must _NOT_ publish dirty bits to the other threads
757       *     (e.g., the migration thread) via the kvm memory slot dirty
758       *     bitmaps before correctly re-protect those dirtied pages.
759       *     Otherwise we can have potential risk of data corruption if
760       *     the page data is read in the other thread before we do
761       *     reset below.
762       */
763      kvm_slots_lock();
764      total = kvm_dirty_ring_reap_locked(s, cpu);
765      kvm_slots_unlock();
766  
767      return total;
768  }
769  
770  static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
771  {
772      /* No need to do anything */
773  }
774  
775  /*
776   * Kick all vcpus out in a synchronized way.  When returned, we
777   * guarantee that every vcpu has been kicked and at least returned to
778   * userspace once.
779   */
780  static void kvm_cpu_synchronize_kick_all(void)
781  {
782      CPUState *cpu;
783  
784      CPU_FOREACH(cpu) {
785          run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
786      }
787  }
788  
789  /*
790   * Flush all the existing dirty pages to the KVM slot buffers.  When
791   * this call returns, we guarantee that all the touched dirty pages
792   * before calling this function have been put into the per-kvmslot
793   * dirty bitmap.
794   *
795   * This function must be called with BQL held.
796   */
797  static void kvm_dirty_ring_flush(void)
798  {
799      trace_kvm_dirty_ring_flush(0);
800      /*
801       * The function needs to be serialized.  Since this function
802       * should always be with BQL held, serialization is guaranteed.
803       * However, let's be sure of it.
804       */
805      assert(qemu_mutex_iothread_locked());
806      /*
807       * First make sure to flush the hardware buffers by kicking all
808       * vcpus out in a synchronous way.
809       */
810      kvm_cpu_synchronize_kick_all();
811      kvm_dirty_ring_reap(kvm_state, NULL);
812      trace_kvm_dirty_ring_flush(1);
813  }
814  
815  /**
816   * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
817   *
818   * This function will first try to fetch dirty bitmap from the kernel,
819   * and then updates qemu's dirty bitmap.
820   *
821   * NOTE: caller must be with kml->slots_lock held.
822   *
823   * @kml: the KVM memory listener object
824   * @section: the memory section to sync the dirty bitmap with
825   */
826  static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
827                                             MemoryRegionSection *section)
828  {
829      KVMState *s = kvm_state;
830      KVMSlot *mem;
831      hwaddr start_addr, size;
832      hwaddr slot_size;
833  
834      size = kvm_align_section(section, &start_addr);
835      while (size) {
836          slot_size = MIN(kvm_max_slot_size, size);
837          mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
838          if (!mem) {
839              /* We don't have a slot if we want to trap every access. */
840              return;
841          }
842          if (kvm_slot_get_dirty_log(s, mem)) {
843              kvm_slot_sync_dirty_pages(mem);
844          }
845          start_addr += slot_size;
846          size -= slot_size;
847      }
848  }
849  
850  /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
851  #define KVM_CLEAR_LOG_SHIFT  6
852  #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
853  #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
854  
855  static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
856                                    uint64_t size)
857  {
858      KVMState *s = kvm_state;
859      uint64_t end, bmap_start, start_delta, bmap_npages;
860      struct kvm_clear_dirty_log d;
861      unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
862      int ret;
863  
864      /*
865       * We need to extend either the start or the size or both to
866       * satisfy the KVM interface requirement.  Firstly, do the start
867       * page alignment on 64 host pages
868       */
869      bmap_start = start & KVM_CLEAR_LOG_MASK;
870      start_delta = start - bmap_start;
871      bmap_start /= psize;
872  
873      /*
874       * The kernel interface has restriction on the size too, that either:
875       *
876       * (1) the size is 64 host pages aligned (just like the start), or
877       * (2) the size fills up until the end of the KVM memslot.
878       */
879      bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
880          << KVM_CLEAR_LOG_SHIFT;
881      end = mem->memory_size / psize;
882      if (bmap_npages > end - bmap_start) {
883          bmap_npages = end - bmap_start;
884      }
885      start_delta /= psize;
886  
887      /*
888       * Prepare the bitmap to clear dirty bits.  Here we must guarantee
889       * that we won't clear any unknown dirty bits otherwise we might
890       * accidentally clear some set bits which are not yet synced from
891       * the kernel into QEMU's bitmap, then we'll lose track of the
892       * guest modifications upon those pages (which can directly lead
893       * to guest data loss or panic after migration).
894       *
895       * Layout of the KVMSlot.dirty_bmap:
896       *
897       *                   |<-------- bmap_npages -----------..>|
898       *                                                     [1]
899       *                     start_delta         size
900       *  |----------------|-------------|------------------|------------|
901       *  ^                ^             ^                               ^
902       *  |                |             |                               |
903       * start          bmap_start     (start)                         end
904       * of memslot                                             of memslot
905       *
906       * [1] bmap_npages can be aligned to either 64 pages or the end of slot
907       */
908  
909      assert(bmap_start % BITS_PER_LONG == 0);
910      /* We should never do log_clear before log_sync */
911      assert(mem->dirty_bmap);
912      if (start_delta || bmap_npages - size / psize) {
913          /* Slow path - we need to manipulate a temp bitmap */
914          bmap_clear = bitmap_new(bmap_npages);
915          bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
916                                      bmap_start, start_delta + size / psize);
917          /*
918           * We need to fill the holes at start because that was not
919           * specified by the caller and we extended the bitmap only for
920           * 64 pages alignment
921           */
922          bitmap_clear(bmap_clear, 0, start_delta);
923          d.dirty_bitmap = bmap_clear;
924      } else {
925          /*
926           * Fast path - both start and size align well with BITS_PER_LONG
927           * (or the end of memory slot)
928           */
929          d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
930      }
931  
932      d.first_page = bmap_start;
933      /* It should never overflow.  If it happens, say something */
934      assert(bmap_npages <= UINT32_MAX);
935      d.num_pages = bmap_npages;
936      d.slot = mem->slot | (as_id << 16);
937  
938      ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
939      if (ret < 0 && ret != -ENOENT) {
940          error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
941                       "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
942                       __func__, d.slot, (uint64_t)d.first_page,
943                       (uint32_t)d.num_pages, ret);
944      } else {
945          ret = 0;
946          trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
947      }
948  
949      /*
950       * After we have updated the remote dirty bitmap, we update the
951       * cached bitmap as well for the memslot, then if another user
952       * clears the same region we know we shouldn't clear it again on
953       * the remote otherwise it's data loss as well.
954       */
955      bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
956                   size / psize);
957      /* This handles the NULL case well */
958      g_free(bmap_clear);
959      return ret;
960  }
961  
962  
963  /**
964   * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
965   *
966   * NOTE: this will be a no-op if we haven't enabled manual dirty log
967   * protection in the host kernel because in that case this operation
968   * will be done within log_sync().
969   *
970   * @kml:     the kvm memory listener
971   * @section: the memory range to clear dirty bitmap
972   */
973  static int kvm_physical_log_clear(KVMMemoryListener *kml,
974                                    MemoryRegionSection *section)
975  {
976      KVMState *s = kvm_state;
977      uint64_t start, size, offset, count;
978      KVMSlot *mem;
979      int ret = 0, i;
980  
981      if (!s->manual_dirty_log_protect) {
982          /* No need to do explicit clear */
983          return ret;
984      }
985  
986      start = section->offset_within_address_space;
987      size = int128_get64(section->size);
988  
989      if (!size) {
990          /* Nothing more we can do... */
991          return ret;
992      }
993  
994      kvm_slots_lock();
995  
996      for (i = 0; i < s->nr_slots; i++) {
997          mem = &kml->slots[i];
998          /* Discard slots that are empty or do not overlap the section */
999          if (!mem->memory_size ||
1000              mem->start_addr > start + size - 1 ||
1001              start > mem->start_addr + mem->memory_size - 1) {
1002              continue;
1003          }
1004  
1005          if (start >= mem->start_addr) {
1006              /* The slot starts before section or is aligned to it.  */
1007              offset = start - mem->start_addr;
1008              count = MIN(mem->memory_size - offset, size);
1009          } else {
1010              /* The slot starts after section.  */
1011              offset = 0;
1012              count = MIN(mem->memory_size, size - (mem->start_addr - start));
1013          }
1014          ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1015          if (ret < 0) {
1016              break;
1017          }
1018      }
1019  
1020      kvm_slots_unlock();
1021  
1022      return ret;
1023  }
1024  
1025  static void kvm_coalesce_mmio_region(MemoryListener *listener,
1026                                       MemoryRegionSection *secion,
1027                                       hwaddr start, hwaddr size)
1028  {
1029      KVMState *s = kvm_state;
1030  
1031      if (s->coalesced_mmio) {
1032          struct kvm_coalesced_mmio_zone zone;
1033  
1034          zone.addr = start;
1035          zone.size = size;
1036          zone.pad = 0;
1037  
1038          (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1039      }
1040  }
1041  
1042  static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1043                                         MemoryRegionSection *secion,
1044                                         hwaddr start, hwaddr size)
1045  {
1046      KVMState *s = kvm_state;
1047  
1048      if (s->coalesced_mmio) {
1049          struct kvm_coalesced_mmio_zone zone;
1050  
1051          zone.addr = start;
1052          zone.size = size;
1053          zone.pad = 0;
1054  
1055          (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1056      }
1057  }
1058  
1059  static void kvm_coalesce_pio_add(MemoryListener *listener,
1060                                  MemoryRegionSection *section,
1061                                  hwaddr start, hwaddr size)
1062  {
1063      KVMState *s = kvm_state;
1064  
1065      if (s->coalesced_pio) {
1066          struct kvm_coalesced_mmio_zone zone;
1067  
1068          zone.addr = start;
1069          zone.size = size;
1070          zone.pio = 1;
1071  
1072          (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1073      }
1074  }
1075  
1076  static void kvm_coalesce_pio_del(MemoryListener *listener,
1077                                  MemoryRegionSection *section,
1078                                  hwaddr start, hwaddr size)
1079  {
1080      KVMState *s = kvm_state;
1081  
1082      if (s->coalesced_pio) {
1083          struct kvm_coalesced_mmio_zone zone;
1084  
1085          zone.addr = start;
1086          zone.size = size;
1087          zone.pio = 1;
1088  
1089          (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1090       }
1091  }
1092  
1093  static MemoryListener kvm_coalesced_pio_listener = {
1094      .name = "kvm-coalesced-pio",
1095      .coalesced_io_add = kvm_coalesce_pio_add,
1096      .coalesced_io_del = kvm_coalesce_pio_del,
1097  };
1098  
1099  int kvm_check_extension(KVMState *s, unsigned int extension)
1100  {
1101      int ret;
1102  
1103      ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1104      if (ret < 0) {
1105          ret = 0;
1106      }
1107  
1108      return ret;
1109  }
1110  
1111  int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1112  {
1113      int ret;
1114  
1115      ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1116      if (ret < 0) {
1117          /* VM wide version not implemented, use global one instead */
1118          ret = kvm_check_extension(s, extension);
1119      }
1120  
1121      return ret;
1122  }
1123  
1124  typedef struct HWPoisonPage {
1125      ram_addr_t ram_addr;
1126      QLIST_ENTRY(HWPoisonPage) list;
1127  } HWPoisonPage;
1128  
1129  static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1130      QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1131  
1132  static void kvm_unpoison_all(void *param)
1133  {
1134      HWPoisonPage *page, *next_page;
1135  
1136      QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1137          QLIST_REMOVE(page, list);
1138          qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1139          g_free(page);
1140      }
1141  }
1142  
1143  void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1144  {
1145      HWPoisonPage *page;
1146  
1147      QLIST_FOREACH(page, &hwpoison_page_list, list) {
1148          if (page->ram_addr == ram_addr) {
1149              return;
1150          }
1151      }
1152      page = g_new(HWPoisonPage, 1);
1153      page->ram_addr = ram_addr;
1154      QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1155  }
1156  
1157  static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1158  {
1159  #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1160      /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1161       * endianness, but the memory core hands them in target endianness.
1162       * For example, PPC is always treated as big-endian even if running
1163       * on KVM and on PPC64LE.  Correct here.
1164       */
1165      switch (size) {
1166      case 2:
1167          val = bswap16(val);
1168          break;
1169      case 4:
1170          val = bswap32(val);
1171          break;
1172      }
1173  #endif
1174      return val;
1175  }
1176  
1177  static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1178                                    bool assign, uint32_t size, bool datamatch)
1179  {
1180      int ret;
1181      struct kvm_ioeventfd iofd = {
1182          .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1183          .addr = addr,
1184          .len = size,
1185          .flags = 0,
1186          .fd = fd,
1187      };
1188  
1189      trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1190                                   datamatch);
1191      if (!kvm_enabled()) {
1192          return -ENOSYS;
1193      }
1194  
1195      if (datamatch) {
1196          iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1197      }
1198      if (!assign) {
1199          iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1200      }
1201  
1202      ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1203  
1204      if (ret < 0) {
1205          return -errno;
1206      }
1207  
1208      return 0;
1209  }
1210  
1211  static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1212                                   bool assign, uint32_t size, bool datamatch)
1213  {
1214      struct kvm_ioeventfd kick = {
1215          .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1216          .addr = addr,
1217          .flags = KVM_IOEVENTFD_FLAG_PIO,
1218          .len = size,
1219          .fd = fd,
1220      };
1221      int r;
1222      trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1223      if (!kvm_enabled()) {
1224          return -ENOSYS;
1225      }
1226      if (datamatch) {
1227          kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1228      }
1229      if (!assign) {
1230          kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1231      }
1232      r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1233      if (r < 0) {
1234          return r;
1235      }
1236      return 0;
1237  }
1238  
1239  
1240  static int kvm_check_many_ioeventfds(void)
1241  {
1242      /* Userspace can use ioeventfd for io notification.  This requires a host
1243       * that supports eventfd(2) and an I/O thread; since eventfd does not
1244       * support SIGIO it cannot interrupt the vcpu.
1245       *
1246       * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1247       * can avoid creating too many ioeventfds.
1248       */
1249  #if defined(CONFIG_EVENTFD)
1250      int ioeventfds[7];
1251      int i, ret = 0;
1252      for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1253          ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1254          if (ioeventfds[i] < 0) {
1255              break;
1256          }
1257          ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1258          if (ret < 0) {
1259              close(ioeventfds[i]);
1260              break;
1261          }
1262      }
1263  
1264      /* Decide whether many devices are supported or not */
1265      ret = i == ARRAY_SIZE(ioeventfds);
1266  
1267      while (i-- > 0) {
1268          kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1269          close(ioeventfds[i]);
1270      }
1271      return ret;
1272  #else
1273      return 0;
1274  #endif
1275  }
1276  
1277  static const KVMCapabilityInfo *
1278  kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1279  {
1280      while (list->name) {
1281          if (!kvm_check_extension(s, list->value)) {
1282              return list;
1283          }
1284          list++;
1285      }
1286      return NULL;
1287  }
1288  
1289  void kvm_set_max_memslot_size(hwaddr max_slot_size)
1290  {
1291      g_assert(
1292          ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1293      );
1294      kvm_max_slot_size = max_slot_size;
1295  }
1296  
1297  /* Called with KVMMemoryListener.slots_lock held */
1298  static void kvm_set_phys_mem(KVMMemoryListener *kml,
1299                               MemoryRegionSection *section, bool add)
1300  {
1301      KVMSlot *mem;
1302      int err;
1303      MemoryRegion *mr = section->mr;
1304      bool writable = !mr->readonly && !mr->rom_device;
1305      hwaddr start_addr, size, slot_size, mr_offset;
1306      ram_addr_t ram_start_offset;
1307      void *ram;
1308  
1309      if (!memory_region_is_ram(mr)) {
1310          if (writable || !kvm_readonly_mem_allowed) {
1311              return;
1312          } else if (!mr->romd_mode) {
1313              /* If the memory device is not in romd_mode, then we actually want
1314               * to remove the kvm memory slot so all accesses will trap. */
1315              add = false;
1316          }
1317      }
1318  
1319      size = kvm_align_section(section, &start_addr);
1320      if (!size) {
1321          return;
1322      }
1323  
1324      /* The offset of the kvmslot within the memory region */
1325      mr_offset = section->offset_within_region + start_addr -
1326          section->offset_within_address_space;
1327  
1328      /* use aligned delta to align the ram address and offset */
1329      ram = memory_region_get_ram_ptr(mr) + mr_offset;
1330      ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1331  
1332      if (!add) {
1333          do {
1334              slot_size = MIN(kvm_max_slot_size, size);
1335              mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1336              if (!mem) {
1337                  return;
1338              }
1339              if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1340                  /*
1341                   * NOTE: We should be aware of the fact that here we're only
1342                   * doing a best effort to sync dirty bits.  No matter whether
1343                   * we're using dirty log or dirty ring, we ignored two facts:
1344                   *
1345                   * (1) dirty bits can reside in hardware buffers (PML)
1346                   *
1347                   * (2) after we collected dirty bits here, pages can be dirtied
1348                   * again before we do the final KVM_SET_USER_MEMORY_REGION to
1349                   * remove the slot.
1350                   *
1351                   * Not easy.  Let's cross the fingers until it's fixed.
1352                   */
1353                  if (kvm_state->kvm_dirty_ring_size) {
1354                      kvm_dirty_ring_reap_locked(kvm_state, NULL);
1355                  } else {
1356                      kvm_slot_get_dirty_log(kvm_state, mem);
1357                  }
1358                  kvm_slot_sync_dirty_pages(mem);
1359              }
1360  
1361              /* unregister the slot */
1362              g_free(mem->dirty_bmap);
1363              mem->dirty_bmap = NULL;
1364              mem->memory_size = 0;
1365              mem->flags = 0;
1366              err = kvm_set_user_memory_region(kml, mem, false);
1367              if (err) {
1368                  fprintf(stderr, "%s: error unregistering slot: %s\n",
1369                          __func__, strerror(-err));
1370                  abort();
1371              }
1372              start_addr += slot_size;
1373              size -= slot_size;
1374          } while (size);
1375          return;
1376      }
1377  
1378      /* register the new slot */
1379      do {
1380          slot_size = MIN(kvm_max_slot_size, size);
1381          mem = kvm_alloc_slot(kml);
1382          mem->as_id = kml->as_id;
1383          mem->memory_size = slot_size;
1384          mem->start_addr = start_addr;
1385          mem->ram_start_offset = ram_start_offset;
1386          mem->ram = ram;
1387          mem->flags = kvm_mem_flags(mr);
1388          kvm_slot_init_dirty_bitmap(mem);
1389          err = kvm_set_user_memory_region(kml, mem, true);
1390          if (err) {
1391              fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1392                      strerror(-err));
1393              abort();
1394          }
1395          start_addr += slot_size;
1396          ram_start_offset += slot_size;
1397          ram += slot_size;
1398          size -= slot_size;
1399      } while (size);
1400  }
1401  
1402  static void *kvm_dirty_ring_reaper_thread(void *data)
1403  {
1404      KVMState *s = data;
1405      struct KVMDirtyRingReaper *r = &s->reaper;
1406  
1407      rcu_register_thread();
1408  
1409      trace_kvm_dirty_ring_reaper("init");
1410  
1411      while (true) {
1412          r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1413          trace_kvm_dirty_ring_reaper("wait");
1414          /*
1415           * TODO: provide a smarter timeout rather than a constant?
1416           */
1417          sleep(1);
1418  
1419          /* keep sleeping so that dirtylimit not be interfered by reaper */
1420          if (dirtylimit_in_service()) {
1421              continue;
1422          }
1423  
1424          trace_kvm_dirty_ring_reaper("wakeup");
1425          r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1426  
1427          qemu_mutex_lock_iothread();
1428          kvm_dirty_ring_reap(s, NULL);
1429          qemu_mutex_unlock_iothread();
1430  
1431          r->reaper_iteration++;
1432      }
1433  
1434      trace_kvm_dirty_ring_reaper("exit");
1435  
1436      rcu_unregister_thread();
1437  
1438      return NULL;
1439  }
1440  
1441  static int kvm_dirty_ring_reaper_init(KVMState *s)
1442  {
1443      struct KVMDirtyRingReaper *r = &s->reaper;
1444  
1445      qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1446                         kvm_dirty_ring_reaper_thread,
1447                         s, QEMU_THREAD_JOINABLE);
1448  
1449      return 0;
1450  }
1451  
1452  static void kvm_region_add(MemoryListener *listener,
1453                             MemoryRegionSection *section)
1454  {
1455      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1456      KVMMemoryUpdate *update;
1457  
1458      update = g_new0(KVMMemoryUpdate, 1);
1459      update->section = *section;
1460  
1461      QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1462  }
1463  
1464  static void kvm_region_del(MemoryListener *listener,
1465                             MemoryRegionSection *section)
1466  {
1467      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1468      KVMMemoryUpdate *update;
1469  
1470      update = g_new0(KVMMemoryUpdate, 1);
1471      update->section = *section;
1472  
1473      QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1474  }
1475  
1476  static void kvm_region_commit(MemoryListener *listener)
1477  {
1478      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1479                                            listener);
1480      KVMMemoryUpdate *u1, *u2;
1481      bool need_inhibit = false;
1482  
1483      if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1484          QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1485          return;
1486      }
1487  
1488      /*
1489       * We have to be careful when regions to add overlap with ranges to remove.
1490       * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1491       * is currently active.
1492       *
1493       * The lists are order by addresses, so it's easy to find overlaps.
1494       */
1495      u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1496      u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1497      while (u1 && u2) {
1498          Range r1, r2;
1499  
1500          range_init_nofail(&r1, u1->section.offset_within_address_space,
1501                            int128_get64(u1->section.size));
1502          range_init_nofail(&r2, u2->section.offset_within_address_space,
1503                            int128_get64(u2->section.size));
1504  
1505          if (range_overlaps_range(&r1, &r2)) {
1506              need_inhibit = true;
1507              break;
1508          }
1509          if (range_lob(&r1) < range_lob(&r2)) {
1510              u1 = QSIMPLEQ_NEXT(u1, next);
1511          } else {
1512              u2 = QSIMPLEQ_NEXT(u2, next);
1513          }
1514      }
1515  
1516      kvm_slots_lock();
1517      if (need_inhibit) {
1518          accel_ioctl_inhibit_begin();
1519      }
1520  
1521      /* Remove all memslots before adding the new ones. */
1522      while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1523          u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1524          QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1525  
1526          kvm_set_phys_mem(kml, &u1->section, false);
1527          memory_region_unref(u1->section.mr);
1528  
1529          g_free(u1);
1530      }
1531      while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1532          u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1533          QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1534  
1535          memory_region_ref(u1->section.mr);
1536          kvm_set_phys_mem(kml, &u1->section, true);
1537  
1538          g_free(u1);
1539      }
1540  
1541      if (need_inhibit) {
1542          accel_ioctl_inhibit_end();
1543      }
1544      kvm_slots_unlock();
1545  }
1546  
1547  static void kvm_log_sync(MemoryListener *listener,
1548                           MemoryRegionSection *section)
1549  {
1550      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1551  
1552      kvm_slots_lock();
1553      kvm_physical_sync_dirty_bitmap(kml, section);
1554      kvm_slots_unlock();
1555  }
1556  
1557  static void kvm_log_sync_global(MemoryListener *l)
1558  {
1559      KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1560      KVMState *s = kvm_state;
1561      KVMSlot *mem;
1562      int i;
1563  
1564      /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1565      kvm_dirty_ring_flush();
1566  
1567      /*
1568       * TODO: make this faster when nr_slots is big while there are
1569       * only a few used slots (small VMs).
1570       */
1571      kvm_slots_lock();
1572      for (i = 0; i < s->nr_slots; i++) {
1573          mem = &kml->slots[i];
1574          if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1575              kvm_slot_sync_dirty_pages(mem);
1576              /*
1577               * This is not needed by KVM_GET_DIRTY_LOG because the
1578               * ioctl will unconditionally overwrite the whole region.
1579               * However kvm dirty ring has no such side effect.
1580               */
1581              kvm_slot_reset_dirty_pages(mem);
1582          }
1583      }
1584      kvm_slots_unlock();
1585  }
1586  
1587  static void kvm_log_clear(MemoryListener *listener,
1588                            MemoryRegionSection *section)
1589  {
1590      KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1591      int r;
1592  
1593      r = kvm_physical_log_clear(kml, section);
1594      if (r < 0) {
1595          error_report_once("%s: kvm log clear failed: mr=%s "
1596                            "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1597                            section->mr->name, section->offset_within_region,
1598                            int128_get64(section->size));
1599          abort();
1600      }
1601  }
1602  
1603  static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1604                                    MemoryRegionSection *section,
1605                                    bool match_data, uint64_t data,
1606                                    EventNotifier *e)
1607  {
1608      int fd = event_notifier_get_fd(e);
1609      int r;
1610  
1611      r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1612                                 data, true, int128_get64(section->size),
1613                                 match_data);
1614      if (r < 0) {
1615          fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1616                  __func__, strerror(-r), -r);
1617          abort();
1618      }
1619  }
1620  
1621  static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1622                                    MemoryRegionSection *section,
1623                                    bool match_data, uint64_t data,
1624                                    EventNotifier *e)
1625  {
1626      int fd = event_notifier_get_fd(e);
1627      int r;
1628  
1629      r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1630                                 data, false, int128_get64(section->size),
1631                                 match_data);
1632      if (r < 0) {
1633          fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1634                  __func__, strerror(-r), -r);
1635          abort();
1636      }
1637  }
1638  
1639  static void kvm_io_ioeventfd_add(MemoryListener *listener,
1640                                   MemoryRegionSection *section,
1641                                   bool match_data, uint64_t data,
1642                                   EventNotifier *e)
1643  {
1644      int fd = event_notifier_get_fd(e);
1645      int r;
1646  
1647      r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1648                                data, true, int128_get64(section->size),
1649                                match_data);
1650      if (r < 0) {
1651          fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1652                  __func__, strerror(-r), -r);
1653          abort();
1654      }
1655  }
1656  
1657  static void kvm_io_ioeventfd_del(MemoryListener *listener,
1658                                   MemoryRegionSection *section,
1659                                   bool match_data, uint64_t data,
1660                                   EventNotifier *e)
1661  
1662  {
1663      int fd = event_notifier_get_fd(e);
1664      int r;
1665  
1666      r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1667                                data, false, int128_get64(section->size),
1668                                match_data);
1669      if (r < 0) {
1670          fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1671                  __func__, strerror(-r), -r);
1672          abort();
1673      }
1674  }
1675  
1676  void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1677                                    AddressSpace *as, int as_id, const char *name)
1678  {
1679      int i;
1680  
1681      kml->slots = g_new0(KVMSlot, s->nr_slots);
1682      kml->as_id = as_id;
1683  
1684      for (i = 0; i < s->nr_slots; i++) {
1685          kml->slots[i].slot = i;
1686      }
1687  
1688      QSIMPLEQ_INIT(&kml->transaction_add);
1689      QSIMPLEQ_INIT(&kml->transaction_del);
1690  
1691      kml->listener.region_add = kvm_region_add;
1692      kml->listener.region_del = kvm_region_del;
1693      kml->listener.commit = kvm_region_commit;
1694      kml->listener.log_start = kvm_log_start;
1695      kml->listener.log_stop = kvm_log_stop;
1696      kml->listener.priority = 10;
1697      kml->listener.name = name;
1698  
1699      if (s->kvm_dirty_ring_size) {
1700          kml->listener.log_sync_global = kvm_log_sync_global;
1701      } else {
1702          kml->listener.log_sync = kvm_log_sync;
1703          kml->listener.log_clear = kvm_log_clear;
1704      }
1705  
1706      memory_listener_register(&kml->listener, as);
1707  
1708      for (i = 0; i < s->nr_as; ++i) {
1709          if (!s->as[i].as) {
1710              s->as[i].as = as;
1711              s->as[i].ml = kml;
1712              break;
1713          }
1714      }
1715  }
1716  
1717  static MemoryListener kvm_io_listener = {
1718      .name = "kvm-io",
1719      .eventfd_add = kvm_io_ioeventfd_add,
1720      .eventfd_del = kvm_io_ioeventfd_del,
1721      .priority = 10,
1722  };
1723  
1724  int kvm_set_irq(KVMState *s, int irq, int level)
1725  {
1726      struct kvm_irq_level event;
1727      int ret;
1728  
1729      assert(kvm_async_interrupts_enabled());
1730  
1731      event.level = level;
1732      event.irq = irq;
1733      ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1734      if (ret < 0) {
1735          perror("kvm_set_irq");
1736          abort();
1737      }
1738  
1739      return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1740  }
1741  
1742  #ifdef KVM_CAP_IRQ_ROUTING
1743  typedef struct KVMMSIRoute {
1744      struct kvm_irq_routing_entry kroute;
1745      QTAILQ_ENTRY(KVMMSIRoute) entry;
1746  } KVMMSIRoute;
1747  
1748  static void set_gsi(KVMState *s, unsigned int gsi)
1749  {
1750      set_bit(gsi, s->used_gsi_bitmap);
1751  }
1752  
1753  static void clear_gsi(KVMState *s, unsigned int gsi)
1754  {
1755      clear_bit(gsi, s->used_gsi_bitmap);
1756  }
1757  
1758  void kvm_init_irq_routing(KVMState *s)
1759  {
1760      int gsi_count, i;
1761  
1762      gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1763      if (gsi_count > 0) {
1764          /* Round up so we can search ints using ffs */
1765          s->used_gsi_bitmap = bitmap_new(gsi_count);
1766          s->gsi_count = gsi_count;
1767      }
1768  
1769      s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1770      s->nr_allocated_irq_routes = 0;
1771  
1772      if (!kvm_direct_msi_allowed) {
1773          for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1774              QTAILQ_INIT(&s->msi_hashtab[i]);
1775          }
1776      }
1777  
1778      kvm_arch_init_irq_routing(s);
1779  }
1780  
1781  void kvm_irqchip_commit_routes(KVMState *s)
1782  {
1783      int ret;
1784  
1785      if (kvm_gsi_direct_mapping()) {
1786          return;
1787      }
1788  
1789      if (!kvm_gsi_routing_enabled()) {
1790          return;
1791      }
1792  
1793      s->irq_routes->flags = 0;
1794      trace_kvm_irqchip_commit_routes();
1795      ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1796      assert(ret == 0);
1797  }
1798  
1799  static void kvm_add_routing_entry(KVMState *s,
1800                                    struct kvm_irq_routing_entry *entry)
1801  {
1802      struct kvm_irq_routing_entry *new;
1803      int n, size;
1804  
1805      if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1806          n = s->nr_allocated_irq_routes * 2;
1807          if (n < 64) {
1808              n = 64;
1809          }
1810          size = sizeof(struct kvm_irq_routing);
1811          size += n * sizeof(*new);
1812          s->irq_routes = g_realloc(s->irq_routes, size);
1813          s->nr_allocated_irq_routes = n;
1814      }
1815      n = s->irq_routes->nr++;
1816      new = &s->irq_routes->entries[n];
1817  
1818      *new = *entry;
1819  
1820      set_gsi(s, entry->gsi);
1821  }
1822  
1823  static int kvm_update_routing_entry(KVMState *s,
1824                                      struct kvm_irq_routing_entry *new_entry)
1825  {
1826      struct kvm_irq_routing_entry *entry;
1827      int n;
1828  
1829      for (n = 0; n < s->irq_routes->nr; n++) {
1830          entry = &s->irq_routes->entries[n];
1831          if (entry->gsi != new_entry->gsi) {
1832              continue;
1833          }
1834  
1835          if(!memcmp(entry, new_entry, sizeof *entry)) {
1836              return 0;
1837          }
1838  
1839          *entry = *new_entry;
1840  
1841          return 0;
1842      }
1843  
1844      return -ESRCH;
1845  }
1846  
1847  void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1848  {
1849      struct kvm_irq_routing_entry e = {};
1850  
1851      assert(pin < s->gsi_count);
1852  
1853      e.gsi = irq;
1854      e.type = KVM_IRQ_ROUTING_IRQCHIP;
1855      e.flags = 0;
1856      e.u.irqchip.irqchip = irqchip;
1857      e.u.irqchip.pin = pin;
1858      kvm_add_routing_entry(s, &e);
1859  }
1860  
1861  void kvm_irqchip_release_virq(KVMState *s, int virq)
1862  {
1863      struct kvm_irq_routing_entry *e;
1864      int i;
1865  
1866      if (kvm_gsi_direct_mapping()) {
1867          return;
1868      }
1869  
1870      for (i = 0; i < s->irq_routes->nr; i++) {
1871          e = &s->irq_routes->entries[i];
1872          if (e->gsi == virq) {
1873              s->irq_routes->nr--;
1874              *e = s->irq_routes->entries[s->irq_routes->nr];
1875          }
1876      }
1877      clear_gsi(s, virq);
1878      kvm_arch_release_virq_post(virq);
1879      trace_kvm_irqchip_release_virq(virq);
1880  }
1881  
1882  void kvm_irqchip_add_change_notifier(Notifier *n)
1883  {
1884      notifier_list_add(&kvm_irqchip_change_notifiers, n);
1885  }
1886  
1887  void kvm_irqchip_remove_change_notifier(Notifier *n)
1888  {
1889      notifier_remove(n);
1890  }
1891  
1892  void kvm_irqchip_change_notify(void)
1893  {
1894      notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1895  }
1896  
1897  static unsigned int kvm_hash_msi(uint32_t data)
1898  {
1899      /* This is optimized for IA32 MSI layout. However, no other arch shall
1900       * repeat the mistake of not providing a direct MSI injection API. */
1901      return data & 0xff;
1902  }
1903  
1904  static void kvm_flush_dynamic_msi_routes(KVMState *s)
1905  {
1906      KVMMSIRoute *route, *next;
1907      unsigned int hash;
1908  
1909      for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1910          QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1911              kvm_irqchip_release_virq(s, route->kroute.gsi);
1912              QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1913              g_free(route);
1914          }
1915      }
1916  }
1917  
1918  static int kvm_irqchip_get_virq(KVMState *s)
1919  {
1920      int next_virq;
1921  
1922      /*
1923       * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1924       * GSI numbers are more than the number of IRQ route. Allocating a GSI
1925       * number can succeed even though a new route entry cannot be added.
1926       * When this happens, flush dynamic MSI entries to free IRQ route entries.
1927       */
1928      if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1929          kvm_flush_dynamic_msi_routes(s);
1930      }
1931  
1932      /* Return the lowest unused GSI in the bitmap */
1933      next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1934      if (next_virq >= s->gsi_count) {
1935          return -ENOSPC;
1936      } else {
1937          return next_virq;
1938      }
1939  }
1940  
1941  static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1942  {
1943      unsigned int hash = kvm_hash_msi(msg.data);
1944      KVMMSIRoute *route;
1945  
1946      QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1947          if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1948              route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1949              route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1950              return route;
1951          }
1952      }
1953      return NULL;
1954  }
1955  
1956  int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1957  {
1958      struct kvm_msi msi;
1959      KVMMSIRoute *route;
1960  
1961      if (kvm_direct_msi_allowed) {
1962          msi.address_lo = (uint32_t)msg.address;
1963          msi.address_hi = msg.address >> 32;
1964          msi.data = le32_to_cpu(msg.data);
1965          msi.flags = 0;
1966          memset(msi.pad, 0, sizeof(msi.pad));
1967  
1968          return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1969      }
1970  
1971      route = kvm_lookup_msi_route(s, msg);
1972      if (!route) {
1973          int virq;
1974  
1975          virq = kvm_irqchip_get_virq(s);
1976          if (virq < 0) {
1977              return virq;
1978          }
1979  
1980          route = g_new0(KVMMSIRoute, 1);
1981          route->kroute.gsi = virq;
1982          route->kroute.type = KVM_IRQ_ROUTING_MSI;
1983          route->kroute.flags = 0;
1984          route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1985          route->kroute.u.msi.address_hi = msg.address >> 32;
1986          route->kroute.u.msi.data = le32_to_cpu(msg.data);
1987  
1988          kvm_add_routing_entry(s, &route->kroute);
1989          kvm_irqchip_commit_routes(s);
1990  
1991          QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1992                             entry);
1993      }
1994  
1995      assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1996  
1997      return kvm_set_irq(s, route->kroute.gsi, 1);
1998  }
1999  
2000  int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2001  {
2002      struct kvm_irq_routing_entry kroute = {};
2003      int virq;
2004      KVMState *s = c->s;
2005      MSIMessage msg = {0, 0};
2006  
2007      if (pci_available && dev) {
2008          msg = pci_get_msi_message(dev, vector);
2009      }
2010  
2011      if (kvm_gsi_direct_mapping()) {
2012          return kvm_arch_msi_data_to_gsi(msg.data);
2013      }
2014  
2015      if (!kvm_gsi_routing_enabled()) {
2016          return -ENOSYS;
2017      }
2018  
2019      virq = kvm_irqchip_get_virq(s);
2020      if (virq < 0) {
2021          return virq;
2022      }
2023  
2024      kroute.gsi = virq;
2025      kroute.type = KVM_IRQ_ROUTING_MSI;
2026      kroute.flags = 0;
2027      kroute.u.msi.address_lo = (uint32_t)msg.address;
2028      kroute.u.msi.address_hi = msg.address >> 32;
2029      kroute.u.msi.data = le32_to_cpu(msg.data);
2030      if (pci_available && kvm_msi_devid_required()) {
2031          kroute.flags = KVM_MSI_VALID_DEVID;
2032          kroute.u.msi.devid = pci_requester_id(dev);
2033      }
2034      if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2035          kvm_irqchip_release_virq(s, virq);
2036          return -EINVAL;
2037      }
2038  
2039      trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2040                                      vector, virq);
2041  
2042      kvm_add_routing_entry(s, &kroute);
2043      kvm_arch_add_msi_route_post(&kroute, vector, dev);
2044      c->changes++;
2045  
2046      return virq;
2047  }
2048  
2049  int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2050                                   PCIDevice *dev)
2051  {
2052      struct kvm_irq_routing_entry kroute = {};
2053  
2054      if (kvm_gsi_direct_mapping()) {
2055          return 0;
2056      }
2057  
2058      if (!kvm_irqchip_in_kernel()) {
2059          return -ENOSYS;
2060      }
2061  
2062      kroute.gsi = virq;
2063      kroute.type = KVM_IRQ_ROUTING_MSI;
2064      kroute.flags = 0;
2065      kroute.u.msi.address_lo = (uint32_t)msg.address;
2066      kroute.u.msi.address_hi = msg.address >> 32;
2067      kroute.u.msi.data = le32_to_cpu(msg.data);
2068      if (pci_available && kvm_msi_devid_required()) {
2069          kroute.flags = KVM_MSI_VALID_DEVID;
2070          kroute.u.msi.devid = pci_requester_id(dev);
2071      }
2072      if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2073          return -EINVAL;
2074      }
2075  
2076      trace_kvm_irqchip_update_msi_route(virq);
2077  
2078      return kvm_update_routing_entry(s, &kroute);
2079  }
2080  
2081  static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2082                                      EventNotifier *resample, int virq,
2083                                      bool assign)
2084  {
2085      int fd = event_notifier_get_fd(event);
2086      int rfd = resample ? event_notifier_get_fd(resample) : -1;
2087  
2088      struct kvm_irqfd irqfd = {
2089          .fd = fd,
2090          .gsi = virq,
2091          .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2092      };
2093  
2094      if (rfd != -1) {
2095          assert(assign);
2096          if (kvm_irqchip_is_split()) {
2097              /*
2098               * When the slow irqchip (e.g. IOAPIC) is in the
2099               * userspace, KVM kernel resamplefd will not work because
2100               * the EOI of the interrupt will be delivered to userspace
2101               * instead, so the KVM kernel resamplefd kick will be
2102               * skipped.  The userspace here mimics what the kernel
2103               * provides with resamplefd, remember the resamplefd and
2104               * kick it when we receive EOI of this IRQ.
2105               *
2106               * This is hackery because IOAPIC is mostly bypassed
2107               * (except EOI broadcasts) when irqfd is used.  However
2108               * this can bring much performance back for split irqchip
2109               * with INTx IRQs (for VFIO, this gives 93% perf of the
2110               * full fast path, which is 46% perf boost comparing to
2111               * the INTx slow path).
2112               */
2113              kvm_resample_fd_insert(virq, resample);
2114          } else {
2115              irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2116              irqfd.resamplefd = rfd;
2117          }
2118      } else if (!assign) {
2119          if (kvm_irqchip_is_split()) {
2120              kvm_resample_fd_remove(virq);
2121          }
2122      }
2123  
2124      if (!kvm_irqfds_enabled()) {
2125          return -ENOSYS;
2126      }
2127  
2128      return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2129  }
2130  
2131  int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2132  {
2133      struct kvm_irq_routing_entry kroute = {};
2134      int virq;
2135  
2136      if (!kvm_gsi_routing_enabled()) {
2137          return -ENOSYS;
2138      }
2139  
2140      virq = kvm_irqchip_get_virq(s);
2141      if (virq < 0) {
2142          return virq;
2143      }
2144  
2145      kroute.gsi = virq;
2146      kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2147      kroute.flags = 0;
2148      kroute.u.adapter.summary_addr = adapter->summary_addr;
2149      kroute.u.adapter.ind_addr = adapter->ind_addr;
2150      kroute.u.adapter.summary_offset = adapter->summary_offset;
2151      kroute.u.adapter.ind_offset = adapter->ind_offset;
2152      kroute.u.adapter.adapter_id = adapter->adapter_id;
2153  
2154      kvm_add_routing_entry(s, &kroute);
2155  
2156      return virq;
2157  }
2158  
2159  int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2160  {
2161      struct kvm_irq_routing_entry kroute = {};
2162      int virq;
2163  
2164      if (!kvm_gsi_routing_enabled()) {
2165          return -ENOSYS;
2166      }
2167      if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2168          return -ENOSYS;
2169      }
2170      virq = kvm_irqchip_get_virq(s);
2171      if (virq < 0) {
2172          return virq;
2173      }
2174  
2175      kroute.gsi = virq;
2176      kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2177      kroute.flags = 0;
2178      kroute.u.hv_sint.vcpu = vcpu;
2179      kroute.u.hv_sint.sint = sint;
2180  
2181      kvm_add_routing_entry(s, &kroute);
2182      kvm_irqchip_commit_routes(s);
2183  
2184      return virq;
2185  }
2186  
2187  #else /* !KVM_CAP_IRQ_ROUTING */
2188  
2189  void kvm_init_irq_routing(KVMState *s)
2190  {
2191  }
2192  
2193  void kvm_irqchip_release_virq(KVMState *s, int virq)
2194  {
2195  }
2196  
2197  int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2198  {
2199      abort();
2200  }
2201  
2202  int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2203  {
2204      return -ENOSYS;
2205  }
2206  
2207  int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2208  {
2209      return -ENOSYS;
2210  }
2211  
2212  int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2213  {
2214      return -ENOSYS;
2215  }
2216  
2217  static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2218                                      EventNotifier *resample, int virq,
2219                                      bool assign)
2220  {
2221      abort();
2222  }
2223  
2224  int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2225  {
2226      return -ENOSYS;
2227  }
2228  #endif /* !KVM_CAP_IRQ_ROUTING */
2229  
2230  int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2231                                         EventNotifier *rn, int virq)
2232  {
2233      return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2234  }
2235  
2236  int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2237                                            int virq)
2238  {
2239      return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2240  }
2241  
2242  int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2243                                     EventNotifier *rn, qemu_irq irq)
2244  {
2245      gpointer key, gsi;
2246      gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2247  
2248      if (!found) {
2249          return -ENXIO;
2250      }
2251      return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2252  }
2253  
2254  int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2255                                        qemu_irq irq)
2256  {
2257      gpointer key, gsi;
2258      gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2259  
2260      if (!found) {
2261          return -ENXIO;
2262      }
2263      return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2264  }
2265  
2266  void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2267  {
2268      g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2269  }
2270  
2271  static void kvm_irqchip_create(KVMState *s)
2272  {
2273      int ret;
2274  
2275      assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2276      if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2277          ;
2278      } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2279          ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2280          if (ret < 0) {
2281              fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2282              exit(1);
2283          }
2284      } else {
2285          return;
2286      }
2287  
2288      /* First probe and see if there's a arch-specific hook to create the
2289       * in-kernel irqchip for us */
2290      ret = kvm_arch_irqchip_create(s);
2291      if (ret == 0) {
2292          if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2293              error_report("Split IRQ chip mode not supported.");
2294              exit(1);
2295          } else {
2296              ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2297          }
2298      }
2299      if (ret < 0) {
2300          fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2301          exit(1);
2302      }
2303  
2304      kvm_kernel_irqchip = true;
2305      /* If we have an in-kernel IRQ chip then we must have asynchronous
2306       * interrupt delivery (though the reverse is not necessarily true)
2307       */
2308      kvm_async_interrupts_allowed = true;
2309      kvm_halt_in_kernel_allowed = true;
2310  
2311      kvm_init_irq_routing(s);
2312  
2313      s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2314  }
2315  
2316  /* Find number of supported CPUs using the recommended
2317   * procedure from the kernel API documentation to cope with
2318   * older kernels that may be missing capabilities.
2319   */
2320  static int kvm_recommended_vcpus(KVMState *s)
2321  {
2322      int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2323      return (ret) ? ret : 4;
2324  }
2325  
2326  static int kvm_max_vcpus(KVMState *s)
2327  {
2328      int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2329      return (ret) ? ret : kvm_recommended_vcpus(s);
2330  }
2331  
2332  static int kvm_max_vcpu_id(KVMState *s)
2333  {
2334      int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2335      return (ret) ? ret : kvm_max_vcpus(s);
2336  }
2337  
2338  bool kvm_vcpu_id_is_valid(int vcpu_id)
2339  {
2340      KVMState *s = KVM_STATE(current_accel());
2341      return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2342  }
2343  
2344  bool kvm_dirty_ring_enabled(void)
2345  {
2346      return kvm_state->kvm_dirty_ring_size ? true : false;
2347  }
2348  
2349  static void query_stats_cb(StatsResultList **result, StatsTarget target,
2350                             strList *names, strList *targets, Error **errp);
2351  static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2352  
2353  uint32_t kvm_dirty_ring_size(void)
2354  {
2355      return kvm_state->kvm_dirty_ring_size;
2356  }
2357  
2358  static int kvm_init(MachineState *ms)
2359  {
2360      MachineClass *mc = MACHINE_GET_CLASS(ms);
2361      static const char upgrade_note[] =
2362          "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2363          "(see http://sourceforge.net/projects/kvm).\n";
2364      const struct {
2365          const char *name;
2366          int num;
2367      } num_cpus[] = {
2368          { "SMP",          ms->smp.cpus },
2369          { "hotpluggable", ms->smp.max_cpus },
2370          { /* end of list */ }
2371      }, *nc = num_cpus;
2372      int soft_vcpus_limit, hard_vcpus_limit;
2373      KVMState *s;
2374      const KVMCapabilityInfo *missing_cap;
2375      int ret;
2376      int type = 0;
2377      uint64_t dirty_log_manual_caps;
2378  
2379      qemu_mutex_init(&kml_slots_lock);
2380  
2381      s = KVM_STATE(ms->accelerator);
2382  
2383      /*
2384       * On systems where the kernel can support different base page
2385       * sizes, host page size may be different from TARGET_PAGE_SIZE,
2386       * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2387       * page size for the system though.
2388       */
2389      assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2390  
2391      s->sigmask_len = 8;
2392      accel_blocker_init();
2393  
2394  #ifdef KVM_CAP_SET_GUEST_DEBUG
2395      QTAILQ_INIT(&s->kvm_sw_breakpoints);
2396  #endif
2397      QLIST_INIT(&s->kvm_parked_vcpus);
2398      s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2399      if (s->fd == -1) {
2400          fprintf(stderr, "Could not access KVM kernel module: %m\n");
2401          ret = -errno;
2402          goto err;
2403      }
2404  
2405      ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2406      if (ret < KVM_API_VERSION) {
2407          if (ret >= 0) {
2408              ret = -EINVAL;
2409          }
2410          fprintf(stderr, "kvm version too old\n");
2411          goto err;
2412      }
2413  
2414      if (ret > KVM_API_VERSION) {
2415          ret = -EINVAL;
2416          fprintf(stderr, "kvm version not supported\n");
2417          goto err;
2418      }
2419  
2420      kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2421      s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2422  
2423      /* If unspecified, use the default value */
2424      if (!s->nr_slots) {
2425          s->nr_slots = 32;
2426      }
2427  
2428      s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2429      if (s->nr_as <= 1) {
2430          s->nr_as = 1;
2431      }
2432      s->as = g_new0(struct KVMAs, s->nr_as);
2433  
2434      if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2435          g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2436                                                              "kvm-type",
2437                                                              &error_abort);
2438          type = mc->kvm_type(ms, kvm_type);
2439      } else if (mc->kvm_type) {
2440          type = mc->kvm_type(ms, NULL);
2441      }
2442  
2443      do {
2444          ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2445      } while (ret == -EINTR);
2446  
2447      if (ret < 0) {
2448          fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2449                  strerror(-ret));
2450  
2451  #ifdef TARGET_S390X
2452          if (ret == -EINVAL) {
2453              fprintf(stderr,
2454                      "Host kernel setup problem detected. Please verify:\n");
2455              fprintf(stderr, "- for kernels supporting the switch_amode or"
2456                      " user_mode parameters, whether\n");
2457              fprintf(stderr,
2458                      "  user space is running in primary address space\n");
2459              fprintf(stderr,
2460                      "- for kernels supporting the vm.allocate_pgste sysctl, "
2461                      "whether it is enabled\n");
2462          }
2463  #elif defined(TARGET_PPC)
2464          if (ret == -EINVAL) {
2465              fprintf(stderr,
2466                      "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2467                      (type == 2) ? "pr" : "hv");
2468          }
2469  #endif
2470          goto err;
2471      }
2472  
2473      s->vmfd = ret;
2474  
2475      /* check the vcpu limits */
2476      soft_vcpus_limit = kvm_recommended_vcpus(s);
2477      hard_vcpus_limit = kvm_max_vcpus(s);
2478  
2479      while (nc->name) {
2480          if (nc->num > soft_vcpus_limit) {
2481              warn_report("Number of %s cpus requested (%d) exceeds "
2482                          "the recommended cpus supported by KVM (%d)",
2483                          nc->name, nc->num, soft_vcpus_limit);
2484  
2485              if (nc->num > hard_vcpus_limit) {
2486                  fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2487                          "the maximum cpus supported by KVM (%d)\n",
2488                          nc->name, nc->num, hard_vcpus_limit);
2489                  exit(1);
2490              }
2491          }
2492          nc++;
2493      }
2494  
2495      missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2496      if (!missing_cap) {
2497          missing_cap =
2498              kvm_check_extension_list(s, kvm_arch_required_capabilities);
2499      }
2500      if (missing_cap) {
2501          ret = -EINVAL;
2502          fprintf(stderr, "kvm does not support %s\n%s",
2503                  missing_cap->name, upgrade_note);
2504          goto err;
2505      }
2506  
2507      s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2508      s->coalesced_pio = s->coalesced_mmio &&
2509                         kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2510  
2511      /*
2512       * Enable KVM dirty ring if supported, otherwise fall back to
2513       * dirty logging mode
2514       */
2515      if (s->kvm_dirty_ring_size > 0) {
2516          uint64_t ring_bytes;
2517  
2518          ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2519  
2520          /* Read the max supported pages */
2521          ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2522          if (ret > 0) {
2523              if (ring_bytes > ret) {
2524                  error_report("KVM dirty ring size %" PRIu32 " too big "
2525                               "(maximum is %ld).  Please use a smaller value.",
2526                               s->kvm_dirty_ring_size,
2527                               (long)ret / sizeof(struct kvm_dirty_gfn));
2528                  ret = -EINVAL;
2529                  goto err;
2530              }
2531  
2532              ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2533              if (ret) {
2534                  error_report("Enabling of KVM dirty ring failed: %s. "
2535                               "Suggested minimum value is 1024.", strerror(-ret));
2536                  goto err;
2537              }
2538  
2539              s->kvm_dirty_ring_bytes = ring_bytes;
2540           } else {
2541               warn_report("KVM dirty ring not available, using bitmap method");
2542               s->kvm_dirty_ring_size = 0;
2543          }
2544      }
2545  
2546      /*
2547       * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2548       * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2549       * page is wr-protected initially, which is against how kvm dirty ring is
2550       * usage - kvm dirty ring requires all pages are wr-protected at the very
2551       * beginning.  Enabling this feature for dirty ring causes data corruption.
2552       *
2553       * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2554       * we may expect a higher stall time when starting the migration.  In the
2555       * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2556       * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2557       * guest pages.
2558       */
2559      if (!s->kvm_dirty_ring_size) {
2560          dirty_log_manual_caps =
2561              kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2562          dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2563                                    KVM_DIRTY_LOG_INITIALLY_SET);
2564          s->manual_dirty_log_protect = dirty_log_manual_caps;
2565          if (dirty_log_manual_caps) {
2566              ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2567                                      dirty_log_manual_caps);
2568              if (ret) {
2569                  warn_report("Trying to enable capability %"PRIu64" of "
2570                              "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2571                              "Falling back to the legacy mode. ",
2572                              dirty_log_manual_caps);
2573                  s->manual_dirty_log_protect = 0;
2574              }
2575          }
2576      }
2577  
2578  #ifdef KVM_CAP_VCPU_EVENTS
2579      s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2580  #endif
2581  
2582      s->robust_singlestep =
2583          kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2584  
2585  #ifdef KVM_CAP_DEBUGREGS
2586      s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2587  #endif
2588  
2589      s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2590  
2591  #ifdef KVM_CAP_IRQ_ROUTING
2592      kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2593  #endif
2594  
2595      s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2596  
2597      s->irq_set_ioctl = KVM_IRQ_LINE;
2598      if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2599          s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2600      }
2601  
2602      kvm_readonly_mem_allowed =
2603          (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2604  
2605      kvm_eventfds_allowed =
2606          (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2607  
2608      kvm_irqfds_allowed =
2609          (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2610  
2611      kvm_resamplefds_allowed =
2612          (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2613  
2614      kvm_vm_attributes_allowed =
2615          (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2616  
2617      kvm_ioeventfd_any_length_allowed =
2618          (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2619  
2620  #ifdef KVM_CAP_SET_GUEST_DEBUG
2621      kvm_has_guest_debug =
2622          (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2623  #endif
2624  
2625      kvm_sstep_flags = 0;
2626      if (kvm_has_guest_debug) {
2627          kvm_sstep_flags = SSTEP_ENABLE;
2628  
2629  #if defined KVM_CAP_SET_GUEST_DEBUG2
2630          int guest_debug_flags =
2631              kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2632  
2633          if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2634              kvm_sstep_flags |= SSTEP_NOIRQ;
2635          }
2636  #endif
2637      }
2638  
2639      kvm_state = s;
2640  
2641      ret = kvm_arch_init(ms, s);
2642      if (ret < 0) {
2643          goto err;
2644      }
2645  
2646      if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2647          s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2648      }
2649  
2650      qemu_register_reset(kvm_unpoison_all, NULL);
2651  
2652      if (s->kernel_irqchip_allowed) {
2653          kvm_irqchip_create(s);
2654      }
2655  
2656      if (kvm_eventfds_allowed) {
2657          s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2658          s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2659      }
2660      s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2661      s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2662  
2663      kvm_memory_listener_register(s, &s->memory_listener,
2664                                   &address_space_memory, 0, "kvm-memory");
2665      if (kvm_eventfds_allowed) {
2666          memory_listener_register(&kvm_io_listener,
2667                                   &address_space_io);
2668      }
2669      memory_listener_register(&kvm_coalesced_pio_listener,
2670                               &address_space_io);
2671  
2672      s->many_ioeventfds = kvm_check_many_ioeventfds();
2673  
2674      s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2675      if (!s->sync_mmu) {
2676          ret = ram_block_discard_disable(true);
2677          assert(!ret);
2678      }
2679  
2680      if (s->kvm_dirty_ring_size) {
2681          ret = kvm_dirty_ring_reaper_init(s);
2682          if (ret) {
2683              goto err;
2684          }
2685      }
2686  
2687      if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2688          add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2689                              query_stats_schemas_cb);
2690      }
2691  
2692      return 0;
2693  
2694  err:
2695      assert(ret < 0);
2696      if (s->vmfd >= 0) {
2697          close(s->vmfd);
2698      }
2699      if (s->fd != -1) {
2700          close(s->fd);
2701      }
2702      g_free(s->memory_listener.slots);
2703  
2704      return ret;
2705  }
2706  
2707  void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2708  {
2709      s->sigmask_len = sigmask_len;
2710  }
2711  
2712  static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2713                            int size, uint32_t count)
2714  {
2715      int i;
2716      uint8_t *ptr = data;
2717  
2718      for (i = 0; i < count; i++) {
2719          address_space_rw(&address_space_io, port, attrs,
2720                           ptr, size,
2721                           direction == KVM_EXIT_IO_OUT);
2722          ptr += size;
2723      }
2724  }
2725  
2726  static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2727  {
2728      fprintf(stderr, "KVM internal error. Suberror: %d\n",
2729              run->internal.suberror);
2730  
2731      if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2732          int i;
2733  
2734          for (i = 0; i < run->internal.ndata; ++i) {
2735              fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2736                      i, (uint64_t)run->internal.data[i]);
2737          }
2738      }
2739      if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2740          fprintf(stderr, "emulation failure\n");
2741          if (!kvm_arch_stop_on_emulation_error(cpu)) {
2742              cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2743              return EXCP_INTERRUPT;
2744          }
2745      }
2746      /* FIXME: Should trigger a qmp message to let management know
2747       * something went wrong.
2748       */
2749      return -1;
2750  }
2751  
2752  void kvm_flush_coalesced_mmio_buffer(void)
2753  {
2754      KVMState *s = kvm_state;
2755  
2756      if (s->coalesced_flush_in_progress) {
2757          return;
2758      }
2759  
2760      s->coalesced_flush_in_progress = true;
2761  
2762      if (s->coalesced_mmio_ring) {
2763          struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2764          while (ring->first != ring->last) {
2765              struct kvm_coalesced_mmio *ent;
2766  
2767              ent = &ring->coalesced_mmio[ring->first];
2768  
2769              if (ent->pio == 1) {
2770                  address_space_write(&address_space_io, ent->phys_addr,
2771                                      MEMTXATTRS_UNSPECIFIED, ent->data,
2772                                      ent->len);
2773              } else {
2774                  cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2775              }
2776              smp_wmb();
2777              ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2778          }
2779      }
2780  
2781      s->coalesced_flush_in_progress = false;
2782  }
2783  
2784  bool kvm_cpu_check_are_resettable(void)
2785  {
2786      return kvm_arch_cpu_check_are_resettable();
2787  }
2788  
2789  static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2790  {
2791      if (!cpu->vcpu_dirty) {
2792          kvm_arch_get_registers(cpu);
2793          cpu->vcpu_dirty = true;
2794      }
2795  }
2796  
2797  void kvm_cpu_synchronize_state(CPUState *cpu)
2798  {
2799      if (!cpu->vcpu_dirty) {
2800          run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2801      }
2802  }
2803  
2804  static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2805  {
2806      kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2807      cpu->vcpu_dirty = false;
2808  }
2809  
2810  void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2811  {
2812      run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2813  }
2814  
2815  static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2816  {
2817      kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2818      cpu->vcpu_dirty = false;
2819  }
2820  
2821  void kvm_cpu_synchronize_post_init(CPUState *cpu)
2822  {
2823      run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2824  }
2825  
2826  static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2827  {
2828      cpu->vcpu_dirty = true;
2829  }
2830  
2831  void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2832  {
2833      run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2834  }
2835  
2836  #ifdef KVM_HAVE_MCE_INJECTION
2837  static __thread void *pending_sigbus_addr;
2838  static __thread int pending_sigbus_code;
2839  static __thread bool have_sigbus_pending;
2840  #endif
2841  
2842  static void kvm_cpu_kick(CPUState *cpu)
2843  {
2844      qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2845  }
2846  
2847  static void kvm_cpu_kick_self(void)
2848  {
2849      if (kvm_immediate_exit) {
2850          kvm_cpu_kick(current_cpu);
2851      } else {
2852          qemu_cpu_kick_self();
2853      }
2854  }
2855  
2856  static void kvm_eat_signals(CPUState *cpu)
2857  {
2858      struct timespec ts = { 0, 0 };
2859      siginfo_t siginfo;
2860      sigset_t waitset;
2861      sigset_t chkset;
2862      int r;
2863  
2864      if (kvm_immediate_exit) {
2865          qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2866          /* Write kvm_run->immediate_exit before the cpu->exit_request
2867           * write in kvm_cpu_exec.
2868           */
2869          smp_wmb();
2870          return;
2871      }
2872  
2873      sigemptyset(&waitset);
2874      sigaddset(&waitset, SIG_IPI);
2875  
2876      do {
2877          r = sigtimedwait(&waitset, &siginfo, &ts);
2878          if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2879              perror("sigtimedwait");
2880              exit(1);
2881          }
2882  
2883          r = sigpending(&chkset);
2884          if (r == -1) {
2885              perror("sigpending");
2886              exit(1);
2887          }
2888      } while (sigismember(&chkset, SIG_IPI));
2889  }
2890  
2891  int kvm_cpu_exec(CPUState *cpu)
2892  {
2893      struct kvm_run *run = cpu->kvm_run;
2894      int ret, run_ret;
2895  
2896      DPRINTF("kvm_cpu_exec()\n");
2897  
2898      if (kvm_arch_process_async_events(cpu)) {
2899          qatomic_set(&cpu->exit_request, 0);
2900          return EXCP_HLT;
2901      }
2902  
2903      qemu_mutex_unlock_iothread();
2904      cpu_exec_start(cpu);
2905  
2906      do {
2907          MemTxAttrs attrs;
2908  
2909          if (cpu->vcpu_dirty) {
2910              kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2911              cpu->vcpu_dirty = false;
2912          }
2913  
2914          kvm_arch_pre_run(cpu, run);
2915          if (qatomic_read(&cpu->exit_request)) {
2916              DPRINTF("interrupt exit requested\n");
2917              /*
2918               * KVM requires us to reenter the kernel after IO exits to complete
2919               * instruction emulation. This self-signal will ensure that we
2920               * leave ASAP again.
2921               */
2922              kvm_cpu_kick_self();
2923          }
2924  
2925          /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2926           * Matching barrier in kvm_eat_signals.
2927           */
2928          smp_rmb();
2929  
2930          run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2931  
2932          attrs = kvm_arch_post_run(cpu, run);
2933  
2934  #ifdef KVM_HAVE_MCE_INJECTION
2935          if (unlikely(have_sigbus_pending)) {
2936              qemu_mutex_lock_iothread();
2937              kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2938                                      pending_sigbus_addr);
2939              have_sigbus_pending = false;
2940              qemu_mutex_unlock_iothread();
2941          }
2942  #endif
2943  
2944          if (run_ret < 0) {
2945              if (run_ret == -EINTR || run_ret == -EAGAIN) {
2946                  DPRINTF("io window exit\n");
2947                  kvm_eat_signals(cpu);
2948                  ret = EXCP_INTERRUPT;
2949                  break;
2950              }
2951              fprintf(stderr, "error: kvm run failed %s\n",
2952                      strerror(-run_ret));
2953  #ifdef TARGET_PPC
2954              if (run_ret == -EBUSY) {
2955                  fprintf(stderr,
2956                          "This is probably because your SMT is enabled.\n"
2957                          "VCPU can only run on primary threads with all "
2958                          "secondary threads offline.\n");
2959              }
2960  #endif
2961              ret = -1;
2962              break;
2963          }
2964  
2965          trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2966          switch (run->exit_reason) {
2967          case KVM_EXIT_IO:
2968              DPRINTF("handle_io\n");
2969              /* Called outside BQL */
2970              kvm_handle_io(run->io.port, attrs,
2971                            (uint8_t *)run + run->io.data_offset,
2972                            run->io.direction,
2973                            run->io.size,
2974                            run->io.count);
2975              ret = 0;
2976              break;
2977          case KVM_EXIT_MMIO:
2978              DPRINTF("handle_mmio\n");
2979              /* Called outside BQL */
2980              address_space_rw(&address_space_memory,
2981                               run->mmio.phys_addr, attrs,
2982                               run->mmio.data,
2983                               run->mmio.len,
2984                               run->mmio.is_write);
2985              ret = 0;
2986              break;
2987          case KVM_EXIT_IRQ_WINDOW_OPEN:
2988              DPRINTF("irq_window_open\n");
2989              ret = EXCP_INTERRUPT;
2990              break;
2991          case KVM_EXIT_SHUTDOWN:
2992              DPRINTF("shutdown\n");
2993              qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2994              ret = EXCP_INTERRUPT;
2995              break;
2996          case KVM_EXIT_UNKNOWN:
2997              fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2998                      (uint64_t)run->hw.hardware_exit_reason);
2999              ret = -1;
3000              break;
3001          case KVM_EXIT_INTERNAL_ERROR:
3002              ret = kvm_handle_internal_error(cpu, run);
3003              break;
3004          case KVM_EXIT_DIRTY_RING_FULL:
3005              /*
3006               * We shouldn't continue if the dirty ring of this vcpu is
3007               * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
3008               */
3009              trace_kvm_dirty_ring_full(cpu->cpu_index);
3010              qemu_mutex_lock_iothread();
3011              /*
3012               * We throttle vCPU by making it sleep once it exit from kernel
3013               * due to dirty ring full. In the dirtylimit scenario, reaping
3014               * all vCPUs after a single vCPU dirty ring get full result in
3015               * the miss of sleep, so just reap the ring-fulled vCPU.
3016               */
3017              if (dirtylimit_in_service()) {
3018                  kvm_dirty_ring_reap(kvm_state, cpu);
3019              } else {
3020                  kvm_dirty_ring_reap(kvm_state, NULL);
3021              }
3022              qemu_mutex_unlock_iothread();
3023              dirtylimit_vcpu_execute(cpu);
3024              ret = 0;
3025              break;
3026          case KVM_EXIT_SYSTEM_EVENT:
3027              switch (run->system_event.type) {
3028              case KVM_SYSTEM_EVENT_SHUTDOWN:
3029                  qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3030                  ret = EXCP_INTERRUPT;
3031                  break;
3032              case KVM_SYSTEM_EVENT_RESET:
3033                  qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3034                  ret = EXCP_INTERRUPT;
3035                  break;
3036              case KVM_SYSTEM_EVENT_CRASH:
3037                  kvm_cpu_synchronize_state(cpu);
3038                  qemu_mutex_lock_iothread();
3039                  qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3040                  qemu_mutex_unlock_iothread();
3041                  ret = 0;
3042                  break;
3043              default:
3044                  DPRINTF("kvm_arch_handle_exit\n");
3045                  ret = kvm_arch_handle_exit(cpu, run);
3046                  break;
3047              }
3048              break;
3049          default:
3050              DPRINTF("kvm_arch_handle_exit\n");
3051              ret = kvm_arch_handle_exit(cpu, run);
3052              break;
3053          }
3054      } while (ret == 0);
3055  
3056      cpu_exec_end(cpu);
3057      qemu_mutex_lock_iothread();
3058  
3059      if (ret < 0) {
3060          cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3061          vm_stop(RUN_STATE_INTERNAL_ERROR);
3062      }
3063  
3064      qatomic_set(&cpu->exit_request, 0);
3065      return ret;
3066  }
3067  
3068  int kvm_ioctl(KVMState *s, int type, ...)
3069  {
3070      int ret;
3071      void *arg;
3072      va_list ap;
3073  
3074      va_start(ap, type);
3075      arg = va_arg(ap, void *);
3076      va_end(ap);
3077  
3078      trace_kvm_ioctl(type, arg);
3079      ret = ioctl(s->fd, type, arg);
3080      if (ret == -1) {
3081          ret = -errno;
3082      }
3083      return ret;
3084  }
3085  
3086  int kvm_vm_ioctl(KVMState *s, int type, ...)
3087  {
3088      int ret;
3089      void *arg;
3090      va_list ap;
3091  
3092      va_start(ap, type);
3093      arg = va_arg(ap, void *);
3094      va_end(ap);
3095  
3096      trace_kvm_vm_ioctl(type, arg);
3097      accel_ioctl_begin();
3098      ret = ioctl(s->vmfd, type, arg);
3099      accel_ioctl_end();
3100      if (ret == -1) {
3101          ret = -errno;
3102      }
3103      return ret;
3104  }
3105  
3106  int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3107  {
3108      int ret;
3109      void *arg;
3110      va_list ap;
3111  
3112      va_start(ap, type);
3113      arg = va_arg(ap, void *);
3114      va_end(ap);
3115  
3116      trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3117      accel_cpu_ioctl_begin(cpu);
3118      ret = ioctl(cpu->kvm_fd, type, arg);
3119      accel_cpu_ioctl_end(cpu);
3120      if (ret == -1) {
3121          ret = -errno;
3122      }
3123      return ret;
3124  }
3125  
3126  int kvm_device_ioctl(int fd, int type, ...)
3127  {
3128      int ret;
3129      void *arg;
3130      va_list ap;
3131  
3132      va_start(ap, type);
3133      arg = va_arg(ap, void *);
3134      va_end(ap);
3135  
3136      trace_kvm_device_ioctl(fd, type, arg);
3137      accel_ioctl_begin();
3138      ret = ioctl(fd, type, arg);
3139      accel_ioctl_end();
3140      if (ret == -1) {
3141          ret = -errno;
3142      }
3143      return ret;
3144  }
3145  
3146  int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3147  {
3148      int ret;
3149      struct kvm_device_attr attribute = {
3150          .group = group,
3151          .attr = attr,
3152      };
3153  
3154      if (!kvm_vm_attributes_allowed) {
3155          return 0;
3156      }
3157  
3158      ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3159      /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3160      return ret ? 0 : 1;
3161  }
3162  
3163  int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3164  {
3165      struct kvm_device_attr attribute = {
3166          .group = group,
3167          .attr = attr,
3168          .flags = 0,
3169      };
3170  
3171      return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3172  }
3173  
3174  int kvm_device_access(int fd, int group, uint64_t attr,
3175                        void *val, bool write, Error **errp)
3176  {
3177      struct kvm_device_attr kvmattr;
3178      int err;
3179  
3180      kvmattr.flags = 0;
3181      kvmattr.group = group;
3182      kvmattr.attr = attr;
3183      kvmattr.addr = (uintptr_t)val;
3184  
3185      err = kvm_device_ioctl(fd,
3186                             write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3187                             &kvmattr);
3188      if (err < 0) {
3189          error_setg_errno(errp, -err,
3190                           "KVM_%s_DEVICE_ATTR failed: Group %d "
3191                           "attr 0x%016" PRIx64,
3192                           write ? "SET" : "GET", group, attr);
3193      }
3194      return err;
3195  }
3196  
3197  bool kvm_has_sync_mmu(void)
3198  {
3199      return kvm_state->sync_mmu;
3200  }
3201  
3202  int kvm_has_vcpu_events(void)
3203  {
3204      return kvm_state->vcpu_events;
3205  }
3206  
3207  int kvm_has_robust_singlestep(void)
3208  {
3209      return kvm_state->robust_singlestep;
3210  }
3211  
3212  int kvm_has_debugregs(void)
3213  {
3214      return kvm_state->debugregs;
3215  }
3216  
3217  int kvm_max_nested_state_length(void)
3218  {
3219      return kvm_state->max_nested_state_len;
3220  }
3221  
3222  int kvm_has_many_ioeventfds(void)
3223  {
3224      if (!kvm_enabled()) {
3225          return 0;
3226      }
3227      return kvm_state->many_ioeventfds;
3228  }
3229  
3230  int kvm_has_gsi_routing(void)
3231  {
3232  #ifdef KVM_CAP_IRQ_ROUTING
3233      return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3234  #else
3235      return false;
3236  #endif
3237  }
3238  
3239  int kvm_has_intx_set_mask(void)
3240  {
3241      return kvm_state->intx_set_mask;
3242  }
3243  
3244  bool kvm_arm_supports_user_irq(void)
3245  {
3246      return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3247  }
3248  
3249  #ifdef KVM_CAP_SET_GUEST_DEBUG
3250  struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3251                                                   target_ulong pc)
3252  {
3253      struct kvm_sw_breakpoint *bp;
3254  
3255      QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3256          if (bp->pc == pc) {
3257              return bp;
3258          }
3259      }
3260      return NULL;
3261  }
3262  
3263  int kvm_sw_breakpoints_active(CPUState *cpu)
3264  {
3265      return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3266  }
3267  
3268  struct kvm_set_guest_debug_data {
3269      struct kvm_guest_debug dbg;
3270      int err;
3271  };
3272  
3273  static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3274  {
3275      struct kvm_set_guest_debug_data *dbg_data =
3276          (struct kvm_set_guest_debug_data *) data.host_ptr;
3277  
3278      dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3279                                     &dbg_data->dbg);
3280  }
3281  
3282  int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3283  {
3284      struct kvm_set_guest_debug_data data;
3285  
3286      data.dbg.control = reinject_trap;
3287  
3288      if (cpu->singlestep_enabled) {
3289          data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3290  
3291          if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3292              data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3293          }
3294      }
3295      kvm_arch_update_guest_debug(cpu, &data.dbg);
3296  
3297      run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3298                 RUN_ON_CPU_HOST_PTR(&data));
3299      return data.err;
3300  }
3301  
3302  bool kvm_supports_guest_debug(void)
3303  {
3304      /* probed during kvm_init() */
3305      return kvm_has_guest_debug;
3306  }
3307  
3308  int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3309  {
3310      struct kvm_sw_breakpoint *bp;
3311      int err;
3312  
3313      if (type == GDB_BREAKPOINT_SW) {
3314          bp = kvm_find_sw_breakpoint(cpu, addr);
3315          if (bp) {
3316              bp->use_count++;
3317              return 0;
3318          }
3319  
3320          bp = g_new(struct kvm_sw_breakpoint, 1);
3321          bp->pc = addr;
3322          bp->use_count = 1;
3323          err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3324          if (err) {
3325              g_free(bp);
3326              return err;
3327          }
3328  
3329          QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3330      } else {
3331          err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3332          if (err) {
3333              return err;
3334          }
3335      }
3336  
3337      CPU_FOREACH(cpu) {
3338          err = kvm_update_guest_debug(cpu, 0);
3339          if (err) {
3340              return err;
3341          }
3342      }
3343      return 0;
3344  }
3345  
3346  int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3347  {
3348      struct kvm_sw_breakpoint *bp;
3349      int err;
3350  
3351      if (type == GDB_BREAKPOINT_SW) {
3352          bp = kvm_find_sw_breakpoint(cpu, addr);
3353          if (!bp) {
3354              return -ENOENT;
3355          }
3356  
3357          if (bp->use_count > 1) {
3358              bp->use_count--;
3359              return 0;
3360          }
3361  
3362          err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3363          if (err) {
3364              return err;
3365          }
3366  
3367          QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3368          g_free(bp);
3369      } else {
3370          err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3371          if (err) {
3372              return err;
3373          }
3374      }
3375  
3376      CPU_FOREACH(cpu) {
3377          err = kvm_update_guest_debug(cpu, 0);
3378          if (err) {
3379              return err;
3380          }
3381      }
3382      return 0;
3383  }
3384  
3385  void kvm_remove_all_breakpoints(CPUState *cpu)
3386  {
3387      struct kvm_sw_breakpoint *bp, *next;
3388      KVMState *s = cpu->kvm_state;
3389      CPUState *tmpcpu;
3390  
3391      QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3392          if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3393              /* Try harder to find a CPU that currently sees the breakpoint. */
3394              CPU_FOREACH(tmpcpu) {
3395                  if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3396                      break;
3397                  }
3398              }
3399          }
3400          QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3401          g_free(bp);
3402      }
3403      kvm_arch_remove_all_hw_breakpoints();
3404  
3405      CPU_FOREACH(cpu) {
3406          kvm_update_guest_debug(cpu, 0);
3407      }
3408  }
3409  
3410  #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3411  
3412  static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3413  {
3414      KVMState *s = kvm_state;
3415      struct kvm_signal_mask *sigmask;
3416      int r;
3417  
3418      sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3419  
3420      sigmask->len = s->sigmask_len;
3421      memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3422      r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3423      g_free(sigmask);
3424  
3425      return r;
3426  }
3427  
3428  static void kvm_ipi_signal(int sig)
3429  {
3430      if (current_cpu) {
3431          assert(kvm_immediate_exit);
3432          kvm_cpu_kick(current_cpu);
3433      }
3434  }
3435  
3436  void kvm_init_cpu_signals(CPUState *cpu)
3437  {
3438      int r;
3439      sigset_t set;
3440      struct sigaction sigact;
3441  
3442      memset(&sigact, 0, sizeof(sigact));
3443      sigact.sa_handler = kvm_ipi_signal;
3444      sigaction(SIG_IPI, &sigact, NULL);
3445  
3446      pthread_sigmask(SIG_BLOCK, NULL, &set);
3447  #if defined KVM_HAVE_MCE_INJECTION
3448      sigdelset(&set, SIGBUS);
3449      pthread_sigmask(SIG_SETMASK, &set, NULL);
3450  #endif
3451      sigdelset(&set, SIG_IPI);
3452      if (kvm_immediate_exit) {
3453          r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3454      } else {
3455          r = kvm_set_signal_mask(cpu, &set);
3456      }
3457      if (r) {
3458          fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3459          exit(1);
3460      }
3461  }
3462  
3463  /* Called asynchronously in VCPU thread.  */
3464  int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3465  {
3466  #ifdef KVM_HAVE_MCE_INJECTION
3467      if (have_sigbus_pending) {
3468          return 1;
3469      }
3470      have_sigbus_pending = true;
3471      pending_sigbus_addr = addr;
3472      pending_sigbus_code = code;
3473      qatomic_set(&cpu->exit_request, 1);
3474      return 0;
3475  #else
3476      return 1;
3477  #endif
3478  }
3479  
3480  /* Called synchronously (via signalfd) in main thread.  */
3481  int kvm_on_sigbus(int code, void *addr)
3482  {
3483  #ifdef KVM_HAVE_MCE_INJECTION
3484      /* Action required MCE kills the process if SIGBUS is blocked.  Because
3485       * that's what happens in the I/O thread, where we handle MCE via signalfd,
3486       * we can only get action optional here.
3487       */
3488      assert(code != BUS_MCEERR_AR);
3489      kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3490      return 0;
3491  #else
3492      return 1;
3493  #endif
3494  }
3495  
3496  int kvm_create_device(KVMState *s, uint64_t type, bool test)
3497  {
3498      int ret;
3499      struct kvm_create_device create_dev;
3500  
3501      create_dev.type = type;
3502      create_dev.fd = -1;
3503      create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3504  
3505      if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3506          return -ENOTSUP;
3507      }
3508  
3509      ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3510      if (ret) {
3511          return ret;
3512      }
3513  
3514      return test ? 0 : create_dev.fd;
3515  }
3516  
3517  bool kvm_device_supported(int vmfd, uint64_t type)
3518  {
3519      struct kvm_create_device create_dev = {
3520          .type = type,
3521          .fd = -1,
3522          .flags = KVM_CREATE_DEVICE_TEST,
3523      };
3524  
3525      if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3526          return false;
3527      }
3528  
3529      return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3530  }
3531  
3532  int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3533  {
3534      struct kvm_one_reg reg;
3535      int r;
3536  
3537      reg.id = id;
3538      reg.addr = (uintptr_t) source;
3539      r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3540      if (r) {
3541          trace_kvm_failed_reg_set(id, strerror(-r));
3542      }
3543      return r;
3544  }
3545  
3546  int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3547  {
3548      struct kvm_one_reg reg;
3549      int r;
3550  
3551      reg.id = id;
3552      reg.addr = (uintptr_t) target;
3553      r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3554      if (r) {
3555          trace_kvm_failed_reg_get(id, strerror(-r));
3556      }
3557      return r;
3558  }
3559  
3560  static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3561                                   hwaddr start_addr, hwaddr size)
3562  {
3563      KVMState *kvm = KVM_STATE(ms->accelerator);
3564      int i;
3565  
3566      for (i = 0; i < kvm->nr_as; ++i) {
3567          if (kvm->as[i].as == as && kvm->as[i].ml) {
3568              size = MIN(kvm_max_slot_size, size);
3569              return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3570                                                      start_addr, size);
3571          }
3572      }
3573  
3574      return false;
3575  }
3576  
3577  static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3578                                     const char *name, void *opaque,
3579                                     Error **errp)
3580  {
3581      KVMState *s = KVM_STATE(obj);
3582      int64_t value = s->kvm_shadow_mem;
3583  
3584      visit_type_int(v, name, &value, errp);
3585  }
3586  
3587  static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3588                                     const char *name, void *opaque,
3589                                     Error **errp)
3590  {
3591      KVMState *s = KVM_STATE(obj);
3592      int64_t value;
3593  
3594      if (s->fd != -1) {
3595          error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3596          return;
3597      }
3598  
3599      if (!visit_type_int(v, name, &value, errp)) {
3600          return;
3601      }
3602  
3603      s->kvm_shadow_mem = value;
3604  }
3605  
3606  static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3607                                     const char *name, void *opaque,
3608                                     Error **errp)
3609  {
3610      KVMState *s = KVM_STATE(obj);
3611      OnOffSplit mode;
3612  
3613      if (s->fd != -1) {
3614          error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3615          return;
3616      }
3617  
3618      if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3619          return;
3620      }
3621      switch (mode) {
3622      case ON_OFF_SPLIT_ON:
3623          s->kernel_irqchip_allowed = true;
3624          s->kernel_irqchip_required = true;
3625          s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3626          break;
3627      case ON_OFF_SPLIT_OFF:
3628          s->kernel_irqchip_allowed = false;
3629          s->kernel_irqchip_required = false;
3630          s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3631          break;
3632      case ON_OFF_SPLIT_SPLIT:
3633          s->kernel_irqchip_allowed = true;
3634          s->kernel_irqchip_required = true;
3635          s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3636          break;
3637      default:
3638          /* The value was checked in visit_type_OnOffSplit() above. If
3639           * we get here, then something is wrong in QEMU.
3640           */
3641          abort();
3642      }
3643  }
3644  
3645  bool kvm_kernel_irqchip_allowed(void)
3646  {
3647      return kvm_state->kernel_irqchip_allowed;
3648  }
3649  
3650  bool kvm_kernel_irqchip_required(void)
3651  {
3652      return kvm_state->kernel_irqchip_required;
3653  }
3654  
3655  bool kvm_kernel_irqchip_split(void)
3656  {
3657      return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3658  }
3659  
3660  static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3661                                      const char *name, void *opaque,
3662                                      Error **errp)
3663  {
3664      KVMState *s = KVM_STATE(obj);
3665      uint32_t value = s->kvm_dirty_ring_size;
3666  
3667      visit_type_uint32(v, name, &value, errp);
3668  }
3669  
3670  static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3671                                      const char *name, void *opaque,
3672                                      Error **errp)
3673  {
3674      KVMState *s = KVM_STATE(obj);
3675      uint32_t value;
3676  
3677      if (s->fd != -1) {
3678          error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3679          return;
3680      }
3681  
3682      if (!visit_type_uint32(v, name, &value, errp)) {
3683          return;
3684      }
3685      if (value & (value - 1)) {
3686          error_setg(errp, "dirty-ring-size must be a power of two.");
3687          return;
3688      }
3689  
3690      s->kvm_dirty_ring_size = value;
3691  }
3692  
3693  static void kvm_accel_instance_init(Object *obj)
3694  {
3695      KVMState *s = KVM_STATE(obj);
3696  
3697      s->fd = -1;
3698      s->vmfd = -1;
3699      s->kvm_shadow_mem = -1;
3700      s->kernel_irqchip_allowed = true;
3701      s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3702      /* KVM dirty ring is by default off */
3703      s->kvm_dirty_ring_size = 0;
3704      s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3705      s->notify_window = 0;
3706  }
3707  
3708  /**
3709   * kvm_gdbstub_sstep_flags():
3710   *
3711   * Returns: SSTEP_* flags that KVM supports for guest debug. The
3712   * support is probed during kvm_init()
3713   */
3714  static int kvm_gdbstub_sstep_flags(void)
3715  {
3716      return kvm_sstep_flags;
3717  }
3718  
3719  static void kvm_accel_class_init(ObjectClass *oc, void *data)
3720  {
3721      AccelClass *ac = ACCEL_CLASS(oc);
3722      ac->name = "KVM";
3723      ac->init_machine = kvm_init;
3724      ac->has_memory = kvm_accel_has_memory;
3725      ac->allowed = &kvm_allowed;
3726      ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3727  
3728      object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3729          NULL, kvm_set_kernel_irqchip,
3730          NULL, NULL);
3731      object_class_property_set_description(oc, "kernel-irqchip",
3732          "Configure KVM in-kernel irqchip");
3733  
3734      object_class_property_add(oc, "kvm-shadow-mem", "int",
3735          kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3736          NULL, NULL);
3737      object_class_property_set_description(oc, "kvm-shadow-mem",
3738          "KVM shadow MMU size");
3739  
3740      object_class_property_add(oc, "dirty-ring-size", "uint32",
3741          kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3742          NULL, NULL);
3743      object_class_property_set_description(oc, "dirty-ring-size",
3744          "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3745  
3746      kvm_arch_accel_class_init(oc);
3747  }
3748  
3749  static const TypeInfo kvm_accel_type = {
3750      .name = TYPE_KVM_ACCEL,
3751      .parent = TYPE_ACCEL,
3752      .instance_init = kvm_accel_instance_init,
3753      .class_init = kvm_accel_class_init,
3754      .instance_size = sizeof(KVMState),
3755  };
3756  
3757  static void kvm_type_init(void)
3758  {
3759      type_register_static(&kvm_accel_type);
3760  }
3761  
3762  type_init(kvm_type_init);
3763  
3764  typedef struct StatsArgs {
3765      union StatsResultsType {
3766          StatsResultList **stats;
3767          StatsSchemaList **schema;
3768      } result;
3769      strList *names;
3770      Error **errp;
3771  } StatsArgs;
3772  
3773  static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3774                                      uint64_t *stats_data,
3775                                      StatsList *stats_list,
3776                                      Error **errp)
3777  {
3778  
3779      Stats *stats;
3780      uint64List *val_list = NULL;
3781  
3782      /* Only add stats that we understand.  */
3783      switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3784      case KVM_STATS_TYPE_CUMULATIVE:
3785      case KVM_STATS_TYPE_INSTANT:
3786      case KVM_STATS_TYPE_PEAK:
3787      case KVM_STATS_TYPE_LINEAR_HIST:
3788      case KVM_STATS_TYPE_LOG_HIST:
3789          break;
3790      default:
3791          return stats_list;
3792      }
3793  
3794      switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3795      case KVM_STATS_UNIT_NONE:
3796      case KVM_STATS_UNIT_BYTES:
3797      case KVM_STATS_UNIT_CYCLES:
3798      case KVM_STATS_UNIT_SECONDS:
3799      case KVM_STATS_UNIT_BOOLEAN:
3800          break;
3801      default:
3802          return stats_list;
3803      }
3804  
3805      switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3806      case KVM_STATS_BASE_POW10:
3807      case KVM_STATS_BASE_POW2:
3808          break;
3809      default:
3810          return stats_list;
3811      }
3812  
3813      /* Alloc and populate data list */
3814      stats = g_new0(Stats, 1);
3815      stats->name = g_strdup(pdesc->name);
3816      stats->value = g_new0(StatsValue, 1);;
3817  
3818      if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3819          stats->value->u.boolean = *stats_data;
3820          stats->value->type = QTYPE_QBOOL;
3821      } else if (pdesc->size == 1) {
3822          stats->value->u.scalar = *stats_data;
3823          stats->value->type = QTYPE_QNUM;
3824      } else {
3825          int i;
3826          for (i = 0; i < pdesc->size; i++) {
3827              QAPI_LIST_PREPEND(val_list, stats_data[i]);
3828          }
3829          stats->value->u.list = val_list;
3830          stats->value->type = QTYPE_QLIST;
3831      }
3832  
3833      QAPI_LIST_PREPEND(stats_list, stats);
3834      return stats_list;
3835  }
3836  
3837  static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3838                                                   StatsSchemaValueList *list,
3839                                                   Error **errp)
3840  {
3841      StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3842      schema_entry->value = g_new0(StatsSchemaValue, 1);
3843  
3844      switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3845      case KVM_STATS_TYPE_CUMULATIVE:
3846          schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3847          break;
3848      case KVM_STATS_TYPE_INSTANT:
3849          schema_entry->value->type = STATS_TYPE_INSTANT;
3850          break;
3851      case KVM_STATS_TYPE_PEAK:
3852          schema_entry->value->type = STATS_TYPE_PEAK;
3853          break;
3854      case KVM_STATS_TYPE_LINEAR_HIST:
3855          schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3856          schema_entry->value->bucket_size = pdesc->bucket_size;
3857          schema_entry->value->has_bucket_size = true;
3858          break;
3859      case KVM_STATS_TYPE_LOG_HIST:
3860          schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3861          break;
3862      default:
3863          goto exit;
3864      }
3865  
3866      switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3867      case KVM_STATS_UNIT_NONE:
3868          break;
3869      case KVM_STATS_UNIT_BOOLEAN:
3870          schema_entry->value->has_unit = true;
3871          schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3872          break;
3873      case KVM_STATS_UNIT_BYTES:
3874          schema_entry->value->has_unit = true;
3875          schema_entry->value->unit = STATS_UNIT_BYTES;
3876          break;
3877      case KVM_STATS_UNIT_CYCLES:
3878          schema_entry->value->has_unit = true;
3879          schema_entry->value->unit = STATS_UNIT_CYCLES;
3880          break;
3881      case KVM_STATS_UNIT_SECONDS:
3882          schema_entry->value->has_unit = true;
3883          schema_entry->value->unit = STATS_UNIT_SECONDS;
3884          break;
3885      default:
3886          goto exit;
3887      }
3888  
3889      schema_entry->value->exponent = pdesc->exponent;
3890      if (pdesc->exponent) {
3891          switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3892          case KVM_STATS_BASE_POW10:
3893              schema_entry->value->has_base = true;
3894              schema_entry->value->base = 10;
3895              break;
3896          case KVM_STATS_BASE_POW2:
3897              schema_entry->value->has_base = true;
3898              schema_entry->value->base = 2;
3899              break;
3900          default:
3901              goto exit;
3902          }
3903      }
3904  
3905      schema_entry->value->name = g_strdup(pdesc->name);
3906      schema_entry->next = list;
3907      return schema_entry;
3908  exit:
3909      g_free(schema_entry->value);
3910      g_free(schema_entry);
3911      return list;
3912  }
3913  
3914  /* Cached stats descriptors */
3915  typedef struct StatsDescriptors {
3916      const char *ident; /* cache key, currently the StatsTarget */
3917      struct kvm_stats_desc *kvm_stats_desc;
3918      struct kvm_stats_header kvm_stats_header;
3919      QTAILQ_ENTRY(StatsDescriptors) next;
3920  } StatsDescriptors;
3921  
3922  static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3923      QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3924  
3925  /*
3926   * Return the descriptors for 'target', that either have already been read
3927   * or are retrieved from 'stats_fd'.
3928   */
3929  static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3930                                                  Error **errp)
3931  {
3932      StatsDescriptors *descriptors;
3933      const char *ident;
3934      struct kvm_stats_desc *kvm_stats_desc;
3935      struct kvm_stats_header *kvm_stats_header;
3936      size_t size_desc;
3937      ssize_t ret;
3938  
3939      ident = StatsTarget_str(target);
3940      QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3941          if (g_str_equal(descriptors->ident, ident)) {
3942              return descriptors;
3943          }
3944      }
3945  
3946      descriptors = g_new0(StatsDescriptors, 1);
3947  
3948      /* Read stats header */
3949      kvm_stats_header = &descriptors->kvm_stats_header;
3950      ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
3951      if (ret != sizeof(*kvm_stats_header)) {
3952          error_setg(errp, "KVM stats: failed to read stats header: "
3953                     "expected %zu actual %zu",
3954                     sizeof(*kvm_stats_header), ret);
3955          g_free(descriptors);
3956          return NULL;
3957      }
3958      size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3959  
3960      /* Read stats descriptors */
3961      kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3962      ret = pread(stats_fd, kvm_stats_desc,
3963                  size_desc * kvm_stats_header->num_desc,
3964                  kvm_stats_header->desc_offset);
3965  
3966      if (ret != size_desc * kvm_stats_header->num_desc) {
3967          error_setg(errp, "KVM stats: failed to read stats descriptors: "
3968                     "expected %zu actual %zu",
3969                     size_desc * kvm_stats_header->num_desc, ret);
3970          g_free(descriptors);
3971          g_free(kvm_stats_desc);
3972          return NULL;
3973      }
3974      descriptors->kvm_stats_desc = kvm_stats_desc;
3975      descriptors->ident = ident;
3976      QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3977      return descriptors;
3978  }
3979  
3980  static void query_stats(StatsResultList **result, StatsTarget target,
3981                          strList *names, int stats_fd, Error **errp)
3982  {
3983      struct kvm_stats_desc *kvm_stats_desc;
3984      struct kvm_stats_header *kvm_stats_header;
3985      StatsDescriptors *descriptors;
3986      g_autofree uint64_t *stats_data = NULL;
3987      struct kvm_stats_desc *pdesc;
3988      StatsList *stats_list = NULL;
3989      size_t size_desc, size_data = 0;
3990      ssize_t ret;
3991      int i;
3992  
3993      descriptors = find_stats_descriptors(target, stats_fd, errp);
3994      if (!descriptors) {
3995          return;
3996      }
3997  
3998      kvm_stats_header = &descriptors->kvm_stats_header;
3999      kvm_stats_desc = descriptors->kvm_stats_desc;
4000      size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4001  
4002      /* Tally the total data size; read schema data */
4003      for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4004          pdesc = (void *)kvm_stats_desc + i * size_desc;
4005          size_data += pdesc->size * sizeof(*stats_data);
4006      }
4007  
4008      stats_data = g_malloc0(size_data);
4009      ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4010  
4011      if (ret != size_data) {
4012          error_setg(errp, "KVM stats: failed to read data: "
4013                     "expected %zu actual %zu", size_data, ret);
4014          return;
4015      }
4016  
4017      for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4018          uint64_t *stats;
4019          pdesc = (void *)kvm_stats_desc + i * size_desc;
4020  
4021          /* Add entry to the list */
4022          stats = (void *)stats_data + pdesc->offset;
4023          if (!apply_str_list_filter(pdesc->name, names)) {
4024              continue;
4025          }
4026          stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4027      }
4028  
4029      if (!stats_list) {
4030          return;
4031      }
4032  
4033      switch (target) {
4034      case STATS_TARGET_VM:
4035          add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4036          break;
4037      case STATS_TARGET_VCPU:
4038          add_stats_entry(result, STATS_PROVIDER_KVM,
4039                          current_cpu->parent_obj.canonical_path,
4040                          stats_list);
4041          break;
4042      default:
4043          g_assert_not_reached();
4044      }
4045  }
4046  
4047  static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4048                                 int stats_fd, Error **errp)
4049  {
4050      struct kvm_stats_desc *kvm_stats_desc;
4051      struct kvm_stats_header *kvm_stats_header;
4052      StatsDescriptors *descriptors;
4053      struct kvm_stats_desc *pdesc;
4054      StatsSchemaValueList *stats_list = NULL;
4055      size_t size_desc;
4056      int i;
4057  
4058      descriptors = find_stats_descriptors(target, stats_fd, errp);
4059      if (!descriptors) {
4060          return;
4061      }
4062  
4063      kvm_stats_header = &descriptors->kvm_stats_header;
4064      kvm_stats_desc = descriptors->kvm_stats_desc;
4065      size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4066  
4067      /* Tally the total data size; read schema data */
4068      for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4069          pdesc = (void *)kvm_stats_desc + i * size_desc;
4070          stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4071      }
4072  
4073      add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4074  }
4075  
4076  static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
4077  {
4078      StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4079      int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4080      Error *local_err = NULL;
4081  
4082      if (stats_fd == -1) {
4083          error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4084          error_propagate(kvm_stats_args->errp, local_err);
4085          return;
4086      }
4087      query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4088                  kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
4089      close(stats_fd);
4090  }
4091  
4092  static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
4093  {
4094      StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4095      int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4096      Error *local_err = NULL;
4097  
4098      if (stats_fd == -1) {
4099          error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4100          error_propagate(kvm_stats_args->errp, local_err);
4101          return;
4102      }
4103      query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4104                         kvm_stats_args->errp);
4105      close(stats_fd);
4106  }
4107  
4108  static void query_stats_cb(StatsResultList **result, StatsTarget target,
4109                             strList *names, strList *targets, Error **errp)
4110  {
4111      KVMState *s = kvm_state;
4112      CPUState *cpu;
4113      int stats_fd;
4114  
4115      switch (target) {
4116      case STATS_TARGET_VM:
4117      {
4118          stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4119          if (stats_fd == -1) {
4120              error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4121              return;
4122          }
4123          query_stats(result, target, names, stats_fd, errp);
4124          close(stats_fd);
4125          break;
4126      }
4127      case STATS_TARGET_VCPU:
4128      {
4129          StatsArgs stats_args;
4130          stats_args.result.stats = result;
4131          stats_args.names = names;
4132          stats_args.errp = errp;
4133          CPU_FOREACH(cpu) {
4134              if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4135                  continue;
4136              }
4137              run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4138          }
4139          break;
4140      }
4141      default:
4142          break;
4143      }
4144  }
4145  
4146  void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4147  {
4148      StatsArgs stats_args;
4149      KVMState *s = kvm_state;
4150      int stats_fd;
4151  
4152      stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4153      if (stats_fd == -1) {
4154          error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4155          return;
4156      }
4157      query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4158      close(stats_fd);
4159  
4160      if (first_cpu) {
4161          stats_args.result.schema = result;
4162          stats_args.errp = errp;
4163          run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4164      }
4165  }
4166