1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 //#define DEBUG_KVM 73 74 #ifdef DEBUG_KVM 75 #define DPRINTF(fmt, ...) \ 76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 77 #else 78 #define DPRINTF(fmt, ...) \ 79 do { } while (0) 80 #endif 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_eventfds_allowed; 94 bool kvm_irqfds_allowed; 95 bool kvm_resamplefds_allowed; 96 bool kvm_msi_via_irqfd_allowed; 97 bool kvm_gsi_routing_allowed; 98 bool kvm_gsi_direct_mapping; 99 bool kvm_allowed; 100 bool kvm_readonly_mem_allowed; 101 bool kvm_vm_attributes_allowed; 102 bool kvm_ioeventfd_any_length_allowed; 103 bool kvm_msi_use_devid; 104 bool kvm_has_guest_debug; 105 static int kvm_sstep_flags; 106 static bool kvm_immediate_exit; 107 static hwaddr kvm_max_slot_size = ~0; 108 109 static const KVMCapabilityInfo kvm_required_capabilites[] = { 110 KVM_CAP_INFO(USER_MEMORY), 111 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 112 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 113 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 114 KVM_CAP_LAST_INFO 115 }; 116 117 static NotifierList kvm_irqchip_change_notifiers = 118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 119 120 struct KVMResampleFd { 121 int gsi; 122 EventNotifier *resample_event; 123 QLIST_ENTRY(KVMResampleFd) node; 124 }; 125 typedef struct KVMResampleFd KVMResampleFd; 126 127 /* 128 * Only used with split irqchip where we need to do the resample fd 129 * kick for the kernel from userspace. 130 */ 131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 133 134 static QemuMutex kml_slots_lock; 135 136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 138 139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 140 141 static inline void kvm_resample_fd_remove(int gsi) 142 { 143 KVMResampleFd *rfd; 144 145 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 146 if (rfd->gsi == gsi) { 147 QLIST_REMOVE(rfd, node); 148 g_free(rfd); 149 break; 150 } 151 } 152 } 153 154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 155 { 156 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 157 158 rfd->gsi = gsi; 159 rfd->resample_event = event; 160 161 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 162 } 163 164 void kvm_resample_fd_notify(int gsi) 165 { 166 KVMResampleFd *rfd; 167 168 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 169 if (rfd->gsi == gsi) { 170 event_notifier_set(rfd->resample_event); 171 trace_kvm_resample_fd_notify(gsi); 172 return; 173 } 174 } 175 } 176 177 unsigned int kvm_get_max_memslots(void) 178 { 179 KVMState *s = KVM_STATE(current_accel()); 180 181 return s->nr_slots; 182 } 183 184 unsigned int kvm_get_free_memslots(void) 185 { 186 unsigned int used_slots = 0; 187 KVMState *s = kvm_state; 188 int i; 189 190 kvm_slots_lock(); 191 for (i = 0; i < s->nr_as; i++) { 192 if (!s->as[i].ml) { 193 continue; 194 } 195 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 196 } 197 kvm_slots_unlock(); 198 199 return s->nr_slots - used_slots; 200 } 201 202 /* Called with KVMMemoryListener.slots_lock held */ 203 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 204 { 205 KVMState *s = kvm_state; 206 int i; 207 208 for (i = 0; i < s->nr_slots; i++) { 209 if (kml->slots[i].memory_size == 0) { 210 return &kml->slots[i]; 211 } 212 } 213 214 return NULL; 215 } 216 217 /* Called with KVMMemoryListener.slots_lock held */ 218 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 219 { 220 KVMSlot *slot = kvm_get_free_slot(kml); 221 222 if (slot) { 223 return slot; 224 } 225 226 fprintf(stderr, "%s: no free slot available\n", __func__); 227 abort(); 228 } 229 230 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 231 hwaddr start_addr, 232 hwaddr size) 233 { 234 KVMState *s = kvm_state; 235 int i; 236 237 for (i = 0; i < s->nr_slots; i++) { 238 KVMSlot *mem = &kml->slots[i]; 239 240 if (start_addr == mem->start_addr && size == mem->memory_size) { 241 return mem; 242 } 243 } 244 245 return NULL; 246 } 247 248 /* 249 * Calculate and align the start address and the size of the section. 250 * Return the size. If the size is 0, the aligned section is empty. 251 */ 252 static hwaddr kvm_align_section(MemoryRegionSection *section, 253 hwaddr *start) 254 { 255 hwaddr size = int128_get64(section->size); 256 hwaddr delta, aligned; 257 258 /* kvm works in page size chunks, but the function may be called 259 with sub-page size and unaligned start address. Pad the start 260 address to next and truncate size to previous page boundary. */ 261 aligned = ROUND_UP(section->offset_within_address_space, 262 qemu_real_host_page_size()); 263 delta = aligned - section->offset_within_address_space; 264 *start = aligned; 265 if (delta > size) { 266 return 0; 267 } 268 269 return (size - delta) & qemu_real_host_page_mask(); 270 } 271 272 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 273 hwaddr *phys_addr) 274 { 275 KVMMemoryListener *kml = &s->memory_listener; 276 int i, ret = 0; 277 278 kvm_slots_lock(); 279 for (i = 0; i < s->nr_slots; i++) { 280 KVMSlot *mem = &kml->slots[i]; 281 282 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 283 *phys_addr = mem->start_addr + (ram - mem->ram); 284 ret = 1; 285 break; 286 } 287 } 288 kvm_slots_unlock(); 289 290 return ret; 291 } 292 293 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 294 { 295 KVMState *s = kvm_state; 296 struct kvm_userspace_memory_region mem; 297 int ret; 298 299 mem.slot = slot->slot | (kml->as_id << 16); 300 mem.guest_phys_addr = slot->start_addr; 301 mem.userspace_addr = (unsigned long)slot->ram; 302 mem.flags = slot->flags; 303 304 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 305 /* Set the slot size to 0 before setting the slot to the desired 306 * value. This is needed based on KVM commit 75d61fbc. */ 307 mem.memory_size = 0; 308 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 309 if (ret < 0) { 310 goto err; 311 } 312 } 313 mem.memory_size = slot->memory_size; 314 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 315 slot->old_flags = mem.flags; 316 err: 317 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 318 mem.memory_size, mem.userspace_addr, ret); 319 if (ret < 0) { 320 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 321 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 322 __func__, mem.slot, slot->start_addr, 323 (uint64_t)mem.memory_size, strerror(errno)); 324 } 325 return ret; 326 } 327 328 static int do_kvm_destroy_vcpu(CPUState *cpu) 329 { 330 KVMState *s = kvm_state; 331 long mmap_size; 332 struct KVMParkedVcpu *vcpu = NULL; 333 int ret = 0; 334 335 DPRINTF("kvm_destroy_vcpu\n"); 336 337 ret = kvm_arch_destroy_vcpu(cpu); 338 if (ret < 0) { 339 goto err; 340 } 341 342 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 343 if (mmap_size < 0) { 344 ret = mmap_size; 345 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 346 goto err; 347 } 348 349 ret = munmap(cpu->kvm_run, mmap_size); 350 if (ret < 0) { 351 goto err; 352 } 353 354 if (cpu->kvm_dirty_gfns) { 355 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 356 if (ret < 0) { 357 goto err; 358 } 359 } 360 361 vcpu = g_malloc0(sizeof(*vcpu)); 362 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 363 vcpu->kvm_fd = cpu->kvm_fd; 364 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 365 err: 366 return ret; 367 } 368 369 void kvm_destroy_vcpu(CPUState *cpu) 370 { 371 if (do_kvm_destroy_vcpu(cpu) < 0) { 372 error_report("kvm_destroy_vcpu failed"); 373 exit(EXIT_FAILURE); 374 } 375 } 376 377 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 378 { 379 struct KVMParkedVcpu *cpu; 380 381 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 382 if (cpu->vcpu_id == vcpu_id) { 383 int kvm_fd; 384 385 QLIST_REMOVE(cpu, node); 386 kvm_fd = cpu->kvm_fd; 387 g_free(cpu); 388 return kvm_fd; 389 } 390 } 391 392 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 393 } 394 395 int kvm_init_vcpu(CPUState *cpu, Error **errp) 396 { 397 KVMState *s = kvm_state; 398 long mmap_size; 399 int ret; 400 401 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 402 403 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 404 if (ret < 0) { 405 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 406 kvm_arch_vcpu_id(cpu)); 407 goto err; 408 } 409 410 cpu->kvm_fd = ret; 411 cpu->kvm_state = s; 412 cpu->vcpu_dirty = true; 413 cpu->dirty_pages = 0; 414 cpu->throttle_us_per_full = 0; 415 416 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 417 if (mmap_size < 0) { 418 ret = mmap_size; 419 error_setg_errno(errp, -mmap_size, 420 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 421 goto err; 422 } 423 424 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 425 cpu->kvm_fd, 0); 426 if (cpu->kvm_run == MAP_FAILED) { 427 ret = -errno; 428 error_setg_errno(errp, ret, 429 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 430 kvm_arch_vcpu_id(cpu)); 431 goto err; 432 } 433 434 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 435 s->coalesced_mmio_ring = 436 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 437 } 438 439 if (s->kvm_dirty_ring_size) { 440 /* Use MAP_SHARED to share pages with the kernel */ 441 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 442 PROT_READ | PROT_WRITE, MAP_SHARED, 443 cpu->kvm_fd, 444 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 445 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 446 ret = -errno; 447 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 448 goto err; 449 } 450 } 451 452 ret = kvm_arch_init_vcpu(cpu); 453 if (ret < 0) { 454 error_setg_errno(errp, -ret, 455 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 456 kvm_arch_vcpu_id(cpu)); 457 } 458 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 459 460 err: 461 return ret; 462 } 463 464 /* 465 * dirty pages logging control 466 */ 467 468 static int kvm_mem_flags(MemoryRegion *mr) 469 { 470 bool readonly = mr->readonly || memory_region_is_romd(mr); 471 int flags = 0; 472 473 if (memory_region_get_dirty_log_mask(mr) != 0) { 474 flags |= KVM_MEM_LOG_DIRTY_PAGES; 475 } 476 if (readonly && kvm_readonly_mem_allowed) { 477 flags |= KVM_MEM_READONLY; 478 } 479 return flags; 480 } 481 482 /* Called with KVMMemoryListener.slots_lock held */ 483 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 484 MemoryRegion *mr) 485 { 486 mem->flags = kvm_mem_flags(mr); 487 488 /* If nothing changed effectively, no need to issue ioctl */ 489 if (mem->flags == mem->old_flags) { 490 return 0; 491 } 492 493 kvm_slot_init_dirty_bitmap(mem); 494 return kvm_set_user_memory_region(kml, mem, false); 495 } 496 497 static int kvm_section_update_flags(KVMMemoryListener *kml, 498 MemoryRegionSection *section) 499 { 500 hwaddr start_addr, size, slot_size; 501 KVMSlot *mem; 502 int ret = 0; 503 504 size = kvm_align_section(section, &start_addr); 505 if (!size) { 506 return 0; 507 } 508 509 kvm_slots_lock(); 510 511 while (size && !ret) { 512 slot_size = MIN(kvm_max_slot_size, size); 513 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 514 if (!mem) { 515 /* We don't have a slot if we want to trap every access. */ 516 goto out; 517 } 518 519 ret = kvm_slot_update_flags(kml, mem, section->mr); 520 start_addr += slot_size; 521 size -= slot_size; 522 } 523 524 out: 525 kvm_slots_unlock(); 526 return ret; 527 } 528 529 static void kvm_log_start(MemoryListener *listener, 530 MemoryRegionSection *section, 531 int old, int new) 532 { 533 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 534 int r; 535 536 if (old != 0) { 537 return; 538 } 539 540 r = kvm_section_update_flags(kml, section); 541 if (r < 0) { 542 abort(); 543 } 544 } 545 546 static void kvm_log_stop(MemoryListener *listener, 547 MemoryRegionSection *section, 548 int old, int new) 549 { 550 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 551 int r; 552 553 if (new != 0) { 554 return; 555 } 556 557 r = kvm_section_update_flags(kml, section); 558 if (r < 0) { 559 abort(); 560 } 561 } 562 563 /* get kvm's dirty pages bitmap and update qemu's */ 564 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 565 { 566 ram_addr_t start = slot->ram_start_offset; 567 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 568 569 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 570 } 571 572 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 573 { 574 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 575 } 576 577 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 578 579 /* Allocate the dirty bitmap for a slot */ 580 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 581 { 582 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 583 return; 584 } 585 586 /* 587 * XXX bad kernel interface alert 588 * For dirty bitmap, kernel allocates array of size aligned to 589 * bits-per-long. But for case when the kernel is 64bits and 590 * the userspace is 32bits, userspace can't align to the same 591 * bits-per-long, since sizeof(long) is different between kernel 592 * and user space. This way, userspace will provide buffer which 593 * may be 4 bytes less than the kernel will use, resulting in 594 * userspace memory corruption (which is not detectable by valgrind 595 * too, in most cases). 596 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 597 * a hope that sizeof(long) won't become >8 any time soon. 598 * 599 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 600 * And mem->memory_size is aligned to it (otherwise this mem can't 601 * be registered to KVM). 602 */ 603 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 604 /*HOST_LONG_BITS*/ 64) / 8; 605 mem->dirty_bmap = g_malloc0(bitmap_size); 606 mem->dirty_bmap_size = bitmap_size; 607 } 608 609 /* 610 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 611 * succeeded, false otherwise 612 */ 613 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 614 { 615 struct kvm_dirty_log d = {}; 616 int ret; 617 618 d.dirty_bitmap = slot->dirty_bmap; 619 d.slot = slot->slot | (slot->as_id << 16); 620 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 621 622 if (ret == -ENOENT) { 623 /* kernel does not have dirty bitmap in this slot */ 624 ret = 0; 625 } 626 if (ret) { 627 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 628 __func__, ret); 629 } 630 return ret == 0; 631 } 632 633 /* Should be with all slots_lock held for the address spaces. */ 634 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 635 uint32_t slot_id, uint64_t offset) 636 { 637 KVMMemoryListener *kml; 638 KVMSlot *mem; 639 640 if (as_id >= s->nr_as) { 641 return; 642 } 643 644 kml = s->as[as_id].ml; 645 mem = &kml->slots[slot_id]; 646 647 if (!mem->memory_size || offset >= 648 (mem->memory_size / qemu_real_host_page_size())) { 649 return; 650 } 651 652 set_bit(offset, mem->dirty_bmap); 653 } 654 655 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 656 { 657 /* 658 * Read the flags before the value. Pairs with barrier in 659 * KVM's kvm_dirty_ring_push() function. 660 */ 661 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 662 } 663 664 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 665 { 666 /* 667 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 668 * sees the full content of the ring: 669 * 670 * CPU0 CPU1 CPU2 671 * ------------------------------------------------------------------------------ 672 * fill gfn0 673 * store-rel flags for gfn0 674 * load-acq flags for gfn0 675 * store-rel RESET for gfn0 676 * ioctl(RESET_RINGS) 677 * load-acq flags for gfn0 678 * check if flags have RESET 679 * 680 * The synchronization goes from CPU2 to CPU0 to CPU1. 681 */ 682 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 683 } 684 685 /* 686 * Should be with all slots_lock held for the address spaces. It returns the 687 * dirty page we've collected on this dirty ring. 688 */ 689 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 690 { 691 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 692 uint32_t ring_size = s->kvm_dirty_ring_size; 693 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 694 695 /* 696 * It's possible that we race with vcpu creation code where the vcpu is 697 * put onto the vcpus list but not yet initialized the dirty ring 698 * structures. If so, skip it. 699 */ 700 if (!cpu->created) { 701 return 0; 702 } 703 704 assert(dirty_gfns && ring_size); 705 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 706 707 while (true) { 708 cur = &dirty_gfns[fetch % ring_size]; 709 if (!dirty_gfn_is_dirtied(cur)) { 710 break; 711 } 712 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 713 cur->offset); 714 dirty_gfn_set_collected(cur); 715 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 716 fetch++; 717 count++; 718 } 719 cpu->kvm_fetch_index = fetch; 720 cpu->dirty_pages += count; 721 722 return count; 723 } 724 725 /* Must be with slots_lock held */ 726 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 727 { 728 int ret; 729 uint64_t total = 0; 730 int64_t stamp; 731 732 stamp = get_clock(); 733 734 if (cpu) { 735 total = kvm_dirty_ring_reap_one(s, cpu); 736 } else { 737 CPU_FOREACH(cpu) { 738 total += kvm_dirty_ring_reap_one(s, cpu); 739 } 740 } 741 742 if (total) { 743 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 744 assert(ret == total); 745 } 746 747 stamp = get_clock() - stamp; 748 749 if (total) { 750 trace_kvm_dirty_ring_reap(total, stamp / 1000); 751 } 752 753 return total; 754 } 755 756 /* 757 * Currently for simplicity, we must hold BQL before calling this. We can 758 * consider to drop the BQL if we're clear with all the race conditions. 759 */ 760 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 761 { 762 uint64_t total; 763 764 /* 765 * We need to lock all kvm slots for all address spaces here, 766 * because: 767 * 768 * (1) We need to mark dirty for dirty bitmaps in multiple slots 769 * and for tons of pages, so it's better to take the lock here 770 * once rather than once per page. And more importantly, 771 * 772 * (2) We must _NOT_ publish dirty bits to the other threads 773 * (e.g., the migration thread) via the kvm memory slot dirty 774 * bitmaps before correctly re-protect those dirtied pages. 775 * Otherwise we can have potential risk of data corruption if 776 * the page data is read in the other thread before we do 777 * reset below. 778 */ 779 kvm_slots_lock(); 780 total = kvm_dirty_ring_reap_locked(s, cpu); 781 kvm_slots_unlock(); 782 783 return total; 784 } 785 786 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 787 { 788 /* No need to do anything */ 789 } 790 791 /* 792 * Kick all vcpus out in a synchronized way. When returned, we 793 * guarantee that every vcpu has been kicked and at least returned to 794 * userspace once. 795 */ 796 static void kvm_cpu_synchronize_kick_all(void) 797 { 798 CPUState *cpu; 799 800 CPU_FOREACH(cpu) { 801 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 802 } 803 } 804 805 /* 806 * Flush all the existing dirty pages to the KVM slot buffers. When 807 * this call returns, we guarantee that all the touched dirty pages 808 * before calling this function have been put into the per-kvmslot 809 * dirty bitmap. 810 * 811 * This function must be called with BQL held. 812 */ 813 static void kvm_dirty_ring_flush(void) 814 { 815 trace_kvm_dirty_ring_flush(0); 816 /* 817 * The function needs to be serialized. Since this function 818 * should always be with BQL held, serialization is guaranteed. 819 * However, let's be sure of it. 820 */ 821 assert(qemu_mutex_iothread_locked()); 822 /* 823 * First make sure to flush the hardware buffers by kicking all 824 * vcpus out in a synchronous way. 825 */ 826 kvm_cpu_synchronize_kick_all(); 827 kvm_dirty_ring_reap(kvm_state, NULL); 828 trace_kvm_dirty_ring_flush(1); 829 } 830 831 /** 832 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 833 * 834 * This function will first try to fetch dirty bitmap from the kernel, 835 * and then updates qemu's dirty bitmap. 836 * 837 * NOTE: caller must be with kml->slots_lock held. 838 * 839 * @kml: the KVM memory listener object 840 * @section: the memory section to sync the dirty bitmap with 841 */ 842 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 843 MemoryRegionSection *section) 844 { 845 KVMState *s = kvm_state; 846 KVMSlot *mem; 847 hwaddr start_addr, size; 848 hwaddr slot_size; 849 850 size = kvm_align_section(section, &start_addr); 851 while (size) { 852 slot_size = MIN(kvm_max_slot_size, size); 853 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 854 if (!mem) { 855 /* We don't have a slot if we want to trap every access. */ 856 return; 857 } 858 if (kvm_slot_get_dirty_log(s, mem)) { 859 kvm_slot_sync_dirty_pages(mem); 860 } 861 start_addr += slot_size; 862 size -= slot_size; 863 } 864 } 865 866 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 867 #define KVM_CLEAR_LOG_SHIFT 6 868 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 869 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 870 871 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 872 uint64_t size) 873 { 874 KVMState *s = kvm_state; 875 uint64_t end, bmap_start, start_delta, bmap_npages; 876 struct kvm_clear_dirty_log d; 877 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 878 int ret; 879 880 /* 881 * We need to extend either the start or the size or both to 882 * satisfy the KVM interface requirement. Firstly, do the start 883 * page alignment on 64 host pages 884 */ 885 bmap_start = start & KVM_CLEAR_LOG_MASK; 886 start_delta = start - bmap_start; 887 bmap_start /= psize; 888 889 /* 890 * The kernel interface has restriction on the size too, that either: 891 * 892 * (1) the size is 64 host pages aligned (just like the start), or 893 * (2) the size fills up until the end of the KVM memslot. 894 */ 895 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 896 << KVM_CLEAR_LOG_SHIFT; 897 end = mem->memory_size / psize; 898 if (bmap_npages > end - bmap_start) { 899 bmap_npages = end - bmap_start; 900 } 901 start_delta /= psize; 902 903 /* 904 * Prepare the bitmap to clear dirty bits. Here we must guarantee 905 * that we won't clear any unknown dirty bits otherwise we might 906 * accidentally clear some set bits which are not yet synced from 907 * the kernel into QEMU's bitmap, then we'll lose track of the 908 * guest modifications upon those pages (which can directly lead 909 * to guest data loss or panic after migration). 910 * 911 * Layout of the KVMSlot.dirty_bmap: 912 * 913 * |<-------- bmap_npages -----------..>| 914 * [1] 915 * start_delta size 916 * |----------------|-------------|------------------|------------| 917 * ^ ^ ^ ^ 918 * | | | | 919 * start bmap_start (start) end 920 * of memslot of memslot 921 * 922 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 923 */ 924 925 assert(bmap_start % BITS_PER_LONG == 0); 926 /* We should never do log_clear before log_sync */ 927 assert(mem->dirty_bmap); 928 if (start_delta || bmap_npages - size / psize) { 929 /* Slow path - we need to manipulate a temp bitmap */ 930 bmap_clear = bitmap_new(bmap_npages); 931 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 932 bmap_start, start_delta + size / psize); 933 /* 934 * We need to fill the holes at start because that was not 935 * specified by the caller and we extended the bitmap only for 936 * 64 pages alignment 937 */ 938 bitmap_clear(bmap_clear, 0, start_delta); 939 d.dirty_bitmap = bmap_clear; 940 } else { 941 /* 942 * Fast path - both start and size align well with BITS_PER_LONG 943 * (or the end of memory slot) 944 */ 945 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 946 } 947 948 d.first_page = bmap_start; 949 /* It should never overflow. If it happens, say something */ 950 assert(bmap_npages <= UINT32_MAX); 951 d.num_pages = bmap_npages; 952 d.slot = mem->slot | (as_id << 16); 953 954 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 955 if (ret < 0 && ret != -ENOENT) { 956 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 957 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 958 __func__, d.slot, (uint64_t)d.first_page, 959 (uint32_t)d.num_pages, ret); 960 } else { 961 ret = 0; 962 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 963 } 964 965 /* 966 * After we have updated the remote dirty bitmap, we update the 967 * cached bitmap as well for the memslot, then if another user 968 * clears the same region we know we shouldn't clear it again on 969 * the remote otherwise it's data loss as well. 970 */ 971 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 972 size / psize); 973 /* This handles the NULL case well */ 974 g_free(bmap_clear); 975 return ret; 976 } 977 978 979 /** 980 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 981 * 982 * NOTE: this will be a no-op if we haven't enabled manual dirty log 983 * protection in the host kernel because in that case this operation 984 * will be done within log_sync(). 985 * 986 * @kml: the kvm memory listener 987 * @section: the memory range to clear dirty bitmap 988 */ 989 static int kvm_physical_log_clear(KVMMemoryListener *kml, 990 MemoryRegionSection *section) 991 { 992 KVMState *s = kvm_state; 993 uint64_t start, size, offset, count; 994 KVMSlot *mem; 995 int ret = 0, i; 996 997 if (!s->manual_dirty_log_protect) { 998 /* No need to do explicit clear */ 999 return ret; 1000 } 1001 1002 start = section->offset_within_address_space; 1003 size = int128_get64(section->size); 1004 1005 if (!size) { 1006 /* Nothing more we can do... */ 1007 return ret; 1008 } 1009 1010 kvm_slots_lock(); 1011 1012 for (i = 0; i < s->nr_slots; i++) { 1013 mem = &kml->slots[i]; 1014 /* Discard slots that are empty or do not overlap the section */ 1015 if (!mem->memory_size || 1016 mem->start_addr > start + size - 1 || 1017 start > mem->start_addr + mem->memory_size - 1) { 1018 continue; 1019 } 1020 1021 if (start >= mem->start_addr) { 1022 /* The slot starts before section or is aligned to it. */ 1023 offset = start - mem->start_addr; 1024 count = MIN(mem->memory_size - offset, size); 1025 } else { 1026 /* The slot starts after section. */ 1027 offset = 0; 1028 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1029 } 1030 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1031 if (ret < 0) { 1032 break; 1033 } 1034 } 1035 1036 kvm_slots_unlock(); 1037 1038 return ret; 1039 } 1040 1041 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1042 MemoryRegionSection *secion, 1043 hwaddr start, hwaddr size) 1044 { 1045 KVMState *s = kvm_state; 1046 1047 if (s->coalesced_mmio) { 1048 struct kvm_coalesced_mmio_zone zone; 1049 1050 zone.addr = start; 1051 zone.size = size; 1052 zone.pad = 0; 1053 1054 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1055 } 1056 } 1057 1058 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1059 MemoryRegionSection *secion, 1060 hwaddr start, hwaddr size) 1061 { 1062 KVMState *s = kvm_state; 1063 1064 if (s->coalesced_mmio) { 1065 struct kvm_coalesced_mmio_zone zone; 1066 1067 zone.addr = start; 1068 zone.size = size; 1069 zone.pad = 0; 1070 1071 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1072 } 1073 } 1074 1075 static void kvm_coalesce_pio_add(MemoryListener *listener, 1076 MemoryRegionSection *section, 1077 hwaddr start, hwaddr size) 1078 { 1079 KVMState *s = kvm_state; 1080 1081 if (s->coalesced_pio) { 1082 struct kvm_coalesced_mmio_zone zone; 1083 1084 zone.addr = start; 1085 zone.size = size; 1086 zone.pio = 1; 1087 1088 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1089 } 1090 } 1091 1092 static void kvm_coalesce_pio_del(MemoryListener *listener, 1093 MemoryRegionSection *section, 1094 hwaddr start, hwaddr size) 1095 { 1096 KVMState *s = kvm_state; 1097 1098 if (s->coalesced_pio) { 1099 struct kvm_coalesced_mmio_zone zone; 1100 1101 zone.addr = start; 1102 zone.size = size; 1103 zone.pio = 1; 1104 1105 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1106 } 1107 } 1108 1109 static MemoryListener kvm_coalesced_pio_listener = { 1110 .name = "kvm-coalesced-pio", 1111 .coalesced_io_add = kvm_coalesce_pio_add, 1112 .coalesced_io_del = kvm_coalesce_pio_del, 1113 .priority = MEMORY_LISTENER_PRIORITY_MIN, 1114 }; 1115 1116 int kvm_check_extension(KVMState *s, unsigned int extension) 1117 { 1118 int ret; 1119 1120 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1121 if (ret < 0) { 1122 ret = 0; 1123 } 1124 1125 return ret; 1126 } 1127 1128 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1129 { 1130 int ret; 1131 1132 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1133 if (ret < 0) { 1134 /* VM wide version not implemented, use global one instead */ 1135 ret = kvm_check_extension(s, extension); 1136 } 1137 1138 return ret; 1139 } 1140 1141 typedef struct HWPoisonPage { 1142 ram_addr_t ram_addr; 1143 QLIST_ENTRY(HWPoisonPage) list; 1144 } HWPoisonPage; 1145 1146 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1147 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1148 1149 static void kvm_unpoison_all(void *param) 1150 { 1151 HWPoisonPage *page, *next_page; 1152 1153 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1154 QLIST_REMOVE(page, list); 1155 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1156 g_free(page); 1157 } 1158 } 1159 1160 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1161 { 1162 HWPoisonPage *page; 1163 1164 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1165 if (page->ram_addr == ram_addr) { 1166 return; 1167 } 1168 } 1169 page = g_new(HWPoisonPage, 1); 1170 page->ram_addr = ram_addr; 1171 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1172 } 1173 1174 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1175 { 1176 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1177 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1178 * endianness, but the memory core hands them in target endianness. 1179 * For example, PPC is always treated as big-endian even if running 1180 * on KVM and on PPC64LE. Correct here. 1181 */ 1182 switch (size) { 1183 case 2: 1184 val = bswap16(val); 1185 break; 1186 case 4: 1187 val = bswap32(val); 1188 break; 1189 } 1190 #endif 1191 return val; 1192 } 1193 1194 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1195 bool assign, uint32_t size, bool datamatch) 1196 { 1197 int ret; 1198 struct kvm_ioeventfd iofd = { 1199 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1200 .addr = addr, 1201 .len = size, 1202 .flags = 0, 1203 .fd = fd, 1204 }; 1205 1206 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1207 datamatch); 1208 if (!kvm_enabled()) { 1209 return -ENOSYS; 1210 } 1211 1212 if (datamatch) { 1213 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1214 } 1215 if (!assign) { 1216 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1217 } 1218 1219 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1220 1221 if (ret < 0) { 1222 return -errno; 1223 } 1224 1225 return 0; 1226 } 1227 1228 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1229 bool assign, uint32_t size, bool datamatch) 1230 { 1231 struct kvm_ioeventfd kick = { 1232 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1233 .addr = addr, 1234 .flags = KVM_IOEVENTFD_FLAG_PIO, 1235 .len = size, 1236 .fd = fd, 1237 }; 1238 int r; 1239 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1240 if (!kvm_enabled()) { 1241 return -ENOSYS; 1242 } 1243 if (datamatch) { 1244 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1245 } 1246 if (!assign) { 1247 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1248 } 1249 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1250 if (r < 0) { 1251 return r; 1252 } 1253 return 0; 1254 } 1255 1256 1257 static int kvm_check_many_ioeventfds(void) 1258 { 1259 /* Userspace can use ioeventfd for io notification. This requires a host 1260 * that supports eventfd(2) and an I/O thread; since eventfd does not 1261 * support SIGIO it cannot interrupt the vcpu. 1262 * 1263 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1264 * can avoid creating too many ioeventfds. 1265 */ 1266 #if defined(CONFIG_EVENTFD) 1267 int ioeventfds[7]; 1268 int i, ret = 0; 1269 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1270 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1271 if (ioeventfds[i] < 0) { 1272 break; 1273 } 1274 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1275 if (ret < 0) { 1276 close(ioeventfds[i]); 1277 break; 1278 } 1279 } 1280 1281 /* Decide whether many devices are supported or not */ 1282 ret = i == ARRAY_SIZE(ioeventfds); 1283 1284 while (i-- > 0) { 1285 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1286 close(ioeventfds[i]); 1287 } 1288 return ret; 1289 #else 1290 return 0; 1291 #endif 1292 } 1293 1294 static const KVMCapabilityInfo * 1295 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1296 { 1297 while (list->name) { 1298 if (!kvm_check_extension(s, list->value)) { 1299 return list; 1300 } 1301 list++; 1302 } 1303 return NULL; 1304 } 1305 1306 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1307 { 1308 g_assert( 1309 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1310 ); 1311 kvm_max_slot_size = max_slot_size; 1312 } 1313 1314 /* Called with KVMMemoryListener.slots_lock held */ 1315 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1316 MemoryRegionSection *section, bool add) 1317 { 1318 KVMSlot *mem; 1319 int err; 1320 MemoryRegion *mr = section->mr; 1321 bool writable = !mr->readonly && !mr->rom_device; 1322 hwaddr start_addr, size, slot_size, mr_offset; 1323 ram_addr_t ram_start_offset; 1324 void *ram; 1325 1326 if (!memory_region_is_ram(mr)) { 1327 if (writable || !kvm_readonly_mem_allowed) { 1328 return; 1329 } else if (!mr->romd_mode) { 1330 /* If the memory device is not in romd_mode, then we actually want 1331 * to remove the kvm memory slot so all accesses will trap. */ 1332 add = false; 1333 } 1334 } 1335 1336 size = kvm_align_section(section, &start_addr); 1337 if (!size) { 1338 return; 1339 } 1340 1341 /* The offset of the kvmslot within the memory region */ 1342 mr_offset = section->offset_within_region + start_addr - 1343 section->offset_within_address_space; 1344 1345 /* use aligned delta to align the ram address and offset */ 1346 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1347 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1348 1349 if (!add) { 1350 do { 1351 slot_size = MIN(kvm_max_slot_size, size); 1352 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1353 if (!mem) { 1354 return; 1355 } 1356 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1357 /* 1358 * NOTE: We should be aware of the fact that here we're only 1359 * doing a best effort to sync dirty bits. No matter whether 1360 * we're using dirty log or dirty ring, we ignored two facts: 1361 * 1362 * (1) dirty bits can reside in hardware buffers (PML) 1363 * 1364 * (2) after we collected dirty bits here, pages can be dirtied 1365 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1366 * remove the slot. 1367 * 1368 * Not easy. Let's cross the fingers until it's fixed. 1369 */ 1370 if (kvm_state->kvm_dirty_ring_size) { 1371 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1372 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1373 kvm_slot_sync_dirty_pages(mem); 1374 kvm_slot_get_dirty_log(kvm_state, mem); 1375 } 1376 } else { 1377 kvm_slot_get_dirty_log(kvm_state, mem); 1378 } 1379 kvm_slot_sync_dirty_pages(mem); 1380 } 1381 1382 /* unregister the slot */ 1383 g_free(mem->dirty_bmap); 1384 mem->dirty_bmap = NULL; 1385 mem->memory_size = 0; 1386 mem->flags = 0; 1387 err = kvm_set_user_memory_region(kml, mem, false); 1388 if (err) { 1389 fprintf(stderr, "%s: error unregistering slot: %s\n", 1390 __func__, strerror(-err)); 1391 abort(); 1392 } 1393 start_addr += slot_size; 1394 size -= slot_size; 1395 kml->nr_used_slots--; 1396 } while (size); 1397 return; 1398 } 1399 1400 /* register the new slot */ 1401 do { 1402 slot_size = MIN(kvm_max_slot_size, size); 1403 mem = kvm_alloc_slot(kml); 1404 mem->as_id = kml->as_id; 1405 mem->memory_size = slot_size; 1406 mem->start_addr = start_addr; 1407 mem->ram_start_offset = ram_start_offset; 1408 mem->ram = ram; 1409 mem->flags = kvm_mem_flags(mr); 1410 kvm_slot_init_dirty_bitmap(mem); 1411 err = kvm_set_user_memory_region(kml, mem, true); 1412 if (err) { 1413 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1414 strerror(-err)); 1415 abort(); 1416 } 1417 start_addr += slot_size; 1418 ram_start_offset += slot_size; 1419 ram += slot_size; 1420 size -= slot_size; 1421 kml->nr_used_slots++; 1422 } while (size); 1423 } 1424 1425 static void *kvm_dirty_ring_reaper_thread(void *data) 1426 { 1427 KVMState *s = data; 1428 struct KVMDirtyRingReaper *r = &s->reaper; 1429 1430 rcu_register_thread(); 1431 1432 trace_kvm_dirty_ring_reaper("init"); 1433 1434 while (true) { 1435 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1436 trace_kvm_dirty_ring_reaper("wait"); 1437 /* 1438 * TODO: provide a smarter timeout rather than a constant? 1439 */ 1440 sleep(1); 1441 1442 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1443 if (dirtylimit_in_service()) { 1444 continue; 1445 } 1446 1447 trace_kvm_dirty_ring_reaper("wakeup"); 1448 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1449 1450 qemu_mutex_lock_iothread(); 1451 kvm_dirty_ring_reap(s, NULL); 1452 qemu_mutex_unlock_iothread(); 1453 1454 r->reaper_iteration++; 1455 } 1456 1457 trace_kvm_dirty_ring_reaper("exit"); 1458 1459 rcu_unregister_thread(); 1460 1461 return NULL; 1462 } 1463 1464 static void kvm_dirty_ring_reaper_init(KVMState *s) 1465 { 1466 struct KVMDirtyRingReaper *r = &s->reaper; 1467 1468 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1469 kvm_dirty_ring_reaper_thread, 1470 s, QEMU_THREAD_JOINABLE); 1471 } 1472 1473 static int kvm_dirty_ring_init(KVMState *s) 1474 { 1475 uint32_t ring_size = s->kvm_dirty_ring_size; 1476 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1477 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1478 int ret; 1479 1480 s->kvm_dirty_ring_size = 0; 1481 s->kvm_dirty_ring_bytes = 0; 1482 1483 /* Bail if the dirty ring size isn't specified */ 1484 if (!ring_size) { 1485 return 0; 1486 } 1487 1488 /* 1489 * Read the max supported pages. Fall back to dirty logging mode 1490 * if the dirty ring isn't supported. 1491 */ 1492 ret = kvm_vm_check_extension(s, capability); 1493 if (ret <= 0) { 1494 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1495 ret = kvm_vm_check_extension(s, capability); 1496 } 1497 1498 if (ret <= 0) { 1499 warn_report("KVM dirty ring not available, using bitmap method"); 1500 return 0; 1501 } 1502 1503 if (ring_bytes > ret) { 1504 error_report("KVM dirty ring size %" PRIu32 " too big " 1505 "(maximum is %ld). Please use a smaller value.", 1506 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1507 return -EINVAL; 1508 } 1509 1510 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1511 if (ret) { 1512 error_report("Enabling of KVM dirty ring failed: %s. " 1513 "Suggested minimum value is 1024.", strerror(-ret)); 1514 return -EIO; 1515 } 1516 1517 /* Enable the backup bitmap if it is supported */ 1518 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1519 if (ret > 0) { 1520 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1521 if (ret) { 1522 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1523 "%s. ", strerror(-ret)); 1524 return -EIO; 1525 } 1526 1527 s->kvm_dirty_ring_with_bitmap = true; 1528 } 1529 1530 s->kvm_dirty_ring_size = ring_size; 1531 s->kvm_dirty_ring_bytes = ring_bytes; 1532 1533 return 0; 1534 } 1535 1536 static void kvm_region_add(MemoryListener *listener, 1537 MemoryRegionSection *section) 1538 { 1539 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1540 KVMMemoryUpdate *update; 1541 1542 update = g_new0(KVMMemoryUpdate, 1); 1543 update->section = *section; 1544 1545 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1546 } 1547 1548 static void kvm_region_del(MemoryListener *listener, 1549 MemoryRegionSection *section) 1550 { 1551 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1552 KVMMemoryUpdate *update; 1553 1554 update = g_new0(KVMMemoryUpdate, 1); 1555 update->section = *section; 1556 1557 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1558 } 1559 1560 static void kvm_region_commit(MemoryListener *listener) 1561 { 1562 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1563 listener); 1564 KVMMemoryUpdate *u1, *u2; 1565 bool need_inhibit = false; 1566 1567 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1568 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1569 return; 1570 } 1571 1572 /* 1573 * We have to be careful when regions to add overlap with ranges to remove. 1574 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1575 * is currently active. 1576 * 1577 * The lists are order by addresses, so it's easy to find overlaps. 1578 */ 1579 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1580 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1581 while (u1 && u2) { 1582 Range r1, r2; 1583 1584 range_init_nofail(&r1, u1->section.offset_within_address_space, 1585 int128_get64(u1->section.size)); 1586 range_init_nofail(&r2, u2->section.offset_within_address_space, 1587 int128_get64(u2->section.size)); 1588 1589 if (range_overlaps_range(&r1, &r2)) { 1590 need_inhibit = true; 1591 break; 1592 } 1593 if (range_lob(&r1) < range_lob(&r2)) { 1594 u1 = QSIMPLEQ_NEXT(u1, next); 1595 } else { 1596 u2 = QSIMPLEQ_NEXT(u2, next); 1597 } 1598 } 1599 1600 kvm_slots_lock(); 1601 if (need_inhibit) { 1602 accel_ioctl_inhibit_begin(); 1603 } 1604 1605 /* Remove all memslots before adding the new ones. */ 1606 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1607 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1608 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1609 1610 kvm_set_phys_mem(kml, &u1->section, false); 1611 memory_region_unref(u1->section.mr); 1612 1613 g_free(u1); 1614 } 1615 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1616 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1617 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1618 1619 memory_region_ref(u1->section.mr); 1620 kvm_set_phys_mem(kml, &u1->section, true); 1621 1622 g_free(u1); 1623 } 1624 1625 if (need_inhibit) { 1626 accel_ioctl_inhibit_end(); 1627 } 1628 kvm_slots_unlock(); 1629 } 1630 1631 static void kvm_log_sync(MemoryListener *listener, 1632 MemoryRegionSection *section) 1633 { 1634 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1635 1636 kvm_slots_lock(); 1637 kvm_physical_sync_dirty_bitmap(kml, section); 1638 kvm_slots_unlock(); 1639 } 1640 1641 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1642 { 1643 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1644 KVMState *s = kvm_state; 1645 KVMSlot *mem; 1646 int i; 1647 1648 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1649 kvm_dirty_ring_flush(); 1650 1651 /* 1652 * TODO: make this faster when nr_slots is big while there are 1653 * only a few used slots (small VMs). 1654 */ 1655 kvm_slots_lock(); 1656 for (i = 0; i < s->nr_slots; i++) { 1657 mem = &kml->slots[i]; 1658 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1659 kvm_slot_sync_dirty_pages(mem); 1660 1661 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1662 kvm_slot_get_dirty_log(s, mem)) { 1663 kvm_slot_sync_dirty_pages(mem); 1664 } 1665 1666 /* 1667 * This is not needed by KVM_GET_DIRTY_LOG because the 1668 * ioctl will unconditionally overwrite the whole region. 1669 * However kvm dirty ring has no such side effect. 1670 */ 1671 kvm_slot_reset_dirty_pages(mem); 1672 } 1673 } 1674 kvm_slots_unlock(); 1675 } 1676 1677 static void kvm_log_clear(MemoryListener *listener, 1678 MemoryRegionSection *section) 1679 { 1680 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1681 int r; 1682 1683 r = kvm_physical_log_clear(kml, section); 1684 if (r < 0) { 1685 error_report_once("%s: kvm log clear failed: mr=%s " 1686 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1687 section->mr->name, section->offset_within_region, 1688 int128_get64(section->size)); 1689 abort(); 1690 } 1691 } 1692 1693 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1694 MemoryRegionSection *section, 1695 bool match_data, uint64_t data, 1696 EventNotifier *e) 1697 { 1698 int fd = event_notifier_get_fd(e); 1699 int r; 1700 1701 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1702 data, true, int128_get64(section->size), 1703 match_data); 1704 if (r < 0) { 1705 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1706 __func__, strerror(-r), -r); 1707 abort(); 1708 } 1709 } 1710 1711 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1712 MemoryRegionSection *section, 1713 bool match_data, uint64_t data, 1714 EventNotifier *e) 1715 { 1716 int fd = event_notifier_get_fd(e); 1717 int r; 1718 1719 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1720 data, false, int128_get64(section->size), 1721 match_data); 1722 if (r < 0) { 1723 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1724 __func__, strerror(-r), -r); 1725 abort(); 1726 } 1727 } 1728 1729 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1730 MemoryRegionSection *section, 1731 bool match_data, uint64_t data, 1732 EventNotifier *e) 1733 { 1734 int fd = event_notifier_get_fd(e); 1735 int r; 1736 1737 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1738 data, true, int128_get64(section->size), 1739 match_data); 1740 if (r < 0) { 1741 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1742 __func__, strerror(-r), -r); 1743 abort(); 1744 } 1745 } 1746 1747 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1748 MemoryRegionSection *section, 1749 bool match_data, uint64_t data, 1750 EventNotifier *e) 1751 1752 { 1753 int fd = event_notifier_get_fd(e); 1754 int r; 1755 1756 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1757 data, false, int128_get64(section->size), 1758 match_data); 1759 if (r < 0) { 1760 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1761 __func__, strerror(-r), -r); 1762 abort(); 1763 } 1764 } 1765 1766 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1767 AddressSpace *as, int as_id, const char *name) 1768 { 1769 int i; 1770 1771 kml->slots = g_new0(KVMSlot, s->nr_slots); 1772 kml->as_id = as_id; 1773 1774 for (i = 0; i < s->nr_slots; i++) { 1775 kml->slots[i].slot = i; 1776 } 1777 1778 QSIMPLEQ_INIT(&kml->transaction_add); 1779 QSIMPLEQ_INIT(&kml->transaction_del); 1780 1781 kml->listener.region_add = kvm_region_add; 1782 kml->listener.region_del = kvm_region_del; 1783 kml->listener.commit = kvm_region_commit; 1784 kml->listener.log_start = kvm_log_start; 1785 kml->listener.log_stop = kvm_log_stop; 1786 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1787 kml->listener.name = name; 1788 1789 if (s->kvm_dirty_ring_size) { 1790 kml->listener.log_sync_global = kvm_log_sync_global; 1791 } else { 1792 kml->listener.log_sync = kvm_log_sync; 1793 kml->listener.log_clear = kvm_log_clear; 1794 } 1795 1796 memory_listener_register(&kml->listener, as); 1797 1798 for (i = 0; i < s->nr_as; ++i) { 1799 if (!s->as[i].as) { 1800 s->as[i].as = as; 1801 s->as[i].ml = kml; 1802 break; 1803 } 1804 } 1805 } 1806 1807 static MemoryListener kvm_io_listener = { 1808 .name = "kvm-io", 1809 .eventfd_add = kvm_io_ioeventfd_add, 1810 .eventfd_del = kvm_io_ioeventfd_del, 1811 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1812 }; 1813 1814 int kvm_set_irq(KVMState *s, int irq, int level) 1815 { 1816 struct kvm_irq_level event; 1817 int ret; 1818 1819 assert(kvm_async_interrupts_enabled()); 1820 1821 event.level = level; 1822 event.irq = irq; 1823 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1824 if (ret < 0) { 1825 perror("kvm_set_irq"); 1826 abort(); 1827 } 1828 1829 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1830 } 1831 1832 #ifdef KVM_CAP_IRQ_ROUTING 1833 typedef struct KVMMSIRoute { 1834 struct kvm_irq_routing_entry kroute; 1835 QTAILQ_ENTRY(KVMMSIRoute) entry; 1836 } KVMMSIRoute; 1837 1838 static void set_gsi(KVMState *s, unsigned int gsi) 1839 { 1840 set_bit(gsi, s->used_gsi_bitmap); 1841 } 1842 1843 static void clear_gsi(KVMState *s, unsigned int gsi) 1844 { 1845 clear_bit(gsi, s->used_gsi_bitmap); 1846 } 1847 1848 void kvm_init_irq_routing(KVMState *s) 1849 { 1850 int gsi_count; 1851 1852 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1853 if (gsi_count > 0) { 1854 /* Round up so we can search ints using ffs */ 1855 s->used_gsi_bitmap = bitmap_new(gsi_count); 1856 s->gsi_count = gsi_count; 1857 } 1858 1859 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1860 s->nr_allocated_irq_routes = 0; 1861 1862 kvm_arch_init_irq_routing(s); 1863 } 1864 1865 void kvm_irqchip_commit_routes(KVMState *s) 1866 { 1867 int ret; 1868 1869 if (kvm_gsi_direct_mapping()) { 1870 return; 1871 } 1872 1873 if (!kvm_gsi_routing_enabled()) { 1874 return; 1875 } 1876 1877 s->irq_routes->flags = 0; 1878 trace_kvm_irqchip_commit_routes(); 1879 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1880 assert(ret == 0); 1881 } 1882 1883 static void kvm_add_routing_entry(KVMState *s, 1884 struct kvm_irq_routing_entry *entry) 1885 { 1886 struct kvm_irq_routing_entry *new; 1887 int n, size; 1888 1889 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1890 n = s->nr_allocated_irq_routes * 2; 1891 if (n < 64) { 1892 n = 64; 1893 } 1894 size = sizeof(struct kvm_irq_routing); 1895 size += n * sizeof(*new); 1896 s->irq_routes = g_realloc(s->irq_routes, size); 1897 s->nr_allocated_irq_routes = n; 1898 } 1899 n = s->irq_routes->nr++; 1900 new = &s->irq_routes->entries[n]; 1901 1902 *new = *entry; 1903 1904 set_gsi(s, entry->gsi); 1905 } 1906 1907 static int kvm_update_routing_entry(KVMState *s, 1908 struct kvm_irq_routing_entry *new_entry) 1909 { 1910 struct kvm_irq_routing_entry *entry; 1911 int n; 1912 1913 for (n = 0; n < s->irq_routes->nr; n++) { 1914 entry = &s->irq_routes->entries[n]; 1915 if (entry->gsi != new_entry->gsi) { 1916 continue; 1917 } 1918 1919 if(!memcmp(entry, new_entry, sizeof *entry)) { 1920 return 0; 1921 } 1922 1923 *entry = *new_entry; 1924 1925 return 0; 1926 } 1927 1928 return -ESRCH; 1929 } 1930 1931 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1932 { 1933 struct kvm_irq_routing_entry e = {}; 1934 1935 assert(pin < s->gsi_count); 1936 1937 e.gsi = irq; 1938 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1939 e.flags = 0; 1940 e.u.irqchip.irqchip = irqchip; 1941 e.u.irqchip.pin = pin; 1942 kvm_add_routing_entry(s, &e); 1943 } 1944 1945 void kvm_irqchip_release_virq(KVMState *s, int virq) 1946 { 1947 struct kvm_irq_routing_entry *e; 1948 int i; 1949 1950 if (kvm_gsi_direct_mapping()) { 1951 return; 1952 } 1953 1954 for (i = 0; i < s->irq_routes->nr; i++) { 1955 e = &s->irq_routes->entries[i]; 1956 if (e->gsi == virq) { 1957 s->irq_routes->nr--; 1958 *e = s->irq_routes->entries[s->irq_routes->nr]; 1959 } 1960 } 1961 clear_gsi(s, virq); 1962 kvm_arch_release_virq_post(virq); 1963 trace_kvm_irqchip_release_virq(virq); 1964 } 1965 1966 void kvm_irqchip_add_change_notifier(Notifier *n) 1967 { 1968 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1969 } 1970 1971 void kvm_irqchip_remove_change_notifier(Notifier *n) 1972 { 1973 notifier_remove(n); 1974 } 1975 1976 void kvm_irqchip_change_notify(void) 1977 { 1978 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1979 } 1980 1981 static int kvm_irqchip_get_virq(KVMState *s) 1982 { 1983 int next_virq; 1984 1985 /* Return the lowest unused GSI in the bitmap */ 1986 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1987 if (next_virq >= s->gsi_count) { 1988 return -ENOSPC; 1989 } else { 1990 return next_virq; 1991 } 1992 } 1993 1994 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1995 { 1996 struct kvm_msi msi; 1997 1998 msi.address_lo = (uint32_t)msg.address; 1999 msi.address_hi = msg.address >> 32; 2000 msi.data = le32_to_cpu(msg.data); 2001 msi.flags = 0; 2002 memset(msi.pad, 0, sizeof(msi.pad)); 2003 2004 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2005 } 2006 2007 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2008 { 2009 struct kvm_irq_routing_entry kroute = {}; 2010 int virq; 2011 KVMState *s = c->s; 2012 MSIMessage msg = {0, 0}; 2013 2014 if (pci_available && dev) { 2015 msg = pci_get_msi_message(dev, vector); 2016 } 2017 2018 if (kvm_gsi_direct_mapping()) { 2019 return kvm_arch_msi_data_to_gsi(msg.data); 2020 } 2021 2022 if (!kvm_gsi_routing_enabled()) { 2023 return -ENOSYS; 2024 } 2025 2026 virq = kvm_irqchip_get_virq(s); 2027 if (virq < 0) { 2028 return virq; 2029 } 2030 2031 kroute.gsi = virq; 2032 kroute.type = KVM_IRQ_ROUTING_MSI; 2033 kroute.flags = 0; 2034 kroute.u.msi.address_lo = (uint32_t)msg.address; 2035 kroute.u.msi.address_hi = msg.address >> 32; 2036 kroute.u.msi.data = le32_to_cpu(msg.data); 2037 if (pci_available && kvm_msi_devid_required()) { 2038 kroute.flags = KVM_MSI_VALID_DEVID; 2039 kroute.u.msi.devid = pci_requester_id(dev); 2040 } 2041 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2042 kvm_irqchip_release_virq(s, virq); 2043 return -EINVAL; 2044 } 2045 2046 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2047 vector, virq); 2048 2049 kvm_add_routing_entry(s, &kroute); 2050 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2051 c->changes++; 2052 2053 return virq; 2054 } 2055 2056 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2057 PCIDevice *dev) 2058 { 2059 struct kvm_irq_routing_entry kroute = {}; 2060 2061 if (kvm_gsi_direct_mapping()) { 2062 return 0; 2063 } 2064 2065 if (!kvm_irqchip_in_kernel()) { 2066 return -ENOSYS; 2067 } 2068 2069 kroute.gsi = virq; 2070 kroute.type = KVM_IRQ_ROUTING_MSI; 2071 kroute.flags = 0; 2072 kroute.u.msi.address_lo = (uint32_t)msg.address; 2073 kroute.u.msi.address_hi = msg.address >> 32; 2074 kroute.u.msi.data = le32_to_cpu(msg.data); 2075 if (pci_available && kvm_msi_devid_required()) { 2076 kroute.flags = KVM_MSI_VALID_DEVID; 2077 kroute.u.msi.devid = pci_requester_id(dev); 2078 } 2079 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2080 return -EINVAL; 2081 } 2082 2083 trace_kvm_irqchip_update_msi_route(virq); 2084 2085 return kvm_update_routing_entry(s, &kroute); 2086 } 2087 2088 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2089 EventNotifier *resample, int virq, 2090 bool assign) 2091 { 2092 int fd = event_notifier_get_fd(event); 2093 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2094 2095 struct kvm_irqfd irqfd = { 2096 .fd = fd, 2097 .gsi = virq, 2098 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2099 }; 2100 2101 if (rfd != -1) { 2102 assert(assign); 2103 if (kvm_irqchip_is_split()) { 2104 /* 2105 * When the slow irqchip (e.g. IOAPIC) is in the 2106 * userspace, KVM kernel resamplefd will not work because 2107 * the EOI of the interrupt will be delivered to userspace 2108 * instead, so the KVM kernel resamplefd kick will be 2109 * skipped. The userspace here mimics what the kernel 2110 * provides with resamplefd, remember the resamplefd and 2111 * kick it when we receive EOI of this IRQ. 2112 * 2113 * This is hackery because IOAPIC is mostly bypassed 2114 * (except EOI broadcasts) when irqfd is used. However 2115 * this can bring much performance back for split irqchip 2116 * with INTx IRQs (for VFIO, this gives 93% perf of the 2117 * full fast path, which is 46% perf boost comparing to 2118 * the INTx slow path). 2119 */ 2120 kvm_resample_fd_insert(virq, resample); 2121 } else { 2122 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2123 irqfd.resamplefd = rfd; 2124 } 2125 } else if (!assign) { 2126 if (kvm_irqchip_is_split()) { 2127 kvm_resample_fd_remove(virq); 2128 } 2129 } 2130 2131 if (!kvm_irqfds_enabled()) { 2132 return -ENOSYS; 2133 } 2134 2135 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2136 } 2137 2138 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2139 { 2140 struct kvm_irq_routing_entry kroute = {}; 2141 int virq; 2142 2143 if (!kvm_gsi_routing_enabled()) { 2144 return -ENOSYS; 2145 } 2146 2147 virq = kvm_irqchip_get_virq(s); 2148 if (virq < 0) { 2149 return virq; 2150 } 2151 2152 kroute.gsi = virq; 2153 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2154 kroute.flags = 0; 2155 kroute.u.adapter.summary_addr = adapter->summary_addr; 2156 kroute.u.adapter.ind_addr = adapter->ind_addr; 2157 kroute.u.adapter.summary_offset = adapter->summary_offset; 2158 kroute.u.adapter.ind_offset = adapter->ind_offset; 2159 kroute.u.adapter.adapter_id = adapter->adapter_id; 2160 2161 kvm_add_routing_entry(s, &kroute); 2162 2163 return virq; 2164 } 2165 2166 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2167 { 2168 struct kvm_irq_routing_entry kroute = {}; 2169 int virq; 2170 2171 if (!kvm_gsi_routing_enabled()) { 2172 return -ENOSYS; 2173 } 2174 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2175 return -ENOSYS; 2176 } 2177 virq = kvm_irqchip_get_virq(s); 2178 if (virq < 0) { 2179 return virq; 2180 } 2181 2182 kroute.gsi = virq; 2183 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2184 kroute.flags = 0; 2185 kroute.u.hv_sint.vcpu = vcpu; 2186 kroute.u.hv_sint.sint = sint; 2187 2188 kvm_add_routing_entry(s, &kroute); 2189 kvm_irqchip_commit_routes(s); 2190 2191 return virq; 2192 } 2193 2194 #else /* !KVM_CAP_IRQ_ROUTING */ 2195 2196 void kvm_init_irq_routing(KVMState *s) 2197 { 2198 } 2199 2200 void kvm_irqchip_release_virq(KVMState *s, int virq) 2201 { 2202 } 2203 2204 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2205 { 2206 abort(); 2207 } 2208 2209 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2210 { 2211 return -ENOSYS; 2212 } 2213 2214 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2215 { 2216 return -ENOSYS; 2217 } 2218 2219 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2220 { 2221 return -ENOSYS; 2222 } 2223 2224 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2225 EventNotifier *resample, int virq, 2226 bool assign) 2227 { 2228 abort(); 2229 } 2230 2231 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2232 { 2233 return -ENOSYS; 2234 } 2235 #endif /* !KVM_CAP_IRQ_ROUTING */ 2236 2237 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2238 EventNotifier *rn, int virq) 2239 { 2240 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2241 } 2242 2243 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2244 int virq) 2245 { 2246 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2247 } 2248 2249 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2250 EventNotifier *rn, qemu_irq irq) 2251 { 2252 gpointer key, gsi; 2253 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2254 2255 if (!found) { 2256 return -ENXIO; 2257 } 2258 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2259 } 2260 2261 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2262 qemu_irq irq) 2263 { 2264 gpointer key, gsi; 2265 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2266 2267 if (!found) { 2268 return -ENXIO; 2269 } 2270 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2271 } 2272 2273 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2274 { 2275 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2276 } 2277 2278 static void kvm_irqchip_create(KVMState *s) 2279 { 2280 int ret; 2281 2282 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2283 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2284 ; 2285 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2286 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2287 if (ret < 0) { 2288 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2289 exit(1); 2290 } 2291 } else { 2292 return; 2293 } 2294 2295 /* First probe and see if there's a arch-specific hook to create the 2296 * in-kernel irqchip for us */ 2297 ret = kvm_arch_irqchip_create(s); 2298 if (ret == 0) { 2299 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2300 error_report("Split IRQ chip mode not supported."); 2301 exit(1); 2302 } else { 2303 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2304 } 2305 } 2306 if (ret < 0) { 2307 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2308 exit(1); 2309 } 2310 2311 kvm_kernel_irqchip = true; 2312 /* If we have an in-kernel IRQ chip then we must have asynchronous 2313 * interrupt delivery (though the reverse is not necessarily true) 2314 */ 2315 kvm_async_interrupts_allowed = true; 2316 kvm_halt_in_kernel_allowed = true; 2317 2318 kvm_init_irq_routing(s); 2319 2320 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2321 } 2322 2323 /* Find number of supported CPUs using the recommended 2324 * procedure from the kernel API documentation to cope with 2325 * older kernels that may be missing capabilities. 2326 */ 2327 static int kvm_recommended_vcpus(KVMState *s) 2328 { 2329 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2330 return (ret) ? ret : 4; 2331 } 2332 2333 static int kvm_max_vcpus(KVMState *s) 2334 { 2335 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2336 return (ret) ? ret : kvm_recommended_vcpus(s); 2337 } 2338 2339 static int kvm_max_vcpu_id(KVMState *s) 2340 { 2341 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2342 return (ret) ? ret : kvm_max_vcpus(s); 2343 } 2344 2345 bool kvm_vcpu_id_is_valid(int vcpu_id) 2346 { 2347 KVMState *s = KVM_STATE(current_accel()); 2348 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2349 } 2350 2351 bool kvm_dirty_ring_enabled(void) 2352 { 2353 return kvm_state->kvm_dirty_ring_size ? true : false; 2354 } 2355 2356 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2357 strList *names, strList *targets, Error **errp); 2358 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2359 2360 uint32_t kvm_dirty_ring_size(void) 2361 { 2362 return kvm_state->kvm_dirty_ring_size; 2363 } 2364 2365 static int kvm_init(MachineState *ms) 2366 { 2367 MachineClass *mc = MACHINE_GET_CLASS(ms); 2368 static const char upgrade_note[] = 2369 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2370 "(see http://sourceforge.net/projects/kvm).\n"; 2371 const struct { 2372 const char *name; 2373 int num; 2374 } num_cpus[] = { 2375 { "SMP", ms->smp.cpus }, 2376 { "hotpluggable", ms->smp.max_cpus }, 2377 { /* end of list */ } 2378 }, *nc = num_cpus; 2379 int soft_vcpus_limit, hard_vcpus_limit; 2380 KVMState *s; 2381 const KVMCapabilityInfo *missing_cap; 2382 int ret; 2383 int type; 2384 uint64_t dirty_log_manual_caps; 2385 2386 qemu_mutex_init(&kml_slots_lock); 2387 2388 s = KVM_STATE(ms->accelerator); 2389 2390 /* 2391 * On systems where the kernel can support different base page 2392 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2393 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2394 * page size for the system though. 2395 */ 2396 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2397 2398 s->sigmask_len = 8; 2399 accel_blocker_init(); 2400 2401 #ifdef KVM_CAP_SET_GUEST_DEBUG 2402 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2403 #endif 2404 QLIST_INIT(&s->kvm_parked_vcpus); 2405 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2406 if (s->fd == -1) { 2407 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2408 ret = -errno; 2409 goto err; 2410 } 2411 2412 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2413 if (ret < KVM_API_VERSION) { 2414 if (ret >= 0) { 2415 ret = -EINVAL; 2416 } 2417 fprintf(stderr, "kvm version too old\n"); 2418 goto err; 2419 } 2420 2421 if (ret > KVM_API_VERSION) { 2422 ret = -EINVAL; 2423 fprintf(stderr, "kvm version not supported\n"); 2424 goto err; 2425 } 2426 2427 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2428 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2429 2430 /* If unspecified, use the default value */ 2431 if (!s->nr_slots) { 2432 s->nr_slots = 32; 2433 } 2434 2435 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2436 if (s->nr_as <= 1) { 2437 s->nr_as = 1; 2438 } 2439 s->as = g_new0(struct KVMAs, s->nr_as); 2440 2441 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2442 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2443 "kvm-type", 2444 &error_abort); 2445 type = mc->kvm_type(ms, kvm_type); 2446 } else if (mc->kvm_type) { 2447 type = mc->kvm_type(ms, NULL); 2448 } else { 2449 type = kvm_arch_get_default_type(ms); 2450 } 2451 2452 if (type < 0) { 2453 ret = -EINVAL; 2454 goto err; 2455 } 2456 2457 do { 2458 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2459 } while (ret == -EINTR); 2460 2461 if (ret < 0) { 2462 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2463 strerror(-ret)); 2464 2465 #ifdef TARGET_S390X 2466 if (ret == -EINVAL) { 2467 fprintf(stderr, 2468 "Host kernel setup problem detected. Please verify:\n"); 2469 fprintf(stderr, "- for kernels supporting the switch_amode or" 2470 " user_mode parameters, whether\n"); 2471 fprintf(stderr, 2472 " user space is running in primary address space\n"); 2473 fprintf(stderr, 2474 "- for kernels supporting the vm.allocate_pgste sysctl, " 2475 "whether it is enabled\n"); 2476 } 2477 #elif defined(TARGET_PPC) 2478 if (ret == -EINVAL) { 2479 fprintf(stderr, 2480 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2481 (type == 2) ? "pr" : "hv"); 2482 } 2483 #endif 2484 goto err; 2485 } 2486 2487 s->vmfd = ret; 2488 2489 /* check the vcpu limits */ 2490 soft_vcpus_limit = kvm_recommended_vcpus(s); 2491 hard_vcpus_limit = kvm_max_vcpus(s); 2492 2493 while (nc->name) { 2494 if (nc->num > soft_vcpus_limit) { 2495 warn_report("Number of %s cpus requested (%d) exceeds " 2496 "the recommended cpus supported by KVM (%d)", 2497 nc->name, nc->num, soft_vcpus_limit); 2498 2499 if (nc->num > hard_vcpus_limit) { 2500 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2501 "the maximum cpus supported by KVM (%d)\n", 2502 nc->name, nc->num, hard_vcpus_limit); 2503 exit(1); 2504 } 2505 } 2506 nc++; 2507 } 2508 2509 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2510 if (!missing_cap) { 2511 missing_cap = 2512 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2513 } 2514 if (missing_cap) { 2515 ret = -EINVAL; 2516 fprintf(stderr, "kvm does not support %s\n%s", 2517 missing_cap->name, upgrade_note); 2518 goto err; 2519 } 2520 2521 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2522 s->coalesced_pio = s->coalesced_mmio && 2523 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2524 2525 /* 2526 * Enable KVM dirty ring if supported, otherwise fall back to 2527 * dirty logging mode 2528 */ 2529 ret = kvm_dirty_ring_init(s); 2530 if (ret < 0) { 2531 goto err; 2532 } 2533 2534 /* 2535 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2536 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2537 * page is wr-protected initially, which is against how kvm dirty ring is 2538 * usage - kvm dirty ring requires all pages are wr-protected at the very 2539 * beginning. Enabling this feature for dirty ring causes data corruption. 2540 * 2541 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2542 * we may expect a higher stall time when starting the migration. In the 2543 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2544 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2545 * guest pages. 2546 */ 2547 if (!s->kvm_dirty_ring_size) { 2548 dirty_log_manual_caps = 2549 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2550 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2551 KVM_DIRTY_LOG_INITIALLY_SET); 2552 s->manual_dirty_log_protect = dirty_log_manual_caps; 2553 if (dirty_log_manual_caps) { 2554 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2555 dirty_log_manual_caps); 2556 if (ret) { 2557 warn_report("Trying to enable capability %"PRIu64" of " 2558 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2559 "Falling back to the legacy mode. ", 2560 dirty_log_manual_caps); 2561 s->manual_dirty_log_protect = 0; 2562 } 2563 } 2564 } 2565 2566 #ifdef KVM_CAP_VCPU_EVENTS 2567 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2568 #endif 2569 2570 s->robust_singlestep = 2571 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2572 2573 #ifdef KVM_CAP_DEBUGREGS 2574 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2575 #endif 2576 2577 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2578 2579 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2580 2581 s->irq_set_ioctl = KVM_IRQ_LINE; 2582 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2583 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2584 } 2585 2586 kvm_readonly_mem_allowed = 2587 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2588 2589 kvm_eventfds_allowed = 2590 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2591 2592 kvm_irqfds_allowed = 2593 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2594 2595 kvm_resamplefds_allowed = 2596 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2597 2598 kvm_vm_attributes_allowed = 2599 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2600 2601 kvm_ioeventfd_any_length_allowed = 2602 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2603 2604 #ifdef KVM_CAP_SET_GUEST_DEBUG 2605 kvm_has_guest_debug = 2606 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2607 #endif 2608 2609 kvm_sstep_flags = 0; 2610 if (kvm_has_guest_debug) { 2611 kvm_sstep_flags = SSTEP_ENABLE; 2612 2613 #if defined KVM_CAP_SET_GUEST_DEBUG2 2614 int guest_debug_flags = 2615 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2616 2617 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2618 kvm_sstep_flags |= SSTEP_NOIRQ; 2619 } 2620 #endif 2621 } 2622 2623 kvm_state = s; 2624 2625 ret = kvm_arch_init(ms, s); 2626 if (ret < 0) { 2627 goto err; 2628 } 2629 2630 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2631 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2632 } 2633 2634 qemu_register_reset(kvm_unpoison_all, NULL); 2635 2636 if (s->kernel_irqchip_allowed) { 2637 kvm_irqchip_create(s); 2638 } 2639 2640 if (kvm_eventfds_allowed) { 2641 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2642 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2643 } 2644 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2645 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2646 2647 kvm_memory_listener_register(s, &s->memory_listener, 2648 &address_space_memory, 0, "kvm-memory"); 2649 if (kvm_eventfds_allowed) { 2650 memory_listener_register(&kvm_io_listener, 2651 &address_space_io); 2652 } 2653 memory_listener_register(&kvm_coalesced_pio_listener, 2654 &address_space_io); 2655 2656 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2657 2658 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2659 if (!s->sync_mmu) { 2660 ret = ram_block_discard_disable(true); 2661 assert(!ret); 2662 } 2663 2664 if (s->kvm_dirty_ring_size) { 2665 kvm_dirty_ring_reaper_init(s); 2666 } 2667 2668 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2669 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2670 query_stats_schemas_cb); 2671 } 2672 2673 return 0; 2674 2675 err: 2676 assert(ret < 0); 2677 if (s->vmfd >= 0) { 2678 close(s->vmfd); 2679 } 2680 if (s->fd != -1) { 2681 close(s->fd); 2682 } 2683 g_free(s->as); 2684 g_free(s->memory_listener.slots); 2685 2686 return ret; 2687 } 2688 2689 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2690 { 2691 s->sigmask_len = sigmask_len; 2692 } 2693 2694 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2695 int size, uint32_t count) 2696 { 2697 int i; 2698 uint8_t *ptr = data; 2699 2700 for (i = 0; i < count; i++) { 2701 address_space_rw(&address_space_io, port, attrs, 2702 ptr, size, 2703 direction == KVM_EXIT_IO_OUT); 2704 ptr += size; 2705 } 2706 } 2707 2708 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2709 { 2710 int i; 2711 2712 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2713 run->internal.suberror); 2714 2715 for (i = 0; i < run->internal.ndata; ++i) { 2716 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2717 i, (uint64_t)run->internal.data[i]); 2718 } 2719 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2720 fprintf(stderr, "emulation failure\n"); 2721 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2722 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2723 return EXCP_INTERRUPT; 2724 } 2725 } 2726 /* FIXME: Should trigger a qmp message to let management know 2727 * something went wrong. 2728 */ 2729 return -1; 2730 } 2731 2732 void kvm_flush_coalesced_mmio_buffer(void) 2733 { 2734 KVMState *s = kvm_state; 2735 2736 if (!s || s->coalesced_flush_in_progress) { 2737 return; 2738 } 2739 2740 s->coalesced_flush_in_progress = true; 2741 2742 if (s->coalesced_mmio_ring) { 2743 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2744 while (ring->first != ring->last) { 2745 struct kvm_coalesced_mmio *ent; 2746 2747 ent = &ring->coalesced_mmio[ring->first]; 2748 2749 if (ent->pio == 1) { 2750 address_space_write(&address_space_io, ent->phys_addr, 2751 MEMTXATTRS_UNSPECIFIED, ent->data, 2752 ent->len); 2753 } else { 2754 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2755 } 2756 smp_wmb(); 2757 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2758 } 2759 } 2760 2761 s->coalesced_flush_in_progress = false; 2762 } 2763 2764 bool kvm_cpu_check_are_resettable(void) 2765 { 2766 return kvm_arch_cpu_check_are_resettable(); 2767 } 2768 2769 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2770 { 2771 if (!cpu->vcpu_dirty) { 2772 int ret = kvm_arch_get_registers(cpu); 2773 if (ret) { 2774 error_report("Failed to get registers: %s", strerror(-ret)); 2775 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2776 vm_stop(RUN_STATE_INTERNAL_ERROR); 2777 } 2778 2779 cpu->vcpu_dirty = true; 2780 } 2781 } 2782 2783 void kvm_cpu_synchronize_state(CPUState *cpu) 2784 { 2785 if (!cpu->vcpu_dirty) { 2786 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2787 } 2788 } 2789 2790 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2791 { 2792 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2793 if (ret) { 2794 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2795 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2796 vm_stop(RUN_STATE_INTERNAL_ERROR); 2797 } 2798 2799 cpu->vcpu_dirty = false; 2800 } 2801 2802 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2803 { 2804 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2805 } 2806 2807 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2808 { 2809 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2810 if (ret) { 2811 error_report("Failed to put registers after init: %s", strerror(-ret)); 2812 exit(1); 2813 } 2814 2815 cpu->vcpu_dirty = false; 2816 } 2817 2818 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2819 { 2820 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2821 } 2822 2823 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2824 { 2825 cpu->vcpu_dirty = true; 2826 } 2827 2828 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2829 { 2830 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2831 } 2832 2833 #ifdef KVM_HAVE_MCE_INJECTION 2834 static __thread void *pending_sigbus_addr; 2835 static __thread int pending_sigbus_code; 2836 static __thread bool have_sigbus_pending; 2837 #endif 2838 2839 static void kvm_cpu_kick(CPUState *cpu) 2840 { 2841 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2842 } 2843 2844 static void kvm_cpu_kick_self(void) 2845 { 2846 if (kvm_immediate_exit) { 2847 kvm_cpu_kick(current_cpu); 2848 } else { 2849 qemu_cpu_kick_self(); 2850 } 2851 } 2852 2853 static void kvm_eat_signals(CPUState *cpu) 2854 { 2855 struct timespec ts = { 0, 0 }; 2856 siginfo_t siginfo; 2857 sigset_t waitset; 2858 sigset_t chkset; 2859 int r; 2860 2861 if (kvm_immediate_exit) { 2862 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2863 /* Write kvm_run->immediate_exit before the cpu->exit_request 2864 * write in kvm_cpu_exec. 2865 */ 2866 smp_wmb(); 2867 return; 2868 } 2869 2870 sigemptyset(&waitset); 2871 sigaddset(&waitset, SIG_IPI); 2872 2873 do { 2874 r = sigtimedwait(&waitset, &siginfo, &ts); 2875 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2876 perror("sigtimedwait"); 2877 exit(1); 2878 } 2879 2880 r = sigpending(&chkset); 2881 if (r == -1) { 2882 perror("sigpending"); 2883 exit(1); 2884 } 2885 } while (sigismember(&chkset, SIG_IPI)); 2886 } 2887 2888 int kvm_cpu_exec(CPUState *cpu) 2889 { 2890 struct kvm_run *run = cpu->kvm_run; 2891 int ret, run_ret; 2892 2893 DPRINTF("kvm_cpu_exec()\n"); 2894 2895 if (kvm_arch_process_async_events(cpu)) { 2896 qatomic_set(&cpu->exit_request, 0); 2897 return EXCP_HLT; 2898 } 2899 2900 qemu_mutex_unlock_iothread(); 2901 cpu_exec_start(cpu); 2902 2903 do { 2904 MemTxAttrs attrs; 2905 2906 if (cpu->vcpu_dirty) { 2907 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2908 if (ret) { 2909 error_report("Failed to put registers after init: %s", 2910 strerror(-ret)); 2911 ret = -1; 2912 break; 2913 } 2914 2915 cpu->vcpu_dirty = false; 2916 } 2917 2918 kvm_arch_pre_run(cpu, run); 2919 if (qatomic_read(&cpu->exit_request)) { 2920 DPRINTF("interrupt exit requested\n"); 2921 /* 2922 * KVM requires us to reenter the kernel after IO exits to complete 2923 * instruction emulation. This self-signal will ensure that we 2924 * leave ASAP again. 2925 */ 2926 kvm_cpu_kick_self(); 2927 } 2928 2929 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2930 * Matching barrier in kvm_eat_signals. 2931 */ 2932 smp_rmb(); 2933 2934 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2935 2936 attrs = kvm_arch_post_run(cpu, run); 2937 2938 #ifdef KVM_HAVE_MCE_INJECTION 2939 if (unlikely(have_sigbus_pending)) { 2940 qemu_mutex_lock_iothread(); 2941 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2942 pending_sigbus_addr); 2943 have_sigbus_pending = false; 2944 qemu_mutex_unlock_iothread(); 2945 } 2946 #endif 2947 2948 if (run_ret < 0) { 2949 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2950 DPRINTF("io window exit\n"); 2951 kvm_eat_signals(cpu); 2952 ret = EXCP_INTERRUPT; 2953 break; 2954 } 2955 fprintf(stderr, "error: kvm run failed %s\n", 2956 strerror(-run_ret)); 2957 #ifdef TARGET_PPC 2958 if (run_ret == -EBUSY) { 2959 fprintf(stderr, 2960 "This is probably because your SMT is enabled.\n" 2961 "VCPU can only run on primary threads with all " 2962 "secondary threads offline.\n"); 2963 } 2964 #endif 2965 ret = -1; 2966 break; 2967 } 2968 2969 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2970 switch (run->exit_reason) { 2971 case KVM_EXIT_IO: 2972 DPRINTF("handle_io\n"); 2973 /* Called outside BQL */ 2974 kvm_handle_io(run->io.port, attrs, 2975 (uint8_t *)run + run->io.data_offset, 2976 run->io.direction, 2977 run->io.size, 2978 run->io.count); 2979 ret = 0; 2980 break; 2981 case KVM_EXIT_MMIO: 2982 DPRINTF("handle_mmio\n"); 2983 /* Called outside BQL */ 2984 address_space_rw(&address_space_memory, 2985 run->mmio.phys_addr, attrs, 2986 run->mmio.data, 2987 run->mmio.len, 2988 run->mmio.is_write); 2989 ret = 0; 2990 break; 2991 case KVM_EXIT_IRQ_WINDOW_OPEN: 2992 DPRINTF("irq_window_open\n"); 2993 ret = EXCP_INTERRUPT; 2994 break; 2995 case KVM_EXIT_SHUTDOWN: 2996 DPRINTF("shutdown\n"); 2997 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2998 ret = EXCP_INTERRUPT; 2999 break; 3000 case KVM_EXIT_UNKNOWN: 3001 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3002 (uint64_t)run->hw.hardware_exit_reason); 3003 ret = -1; 3004 break; 3005 case KVM_EXIT_INTERNAL_ERROR: 3006 ret = kvm_handle_internal_error(cpu, run); 3007 break; 3008 case KVM_EXIT_DIRTY_RING_FULL: 3009 /* 3010 * We shouldn't continue if the dirty ring of this vcpu is 3011 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3012 */ 3013 trace_kvm_dirty_ring_full(cpu->cpu_index); 3014 qemu_mutex_lock_iothread(); 3015 /* 3016 * We throttle vCPU by making it sleep once it exit from kernel 3017 * due to dirty ring full. In the dirtylimit scenario, reaping 3018 * all vCPUs after a single vCPU dirty ring get full result in 3019 * the miss of sleep, so just reap the ring-fulled vCPU. 3020 */ 3021 if (dirtylimit_in_service()) { 3022 kvm_dirty_ring_reap(kvm_state, cpu); 3023 } else { 3024 kvm_dirty_ring_reap(kvm_state, NULL); 3025 } 3026 qemu_mutex_unlock_iothread(); 3027 dirtylimit_vcpu_execute(cpu); 3028 ret = 0; 3029 break; 3030 case KVM_EXIT_SYSTEM_EVENT: 3031 switch (run->system_event.type) { 3032 case KVM_SYSTEM_EVENT_SHUTDOWN: 3033 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3034 ret = EXCP_INTERRUPT; 3035 break; 3036 case KVM_SYSTEM_EVENT_RESET: 3037 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3038 ret = EXCP_INTERRUPT; 3039 break; 3040 case KVM_SYSTEM_EVENT_CRASH: 3041 kvm_cpu_synchronize_state(cpu); 3042 qemu_mutex_lock_iothread(); 3043 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3044 qemu_mutex_unlock_iothread(); 3045 ret = 0; 3046 break; 3047 default: 3048 DPRINTF("kvm_arch_handle_exit\n"); 3049 ret = kvm_arch_handle_exit(cpu, run); 3050 break; 3051 } 3052 break; 3053 default: 3054 DPRINTF("kvm_arch_handle_exit\n"); 3055 ret = kvm_arch_handle_exit(cpu, run); 3056 break; 3057 } 3058 } while (ret == 0); 3059 3060 cpu_exec_end(cpu); 3061 qemu_mutex_lock_iothread(); 3062 3063 if (ret < 0) { 3064 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3065 vm_stop(RUN_STATE_INTERNAL_ERROR); 3066 } 3067 3068 qatomic_set(&cpu->exit_request, 0); 3069 return ret; 3070 } 3071 3072 int kvm_ioctl(KVMState *s, int type, ...) 3073 { 3074 int ret; 3075 void *arg; 3076 va_list ap; 3077 3078 va_start(ap, type); 3079 arg = va_arg(ap, void *); 3080 va_end(ap); 3081 3082 trace_kvm_ioctl(type, arg); 3083 ret = ioctl(s->fd, type, arg); 3084 if (ret == -1) { 3085 ret = -errno; 3086 } 3087 return ret; 3088 } 3089 3090 int kvm_vm_ioctl(KVMState *s, int type, ...) 3091 { 3092 int ret; 3093 void *arg; 3094 va_list ap; 3095 3096 va_start(ap, type); 3097 arg = va_arg(ap, void *); 3098 va_end(ap); 3099 3100 trace_kvm_vm_ioctl(type, arg); 3101 accel_ioctl_begin(); 3102 ret = ioctl(s->vmfd, type, arg); 3103 accel_ioctl_end(); 3104 if (ret == -1) { 3105 ret = -errno; 3106 } 3107 return ret; 3108 } 3109 3110 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3111 { 3112 int ret; 3113 void *arg; 3114 va_list ap; 3115 3116 va_start(ap, type); 3117 arg = va_arg(ap, void *); 3118 va_end(ap); 3119 3120 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3121 accel_cpu_ioctl_begin(cpu); 3122 ret = ioctl(cpu->kvm_fd, type, arg); 3123 accel_cpu_ioctl_end(cpu); 3124 if (ret == -1) { 3125 ret = -errno; 3126 } 3127 return ret; 3128 } 3129 3130 int kvm_device_ioctl(int fd, int type, ...) 3131 { 3132 int ret; 3133 void *arg; 3134 va_list ap; 3135 3136 va_start(ap, type); 3137 arg = va_arg(ap, void *); 3138 va_end(ap); 3139 3140 trace_kvm_device_ioctl(fd, type, arg); 3141 accel_ioctl_begin(); 3142 ret = ioctl(fd, type, arg); 3143 accel_ioctl_end(); 3144 if (ret == -1) { 3145 ret = -errno; 3146 } 3147 return ret; 3148 } 3149 3150 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3151 { 3152 int ret; 3153 struct kvm_device_attr attribute = { 3154 .group = group, 3155 .attr = attr, 3156 }; 3157 3158 if (!kvm_vm_attributes_allowed) { 3159 return 0; 3160 } 3161 3162 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3163 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3164 return ret ? 0 : 1; 3165 } 3166 3167 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3168 { 3169 struct kvm_device_attr attribute = { 3170 .group = group, 3171 .attr = attr, 3172 .flags = 0, 3173 }; 3174 3175 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3176 } 3177 3178 int kvm_device_access(int fd, int group, uint64_t attr, 3179 void *val, bool write, Error **errp) 3180 { 3181 struct kvm_device_attr kvmattr; 3182 int err; 3183 3184 kvmattr.flags = 0; 3185 kvmattr.group = group; 3186 kvmattr.attr = attr; 3187 kvmattr.addr = (uintptr_t)val; 3188 3189 err = kvm_device_ioctl(fd, 3190 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3191 &kvmattr); 3192 if (err < 0) { 3193 error_setg_errno(errp, -err, 3194 "KVM_%s_DEVICE_ATTR failed: Group %d " 3195 "attr 0x%016" PRIx64, 3196 write ? "SET" : "GET", group, attr); 3197 } 3198 return err; 3199 } 3200 3201 bool kvm_has_sync_mmu(void) 3202 { 3203 return kvm_state->sync_mmu; 3204 } 3205 3206 int kvm_has_vcpu_events(void) 3207 { 3208 return kvm_state->vcpu_events; 3209 } 3210 3211 int kvm_has_robust_singlestep(void) 3212 { 3213 return kvm_state->robust_singlestep; 3214 } 3215 3216 int kvm_has_debugregs(void) 3217 { 3218 return kvm_state->debugregs; 3219 } 3220 3221 int kvm_max_nested_state_length(void) 3222 { 3223 return kvm_state->max_nested_state_len; 3224 } 3225 3226 int kvm_has_many_ioeventfds(void) 3227 { 3228 if (!kvm_enabled()) { 3229 return 0; 3230 } 3231 return kvm_state->many_ioeventfds; 3232 } 3233 3234 int kvm_has_gsi_routing(void) 3235 { 3236 #ifdef KVM_CAP_IRQ_ROUTING 3237 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3238 #else 3239 return false; 3240 #endif 3241 } 3242 3243 int kvm_has_intx_set_mask(void) 3244 { 3245 return kvm_state->intx_set_mask; 3246 } 3247 3248 bool kvm_arm_supports_user_irq(void) 3249 { 3250 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3251 } 3252 3253 #ifdef KVM_CAP_SET_GUEST_DEBUG 3254 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3255 { 3256 struct kvm_sw_breakpoint *bp; 3257 3258 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3259 if (bp->pc == pc) { 3260 return bp; 3261 } 3262 } 3263 return NULL; 3264 } 3265 3266 int kvm_sw_breakpoints_active(CPUState *cpu) 3267 { 3268 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3269 } 3270 3271 struct kvm_set_guest_debug_data { 3272 struct kvm_guest_debug dbg; 3273 int err; 3274 }; 3275 3276 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3277 { 3278 struct kvm_set_guest_debug_data *dbg_data = 3279 (struct kvm_set_guest_debug_data *) data.host_ptr; 3280 3281 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3282 &dbg_data->dbg); 3283 } 3284 3285 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3286 { 3287 struct kvm_set_guest_debug_data data; 3288 3289 data.dbg.control = reinject_trap; 3290 3291 if (cpu->singlestep_enabled) { 3292 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3293 3294 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3295 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3296 } 3297 } 3298 kvm_arch_update_guest_debug(cpu, &data.dbg); 3299 3300 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3301 RUN_ON_CPU_HOST_PTR(&data)); 3302 return data.err; 3303 } 3304 3305 bool kvm_supports_guest_debug(void) 3306 { 3307 /* probed during kvm_init() */ 3308 return kvm_has_guest_debug; 3309 } 3310 3311 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3312 { 3313 struct kvm_sw_breakpoint *bp; 3314 int err; 3315 3316 if (type == GDB_BREAKPOINT_SW) { 3317 bp = kvm_find_sw_breakpoint(cpu, addr); 3318 if (bp) { 3319 bp->use_count++; 3320 return 0; 3321 } 3322 3323 bp = g_new(struct kvm_sw_breakpoint, 1); 3324 bp->pc = addr; 3325 bp->use_count = 1; 3326 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3327 if (err) { 3328 g_free(bp); 3329 return err; 3330 } 3331 3332 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3333 } else { 3334 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3335 if (err) { 3336 return err; 3337 } 3338 } 3339 3340 CPU_FOREACH(cpu) { 3341 err = kvm_update_guest_debug(cpu, 0); 3342 if (err) { 3343 return err; 3344 } 3345 } 3346 return 0; 3347 } 3348 3349 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3350 { 3351 struct kvm_sw_breakpoint *bp; 3352 int err; 3353 3354 if (type == GDB_BREAKPOINT_SW) { 3355 bp = kvm_find_sw_breakpoint(cpu, addr); 3356 if (!bp) { 3357 return -ENOENT; 3358 } 3359 3360 if (bp->use_count > 1) { 3361 bp->use_count--; 3362 return 0; 3363 } 3364 3365 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3366 if (err) { 3367 return err; 3368 } 3369 3370 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3371 g_free(bp); 3372 } else { 3373 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3374 if (err) { 3375 return err; 3376 } 3377 } 3378 3379 CPU_FOREACH(cpu) { 3380 err = kvm_update_guest_debug(cpu, 0); 3381 if (err) { 3382 return err; 3383 } 3384 } 3385 return 0; 3386 } 3387 3388 void kvm_remove_all_breakpoints(CPUState *cpu) 3389 { 3390 struct kvm_sw_breakpoint *bp, *next; 3391 KVMState *s = cpu->kvm_state; 3392 CPUState *tmpcpu; 3393 3394 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3395 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3396 /* Try harder to find a CPU that currently sees the breakpoint. */ 3397 CPU_FOREACH(tmpcpu) { 3398 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3399 break; 3400 } 3401 } 3402 } 3403 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3404 g_free(bp); 3405 } 3406 kvm_arch_remove_all_hw_breakpoints(); 3407 3408 CPU_FOREACH(cpu) { 3409 kvm_update_guest_debug(cpu, 0); 3410 } 3411 } 3412 3413 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3414 3415 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3416 { 3417 KVMState *s = kvm_state; 3418 struct kvm_signal_mask *sigmask; 3419 int r; 3420 3421 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3422 3423 sigmask->len = s->sigmask_len; 3424 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3425 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3426 g_free(sigmask); 3427 3428 return r; 3429 } 3430 3431 static void kvm_ipi_signal(int sig) 3432 { 3433 if (current_cpu) { 3434 assert(kvm_immediate_exit); 3435 kvm_cpu_kick(current_cpu); 3436 } 3437 } 3438 3439 void kvm_init_cpu_signals(CPUState *cpu) 3440 { 3441 int r; 3442 sigset_t set; 3443 struct sigaction sigact; 3444 3445 memset(&sigact, 0, sizeof(sigact)); 3446 sigact.sa_handler = kvm_ipi_signal; 3447 sigaction(SIG_IPI, &sigact, NULL); 3448 3449 pthread_sigmask(SIG_BLOCK, NULL, &set); 3450 #if defined KVM_HAVE_MCE_INJECTION 3451 sigdelset(&set, SIGBUS); 3452 pthread_sigmask(SIG_SETMASK, &set, NULL); 3453 #endif 3454 sigdelset(&set, SIG_IPI); 3455 if (kvm_immediate_exit) { 3456 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3457 } else { 3458 r = kvm_set_signal_mask(cpu, &set); 3459 } 3460 if (r) { 3461 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3462 exit(1); 3463 } 3464 } 3465 3466 /* Called asynchronously in VCPU thread. */ 3467 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3468 { 3469 #ifdef KVM_HAVE_MCE_INJECTION 3470 if (have_sigbus_pending) { 3471 return 1; 3472 } 3473 have_sigbus_pending = true; 3474 pending_sigbus_addr = addr; 3475 pending_sigbus_code = code; 3476 qatomic_set(&cpu->exit_request, 1); 3477 return 0; 3478 #else 3479 return 1; 3480 #endif 3481 } 3482 3483 /* Called synchronously (via signalfd) in main thread. */ 3484 int kvm_on_sigbus(int code, void *addr) 3485 { 3486 #ifdef KVM_HAVE_MCE_INJECTION 3487 /* Action required MCE kills the process if SIGBUS is blocked. Because 3488 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3489 * we can only get action optional here. 3490 */ 3491 assert(code != BUS_MCEERR_AR); 3492 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3493 return 0; 3494 #else 3495 return 1; 3496 #endif 3497 } 3498 3499 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3500 { 3501 int ret; 3502 struct kvm_create_device create_dev; 3503 3504 create_dev.type = type; 3505 create_dev.fd = -1; 3506 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3507 3508 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3509 return -ENOTSUP; 3510 } 3511 3512 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3513 if (ret) { 3514 return ret; 3515 } 3516 3517 return test ? 0 : create_dev.fd; 3518 } 3519 3520 bool kvm_device_supported(int vmfd, uint64_t type) 3521 { 3522 struct kvm_create_device create_dev = { 3523 .type = type, 3524 .fd = -1, 3525 .flags = KVM_CREATE_DEVICE_TEST, 3526 }; 3527 3528 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3529 return false; 3530 } 3531 3532 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3533 } 3534 3535 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3536 { 3537 struct kvm_one_reg reg; 3538 int r; 3539 3540 reg.id = id; 3541 reg.addr = (uintptr_t) source; 3542 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3543 if (r) { 3544 trace_kvm_failed_reg_set(id, strerror(-r)); 3545 } 3546 return r; 3547 } 3548 3549 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3550 { 3551 struct kvm_one_reg reg; 3552 int r; 3553 3554 reg.id = id; 3555 reg.addr = (uintptr_t) target; 3556 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3557 if (r) { 3558 trace_kvm_failed_reg_get(id, strerror(-r)); 3559 } 3560 return r; 3561 } 3562 3563 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3564 hwaddr start_addr, hwaddr size) 3565 { 3566 KVMState *kvm = KVM_STATE(ms->accelerator); 3567 int i; 3568 3569 for (i = 0; i < kvm->nr_as; ++i) { 3570 if (kvm->as[i].as == as && kvm->as[i].ml) { 3571 size = MIN(kvm_max_slot_size, size); 3572 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3573 start_addr, size); 3574 } 3575 } 3576 3577 return false; 3578 } 3579 3580 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3581 const char *name, void *opaque, 3582 Error **errp) 3583 { 3584 KVMState *s = KVM_STATE(obj); 3585 int64_t value = s->kvm_shadow_mem; 3586 3587 visit_type_int(v, name, &value, errp); 3588 } 3589 3590 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3591 const char *name, void *opaque, 3592 Error **errp) 3593 { 3594 KVMState *s = KVM_STATE(obj); 3595 int64_t value; 3596 3597 if (s->fd != -1) { 3598 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3599 return; 3600 } 3601 3602 if (!visit_type_int(v, name, &value, errp)) { 3603 return; 3604 } 3605 3606 s->kvm_shadow_mem = value; 3607 } 3608 3609 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3610 const char *name, void *opaque, 3611 Error **errp) 3612 { 3613 KVMState *s = KVM_STATE(obj); 3614 OnOffSplit mode; 3615 3616 if (s->fd != -1) { 3617 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3618 return; 3619 } 3620 3621 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3622 return; 3623 } 3624 switch (mode) { 3625 case ON_OFF_SPLIT_ON: 3626 s->kernel_irqchip_allowed = true; 3627 s->kernel_irqchip_required = true; 3628 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3629 break; 3630 case ON_OFF_SPLIT_OFF: 3631 s->kernel_irqchip_allowed = false; 3632 s->kernel_irqchip_required = false; 3633 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3634 break; 3635 case ON_OFF_SPLIT_SPLIT: 3636 s->kernel_irqchip_allowed = true; 3637 s->kernel_irqchip_required = true; 3638 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3639 break; 3640 default: 3641 /* The value was checked in visit_type_OnOffSplit() above. If 3642 * we get here, then something is wrong in QEMU. 3643 */ 3644 abort(); 3645 } 3646 } 3647 3648 bool kvm_kernel_irqchip_allowed(void) 3649 { 3650 return kvm_state->kernel_irqchip_allowed; 3651 } 3652 3653 bool kvm_kernel_irqchip_required(void) 3654 { 3655 return kvm_state->kernel_irqchip_required; 3656 } 3657 3658 bool kvm_kernel_irqchip_split(void) 3659 { 3660 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3661 } 3662 3663 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3664 const char *name, void *opaque, 3665 Error **errp) 3666 { 3667 KVMState *s = KVM_STATE(obj); 3668 uint32_t value = s->kvm_dirty_ring_size; 3669 3670 visit_type_uint32(v, name, &value, errp); 3671 } 3672 3673 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3674 const char *name, void *opaque, 3675 Error **errp) 3676 { 3677 KVMState *s = KVM_STATE(obj); 3678 uint32_t value; 3679 3680 if (s->fd != -1) { 3681 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3682 return; 3683 } 3684 3685 if (!visit_type_uint32(v, name, &value, errp)) { 3686 return; 3687 } 3688 if (value & (value - 1)) { 3689 error_setg(errp, "dirty-ring-size must be a power of two."); 3690 return; 3691 } 3692 3693 s->kvm_dirty_ring_size = value; 3694 } 3695 3696 static void kvm_accel_instance_init(Object *obj) 3697 { 3698 KVMState *s = KVM_STATE(obj); 3699 3700 s->fd = -1; 3701 s->vmfd = -1; 3702 s->kvm_shadow_mem = -1; 3703 s->kernel_irqchip_allowed = true; 3704 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3705 /* KVM dirty ring is by default off */ 3706 s->kvm_dirty_ring_size = 0; 3707 s->kvm_dirty_ring_with_bitmap = false; 3708 s->kvm_eager_split_size = 0; 3709 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3710 s->notify_window = 0; 3711 s->xen_version = 0; 3712 s->xen_gnttab_max_frames = 64; 3713 s->xen_evtchn_max_pirq = 256; 3714 } 3715 3716 /** 3717 * kvm_gdbstub_sstep_flags(): 3718 * 3719 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3720 * support is probed during kvm_init() 3721 */ 3722 static int kvm_gdbstub_sstep_flags(void) 3723 { 3724 return kvm_sstep_flags; 3725 } 3726 3727 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3728 { 3729 AccelClass *ac = ACCEL_CLASS(oc); 3730 ac->name = "KVM"; 3731 ac->init_machine = kvm_init; 3732 ac->has_memory = kvm_accel_has_memory; 3733 ac->allowed = &kvm_allowed; 3734 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3735 3736 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3737 NULL, kvm_set_kernel_irqchip, 3738 NULL, NULL); 3739 object_class_property_set_description(oc, "kernel-irqchip", 3740 "Configure KVM in-kernel irqchip"); 3741 3742 object_class_property_add(oc, "kvm-shadow-mem", "int", 3743 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3744 NULL, NULL); 3745 object_class_property_set_description(oc, "kvm-shadow-mem", 3746 "KVM shadow MMU size"); 3747 3748 object_class_property_add(oc, "dirty-ring-size", "uint32", 3749 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3750 NULL, NULL); 3751 object_class_property_set_description(oc, "dirty-ring-size", 3752 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3753 3754 kvm_arch_accel_class_init(oc); 3755 } 3756 3757 static const TypeInfo kvm_accel_type = { 3758 .name = TYPE_KVM_ACCEL, 3759 .parent = TYPE_ACCEL, 3760 .instance_init = kvm_accel_instance_init, 3761 .class_init = kvm_accel_class_init, 3762 .instance_size = sizeof(KVMState), 3763 }; 3764 3765 static void kvm_type_init(void) 3766 { 3767 type_register_static(&kvm_accel_type); 3768 } 3769 3770 type_init(kvm_type_init); 3771 3772 typedef struct StatsArgs { 3773 union StatsResultsType { 3774 StatsResultList **stats; 3775 StatsSchemaList **schema; 3776 } result; 3777 strList *names; 3778 Error **errp; 3779 } StatsArgs; 3780 3781 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3782 uint64_t *stats_data, 3783 StatsList *stats_list, 3784 Error **errp) 3785 { 3786 3787 Stats *stats; 3788 uint64List *val_list = NULL; 3789 3790 /* Only add stats that we understand. */ 3791 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3792 case KVM_STATS_TYPE_CUMULATIVE: 3793 case KVM_STATS_TYPE_INSTANT: 3794 case KVM_STATS_TYPE_PEAK: 3795 case KVM_STATS_TYPE_LINEAR_HIST: 3796 case KVM_STATS_TYPE_LOG_HIST: 3797 break; 3798 default: 3799 return stats_list; 3800 } 3801 3802 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3803 case KVM_STATS_UNIT_NONE: 3804 case KVM_STATS_UNIT_BYTES: 3805 case KVM_STATS_UNIT_CYCLES: 3806 case KVM_STATS_UNIT_SECONDS: 3807 case KVM_STATS_UNIT_BOOLEAN: 3808 break; 3809 default: 3810 return stats_list; 3811 } 3812 3813 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3814 case KVM_STATS_BASE_POW10: 3815 case KVM_STATS_BASE_POW2: 3816 break; 3817 default: 3818 return stats_list; 3819 } 3820 3821 /* Alloc and populate data list */ 3822 stats = g_new0(Stats, 1); 3823 stats->name = g_strdup(pdesc->name); 3824 stats->value = g_new0(StatsValue, 1);; 3825 3826 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3827 stats->value->u.boolean = *stats_data; 3828 stats->value->type = QTYPE_QBOOL; 3829 } else if (pdesc->size == 1) { 3830 stats->value->u.scalar = *stats_data; 3831 stats->value->type = QTYPE_QNUM; 3832 } else { 3833 int i; 3834 for (i = 0; i < pdesc->size; i++) { 3835 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3836 } 3837 stats->value->u.list = val_list; 3838 stats->value->type = QTYPE_QLIST; 3839 } 3840 3841 QAPI_LIST_PREPEND(stats_list, stats); 3842 return stats_list; 3843 } 3844 3845 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3846 StatsSchemaValueList *list, 3847 Error **errp) 3848 { 3849 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3850 schema_entry->value = g_new0(StatsSchemaValue, 1); 3851 3852 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3853 case KVM_STATS_TYPE_CUMULATIVE: 3854 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3855 break; 3856 case KVM_STATS_TYPE_INSTANT: 3857 schema_entry->value->type = STATS_TYPE_INSTANT; 3858 break; 3859 case KVM_STATS_TYPE_PEAK: 3860 schema_entry->value->type = STATS_TYPE_PEAK; 3861 break; 3862 case KVM_STATS_TYPE_LINEAR_HIST: 3863 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3864 schema_entry->value->bucket_size = pdesc->bucket_size; 3865 schema_entry->value->has_bucket_size = true; 3866 break; 3867 case KVM_STATS_TYPE_LOG_HIST: 3868 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3869 break; 3870 default: 3871 goto exit; 3872 } 3873 3874 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3875 case KVM_STATS_UNIT_NONE: 3876 break; 3877 case KVM_STATS_UNIT_BOOLEAN: 3878 schema_entry->value->has_unit = true; 3879 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3880 break; 3881 case KVM_STATS_UNIT_BYTES: 3882 schema_entry->value->has_unit = true; 3883 schema_entry->value->unit = STATS_UNIT_BYTES; 3884 break; 3885 case KVM_STATS_UNIT_CYCLES: 3886 schema_entry->value->has_unit = true; 3887 schema_entry->value->unit = STATS_UNIT_CYCLES; 3888 break; 3889 case KVM_STATS_UNIT_SECONDS: 3890 schema_entry->value->has_unit = true; 3891 schema_entry->value->unit = STATS_UNIT_SECONDS; 3892 break; 3893 default: 3894 goto exit; 3895 } 3896 3897 schema_entry->value->exponent = pdesc->exponent; 3898 if (pdesc->exponent) { 3899 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3900 case KVM_STATS_BASE_POW10: 3901 schema_entry->value->has_base = true; 3902 schema_entry->value->base = 10; 3903 break; 3904 case KVM_STATS_BASE_POW2: 3905 schema_entry->value->has_base = true; 3906 schema_entry->value->base = 2; 3907 break; 3908 default: 3909 goto exit; 3910 } 3911 } 3912 3913 schema_entry->value->name = g_strdup(pdesc->name); 3914 schema_entry->next = list; 3915 return schema_entry; 3916 exit: 3917 g_free(schema_entry->value); 3918 g_free(schema_entry); 3919 return list; 3920 } 3921 3922 /* Cached stats descriptors */ 3923 typedef struct StatsDescriptors { 3924 const char *ident; /* cache key, currently the StatsTarget */ 3925 struct kvm_stats_desc *kvm_stats_desc; 3926 struct kvm_stats_header kvm_stats_header; 3927 QTAILQ_ENTRY(StatsDescriptors) next; 3928 } StatsDescriptors; 3929 3930 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3931 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3932 3933 /* 3934 * Return the descriptors for 'target', that either have already been read 3935 * or are retrieved from 'stats_fd'. 3936 */ 3937 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3938 Error **errp) 3939 { 3940 StatsDescriptors *descriptors; 3941 const char *ident; 3942 struct kvm_stats_desc *kvm_stats_desc; 3943 struct kvm_stats_header *kvm_stats_header; 3944 size_t size_desc; 3945 ssize_t ret; 3946 3947 ident = StatsTarget_str(target); 3948 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3949 if (g_str_equal(descriptors->ident, ident)) { 3950 return descriptors; 3951 } 3952 } 3953 3954 descriptors = g_new0(StatsDescriptors, 1); 3955 3956 /* Read stats header */ 3957 kvm_stats_header = &descriptors->kvm_stats_header; 3958 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 3959 if (ret != sizeof(*kvm_stats_header)) { 3960 error_setg(errp, "KVM stats: failed to read stats header: " 3961 "expected %zu actual %zu", 3962 sizeof(*kvm_stats_header), ret); 3963 g_free(descriptors); 3964 return NULL; 3965 } 3966 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3967 3968 /* Read stats descriptors */ 3969 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3970 ret = pread(stats_fd, kvm_stats_desc, 3971 size_desc * kvm_stats_header->num_desc, 3972 kvm_stats_header->desc_offset); 3973 3974 if (ret != size_desc * kvm_stats_header->num_desc) { 3975 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3976 "expected %zu actual %zu", 3977 size_desc * kvm_stats_header->num_desc, ret); 3978 g_free(descriptors); 3979 g_free(kvm_stats_desc); 3980 return NULL; 3981 } 3982 descriptors->kvm_stats_desc = kvm_stats_desc; 3983 descriptors->ident = ident; 3984 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3985 return descriptors; 3986 } 3987 3988 static void query_stats(StatsResultList **result, StatsTarget target, 3989 strList *names, int stats_fd, CPUState *cpu, 3990 Error **errp) 3991 { 3992 struct kvm_stats_desc *kvm_stats_desc; 3993 struct kvm_stats_header *kvm_stats_header; 3994 StatsDescriptors *descriptors; 3995 g_autofree uint64_t *stats_data = NULL; 3996 struct kvm_stats_desc *pdesc; 3997 StatsList *stats_list = NULL; 3998 size_t size_desc, size_data = 0; 3999 ssize_t ret; 4000 int i; 4001 4002 descriptors = find_stats_descriptors(target, stats_fd, errp); 4003 if (!descriptors) { 4004 return; 4005 } 4006 4007 kvm_stats_header = &descriptors->kvm_stats_header; 4008 kvm_stats_desc = descriptors->kvm_stats_desc; 4009 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4010 4011 /* Tally the total data size; read schema data */ 4012 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4013 pdesc = (void *)kvm_stats_desc + i * size_desc; 4014 size_data += pdesc->size * sizeof(*stats_data); 4015 } 4016 4017 stats_data = g_malloc0(size_data); 4018 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4019 4020 if (ret != size_data) { 4021 error_setg(errp, "KVM stats: failed to read data: " 4022 "expected %zu actual %zu", size_data, ret); 4023 return; 4024 } 4025 4026 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4027 uint64_t *stats; 4028 pdesc = (void *)kvm_stats_desc + i * size_desc; 4029 4030 /* Add entry to the list */ 4031 stats = (void *)stats_data + pdesc->offset; 4032 if (!apply_str_list_filter(pdesc->name, names)) { 4033 continue; 4034 } 4035 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4036 } 4037 4038 if (!stats_list) { 4039 return; 4040 } 4041 4042 switch (target) { 4043 case STATS_TARGET_VM: 4044 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4045 break; 4046 case STATS_TARGET_VCPU: 4047 add_stats_entry(result, STATS_PROVIDER_KVM, 4048 cpu->parent_obj.canonical_path, 4049 stats_list); 4050 break; 4051 default: 4052 g_assert_not_reached(); 4053 } 4054 } 4055 4056 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4057 int stats_fd, Error **errp) 4058 { 4059 struct kvm_stats_desc *kvm_stats_desc; 4060 struct kvm_stats_header *kvm_stats_header; 4061 StatsDescriptors *descriptors; 4062 struct kvm_stats_desc *pdesc; 4063 StatsSchemaValueList *stats_list = NULL; 4064 size_t size_desc; 4065 int i; 4066 4067 descriptors = find_stats_descriptors(target, stats_fd, errp); 4068 if (!descriptors) { 4069 return; 4070 } 4071 4072 kvm_stats_header = &descriptors->kvm_stats_header; 4073 kvm_stats_desc = descriptors->kvm_stats_desc; 4074 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4075 4076 /* Tally the total data size; read schema data */ 4077 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4078 pdesc = (void *)kvm_stats_desc + i * size_desc; 4079 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4080 } 4081 4082 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4083 } 4084 4085 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4086 { 4087 int stats_fd = cpu->kvm_vcpu_stats_fd; 4088 Error *local_err = NULL; 4089 4090 if (stats_fd == -1) { 4091 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4092 error_propagate(kvm_stats_args->errp, local_err); 4093 return; 4094 } 4095 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4096 kvm_stats_args->names, stats_fd, cpu, 4097 kvm_stats_args->errp); 4098 } 4099 4100 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4101 { 4102 int stats_fd = cpu->kvm_vcpu_stats_fd; 4103 Error *local_err = NULL; 4104 4105 if (stats_fd == -1) { 4106 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4107 error_propagate(kvm_stats_args->errp, local_err); 4108 return; 4109 } 4110 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4111 kvm_stats_args->errp); 4112 } 4113 4114 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4115 strList *names, strList *targets, Error **errp) 4116 { 4117 KVMState *s = kvm_state; 4118 CPUState *cpu; 4119 int stats_fd; 4120 4121 switch (target) { 4122 case STATS_TARGET_VM: 4123 { 4124 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4125 if (stats_fd == -1) { 4126 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4127 return; 4128 } 4129 query_stats(result, target, names, stats_fd, NULL, errp); 4130 close(stats_fd); 4131 break; 4132 } 4133 case STATS_TARGET_VCPU: 4134 { 4135 StatsArgs stats_args; 4136 stats_args.result.stats = result; 4137 stats_args.names = names; 4138 stats_args.errp = errp; 4139 CPU_FOREACH(cpu) { 4140 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4141 continue; 4142 } 4143 query_stats_vcpu(cpu, &stats_args); 4144 } 4145 break; 4146 } 4147 default: 4148 break; 4149 } 4150 } 4151 4152 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4153 { 4154 StatsArgs stats_args; 4155 KVMState *s = kvm_state; 4156 int stats_fd; 4157 4158 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4159 if (stats_fd == -1) { 4160 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4161 return; 4162 } 4163 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4164 close(stats_fd); 4165 4166 if (first_cpu) { 4167 stats_args.result.schema = result; 4168 stats_args.errp = errp; 4169 query_stats_schema_vcpu(first_cpu, &stats_args); 4170 } 4171 } 4172