1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 50 #include "hw/boards.h" 51 52 /* This check must be after config-host.h is included */ 53 #ifdef CONFIG_EVENTFD 54 #include <sys/eventfd.h> 55 #endif 56 57 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 58 * need to use the real host PAGE_SIZE, as that's what KVM will use. 59 */ 60 #ifdef PAGE_SIZE 61 #undef PAGE_SIZE 62 #endif 63 #define PAGE_SIZE qemu_real_host_page_size 64 65 //#define DEBUG_KVM 66 67 #ifdef DEBUG_KVM 68 #define DPRINTF(fmt, ...) \ 69 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 70 #else 71 #define DPRINTF(fmt, ...) \ 72 do { } while (0) 73 #endif 74 75 #define KVM_MSI_HASHTAB_SIZE 256 76 77 struct KVMParkedVcpu { 78 unsigned long vcpu_id; 79 int kvm_fd; 80 QLIST_ENTRY(KVMParkedVcpu) node; 81 }; 82 83 struct KVMState 84 { 85 AccelState parent_obj; 86 87 int nr_slots; 88 int fd; 89 int vmfd; 90 int coalesced_mmio; 91 int coalesced_pio; 92 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 93 bool coalesced_flush_in_progress; 94 int vcpu_events; 95 int robust_singlestep; 96 int debugregs; 97 #ifdef KVM_CAP_SET_GUEST_DEBUG 98 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 99 #endif 100 int max_nested_state_len; 101 int many_ioeventfds; 102 int intx_set_mask; 103 int kvm_shadow_mem; 104 bool kernel_irqchip_allowed; 105 bool kernel_irqchip_required; 106 OnOffAuto kernel_irqchip_split; 107 bool sync_mmu; 108 uint64_t manual_dirty_log_protect; 109 /* The man page (and posix) say ioctl numbers are signed int, but 110 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 111 * unsigned, and treating them as signed here can break things */ 112 unsigned irq_set_ioctl; 113 unsigned int sigmask_len; 114 GHashTable *gsimap; 115 #ifdef KVM_CAP_IRQ_ROUTING 116 struct kvm_irq_routing *irq_routes; 117 int nr_allocated_irq_routes; 118 unsigned long *used_gsi_bitmap; 119 unsigned int gsi_count; 120 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 121 #endif 122 KVMMemoryListener memory_listener; 123 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 124 125 /* For "info mtree -f" to tell if an MR is registered in KVM */ 126 int nr_as; 127 struct KVMAs { 128 KVMMemoryListener *ml; 129 AddressSpace *as; 130 } *as; 131 }; 132 133 KVMState *kvm_state; 134 bool kvm_kernel_irqchip; 135 bool kvm_split_irqchip; 136 bool kvm_async_interrupts_allowed; 137 bool kvm_halt_in_kernel_allowed; 138 bool kvm_eventfds_allowed; 139 bool kvm_irqfds_allowed; 140 bool kvm_resamplefds_allowed; 141 bool kvm_msi_via_irqfd_allowed; 142 bool kvm_gsi_routing_allowed; 143 bool kvm_gsi_direct_mapping; 144 bool kvm_allowed; 145 bool kvm_readonly_mem_allowed; 146 bool kvm_vm_attributes_allowed; 147 bool kvm_direct_msi_allowed; 148 bool kvm_ioeventfd_any_length_allowed; 149 bool kvm_msi_use_devid; 150 static bool kvm_immediate_exit; 151 static hwaddr kvm_max_slot_size = ~0; 152 153 static const KVMCapabilityInfo kvm_required_capabilites[] = { 154 KVM_CAP_INFO(USER_MEMORY), 155 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 156 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 157 KVM_CAP_LAST_INFO 158 }; 159 160 static NotifierList kvm_irqchip_change_notifiers = 161 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 162 163 struct KVMResampleFd { 164 int gsi; 165 EventNotifier *resample_event; 166 QLIST_ENTRY(KVMResampleFd) node; 167 }; 168 typedef struct KVMResampleFd KVMResampleFd; 169 170 /* 171 * Only used with split irqchip where we need to do the resample fd 172 * kick for the kernel from userspace. 173 */ 174 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 175 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 176 177 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 178 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 179 180 static inline void kvm_resample_fd_remove(int gsi) 181 { 182 KVMResampleFd *rfd; 183 184 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 185 if (rfd->gsi == gsi) { 186 QLIST_REMOVE(rfd, node); 187 g_free(rfd); 188 break; 189 } 190 } 191 } 192 193 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 194 { 195 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 196 197 rfd->gsi = gsi; 198 rfd->resample_event = event; 199 200 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 201 } 202 203 void kvm_resample_fd_notify(int gsi) 204 { 205 KVMResampleFd *rfd; 206 207 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 208 if (rfd->gsi == gsi) { 209 event_notifier_set(rfd->resample_event); 210 trace_kvm_resample_fd_notify(gsi); 211 return; 212 } 213 } 214 } 215 216 int kvm_get_max_memslots(void) 217 { 218 KVMState *s = KVM_STATE(current_accel()); 219 220 return s->nr_slots; 221 } 222 223 /* Called with KVMMemoryListener.slots_lock held */ 224 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 225 { 226 KVMState *s = kvm_state; 227 int i; 228 229 for (i = 0; i < s->nr_slots; i++) { 230 if (kml->slots[i].memory_size == 0) { 231 return &kml->slots[i]; 232 } 233 } 234 235 return NULL; 236 } 237 238 bool kvm_has_free_slot(MachineState *ms) 239 { 240 KVMState *s = KVM_STATE(ms->accelerator); 241 bool result; 242 KVMMemoryListener *kml = &s->memory_listener; 243 244 kvm_slots_lock(kml); 245 result = !!kvm_get_free_slot(kml); 246 kvm_slots_unlock(kml); 247 248 return result; 249 } 250 251 /* Called with KVMMemoryListener.slots_lock held */ 252 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 253 { 254 KVMSlot *slot = kvm_get_free_slot(kml); 255 256 if (slot) { 257 return slot; 258 } 259 260 fprintf(stderr, "%s: no free slot available\n", __func__); 261 abort(); 262 } 263 264 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 265 hwaddr start_addr, 266 hwaddr size) 267 { 268 KVMState *s = kvm_state; 269 int i; 270 271 for (i = 0; i < s->nr_slots; i++) { 272 KVMSlot *mem = &kml->slots[i]; 273 274 if (start_addr == mem->start_addr && size == mem->memory_size) { 275 return mem; 276 } 277 } 278 279 return NULL; 280 } 281 282 /* 283 * Calculate and align the start address and the size of the section. 284 * Return the size. If the size is 0, the aligned section is empty. 285 */ 286 static hwaddr kvm_align_section(MemoryRegionSection *section, 287 hwaddr *start) 288 { 289 hwaddr size = int128_get64(section->size); 290 hwaddr delta, aligned; 291 292 /* kvm works in page size chunks, but the function may be called 293 with sub-page size and unaligned start address. Pad the start 294 address to next and truncate size to previous page boundary. */ 295 aligned = ROUND_UP(section->offset_within_address_space, 296 qemu_real_host_page_size); 297 delta = aligned - section->offset_within_address_space; 298 *start = aligned; 299 if (delta > size) { 300 return 0; 301 } 302 303 return (size - delta) & qemu_real_host_page_mask; 304 } 305 306 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 307 hwaddr *phys_addr) 308 { 309 KVMMemoryListener *kml = &s->memory_listener; 310 int i, ret = 0; 311 312 kvm_slots_lock(kml); 313 for (i = 0; i < s->nr_slots; i++) { 314 KVMSlot *mem = &kml->slots[i]; 315 316 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 317 *phys_addr = mem->start_addr + (ram - mem->ram); 318 ret = 1; 319 break; 320 } 321 } 322 kvm_slots_unlock(kml); 323 324 return ret; 325 } 326 327 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 328 { 329 KVMState *s = kvm_state; 330 struct kvm_userspace_memory_region mem; 331 int ret; 332 333 mem.slot = slot->slot | (kml->as_id << 16); 334 mem.guest_phys_addr = slot->start_addr; 335 mem.userspace_addr = (unsigned long)slot->ram; 336 mem.flags = slot->flags; 337 338 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 339 /* Set the slot size to 0 before setting the slot to the desired 340 * value. This is needed based on KVM commit 75d61fbc. */ 341 mem.memory_size = 0; 342 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 343 if (ret < 0) { 344 goto err; 345 } 346 } 347 mem.memory_size = slot->memory_size; 348 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 349 slot->old_flags = mem.flags; 350 err: 351 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 352 mem.memory_size, mem.userspace_addr, ret); 353 if (ret < 0) { 354 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 355 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 356 __func__, mem.slot, slot->start_addr, 357 (uint64_t)mem.memory_size, strerror(errno)); 358 } 359 return ret; 360 } 361 362 static int do_kvm_destroy_vcpu(CPUState *cpu) 363 { 364 KVMState *s = kvm_state; 365 long mmap_size; 366 struct KVMParkedVcpu *vcpu = NULL; 367 int ret = 0; 368 369 DPRINTF("kvm_destroy_vcpu\n"); 370 371 ret = kvm_arch_destroy_vcpu(cpu); 372 if (ret < 0) { 373 goto err; 374 } 375 376 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 377 if (mmap_size < 0) { 378 ret = mmap_size; 379 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 380 goto err; 381 } 382 383 ret = munmap(cpu->kvm_run, mmap_size); 384 if (ret < 0) { 385 goto err; 386 } 387 388 vcpu = g_malloc0(sizeof(*vcpu)); 389 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 390 vcpu->kvm_fd = cpu->kvm_fd; 391 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 392 err: 393 return ret; 394 } 395 396 void kvm_destroy_vcpu(CPUState *cpu) 397 { 398 if (do_kvm_destroy_vcpu(cpu) < 0) { 399 error_report("kvm_destroy_vcpu failed"); 400 exit(EXIT_FAILURE); 401 } 402 } 403 404 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 405 { 406 struct KVMParkedVcpu *cpu; 407 408 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 409 if (cpu->vcpu_id == vcpu_id) { 410 int kvm_fd; 411 412 QLIST_REMOVE(cpu, node); 413 kvm_fd = cpu->kvm_fd; 414 g_free(cpu); 415 return kvm_fd; 416 } 417 } 418 419 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 420 } 421 422 int kvm_init_vcpu(CPUState *cpu, Error **errp) 423 { 424 KVMState *s = kvm_state; 425 long mmap_size; 426 int ret; 427 428 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 429 430 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 431 if (ret < 0) { 432 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 433 kvm_arch_vcpu_id(cpu)); 434 goto err; 435 } 436 437 cpu->kvm_fd = ret; 438 cpu->kvm_state = s; 439 cpu->vcpu_dirty = true; 440 441 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 442 if (mmap_size < 0) { 443 ret = mmap_size; 444 error_setg_errno(errp, -mmap_size, 445 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 446 goto err; 447 } 448 449 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 450 cpu->kvm_fd, 0); 451 if (cpu->kvm_run == MAP_FAILED) { 452 ret = -errno; 453 error_setg_errno(errp, ret, 454 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 455 kvm_arch_vcpu_id(cpu)); 456 goto err; 457 } 458 459 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 460 s->coalesced_mmio_ring = 461 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 462 } 463 464 ret = kvm_arch_init_vcpu(cpu); 465 if (ret < 0) { 466 error_setg_errno(errp, -ret, 467 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 468 kvm_arch_vcpu_id(cpu)); 469 } 470 err: 471 return ret; 472 } 473 474 /* 475 * dirty pages logging control 476 */ 477 478 static int kvm_mem_flags(MemoryRegion *mr) 479 { 480 bool readonly = mr->readonly || memory_region_is_romd(mr); 481 int flags = 0; 482 483 if (memory_region_get_dirty_log_mask(mr) != 0) { 484 flags |= KVM_MEM_LOG_DIRTY_PAGES; 485 } 486 if (readonly && kvm_readonly_mem_allowed) { 487 flags |= KVM_MEM_READONLY; 488 } 489 return flags; 490 } 491 492 /* Called with KVMMemoryListener.slots_lock held */ 493 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 494 MemoryRegion *mr) 495 { 496 mem->flags = kvm_mem_flags(mr); 497 498 /* If nothing changed effectively, no need to issue ioctl */ 499 if (mem->flags == mem->old_flags) { 500 return 0; 501 } 502 503 return kvm_set_user_memory_region(kml, mem, false); 504 } 505 506 static int kvm_section_update_flags(KVMMemoryListener *kml, 507 MemoryRegionSection *section) 508 { 509 hwaddr start_addr, size, slot_size; 510 KVMSlot *mem; 511 int ret = 0; 512 513 size = kvm_align_section(section, &start_addr); 514 if (!size) { 515 return 0; 516 } 517 518 kvm_slots_lock(kml); 519 520 while (size && !ret) { 521 slot_size = MIN(kvm_max_slot_size, size); 522 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 523 if (!mem) { 524 /* We don't have a slot if we want to trap every access. */ 525 goto out; 526 } 527 528 ret = kvm_slot_update_flags(kml, mem, section->mr); 529 start_addr += slot_size; 530 size -= slot_size; 531 } 532 533 out: 534 kvm_slots_unlock(kml); 535 return ret; 536 } 537 538 static void kvm_log_start(MemoryListener *listener, 539 MemoryRegionSection *section, 540 int old, int new) 541 { 542 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 543 int r; 544 545 if (old != 0) { 546 return; 547 } 548 549 r = kvm_section_update_flags(kml, section); 550 if (r < 0) { 551 abort(); 552 } 553 } 554 555 static void kvm_log_stop(MemoryListener *listener, 556 MemoryRegionSection *section, 557 int old, int new) 558 { 559 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 560 int r; 561 562 if (new != 0) { 563 return; 564 } 565 566 r = kvm_section_update_flags(kml, section); 567 if (r < 0) { 568 abort(); 569 } 570 } 571 572 /* get kvm's dirty pages bitmap and update qemu's */ 573 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 574 unsigned long *bitmap) 575 { 576 ram_addr_t start = section->offset_within_region + 577 memory_region_get_ram_addr(section->mr); 578 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 579 580 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 581 return 0; 582 } 583 584 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 585 586 /* Allocate the dirty bitmap for a slot */ 587 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 588 { 589 /* 590 * XXX bad kernel interface alert 591 * For dirty bitmap, kernel allocates array of size aligned to 592 * bits-per-long. But for case when the kernel is 64bits and 593 * the userspace is 32bits, userspace can't align to the same 594 * bits-per-long, since sizeof(long) is different between kernel 595 * and user space. This way, userspace will provide buffer which 596 * may be 4 bytes less than the kernel will use, resulting in 597 * userspace memory corruption (which is not detectable by valgrind 598 * too, in most cases). 599 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 600 * a hope that sizeof(long) won't become >8 any time soon. 601 * 602 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 603 * And mem->memory_size is aligned to it (otherwise this mem can't 604 * be registered to KVM). 605 */ 606 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size, 607 /*HOST_LONG_BITS*/ 64) / 8; 608 mem->dirty_bmap = g_malloc0(bitmap_size); 609 } 610 611 /** 612 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 613 * 614 * This function will first try to fetch dirty bitmap from the kernel, 615 * and then updates qemu's dirty bitmap. 616 * 617 * NOTE: caller must be with kml->slots_lock held. 618 * 619 * @kml: the KVM memory listener object 620 * @section: the memory section to sync the dirty bitmap with 621 */ 622 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 623 MemoryRegionSection *section) 624 { 625 KVMState *s = kvm_state; 626 struct kvm_dirty_log d = {}; 627 KVMSlot *mem; 628 hwaddr start_addr, size; 629 hwaddr slot_size, slot_offset = 0; 630 int ret = 0; 631 632 size = kvm_align_section(section, &start_addr); 633 while (size) { 634 MemoryRegionSection subsection = *section; 635 636 slot_size = MIN(kvm_max_slot_size, size); 637 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 638 if (!mem) { 639 /* We don't have a slot if we want to trap every access. */ 640 goto out; 641 } 642 643 if (!mem->dirty_bmap) { 644 /* Allocate on the first log_sync, once and for all */ 645 kvm_memslot_init_dirty_bitmap(mem); 646 } 647 648 d.dirty_bitmap = mem->dirty_bmap; 649 d.slot = mem->slot | (kml->as_id << 16); 650 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 651 if (ret == -ENOENT) { 652 /* kernel does not have dirty bitmap in this slot */ 653 ret = 0; 654 } else if (ret < 0) { 655 error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno); 656 goto out; 657 } else { 658 subsection.offset_within_region += slot_offset; 659 subsection.size = int128_make64(slot_size); 660 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 661 } 662 663 slot_offset += slot_size; 664 start_addr += slot_size; 665 size -= slot_size; 666 } 667 out: 668 return ret; 669 } 670 671 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 672 #define KVM_CLEAR_LOG_SHIFT 6 673 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 674 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 675 676 /* 677 * As the granule of kvm dirty log is qemu_real_host_page_size, 678 * @start and @size are expected and restricted to align to it. 679 */ 680 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 681 uint64_t size) 682 { 683 KVMState *s = kvm_state; 684 uint64_t end, bmap_start, start_delta, bmap_npages; 685 struct kvm_clear_dirty_log d; 686 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 687 int ret; 688 689 /* Make sure start and size are qemu_real_host_page_size aligned */ 690 assert(QEMU_IS_ALIGNED(start | size, psize)); 691 692 /* 693 * We need to extend either the start or the size or both to 694 * satisfy the KVM interface requirement. Firstly, do the start 695 * page alignment on 64 host pages 696 */ 697 bmap_start = start & KVM_CLEAR_LOG_MASK; 698 start_delta = start - bmap_start; 699 bmap_start /= psize; 700 701 /* 702 * The kernel interface has restriction on the size too, that either: 703 * 704 * (1) the size is 64 host pages aligned (just like the start), or 705 * (2) the size fills up until the end of the KVM memslot. 706 */ 707 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 708 << KVM_CLEAR_LOG_SHIFT; 709 end = mem->memory_size / psize; 710 if (bmap_npages > end - bmap_start) { 711 bmap_npages = end - bmap_start; 712 } 713 start_delta /= psize; 714 715 /* 716 * Prepare the bitmap to clear dirty bits. Here we must guarantee 717 * that we won't clear any unknown dirty bits otherwise we might 718 * accidentally clear some set bits which are not yet synced from 719 * the kernel into QEMU's bitmap, then we'll lose track of the 720 * guest modifications upon those pages (which can directly lead 721 * to guest data loss or panic after migration). 722 * 723 * Layout of the KVMSlot.dirty_bmap: 724 * 725 * |<-------- bmap_npages -----------..>| 726 * [1] 727 * start_delta size 728 * |----------------|-------------|------------------|------------| 729 * ^ ^ ^ ^ 730 * | | | | 731 * start bmap_start (start) end 732 * of memslot of memslot 733 * 734 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 735 */ 736 737 assert(bmap_start % BITS_PER_LONG == 0); 738 /* We should never do log_clear before log_sync */ 739 assert(mem->dirty_bmap); 740 if (start_delta || bmap_npages - size / psize) { 741 /* Slow path - we need to manipulate a temp bitmap */ 742 bmap_clear = bitmap_new(bmap_npages); 743 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 744 bmap_start, start_delta + size / psize); 745 /* 746 * We need to fill the holes at start because that was not 747 * specified by the caller and we extended the bitmap only for 748 * 64 pages alignment 749 */ 750 bitmap_clear(bmap_clear, 0, start_delta); 751 d.dirty_bitmap = bmap_clear; 752 } else { 753 /* 754 * Fast path - both start and size align well with BITS_PER_LONG 755 * (or the end of memory slot) 756 */ 757 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 758 } 759 760 d.first_page = bmap_start; 761 /* It should never overflow. If it happens, say something */ 762 assert(bmap_npages <= UINT32_MAX); 763 d.num_pages = bmap_npages; 764 d.slot = mem->slot | (as_id << 16); 765 766 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 767 if (ret < 0 && ret != -ENOENT) { 768 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 769 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 770 __func__, d.slot, (uint64_t)d.first_page, 771 (uint32_t)d.num_pages, ret); 772 } else { 773 ret = 0; 774 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 775 } 776 777 /* 778 * After we have updated the remote dirty bitmap, we update the 779 * cached bitmap as well for the memslot, then if another user 780 * clears the same region we know we shouldn't clear it again on 781 * the remote otherwise it's data loss as well. 782 */ 783 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 784 size / psize); 785 /* This handles the NULL case well */ 786 g_free(bmap_clear); 787 return ret; 788 } 789 790 791 /** 792 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 793 * 794 * NOTE: this will be a no-op if we haven't enabled manual dirty log 795 * protection in the host kernel because in that case this operation 796 * will be done within log_sync(). 797 * 798 * @kml: the kvm memory listener 799 * @section: the memory range to clear dirty bitmap 800 */ 801 static int kvm_physical_log_clear(KVMMemoryListener *kml, 802 MemoryRegionSection *section) 803 { 804 KVMState *s = kvm_state; 805 uint64_t start, size, offset, count; 806 KVMSlot *mem; 807 int ret = 0, i; 808 809 if (!s->manual_dirty_log_protect) { 810 /* No need to do explicit clear */ 811 return ret; 812 } 813 814 start = section->offset_within_address_space; 815 size = int128_get64(section->size); 816 817 if (!size) { 818 /* Nothing more we can do... */ 819 return ret; 820 } 821 822 kvm_slots_lock(kml); 823 824 for (i = 0; i < s->nr_slots; i++) { 825 mem = &kml->slots[i]; 826 /* Discard slots that are empty or do not overlap the section */ 827 if (!mem->memory_size || 828 mem->start_addr > start + size - 1 || 829 start > mem->start_addr + mem->memory_size - 1) { 830 continue; 831 } 832 833 if (start >= mem->start_addr) { 834 /* The slot starts before section or is aligned to it. */ 835 offset = start - mem->start_addr; 836 count = MIN(mem->memory_size - offset, size); 837 } else { 838 /* The slot starts after section. */ 839 offset = 0; 840 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 841 } 842 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 843 if (ret < 0) { 844 break; 845 } 846 } 847 848 kvm_slots_unlock(kml); 849 850 return ret; 851 } 852 853 static void kvm_coalesce_mmio_region(MemoryListener *listener, 854 MemoryRegionSection *secion, 855 hwaddr start, hwaddr size) 856 { 857 KVMState *s = kvm_state; 858 859 if (s->coalesced_mmio) { 860 struct kvm_coalesced_mmio_zone zone; 861 862 zone.addr = start; 863 zone.size = size; 864 zone.pad = 0; 865 866 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 867 } 868 } 869 870 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 871 MemoryRegionSection *secion, 872 hwaddr start, hwaddr size) 873 { 874 KVMState *s = kvm_state; 875 876 if (s->coalesced_mmio) { 877 struct kvm_coalesced_mmio_zone zone; 878 879 zone.addr = start; 880 zone.size = size; 881 zone.pad = 0; 882 883 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 884 } 885 } 886 887 static void kvm_coalesce_pio_add(MemoryListener *listener, 888 MemoryRegionSection *section, 889 hwaddr start, hwaddr size) 890 { 891 KVMState *s = kvm_state; 892 893 if (s->coalesced_pio) { 894 struct kvm_coalesced_mmio_zone zone; 895 896 zone.addr = start; 897 zone.size = size; 898 zone.pio = 1; 899 900 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 901 } 902 } 903 904 static void kvm_coalesce_pio_del(MemoryListener *listener, 905 MemoryRegionSection *section, 906 hwaddr start, hwaddr size) 907 { 908 KVMState *s = kvm_state; 909 910 if (s->coalesced_pio) { 911 struct kvm_coalesced_mmio_zone zone; 912 913 zone.addr = start; 914 zone.size = size; 915 zone.pio = 1; 916 917 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 918 } 919 } 920 921 static MemoryListener kvm_coalesced_pio_listener = { 922 .coalesced_io_add = kvm_coalesce_pio_add, 923 .coalesced_io_del = kvm_coalesce_pio_del, 924 }; 925 926 int kvm_check_extension(KVMState *s, unsigned int extension) 927 { 928 int ret; 929 930 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 931 if (ret < 0) { 932 ret = 0; 933 } 934 935 return ret; 936 } 937 938 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 939 { 940 int ret; 941 942 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 943 if (ret < 0) { 944 /* VM wide version not implemented, use global one instead */ 945 ret = kvm_check_extension(s, extension); 946 } 947 948 return ret; 949 } 950 951 typedef struct HWPoisonPage { 952 ram_addr_t ram_addr; 953 QLIST_ENTRY(HWPoisonPage) list; 954 } HWPoisonPage; 955 956 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 957 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 958 959 static void kvm_unpoison_all(void *param) 960 { 961 HWPoisonPage *page, *next_page; 962 963 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 964 QLIST_REMOVE(page, list); 965 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 966 g_free(page); 967 } 968 } 969 970 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 971 { 972 HWPoisonPage *page; 973 974 QLIST_FOREACH(page, &hwpoison_page_list, list) { 975 if (page->ram_addr == ram_addr) { 976 return; 977 } 978 } 979 page = g_new(HWPoisonPage, 1); 980 page->ram_addr = ram_addr; 981 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 982 } 983 984 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 985 { 986 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 987 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 988 * endianness, but the memory core hands them in target endianness. 989 * For example, PPC is always treated as big-endian even if running 990 * on KVM and on PPC64LE. Correct here. 991 */ 992 switch (size) { 993 case 2: 994 val = bswap16(val); 995 break; 996 case 4: 997 val = bswap32(val); 998 break; 999 } 1000 #endif 1001 return val; 1002 } 1003 1004 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1005 bool assign, uint32_t size, bool datamatch) 1006 { 1007 int ret; 1008 struct kvm_ioeventfd iofd = { 1009 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1010 .addr = addr, 1011 .len = size, 1012 .flags = 0, 1013 .fd = fd, 1014 }; 1015 1016 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1017 datamatch); 1018 if (!kvm_enabled()) { 1019 return -ENOSYS; 1020 } 1021 1022 if (datamatch) { 1023 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1024 } 1025 if (!assign) { 1026 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1027 } 1028 1029 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1030 1031 if (ret < 0) { 1032 return -errno; 1033 } 1034 1035 return 0; 1036 } 1037 1038 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1039 bool assign, uint32_t size, bool datamatch) 1040 { 1041 struct kvm_ioeventfd kick = { 1042 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1043 .addr = addr, 1044 .flags = KVM_IOEVENTFD_FLAG_PIO, 1045 .len = size, 1046 .fd = fd, 1047 }; 1048 int r; 1049 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1050 if (!kvm_enabled()) { 1051 return -ENOSYS; 1052 } 1053 if (datamatch) { 1054 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1055 } 1056 if (!assign) { 1057 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1058 } 1059 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1060 if (r < 0) { 1061 return r; 1062 } 1063 return 0; 1064 } 1065 1066 1067 static int kvm_check_many_ioeventfds(void) 1068 { 1069 /* Userspace can use ioeventfd for io notification. This requires a host 1070 * that supports eventfd(2) and an I/O thread; since eventfd does not 1071 * support SIGIO it cannot interrupt the vcpu. 1072 * 1073 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1074 * can avoid creating too many ioeventfds. 1075 */ 1076 #if defined(CONFIG_EVENTFD) 1077 int ioeventfds[7]; 1078 int i, ret = 0; 1079 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1080 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1081 if (ioeventfds[i] < 0) { 1082 break; 1083 } 1084 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1085 if (ret < 0) { 1086 close(ioeventfds[i]); 1087 break; 1088 } 1089 } 1090 1091 /* Decide whether many devices are supported or not */ 1092 ret = i == ARRAY_SIZE(ioeventfds); 1093 1094 while (i-- > 0) { 1095 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1096 close(ioeventfds[i]); 1097 } 1098 return ret; 1099 #else 1100 return 0; 1101 #endif 1102 } 1103 1104 static const KVMCapabilityInfo * 1105 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1106 { 1107 while (list->name) { 1108 if (!kvm_check_extension(s, list->value)) { 1109 return list; 1110 } 1111 list++; 1112 } 1113 return NULL; 1114 } 1115 1116 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1117 { 1118 g_assert( 1119 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1120 ); 1121 kvm_max_slot_size = max_slot_size; 1122 } 1123 1124 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1125 MemoryRegionSection *section, bool add) 1126 { 1127 KVMSlot *mem; 1128 int err; 1129 MemoryRegion *mr = section->mr; 1130 bool writeable = !mr->readonly && !mr->rom_device; 1131 hwaddr start_addr, size, slot_size; 1132 void *ram; 1133 1134 if (!memory_region_is_ram(mr)) { 1135 if (writeable || !kvm_readonly_mem_allowed) { 1136 return; 1137 } else if (!mr->romd_mode) { 1138 /* If the memory device is not in romd_mode, then we actually want 1139 * to remove the kvm memory slot so all accesses will trap. */ 1140 add = false; 1141 } 1142 } 1143 1144 size = kvm_align_section(section, &start_addr); 1145 if (!size) { 1146 return; 1147 } 1148 1149 /* use aligned delta to align the ram address */ 1150 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1151 (start_addr - section->offset_within_address_space); 1152 1153 kvm_slots_lock(kml); 1154 1155 if (!add) { 1156 do { 1157 slot_size = MIN(kvm_max_slot_size, size); 1158 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1159 if (!mem) { 1160 goto out; 1161 } 1162 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1163 kvm_physical_sync_dirty_bitmap(kml, section); 1164 } 1165 1166 /* unregister the slot */ 1167 g_free(mem->dirty_bmap); 1168 mem->dirty_bmap = NULL; 1169 mem->memory_size = 0; 1170 mem->flags = 0; 1171 err = kvm_set_user_memory_region(kml, mem, false); 1172 if (err) { 1173 fprintf(stderr, "%s: error unregistering slot: %s\n", 1174 __func__, strerror(-err)); 1175 abort(); 1176 } 1177 start_addr += slot_size; 1178 size -= slot_size; 1179 } while (size); 1180 goto out; 1181 } 1182 1183 /* register the new slot */ 1184 do { 1185 slot_size = MIN(kvm_max_slot_size, size); 1186 mem = kvm_alloc_slot(kml); 1187 mem->memory_size = slot_size; 1188 mem->start_addr = start_addr; 1189 mem->ram = ram; 1190 mem->flags = kvm_mem_flags(mr); 1191 1192 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1193 /* 1194 * Reallocate the bmap; it means it doesn't disappear in 1195 * middle of a migrate. 1196 */ 1197 kvm_memslot_init_dirty_bitmap(mem); 1198 } 1199 err = kvm_set_user_memory_region(kml, mem, true); 1200 if (err) { 1201 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1202 strerror(-err)); 1203 abort(); 1204 } 1205 start_addr += slot_size; 1206 ram += slot_size; 1207 size -= slot_size; 1208 } while (size); 1209 1210 out: 1211 kvm_slots_unlock(kml); 1212 } 1213 1214 static void kvm_region_add(MemoryListener *listener, 1215 MemoryRegionSection *section) 1216 { 1217 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1218 1219 memory_region_ref(section->mr); 1220 kvm_set_phys_mem(kml, section, true); 1221 } 1222 1223 static void kvm_region_del(MemoryListener *listener, 1224 MemoryRegionSection *section) 1225 { 1226 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1227 1228 kvm_set_phys_mem(kml, section, false); 1229 memory_region_unref(section->mr); 1230 } 1231 1232 static void kvm_log_sync(MemoryListener *listener, 1233 MemoryRegionSection *section) 1234 { 1235 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1236 int r; 1237 1238 kvm_slots_lock(kml); 1239 r = kvm_physical_sync_dirty_bitmap(kml, section); 1240 kvm_slots_unlock(kml); 1241 if (r < 0) { 1242 abort(); 1243 } 1244 } 1245 1246 static void kvm_log_clear(MemoryListener *listener, 1247 MemoryRegionSection *section) 1248 { 1249 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1250 int r; 1251 1252 r = kvm_physical_log_clear(kml, section); 1253 if (r < 0) { 1254 error_report_once("%s: kvm log clear failed: mr=%s " 1255 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1256 section->mr->name, section->offset_within_region, 1257 int128_get64(section->size)); 1258 abort(); 1259 } 1260 } 1261 1262 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1263 MemoryRegionSection *section, 1264 bool match_data, uint64_t data, 1265 EventNotifier *e) 1266 { 1267 int fd = event_notifier_get_fd(e); 1268 int r; 1269 1270 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1271 data, true, int128_get64(section->size), 1272 match_data); 1273 if (r < 0) { 1274 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1275 __func__, strerror(-r), -r); 1276 abort(); 1277 } 1278 } 1279 1280 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1281 MemoryRegionSection *section, 1282 bool match_data, uint64_t data, 1283 EventNotifier *e) 1284 { 1285 int fd = event_notifier_get_fd(e); 1286 int r; 1287 1288 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1289 data, false, int128_get64(section->size), 1290 match_data); 1291 if (r < 0) { 1292 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1293 __func__, strerror(-r), -r); 1294 abort(); 1295 } 1296 } 1297 1298 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1299 MemoryRegionSection *section, 1300 bool match_data, uint64_t data, 1301 EventNotifier *e) 1302 { 1303 int fd = event_notifier_get_fd(e); 1304 int r; 1305 1306 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1307 data, true, int128_get64(section->size), 1308 match_data); 1309 if (r < 0) { 1310 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1311 __func__, strerror(-r), -r); 1312 abort(); 1313 } 1314 } 1315 1316 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1317 MemoryRegionSection *section, 1318 bool match_data, uint64_t data, 1319 EventNotifier *e) 1320 1321 { 1322 int fd = event_notifier_get_fd(e); 1323 int r; 1324 1325 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1326 data, false, int128_get64(section->size), 1327 match_data); 1328 if (r < 0) { 1329 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1330 __func__, strerror(-r), -r); 1331 abort(); 1332 } 1333 } 1334 1335 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1336 AddressSpace *as, int as_id) 1337 { 1338 int i; 1339 1340 qemu_mutex_init(&kml->slots_lock); 1341 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1342 kml->as_id = as_id; 1343 1344 for (i = 0; i < s->nr_slots; i++) { 1345 kml->slots[i].slot = i; 1346 } 1347 1348 kml->listener.region_add = kvm_region_add; 1349 kml->listener.region_del = kvm_region_del; 1350 kml->listener.log_start = kvm_log_start; 1351 kml->listener.log_stop = kvm_log_stop; 1352 kml->listener.log_sync = kvm_log_sync; 1353 kml->listener.log_clear = kvm_log_clear; 1354 kml->listener.priority = 10; 1355 1356 memory_listener_register(&kml->listener, as); 1357 1358 for (i = 0; i < s->nr_as; ++i) { 1359 if (!s->as[i].as) { 1360 s->as[i].as = as; 1361 s->as[i].ml = kml; 1362 break; 1363 } 1364 } 1365 } 1366 1367 static MemoryListener kvm_io_listener = { 1368 .eventfd_add = kvm_io_ioeventfd_add, 1369 .eventfd_del = kvm_io_ioeventfd_del, 1370 .priority = 10, 1371 }; 1372 1373 int kvm_set_irq(KVMState *s, int irq, int level) 1374 { 1375 struct kvm_irq_level event; 1376 int ret; 1377 1378 assert(kvm_async_interrupts_enabled()); 1379 1380 event.level = level; 1381 event.irq = irq; 1382 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1383 if (ret < 0) { 1384 perror("kvm_set_irq"); 1385 abort(); 1386 } 1387 1388 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1389 } 1390 1391 #ifdef KVM_CAP_IRQ_ROUTING 1392 typedef struct KVMMSIRoute { 1393 struct kvm_irq_routing_entry kroute; 1394 QTAILQ_ENTRY(KVMMSIRoute) entry; 1395 } KVMMSIRoute; 1396 1397 static void set_gsi(KVMState *s, unsigned int gsi) 1398 { 1399 set_bit(gsi, s->used_gsi_bitmap); 1400 } 1401 1402 static void clear_gsi(KVMState *s, unsigned int gsi) 1403 { 1404 clear_bit(gsi, s->used_gsi_bitmap); 1405 } 1406 1407 void kvm_init_irq_routing(KVMState *s) 1408 { 1409 int gsi_count, i; 1410 1411 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1412 if (gsi_count > 0) { 1413 /* Round up so we can search ints using ffs */ 1414 s->used_gsi_bitmap = bitmap_new(gsi_count); 1415 s->gsi_count = gsi_count; 1416 } 1417 1418 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1419 s->nr_allocated_irq_routes = 0; 1420 1421 if (!kvm_direct_msi_allowed) { 1422 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1423 QTAILQ_INIT(&s->msi_hashtab[i]); 1424 } 1425 } 1426 1427 kvm_arch_init_irq_routing(s); 1428 } 1429 1430 void kvm_irqchip_commit_routes(KVMState *s) 1431 { 1432 int ret; 1433 1434 if (kvm_gsi_direct_mapping()) { 1435 return; 1436 } 1437 1438 if (!kvm_gsi_routing_enabled()) { 1439 return; 1440 } 1441 1442 s->irq_routes->flags = 0; 1443 trace_kvm_irqchip_commit_routes(); 1444 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1445 assert(ret == 0); 1446 } 1447 1448 static void kvm_add_routing_entry(KVMState *s, 1449 struct kvm_irq_routing_entry *entry) 1450 { 1451 struct kvm_irq_routing_entry *new; 1452 int n, size; 1453 1454 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1455 n = s->nr_allocated_irq_routes * 2; 1456 if (n < 64) { 1457 n = 64; 1458 } 1459 size = sizeof(struct kvm_irq_routing); 1460 size += n * sizeof(*new); 1461 s->irq_routes = g_realloc(s->irq_routes, size); 1462 s->nr_allocated_irq_routes = n; 1463 } 1464 n = s->irq_routes->nr++; 1465 new = &s->irq_routes->entries[n]; 1466 1467 *new = *entry; 1468 1469 set_gsi(s, entry->gsi); 1470 } 1471 1472 static int kvm_update_routing_entry(KVMState *s, 1473 struct kvm_irq_routing_entry *new_entry) 1474 { 1475 struct kvm_irq_routing_entry *entry; 1476 int n; 1477 1478 for (n = 0; n < s->irq_routes->nr; n++) { 1479 entry = &s->irq_routes->entries[n]; 1480 if (entry->gsi != new_entry->gsi) { 1481 continue; 1482 } 1483 1484 if(!memcmp(entry, new_entry, sizeof *entry)) { 1485 return 0; 1486 } 1487 1488 *entry = *new_entry; 1489 1490 return 0; 1491 } 1492 1493 return -ESRCH; 1494 } 1495 1496 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1497 { 1498 struct kvm_irq_routing_entry e = {}; 1499 1500 assert(pin < s->gsi_count); 1501 1502 e.gsi = irq; 1503 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1504 e.flags = 0; 1505 e.u.irqchip.irqchip = irqchip; 1506 e.u.irqchip.pin = pin; 1507 kvm_add_routing_entry(s, &e); 1508 } 1509 1510 void kvm_irqchip_release_virq(KVMState *s, int virq) 1511 { 1512 struct kvm_irq_routing_entry *e; 1513 int i; 1514 1515 if (kvm_gsi_direct_mapping()) { 1516 return; 1517 } 1518 1519 for (i = 0; i < s->irq_routes->nr; i++) { 1520 e = &s->irq_routes->entries[i]; 1521 if (e->gsi == virq) { 1522 s->irq_routes->nr--; 1523 *e = s->irq_routes->entries[s->irq_routes->nr]; 1524 } 1525 } 1526 clear_gsi(s, virq); 1527 kvm_arch_release_virq_post(virq); 1528 trace_kvm_irqchip_release_virq(virq); 1529 } 1530 1531 void kvm_irqchip_add_change_notifier(Notifier *n) 1532 { 1533 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1534 } 1535 1536 void kvm_irqchip_remove_change_notifier(Notifier *n) 1537 { 1538 notifier_remove(n); 1539 } 1540 1541 void kvm_irqchip_change_notify(void) 1542 { 1543 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1544 } 1545 1546 static unsigned int kvm_hash_msi(uint32_t data) 1547 { 1548 /* This is optimized for IA32 MSI layout. However, no other arch shall 1549 * repeat the mistake of not providing a direct MSI injection API. */ 1550 return data & 0xff; 1551 } 1552 1553 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1554 { 1555 KVMMSIRoute *route, *next; 1556 unsigned int hash; 1557 1558 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1559 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1560 kvm_irqchip_release_virq(s, route->kroute.gsi); 1561 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1562 g_free(route); 1563 } 1564 } 1565 } 1566 1567 static int kvm_irqchip_get_virq(KVMState *s) 1568 { 1569 int next_virq; 1570 1571 /* 1572 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1573 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1574 * number can succeed even though a new route entry cannot be added. 1575 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1576 */ 1577 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1578 kvm_flush_dynamic_msi_routes(s); 1579 } 1580 1581 /* Return the lowest unused GSI in the bitmap */ 1582 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1583 if (next_virq >= s->gsi_count) { 1584 return -ENOSPC; 1585 } else { 1586 return next_virq; 1587 } 1588 } 1589 1590 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1591 { 1592 unsigned int hash = kvm_hash_msi(msg.data); 1593 KVMMSIRoute *route; 1594 1595 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1596 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1597 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1598 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1599 return route; 1600 } 1601 } 1602 return NULL; 1603 } 1604 1605 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1606 { 1607 struct kvm_msi msi; 1608 KVMMSIRoute *route; 1609 1610 if (kvm_direct_msi_allowed) { 1611 msi.address_lo = (uint32_t)msg.address; 1612 msi.address_hi = msg.address >> 32; 1613 msi.data = le32_to_cpu(msg.data); 1614 msi.flags = 0; 1615 memset(msi.pad, 0, sizeof(msi.pad)); 1616 1617 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1618 } 1619 1620 route = kvm_lookup_msi_route(s, msg); 1621 if (!route) { 1622 int virq; 1623 1624 virq = kvm_irqchip_get_virq(s); 1625 if (virq < 0) { 1626 return virq; 1627 } 1628 1629 route = g_malloc0(sizeof(KVMMSIRoute)); 1630 route->kroute.gsi = virq; 1631 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1632 route->kroute.flags = 0; 1633 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1634 route->kroute.u.msi.address_hi = msg.address >> 32; 1635 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1636 1637 kvm_add_routing_entry(s, &route->kroute); 1638 kvm_irqchip_commit_routes(s); 1639 1640 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1641 entry); 1642 } 1643 1644 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1645 1646 return kvm_set_irq(s, route->kroute.gsi, 1); 1647 } 1648 1649 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1650 { 1651 struct kvm_irq_routing_entry kroute = {}; 1652 int virq; 1653 MSIMessage msg = {0, 0}; 1654 1655 if (pci_available && dev) { 1656 msg = pci_get_msi_message(dev, vector); 1657 } 1658 1659 if (kvm_gsi_direct_mapping()) { 1660 return kvm_arch_msi_data_to_gsi(msg.data); 1661 } 1662 1663 if (!kvm_gsi_routing_enabled()) { 1664 return -ENOSYS; 1665 } 1666 1667 virq = kvm_irqchip_get_virq(s); 1668 if (virq < 0) { 1669 return virq; 1670 } 1671 1672 kroute.gsi = virq; 1673 kroute.type = KVM_IRQ_ROUTING_MSI; 1674 kroute.flags = 0; 1675 kroute.u.msi.address_lo = (uint32_t)msg.address; 1676 kroute.u.msi.address_hi = msg.address >> 32; 1677 kroute.u.msi.data = le32_to_cpu(msg.data); 1678 if (pci_available && kvm_msi_devid_required()) { 1679 kroute.flags = KVM_MSI_VALID_DEVID; 1680 kroute.u.msi.devid = pci_requester_id(dev); 1681 } 1682 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1683 kvm_irqchip_release_virq(s, virq); 1684 return -EINVAL; 1685 } 1686 1687 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1688 vector, virq); 1689 1690 kvm_add_routing_entry(s, &kroute); 1691 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1692 kvm_irqchip_commit_routes(s); 1693 1694 return virq; 1695 } 1696 1697 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1698 PCIDevice *dev) 1699 { 1700 struct kvm_irq_routing_entry kroute = {}; 1701 1702 if (kvm_gsi_direct_mapping()) { 1703 return 0; 1704 } 1705 1706 if (!kvm_irqchip_in_kernel()) { 1707 return -ENOSYS; 1708 } 1709 1710 kroute.gsi = virq; 1711 kroute.type = KVM_IRQ_ROUTING_MSI; 1712 kroute.flags = 0; 1713 kroute.u.msi.address_lo = (uint32_t)msg.address; 1714 kroute.u.msi.address_hi = msg.address >> 32; 1715 kroute.u.msi.data = le32_to_cpu(msg.data); 1716 if (pci_available && kvm_msi_devid_required()) { 1717 kroute.flags = KVM_MSI_VALID_DEVID; 1718 kroute.u.msi.devid = pci_requester_id(dev); 1719 } 1720 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1721 return -EINVAL; 1722 } 1723 1724 trace_kvm_irqchip_update_msi_route(virq); 1725 1726 return kvm_update_routing_entry(s, &kroute); 1727 } 1728 1729 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1730 EventNotifier *resample, int virq, 1731 bool assign) 1732 { 1733 int fd = event_notifier_get_fd(event); 1734 int rfd = resample ? event_notifier_get_fd(resample) : -1; 1735 1736 struct kvm_irqfd irqfd = { 1737 .fd = fd, 1738 .gsi = virq, 1739 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1740 }; 1741 1742 if (rfd != -1) { 1743 assert(assign); 1744 if (kvm_irqchip_is_split()) { 1745 /* 1746 * When the slow irqchip (e.g. IOAPIC) is in the 1747 * userspace, KVM kernel resamplefd will not work because 1748 * the EOI of the interrupt will be delivered to userspace 1749 * instead, so the KVM kernel resamplefd kick will be 1750 * skipped. The userspace here mimics what the kernel 1751 * provides with resamplefd, remember the resamplefd and 1752 * kick it when we receive EOI of this IRQ. 1753 * 1754 * This is hackery because IOAPIC is mostly bypassed 1755 * (except EOI broadcasts) when irqfd is used. However 1756 * this can bring much performance back for split irqchip 1757 * with INTx IRQs (for VFIO, this gives 93% perf of the 1758 * full fast path, which is 46% perf boost comparing to 1759 * the INTx slow path). 1760 */ 1761 kvm_resample_fd_insert(virq, resample); 1762 } else { 1763 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1764 irqfd.resamplefd = rfd; 1765 } 1766 } else if (!assign) { 1767 if (kvm_irqchip_is_split()) { 1768 kvm_resample_fd_remove(virq); 1769 } 1770 } 1771 1772 if (!kvm_irqfds_enabled()) { 1773 return -ENOSYS; 1774 } 1775 1776 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1777 } 1778 1779 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1780 { 1781 struct kvm_irq_routing_entry kroute = {}; 1782 int virq; 1783 1784 if (!kvm_gsi_routing_enabled()) { 1785 return -ENOSYS; 1786 } 1787 1788 virq = kvm_irqchip_get_virq(s); 1789 if (virq < 0) { 1790 return virq; 1791 } 1792 1793 kroute.gsi = virq; 1794 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1795 kroute.flags = 0; 1796 kroute.u.adapter.summary_addr = adapter->summary_addr; 1797 kroute.u.adapter.ind_addr = adapter->ind_addr; 1798 kroute.u.adapter.summary_offset = adapter->summary_offset; 1799 kroute.u.adapter.ind_offset = adapter->ind_offset; 1800 kroute.u.adapter.adapter_id = adapter->adapter_id; 1801 1802 kvm_add_routing_entry(s, &kroute); 1803 1804 return virq; 1805 } 1806 1807 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1808 { 1809 struct kvm_irq_routing_entry kroute = {}; 1810 int virq; 1811 1812 if (!kvm_gsi_routing_enabled()) { 1813 return -ENOSYS; 1814 } 1815 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1816 return -ENOSYS; 1817 } 1818 virq = kvm_irqchip_get_virq(s); 1819 if (virq < 0) { 1820 return virq; 1821 } 1822 1823 kroute.gsi = virq; 1824 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1825 kroute.flags = 0; 1826 kroute.u.hv_sint.vcpu = vcpu; 1827 kroute.u.hv_sint.sint = sint; 1828 1829 kvm_add_routing_entry(s, &kroute); 1830 kvm_irqchip_commit_routes(s); 1831 1832 return virq; 1833 } 1834 1835 #else /* !KVM_CAP_IRQ_ROUTING */ 1836 1837 void kvm_init_irq_routing(KVMState *s) 1838 { 1839 } 1840 1841 void kvm_irqchip_release_virq(KVMState *s, int virq) 1842 { 1843 } 1844 1845 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1846 { 1847 abort(); 1848 } 1849 1850 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1851 { 1852 return -ENOSYS; 1853 } 1854 1855 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1856 { 1857 return -ENOSYS; 1858 } 1859 1860 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1861 { 1862 return -ENOSYS; 1863 } 1864 1865 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1866 EventNotifier *resample, int virq, 1867 bool assign) 1868 { 1869 abort(); 1870 } 1871 1872 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1873 { 1874 return -ENOSYS; 1875 } 1876 #endif /* !KVM_CAP_IRQ_ROUTING */ 1877 1878 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1879 EventNotifier *rn, int virq) 1880 { 1881 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 1882 } 1883 1884 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1885 int virq) 1886 { 1887 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 1888 } 1889 1890 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1891 EventNotifier *rn, qemu_irq irq) 1892 { 1893 gpointer key, gsi; 1894 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1895 1896 if (!found) { 1897 return -ENXIO; 1898 } 1899 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1900 } 1901 1902 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1903 qemu_irq irq) 1904 { 1905 gpointer key, gsi; 1906 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1907 1908 if (!found) { 1909 return -ENXIO; 1910 } 1911 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1912 } 1913 1914 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1915 { 1916 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1917 } 1918 1919 static void kvm_irqchip_create(KVMState *s) 1920 { 1921 int ret; 1922 1923 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1924 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1925 ; 1926 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1927 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1928 if (ret < 0) { 1929 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1930 exit(1); 1931 } 1932 } else { 1933 return; 1934 } 1935 1936 /* First probe and see if there's a arch-specific hook to create the 1937 * in-kernel irqchip for us */ 1938 ret = kvm_arch_irqchip_create(s); 1939 if (ret == 0) { 1940 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1941 perror("Split IRQ chip mode not supported."); 1942 exit(1); 1943 } else { 1944 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1945 } 1946 } 1947 if (ret < 0) { 1948 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1949 exit(1); 1950 } 1951 1952 kvm_kernel_irqchip = true; 1953 /* If we have an in-kernel IRQ chip then we must have asynchronous 1954 * interrupt delivery (though the reverse is not necessarily true) 1955 */ 1956 kvm_async_interrupts_allowed = true; 1957 kvm_halt_in_kernel_allowed = true; 1958 1959 kvm_init_irq_routing(s); 1960 1961 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1962 } 1963 1964 /* Find number of supported CPUs using the recommended 1965 * procedure from the kernel API documentation to cope with 1966 * older kernels that may be missing capabilities. 1967 */ 1968 static int kvm_recommended_vcpus(KVMState *s) 1969 { 1970 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1971 return (ret) ? ret : 4; 1972 } 1973 1974 static int kvm_max_vcpus(KVMState *s) 1975 { 1976 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1977 return (ret) ? ret : kvm_recommended_vcpus(s); 1978 } 1979 1980 static int kvm_max_vcpu_id(KVMState *s) 1981 { 1982 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1983 return (ret) ? ret : kvm_max_vcpus(s); 1984 } 1985 1986 bool kvm_vcpu_id_is_valid(int vcpu_id) 1987 { 1988 KVMState *s = KVM_STATE(current_accel()); 1989 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1990 } 1991 1992 static int kvm_init(MachineState *ms) 1993 { 1994 MachineClass *mc = MACHINE_GET_CLASS(ms); 1995 static const char upgrade_note[] = 1996 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1997 "(see http://sourceforge.net/projects/kvm).\n"; 1998 struct { 1999 const char *name; 2000 int num; 2001 } num_cpus[] = { 2002 { "SMP", ms->smp.cpus }, 2003 { "hotpluggable", ms->smp.max_cpus }, 2004 { NULL, } 2005 }, *nc = num_cpus; 2006 int soft_vcpus_limit, hard_vcpus_limit; 2007 KVMState *s; 2008 const KVMCapabilityInfo *missing_cap; 2009 int ret; 2010 int type = 0; 2011 uint64_t dirty_log_manual_caps; 2012 2013 s = KVM_STATE(ms->accelerator); 2014 2015 /* 2016 * On systems where the kernel can support different base page 2017 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2018 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2019 * page size for the system though. 2020 */ 2021 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2022 2023 s->sigmask_len = 8; 2024 2025 #ifdef KVM_CAP_SET_GUEST_DEBUG 2026 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2027 #endif 2028 QLIST_INIT(&s->kvm_parked_vcpus); 2029 s->vmfd = -1; 2030 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2031 if (s->fd == -1) { 2032 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2033 ret = -errno; 2034 goto err; 2035 } 2036 2037 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2038 if (ret < KVM_API_VERSION) { 2039 if (ret >= 0) { 2040 ret = -EINVAL; 2041 } 2042 fprintf(stderr, "kvm version too old\n"); 2043 goto err; 2044 } 2045 2046 if (ret > KVM_API_VERSION) { 2047 ret = -EINVAL; 2048 fprintf(stderr, "kvm version not supported\n"); 2049 goto err; 2050 } 2051 2052 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2053 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2054 2055 /* If unspecified, use the default value */ 2056 if (!s->nr_slots) { 2057 s->nr_slots = 32; 2058 } 2059 2060 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2061 if (s->nr_as <= 1) { 2062 s->nr_as = 1; 2063 } 2064 s->as = g_new0(struct KVMAs, s->nr_as); 2065 2066 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2067 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2068 "kvm-type", 2069 &error_abort); 2070 type = mc->kvm_type(ms, kvm_type); 2071 } 2072 2073 do { 2074 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2075 } while (ret == -EINTR); 2076 2077 if (ret < 0) { 2078 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2079 strerror(-ret)); 2080 2081 #ifdef TARGET_S390X 2082 if (ret == -EINVAL) { 2083 fprintf(stderr, 2084 "Host kernel setup problem detected. Please verify:\n"); 2085 fprintf(stderr, "- for kernels supporting the switch_amode or" 2086 " user_mode parameters, whether\n"); 2087 fprintf(stderr, 2088 " user space is running in primary address space\n"); 2089 fprintf(stderr, 2090 "- for kernels supporting the vm.allocate_pgste sysctl, " 2091 "whether it is enabled\n"); 2092 } 2093 #endif 2094 goto err; 2095 } 2096 2097 s->vmfd = ret; 2098 2099 /* check the vcpu limits */ 2100 soft_vcpus_limit = kvm_recommended_vcpus(s); 2101 hard_vcpus_limit = kvm_max_vcpus(s); 2102 2103 while (nc->name) { 2104 if (nc->num > soft_vcpus_limit) { 2105 warn_report("Number of %s cpus requested (%d) exceeds " 2106 "the recommended cpus supported by KVM (%d)", 2107 nc->name, nc->num, soft_vcpus_limit); 2108 2109 if (nc->num > hard_vcpus_limit) { 2110 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2111 "the maximum cpus supported by KVM (%d)\n", 2112 nc->name, nc->num, hard_vcpus_limit); 2113 exit(1); 2114 } 2115 } 2116 nc++; 2117 } 2118 2119 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2120 if (!missing_cap) { 2121 missing_cap = 2122 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2123 } 2124 if (missing_cap) { 2125 ret = -EINVAL; 2126 fprintf(stderr, "kvm does not support %s\n%s", 2127 missing_cap->name, upgrade_note); 2128 goto err; 2129 } 2130 2131 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2132 s->coalesced_pio = s->coalesced_mmio && 2133 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2134 2135 dirty_log_manual_caps = 2136 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2137 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2138 KVM_DIRTY_LOG_INITIALLY_SET); 2139 s->manual_dirty_log_protect = dirty_log_manual_caps; 2140 if (dirty_log_manual_caps) { 2141 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2142 dirty_log_manual_caps); 2143 if (ret) { 2144 warn_report("Trying to enable capability %"PRIu64" of " 2145 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2146 "Falling back to the legacy mode. ", 2147 dirty_log_manual_caps); 2148 s->manual_dirty_log_protect = 0; 2149 } 2150 } 2151 2152 #ifdef KVM_CAP_VCPU_EVENTS 2153 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2154 #endif 2155 2156 s->robust_singlestep = 2157 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2158 2159 #ifdef KVM_CAP_DEBUGREGS 2160 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2161 #endif 2162 2163 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2164 2165 #ifdef KVM_CAP_IRQ_ROUTING 2166 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2167 #endif 2168 2169 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2170 2171 s->irq_set_ioctl = KVM_IRQ_LINE; 2172 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2173 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2174 } 2175 2176 kvm_readonly_mem_allowed = 2177 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2178 2179 kvm_eventfds_allowed = 2180 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2181 2182 kvm_irqfds_allowed = 2183 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2184 2185 kvm_resamplefds_allowed = 2186 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2187 2188 kvm_vm_attributes_allowed = 2189 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2190 2191 kvm_ioeventfd_any_length_allowed = 2192 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2193 2194 kvm_state = s; 2195 2196 ret = kvm_arch_init(ms, s); 2197 if (ret < 0) { 2198 goto err; 2199 } 2200 2201 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2202 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2203 } 2204 2205 qemu_register_reset(kvm_unpoison_all, NULL); 2206 2207 if (s->kernel_irqchip_allowed) { 2208 kvm_irqchip_create(s); 2209 } 2210 2211 if (kvm_eventfds_allowed) { 2212 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2213 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2214 } 2215 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2216 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2217 2218 kvm_memory_listener_register(s, &s->memory_listener, 2219 &address_space_memory, 0); 2220 if (kvm_eventfds_allowed) { 2221 memory_listener_register(&kvm_io_listener, 2222 &address_space_io); 2223 } 2224 memory_listener_register(&kvm_coalesced_pio_listener, 2225 &address_space_io); 2226 2227 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2228 2229 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2230 if (!s->sync_mmu) { 2231 ret = ram_block_discard_disable(true); 2232 assert(!ret); 2233 } 2234 return 0; 2235 2236 err: 2237 assert(ret < 0); 2238 if (s->vmfd >= 0) { 2239 close(s->vmfd); 2240 } 2241 if (s->fd != -1) { 2242 close(s->fd); 2243 } 2244 g_free(s->memory_listener.slots); 2245 2246 return ret; 2247 } 2248 2249 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2250 { 2251 s->sigmask_len = sigmask_len; 2252 } 2253 2254 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2255 int size, uint32_t count) 2256 { 2257 int i; 2258 uint8_t *ptr = data; 2259 2260 for (i = 0; i < count; i++) { 2261 address_space_rw(&address_space_io, port, attrs, 2262 ptr, size, 2263 direction == KVM_EXIT_IO_OUT); 2264 ptr += size; 2265 } 2266 } 2267 2268 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2269 { 2270 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2271 run->internal.suberror); 2272 2273 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2274 int i; 2275 2276 for (i = 0; i < run->internal.ndata; ++i) { 2277 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2278 i, (uint64_t)run->internal.data[i]); 2279 } 2280 } 2281 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2282 fprintf(stderr, "emulation failure\n"); 2283 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2284 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2285 return EXCP_INTERRUPT; 2286 } 2287 } 2288 /* FIXME: Should trigger a qmp message to let management know 2289 * something went wrong. 2290 */ 2291 return -1; 2292 } 2293 2294 void kvm_flush_coalesced_mmio_buffer(void) 2295 { 2296 KVMState *s = kvm_state; 2297 2298 if (s->coalesced_flush_in_progress) { 2299 return; 2300 } 2301 2302 s->coalesced_flush_in_progress = true; 2303 2304 if (s->coalesced_mmio_ring) { 2305 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2306 while (ring->first != ring->last) { 2307 struct kvm_coalesced_mmio *ent; 2308 2309 ent = &ring->coalesced_mmio[ring->first]; 2310 2311 if (ent->pio == 1) { 2312 address_space_write(&address_space_io, ent->phys_addr, 2313 MEMTXATTRS_UNSPECIFIED, ent->data, 2314 ent->len); 2315 } else { 2316 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2317 } 2318 smp_wmb(); 2319 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2320 } 2321 } 2322 2323 s->coalesced_flush_in_progress = false; 2324 } 2325 2326 bool kvm_cpu_check_are_resettable(void) 2327 { 2328 return kvm_arch_cpu_check_are_resettable(); 2329 } 2330 2331 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2332 { 2333 if (!cpu->vcpu_dirty) { 2334 kvm_arch_get_registers(cpu); 2335 cpu->vcpu_dirty = true; 2336 } 2337 } 2338 2339 void kvm_cpu_synchronize_state(CPUState *cpu) 2340 { 2341 if (!cpu->vcpu_dirty) { 2342 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2343 } 2344 } 2345 2346 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2347 { 2348 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2349 cpu->vcpu_dirty = false; 2350 } 2351 2352 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2353 { 2354 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2355 } 2356 2357 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2358 { 2359 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2360 cpu->vcpu_dirty = false; 2361 } 2362 2363 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2364 { 2365 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2366 } 2367 2368 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2369 { 2370 cpu->vcpu_dirty = true; 2371 } 2372 2373 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2374 { 2375 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2376 } 2377 2378 #ifdef KVM_HAVE_MCE_INJECTION 2379 static __thread void *pending_sigbus_addr; 2380 static __thread int pending_sigbus_code; 2381 static __thread bool have_sigbus_pending; 2382 #endif 2383 2384 static void kvm_cpu_kick(CPUState *cpu) 2385 { 2386 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2387 } 2388 2389 static void kvm_cpu_kick_self(void) 2390 { 2391 if (kvm_immediate_exit) { 2392 kvm_cpu_kick(current_cpu); 2393 } else { 2394 qemu_cpu_kick_self(); 2395 } 2396 } 2397 2398 static void kvm_eat_signals(CPUState *cpu) 2399 { 2400 struct timespec ts = { 0, 0 }; 2401 siginfo_t siginfo; 2402 sigset_t waitset; 2403 sigset_t chkset; 2404 int r; 2405 2406 if (kvm_immediate_exit) { 2407 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2408 /* Write kvm_run->immediate_exit before the cpu->exit_request 2409 * write in kvm_cpu_exec. 2410 */ 2411 smp_wmb(); 2412 return; 2413 } 2414 2415 sigemptyset(&waitset); 2416 sigaddset(&waitset, SIG_IPI); 2417 2418 do { 2419 r = sigtimedwait(&waitset, &siginfo, &ts); 2420 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2421 perror("sigtimedwait"); 2422 exit(1); 2423 } 2424 2425 r = sigpending(&chkset); 2426 if (r == -1) { 2427 perror("sigpending"); 2428 exit(1); 2429 } 2430 } while (sigismember(&chkset, SIG_IPI)); 2431 } 2432 2433 int kvm_cpu_exec(CPUState *cpu) 2434 { 2435 struct kvm_run *run = cpu->kvm_run; 2436 int ret, run_ret; 2437 2438 DPRINTF("kvm_cpu_exec()\n"); 2439 2440 if (kvm_arch_process_async_events(cpu)) { 2441 qatomic_set(&cpu->exit_request, 0); 2442 return EXCP_HLT; 2443 } 2444 2445 qemu_mutex_unlock_iothread(); 2446 cpu_exec_start(cpu); 2447 2448 do { 2449 MemTxAttrs attrs; 2450 2451 if (cpu->vcpu_dirty) { 2452 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2453 cpu->vcpu_dirty = false; 2454 } 2455 2456 kvm_arch_pre_run(cpu, run); 2457 if (qatomic_read(&cpu->exit_request)) { 2458 DPRINTF("interrupt exit requested\n"); 2459 /* 2460 * KVM requires us to reenter the kernel after IO exits to complete 2461 * instruction emulation. This self-signal will ensure that we 2462 * leave ASAP again. 2463 */ 2464 kvm_cpu_kick_self(); 2465 } 2466 2467 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2468 * Matching barrier in kvm_eat_signals. 2469 */ 2470 smp_rmb(); 2471 2472 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2473 2474 attrs = kvm_arch_post_run(cpu, run); 2475 2476 #ifdef KVM_HAVE_MCE_INJECTION 2477 if (unlikely(have_sigbus_pending)) { 2478 qemu_mutex_lock_iothread(); 2479 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2480 pending_sigbus_addr); 2481 have_sigbus_pending = false; 2482 qemu_mutex_unlock_iothread(); 2483 } 2484 #endif 2485 2486 if (run_ret < 0) { 2487 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2488 DPRINTF("io window exit\n"); 2489 kvm_eat_signals(cpu); 2490 ret = EXCP_INTERRUPT; 2491 break; 2492 } 2493 fprintf(stderr, "error: kvm run failed %s\n", 2494 strerror(-run_ret)); 2495 #ifdef TARGET_PPC 2496 if (run_ret == -EBUSY) { 2497 fprintf(stderr, 2498 "This is probably because your SMT is enabled.\n" 2499 "VCPU can only run on primary threads with all " 2500 "secondary threads offline.\n"); 2501 } 2502 #endif 2503 ret = -1; 2504 break; 2505 } 2506 2507 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2508 switch (run->exit_reason) { 2509 case KVM_EXIT_IO: 2510 DPRINTF("handle_io\n"); 2511 /* Called outside BQL */ 2512 kvm_handle_io(run->io.port, attrs, 2513 (uint8_t *)run + run->io.data_offset, 2514 run->io.direction, 2515 run->io.size, 2516 run->io.count); 2517 ret = 0; 2518 break; 2519 case KVM_EXIT_MMIO: 2520 DPRINTF("handle_mmio\n"); 2521 /* Called outside BQL */ 2522 address_space_rw(&address_space_memory, 2523 run->mmio.phys_addr, attrs, 2524 run->mmio.data, 2525 run->mmio.len, 2526 run->mmio.is_write); 2527 ret = 0; 2528 break; 2529 case KVM_EXIT_IRQ_WINDOW_OPEN: 2530 DPRINTF("irq_window_open\n"); 2531 ret = EXCP_INTERRUPT; 2532 break; 2533 case KVM_EXIT_SHUTDOWN: 2534 DPRINTF("shutdown\n"); 2535 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2536 ret = EXCP_INTERRUPT; 2537 break; 2538 case KVM_EXIT_UNKNOWN: 2539 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2540 (uint64_t)run->hw.hardware_exit_reason); 2541 ret = -1; 2542 break; 2543 case KVM_EXIT_INTERNAL_ERROR: 2544 ret = kvm_handle_internal_error(cpu, run); 2545 break; 2546 case KVM_EXIT_SYSTEM_EVENT: 2547 switch (run->system_event.type) { 2548 case KVM_SYSTEM_EVENT_SHUTDOWN: 2549 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2550 ret = EXCP_INTERRUPT; 2551 break; 2552 case KVM_SYSTEM_EVENT_RESET: 2553 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2554 ret = EXCP_INTERRUPT; 2555 break; 2556 case KVM_SYSTEM_EVENT_CRASH: 2557 kvm_cpu_synchronize_state(cpu); 2558 qemu_mutex_lock_iothread(); 2559 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2560 qemu_mutex_unlock_iothread(); 2561 ret = 0; 2562 break; 2563 default: 2564 DPRINTF("kvm_arch_handle_exit\n"); 2565 ret = kvm_arch_handle_exit(cpu, run); 2566 break; 2567 } 2568 break; 2569 default: 2570 DPRINTF("kvm_arch_handle_exit\n"); 2571 ret = kvm_arch_handle_exit(cpu, run); 2572 break; 2573 } 2574 } while (ret == 0); 2575 2576 cpu_exec_end(cpu); 2577 qemu_mutex_lock_iothread(); 2578 2579 if (ret < 0) { 2580 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2581 vm_stop(RUN_STATE_INTERNAL_ERROR); 2582 } 2583 2584 qatomic_set(&cpu->exit_request, 0); 2585 return ret; 2586 } 2587 2588 int kvm_ioctl(KVMState *s, int type, ...) 2589 { 2590 int ret; 2591 void *arg; 2592 va_list ap; 2593 2594 va_start(ap, type); 2595 arg = va_arg(ap, void *); 2596 va_end(ap); 2597 2598 trace_kvm_ioctl(type, arg); 2599 ret = ioctl(s->fd, type, arg); 2600 if (ret == -1) { 2601 ret = -errno; 2602 } 2603 return ret; 2604 } 2605 2606 int kvm_vm_ioctl(KVMState *s, int type, ...) 2607 { 2608 int ret; 2609 void *arg; 2610 va_list ap; 2611 2612 va_start(ap, type); 2613 arg = va_arg(ap, void *); 2614 va_end(ap); 2615 2616 trace_kvm_vm_ioctl(type, arg); 2617 ret = ioctl(s->vmfd, type, arg); 2618 if (ret == -1) { 2619 ret = -errno; 2620 } 2621 return ret; 2622 } 2623 2624 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2625 { 2626 int ret; 2627 void *arg; 2628 va_list ap; 2629 2630 va_start(ap, type); 2631 arg = va_arg(ap, void *); 2632 va_end(ap); 2633 2634 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2635 ret = ioctl(cpu->kvm_fd, type, arg); 2636 if (ret == -1) { 2637 ret = -errno; 2638 } 2639 return ret; 2640 } 2641 2642 int kvm_device_ioctl(int fd, int type, ...) 2643 { 2644 int ret; 2645 void *arg; 2646 va_list ap; 2647 2648 va_start(ap, type); 2649 arg = va_arg(ap, void *); 2650 va_end(ap); 2651 2652 trace_kvm_device_ioctl(fd, type, arg); 2653 ret = ioctl(fd, type, arg); 2654 if (ret == -1) { 2655 ret = -errno; 2656 } 2657 return ret; 2658 } 2659 2660 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2661 { 2662 int ret; 2663 struct kvm_device_attr attribute = { 2664 .group = group, 2665 .attr = attr, 2666 }; 2667 2668 if (!kvm_vm_attributes_allowed) { 2669 return 0; 2670 } 2671 2672 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2673 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2674 return ret ? 0 : 1; 2675 } 2676 2677 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2678 { 2679 struct kvm_device_attr attribute = { 2680 .group = group, 2681 .attr = attr, 2682 .flags = 0, 2683 }; 2684 2685 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2686 } 2687 2688 int kvm_device_access(int fd, int group, uint64_t attr, 2689 void *val, bool write, Error **errp) 2690 { 2691 struct kvm_device_attr kvmattr; 2692 int err; 2693 2694 kvmattr.flags = 0; 2695 kvmattr.group = group; 2696 kvmattr.attr = attr; 2697 kvmattr.addr = (uintptr_t)val; 2698 2699 err = kvm_device_ioctl(fd, 2700 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2701 &kvmattr); 2702 if (err < 0) { 2703 error_setg_errno(errp, -err, 2704 "KVM_%s_DEVICE_ATTR failed: Group %d " 2705 "attr 0x%016" PRIx64, 2706 write ? "SET" : "GET", group, attr); 2707 } 2708 return err; 2709 } 2710 2711 bool kvm_has_sync_mmu(void) 2712 { 2713 return kvm_state->sync_mmu; 2714 } 2715 2716 int kvm_has_vcpu_events(void) 2717 { 2718 return kvm_state->vcpu_events; 2719 } 2720 2721 int kvm_has_robust_singlestep(void) 2722 { 2723 return kvm_state->robust_singlestep; 2724 } 2725 2726 int kvm_has_debugregs(void) 2727 { 2728 return kvm_state->debugregs; 2729 } 2730 2731 int kvm_max_nested_state_length(void) 2732 { 2733 return kvm_state->max_nested_state_len; 2734 } 2735 2736 int kvm_has_many_ioeventfds(void) 2737 { 2738 if (!kvm_enabled()) { 2739 return 0; 2740 } 2741 return kvm_state->many_ioeventfds; 2742 } 2743 2744 int kvm_has_gsi_routing(void) 2745 { 2746 #ifdef KVM_CAP_IRQ_ROUTING 2747 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2748 #else 2749 return false; 2750 #endif 2751 } 2752 2753 int kvm_has_intx_set_mask(void) 2754 { 2755 return kvm_state->intx_set_mask; 2756 } 2757 2758 bool kvm_arm_supports_user_irq(void) 2759 { 2760 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2761 } 2762 2763 #ifdef KVM_CAP_SET_GUEST_DEBUG 2764 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2765 target_ulong pc) 2766 { 2767 struct kvm_sw_breakpoint *bp; 2768 2769 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2770 if (bp->pc == pc) { 2771 return bp; 2772 } 2773 } 2774 return NULL; 2775 } 2776 2777 int kvm_sw_breakpoints_active(CPUState *cpu) 2778 { 2779 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2780 } 2781 2782 struct kvm_set_guest_debug_data { 2783 struct kvm_guest_debug dbg; 2784 int err; 2785 }; 2786 2787 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2788 { 2789 struct kvm_set_guest_debug_data *dbg_data = 2790 (struct kvm_set_guest_debug_data *) data.host_ptr; 2791 2792 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2793 &dbg_data->dbg); 2794 } 2795 2796 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2797 { 2798 struct kvm_set_guest_debug_data data; 2799 2800 data.dbg.control = reinject_trap; 2801 2802 if (cpu->singlestep_enabled) { 2803 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2804 } 2805 kvm_arch_update_guest_debug(cpu, &data.dbg); 2806 2807 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2808 RUN_ON_CPU_HOST_PTR(&data)); 2809 return data.err; 2810 } 2811 2812 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2813 target_ulong len, int type) 2814 { 2815 struct kvm_sw_breakpoint *bp; 2816 int err; 2817 2818 if (type == GDB_BREAKPOINT_SW) { 2819 bp = kvm_find_sw_breakpoint(cpu, addr); 2820 if (bp) { 2821 bp->use_count++; 2822 return 0; 2823 } 2824 2825 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2826 bp->pc = addr; 2827 bp->use_count = 1; 2828 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2829 if (err) { 2830 g_free(bp); 2831 return err; 2832 } 2833 2834 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2835 } else { 2836 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2837 if (err) { 2838 return err; 2839 } 2840 } 2841 2842 CPU_FOREACH(cpu) { 2843 err = kvm_update_guest_debug(cpu, 0); 2844 if (err) { 2845 return err; 2846 } 2847 } 2848 return 0; 2849 } 2850 2851 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2852 target_ulong len, int type) 2853 { 2854 struct kvm_sw_breakpoint *bp; 2855 int err; 2856 2857 if (type == GDB_BREAKPOINT_SW) { 2858 bp = kvm_find_sw_breakpoint(cpu, addr); 2859 if (!bp) { 2860 return -ENOENT; 2861 } 2862 2863 if (bp->use_count > 1) { 2864 bp->use_count--; 2865 return 0; 2866 } 2867 2868 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2869 if (err) { 2870 return err; 2871 } 2872 2873 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2874 g_free(bp); 2875 } else { 2876 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2877 if (err) { 2878 return err; 2879 } 2880 } 2881 2882 CPU_FOREACH(cpu) { 2883 err = kvm_update_guest_debug(cpu, 0); 2884 if (err) { 2885 return err; 2886 } 2887 } 2888 return 0; 2889 } 2890 2891 void kvm_remove_all_breakpoints(CPUState *cpu) 2892 { 2893 struct kvm_sw_breakpoint *bp, *next; 2894 KVMState *s = cpu->kvm_state; 2895 CPUState *tmpcpu; 2896 2897 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2898 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2899 /* Try harder to find a CPU that currently sees the breakpoint. */ 2900 CPU_FOREACH(tmpcpu) { 2901 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2902 break; 2903 } 2904 } 2905 } 2906 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2907 g_free(bp); 2908 } 2909 kvm_arch_remove_all_hw_breakpoints(); 2910 2911 CPU_FOREACH(cpu) { 2912 kvm_update_guest_debug(cpu, 0); 2913 } 2914 } 2915 2916 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2917 2918 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2919 { 2920 return -EINVAL; 2921 } 2922 2923 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2924 target_ulong len, int type) 2925 { 2926 return -EINVAL; 2927 } 2928 2929 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2930 target_ulong len, int type) 2931 { 2932 return -EINVAL; 2933 } 2934 2935 void kvm_remove_all_breakpoints(CPUState *cpu) 2936 { 2937 } 2938 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2939 2940 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2941 { 2942 KVMState *s = kvm_state; 2943 struct kvm_signal_mask *sigmask; 2944 int r; 2945 2946 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2947 2948 sigmask->len = s->sigmask_len; 2949 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2950 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2951 g_free(sigmask); 2952 2953 return r; 2954 } 2955 2956 static void kvm_ipi_signal(int sig) 2957 { 2958 if (current_cpu) { 2959 assert(kvm_immediate_exit); 2960 kvm_cpu_kick(current_cpu); 2961 } 2962 } 2963 2964 void kvm_init_cpu_signals(CPUState *cpu) 2965 { 2966 int r; 2967 sigset_t set; 2968 struct sigaction sigact; 2969 2970 memset(&sigact, 0, sizeof(sigact)); 2971 sigact.sa_handler = kvm_ipi_signal; 2972 sigaction(SIG_IPI, &sigact, NULL); 2973 2974 pthread_sigmask(SIG_BLOCK, NULL, &set); 2975 #if defined KVM_HAVE_MCE_INJECTION 2976 sigdelset(&set, SIGBUS); 2977 pthread_sigmask(SIG_SETMASK, &set, NULL); 2978 #endif 2979 sigdelset(&set, SIG_IPI); 2980 if (kvm_immediate_exit) { 2981 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2982 } else { 2983 r = kvm_set_signal_mask(cpu, &set); 2984 } 2985 if (r) { 2986 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2987 exit(1); 2988 } 2989 } 2990 2991 /* Called asynchronously in VCPU thread. */ 2992 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2993 { 2994 #ifdef KVM_HAVE_MCE_INJECTION 2995 if (have_sigbus_pending) { 2996 return 1; 2997 } 2998 have_sigbus_pending = true; 2999 pending_sigbus_addr = addr; 3000 pending_sigbus_code = code; 3001 qatomic_set(&cpu->exit_request, 1); 3002 return 0; 3003 #else 3004 return 1; 3005 #endif 3006 } 3007 3008 /* Called synchronously (via signalfd) in main thread. */ 3009 int kvm_on_sigbus(int code, void *addr) 3010 { 3011 #ifdef KVM_HAVE_MCE_INJECTION 3012 /* Action required MCE kills the process if SIGBUS is blocked. Because 3013 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3014 * we can only get action optional here. 3015 */ 3016 assert(code != BUS_MCEERR_AR); 3017 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3018 return 0; 3019 #else 3020 return 1; 3021 #endif 3022 } 3023 3024 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3025 { 3026 int ret; 3027 struct kvm_create_device create_dev; 3028 3029 create_dev.type = type; 3030 create_dev.fd = -1; 3031 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3032 3033 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3034 return -ENOTSUP; 3035 } 3036 3037 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3038 if (ret) { 3039 return ret; 3040 } 3041 3042 return test ? 0 : create_dev.fd; 3043 } 3044 3045 bool kvm_device_supported(int vmfd, uint64_t type) 3046 { 3047 struct kvm_create_device create_dev = { 3048 .type = type, 3049 .fd = -1, 3050 .flags = KVM_CREATE_DEVICE_TEST, 3051 }; 3052 3053 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3054 return false; 3055 } 3056 3057 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3058 } 3059 3060 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3061 { 3062 struct kvm_one_reg reg; 3063 int r; 3064 3065 reg.id = id; 3066 reg.addr = (uintptr_t) source; 3067 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3068 if (r) { 3069 trace_kvm_failed_reg_set(id, strerror(-r)); 3070 } 3071 return r; 3072 } 3073 3074 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3075 { 3076 struct kvm_one_reg reg; 3077 int r; 3078 3079 reg.id = id; 3080 reg.addr = (uintptr_t) target; 3081 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3082 if (r) { 3083 trace_kvm_failed_reg_get(id, strerror(-r)); 3084 } 3085 return r; 3086 } 3087 3088 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3089 hwaddr start_addr, hwaddr size) 3090 { 3091 KVMState *kvm = KVM_STATE(ms->accelerator); 3092 int i; 3093 3094 for (i = 0; i < kvm->nr_as; ++i) { 3095 if (kvm->as[i].as == as && kvm->as[i].ml) { 3096 size = MIN(kvm_max_slot_size, size); 3097 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3098 start_addr, size); 3099 } 3100 } 3101 3102 return false; 3103 } 3104 3105 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3106 const char *name, void *opaque, 3107 Error **errp) 3108 { 3109 KVMState *s = KVM_STATE(obj); 3110 int64_t value = s->kvm_shadow_mem; 3111 3112 visit_type_int(v, name, &value, errp); 3113 } 3114 3115 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3116 const char *name, void *opaque, 3117 Error **errp) 3118 { 3119 KVMState *s = KVM_STATE(obj); 3120 int64_t value; 3121 3122 if (!visit_type_int(v, name, &value, errp)) { 3123 return; 3124 } 3125 3126 s->kvm_shadow_mem = value; 3127 } 3128 3129 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3130 const char *name, void *opaque, 3131 Error **errp) 3132 { 3133 KVMState *s = KVM_STATE(obj); 3134 OnOffSplit mode; 3135 3136 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3137 return; 3138 } 3139 switch (mode) { 3140 case ON_OFF_SPLIT_ON: 3141 s->kernel_irqchip_allowed = true; 3142 s->kernel_irqchip_required = true; 3143 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3144 break; 3145 case ON_OFF_SPLIT_OFF: 3146 s->kernel_irqchip_allowed = false; 3147 s->kernel_irqchip_required = false; 3148 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3149 break; 3150 case ON_OFF_SPLIT_SPLIT: 3151 s->kernel_irqchip_allowed = true; 3152 s->kernel_irqchip_required = true; 3153 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3154 break; 3155 default: 3156 /* The value was checked in visit_type_OnOffSplit() above. If 3157 * we get here, then something is wrong in QEMU. 3158 */ 3159 abort(); 3160 } 3161 } 3162 3163 bool kvm_kernel_irqchip_allowed(void) 3164 { 3165 return kvm_state->kernel_irqchip_allowed; 3166 } 3167 3168 bool kvm_kernel_irqchip_required(void) 3169 { 3170 return kvm_state->kernel_irqchip_required; 3171 } 3172 3173 bool kvm_kernel_irqchip_split(void) 3174 { 3175 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3176 } 3177 3178 static void kvm_accel_instance_init(Object *obj) 3179 { 3180 KVMState *s = KVM_STATE(obj); 3181 3182 s->kvm_shadow_mem = -1; 3183 s->kernel_irqchip_allowed = true; 3184 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3185 } 3186 3187 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3188 { 3189 AccelClass *ac = ACCEL_CLASS(oc); 3190 ac->name = "KVM"; 3191 ac->init_machine = kvm_init; 3192 ac->has_memory = kvm_accel_has_memory; 3193 ac->allowed = &kvm_allowed; 3194 3195 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3196 NULL, kvm_set_kernel_irqchip, 3197 NULL, NULL); 3198 object_class_property_set_description(oc, "kernel-irqchip", 3199 "Configure KVM in-kernel irqchip"); 3200 3201 object_class_property_add(oc, "kvm-shadow-mem", "int", 3202 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3203 NULL, NULL); 3204 object_class_property_set_description(oc, "kvm-shadow-mem", 3205 "KVM shadow MMU size"); 3206 } 3207 3208 static const TypeInfo kvm_accel_type = { 3209 .name = TYPE_KVM_ACCEL, 3210 .parent = TYPE_ACCEL, 3211 .instance_init = kvm_accel_instance_init, 3212 .class_init = kvm_accel_class_init, 3213 .instance_size = sizeof(KVMState), 3214 }; 3215 3216 static void kvm_type_init(void) 3217 { 3218 type_register_static(&kvm_accel_type); 3219 } 3220 3221 type_init(kvm_type_init); 3222