1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 KVMState *kvm_state; 79 bool kvm_kernel_irqchip; 80 bool kvm_split_irqchip; 81 bool kvm_async_interrupts_allowed; 82 bool kvm_halt_in_kernel_allowed; 83 bool kvm_resamplefds_allowed; 84 bool kvm_msi_via_irqfd_allowed; 85 bool kvm_gsi_routing_allowed; 86 bool kvm_gsi_direct_mapping; 87 bool kvm_allowed; 88 bool kvm_readonly_mem_allowed; 89 bool kvm_vm_attributes_allowed; 90 bool kvm_msi_use_devid; 91 static bool kvm_has_guest_debug; 92 static int kvm_sstep_flags; 93 static bool kvm_immediate_exit; 94 static uint64_t kvm_supported_memory_attributes; 95 static bool kvm_guest_memfd_supported; 96 static hwaddr kvm_max_slot_size = ~0; 97 98 static const KVMCapabilityInfo kvm_required_capabilites[] = { 99 KVM_CAP_INFO(USER_MEMORY), 100 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 101 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 102 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 103 KVM_CAP_INFO(IOEVENTFD), 104 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 105 KVM_CAP_LAST_INFO 106 }; 107 108 static NotifierList kvm_irqchip_change_notifiers = 109 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 110 111 struct KVMResampleFd { 112 int gsi; 113 EventNotifier *resample_event; 114 QLIST_ENTRY(KVMResampleFd) node; 115 }; 116 typedef struct KVMResampleFd KVMResampleFd; 117 118 /* 119 * Only used with split irqchip where we need to do the resample fd 120 * kick for the kernel from userspace. 121 */ 122 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 123 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 124 125 static QemuMutex kml_slots_lock; 126 127 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 128 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 129 130 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 131 132 static inline void kvm_resample_fd_remove(int gsi) 133 { 134 KVMResampleFd *rfd; 135 136 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 137 if (rfd->gsi == gsi) { 138 QLIST_REMOVE(rfd, node); 139 g_free(rfd); 140 break; 141 } 142 } 143 } 144 145 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 146 { 147 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 148 149 rfd->gsi = gsi; 150 rfd->resample_event = event; 151 152 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 153 } 154 155 void kvm_resample_fd_notify(int gsi) 156 { 157 KVMResampleFd *rfd; 158 159 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 160 if (rfd->gsi == gsi) { 161 event_notifier_set(rfd->resample_event); 162 trace_kvm_resample_fd_notify(gsi); 163 return; 164 } 165 } 166 } 167 168 unsigned int kvm_get_max_memslots(void) 169 { 170 KVMState *s = KVM_STATE(current_accel()); 171 172 return s->nr_slots; 173 } 174 175 unsigned int kvm_get_free_memslots(void) 176 { 177 unsigned int used_slots = 0; 178 KVMState *s = kvm_state; 179 int i; 180 181 kvm_slots_lock(); 182 for (i = 0; i < s->nr_as; i++) { 183 if (!s->as[i].ml) { 184 continue; 185 } 186 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 187 } 188 kvm_slots_unlock(); 189 190 return s->nr_slots - used_slots; 191 } 192 193 /* Called with KVMMemoryListener.slots_lock held */ 194 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 195 { 196 KVMState *s = kvm_state; 197 int i; 198 199 for (i = 0; i < s->nr_slots; i++) { 200 if (kml->slots[i].memory_size == 0) { 201 return &kml->slots[i]; 202 } 203 } 204 205 return NULL; 206 } 207 208 /* Called with KVMMemoryListener.slots_lock held */ 209 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 210 { 211 KVMSlot *slot = kvm_get_free_slot(kml); 212 213 if (slot) { 214 return slot; 215 } 216 217 fprintf(stderr, "%s: no free slot available\n", __func__); 218 abort(); 219 } 220 221 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 222 hwaddr start_addr, 223 hwaddr size) 224 { 225 KVMState *s = kvm_state; 226 int i; 227 228 for (i = 0; i < s->nr_slots; i++) { 229 KVMSlot *mem = &kml->slots[i]; 230 231 if (start_addr == mem->start_addr && size == mem->memory_size) { 232 return mem; 233 } 234 } 235 236 return NULL; 237 } 238 239 /* 240 * Calculate and align the start address and the size of the section. 241 * Return the size. If the size is 0, the aligned section is empty. 242 */ 243 static hwaddr kvm_align_section(MemoryRegionSection *section, 244 hwaddr *start) 245 { 246 hwaddr size = int128_get64(section->size); 247 hwaddr delta, aligned; 248 249 /* kvm works in page size chunks, but the function may be called 250 with sub-page size and unaligned start address. Pad the start 251 address to next and truncate size to previous page boundary. */ 252 aligned = ROUND_UP(section->offset_within_address_space, 253 qemu_real_host_page_size()); 254 delta = aligned - section->offset_within_address_space; 255 *start = aligned; 256 if (delta > size) { 257 return 0; 258 } 259 260 return (size - delta) & qemu_real_host_page_mask(); 261 } 262 263 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 264 hwaddr *phys_addr) 265 { 266 KVMMemoryListener *kml = &s->memory_listener; 267 int i, ret = 0; 268 269 kvm_slots_lock(); 270 for (i = 0; i < s->nr_slots; i++) { 271 KVMSlot *mem = &kml->slots[i]; 272 273 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 274 *phys_addr = mem->start_addr + (ram - mem->ram); 275 ret = 1; 276 break; 277 } 278 } 279 kvm_slots_unlock(); 280 281 return ret; 282 } 283 284 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 285 { 286 KVMState *s = kvm_state; 287 struct kvm_userspace_memory_region2 mem; 288 int ret; 289 290 mem.slot = slot->slot | (kml->as_id << 16); 291 mem.guest_phys_addr = slot->start_addr; 292 mem.userspace_addr = (unsigned long)slot->ram; 293 mem.flags = slot->flags; 294 mem.guest_memfd = slot->guest_memfd; 295 mem.guest_memfd_offset = slot->guest_memfd_offset; 296 297 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 298 /* Set the slot size to 0 before setting the slot to the desired 299 * value. This is needed based on KVM commit 75d61fbc. */ 300 mem.memory_size = 0; 301 302 if (kvm_guest_memfd_supported) { 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 304 } else { 305 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 306 } 307 if (ret < 0) { 308 goto err; 309 } 310 } 311 mem.memory_size = slot->memory_size; 312 if (kvm_guest_memfd_supported) { 313 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 314 } else { 315 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 316 } 317 slot->old_flags = mem.flags; 318 err: 319 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 320 mem.guest_phys_addr, mem.memory_size, 321 mem.userspace_addr, mem.guest_memfd, 322 mem.guest_memfd_offset, ret); 323 if (ret < 0) { 324 if (kvm_guest_memfd_supported) { 325 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 326 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 327 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 328 " guest_memfd_offset=0x%" PRIx64 ": %s", 329 __func__, mem.slot, slot->start_addr, 330 (uint64_t)mem.memory_size, mem.flags, 331 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 332 strerror(errno)); 333 } else { 334 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 335 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 336 __func__, mem.slot, slot->start_addr, 337 (uint64_t)mem.memory_size, strerror(errno)); 338 } 339 } 340 return ret; 341 } 342 343 void kvm_park_vcpu(CPUState *cpu) 344 { 345 struct KVMParkedVcpu *vcpu; 346 347 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 348 349 vcpu = g_malloc0(sizeof(*vcpu)); 350 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 351 vcpu->kvm_fd = cpu->kvm_fd; 352 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 353 } 354 355 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 356 { 357 struct KVMParkedVcpu *cpu; 358 int kvm_fd = -ENOENT; 359 360 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 361 if (cpu->vcpu_id == vcpu_id) { 362 QLIST_REMOVE(cpu, node); 363 kvm_fd = cpu->kvm_fd; 364 g_free(cpu); 365 break; 366 } 367 } 368 369 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 370 371 return kvm_fd; 372 } 373 374 int kvm_create_vcpu(CPUState *cpu) 375 { 376 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 377 KVMState *s = kvm_state; 378 int kvm_fd; 379 380 /* check if the KVM vCPU already exist but is parked */ 381 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 382 if (kvm_fd < 0) { 383 /* vCPU not parked: create a new KVM vCPU */ 384 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 385 if (kvm_fd < 0) { 386 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 387 return kvm_fd; 388 } 389 } 390 391 cpu->kvm_fd = kvm_fd; 392 cpu->kvm_state = s; 393 cpu->vcpu_dirty = true; 394 cpu->dirty_pages = 0; 395 cpu->throttle_us_per_full = 0; 396 397 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 398 399 return 0; 400 } 401 402 int kvm_create_and_park_vcpu(CPUState *cpu) 403 { 404 int ret = 0; 405 406 ret = kvm_create_vcpu(cpu); 407 if (!ret) { 408 kvm_park_vcpu(cpu); 409 } 410 411 return ret; 412 } 413 414 static int do_kvm_destroy_vcpu(CPUState *cpu) 415 { 416 KVMState *s = kvm_state; 417 long mmap_size; 418 int ret = 0; 419 420 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 421 422 ret = kvm_arch_destroy_vcpu(cpu); 423 if (ret < 0) { 424 goto err; 425 } 426 427 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 428 if (mmap_size < 0) { 429 ret = mmap_size; 430 trace_kvm_failed_get_vcpu_mmap_size(); 431 goto err; 432 } 433 434 ret = munmap(cpu->kvm_run, mmap_size); 435 if (ret < 0) { 436 goto err; 437 } 438 439 if (cpu->kvm_dirty_gfns) { 440 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 441 if (ret < 0) { 442 goto err; 443 } 444 } 445 446 kvm_park_vcpu(cpu); 447 err: 448 return ret; 449 } 450 451 void kvm_destroy_vcpu(CPUState *cpu) 452 { 453 if (do_kvm_destroy_vcpu(cpu) < 0) { 454 error_report("kvm_destroy_vcpu failed"); 455 exit(EXIT_FAILURE); 456 } 457 } 458 459 int kvm_init_vcpu(CPUState *cpu, Error **errp) 460 { 461 KVMState *s = kvm_state; 462 long mmap_size; 463 int ret; 464 465 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 466 467 ret = kvm_create_vcpu(cpu); 468 if (ret < 0) { 469 error_setg_errno(errp, -ret, 470 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 471 kvm_arch_vcpu_id(cpu)); 472 goto err; 473 } 474 475 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 476 if (mmap_size < 0) { 477 ret = mmap_size; 478 error_setg_errno(errp, -mmap_size, 479 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 480 goto err; 481 } 482 483 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 484 cpu->kvm_fd, 0); 485 if (cpu->kvm_run == MAP_FAILED) { 486 ret = -errno; 487 error_setg_errno(errp, ret, 488 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 489 kvm_arch_vcpu_id(cpu)); 490 goto err; 491 } 492 493 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 494 s->coalesced_mmio_ring = 495 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 496 } 497 498 if (s->kvm_dirty_ring_size) { 499 /* Use MAP_SHARED to share pages with the kernel */ 500 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 501 PROT_READ | PROT_WRITE, MAP_SHARED, 502 cpu->kvm_fd, 503 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 504 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 505 ret = -errno; 506 goto err; 507 } 508 } 509 510 ret = kvm_arch_init_vcpu(cpu); 511 if (ret < 0) { 512 error_setg_errno(errp, -ret, 513 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 514 kvm_arch_vcpu_id(cpu)); 515 } 516 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 517 518 err: 519 return ret; 520 } 521 522 /* 523 * dirty pages logging control 524 */ 525 526 static int kvm_mem_flags(MemoryRegion *mr) 527 { 528 bool readonly = mr->readonly || memory_region_is_romd(mr); 529 int flags = 0; 530 531 if (memory_region_get_dirty_log_mask(mr) != 0) { 532 flags |= KVM_MEM_LOG_DIRTY_PAGES; 533 } 534 if (readonly && kvm_readonly_mem_allowed) { 535 flags |= KVM_MEM_READONLY; 536 } 537 if (memory_region_has_guest_memfd(mr)) { 538 assert(kvm_guest_memfd_supported); 539 flags |= KVM_MEM_GUEST_MEMFD; 540 } 541 return flags; 542 } 543 544 /* Called with KVMMemoryListener.slots_lock held */ 545 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 546 MemoryRegion *mr) 547 { 548 mem->flags = kvm_mem_flags(mr); 549 550 /* If nothing changed effectively, no need to issue ioctl */ 551 if (mem->flags == mem->old_flags) { 552 return 0; 553 } 554 555 kvm_slot_init_dirty_bitmap(mem); 556 return kvm_set_user_memory_region(kml, mem, false); 557 } 558 559 static int kvm_section_update_flags(KVMMemoryListener *kml, 560 MemoryRegionSection *section) 561 { 562 hwaddr start_addr, size, slot_size; 563 KVMSlot *mem; 564 int ret = 0; 565 566 size = kvm_align_section(section, &start_addr); 567 if (!size) { 568 return 0; 569 } 570 571 kvm_slots_lock(); 572 573 while (size && !ret) { 574 slot_size = MIN(kvm_max_slot_size, size); 575 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 576 if (!mem) { 577 /* We don't have a slot if we want to trap every access. */ 578 goto out; 579 } 580 581 ret = kvm_slot_update_flags(kml, mem, section->mr); 582 start_addr += slot_size; 583 size -= slot_size; 584 } 585 586 out: 587 kvm_slots_unlock(); 588 return ret; 589 } 590 591 static void kvm_log_start(MemoryListener *listener, 592 MemoryRegionSection *section, 593 int old, int new) 594 { 595 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 596 int r; 597 598 if (old != 0) { 599 return; 600 } 601 602 r = kvm_section_update_flags(kml, section); 603 if (r < 0) { 604 abort(); 605 } 606 } 607 608 static void kvm_log_stop(MemoryListener *listener, 609 MemoryRegionSection *section, 610 int old, int new) 611 { 612 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 613 int r; 614 615 if (new != 0) { 616 return; 617 } 618 619 r = kvm_section_update_flags(kml, section); 620 if (r < 0) { 621 abort(); 622 } 623 } 624 625 /* get kvm's dirty pages bitmap and update qemu's */ 626 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 627 { 628 ram_addr_t start = slot->ram_start_offset; 629 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 630 631 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 632 } 633 634 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 635 { 636 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 637 } 638 639 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 640 641 /* Allocate the dirty bitmap for a slot */ 642 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 643 { 644 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 645 return; 646 } 647 648 /* 649 * XXX bad kernel interface alert 650 * For dirty bitmap, kernel allocates array of size aligned to 651 * bits-per-long. But for case when the kernel is 64bits and 652 * the userspace is 32bits, userspace can't align to the same 653 * bits-per-long, since sizeof(long) is different between kernel 654 * and user space. This way, userspace will provide buffer which 655 * may be 4 bytes less than the kernel will use, resulting in 656 * userspace memory corruption (which is not detectable by valgrind 657 * too, in most cases). 658 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 659 * a hope that sizeof(long) won't become >8 any time soon. 660 * 661 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 662 * And mem->memory_size is aligned to it (otherwise this mem can't 663 * be registered to KVM). 664 */ 665 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 666 /*HOST_LONG_BITS*/ 64) / 8; 667 mem->dirty_bmap = g_malloc0(bitmap_size); 668 mem->dirty_bmap_size = bitmap_size; 669 } 670 671 /* 672 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 673 * succeeded, false otherwise 674 */ 675 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 676 { 677 struct kvm_dirty_log d = {}; 678 int ret; 679 680 d.dirty_bitmap = slot->dirty_bmap; 681 d.slot = slot->slot | (slot->as_id << 16); 682 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 683 684 if (ret == -ENOENT) { 685 /* kernel does not have dirty bitmap in this slot */ 686 ret = 0; 687 } 688 if (ret) { 689 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 690 __func__, ret); 691 } 692 return ret == 0; 693 } 694 695 /* Should be with all slots_lock held for the address spaces. */ 696 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 697 uint32_t slot_id, uint64_t offset) 698 { 699 KVMMemoryListener *kml; 700 KVMSlot *mem; 701 702 if (as_id >= s->nr_as) { 703 return; 704 } 705 706 kml = s->as[as_id].ml; 707 mem = &kml->slots[slot_id]; 708 709 if (!mem->memory_size || offset >= 710 (mem->memory_size / qemu_real_host_page_size())) { 711 return; 712 } 713 714 set_bit(offset, mem->dirty_bmap); 715 } 716 717 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 718 { 719 /* 720 * Read the flags before the value. Pairs with barrier in 721 * KVM's kvm_dirty_ring_push() function. 722 */ 723 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 724 } 725 726 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 727 { 728 /* 729 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 730 * sees the full content of the ring: 731 * 732 * CPU0 CPU1 CPU2 733 * ------------------------------------------------------------------------------ 734 * fill gfn0 735 * store-rel flags for gfn0 736 * load-acq flags for gfn0 737 * store-rel RESET for gfn0 738 * ioctl(RESET_RINGS) 739 * load-acq flags for gfn0 740 * check if flags have RESET 741 * 742 * The synchronization goes from CPU2 to CPU0 to CPU1. 743 */ 744 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 745 } 746 747 /* 748 * Should be with all slots_lock held for the address spaces. It returns the 749 * dirty page we've collected on this dirty ring. 750 */ 751 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 752 { 753 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 754 uint32_t ring_size = s->kvm_dirty_ring_size; 755 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 756 757 /* 758 * It's possible that we race with vcpu creation code where the vcpu is 759 * put onto the vcpus list but not yet initialized the dirty ring 760 * structures. If so, skip it. 761 */ 762 if (!cpu->created) { 763 return 0; 764 } 765 766 assert(dirty_gfns && ring_size); 767 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 768 769 while (true) { 770 cur = &dirty_gfns[fetch % ring_size]; 771 if (!dirty_gfn_is_dirtied(cur)) { 772 break; 773 } 774 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 775 cur->offset); 776 dirty_gfn_set_collected(cur); 777 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 778 fetch++; 779 count++; 780 } 781 cpu->kvm_fetch_index = fetch; 782 cpu->dirty_pages += count; 783 784 return count; 785 } 786 787 /* Must be with slots_lock held */ 788 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 789 { 790 int ret; 791 uint64_t total = 0; 792 int64_t stamp; 793 794 stamp = get_clock(); 795 796 if (cpu) { 797 total = kvm_dirty_ring_reap_one(s, cpu); 798 } else { 799 CPU_FOREACH(cpu) { 800 total += kvm_dirty_ring_reap_one(s, cpu); 801 } 802 } 803 804 if (total) { 805 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 806 assert(ret == total); 807 } 808 809 stamp = get_clock() - stamp; 810 811 if (total) { 812 trace_kvm_dirty_ring_reap(total, stamp / 1000); 813 } 814 815 return total; 816 } 817 818 /* 819 * Currently for simplicity, we must hold BQL before calling this. We can 820 * consider to drop the BQL if we're clear with all the race conditions. 821 */ 822 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 823 { 824 uint64_t total; 825 826 /* 827 * We need to lock all kvm slots for all address spaces here, 828 * because: 829 * 830 * (1) We need to mark dirty for dirty bitmaps in multiple slots 831 * and for tons of pages, so it's better to take the lock here 832 * once rather than once per page. And more importantly, 833 * 834 * (2) We must _NOT_ publish dirty bits to the other threads 835 * (e.g., the migration thread) via the kvm memory slot dirty 836 * bitmaps before correctly re-protect those dirtied pages. 837 * Otherwise we can have potential risk of data corruption if 838 * the page data is read in the other thread before we do 839 * reset below. 840 */ 841 kvm_slots_lock(); 842 total = kvm_dirty_ring_reap_locked(s, cpu); 843 kvm_slots_unlock(); 844 845 return total; 846 } 847 848 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 849 { 850 /* No need to do anything */ 851 } 852 853 /* 854 * Kick all vcpus out in a synchronized way. When returned, we 855 * guarantee that every vcpu has been kicked and at least returned to 856 * userspace once. 857 */ 858 static void kvm_cpu_synchronize_kick_all(void) 859 { 860 CPUState *cpu; 861 862 CPU_FOREACH(cpu) { 863 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 864 } 865 } 866 867 /* 868 * Flush all the existing dirty pages to the KVM slot buffers. When 869 * this call returns, we guarantee that all the touched dirty pages 870 * before calling this function have been put into the per-kvmslot 871 * dirty bitmap. 872 * 873 * This function must be called with BQL held. 874 */ 875 static void kvm_dirty_ring_flush(void) 876 { 877 trace_kvm_dirty_ring_flush(0); 878 /* 879 * The function needs to be serialized. Since this function 880 * should always be with BQL held, serialization is guaranteed. 881 * However, let's be sure of it. 882 */ 883 assert(bql_locked()); 884 /* 885 * First make sure to flush the hardware buffers by kicking all 886 * vcpus out in a synchronous way. 887 */ 888 kvm_cpu_synchronize_kick_all(); 889 kvm_dirty_ring_reap(kvm_state, NULL); 890 trace_kvm_dirty_ring_flush(1); 891 } 892 893 /** 894 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 895 * 896 * This function will first try to fetch dirty bitmap from the kernel, 897 * and then updates qemu's dirty bitmap. 898 * 899 * NOTE: caller must be with kml->slots_lock held. 900 * 901 * @kml: the KVM memory listener object 902 * @section: the memory section to sync the dirty bitmap with 903 */ 904 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 905 MemoryRegionSection *section) 906 { 907 KVMState *s = kvm_state; 908 KVMSlot *mem; 909 hwaddr start_addr, size; 910 hwaddr slot_size; 911 912 size = kvm_align_section(section, &start_addr); 913 while (size) { 914 slot_size = MIN(kvm_max_slot_size, size); 915 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 916 if (!mem) { 917 /* We don't have a slot if we want to trap every access. */ 918 return; 919 } 920 if (kvm_slot_get_dirty_log(s, mem)) { 921 kvm_slot_sync_dirty_pages(mem); 922 } 923 start_addr += slot_size; 924 size -= slot_size; 925 } 926 } 927 928 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 929 #define KVM_CLEAR_LOG_SHIFT 6 930 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 931 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 932 933 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 934 uint64_t size) 935 { 936 KVMState *s = kvm_state; 937 uint64_t end, bmap_start, start_delta, bmap_npages; 938 struct kvm_clear_dirty_log d; 939 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 940 int ret; 941 942 /* 943 * We need to extend either the start or the size or both to 944 * satisfy the KVM interface requirement. Firstly, do the start 945 * page alignment on 64 host pages 946 */ 947 bmap_start = start & KVM_CLEAR_LOG_MASK; 948 start_delta = start - bmap_start; 949 bmap_start /= psize; 950 951 /* 952 * The kernel interface has restriction on the size too, that either: 953 * 954 * (1) the size is 64 host pages aligned (just like the start), or 955 * (2) the size fills up until the end of the KVM memslot. 956 */ 957 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 958 << KVM_CLEAR_LOG_SHIFT; 959 end = mem->memory_size / psize; 960 if (bmap_npages > end - bmap_start) { 961 bmap_npages = end - bmap_start; 962 } 963 start_delta /= psize; 964 965 /* 966 * Prepare the bitmap to clear dirty bits. Here we must guarantee 967 * that we won't clear any unknown dirty bits otherwise we might 968 * accidentally clear some set bits which are not yet synced from 969 * the kernel into QEMU's bitmap, then we'll lose track of the 970 * guest modifications upon those pages (which can directly lead 971 * to guest data loss or panic after migration). 972 * 973 * Layout of the KVMSlot.dirty_bmap: 974 * 975 * |<-------- bmap_npages -----------..>| 976 * [1] 977 * start_delta size 978 * |----------------|-------------|------------------|------------| 979 * ^ ^ ^ ^ 980 * | | | | 981 * start bmap_start (start) end 982 * of memslot of memslot 983 * 984 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 985 */ 986 987 assert(bmap_start % BITS_PER_LONG == 0); 988 /* We should never do log_clear before log_sync */ 989 assert(mem->dirty_bmap); 990 if (start_delta || bmap_npages - size / psize) { 991 /* Slow path - we need to manipulate a temp bitmap */ 992 bmap_clear = bitmap_new(bmap_npages); 993 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 994 bmap_start, start_delta + size / psize); 995 /* 996 * We need to fill the holes at start because that was not 997 * specified by the caller and we extended the bitmap only for 998 * 64 pages alignment 999 */ 1000 bitmap_clear(bmap_clear, 0, start_delta); 1001 d.dirty_bitmap = bmap_clear; 1002 } else { 1003 /* 1004 * Fast path - both start and size align well with BITS_PER_LONG 1005 * (or the end of memory slot) 1006 */ 1007 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1008 } 1009 1010 d.first_page = bmap_start; 1011 /* It should never overflow. If it happens, say something */ 1012 assert(bmap_npages <= UINT32_MAX); 1013 d.num_pages = bmap_npages; 1014 d.slot = mem->slot | (as_id << 16); 1015 1016 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1017 if (ret < 0 && ret != -ENOENT) { 1018 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1019 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1020 __func__, d.slot, (uint64_t)d.first_page, 1021 (uint32_t)d.num_pages, ret); 1022 } else { 1023 ret = 0; 1024 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1025 } 1026 1027 /* 1028 * After we have updated the remote dirty bitmap, we update the 1029 * cached bitmap as well for the memslot, then if another user 1030 * clears the same region we know we shouldn't clear it again on 1031 * the remote otherwise it's data loss as well. 1032 */ 1033 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1034 size / psize); 1035 /* This handles the NULL case well */ 1036 g_free(bmap_clear); 1037 return ret; 1038 } 1039 1040 1041 /** 1042 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1043 * 1044 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1045 * protection in the host kernel because in that case this operation 1046 * will be done within log_sync(). 1047 * 1048 * @kml: the kvm memory listener 1049 * @section: the memory range to clear dirty bitmap 1050 */ 1051 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1052 MemoryRegionSection *section) 1053 { 1054 KVMState *s = kvm_state; 1055 uint64_t start, size, offset, count; 1056 KVMSlot *mem; 1057 int ret = 0, i; 1058 1059 if (!s->manual_dirty_log_protect) { 1060 /* No need to do explicit clear */ 1061 return ret; 1062 } 1063 1064 start = section->offset_within_address_space; 1065 size = int128_get64(section->size); 1066 1067 if (!size) { 1068 /* Nothing more we can do... */ 1069 return ret; 1070 } 1071 1072 kvm_slots_lock(); 1073 1074 for (i = 0; i < s->nr_slots; i++) { 1075 mem = &kml->slots[i]; 1076 /* Discard slots that are empty or do not overlap the section */ 1077 if (!mem->memory_size || 1078 mem->start_addr > start + size - 1 || 1079 start > mem->start_addr + mem->memory_size - 1) { 1080 continue; 1081 } 1082 1083 if (start >= mem->start_addr) { 1084 /* The slot starts before section or is aligned to it. */ 1085 offset = start - mem->start_addr; 1086 count = MIN(mem->memory_size - offset, size); 1087 } else { 1088 /* The slot starts after section. */ 1089 offset = 0; 1090 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1091 } 1092 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1093 if (ret < 0) { 1094 break; 1095 } 1096 } 1097 1098 kvm_slots_unlock(); 1099 1100 return ret; 1101 } 1102 1103 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1104 MemoryRegionSection *secion, 1105 hwaddr start, hwaddr size) 1106 { 1107 KVMState *s = kvm_state; 1108 1109 if (s->coalesced_mmio) { 1110 struct kvm_coalesced_mmio_zone zone; 1111 1112 zone.addr = start; 1113 zone.size = size; 1114 zone.pad = 0; 1115 1116 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1117 } 1118 } 1119 1120 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1121 MemoryRegionSection *secion, 1122 hwaddr start, hwaddr size) 1123 { 1124 KVMState *s = kvm_state; 1125 1126 if (s->coalesced_mmio) { 1127 struct kvm_coalesced_mmio_zone zone; 1128 1129 zone.addr = start; 1130 zone.size = size; 1131 zone.pad = 0; 1132 1133 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1134 } 1135 } 1136 1137 static void kvm_coalesce_pio_add(MemoryListener *listener, 1138 MemoryRegionSection *section, 1139 hwaddr start, hwaddr size) 1140 { 1141 KVMState *s = kvm_state; 1142 1143 if (s->coalesced_pio) { 1144 struct kvm_coalesced_mmio_zone zone; 1145 1146 zone.addr = start; 1147 zone.size = size; 1148 zone.pio = 1; 1149 1150 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1151 } 1152 } 1153 1154 static void kvm_coalesce_pio_del(MemoryListener *listener, 1155 MemoryRegionSection *section, 1156 hwaddr start, hwaddr size) 1157 { 1158 KVMState *s = kvm_state; 1159 1160 if (s->coalesced_pio) { 1161 struct kvm_coalesced_mmio_zone zone; 1162 1163 zone.addr = start; 1164 zone.size = size; 1165 zone.pio = 1; 1166 1167 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1168 } 1169 } 1170 1171 int kvm_check_extension(KVMState *s, unsigned int extension) 1172 { 1173 int ret; 1174 1175 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1176 if (ret < 0) { 1177 ret = 0; 1178 } 1179 1180 return ret; 1181 } 1182 1183 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1184 { 1185 int ret; 1186 1187 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1188 if (ret < 0) { 1189 /* VM wide version not implemented, use global one instead */ 1190 ret = kvm_check_extension(s, extension); 1191 } 1192 1193 return ret; 1194 } 1195 1196 /* 1197 * We track the poisoned pages to be able to: 1198 * - replace them on VM reset 1199 * - block a migration for a VM with a poisoned page 1200 */ 1201 typedef struct HWPoisonPage { 1202 ram_addr_t ram_addr; 1203 QLIST_ENTRY(HWPoisonPage) list; 1204 } HWPoisonPage; 1205 1206 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1207 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1208 1209 static void kvm_unpoison_all(void *param) 1210 { 1211 HWPoisonPage *page, *next_page; 1212 1213 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1214 QLIST_REMOVE(page, list); 1215 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1216 g_free(page); 1217 } 1218 } 1219 1220 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1221 { 1222 HWPoisonPage *page; 1223 1224 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1225 if (page->ram_addr == ram_addr) { 1226 return; 1227 } 1228 } 1229 page = g_new(HWPoisonPage, 1); 1230 page->ram_addr = ram_addr; 1231 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1232 } 1233 1234 bool kvm_hwpoisoned_mem(void) 1235 { 1236 return !QLIST_EMPTY(&hwpoison_page_list); 1237 } 1238 1239 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1240 { 1241 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1242 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1243 * endianness, but the memory core hands them in target endianness. 1244 * For example, PPC is always treated as big-endian even if running 1245 * on KVM and on PPC64LE. Correct here. 1246 */ 1247 switch (size) { 1248 case 2: 1249 val = bswap16(val); 1250 break; 1251 case 4: 1252 val = bswap32(val); 1253 break; 1254 } 1255 #endif 1256 return val; 1257 } 1258 1259 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1260 bool assign, uint32_t size, bool datamatch) 1261 { 1262 int ret; 1263 struct kvm_ioeventfd iofd = { 1264 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1265 .addr = addr, 1266 .len = size, 1267 .flags = 0, 1268 .fd = fd, 1269 }; 1270 1271 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1272 datamatch); 1273 if (!kvm_enabled()) { 1274 return -ENOSYS; 1275 } 1276 1277 if (datamatch) { 1278 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1279 } 1280 if (!assign) { 1281 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1282 } 1283 1284 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1285 1286 if (ret < 0) { 1287 return -errno; 1288 } 1289 1290 return 0; 1291 } 1292 1293 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1294 bool assign, uint32_t size, bool datamatch) 1295 { 1296 struct kvm_ioeventfd kick = { 1297 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1298 .addr = addr, 1299 .flags = KVM_IOEVENTFD_FLAG_PIO, 1300 .len = size, 1301 .fd = fd, 1302 }; 1303 int r; 1304 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1305 if (!kvm_enabled()) { 1306 return -ENOSYS; 1307 } 1308 if (datamatch) { 1309 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1310 } 1311 if (!assign) { 1312 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1313 } 1314 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1315 if (r < 0) { 1316 return r; 1317 } 1318 return 0; 1319 } 1320 1321 1322 static const KVMCapabilityInfo * 1323 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1324 { 1325 while (list->name) { 1326 if (!kvm_check_extension(s, list->value)) { 1327 return list; 1328 } 1329 list++; 1330 } 1331 return NULL; 1332 } 1333 1334 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1335 { 1336 g_assert( 1337 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1338 ); 1339 kvm_max_slot_size = max_slot_size; 1340 } 1341 1342 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1343 { 1344 struct kvm_memory_attributes attrs; 1345 int r; 1346 1347 assert((attr & kvm_supported_memory_attributes) == attr); 1348 attrs.attributes = attr; 1349 attrs.address = start; 1350 attrs.size = size; 1351 attrs.flags = 0; 1352 1353 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1354 if (r) { 1355 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1356 "with attr 0x%" PRIx64 " error '%s'", 1357 start, size, attr, strerror(errno)); 1358 } 1359 return r; 1360 } 1361 1362 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1363 { 1364 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1365 } 1366 1367 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1368 { 1369 return kvm_set_memory_attributes(start, size, 0); 1370 } 1371 1372 /* Called with KVMMemoryListener.slots_lock held */ 1373 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1374 MemoryRegionSection *section, bool add) 1375 { 1376 KVMSlot *mem; 1377 int err; 1378 MemoryRegion *mr = section->mr; 1379 bool writable = !mr->readonly && !mr->rom_device; 1380 hwaddr start_addr, size, slot_size, mr_offset; 1381 ram_addr_t ram_start_offset; 1382 void *ram; 1383 1384 if (!memory_region_is_ram(mr)) { 1385 if (writable || !kvm_readonly_mem_allowed) { 1386 return; 1387 } else if (!mr->romd_mode) { 1388 /* If the memory device is not in romd_mode, then we actually want 1389 * to remove the kvm memory slot so all accesses will trap. */ 1390 add = false; 1391 } 1392 } 1393 1394 size = kvm_align_section(section, &start_addr); 1395 if (!size) { 1396 return; 1397 } 1398 1399 /* The offset of the kvmslot within the memory region */ 1400 mr_offset = section->offset_within_region + start_addr - 1401 section->offset_within_address_space; 1402 1403 /* use aligned delta to align the ram address and offset */ 1404 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1405 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1406 1407 if (!add) { 1408 do { 1409 slot_size = MIN(kvm_max_slot_size, size); 1410 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1411 if (!mem) { 1412 return; 1413 } 1414 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1415 /* 1416 * NOTE: We should be aware of the fact that here we're only 1417 * doing a best effort to sync dirty bits. No matter whether 1418 * we're using dirty log or dirty ring, we ignored two facts: 1419 * 1420 * (1) dirty bits can reside in hardware buffers (PML) 1421 * 1422 * (2) after we collected dirty bits here, pages can be dirtied 1423 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1424 * remove the slot. 1425 * 1426 * Not easy. Let's cross the fingers until it's fixed. 1427 */ 1428 if (kvm_state->kvm_dirty_ring_size) { 1429 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1430 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1431 kvm_slot_sync_dirty_pages(mem); 1432 kvm_slot_get_dirty_log(kvm_state, mem); 1433 } 1434 } else { 1435 kvm_slot_get_dirty_log(kvm_state, mem); 1436 } 1437 kvm_slot_sync_dirty_pages(mem); 1438 } 1439 1440 /* unregister the slot */ 1441 g_free(mem->dirty_bmap); 1442 mem->dirty_bmap = NULL; 1443 mem->memory_size = 0; 1444 mem->flags = 0; 1445 err = kvm_set_user_memory_region(kml, mem, false); 1446 if (err) { 1447 fprintf(stderr, "%s: error unregistering slot: %s\n", 1448 __func__, strerror(-err)); 1449 abort(); 1450 } 1451 start_addr += slot_size; 1452 size -= slot_size; 1453 kml->nr_used_slots--; 1454 } while (size); 1455 return; 1456 } 1457 1458 /* register the new slot */ 1459 do { 1460 slot_size = MIN(kvm_max_slot_size, size); 1461 mem = kvm_alloc_slot(kml); 1462 mem->as_id = kml->as_id; 1463 mem->memory_size = slot_size; 1464 mem->start_addr = start_addr; 1465 mem->ram_start_offset = ram_start_offset; 1466 mem->ram = ram; 1467 mem->flags = kvm_mem_flags(mr); 1468 mem->guest_memfd = mr->ram_block->guest_memfd; 1469 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1470 1471 kvm_slot_init_dirty_bitmap(mem); 1472 err = kvm_set_user_memory_region(kml, mem, true); 1473 if (err) { 1474 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1475 strerror(-err)); 1476 abort(); 1477 } 1478 1479 if (memory_region_has_guest_memfd(mr)) { 1480 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1481 if (err) { 1482 error_report("%s: failed to set memory attribute private: %s", 1483 __func__, strerror(-err)); 1484 exit(1); 1485 } 1486 } 1487 1488 start_addr += slot_size; 1489 ram_start_offset += slot_size; 1490 ram += slot_size; 1491 size -= slot_size; 1492 kml->nr_used_slots++; 1493 } while (size); 1494 } 1495 1496 static void *kvm_dirty_ring_reaper_thread(void *data) 1497 { 1498 KVMState *s = data; 1499 struct KVMDirtyRingReaper *r = &s->reaper; 1500 1501 rcu_register_thread(); 1502 1503 trace_kvm_dirty_ring_reaper("init"); 1504 1505 while (true) { 1506 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1507 trace_kvm_dirty_ring_reaper("wait"); 1508 /* 1509 * TODO: provide a smarter timeout rather than a constant? 1510 */ 1511 sleep(1); 1512 1513 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1514 if (dirtylimit_in_service()) { 1515 continue; 1516 } 1517 1518 trace_kvm_dirty_ring_reaper("wakeup"); 1519 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1520 1521 bql_lock(); 1522 kvm_dirty_ring_reap(s, NULL); 1523 bql_unlock(); 1524 1525 r->reaper_iteration++; 1526 } 1527 1528 trace_kvm_dirty_ring_reaper("exit"); 1529 1530 rcu_unregister_thread(); 1531 1532 return NULL; 1533 } 1534 1535 static void kvm_dirty_ring_reaper_init(KVMState *s) 1536 { 1537 struct KVMDirtyRingReaper *r = &s->reaper; 1538 1539 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1540 kvm_dirty_ring_reaper_thread, 1541 s, QEMU_THREAD_JOINABLE); 1542 } 1543 1544 static int kvm_dirty_ring_init(KVMState *s) 1545 { 1546 uint32_t ring_size = s->kvm_dirty_ring_size; 1547 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1548 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1549 int ret; 1550 1551 s->kvm_dirty_ring_size = 0; 1552 s->kvm_dirty_ring_bytes = 0; 1553 1554 /* Bail if the dirty ring size isn't specified */ 1555 if (!ring_size) { 1556 return 0; 1557 } 1558 1559 /* 1560 * Read the max supported pages. Fall back to dirty logging mode 1561 * if the dirty ring isn't supported. 1562 */ 1563 ret = kvm_vm_check_extension(s, capability); 1564 if (ret <= 0) { 1565 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1566 ret = kvm_vm_check_extension(s, capability); 1567 } 1568 1569 if (ret <= 0) { 1570 warn_report("KVM dirty ring not available, using bitmap method"); 1571 return 0; 1572 } 1573 1574 if (ring_bytes > ret) { 1575 error_report("KVM dirty ring size %" PRIu32 " too big " 1576 "(maximum is %ld). Please use a smaller value.", 1577 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1578 return -EINVAL; 1579 } 1580 1581 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1582 if (ret) { 1583 error_report("Enabling of KVM dirty ring failed: %s. " 1584 "Suggested minimum value is 1024.", strerror(-ret)); 1585 return -EIO; 1586 } 1587 1588 /* Enable the backup bitmap if it is supported */ 1589 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1590 if (ret > 0) { 1591 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1592 if (ret) { 1593 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1594 "%s. ", strerror(-ret)); 1595 return -EIO; 1596 } 1597 1598 s->kvm_dirty_ring_with_bitmap = true; 1599 } 1600 1601 s->kvm_dirty_ring_size = ring_size; 1602 s->kvm_dirty_ring_bytes = ring_bytes; 1603 1604 return 0; 1605 } 1606 1607 static void kvm_region_add(MemoryListener *listener, 1608 MemoryRegionSection *section) 1609 { 1610 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1611 KVMMemoryUpdate *update; 1612 1613 update = g_new0(KVMMemoryUpdate, 1); 1614 update->section = *section; 1615 1616 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1617 } 1618 1619 static void kvm_region_del(MemoryListener *listener, 1620 MemoryRegionSection *section) 1621 { 1622 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1623 KVMMemoryUpdate *update; 1624 1625 update = g_new0(KVMMemoryUpdate, 1); 1626 update->section = *section; 1627 1628 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1629 } 1630 1631 static void kvm_region_commit(MemoryListener *listener) 1632 { 1633 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1634 listener); 1635 KVMMemoryUpdate *u1, *u2; 1636 bool need_inhibit = false; 1637 1638 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1639 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1640 return; 1641 } 1642 1643 /* 1644 * We have to be careful when regions to add overlap with ranges to remove. 1645 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1646 * is currently active. 1647 * 1648 * The lists are order by addresses, so it's easy to find overlaps. 1649 */ 1650 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1651 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1652 while (u1 && u2) { 1653 Range r1, r2; 1654 1655 range_init_nofail(&r1, u1->section.offset_within_address_space, 1656 int128_get64(u1->section.size)); 1657 range_init_nofail(&r2, u2->section.offset_within_address_space, 1658 int128_get64(u2->section.size)); 1659 1660 if (range_overlaps_range(&r1, &r2)) { 1661 need_inhibit = true; 1662 break; 1663 } 1664 if (range_lob(&r1) < range_lob(&r2)) { 1665 u1 = QSIMPLEQ_NEXT(u1, next); 1666 } else { 1667 u2 = QSIMPLEQ_NEXT(u2, next); 1668 } 1669 } 1670 1671 kvm_slots_lock(); 1672 if (need_inhibit) { 1673 accel_ioctl_inhibit_begin(); 1674 } 1675 1676 /* Remove all memslots before adding the new ones. */ 1677 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1678 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1679 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1680 1681 kvm_set_phys_mem(kml, &u1->section, false); 1682 memory_region_unref(u1->section.mr); 1683 1684 g_free(u1); 1685 } 1686 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1687 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1688 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1689 1690 memory_region_ref(u1->section.mr); 1691 kvm_set_phys_mem(kml, &u1->section, true); 1692 1693 g_free(u1); 1694 } 1695 1696 if (need_inhibit) { 1697 accel_ioctl_inhibit_end(); 1698 } 1699 kvm_slots_unlock(); 1700 } 1701 1702 static void kvm_log_sync(MemoryListener *listener, 1703 MemoryRegionSection *section) 1704 { 1705 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1706 1707 kvm_slots_lock(); 1708 kvm_physical_sync_dirty_bitmap(kml, section); 1709 kvm_slots_unlock(); 1710 } 1711 1712 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1713 { 1714 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1715 KVMState *s = kvm_state; 1716 KVMSlot *mem; 1717 int i; 1718 1719 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1720 kvm_dirty_ring_flush(); 1721 1722 /* 1723 * TODO: make this faster when nr_slots is big while there are 1724 * only a few used slots (small VMs). 1725 */ 1726 kvm_slots_lock(); 1727 for (i = 0; i < s->nr_slots; i++) { 1728 mem = &kml->slots[i]; 1729 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1730 kvm_slot_sync_dirty_pages(mem); 1731 1732 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1733 kvm_slot_get_dirty_log(s, mem)) { 1734 kvm_slot_sync_dirty_pages(mem); 1735 } 1736 1737 /* 1738 * This is not needed by KVM_GET_DIRTY_LOG because the 1739 * ioctl will unconditionally overwrite the whole region. 1740 * However kvm dirty ring has no such side effect. 1741 */ 1742 kvm_slot_reset_dirty_pages(mem); 1743 } 1744 } 1745 kvm_slots_unlock(); 1746 } 1747 1748 static void kvm_log_clear(MemoryListener *listener, 1749 MemoryRegionSection *section) 1750 { 1751 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1752 int r; 1753 1754 r = kvm_physical_log_clear(kml, section); 1755 if (r < 0) { 1756 error_report_once("%s: kvm log clear failed: mr=%s " 1757 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1758 section->mr->name, section->offset_within_region, 1759 int128_get64(section->size)); 1760 abort(); 1761 } 1762 } 1763 1764 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1765 MemoryRegionSection *section, 1766 bool match_data, uint64_t data, 1767 EventNotifier *e) 1768 { 1769 int fd = event_notifier_get_fd(e); 1770 int r; 1771 1772 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1773 data, true, int128_get64(section->size), 1774 match_data); 1775 if (r < 0) { 1776 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1777 __func__, strerror(-r), -r); 1778 abort(); 1779 } 1780 } 1781 1782 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1783 MemoryRegionSection *section, 1784 bool match_data, uint64_t data, 1785 EventNotifier *e) 1786 { 1787 int fd = event_notifier_get_fd(e); 1788 int r; 1789 1790 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1791 data, false, int128_get64(section->size), 1792 match_data); 1793 if (r < 0) { 1794 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1795 __func__, strerror(-r), -r); 1796 abort(); 1797 } 1798 } 1799 1800 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1801 MemoryRegionSection *section, 1802 bool match_data, uint64_t data, 1803 EventNotifier *e) 1804 { 1805 int fd = event_notifier_get_fd(e); 1806 int r; 1807 1808 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1809 data, true, int128_get64(section->size), 1810 match_data); 1811 if (r < 0) { 1812 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1813 __func__, strerror(-r), -r); 1814 abort(); 1815 } 1816 } 1817 1818 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1819 MemoryRegionSection *section, 1820 bool match_data, uint64_t data, 1821 EventNotifier *e) 1822 1823 { 1824 int fd = event_notifier_get_fd(e); 1825 int r; 1826 1827 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1828 data, false, int128_get64(section->size), 1829 match_data); 1830 if (r < 0) { 1831 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1832 __func__, strerror(-r), -r); 1833 abort(); 1834 } 1835 } 1836 1837 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1838 AddressSpace *as, int as_id, const char *name) 1839 { 1840 int i; 1841 1842 kml->slots = g_new0(KVMSlot, s->nr_slots); 1843 kml->as_id = as_id; 1844 1845 for (i = 0; i < s->nr_slots; i++) { 1846 kml->slots[i].slot = i; 1847 } 1848 1849 QSIMPLEQ_INIT(&kml->transaction_add); 1850 QSIMPLEQ_INIT(&kml->transaction_del); 1851 1852 kml->listener.region_add = kvm_region_add; 1853 kml->listener.region_del = kvm_region_del; 1854 kml->listener.commit = kvm_region_commit; 1855 kml->listener.log_start = kvm_log_start; 1856 kml->listener.log_stop = kvm_log_stop; 1857 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1858 kml->listener.name = name; 1859 1860 if (s->kvm_dirty_ring_size) { 1861 kml->listener.log_sync_global = kvm_log_sync_global; 1862 } else { 1863 kml->listener.log_sync = kvm_log_sync; 1864 kml->listener.log_clear = kvm_log_clear; 1865 } 1866 1867 memory_listener_register(&kml->listener, as); 1868 1869 for (i = 0; i < s->nr_as; ++i) { 1870 if (!s->as[i].as) { 1871 s->as[i].as = as; 1872 s->as[i].ml = kml; 1873 break; 1874 } 1875 } 1876 } 1877 1878 static MemoryListener kvm_io_listener = { 1879 .name = "kvm-io", 1880 .coalesced_io_add = kvm_coalesce_pio_add, 1881 .coalesced_io_del = kvm_coalesce_pio_del, 1882 .eventfd_add = kvm_io_ioeventfd_add, 1883 .eventfd_del = kvm_io_ioeventfd_del, 1884 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1885 }; 1886 1887 int kvm_set_irq(KVMState *s, int irq, int level) 1888 { 1889 struct kvm_irq_level event; 1890 int ret; 1891 1892 assert(kvm_async_interrupts_enabled()); 1893 1894 event.level = level; 1895 event.irq = irq; 1896 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1897 if (ret < 0) { 1898 perror("kvm_set_irq"); 1899 abort(); 1900 } 1901 1902 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1903 } 1904 1905 #ifdef KVM_CAP_IRQ_ROUTING 1906 typedef struct KVMMSIRoute { 1907 struct kvm_irq_routing_entry kroute; 1908 QTAILQ_ENTRY(KVMMSIRoute) entry; 1909 } KVMMSIRoute; 1910 1911 static void set_gsi(KVMState *s, unsigned int gsi) 1912 { 1913 set_bit(gsi, s->used_gsi_bitmap); 1914 } 1915 1916 static void clear_gsi(KVMState *s, unsigned int gsi) 1917 { 1918 clear_bit(gsi, s->used_gsi_bitmap); 1919 } 1920 1921 void kvm_init_irq_routing(KVMState *s) 1922 { 1923 int gsi_count; 1924 1925 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1926 if (gsi_count > 0) { 1927 /* Round up so we can search ints using ffs */ 1928 s->used_gsi_bitmap = bitmap_new(gsi_count); 1929 s->gsi_count = gsi_count; 1930 } 1931 1932 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1933 s->nr_allocated_irq_routes = 0; 1934 1935 kvm_arch_init_irq_routing(s); 1936 } 1937 1938 void kvm_irqchip_commit_routes(KVMState *s) 1939 { 1940 int ret; 1941 1942 if (kvm_gsi_direct_mapping()) { 1943 return; 1944 } 1945 1946 if (!kvm_gsi_routing_enabled()) { 1947 return; 1948 } 1949 1950 s->irq_routes->flags = 0; 1951 trace_kvm_irqchip_commit_routes(); 1952 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1953 assert(ret == 0); 1954 } 1955 1956 void kvm_add_routing_entry(KVMState *s, 1957 struct kvm_irq_routing_entry *entry) 1958 { 1959 struct kvm_irq_routing_entry *new; 1960 int n, size; 1961 1962 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1963 n = s->nr_allocated_irq_routes * 2; 1964 if (n < 64) { 1965 n = 64; 1966 } 1967 size = sizeof(struct kvm_irq_routing); 1968 size += n * sizeof(*new); 1969 s->irq_routes = g_realloc(s->irq_routes, size); 1970 s->nr_allocated_irq_routes = n; 1971 } 1972 n = s->irq_routes->nr++; 1973 new = &s->irq_routes->entries[n]; 1974 1975 *new = *entry; 1976 1977 set_gsi(s, entry->gsi); 1978 } 1979 1980 static int kvm_update_routing_entry(KVMState *s, 1981 struct kvm_irq_routing_entry *new_entry) 1982 { 1983 struct kvm_irq_routing_entry *entry; 1984 int n; 1985 1986 for (n = 0; n < s->irq_routes->nr; n++) { 1987 entry = &s->irq_routes->entries[n]; 1988 if (entry->gsi != new_entry->gsi) { 1989 continue; 1990 } 1991 1992 if(!memcmp(entry, new_entry, sizeof *entry)) { 1993 return 0; 1994 } 1995 1996 *entry = *new_entry; 1997 1998 return 0; 1999 } 2000 2001 return -ESRCH; 2002 } 2003 2004 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2005 { 2006 struct kvm_irq_routing_entry e = {}; 2007 2008 assert(pin < s->gsi_count); 2009 2010 e.gsi = irq; 2011 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2012 e.flags = 0; 2013 e.u.irqchip.irqchip = irqchip; 2014 e.u.irqchip.pin = pin; 2015 kvm_add_routing_entry(s, &e); 2016 } 2017 2018 void kvm_irqchip_release_virq(KVMState *s, int virq) 2019 { 2020 struct kvm_irq_routing_entry *e; 2021 int i; 2022 2023 if (kvm_gsi_direct_mapping()) { 2024 return; 2025 } 2026 2027 for (i = 0; i < s->irq_routes->nr; i++) { 2028 e = &s->irq_routes->entries[i]; 2029 if (e->gsi == virq) { 2030 s->irq_routes->nr--; 2031 *e = s->irq_routes->entries[s->irq_routes->nr]; 2032 } 2033 } 2034 clear_gsi(s, virq); 2035 kvm_arch_release_virq_post(virq); 2036 trace_kvm_irqchip_release_virq(virq); 2037 } 2038 2039 void kvm_irqchip_add_change_notifier(Notifier *n) 2040 { 2041 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2042 } 2043 2044 void kvm_irqchip_remove_change_notifier(Notifier *n) 2045 { 2046 notifier_remove(n); 2047 } 2048 2049 void kvm_irqchip_change_notify(void) 2050 { 2051 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2052 } 2053 2054 int kvm_irqchip_get_virq(KVMState *s) 2055 { 2056 int next_virq; 2057 2058 /* Return the lowest unused GSI in the bitmap */ 2059 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2060 if (next_virq >= s->gsi_count) { 2061 return -ENOSPC; 2062 } else { 2063 return next_virq; 2064 } 2065 } 2066 2067 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2068 { 2069 struct kvm_msi msi; 2070 2071 msi.address_lo = (uint32_t)msg.address; 2072 msi.address_hi = msg.address >> 32; 2073 msi.data = le32_to_cpu(msg.data); 2074 msi.flags = 0; 2075 memset(msi.pad, 0, sizeof(msi.pad)); 2076 2077 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2078 } 2079 2080 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2081 { 2082 struct kvm_irq_routing_entry kroute = {}; 2083 int virq; 2084 KVMState *s = c->s; 2085 MSIMessage msg = {0, 0}; 2086 2087 if (pci_available && dev) { 2088 msg = pci_get_msi_message(dev, vector); 2089 } 2090 2091 if (kvm_gsi_direct_mapping()) { 2092 return kvm_arch_msi_data_to_gsi(msg.data); 2093 } 2094 2095 if (!kvm_gsi_routing_enabled()) { 2096 return -ENOSYS; 2097 } 2098 2099 virq = kvm_irqchip_get_virq(s); 2100 if (virq < 0) { 2101 return virq; 2102 } 2103 2104 kroute.gsi = virq; 2105 kroute.type = KVM_IRQ_ROUTING_MSI; 2106 kroute.flags = 0; 2107 kroute.u.msi.address_lo = (uint32_t)msg.address; 2108 kroute.u.msi.address_hi = msg.address >> 32; 2109 kroute.u.msi.data = le32_to_cpu(msg.data); 2110 if (pci_available && kvm_msi_devid_required()) { 2111 kroute.flags = KVM_MSI_VALID_DEVID; 2112 kroute.u.msi.devid = pci_requester_id(dev); 2113 } 2114 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2115 kvm_irqchip_release_virq(s, virq); 2116 return -EINVAL; 2117 } 2118 2119 if (s->irq_routes->nr < s->gsi_count) { 2120 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2121 vector, virq); 2122 2123 kvm_add_routing_entry(s, &kroute); 2124 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2125 c->changes++; 2126 } else { 2127 kvm_irqchip_release_virq(s, virq); 2128 return -ENOSPC; 2129 } 2130 2131 return virq; 2132 } 2133 2134 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2135 PCIDevice *dev) 2136 { 2137 struct kvm_irq_routing_entry kroute = {}; 2138 2139 if (kvm_gsi_direct_mapping()) { 2140 return 0; 2141 } 2142 2143 if (!kvm_irqchip_in_kernel()) { 2144 return -ENOSYS; 2145 } 2146 2147 kroute.gsi = virq; 2148 kroute.type = KVM_IRQ_ROUTING_MSI; 2149 kroute.flags = 0; 2150 kroute.u.msi.address_lo = (uint32_t)msg.address; 2151 kroute.u.msi.address_hi = msg.address >> 32; 2152 kroute.u.msi.data = le32_to_cpu(msg.data); 2153 if (pci_available && kvm_msi_devid_required()) { 2154 kroute.flags = KVM_MSI_VALID_DEVID; 2155 kroute.u.msi.devid = pci_requester_id(dev); 2156 } 2157 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2158 return -EINVAL; 2159 } 2160 2161 trace_kvm_irqchip_update_msi_route(virq); 2162 2163 return kvm_update_routing_entry(s, &kroute); 2164 } 2165 2166 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2167 EventNotifier *resample, int virq, 2168 bool assign) 2169 { 2170 int fd = event_notifier_get_fd(event); 2171 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2172 2173 struct kvm_irqfd irqfd = { 2174 .fd = fd, 2175 .gsi = virq, 2176 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2177 }; 2178 2179 if (rfd != -1) { 2180 assert(assign); 2181 if (kvm_irqchip_is_split()) { 2182 /* 2183 * When the slow irqchip (e.g. IOAPIC) is in the 2184 * userspace, KVM kernel resamplefd will not work because 2185 * the EOI of the interrupt will be delivered to userspace 2186 * instead, so the KVM kernel resamplefd kick will be 2187 * skipped. The userspace here mimics what the kernel 2188 * provides with resamplefd, remember the resamplefd and 2189 * kick it when we receive EOI of this IRQ. 2190 * 2191 * This is hackery because IOAPIC is mostly bypassed 2192 * (except EOI broadcasts) when irqfd is used. However 2193 * this can bring much performance back for split irqchip 2194 * with INTx IRQs (for VFIO, this gives 93% perf of the 2195 * full fast path, which is 46% perf boost comparing to 2196 * the INTx slow path). 2197 */ 2198 kvm_resample_fd_insert(virq, resample); 2199 } else { 2200 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2201 irqfd.resamplefd = rfd; 2202 } 2203 } else if (!assign) { 2204 if (kvm_irqchip_is_split()) { 2205 kvm_resample_fd_remove(virq); 2206 } 2207 } 2208 2209 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2210 } 2211 2212 #else /* !KVM_CAP_IRQ_ROUTING */ 2213 2214 void kvm_init_irq_routing(KVMState *s) 2215 { 2216 } 2217 2218 void kvm_irqchip_release_virq(KVMState *s, int virq) 2219 { 2220 } 2221 2222 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2223 { 2224 abort(); 2225 } 2226 2227 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2228 { 2229 return -ENOSYS; 2230 } 2231 2232 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2233 { 2234 return -ENOSYS; 2235 } 2236 2237 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2238 { 2239 return -ENOSYS; 2240 } 2241 2242 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2243 EventNotifier *resample, int virq, 2244 bool assign) 2245 { 2246 abort(); 2247 } 2248 2249 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2250 { 2251 return -ENOSYS; 2252 } 2253 #endif /* !KVM_CAP_IRQ_ROUTING */ 2254 2255 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2256 EventNotifier *rn, int virq) 2257 { 2258 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2259 } 2260 2261 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2262 int virq) 2263 { 2264 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2265 } 2266 2267 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2268 EventNotifier *rn, qemu_irq irq) 2269 { 2270 gpointer key, gsi; 2271 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2272 2273 if (!found) { 2274 return -ENXIO; 2275 } 2276 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2277 } 2278 2279 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2280 qemu_irq irq) 2281 { 2282 gpointer key, gsi; 2283 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2284 2285 if (!found) { 2286 return -ENXIO; 2287 } 2288 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2289 } 2290 2291 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2292 { 2293 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2294 } 2295 2296 static void kvm_irqchip_create(KVMState *s) 2297 { 2298 int ret; 2299 2300 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2301 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2302 ; 2303 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2304 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2305 if (ret < 0) { 2306 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2307 exit(1); 2308 } 2309 } else { 2310 return; 2311 } 2312 2313 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2314 fprintf(stderr, "kvm: irqfd not implemented\n"); 2315 exit(1); 2316 } 2317 2318 /* First probe and see if there's a arch-specific hook to create the 2319 * in-kernel irqchip for us */ 2320 ret = kvm_arch_irqchip_create(s); 2321 if (ret == 0) { 2322 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2323 error_report("Split IRQ chip mode not supported."); 2324 exit(1); 2325 } else { 2326 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2327 } 2328 } 2329 if (ret < 0) { 2330 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2331 exit(1); 2332 } 2333 2334 kvm_kernel_irqchip = true; 2335 /* If we have an in-kernel IRQ chip then we must have asynchronous 2336 * interrupt delivery (though the reverse is not necessarily true) 2337 */ 2338 kvm_async_interrupts_allowed = true; 2339 kvm_halt_in_kernel_allowed = true; 2340 2341 kvm_init_irq_routing(s); 2342 2343 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2344 } 2345 2346 /* Find number of supported CPUs using the recommended 2347 * procedure from the kernel API documentation to cope with 2348 * older kernels that may be missing capabilities. 2349 */ 2350 static int kvm_recommended_vcpus(KVMState *s) 2351 { 2352 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2353 return (ret) ? ret : 4; 2354 } 2355 2356 static int kvm_max_vcpus(KVMState *s) 2357 { 2358 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2359 return (ret) ? ret : kvm_recommended_vcpus(s); 2360 } 2361 2362 static int kvm_max_vcpu_id(KVMState *s) 2363 { 2364 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2365 return (ret) ? ret : kvm_max_vcpus(s); 2366 } 2367 2368 bool kvm_vcpu_id_is_valid(int vcpu_id) 2369 { 2370 KVMState *s = KVM_STATE(current_accel()); 2371 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2372 } 2373 2374 bool kvm_dirty_ring_enabled(void) 2375 { 2376 return kvm_state && kvm_state->kvm_dirty_ring_size; 2377 } 2378 2379 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2380 strList *names, strList *targets, Error **errp); 2381 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2382 2383 uint32_t kvm_dirty_ring_size(void) 2384 { 2385 return kvm_state->kvm_dirty_ring_size; 2386 } 2387 2388 static int kvm_init(MachineState *ms) 2389 { 2390 MachineClass *mc = MACHINE_GET_CLASS(ms); 2391 static const char upgrade_note[] = 2392 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2393 "(see http://sourceforge.net/projects/kvm).\n"; 2394 const struct { 2395 const char *name; 2396 int num; 2397 } num_cpus[] = { 2398 { "SMP", ms->smp.cpus }, 2399 { "hotpluggable", ms->smp.max_cpus }, 2400 { /* end of list */ } 2401 }, *nc = num_cpus; 2402 int soft_vcpus_limit, hard_vcpus_limit; 2403 KVMState *s; 2404 const KVMCapabilityInfo *missing_cap; 2405 int ret; 2406 int type; 2407 uint64_t dirty_log_manual_caps; 2408 2409 qemu_mutex_init(&kml_slots_lock); 2410 2411 s = KVM_STATE(ms->accelerator); 2412 2413 /* 2414 * On systems where the kernel can support different base page 2415 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2416 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2417 * page size for the system though. 2418 */ 2419 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2420 2421 s->sigmask_len = 8; 2422 accel_blocker_init(); 2423 2424 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2425 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2426 #endif 2427 QLIST_INIT(&s->kvm_parked_vcpus); 2428 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2429 if (s->fd == -1) { 2430 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2431 ret = -errno; 2432 goto err; 2433 } 2434 2435 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2436 if (ret < KVM_API_VERSION) { 2437 if (ret >= 0) { 2438 ret = -EINVAL; 2439 } 2440 fprintf(stderr, "kvm version too old\n"); 2441 goto err; 2442 } 2443 2444 if (ret > KVM_API_VERSION) { 2445 ret = -EINVAL; 2446 fprintf(stderr, "kvm version not supported\n"); 2447 goto err; 2448 } 2449 2450 kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2451 kvm_guest_memfd_supported = 2452 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2453 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2454 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2455 2456 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2457 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2458 2459 /* If unspecified, use the default value */ 2460 if (!s->nr_slots) { 2461 s->nr_slots = 32; 2462 } 2463 2464 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2465 if (s->nr_as <= 1) { 2466 s->nr_as = 1; 2467 } 2468 s->as = g_new0(struct KVMAs, s->nr_as); 2469 2470 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2471 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2472 "kvm-type", 2473 &error_abort); 2474 type = mc->kvm_type(ms, kvm_type); 2475 } else if (mc->kvm_type) { 2476 type = mc->kvm_type(ms, NULL); 2477 } else { 2478 type = kvm_arch_get_default_type(ms); 2479 } 2480 2481 if (type < 0) { 2482 ret = -EINVAL; 2483 goto err; 2484 } 2485 2486 do { 2487 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2488 } while (ret == -EINTR); 2489 2490 if (ret < 0) { 2491 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2492 strerror(-ret)); 2493 2494 #ifdef TARGET_S390X 2495 if (ret == -EINVAL) { 2496 fprintf(stderr, 2497 "Host kernel setup problem detected. Please verify:\n"); 2498 fprintf(stderr, "- for kernels supporting the switch_amode or" 2499 " user_mode parameters, whether\n"); 2500 fprintf(stderr, 2501 " user space is running in primary address space\n"); 2502 fprintf(stderr, 2503 "- for kernels supporting the vm.allocate_pgste sysctl, " 2504 "whether it is enabled\n"); 2505 } 2506 #elif defined(TARGET_PPC) 2507 if (ret == -EINVAL) { 2508 fprintf(stderr, 2509 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2510 (type == 2) ? "pr" : "hv"); 2511 } 2512 #endif 2513 goto err; 2514 } 2515 2516 s->vmfd = ret; 2517 2518 /* check the vcpu limits */ 2519 soft_vcpus_limit = kvm_recommended_vcpus(s); 2520 hard_vcpus_limit = kvm_max_vcpus(s); 2521 2522 while (nc->name) { 2523 if (nc->num > soft_vcpus_limit) { 2524 warn_report("Number of %s cpus requested (%d) exceeds " 2525 "the recommended cpus supported by KVM (%d)", 2526 nc->name, nc->num, soft_vcpus_limit); 2527 2528 if (nc->num > hard_vcpus_limit) { 2529 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2530 "the maximum cpus supported by KVM (%d)\n", 2531 nc->name, nc->num, hard_vcpus_limit); 2532 exit(1); 2533 } 2534 } 2535 nc++; 2536 } 2537 2538 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2539 if (!missing_cap) { 2540 missing_cap = 2541 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2542 } 2543 if (missing_cap) { 2544 ret = -EINVAL; 2545 fprintf(stderr, "kvm does not support %s\n%s", 2546 missing_cap->name, upgrade_note); 2547 goto err; 2548 } 2549 2550 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2551 s->coalesced_pio = s->coalesced_mmio && 2552 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2553 2554 /* 2555 * Enable KVM dirty ring if supported, otherwise fall back to 2556 * dirty logging mode 2557 */ 2558 ret = kvm_dirty_ring_init(s); 2559 if (ret < 0) { 2560 goto err; 2561 } 2562 2563 /* 2564 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2565 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2566 * page is wr-protected initially, which is against how kvm dirty ring is 2567 * usage - kvm dirty ring requires all pages are wr-protected at the very 2568 * beginning. Enabling this feature for dirty ring causes data corruption. 2569 * 2570 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2571 * we may expect a higher stall time when starting the migration. In the 2572 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2573 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2574 * guest pages. 2575 */ 2576 if (!s->kvm_dirty_ring_size) { 2577 dirty_log_manual_caps = 2578 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2579 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2580 KVM_DIRTY_LOG_INITIALLY_SET); 2581 s->manual_dirty_log_protect = dirty_log_manual_caps; 2582 if (dirty_log_manual_caps) { 2583 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2584 dirty_log_manual_caps); 2585 if (ret) { 2586 warn_report("Trying to enable capability %"PRIu64" of " 2587 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2588 "Falling back to the legacy mode. ", 2589 dirty_log_manual_caps); 2590 s->manual_dirty_log_protect = 0; 2591 } 2592 } 2593 } 2594 2595 #ifdef KVM_CAP_VCPU_EVENTS 2596 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2597 #endif 2598 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2599 2600 s->irq_set_ioctl = KVM_IRQ_LINE; 2601 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2602 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2603 } 2604 2605 kvm_readonly_mem_allowed = 2606 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2607 2608 kvm_resamplefds_allowed = 2609 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2610 2611 kvm_vm_attributes_allowed = 2612 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2613 2614 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2615 kvm_has_guest_debug = 2616 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2617 #endif 2618 2619 kvm_sstep_flags = 0; 2620 if (kvm_has_guest_debug) { 2621 kvm_sstep_flags = SSTEP_ENABLE; 2622 2623 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2624 int guest_debug_flags = 2625 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2626 2627 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2628 kvm_sstep_flags |= SSTEP_NOIRQ; 2629 } 2630 #endif 2631 } 2632 2633 kvm_state = s; 2634 2635 ret = kvm_arch_init(ms, s); 2636 if (ret < 0) { 2637 goto err; 2638 } 2639 2640 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2641 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2642 } 2643 2644 qemu_register_reset(kvm_unpoison_all, NULL); 2645 2646 if (s->kernel_irqchip_allowed) { 2647 kvm_irqchip_create(s); 2648 } 2649 2650 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2651 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2652 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2653 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2654 2655 kvm_memory_listener_register(s, &s->memory_listener, 2656 &address_space_memory, 0, "kvm-memory"); 2657 memory_listener_register(&kvm_io_listener, 2658 &address_space_io); 2659 2660 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2661 if (!s->sync_mmu) { 2662 ret = ram_block_discard_disable(true); 2663 assert(!ret); 2664 } 2665 2666 if (s->kvm_dirty_ring_size) { 2667 kvm_dirty_ring_reaper_init(s); 2668 } 2669 2670 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2671 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2672 query_stats_schemas_cb); 2673 } 2674 2675 return 0; 2676 2677 err: 2678 assert(ret < 0); 2679 if (s->vmfd >= 0) { 2680 close(s->vmfd); 2681 } 2682 if (s->fd != -1) { 2683 close(s->fd); 2684 } 2685 g_free(s->as); 2686 g_free(s->memory_listener.slots); 2687 2688 return ret; 2689 } 2690 2691 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2692 { 2693 s->sigmask_len = sigmask_len; 2694 } 2695 2696 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2697 int size, uint32_t count) 2698 { 2699 int i; 2700 uint8_t *ptr = data; 2701 2702 for (i = 0; i < count; i++) { 2703 address_space_rw(&address_space_io, port, attrs, 2704 ptr, size, 2705 direction == KVM_EXIT_IO_OUT); 2706 ptr += size; 2707 } 2708 } 2709 2710 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2711 { 2712 int i; 2713 2714 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2715 run->internal.suberror); 2716 2717 for (i = 0; i < run->internal.ndata; ++i) { 2718 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2719 i, (uint64_t)run->internal.data[i]); 2720 } 2721 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2722 fprintf(stderr, "emulation failure\n"); 2723 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2724 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2725 return EXCP_INTERRUPT; 2726 } 2727 } 2728 /* FIXME: Should trigger a qmp message to let management know 2729 * something went wrong. 2730 */ 2731 return -1; 2732 } 2733 2734 void kvm_flush_coalesced_mmio_buffer(void) 2735 { 2736 KVMState *s = kvm_state; 2737 2738 if (!s || s->coalesced_flush_in_progress) { 2739 return; 2740 } 2741 2742 s->coalesced_flush_in_progress = true; 2743 2744 if (s->coalesced_mmio_ring) { 2745 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2746 while (ring->first != ring->last) { 2747 struct kvm_coalesced_mmio *ent; 2748 2749 ent = &ring->coalesced_mmio[ring->first]; 2750 2751 if (ent->pio == 1) { 2752 address_space_write(&address_space_io, ent->phys_addr, 2753 MEMTXATTRS_UNSPECIFIED, ent->data, 2754 ent->len); 2755 } else { 2756 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2757 } 2758 smp_wmb(); 2759 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2760 } 2761 } 2762 2763 s->coalesced_flush_in_progress = false; 2764 } 2765 2766 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2767 { 2768 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2769 int ret = kvm_arch_get_registers(cpu); 2770 if (ret) { 2771 error_report("Failed to get registers: %s", strerror(-ret)); 2772 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2773 vm_stop(RUN_STATE_INTERNAL_ERROR); 2774 } 2775 2776 cpu->vcpu_dirty = true; 2777 } 2778 } 2779 2780 void kvm_cpu_synchronize_state(CPUState *cpu) 2781 { 2782 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2783 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2784 } 2785 } 2786 2787 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2788 { 2789 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2790 if (ret) { 2791 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2792 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2793 vm_stop(RUN_STATE_INTERNAL_ERROR); 2794 } 2795 2796 cpu->vcpu_dirty = false; 2797 } 2798 2799 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2800 { 2801 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2802 } 2803 2804 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2805 { 2806 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2807 if (ret) { 2808 error_report("Failed to put registers after init: %s", strerror(-ret)); 2809 exit(1); 2810 } 2811 2812 cpu->vcpu_dirty = false; 2813 } 2814 2815 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2816 { 2817 if (!kvm_state->guest_state_protected) { 2818 /* 2819 * This runs before the machine_init_done notifiers, and is the last 2820 * opportunity to synchronize the state of confidential guests. 2821 */ 2822 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2823 } 2824 } 2825 2826 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2827 { 2828 cpu->vcpu_dirty = true; 2829 } 2830 2831 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2832 { 2833 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2834 } 2835 2836 #ifdef KVM_HAVE_MCE_INJECTION 2837 static __thread void *pending_sigbus_addr; 2838 static __thread int pending_sigbus_code; 2839 static __thread bool have_sigbus_pending; 2840 #endif 2841 2842 static void kvm_cpu_kick(CPUState *cpu) 2843 { 2844 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2845 } 2846 2847 static void kvm_cpu_kick_self(void) 2848 { 2849 if (kvm_immediate_exit) { 2850 kvm_cpu_kick(current_cpu); 2851 } else { 2852 qemu_cpu_kick_self(); 2853 } 2854 } 2855 2856 static void kvm_eat_signals(CPUState *cpu) 2857 { 2858 struct timespec ts = { 0, 0 }; 2859 siginfo_t siginfo; 2860 sigset_t waitset; 2861 sigset_t chkset; 2862 int r; 2863 2864 if (kvm_immediate_exit) { 2865 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2866 /* Write kvm_run->immediate_exit before the cpu->exit_request 2867 * write in kvm_cpu_exec. 2868 */ 2869 smp_wmb(); 2870 return; 2871 } 2872 2873 sigemptyset(&waitset); 2874 sigaddset(&waitset, SIG_IPI); 2875 2876 do { 2877 r = sigtimedwait(&waitset, &siginfo, &ts); 2878 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2879 perror("sigtimedwait"); 2880 exit(1); 2881 } 2882 2883 r = sigpending(&chkset); 2884 if (r == -1) { 2885 perror("sigpending"); 2886 exit(1); 2887 } 2888 } while (sigismember(&chkset, SIG_IPI)); 2889 } 2890 2891 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 2892 { 2893 MemoryRegionSection section; 2894 ram_addr_t offset; 2895 MemoryRegion *mr; 2896 RAMBlock *rb; 2897 void *addr; 2898 int ret = -1; 2899 2900 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 2901 2902 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 2903 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 2904 return -1; 2905 } 2906 2907 if (!size) { 2908 return -1; 2909 } 2910 2911 section = memory_region_find(get_system_memory(), start, size); 2912 mr = section.mr; 2913 if (!mr) { 2914 /* 2915 * Ignore converting non-assigned region to shared. 2916 * 2917 * TDX requires vMMIO region to be shared to inject #VE to guest. 2918 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 2919 * and vIO-APIC 0xFEC00000 4K page. 2920 * OVMF assigns 32bit PCI MMIO region to 2921 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 2922 */ 2923 if (!to_private) { 2924 return 0; 2925 } 2926 return -1; 2927 } 2928 2929 if (!memory_region_has_guest_memfd(mr)) { 2930 /* 2931 * Because vMMIO region must be shared, guest TD may convert vMMIO 2932 * region to shared explicitly. Don't complain such case. See 2933 * memory_region_type() for checking if the region is MMIO region. 2934 */ 2935 if (!to_private && 2936 !memory_region_is_ram(mr) && 2937 !memory_region_is_ram_device(mr) && 2938 !memory_region_is_rom(mr) && 2939 !memory_region_is_romd(mr)) { 2940 ret = 0; 2941 } else { 2942 error_report("Convert non guest_memfd backed memory region " 2943 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 2944 start, size, to_private ? "private" : "shared"); 2945 } 2946 goto out_unref; 2947 } 2948 2949 if (to_private) { 2950 ret = kvm_set_memory_attributes_private(start, size); 2951 } else { 2952 ret = kvm_set_memory_attributes_shared(start, size); 2953 } 2954 if (ret) { 2955 goto out_unref; 2956 } 2957 2958 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 2959 rb = qemu_ram_block_from_host(addr, false, &offset); 2960 2961 if (to_private) { 2962 if (rb->page_size != qemu_real_host_page_size()) { 2963 /* 2964 * shared memory is backed by hugetlb, which is supposed to be 2965 * pre-allocated and doesn't need to be discarded 2966 */ 2967 goto out_unref; 2968 } 2969 ret = ram_block_discard_range(rb, offset, size); 2970 } else { 2971 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 2972 } 2973 2974 out_unref: 2975 memory_region_unref(mr); 2976 return ret; 2977 } 2978 2979 int kvm_cpu_exec(CPUState *cpu) 2980 { 2981 struct kvm_run *run = cpu->kvm_run; 2982 int ret, run_ret; 2983 2984 trace_kvm_cpu_exec(); 2985 2986 if (kvm_arch_process_async_events(cpu)) { 2987 qatomic_set(&cpu->exit_request, 0); 2988 return EXCP_HLT; 2989 } 2990 2991 bql_unlock(); 2992 cpu_exec_start(cpu); 2993 2994 do { 2995 MemTxAttrs attrs; 2996 2997 if (cpu->vcpu_dirty) { 2998 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2999 if (ret) { 3000 error_report("Failed to put registers after init: %s", 3001 strerror(-ret)); 3002 ret = -1; 3003 break; 3004 } 3005 3006 cpu->vcpu_dirty = false; 3007 } 3008 3009 kvm_arch_pre_run(cpu, run); 3010 if (qatomic_read(&cpu->exit_request)) { 3011 trace_kvm_interrupt_exit_request(); 3012 /* 3013 * KVM requires us to reenter the kernel after IO exits to complete 3014 * instruction emulation. This self-signal will ensure that we 3015 * leave ASAP again. 3016 */ 3017 kvm_cpu_kick_self(); 3018 } 3019 3020 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3021 * Matching barrier in kvm_eat_signals. 3022 */ 3023 smp_rmb(); 3024 3025 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3026 3027 attrs = kvm_arch_post_run(cpu, run); 3028 3029 #ifdef KVM_HAVE_MCE_INJECTION 3030 if (unlikely(have_sigbus_pending)) { 3031 bql_lock(); 3032 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3033 pending_sigbus_addr); 3034 have_sigbus_pending = false; 3035 bql_unlock(); 3036 } 3037 #endif 3038 3039 if (run_ret < 0) { 3040 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3041 trace_kvm_io_window_exit(); 3042 kvm_eat_signals(cpu); 3043 ret = EXCP_INTERRUPT; 3044 break; 3045 } 3046 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3047 fprintf(stderr, "error: kvm run failed %s\n", 3048 strerror(-run_ret)); 3049 #ifdef TARGET_PPC 3050 if (run_ret == -EBUSY) { 3051 fprintf(stderr, 3052 "This is probably because your SMT is enabled.\n" 3053 "VCPU can only run on primary threads with all " 3054 "secondary threads offline.\n"); 3055 } 3056 #endif 3057 ret = -1; 3058 break; 3059 } 3060 } 3061 3062 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3063 switch (run->exit_reason) { 3064 case KVM_EXIT_IO: 3065 /* Called outside BQL */ 3066 kvm_handle_io(run->io.port, attrs, 3067 (uint8_t *)run + run->io.data_offset, 3068 run->io.direction, 3069 run->io.size, 3070 run->io.count); 3071 ret = 0; 3072 break; 3073 case KVM_EXIT_MMIO: 3074 /* Called outside BQL */ 3075 address_space_rw(&address_space_memory, 3076 run->mmio.phys_addr, attrs, 3077 run->mmio.data, 3078 run->mmio.len, 3079 run->mmio.is_write); 3080 ret = 0; 3081 break; 3082 case KVM_EXIT_IRQ_WINDOW_OPEN: 3083 ret = EXCP_INTERRUPT; 3084 break; 3085 case KVM_EXIT_SHUTDOWN: 3086 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3087 ret = EXCP_INTERRUPT; 3088 break; 3089 case KVM_EXIT_UNKNOWN: 3090 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3091 (uint64_t)run->hw.hardware_exit_reason); 3092 ret = -1; 3093 break; 3094 case KVM_EXIT_INTERNAL_ERROR: 3095 ret = kvm_handle_internal_error(cpu, run); 3096 break; 3097 case KVM_EXIT_DIRTY_RING_FULL: 3098 /* 3099 * We shouldn't continue if the dirty ring of this vcpu is 3100 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3101 */ 3102 trace_kvm_dirty_ring_full(cpu->cpu_index); 3103 bql_lock(); 3104 /* 3105 * We throttle vCPU by making it sleep once it exit from kernel 3106 * due to dirty ring full. In the dirtylimit scenario, reaping 3107 * all vCPUs after a single vCPU dirty ring get full result in 3108 * the miss of sleep, so just reap the ring-fulled vCPU. 3109 */ 3110 if (dirtylimit_in_service()) { 3111 kvm_dirty_ring_reap(kvm_state, cpu); 3112 } else { 3113 kvm_dirty_ring_reap(kvm_state, NULL); 3114 } 3115 bql_unlock(); 3116 dirtylimit_vcpu_execute(cpu); 3117 ret = 0; 3118 break; 3119 case KVM_EXIT_SYSTEM_EVENT: 3120 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3121 switch (run->system_event.type) { 3122 case KVM_SYSTEM_EVENT_SHUTDOWN: 3123 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3124 ret = EXCP_INTERRUPT; 3125 break; 3126 case KVM_SYSTEM_EVENT_RESET: 3127 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3128 ret = EXCP_INTERRUPT; 3129 break; 3130 case KVM_SYSTEM_EVENT_CRASH: 3131 kvm_cpu_synchronize_state(cpu); 3132 bql_lock(); 3133 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3134 bql_unlock(); 3135 ret = 0; 3136 break; 3137 default: 3138 ret = kvm_arch_handle_exit(cpu, run); 3139 break; 3140 } 3141 break; 3142 case KVM_EXIT_MEMORY_FAULT: 3143 trace_kvm_memory_fault(run->memory_fault.gpa, 3144 run->memory_fault.size, 3145 run->memory_fault.flags); 3146 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3147 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3148 (uint64_t)run->memory_fault.flags); 3149 ret = -1; 3150 break; 3151 } 3152 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3153 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3154 break; 3155 default: 3156 ret = kvm_arch_handle_exit(cpu, run); 3157 break; 3158 } 3159 } while (ret == 0); 3160 3161 cpu_exec_end(cpu); 3162 bql_lock(); 3163 3164 if (ret < 0) { 3165 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3166 vm_stop(RUN_STATE_INTERNAL_ERROR); 3167 } 3168 3169 qatomic_set(&cpu->exit_request, 0); 3170 return ret; 3171 } 3172 3173 int kvm_ioctl(KVMState *s, int type, ...) 3174 { 3175 int ret; 3176 void *arg; 3177 va_list ap; 3178 3179 va_start(ap, type); 3180 arg = va_arg(ap, void *); 3181 va_end(ap); 3182 3183 trace_kvm_ioctl(type, arg); 3184 ret = ioctl(s->fd, type, arg); 3185 if (ret == -1) { 3186 ret = -errno; 3187 } 3188 return ret; 3189 } 3190 3191 int kvm_vm_ioctl(KVMState *s, int type, ...) 3192 { 3193 int ret; 3194 void *arg; 3195 va_list ap; 3196 3197 va_start(ap, type); 3198 arg = va_arg(ap, void *); 3199 va_end(ap); 3200 3201 trace_kvm_vm_ioctl(type, arg); 3202 accel_ioctl_begin(); 3203 ret = ioctl(s->vmfd, type, arg); 3204 accel_ioctl_end(); 3205 if (ret == -1) { 3206 ret = -errno; 3207 } 3208 return ret; 3209 } 3210 3211 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3212 { 3213 int ret; 3214 void *arg; 3215 va_list ap; 3216 3217 va_start(ap, type); 3218 arg = va_arg(ap, void *); 3219 va_end(ap); 3220 3221 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3222 accel_cpu_ioctl_begin(cpu); 3223 ret = ioctl(cpu->kvm_fd, type, arg); 3224 accel_cpu_ioctl_end(cpu); 3225 if (ret == -1) { 3226 ret = -errno; 3227 } 3228 return ret; 3229 } 3230 3231 int kvm_device_ioctl(int fd, int type, ...) 3232 { 3233 int ret; 3234 void *arg; 3235 va_list ap; 3236 3237 va_start(ap, type); 3238 arg = va_arg(ap, void *); 3239 va_end(ap); 3240 3241 trace_kvm_device_ioctl(fd, type, arg); 3242 accel_ioctl_begin(); 3243 ret = ioctl(fd, type, arg); 3244 accel_ioctl_end(); 3245 if (ret == -1) { 3246 ret = -errno; 3247 } 3248 return ret; 3249 } 3250 3251 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3252 { 3253 int ret; 3254 struct kvm_device_attr attribute = { 3255 .group = group, 3256 .attr = attr, 3257 }; 3258 3259 if (!kvm_vm_attributes_allowed) { 3260 return 0; 3261 } 3262 3263 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3264 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3265 return ret ? 0 : 1; 3266 } 3267 3268 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3269 { 3270 struct kvm_device_attr attribute = { 3271 .group = group, 3272 .attr = attr, 3273 .flags = 0, 3274 }; 3275 3276 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3277 } 3278 3279 int kvm_device_access(int fd, int group, uint64_t attr, 3280 void *val, bool write, Error **errp) 3281 { 3282 struct kvm_device_attr kvmattr; 3283 int err; 3284 3285 kvmattr.flags = 0; 3286 kvmattr.group = group; 3287 kvmattr.attr = attr; 3288 kvmattr.addr = (uintptr_t)val; 3289 3290 err = kvm_device_ioctl(fd, 3291 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3292 &kvmattr); 3293 if (err < 0) { 3294 error_setg_errno(errp, -err, 3295 "KVM_%s_DEVICE_ATTR failed: Group %d " 3296 "attr 0x%016" PRIx64, 3297 write ? "SET" : "GET", group, attr); 3298 } 3299 return err; 3300 } 3301 3302 bool kvm_has_sync_mmu(void) 3303 { 3304 return kvm_state->sync_mmu; 3305 } 3306 3307 int kvm_has_vcpu_events(void) 3308 { 3309 return kvm_state->vcpu_events; 3310 } 3311 3312 int kvm_max_nested_state_length(void) 3313 { 3314 return kvm_state->max_nested_state_len; 3315 } 3316 3317 int kvm_has_gsi_routing(void) 3318 { 3319 #ifdef KVM_CAP_IRQ_ROUTING 3320 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3321 #else 3322 return false; 3323 #endif 3324 } 3325 3326 bool kvm_arm_supports_user_irq(void) 3327 { 3328 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3329 } 3330 3331 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3332 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3333 { 3334 struct kvm_sw_breakpoint *bp; 3335 3336 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3337 if (bp->pc == pc) { 3338 return bp; 3339 } 3340 } 3341 return NULL; 3342 } 3343 3344 int kvm_sw_breakpoints_active(CPUState *cpu) 3345 { 3346 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3347 } 3348 3349 struct kvm_set_guest_debug_data { 3350 struct kvm_guest_debug dbg; 3351 int err; 3352 }; 3353 3354 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3355 { 3356 struct kvm_set_guest_debug_data *dbg_data = 3357 (struct kvm_set_guest_debug_data *) data.host_ptr; 3358 3359 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3360 &dbg_data->dbg); 3361 } 3362 3363 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3364 { 3365 struct kvm_set_guest_debug_data data; 3366 3367 data.dbg.control = reinject_trap; 3368 3369 if (cpu->singlestep_enabled) { 3370 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3371 3372 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3373 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3374 } 3375 } 3376 kvm_arch_update_guest_debug(cpu, &data.dbg); 3377 3378 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3379 RUN_ON_CPU_HOST_PTR(&data)); 3380 return data.err; 3381 } 3382 3383 bool kvm_supports_guest_debug(void) 3384 { 3385 /* probed during kvm_init() */ 3386 return kvm_has_guest_debug; 3387 } 3388 3389 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3390 { 3391 struct kvm_sw_breakpoint *bp; 3392 int err; 3393 3394 if (type == GDB_BREAKPOINT_SW) { 3395 bp = kvm_find_sw_breakpoint(cpu, addr); 3396 if (bp) { 3397 bp->use_count++; 3398 return 0; 3399 } 3400 3401 bp = g_new(struct kvm_sw_breakpoint, 1); 3402 bp->pc = addr; 3403 bp->use_count = 1; 3404 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3405 if (err) { 3406 g_free(bp); 3407 return err; 3408 } 3409 3410 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3411 } else { 3412 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3413 if (err) { 3414 return err; 3415 } 3416 } 3417 3418 CPU_FOREACH(cpu) { 3419 err = kvm_update_guest_debug(cpu, 0); 3420 if (err) { 3421 return err; 3422 } 3423 } 3424 return 0; 3425 } 3426 3427 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3428 { 3429 struct kvm_sw_breakpoint *bp; 3430 int err; 3431 3432 if (type == GDB_BREAKPOINT_SW) { 3433 bp = kvm_find_sw_breakpoint(cpu, addr); 3434 if (!bp) { 3435 return -ENOENT; 3436 } 3437 3438 if (bp->use_count > 1) { 3439 bp->use_count--; 3440 return 0; 3441 } 3442 3443 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3444 if (err) { 3445 return err; 3446 } 3447 3448 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3449 g_free(bp); 3450 } else { 3451 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3452 if (err) { 3453 return err; 3454 } 3455 } 3456 3457 CPU_FOREACH(cpu) { 3458 err = kvm_update_guest_debug(cpu, 0); 3459 if (err) { 3460 return err; 3461 } 3462 } 3463 return 0; 3464 } 3465 3466 void kvm_remove_all_breakpoints(CPUState *cpu) 3467 { 3468 struct kvm_sw_breakpoint *bp, *next; 3469 KVMState *s = cpu->kvm_state; 3470 CPUState *tmpcpu; 3471 3472 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3473 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3474 /* Try harder to find a CPU that currently sees the breakpoint. */ 3475 CPU_FOREACH(tmpcpu) { 3476 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3477 break; 3478 } 3479 } 3480 } 3481 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3482 g_free(bp); 3483 } 3484 kvm_arch_remove_all_hw_breakpoints(); 3485 3486 CPU_FOREACH(cpu) { 3487 kvm_update_guest_debug(cpu, 0); 3488 } 3489 } 3490 3491 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3492 3493 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3494 { 3495 KVMState *s = kvm_state; 3496 struct kvm_signal_mask *sigmask; 3497 int r; 3498 3499 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3500 3501 sigmask->len = s->sigmask_len; 3502 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3503 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3504 g_free(sigmask); 3505 3506 return r; 3507 } 3508 3509 static void kvm_ipi_signal(int sig) 3510 { 3511 if (current_cpu) { 3512 assert(kvm_immediate_exit); 3513 kvm_cpu_kick(current_cpu); 3514 } 3515 } 3516 3517 void kvm_init_cpu_signals(CPUState *cpu) 3518 { 3519 int r; 3520 sigset_t set; 3521 struct sigaction sigact; 3522 3523 memset(&sigact, 0, sizeof(sigact)); 3524 sigact.sa_handler = kvm_ipi_signal; 3525 sigaction(SIG_IPI, &sigact, NULL); 3526 3527 pthread_sigmask(SIG_BLOCK, NULL, &set); 3528 #if defined KVM_HAVE_MCE_INJECTION 3529 sigdelset(&set, SIGBUS); 3530 pthread_sigmask(SIG_SETMASK, &set, NULL); 3531 #endif 3532 sigdelset(&set, SIG_IPI); 3533 if (kvm_immediate_exit) { 3534 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3535 } else { 3536 r = kvm_set_signal_mask(cpu, &set); 3537 } 3538 if (r) { 3539 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3540 exit(1); 3541 } 3542 } 3543 3544 /* Called asynchronously in VCPU thread. */ 3545 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3546 { 3547 #ifdef KVM_HAVE_MCE_INJECTION 3548 if (have_sigbus_pending) { 3549 return 1; 3550 } 3551 have_sigbus_pending = true; 3552 pending_sigbus_addr = addr; 3553 pending_sigbus_code = code; 3554 qatomic_set(&cpu->exit_request, 1); 3555 return 0; 3556 #else 3557 return 1; 3558 #endif 3559 } 3560 3561 /* Called synchronously (via signalfd) in main thread. */ 3562 int kvm_on_sigbus(int code, void *addr) 3563 { 3564 #ifdef KVM_HAVE_MCE_INJECTION 3565 /* Action required MCE kills the process if SIGBUS is blocked. Because 3566 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3567 * we can only get action optional here. 3568 */ 3569 assert(code != BUS_MCEERR_AR); 3570 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3571 return 0; 3572 #else 3573 return 1; 3574 #endif 3575 } 3576 3577 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3578 { 3579 int ret; 3580 struct kvm_create_device create_dev; 3581 3582 create_dev.type = type; 3583 create_dev.fd = -1; 3584 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3585 3586 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3587 return -ENOTSUP; 3588 } 3589 3590 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3591 if (ret) { 3592 return ret; 3593 } 3594 3595 return test ? 0 : create_dev.fd; 3596 } 3597 3598 bool kvm_device_supported(int vmfd, uint64_t type) 3599 { 3600 struct kvm_create_device create_dev = { 3601 .type = type, 3602 .fd = -1, 3603 .flags = KVM_CREATE_DEVICE_TEST, 3604 }; 3605 3606 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3607 return false; 3608 } 3609 3610 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3611 } 3612 3613 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3614 { 3615 struct kvm_one_reg reg; 3616 int r; 3617 3618 reg.id = id; 3619 reg.addr = (uintptr_t) source; 3620 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3621 if (r) { 3622 trace_kvm_failed_reg_set(id, strerror(-r)); 3623 } 3624 return r; 3625 } 3626 3627 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3628 { 3629 struct kvm_one_reg reg; 3630 int r; 3631 3632 reg.id = id; 3633 reg.addr = (uintptr_t) target; 3634 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3635 if (r) { 3636 trace_kvm_failed_reg_get(id, strerror(-r)); 3637 } 3638 return r; 3639 } 3640 3641 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3642 hwaddr start_addr, hwaddr size) 3643 { 3644 KVMState *kvm = KVM_STATE(ms->accelerator); 3645 int i; 3646 3647 for (i = 0; i < kvm->nr_as; ++i) { 3648 if (kvm->as[i].as == as && kvm->as[i].ml) { 3649 size = MIN(kvm_max_slot_size, size); 3650 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3651 start_addr, size); 3652 } 3653 } 3654 3655 return false; 3656 } 3657 3658 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3659 const char *name, void *opaque, 3660 Error **errp) 3661 { 3662 KVMState *s = KVM_STATE(obj); 3663 int64_t value = s->kvm_shadow_mem; 3664 3665 visit_type_int(v, name, &value, errp); 3666 } 3667 3668 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3669 const char *name, void *opaque, 3670 Error **errp) 3671 { 3672 KVMState *s = KVM_STATE(obj); 3673 int64_t value; 3674 3675 if (s->fd != -1) { 3676 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3677 return; 3678 } 3679 3680 if (!visit_type_int(v, name, &value, errp)) { 3681 return; 3682 } 3683 3684 s->kvm_shadow_mem = value; 3685 } 3686 3687 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3688 const char *name, void *opaque, 3689 Error **errp) 3690 { 3691 KVMState *s = KVM_STATE(obj); 3692 OnOffSplit mode; 3693 3694 if (s->fd != -1) { 3695 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3696 return; 3697 } 3698 3699 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3700 return; 3701 } 3702 switch (mode) { 3703 case ON_OFF_SPLIT_ON: 3704 s->kernel_irqchip_allowed = true; 3705 s->kernel_irqchip_required = true; 3706 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3707 break; 3708 case ON_OFF_SPLIT_OFF: 3709 s->kernel_irqchip_allowed = false; 3710 s->kernel_irqchip_required = false; 3711 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3712 break; 3713 case ON_OFF_SPLIT_SPLIT: 3714 s->kernel_irqchip_allowed = true; 3715 s->kernel_irqchip_required = true; 3716 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3717 break; 3718 default: 3719 /* The value was checked in visit_type_OnOffSplit() above. If 3720 * we get here, then something is wrong in QEMU. 3721 */ 3722 abort(); 3723 } 3724 } 3725 3726 bool kvm_kernel_irqchip_allowed(void) 3727 { 3728 return kvm_state->kernel_irqchip_allowed; 3729 } 3730 3731 bool kvm_kernel_irqchip_required(void) 3732 { 3733 return kvm_state->kernel_irqchip_required; 3734 } 3735 3736 bool kvm_kernel_irqchip_split(void) 3737 { 3738 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3739 } 3740 3741 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3742 const char *name, void *opaque, 3743 Error **errp) 3744 { 3745 KVMState *s = KVM_STATE(obj); 3746 uint32_t value = s->kvm_dirty_ring_size; 3747 3748 visit_type_uint32(v, name, &value, errp); 3749 } 3750 3751 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3752 const char *name, void *opaque, 3753 Error **errp) 3754 { 3755 KVMState *s = KVM_STATE(obj); 3756 uint32_t value; 3757 3758 if (s->fd != -1) { 3759 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3760 return; 3761 } 3762 3763 if (!visit_type_uint32(v, name, &value, errp)) { 3764 return; 3765 } 3766 if (value & (value - 1)) { 3767 error_setg(errp, "dirty-ring-size must be a power of two."); 3768 return; 3769 } 3770 3771 s->kvm_dirty_ring_size = value; 3772 } 3773 3774 static char *kvm_get_device(Object *obj, 3775 Error **errp G_GNUC_UNUSED) 3776 { 3777 KVMState *s = KVM_STATE(obj); 3778 3779 return g_strdup(s->device); 3780 } 3781 3782 static void kvm_set_device(Object *obj, 3783 const char *value, 3784 Error **errp G_GNUC_UNUSED) 3785 { 3786 KVMState *s = KVM_STATE(obj); 3787 3788 g_free(s->device); 3789 s->device = g_strdup(value); 3790 } 3791 3792 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3793 { 3794 KVMState *s = KVM_STATE(obj); 3795 s->msr_energy.enable = value; 3796 } 3797 3798 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3799 const char *str, 3800 Error **errp) 3801 { 3802 KVMState *s = KVM_STATE(obj); 3803 g_free(s->msr_energy.socket_path); 3804 s->msr_energy.socket_path = g_strdup(str); 3805 } 3806 3807 static void kvm_accel_instance_init(Object *obj) 3808 { 3809 KVMState *s = KVM_STATE(obj); 3810 3811 s->fd = -1; 3812 s->vmfd = -1; 3813 s->kvm_shadow_mem = -1; 3814 s->kernel_irqchip_allowed = true; 3815 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3816 /* KVM dirty ring is by default off */ 3817 s->kvm_dirty_ring_size = 0; 3818 s->kvm_dirty_ring_with_bitmap = false; 3819 s->kvm_eager_split_size = 0; 3820 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3821 s->notify_window = 0; 3822 s->xen_version = 0; 3823 s->xen_gnttab_max_frames = 64; 3824 s->xen_evtchn_max_pirq = 256; 3825 s->device = NULL; 3826 s->msr_energy.enable = false; 3827 } 3828 3829 /** 3830 * kvm_gdbstub_sstep_flags(): 3831 * 3832 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3833 * support is probed during kvm_init() 3834 */ 3835 static int kvm_gdbstub_sstep_flags(void) 3836 { 3837 return kvm_sstep_flags; 3838 } 3839 3840 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3841 { 3842 AccelClass *ac = ACCEL_CLASS(oc); 3843 ac->name = "KVM"; 3844 ac->init_machine = kvm_init; 3845 ac->has_memory = kvm_accel_has_memory; 3846 ac->allowed = &kvm_allowed; 3847 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3848 3849 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3850 NULL, kvm_set_kernel_irqchip, 3851 NULL, NULL); 3852 object_class_property_set_description(oc, "kernel-irqchip", 3853 "Configure KVM in-kernel irqchip"); 3854 3855 object_class_property_add(oc, "kvm-shadow-mem", "int", 3856 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3857 NULL, NULL); 3858 object_class_property_set_description(oc, "kvm-shadow-mem", 3859 "KVM shadow MMU size"); 3860 3861 object_class_property_add(oc, "dirty-ring-size", "uint32", 3862 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3863 NULL, NULL); 3864 object_class_property_set_description(oc, "dirty-ring-size", 3865 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3866 3867 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3868 object_class_property_set_description(oc, "device", 3869 "Path to the device node to use (default: /dev/kvm)"); 3870 3871 object_class_property_add_bool(oc, "rapl", 3872 NULL, 3873 kvm_set_kvm_rapl); 3874 object_class_property_set_description(oc, "rapl", 3875 "Allow energy related MSRs for RAPL interface in Guest"); 3876 3877 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 3878 kvm_set_kvm_rapl_socket_path); 3879 object_class_property_set_description(oc, "rapl-helper-socket", 3880 "Socket Path for comminucating with the Virtual MSR helper daemon"); 3881 3882 kvm_arch_accel_class_init(oc); 3883 } 3884 3885 static const TypeInfo kvm_accel_type = { 3886 .name = TYPE_KVM_ACCEL, 3887 .parent = TYPE_ACCEL, 3888 .instance_init = kvm_accel_instance_init, 3889 .class_init = kvm_accel_class_init, 3890 .instance_size = sizeof(KVMState), 3891 }; 3892 3893 static void kvm_type_init(void) 3894 { 3895 type_register_static(&kvm_accel_type); 3896 } 3897 3898 type_init(kvm_type_init); 3899 3900 typedef struct StatsArgs { 3901 union StatsResultsType { 3902 StatsResultList **stats; 3903 StatsSchemaList **schema; 3904 } result; 3905 strList *names; 3906 Error **errp; 3907 } StatsArgs; 3908 3909 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3910 uint64_t *stats_data, 3911 StatsList *stats_list, 3912 Error **errp) 3913 { 3914 3915 Stats *stats; 3916 uint64List *val_list = NULL; 3917 3918 /* Only add stats that we understand. */ 3919 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3920 case KVM_STATS_TYPE_CUMULATIVE: 3921 case KVM_STATS_TYPE_INSTANT: 3922 case KVM_STATS_TYPE_PEAK: 3923 case KVM_STATS_TYPE_LINEAR_HIST: 3924 case KVM_STATS_TYPE_LOG_HIST: 3925 break; 3926 default: 3927 return stats_list; 3928 } 3929 3930 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3931 case KVM_STATS_UNIT_NONE: 3932 case KVM_STATS_UNIT_BYTES: 3933 case KVM_STATS_UNIT_CYCLES: 3934 case KVM_STATS_UNIT_SECONDS: 3935 case KVM_STATS_UNIT_BOOLEAN: 3936 break; 3937 default: 3938 return stats_list; 3939 } 3940 3941 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3942 case KVM_STATS_BASE_POW10: 3943 case KVM_STATS_BASE_POW2: 3944 break; 3945 default: 3946 return stats_list; 3947 } 3948 3949 /* Alloc and populate data list */ 3950 stats = g_new0(Stats, 1); 3951 stats->name = g_strdup(pdesc->name); 3952 stats->value = g_new0(StatsValue, 1); 3953 3954 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3955 stats->value->u.boolean = *stats_data; 3956 stats->value->type = QTYPE_QBOOL; 3957 } else if (pdesc->size == 1) { 3958 stats->value->u.scalar = *stats_data; 3959 stats->value->type = QTYPE_QNUM; 3960 } else { 3961 int i; 3962 for (i = 0; i < pdesc->size; i++) { 3963 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3964 } 3965 stats->value->u.list = val_list; 3966 stats->value->type = QTYPE_QLIST; 3967 } 3968 3969 QAPI_LIST_PREPEND(stats_list, stats); 3970 return stats_list; 3971 } 3972 3973 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3974 StatsSchemaValueList *list, 3975 Error **errp) 3976 { 3977 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3978 schema_entry->value = g_new0(StatsSchemaValue, 1); 3979 3980 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3981 case KVM_STATS_TYPE_CUMULATIVE: 3982 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3983 break; 3984 case KVM_STATS_TYPE_INSTANT: 3985 schema_entry->value->type = STATS_TYPE_INSTANT; 3986 break; 3987 case KVM_STATS_TYPE_PEAK: 3988 schema_entry->value->type = STATS_TYPE_PEAK; 3989 break; 3990 case KVM_STATS_TYPE_LINEAR_HIST: 3991 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3992 schema_entry->value->bucket_size = pdesc->bucket_size; 3993 schema_entry->value->has_bucket_size = true; 3994 break; 3995 case KVM_STATS_TYPE_LOG_HIST: 3996 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3997 break; 3998 default: 3999 goto exit; 4000 } 4001 4002 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4003 case KVM_STATS_UNIT_NONE: 4004 break; 4005 case KVM_STATS_UNIT_BOOLEAN: 4006 schema_entry->value->has_unit = true; 4007 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4008 break; 4009 case KVM_STATS_UNIT_BYTES: 4010 schema_entry->value->has_unit = true; 4011 schema_entry->value->unit = STATS_UNIT_BYTES; 4012 break; 4013 case KVM_STATS_UNIT_CYCLES: 4014 schema_entry->value->has_unit = true; 4015 schema_entry->value->unit = STATS_UNIT_CYCLES; 4016 break; 4017 case KVM_STATS_UNIT_SECONDS: 4018 schema_entry->value->has_unit = true; 4019 schema_entry->value->unit = STATS_UNIT_SECONDS; 4020 break; 4021 default: 4022 goto exit; 4023 } 4024 4025 schema_entry->value->exponent = pdesc->exponent; 4026 if (pdesc->exponent) { 4027 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4028 case KVM_STATS_BASE_POW10: 4029 schema_entry->value->has_base = true; 4030 schema_entry->value->base = 10; 4031 break; 4032 case KVM_STATS_BASE_POW2: 4033 schema_entry->value->has_base = true; 4034 schema_entry->value->base = 2; 4035 break; 4036 default: 4037 goto exit; 4038 } 4039 } 4040 4041 schema_entry->value->name = g_strdup(pdesc->name); 4042 schema_entry->next = list; 4043 return schema_entry; 4044 exit: 4045 g_free(schema_entry->value); 4046 g_free(schema_entry); 4047 return list; 4048 } 4049 4050 /* Cached stats descriptors */ 4051 typedef struct StatsDescriptors { 4052 const char *ident; /* cache key, currently the StatsTarget */ 4053 struct kvm_stats_desc *kvm_stats_desc; 4054 struct kvm_stats_header kvm_stats_header; 4055 QTAILQ_ENTRY(StatsDescriptors) next; 4056 } StatsDescriptors; 4057 4058 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4059 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4060 4061 /* 4062 * Return the descriptors for 'target', that either have already been read 4063 * or are retrieved from 'stats_fd'. 4064 */ 4065 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4066 Error **errp) 4067 { 4068 StatsDescriptors *descriptors; 4069 const char *ident; 4070 struct kvm_stats_desc *kvm_stats_desc; 4071 struct kvm_stats_header *kvm_stats_header; 4072 size_t size_desc; 4073 ssize_t ret; 4074 4075 ident = StatsTarget_str(target); 4076 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4077 if (g_str_equal(descriptors->ident, ident)) { 4078 return descriptors; 4079 } 4080 } 4081 4082 descriptors = g_new0(StatsDescriptors, 1); 4083 4084 /* Read stats header */ 4085 kvm_stats_header = &descriptors->kvm_stats_header; 4086 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4087 if (ret != sizeof(*kvm_stats_header)) { 4088 error_setg(errp, "KVM stats: failed to read stats header: " 4089 "expected %zu actual %zu", 4090 sizeof(*kvm_stats_header), ret); 4091 g_free(descriptors); 4092 return NULL; 4093 } 4094 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4095 4096 /* Read stats descriptors */ 4097 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4098 ret = pread(stats_fd, kvm_stats_desc, 4099 size_desc * kvm_stats_header->num_desc, 4100 kvm_stats_header->desc_offset); 4101 4102 if (ret != size_desc * kvm_stats_header->num_desc) { 4103 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4104 "expected %zu actual %zu", 4105 size_desc * kvm_stats_header->num_desc, ret); 4106 g_free(descriptors); 4107 g_free(kvm_stats_desc); 4108 return NULL; 4109 } 4110 descriptors->kvm_stats_desc = kvm_stats_desc; 4111 descriptors->ident = ident; 4112 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4113 return descriptors; 4114 } 4115 4116 static void query_stats(StatsResultList **result, StatsTarget target, 4117 strList *names, int stats_fd, CPUState *cpu, 4118 Error **errp) 4119 { 4120 struct kvm_stats_desc *kvm_stats_desc; 4121 struct kvm_stats_header *kvm_stats_header; 4122 StatsDescriptors *descriptors; 4123 g_autofree uint64_t *stats_data = NULL; 4124 struct kvm_stats_desc *pdesc; 4125 StatsList *stats_list = NULL; 4126 size_t size_desc, size_data = 0; 4127 ssize_t ret; 4128 int i; 4129 4130 descriptors = find_stats_descriptors(target, stats_fd, errp); 4131 if (!descriptors) { 4132 return; 4133 } 4134 4135 kvm_stats_header = &descriptors->kvm_stats_header; 4136 kvm_stats_desc = descriptors->kvm_stats_desc; 4137 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4138 4139 /* Tally the total data size; read schema data */ 4140 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4141 pdesc = (void *)kvm_stats_desc + i * size_desc; 4142 size_data += pdesc->size * sizeof(*stats_data); 4143 } 4144 4145 stats_data = g_malloc0(size_data); 4146 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4147 4148 if (ret != size_data) { 4149 error_setg(errp, "KVM stats: failed to read data: " 4150 "expected %zu actual %zu", size_data, ret); 4151 return; 4152 } 4153 4154 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4155 uint64_t *stats; 4156 pdesc = (void *)kvm_stats_desc + i * size_desc; 4157 4158 /* Add entry to the list */ 4159 stats = (void *)stats_data + pdesc->offset; 4160 if (!apply_str_list_filter(pdesc->name, names)) { 4161 continue; 4162 } 4163 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4164 } 4165 4166 if (!stats_list) { 4167 return; 4168 } 4169 4170 switch (target) { 4171 case STATS_TARGET_VM: 4172 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4173 break; 4174 case STATS_TARGET_VCPU: 4175 add_stats_entry(result, STATS_PROVIDER_KVM, 4176 cpu->parent_obj.canonical_path, 4177 stats_list); 4178 break; 4179 default: 4180 g_assert_not_reached(); 4181 } 4182 } 4183 4184 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4185 int stats_fd, Error **errp) 4186 { 4187 struct kvm_stats_desc *kvm_stats_desc; 4188 struct kvm_stats_header *kvm_stats_header; 4189 StatsDescriptors *descriptors; 4190 struct kvm_stats_desc *pdesc; 4191 StatsSchemaValueList *stats_list = NULL; 4192 size_t size_desc; 4193 int i; 4194 4195 descriptors = find_stats_descriptors(target, stats_fd, errp); 4196 if (!descriptors) { 4197 return; 4198 } 4199 4200 kvm_stats_header = &descriptors->kvm_stats_header; 4201 kvm_stats_desc = descriptors->kvm_stats_desc; 4202 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4203 4204 /* Tally the total data size; read schema data */ 4205 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4206 pdesc = (void *)kvm_stats_desc + i * size_desc; 4207 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4208 } 4209 4210 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4211 } 4212 4213 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4214 { 4215 int stats_fd = cpu->kvm_vcpu_stats_fd; 4216 Error *local_err = NULL; 4217 4218 if (stats_fd == -1) { 4219 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4220 error_propagate(kvm_stats_args->errp, local_err); 4221 return; 4222 } 4223 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4224 kvm_stats_args->names, stats_fd, cpu, 4225 kvm_stats_args->errp); 4226 } 4227 4228 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4229 { 4230 int stats_fd = cpu->kvm_vcpu_stats_fd; 4231 Error *local_err = NULL; 4232 4233 if (stats_fd == -1) { 4234 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4235 error_propagate(kvm_stats_args->errp, local_err); 4236 return; 4237 } 4238 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4239 kvm_stats_args->errp); 4240 } 4241 4242 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4243 strList *names, strList *targets, Error **errp) 4244 { 4245 KVMState *s = kvm_state; 4246 CPUState *cpu; 4247 int stats_fd; 4248 4249 switch (target) { 4250 case STATS_TARGET_VM: 4251 { 4252 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4253 if (stats_fd == -1) { 4254 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4255 return; 4256 } 4257 query_stats(result, target, names, stats_fd, NULL, errp); 4258 close(stats_fd); 4259 break; 4260 } 4261 case STATS_TARGET_VCPU: 4262 { 4263 StatsArgs stats_args; 4264 stats_args.result.stats = result; 4265 stats_args.names = names; 4266 stats_args.errp = errp; 4267 CPU_FOREACH(cpu) { 4268 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4269 continue; 4270 } 4271 query_stats_vcpu(cpu, &stats_args); 4272 } 4273 break; 4274 } 4275 default: 4276 break; 4277 } 4278 } 4279 4280 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4281 { 4282 StatsArgs stats_args; 4283 KVMState *s = kvm_state; 4284 int stats_fd; 4285 4286 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4287 if (stats_fd == -1) { 4288 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4289 return; 4290 } 4291 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4292 close(stats_fd); 4293 4294 if (first_cpu) { 4295 stats_args.result.schema = result; 4296 stats_args.errp = errp; 4297 query_stats_schema_vcpu(first_cpu, &stats_args); 4298 } 4299 } 4300 4301 void kvm_mark_guest_state_protected(void) 4302 { 4303 kvm_state->guest_state_protected = true; 4304 } 4305 4306 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4307 { 4308 int fd; 4309 struct kvm_create_guest_memfd guest_memfd = { 4310 .size = size, 4311 .flags = flags, 4312 }; 4313 4314 if (!kvm_guest_memfd_supported) { 4315 error_setg(errp, "KVM does not support guest_memfd"); 4316 return -1; 4317 } 4318 4319 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4320 if (fd < 0) { 4321 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4322 return -1; 4323 } 4324 4325 return fd; 4326 } 4327