1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 KVMState *kvm_state; 79 bool kvm_kernel_irqchip; 80 bool kvm_split_irqchip; 81 bool kvm_async_interrupts_allowed; 82 bool kvm_halt_in_kernel_allowed; 83 bool kvm_resamplefds_allowed; 84 bool kvm_msi_via_irqfd_allowed; 85 bool kvm_gsi_routing_allowed; 86 bool kvm_gsi_direct_mapping; 87 bool kvm_allowed; 88 bool kvm_readonly_mem_allowed; 89 bool kvm_vm_attributes_allowed; 90 bool kvm_msi_use_devid; 91 static bool kvm_has_guest_debug; 92 static int kvm_sstep_flags; 93 static bool kvm_immediate_exit; 94 static uint64_t kvm_supported_memory_attributes; 95 static bool kvm_guest_memfd_supported; 96 static hwaddr kvm_max_slot_size = ~0; 97 98 static const KVMCapabilityInfo kvm_required_capabilites[] = { 99 KVM_CAP_INFO(USER_MEMORY), 100 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 101 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 102 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 103 KVM_CAP_INFO(IOEVENTFD), 104 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 105 KVM_CAP_LAST_INFO 106 }; 107 108 static NotifierList kvm_irqchip_change_notifiers = 109 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 110 111 struct KVMResampleFd { 112 int gsi; 113 EventNotifier *resample_event; 114 QLIST_ENTRY(KVMResampleFd) node; 115 }; 116 typedef struct KVMResampleFd KVMResampleFd; 117 118 /* 119 * Only used with split irqchip where we need to do the resample fd 120 * kick for the kernel from userspace. 121 */ 122 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 123 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 124 125 static QemuMutex kml_slots_lock; 126 127 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 128 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 129 130 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 131 132 static inline void kvm_resample_fd_remove(int gsi) 133 { 134 KVMResampleFd *rfd; 135 136 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 137 if (rfd->gsi == gsi) { 138 QLIST_REMOVE(rfd, node); 139 g_free(rfd); 140 break; 141 } 142 } 143 } 144 145 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 146 { 147 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 148 149 rfd->gsi = gsi; 150 rfd->resample_event = event; 151 152 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 153 } 154 155 void kvm_resample_fd_notify(int gsi) 156 { 157 KVMResampleFd *rfd; 158 159 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 160 if (rfd->gsi == gsi) { 161 event_notifier_set(rfd->resample_event); 162 trace_kvm_resample_fd_notify(gsi); 163 return; 164 } 165 } 166 } 167 168 unsigned int kvm_get_max_memslots(void) 169 { 170 KVMState *s = KVM_STATE(current_accel()); 171 172 return s->nr_slots; 173 } 174 175 unsigned int kvm_get_free_memslots(void) 176 { 177 unsigned int used_slots = 0; 178 KVMState *s = kvm_state; 179 int i; 180 181 kvm_slots_lock(); 182 for (i = 0; i < s->nr_as; i++) { 183 if (!s->as[i].ml) { 184 continue; 185 } 186 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 187 } 188 kvm_slots_unlock(); 189 190 return s->nr_slots - used_slots; 191 } 192 193 /* Called with KVMMemoryListener.slots_lock held */ 194 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 195 { 196 KVMState *s = kvm_state; 197 int i; 198 199 for (i = 0; i < s->nr_slots; i++) { 200 if (kml->slots[i].memory_size == 0) { 201 return &kml->slots[i]; 202 } 203 } 204 205 return NULL; 206 } 207 208 /* Called with KVMMemoryListener.slots_lock held */ 209 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 210 { 211 KVMSlot *slot = kvm_get_free_slot(kml); 212 213 if (slot) { 214 return slot; 215 } 216 217 fprintf(stderr, "%s: no free slot available\n", __func__); 218 abort(); 219 } 220 221 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 222 hwaddr start_addr, 223 hwaddr size) 224 { 225 KVMState *s = kvm_state; 226 int i; 227 228 for (i = 0; i < s->nr_slots; i++) { 229 KVMSlot *mem = &kml->slots[i]; 230 231 if (start_addr == mem->start_addr && size == mem->memory_size) { 232 return mem; 233 } 234 } 235 236 return NULL; 237 } 238 239 /* 240 * Calculate and align the start address and the size of the section. 241 * Return the size. If the size is 0, the aligned section is empty. 242 */ 243 static hwaddr kvm_align_section(MemoryRegionSection *section, 244 hwaddr *start) 245 { 246 hwaddr size = int128_get64(section->size); 247 hwaddr delta, aligned; 248 249 /* kvm works in page size chunks, but the function may be called 250 with sub-page size and unaligned start address. Pad the start 251 address to next and truncate size to previous page boundary. */ 252 aligned = ROUND_UP(section->offset_within_address_space, 253 qemu_real_host_page_size()); 254 delta = aligned - section->offset_within_address_space; 255 *start = aligned; 256 if (delta > size) { 257 return 0; 258 } 259 260 return (size - delta) & qemu_real_host_page_mask(); 261 } 262 263 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 264 hwaddr *phys_addr) 265 { 266 KVMMemoryListener *kml = &s->memory_listener; 267 int i, ret = 0; 268 269 kvm_slots_lock(); 270 for (i = 0; i < s->nr_slots; i++) { 271 KVMSlot *mem = &kml->slots[i]; 272 273 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 274 *phys_addr = mem->start_addr + (ram - mem->ram); 275 ret = 1; 276 break; 277 } 278 } 279 kvm_slots_unlock(); 280 281 return ret; 282 } 283 284 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 285 { 286 KVMState *s = kvm_state; 287 struct kvm_userspace_memory_region2 mem; 288 int ret; 289 290 mem.slot = slot->slot | (kml->as_id << 16); 291 mem.guest_phys_addr = slot->start_addr; 292 mem.userspace_addr = (unsigned long)slot->ram; 293 mem.flags = slot->flags; 294 mem.guest_memfd = slot->guest_memfd; 295 mem.guest_memfd_offset = slot->guest_memfd_offset; 296 297 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 298 /* Set the slot size to 0 before setting the slot to the desired 299 * value. This is needed based on KVM commit 75d61fbc. */ 300 mem.memory_size = 0; 301 302 if (kvm_guest_memfd_supported) { 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 304 } else { 305 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 306 } 307 if (ret < 0) { 308 goto err; 309 } 310 } 311 mem.memory_size = slot->memory_size; 312 if (kvm_guest_memfd_supported) { 313 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 314 } else { 315 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 316 } 317 slot->old_flags = mem.flags; 318 err: 319 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 320 mem.guest_phys_addr, mem.memory_size, 321 mem.userspace_addr, mem.guest_memfd, 322 mem.guest_memfd_offset, ret); 323 if (ret < 0) { 324 if (kvm_guest_memfd_supported) { 325 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 326 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 327 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 328 " guest_memfd_offset=0x%" PRIx64 ": %s", 329 __func__, mem.slot, slot->start_addr, 330 (uint64_t)mem.memory_size, mem.flags, 331 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 332 strerror(errno)); 333 } else { 334 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 335 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 336 __func__, mem.slot, slot->start_addr, 337 (uint64_t)mem.memory_size, strerror(errno)); 338 } 339 } 340 return ret; 341 } 342 343 static int do_kvm_destroy_vcpu(CPUState *cpu) 344 { 345 KVMState *s = kvm_state; 346 long mmap_size; 347 struct KVMParkedVcpu *vcpu = NULL; 348 int ret = 0; 349 350 trace_kvm_destroy_vcpu(); 351 352 ret = kvm_arch_destroy_vcpu(cpu); 353 if (ret < 0) { 354 goto err; 355 } 356 357 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 358 if (mmap_size < 0) { 359 ret = mmap_size; 360 trace_kvm_failed_get_vcpu_mmap_size(); 361 goto err; 362 } 363 364 ret = munmap(cpu->kvm_run, mmap_size); 365 if (ret < 0) { 366 goto err; 367 } 368 369 if (cpu->kvm_dirty_gfns) { 370 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 371 if (ret < 0) { 372 goto err; 373 } 374 } 375 376 vcpu = g_malloc0(sizeof(*vcpu)); 377 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 378 vcpu->kvm_fd = cpu->kvm_fd; 379 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 380 err: 381 return ret; 382 } 383 384 void kvm_destroy_vcpu(CPUState *cpu) 385 { 386 if (do_kvm_destroy_vcpu(cpu) < 0) { 387 error_report("kvm_destroy_vcpu failed"); 388 exit(EXIT_FAILURE); 389 } 390 } 391 392 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 393 { 394 struct KVMParkedVcpu *cpu; 395 396 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 397 if (cpu->vcpu_id == vcpu_id) { 398 int kvm_fd; 399 400 QLIST_REMOVE(cpu, node); 401 kvm_fd = cpu->kvm_fd; 402 g_free(cpu); 403 return kvm_fd; 404 } 405 } 406 407 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 408 } 409 410 int kvm_init_vcpu(CPUState *cpu, Error **errp) 411 { 412 KVMState *s = kvm_state; 413 long mmap_size; 414 int ret; 415 416 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 417 418 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 419 if (ret < 0) { 420 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 421 kvm_arch_vcpu_id(cpu)); 422 goto err; 423 } 424 425 cpu->kvm_fd = ret; 426 cpu->kvm_state = s; 427 cpu->vcpu_dirty = true; 428 cpu->dirty_pages = 0; 429 cpu->throttle_us_per_full = 0; 430 431 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 432 if (mmap_size < 0) { 433 ret = mmap_size; 434 error_setg_errno(errp, -mmap_size, 435 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 436 goto err; 437 } 438 439 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 440 cpu->kvm_fd, 0); 441 if (cpu->kvm_run == MAP_FAILED) { 442 ret = -errno; 443 error_setg_errno(errp, ret, 444 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 445 kvm_arch_vcpu_id(cpu)); 446 goto err; 447 } 448 449 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 450 s->coalesced_mmio_ring = 451 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 452 } 453 454 if (s->kvm_dirty_ring_size) { 455 /* Use MAP_SHARED to share pages with the kernel */ 456 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 457 PROT_READ | PROT_WRITE, MAP_SHARED, 458 cpu->kvm_fd, 459 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 460 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 461 ret = -errno; 462 goto err; 463 } 464 } 465 466 ret = kvm_arch_init_vcpu(cpu); 467 if (ret < 0) { 468 error_setg_errno(errp, -ret, 469 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 470 kvm_arch_vcpu_id(cpu)); 471 } 472 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 473 474 err: 475 return ret; 476 } 477 478 /* 479 * dirty pages logging control 480 */ 481 482 static int kvm_mem_flags(MemoryRegion *mr) 483 { 484 bool readonly = mr->readonly || memory_region_is_romd(mr); 485 int flags = 0; 486 487 if (memory_region_get_dirty_log_mask(mr) != 0) { 488 flags |= KVM_MEM_LOG_DIRTY_PAGES; 489 } 490 if (readonly && kvm_readonly_mem_allowed) { 491 flags |= KVM_MEM_READONLY; 492 } 493 if (memory_region_has_guest_memfd(mr)) { 494 assert(kvm_guest_memfd_supported); 495 flags |= KVM_MEM_GUEST_MEMFD; 496 } 497 return flags; 498 } 499 500 /* Called with KVMMemoryListener.slots_lock held */ 501 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 502 MemoryRegion *mr) 503 { 504 mem->flags = kvm_mem_flags(mr); 505 506 /* If nothing changed effectively, no need to issue ioctl */ 507 if (mem->flags == mem->old_flags) { 508 return 0; 509 } 510 511 kvm_slot_init_dirty_bitmap(mem); 512 return kvm_set_user_memory_region(kml, mem, false); 513 } 514 515 static int kvm_section_update_flags(KVMMemoryListener *kml, 516 MemoryRegionSection *section) 517 { 518 hwaddr start_addr, size, slot_size; 519 KVMSlot *mem; 520 int ret = 0; 521 522 size = kvm_align_section(section, &start_addr); 523 if (!size) { 524 return 0; 525 } 526 527 kvm_slots_lock(); 528 529 while (size && !ret) { 530 slot_size = MIN(kvm_max_slot_size, size); 531 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 532 if (!mem) { 533 /* We don't have a slot if we want to trap every access. */ 534 goto out; 535 } 536 537 ret = kvm_slot_update_flags(kml, mem, section->mr); 538 start_addr += slot_size; 539 size -= slot_size; 540 } 541 542 out: 543 kvm_slots_unlock(); 544 return ret; 545 } 546 547 static void kvm_log_start(MemoryListener *listener, 548 MemoryRegionSection *section, 549 int old, int new) 550 { 551 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 552 int r; 553 554 if (old != 0) { 555 return; 556 } 557 558 r = kvm_section_update_flags(kml, section); 559 if (r < 0) { 560 abort(); 561 } 562 } 563 564 static void kvm_log_stop(MemoryListener *listener, 565 MemoryRegionSection *section, 566 int old, int new) 567 { 568 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 569 int r; 570 571 if (new != 0) { 572 return; 573 } 574 575 r = kvm_section_update_flags(kml, section); 576 if (r < 0) { 577 abort(); 578 } 579 } 580 581 /* get kvm's dirty pages bitmap and update qemu's */ 582 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 583 { 584 ram_addr_t start = slot->ram_start_offset; 585 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 586 587 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 588 } 589 590 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 591 { 592 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 593 } 594 595 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 596 597 /* Allocate the dirty bitmap for a slot */ 598 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 599 { 600 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 601 return; 602 } 603 604 /* 605 * XXX bad kernel interface alert 606 * For dirty bitmap, kernel allocates array of size aligned to 607 * bits-per-long. But for case when the kernel is 64bits and 608 * the userspace is 32bits, userspace can't align to the same 609 * bits-per-long, since sizeof(long) is different between kernel 610 * and user space. This way, userspace will provide buffer which 611 * may be 4 bytes less than the kernel will use, resulting in 612 * userspace memory corruption (which is not detectable by valgrind 613 * too, in most cases). 614 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 615 * a hope that sizeof(long) won't become >8 any time soon. 616 * 617 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 618 * And mem->memory_size is aligned to it (otherwise this mem can't 619 * be registered to KVM). 620 */ 621 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 622 /*HOST_LONG_BITS*/ 64) / 8; 623 mem->dirty_bmap = g_malloc0(bitmap_size); 624 mem->dirty_bmap_size = bitmap_size; 625 } 626 627 /* 628 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 629 * succeeded, false otherwise 630 */ 631 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 632 { 633 struct kvm_dirty_log d = {}; 634 int ret; 635 636 d.dirty_bitmap = slot->dirty_bmap; 637 d.slot = slot->slot | (slot->as_id << 16); 638 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 639 640 if (ret == -ENOENT) { 641 /* kernel does not have dirty bitmap in this slot */ 642 ret = 0; 643 } 644 if (ret) { 645 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 646 __func__, ret); 647 } 648 return ret == 0; 649 } 650 651 /* Should be with all slots_lock held for the address spaces. */ 652 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 653 uint32_t slot_id, uint64_t offset) 654 { 655 KVMMemoryListener *kml; 656 KVMSlot *mem; 657 658 if (as_id >= s->nr_as) { 659 return; 660 } 661 662 kml = s->as[as_id].ml; 663 mem = &kml->slots[slot_id]; 664 665 if (!mem->memory_size || offset >= 666 (mem->memory_size / qemu_real_host_page_size())) { 667 return; 668 } 669 670 set_bit(offset, mem->dirty_bmap); 671 } 672 673 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 674 { 675 /* 676 * Read the flags before the value. Pairs with barrier in 677 * KVM's kvm_dirty_ring_push() function. 678 */ 679 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 680 } 681 682 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 683 { 684 /* 685 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 686 * sees the full content of the ring: 687 * 688 * CPU0 CPU1 CPU2 689 * ------------------------------------------------------------------------------ 690 * fill gfn0 691 * store-rel flags for gfn0 692 * load-acq flags for gfn0 693 * store-rel RESET for gfn0 694 * ioctl(RESET_RINGS) 695 * load-acq flags for gfn0 696 * check if flags have RESET 697 * 698 * The synchronization goes from CPU2 to CPU0 to CPU1. 699 */ 700 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 701 } 702 703 /* 704 * Should be with all slots_lock held for the address spaces. It returns the 705 * dirty page we've collected on this dirty ring. 706 */ 707 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 708 { 709 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 710 uint32_t ring_size = s->kvm_dirty_ring_size; 711 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 712 713 /* 714 * It's possible that we race with vcpu creation code where the vcpu is 715 * put onto the vcpus list but not yet initialized the dirty ring 716 * structures. If so, skip it. 717 */ 718 if (!cpu->created) { 719 return 0; 720 } 721 722 assert(dirty_gfns && ring_size); 723 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 724 725 while (true) { 726 cur = &dirty_gfns[fetch % ring_size]; 727 if (!dirty_gfn_is_dirtied(cur)) { 728 break; 729 } 730 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 731 cur->offset); 732 dirty_gfn_set_collected(cur); 733 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 734 fetch++; 735 count++; 736 } 737 cpu->kvm_fetch_index = fetch; 738 cpu->dirty_pages += count; 739 740 return count; 741 } 742 743 /* Must be with slots_lock held */ 744 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 745 { 746 int ret; 747 uint64_t total = 0; 748 int64_t stamp; 749 750 stamp = get_clock(); 751 752 if (cpu) { 753 total = kvm_dirty_ring_reap_one(s, cpu); 754 } else { 755 CPU_FOREACH(cpu) { 756 total += kvm_dirty_ring_reap_one(s, cpu); 757 } 758 } 759 760 if (total) { 761 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 762 assert(ret == total); 763 } 764 765 stamp = get_clock() - stamp; 766 767 if (total) { 768 trace_kvm_dirty_ring_reap(total, stamp / 1000); 769 } 770 771 return total; 772 } 773 774 /* 775 * Currently for simplicity, we must hold BQL before calling this. We can 776 * consider to drop the BQL if we're clear with all the race conditions. 777 */ 778 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 779 { 780 uint64_t total; 781 782 /* 783 * We need to lock all kvm slots for all address spaces here, 784 * because: 785 * 786 * (1) We need to mark dirty for dirty bitmaps in multiple slots 787 * and for tons of pages, so it's better to take the lock here 788 * once rather than once per page. And more importantly, 789 * 790 * (2) We must _NOT_ publish dirty bits to the other threads 791 * (e.g., the migration thread) via the kvm memory slot dirty 792 * bitmaps before correctly re-protect those dirtied pages. 793 * Otherwise we can have potential risk of data corruption if 794 * the page data is read in the other thread before we do 795 * reset below. 796 */ 797 kvm_slots_lock(); 798 total = kvm_dirty_ring_reap_locked(s, cpu); 799 kvm_slots_unlock(); 800 801 return total; 802 } 803 804 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 805 { 806 /* No need to do anything */ 807 } 808 809 /* 810 * Kick all vcpus out in a synchronized way. When returned, we 811 * guarantee that every vcpu has been kicked and at least returned to 812 * userspace once. 813 */ 814 static void kvm_cpu_synchronize_kick_all(void) 815 { 816 CPUState *cpu; 817 818 CPU_FOREACH(cpu) { 819 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 820 } 821 } 822 823 /* 824 * Flush all the existing dirty pages to the KVM slot buffers. When 825 * this call returns, we guarantee that all the touched dirty pages 826 * before calling this function have been put into the per-kvmslot 827 * dirty bitmap. 828 * 829 * This function must be called with BQL held. 830 */ 831 static void kvm_dirty_ring_flush(void) 832 { 833 trace_kvm_dirty_ring_flush(0); 834 /* 835 * The function needs to be serialized. Since this function 836 * should always be with BQL held, serialization is guaranteed. 837 * However, let's be sure of it. 838 */ 839 assert(bql_locked()); 840 /* 841 * First make sure to flush the hardware buffers by kicking all 842 * vcpus out in a synchronous way. 843 */ 844 kvm_cpu_synchronize_kick_all(); 845 kvm_dirty_ring_reap(kvm_state, NULL); 846 trace_kvm_dirty_ring_flush(1); 847 } 848 849 /** 850 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 851 * 852 * This function will first try to fetch dirty bitmap from the kernel, 853 * and then updates qemu's dirty bitmap. 854 * 855 * NOTE: caller must be with kml->slots_lock held. 856 * 857 * @kml: the KVM memory listener object 858 * @section: the memory section to sync the dirty bitmap with 859 */ 860 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 861 MemoryRegionSection *section) 862 { 863 KVMState *s = kvm_state; 864 KVMSlot *mem; 865 hwaddr start_addr, size; 866 hwaddr slot_size; 867 868 size = kvm_align_section(section, &start_addr); 869 while (size) { 870 slot_size = MIN(kvm_max_slot_size, size); 871 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 872 if (!mem) { 873 /* We don't have a slot if we want to trap every access. */ 874 return; 875 } 876 if (kvm_slot_get_dirty_log(s, mem)) { 877 kvm_slot_sync_dirty_pages(mem); 878 } 879 start_addr += slot_size; 880 size -= slot_size; 881 } 882 } 883 884 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 885 #define KVM_CLEAR_LOG_SHIFT 6 886 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 887 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 888 889 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 890 uint64_t size) 891 { 892 KVMState *s = kvm_state; 893 uint64_t end, bmap_start, start_delta, bmap_npages; 894 struct kvm_clear_dirty_log d; 895 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 896 int ret; 897 898 /* 899 * We need to extend either the start or the size or both to 900 * satisfy the KVM interface requirement. Firstly, do the start 901 * page alignment on 64 host pages 902 */ 903 bmap_start = start & KVM_CLEAR_LOG_MASK; 904 start_delta = start - bmap_start; 905 bmap_start /= psize; 906 907 /* 908 * The kernel interface has restriction on the size too, that either: 909 * 910 * (1) the size is 64 host pages aligned (just like the start), or 911 * (2) the size fills up until the end of the KVM memslot. 912 */ 913 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 914 << KVM_CLEAR_LOG_SHIFT; 915 end = mem->memory_size / psize; 916 if (bmap_npages > end - bmap_start) { 917 bmap_npages = end - bmap_start; 918 } 919 start_delta /= psize; 920 921 /* 922 * Prepare the bitmap to clear dirty bits. Here we must guarantee 923 * that we won't clear any unknown dirty bits otherwise we might 924 * accidentally clear some set bits which are not yet synced from 925 * the kernel into QEMU's bitmap, then we'll lose track of the 926 * guest modifications upon those pages (which can directly lead 927 * to guest data loss or panic after migration). 928 * 929 * Layout of the KVMSlot.dirty_bmap: 930 * 931 * |<-------- bmap_npages -----------..>| 932 * [1] 933 * start_delta size 934 * |----------------|-------------|------------------|------------| 935 * ^ ^ ^ ^ 936 * | | | | 937 * start bmap_start (start) end 938 * of memslot of memslot 939 * 940 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 941 */ 942 943 assert(bmap_start % BITS_PER_LONG == 0); 944 /* We should never do log_clear before log_sync */ 945 assert(mem->dirty_bmap); 946 if (start_delta || bmap_npages - size / psize) { 947 /* Slow path - we need to manipulate a temp bitmap */ 948 bmap_clear = bitmap_new(bmap_npages); 949 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 950 bmap_start, start_delta + size / psize); 951 /* 952 * We need to fill the holes at start because that was not 953 * specified by the caller and we extended the bitmap only for 954 * 64 pages alignment 955 */ 956 bitmap_clear(bmap_clear, 0, start_delta); 957 d.dirty_bitmap = bmap_clear; 958 } else { 959 /* 960 * Fast path - both start and size align well with BITS_PER_LONG 961 * (or the end of memory slot) 962 */ 963 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 964 } 965 966 d.first_page = bmap_start; 967 /* It should never overflow. If it happens, say something */ 968 assert(bmap_npages <= UINT32_MAX); 969 d.num_pages = bmap_npages; 970 d.slot = mem->slot | (as_id << 16); 971 972 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 973 if (ret < 0 && ret != -ENOENT) { 974 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 975 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 976 __func__, d.slot, (uint64_t)d.first_page, 977 (uint32_t)d.num_pages, ret); 978 } else { 979 ret = 0; 980 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 981 } 982 983 /* 984 * After we have updated the remote dirty bitmap, we update the 985 * cached bitmap as well for the memslot, then if another user 986 * clears the same region we know we shouldn't clear it again on 987 * the remote otherwise it's data loss as well. 988 */ 989 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 990 size / psize); 991 /* This handles the NULL case well */ 992 g_free(bmap_clear); 993 return ret; 994 } 995 996 997 /** 998 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 999 * 1000 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1001 * protection in the host kernel because in that case this operation 1002 * will be done within log_sync(). 1003 * 1004 * @kml: the kvm memory listener 1005 * @section: the memory range to clear dirty bitmap 1006 */ 1007 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1008 MemoryRegionSection *section) 1009 { 1010 KVMState *s = kvm_state; 1011 uint64_t start, size, offset, count; 1012 KVMSlot *mem; 1013 int ret = 0, i; 1014 1015 if (!s->manual_dirty_log_protect) { 1016 /* No need to do explicit clear */ 1017 return ret; 1018 } 1019 1020 start = section->offset_within_address_space; 1021 size = int128_get64(section->size); 1022 1023 if (!size) { 1024 /* Nothing more we can do... */ 1025 return ret; 1026 } 1027 1028 kvm_slots_lock(); 1029 1030 for (i = 0; i < s->nr_slots; i++) { 1031 mem = &kml->slots[i]; 1032 /* Discard slots that are empty or do not overlap the section */ 1033 if (!mem->memory_size || 1034 mem->start_addr > start + size - 1 || 1035 start > mem->start_addr + mem->memory_size - 1) { 1036 continue; 1037 } 1038 1039 if (start >= mem->start_addr) { 1040 /* The slot starts before section or is aligned to it. */ 1041 offset = start - mem->start_addr; 1042 count = MIN(mem->memory_size - offset, size); 1043 } else { 1044 /* The slot starts after section. */ 1045 offset = 0; 1046 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1047 } 1048 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1049 if (ret < 0) { 1050 break; 1051 } 1052 } 1053 1054 kvm_slots_unlock(); 1055 1056 return ret; 1057 } 1058 1059 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1060 MemoryRegionSection *secion, 1061 hwaddr start, hwaddr size) 1062 { 1063 KVMState *s = kvm_state; 1064 1065 if (s->coalesced_mmio) { 1066 struct kvm_coalesced_mmio_zone zone; 1067 1068 zone.addr = start; 1069 zone.size = size; 1070 zone.pad = 0; 1071 1072 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1073 } 1074 } 1075 1076 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1077 MemoryRegionSection *secion, 1078 hwaddr start, hwaddr size) 1079 { 1080 KVMState *s = kvm_state; 1081 1082 if (s->coalesced_mmio) { 1083 struct kvm_coalesced_mmio_zone zone; 1084 1085 zone.addr = start; 1086 zone.size = size; 1087 zone.pad = 0; 1088 1089 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1090 } 1091 } 1092 1093 static void kvm_coalesce_pio_add(MemoryListener *listener, 1094 MemoryRegionSection *section, 1095 hwaddr start, hwaddr size) 1096 { 1097 KVMState *s = kvm_state; 1098 1099 if (s->coalesced_pio) { 1100 struct kvm_coalesced_mmio_zone zone; 1101 1102 zone.addr = start; 1103 zone.size = size; 1104 zone.pio = 1; 1105 1106 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1107 } 1108 } 1109 1110 static void kvm_coalesce_pio_del(MemoryListener *listener, 1111 MemoryRegionSection *section, 1112 hwaddr start, hwaddr size) 1113 { 1114 KVMState *s = kvm_state; 1115 1116 if (s->coalesced_pio) { 1117 struct kvm_coalesced_mmio_zone zone; 1118 1119 zone.addr = start; 1120 zone.size = size; 1121 zone.pio = 1; 1122 1123 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1124 } 1125 } 1126 1127 int kvm_check_extension(KVMState *s, unsigned int extension) 1128 { 1129 int ret; 1130 1131 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1132 if (ret < 0) { 1133 ret = 0; 1134 } 1135 1136 return ret; 1137 } 1138 1139 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1140 { 1141 int ret; 1142 1143 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1144 if (ret < 0) { 1145 /* VM wide version not implemented, use global one instead */ 1146 ret = kvm_check_extension(s, extension); 1147 } 1148 1149 return ret; 1150 } 1151 1152 /* 1153 * We track the poisoned pages to be able to: 1154 * - replace them on VM reset 1155 * - block a migration for a VM with a poisoned page 1156 */ 1157 typedef struct HWPoisonPage { 1158 ram_addr_t ram_addr; 1159 QLIST_ENTRY(HWPoisonPage) list; 1160 } HWPoisonPage; 1161 1162 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1163 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1164 1165 static void kvm_unpoison_all(void *param) 1166 { 1167 HWPoisonPage *page, *next_page; 1168 1169 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1170 QLIST_REMOVE(page, list); 1171 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1172 g_free(page); 1173 } 1174 } 1175 1176 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1177 { 1178 HWPoisonPage *page; 1179 1180 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1181 if (page->ram_addr == ram_addr) { 1182 return; 1183 } 1184 } 1185 page = g_new(HWPoisonPage, 1); 1186 page->ram_addr = ram_addr; 1187 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1188 } 1189 1190 bool kvm_hwpoisoned_mem(void) 1191 { 1192 return !QLIST_EMPTY(&hwpoison_page_list); 1193 } 1194 1195 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1196 { 1197 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1198 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1199 * endianness, but the memory core hands them in target endianness. 1200 * For example, PPC is always treated as big-endian even if running 1201 * on KVM and on PPC64LE. Correct here. 1202 */ 1203 switch (size) { 1204 case 2: 1205 val = bswap16(val); 1206 break; 1207 case 4: 1208 val = bswap32(val); 1209 break; 1210 } 1211 #endif 1212 return val; 1213 } 1214 1215 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1216 bool assign, uint32_t size, bool datamatch) 1217 { 1218 int ret; 1219 struct kvm_ioeventfd iofd = { 1220 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1221 .addr = addr, 1222 .len = size, 1223 .flags = 0, 1224 .fd = fd, 1225 }; 1226 1227 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1228 datamatch); 1229 if (!kvm_enabled()) { 1230 return -ENOSYS; 1231 } 1232 1233 if (datamatch) { 1234 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1235 } 1236 if (!assign) { 1237 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1238 } 1239 1240 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1241 1242 if (ret < 0) { 1243 return -errno; 1244 } 1245 1246 return 0; 1247 } 1248 1249 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1250 bool assign, uint32_t size, bool datamatch) 1251 { 1252 struct kvm_ioeventfd kick = { 1253 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1254 .addr = addr, 1255 .flags = KVM_IOEVENTFD_FLAG_PIO, 1256 .len = size, 1257 .fd = fd, 1258 }; 1259 int r; 1260 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1261 if (!kvm_enabled()) { 1262 return -ENOSYS; 1263 } 1264 if (datamatch) { 1265 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1266 } 1267 if (!assign) { 1268 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1269 } 1270 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1271 if (r < 0) { 1272 return r; 1273 } 1274 return 0; 1275 } 1276 1277 1278 static const KVMCapabilityInfo * 1279 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1280 { 1281 while (list->name) { 1282 if (!kvm_check_extension(s, list->value)) { 1283 return list; 1284 } 1285 list++; 1286 } 1287 return NULL; 1288 } 1289 1290 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1291 { 1292 g_assert( 1293 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1294 ); 1295 kvm_max_slot_size = max_slot_size; 1296 } 1297 1298 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1299 { 1300 struct kvm_memory_attributes attrs; 1301 int r; 1302 1303 assert((attr & kvm_supported_memory_attributes) == attr); 1304 attrs.attributes = attr; 1305 attrs.address = start; 1306 attrs.size = size; 1307 attrs.flags = 0; 1308 1309 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1310 if (r) { 1311 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1312 "with attr 0x%" PRIx64 " error '%s'", 1313 start, size, attr, strerror(errno)); 1314 } 1315 return r; 1316 } 1317 1318 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1319 { 1320 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1321 } 1322 1323 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1324 { 1325 return kvm_set_memory_attributes(start, size, 0); 1326 } 1327 1328 /* Called with KVMMemoryListener.slots_lock held */ 1329 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1330 MemoryRegionSection *section, bool add) 1331 { 1332 KVMSlot *mem; 1333 int err; 1334 MemoryRegion *mr = section->mr; 1335 bool writable = !mr->readonly && !mr->rom_device; 1336 hwaddr start_addr, size, slot_size, mr_offset; 1337 ram_addr_t ram_start_offset; 1338 void *ram; 1339 1340 if (!memory_region_is_ram(mr)) { 1341 if (writable || !kvm_readonly_mem_allowed) { 1342 return; 1343 } else if (!mr->romd_mode) { 1344 /* If the memory device is not in romd_mode, then we actually want 1345 * to remove the kvm memory slot so all accesses will trap. */ 1346 add = false; 1347 } 1348 } 1349 1350 size = kvm_align_section(section, &start_addr); 1351 if (!size) { 1352 return; 1353 } 1354 1355 /* The offset of the kvmslot within the memory region */ 1356 mr_offset = section->offset_within_region + start_addr - 1357 section->offset_within_address_space; 1358 1359 /* use aligned delta to align the ram address and offset */ 1360 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1361 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1362 1363 if (!add) { 1364 do { 1365 slot_size = MIN(kvm_max_slot_size, size); 1366 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1367 if (!mem) { 1368 return; 1369 } 1370 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1371 /* 1372 * NOTE: We should be aware of the fact that here we're only 1373 * doing a best effort to sync dirty bits. No matter whether 1374 * we're using dirty log or dirty ring, we ignored two facts: 1375 * 1376 * (1) dirty bits can reside in hardware buffers (PML) 1377 * 1378 * (2) after we collected dirty bits here, pages can be dirtied 1379 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1380 * remove the slot. 1381 * 1382 * Not easy. Let's cross the fingers until it's fixed. 1383 */ 1384 if (kvm_state->kvm_dirty_ring_size) { 1385 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1386 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1387 kvm_slot_sync_dirty_pages(mem); 1388 kvm_slot_get_dirty_log(kvm_state, mem); 1389 } 1390 } else { 1391 kvm_slot_get_dirty_log(kvm_state, mem); 1392 } 1393 kvm_slot_sync_dirty_pages(mem); 1394 } 1395 1396 /* unregister the slot */ 1397 g_free(mem->dirty_bmap); 1398 mem->dirty_bmap = NULL; 1399 mem->memory_size = 0; 1400 mem->flags = 0; 1401 err = kvm_set_user_memory_region(kml, mem, false); 1402 if (err) { 1403 fprintf(stderr, "%s: error unregistering slot: %s\n", 1404 __func__, strerror(-err)); 1405 abort(); 1406 } 1407 start_addr += slot_size; 1408 size -= slot_size; 1409 kml->nr_used_slots--; 1410 } while (size); 1411 return; 1412 } 1413 1414 /* register the new slot */ 1415 do { 1416 slot_size = MIN(kvm_max_slot_size, size); 1417 mem = kvm_alloc_slot(kml); 1418 mem->as_id = kml->as_id; 1419 mem->memory_size = slot_size; 1420 mem->start_addr = start_addr; 1421 mem->ram_start_offset = ram_start_offset; 1422 mem->ram = ram; 1423 mem->flags = kvm_mem_flags(mr); 1424 mem->guest_memfd = mr->ram_block->guest_memfd; 1425 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1426 1427 kvm_slot_init_dirty_bitmap(mem); 1428 err = kvm_set_user_memory_region(kml, mem, true); 1429 if (err) { 1430 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1431 strerror(-err)); 1432 abort(); 1433 } 1434 1435 if (memory_region_has_guest_memfd(mr)) { 1436 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1437 if (err) { 1438 error_report("%s: failed to set memory attribute private: %s", 1439 __func__, strerror(-err)); 1440 exit(1); 1441 } 1442 } 1443 1444 start_addr += slot_size; 1445 ram_start_offset += slot_size; 1446 ram += slot_size; 1447 size -= slot_size; 1448 kml->nr_used_slots++; 1449 } while (size); 1450 } 1451 1452 static void *kvm_dirty_ring_reaper_thread(void *data) 1453 { 1454 KVMState *s = data; 1455 struct KVMDirtyRingReaper *r = &s->reaper; 1456 1457 rcu_register_thread(); 1458 1459 trace_kvm_dirty_ring_reaper("init"); 1460 1461 while (true) { 1462 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1463 trace_kvm_dirty_ring_reaper("wait"); 1464 /* 1465 * TODO: provide a smarter timeout rather than a constant? 1466 */ 1467 sleep(1); 1468 1469 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1470 if (dirtylimit_in_service()) { 1471 continue; 1472 } 1473 1474 trace_kvm_dirty_ring_reaper("wakeup"); 1475 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1476 1477 bql_lock(); 1478 kvm_dirty_ring_reap(s, NULL); 1479 bql_unlock(); 1480 1481 r->reaper_iteration++; 1482 } 1483 1484 trace_kvm_dirty_ring_reaper("exit"); 1485 1486 rcu_unregister_thread(); 1487 1488 return NULL; 1489 } 1490 1491 static void kvm_dirty_ring_reaper_init(KVMState *s) 1492 { 1493 struct KVMDirtyRingReaper *r = &s->reaper; 1494 1495 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1496 kvm_dirty_ring_reaper_thread, 1497 s, QEMU_THREAD_JOINABLE); 1498 } 1499 1500 static int kvm_dirty_ring_init(KVMState *s) 1501 { 1502 uint32_t ring_size = s->kvm_dirty_ring_size; 1503 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1504 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1505 int ret; 1506 1507 s->kvm_dirty_ring_size = 0; 1508 s->kvm_dirty_ring_bytes = 0; 1509 1510 /* Bail if the dirty ring size isn't specified */ 1511 if (!ring_size) { 1512 return 0; 1513 } 1514 1515 /* 1516 * Read the max supported pages. Fall back to dirty logging mode 1517 * if the dirty ring isn't supported. 1518 */ 1519 ret = kvm_vm_check_extension(s, capability); 1520 if (ret <= 0) { 1521 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1522 ret = kvm_vm_check_extension(s, capability); 1523 } 1524 1525 if (ret <= 0) { 1526 warn_report("KVM dirty ring not available, using bitmap method"); 1527 return 0; 1528 } 1529 1530 if (ring_bytes > ret) { 1531 error_report("KVM dirty ring size %" PRIu32 " too big " 1532 "(maximum is %ld). Please use a smaller value.", 1533 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1534 return -EINVAL; 1535 } 1536 1537 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1538 if (ret) { 1539 error_report("Enabling of KVM dirty ring failed: %s. " 1540 "Suggested minimum value is 1024.", strerror(-ret)); 1541 return -EIO; 1542 } 1543 1544 /* Enable the backup bitmap if it is supported */ 1545 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1546 if (ret > 0) { 1547 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1548 if (ret) { 1549 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1550 "%s. ", strerror(-ret)); 1551 return -EIO; 1552 } 1553 1554 s->kvm_dirty_ring_with_bitmap = true; 1555 } 1556 1557 s->kvm_dirty_ring_size = ring_size; 1558 s->kvm_dirty_ring_bytes = ring_bytes; 1559 1560 return 0; 1561 } 1562 1563 static void kvm_region_add(MemoryListener *listener, 1564 MemoryRegionSection *section) 1565 { 1566 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1567 KVMMemoryUpdate *update; 1568 1569 update = g_new0(KVMMemoryUpdate, 1); 1570 update->section = *section; 1571 1572 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1573 } 1574 1575 static void kvm_region_del(MemoryListener *listener, 1576 MemoryRegionSection *section) 1577 { 1578 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1579 KVMMemoryUpdate *update; 1580 1581 update = g_new0(KVMMemoryUpdate, 1); 1582 update->section = *section; 1583 1584 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1585 } 1586 1587 static void kvm_region_commit(MemoryListener *listener) 1588 { 1589 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1590 listener); 1591 KVMMemoryUpdate *u1, *u2; 1592 bool need_inhibit = false; 1593 1594 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1595 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1596 return; 1597 } 1598 1599 /* 1600 * We have to be careful when regions to add overlap with ranges to remove. 1601 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1602 * is currently active. 1603 * 1604 * The lists are order by addresses, so it's easy to find overlaps. 1605 */ 1606 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1607 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1608 while (u1 && u2) { 1609 Range r1, r2; 1610 1611 range_init_nofail(&r1, u1->section.offset_within_address_space, 1612 int128_get64(u1->section.size)); 1613 range_init_nofail(&r2, u2->section.offset_within_address_space, 1614 int128_get64(u2->section.size)); 1615 1616 if (range_overlaps_range(&r1, &r2)) { 1617 need_inhibit = true; 1618 break; 1619 } 1620 if (range_lob(&r1) < range_lob(&r2)) { 1621 u1 = QSIMPLEQ_NEXT(u1, next); 1622 } else { 1623 u2 = QSIMPLEQ_NEXT(u2, next); 1624 } 1625 } 1626 1627 kvm_slots_lock(); 1628 if (need_inhibit) { 1629 accel_ioctl_inhibit_begin(); 1630 } 1631 1632 /* Remove all memslots before adding the new ones. */ 1633 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1634 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1635 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1636 1637 kvm_set_phys_mem(kml, &u1->section, false); 1638 memory_region_unref(u1->section.mr); 1639 1640 g_free(u1); 1641 } 1642 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1643 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1644 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1645 1646 memory_region_ref(u1->section.mr); 1647 kvm_set_phys_mem(kml, &u1->section, true); 1648 1649 g_free(u1); 1650 } 1651 1652 if (need_inhibit) { 1653 accel_ioctl_inhibit_end(); 1654 } 1655 kvm_slots_unlock(); 1656 } 1657 1658 static void kvm_log_sync(MemoryListener *listener, 1659 MemoryRegionSection *section) 1660 { 1661 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1662 1663 kvm_slots_lock(); 1664 kvm_physical_sync_dirty_bitmap(kml, section); 1665 kvm_slots_unlock(); 1666 } 1667 1668 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1669 { 1670 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1671 KVMState *s = kvm_state; 1672 KVMSlot *mem; 1673 int i; 1674 1675 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1676 kvm_dirty_ring_flush(); 1677 1678 /* 1679 * TODO: make this faster when nr_slots is big while there are 1680 * only a few used slots (small VMs). 1681 */ 1682 kvm_slots_lock(); 1683 for (i = 0; i < s->nr_slots; i++) { 1684 mem = &kml->slots[i]; 1685 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1686 kvm_slot_sync_dirty_pages(mem); 1687 1688 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1689 kvm_slot_get_dirty_log(s, mem)) { 1690 kvm_slot_sync_dirty_pages(mem); 1691 } 1692 1693 /* 1694 * This is not needed by KVM_GET_DIRTY_LOG because the 1695 * ioctl will unconditionally overwrite the whole region. 1696 * However kvm dirty ring has no such side effect. 1697 */ 1698 kvm_slot_reset_dirty_pages(mem); 1699 } 1700 } 1701 kvm_slots_unlock(); 1702 } 1703 1704 static void kvm_log_clear(MemoryListener *listener, 1705 MemoryRegionSection *section) 1706 { 1707 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1708 int r; 1709 1710 r = kvm_physical_log_clear(kml, section); 1711 if (r < 0) { 1712 error_report_once("%s: kvm log clear failed: mr=%s " 1713 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1714 section->mr->name, section->offset_within_region, 1715 int128_get64(section->size)); 1716 abort(); 1717 } 1718 } 1719 1720 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1721 MemoryRegionSection *section, 1722 bool match_data, uint64_t data, 1723 EventNotifier *e) 1724 { 1725 int fd = event_notifier_get_fd(e); 1726 int r; 1727 1728 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1729 data, true, int128_get64(section->size), 1730 match_data); 1731 if (r < 0) { 1732 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1733 __func__, strerror(-r), -r); 1734 abort(); 1735 } 1736 } 1737 1738 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1739 MemoryRegionSection *section, 1740 bool match_data, uint64_t data, 1741 EventNotifier *e) 1742 { 1743 int fd = event_notifier_get_fd(e); 1744 int r; 1745 1746 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1747 data, false, int128_get64(section->size), 1748 match_data); 1749 if (r < 0) { 1750 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1751 __func__, strerror(-r), -r); 1752 abort(); 1753 } 1754 } 1755 1756 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1757 MemoryRegionSection *section, 1758 bool match_data, uint64_t data, 1759 EventNotifier *e) 1760 { 1761 int fd = event_notifier_get_fd(e); 1762 int r; 1763 1764 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1765 data, true, int128_get64(section->size), 1766 match_data); 1767 if (r < 0) { 1768 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1769 __func__, strerror(-r), -r); 1770 abort(); 1771 } 1772 } 1773 1774 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1775 MemoryRegionSection *section, 1776 bool match_data, uint64_t data, 1777 EventNotifier *e) 1778 1779 { 1780 int fd = event_notifier_get_fd(e); 1781 int r; 1782 1783 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1784 data, false, int128_get64(section->size), 1785 match_data); 1786 if (r < 0) { 1787 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1788 __func__, strerror(-r), -r); 1789 abort(); 1790 } 1791 } 1792 1793 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1794 AddressSpace *as, int as_id, const char *name) 1795 { 1796 int i; 1797 1798 kml->slots = g_new0(KVMSlot, s->nr_slots); 1799 kml->as_id = as_id; 1800 1801 for (i = 0; i < s->nr_slots; i++) { 1802 kml->slots[i].slot = i; 1803 } 1804 1805 QSIMPLEQ_INIT(&kml->transaction_add); 1806 QSIMPLEQ_INIT(&kml->transaction_del); 1807 1808 kml->listener.region_add = kvm_region_add; 1809 kml->listener.region_del = kvm_region_del; 1810 kml->listener.commit = kvm_region_commit; 1811 kml->listener.log_start = kvm_log_start; 1812 kml->listener.log_stop = kvm_log_stop; 1813 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1814 kml->listener.name = name; 1815 1816 if (s->kvm_dirty_ring_size) { 1817 kml->listener.log_sync_global = kvm_log_sync_global; 1818 } else { 1819 kml->listener.log_sync = kvm_log_sync; 1820 kml->listener.log_clear = kvm_log_clear; 1821 } 1822 1823 memory_listener_register(&kml->listener, as); 1824 1825 for (i = 0; i < s->nr_as; ++i) { 1826 if (!s->as[i].as) { 1827 s->as[i].as = as; 1828 s->as[i].ml = kml; 1829 break; 1830 } 1831 } 1832 } 1833 1834 static MemoryListener kvm_io_listener = { 1835 .name = "kvm-io", 1836 .coalesced_io_add = kvm_coalesce_pio_add, 1837 .coalesced_io_del = kvm_coalesce_pio_del, 1838 .eventfd_add = kvm_io_ioeventfd_add, 1839 .eventfd_del = kvm_io_ioeventfd_del, 1840 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1841 }; 1842 1843 int kvm_set_irq(KVMState *s, int irq, int level) 1844 { 1845 struct kvm_irq_level event; 1846 int ret; 1847 1848 assert(kvm_async_interrupts_enabled()); 1849 1850 event.level = level; 1851 event.irq = irq; 1852 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1853 if (ret < 0) { 1854 perror("kvm_set_irq"); 1855 abort(); 1856 } 1857 1858 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1859 } 1860 1861 #ifdef KVM_CAP_IRQ_ROUTING 1862 typedef struct KVMMSIRoute { 1863 struct kvm_irq_routing_entry kroute; 1864 QTAILQ_ENTRY(KVMMSIRoute) entry; 1865 } KVMMSIRoute; 1866 1867 static void set_gsi(KVMState *s, unsigned int gsi) 1868 { 1869 set_bit(gsi, s->used_gsi_bitmap); 1870 } 1871 1872 static void clear_gsi(KVMState *s, unsigned int gsi) 1873 { 1874 clear_bit(gsi, s->used_gsi_bitmap); 1875 } 1876 1877 void kvm_init_irq_routing(KVMState *s) 1878 { 1879 int gsi_count; 1880 1881 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1882 if (gsi_count > 0) { 1883 /* Round up so we can search ints using ffs */ 1884 s->used_gsi_bitmap = bitmap_new(gsi_count); 1885 s->gsi_count = gsi_count; 1886 } 1887 1888 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1889 s->nr_allocated_irq_routes = 0; 1890 1891 kvm_arch_init_irq_routing(s); 1892 } 1893 1894 void kvm_irqchip_commit_routes(KVMState *s) 1895 { 1896 int ret; 1897 1898 if (kvm_gsi_direct_mapping()) { 1899 return; 1900 } 1901 1902 if (!kvm_gsi_routing_enabled()) { 1903 return; 1904 } 1905 1906 s->irq_routes->flags = 0; 1907 trace_kvm_irqchip_commit_routes(); 1908 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1909 assert(ret == 0); 1910 } 1911 1912 void kvm_add_routing_entry(KVMState *s, 1913 struct kvm_irq_routing_entry *entry) 1914 { 1915 struct kvm_irq_routing_entry *new; 1916 int n, size; 1917 1918 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1919 n = s->nr_allocated_irq_routes * 2; 1920 if (n < 64) { 1921 n = 64; 1922 } 1923 size = sizeof(struct kvm_irq_routing); 1924 size += n * sizeof(*new); 1925 s->irq_routes = g_realloc(s->irq_routes, size); 1926 s->nr_allocated_irq_routes = n; 1927 } 1928 n = s->irq_routes->nr++; 1929 new = &s->irq_routes->entries[n]; 1930 1931 *new = *entry; 1932 1933 set_gsi(s, entry->gsi); 1934 } 1935 1936 static int kvm_update_routing_entry(KVMState *s, 1937 struct kvm_irq_routing_entry *new_entry) 1938 { 1939 struct kvm_irq_routing_entry *entry; 1940 int n; 1941 1942 for (n = 0; n < s->irq_routes->nr; n++) { 1943 entry = &s->irq_routes->entries[n]; 1944 if (entry->gsi != new_entry->gsi) { 1945 continue; 1946 } 1947 1948 if(!memcmp(entry, new_entry, sizeof *entry)) { 1949 return 0; 1950 } 1951 1952 *entry = *new_entry; 1953 1954 return 0; 1955 } 1956 1957 return -ESRCH; 1958 } 1959 1960 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1961 { 1962 struct kvm_irq_routing_entry e = {}; 1963 1964 assert(pin < s->gsi_count); 1965 1966 e.gsi = irq; 1967 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1968 e.flags = 0; 1969 e.u.irqchip.irqchip = irqchip; 1970 e.u.irqchip.pin = pin; 1971 kvm_add_routing_entry(s, &e); 1972 } 1973 1974 void kvm_irqchip_release_virq(KVMState *s, int virq) 1975 { 1976 struct kvm_irq_routing_entry *e; 1977 int i; 1978 1979 if (kvm_gsi_direct_mapping()) { 1980 return; 1981 } 1982 1983 for (i = 0; i < s->irq_routes->nr; i++) { 1984 e = &s->irq_routes->entries[i]; 1985 if (e->gsi == virq) { 1986 s->irq_routes->nr--; 1987 *e = s->irq_routes->entries[s->irq_routes->nr]; 1988 } 1989 } 1990 clear_gsi(s, virq); 1991 kvm_arch_release_virq_post(virq); 1992 trace_kvm_irqchip_release_virq(virq); 1993 } 1994 1995 void kvm_irqchip_add_change_notifier(Notifier *n) 1996 { 1997 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1998 } 1999 2000 void kvm_irqchip_remove_change_notifier(Notifier *n) 2001 { 2002 notifier_remove(n); 2003 } 2004 2005 void kvm_irqchip_change_notify(void) 2006 { 2007 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2008 } 2009 2010 int kvm_irqchip_get_virq(KVMState *s) 2011 { 2012 int next_virq; 2013 2014 /* Return the lowest unused GSI in the bitmap */ 2015 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2016 if (next_virq >= s->gsi_count) { 2017 return -ENOSPC; 2018 } else { 2019 return next_virq; 2020 } 2021 } 2022 2023 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2024 { 2025 struct kvm_msi msi; 2026 2027 msi.address_lo = (uint32_t)msg.address; 2028 msi.address_hi = msg.address >> 32; 2029 msi.data = le32_to_cpu(msg.data); 2030 msi.flags = 0; 2031 memset(msi.pad, 0, sizeof(msi.pad)); 2032 2033 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2034 } 2035 2036 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2037 { 2038 struct kvm_irq_routing_entry kroute = {}; 2039 int virq; 2040 KVMState *s = c->s; 2041 MSIMessage msg = {0, 0}; 2042 2043 if (pci_available && dev) { 2044 msg = pci_get_msi_message(dev, vector); 2045 } 2046 2047 if (kvm_gsi_direct_mapping()) { 2048 return kvm_arch_msi_data_to_gsi(msg.data); 2049 } 2050 2051 if (!kvm_gsi_routing_enabled()) { 2052 return -ENOSYS; 2053 } 2054 2055 virq = kvm_irqchip_get_virq(s); 2056 if (virq < 0) { 2057 return virq; 2058 } 2059 2060 kroute.gsi = virq; 2061 kroute.type = KVM_IRQ_ROUTING_MSI; 2062 kroute.flags = 0; 2063 kroute.u.msi.address_lo = (uint32_t)msg.address; 2064 kroute.u.msi.address_hi = msg.address >> 32; 2065 kroute.u.msi.data = le32_to_cpu(msg.data); 2066 if (pci_available && kvm_msi_devid_required()) { 2067 kroute.flags = KVM_MSI_VALID_DEVID; 2068 kroute.u.msi.devid = pci_requester_id(dev); 2069 } 2070 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2071 kvm_irqchip_release_virq(s, virq); 2072 return -EINVAL; 2073 } 2074 2075 if (s->irq_routes->nr < s->gsi_count) { 2076 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2077 vector, virq); 2078 2079 kvm_add_routing_entry(s, &kroute); 2080 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2081 c->changes++; 2082 } else { 2083 kvm_irqchip_release_virq(s, virq); 2084 return -ENOSPC; 2085 } 2086 2087 return virq; 2088 } 2089 2090 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2091 PCIDevice *dev) 2092 { 2093 struct kvm_irq_routing_entry kroute = {}; 2094 2095 if (kvm_gsi_direct_mapping()) { 2096 return 0; 2097 } 2098 2099 if (!kvm_irqchip_in_kernel()) { 2100 return -ENOSYS; 2101 } 2102 2103 kroute.gsi = virq; 2104 kroute.type = KVM_IRQ_ROUTING_MSI; 2105 kroute.flags = 0; 2106 kroute.u.msi.address_lo = (uint32_t)msg.address; 2107 kroute.u.msi.address_hi = msg.address >> 32; 2108 kroute.u.msi.data = le32_to_cpu(msg.data); 2109 if (pci_available && kvm_msi_devid_required()) { 2110 kroute.flags = KVM_MSI_VALID_DEVID; 2111 kroute.u.msi.devid = pci_requester_id(dev); 2112 } 2113 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2114 return -EINVAL; 2115 } 2116 2117 trace_kvm_irqchip_update_msi_route(virq); 2118 2119 return kvm_update_routing_entry(s, &kroute); 2120 } 2121 2122 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2123 EventNotifier *resample, int virq, 2124 bool assign) 2125 { 2126 int fd = event_notifier_get_fd(event); 2127 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2128 2129 struct kvm_irqfd irqfd = { 2130 .fd = fd, 2131 .gsi = virq, 2132 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2133 }; 2134 2135 if (rfd != -1) { 2136 assert(assign); 2137 if (kvm_irqchip_is_split()) { 2138 /* 2139 * When the slow irqchip (e.g. IOAPIC) is in the 2140 * userspace, KVM kernel resamplefd will not work because 2141 * the EOI of the interrupt will be delivered to userspace 2142 * instead, so the KVM kernel resamplefd kick will be 2143 * skipped. The userspace here mimics what the kernel 2144 * provides with resamplefd, remember the resamplefd and 2145 * kick it when we receive EOI of this IRQ. 2146 * 2147 * This is hackery because IOAPIC is mostly bypassed 2148 * (except EOI broadcasts) when irqfd is used. However 2149 * this can bring much performance back for split irqchip 2150 * with INTx IRQs (for VFIO, this gives 93% perf of the 2151 * full fast path, which is 46% perf boost comparing to 2152 * the INTx slow path). 2153 */ 2154 kvm_resample_fd_insert(virq, resample); 2155 } else { 2156 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2157 irqfd.resamplefd = rfd; 2158 } 2159 } else if (!assign) { 2160 if (kvm_irqchip_is_split()) { 2161 kvm_resample_fd_remove(virq); 2162 } 2163 } 2164 2165 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2166 } 2167 2168 #else /* !KVM_CAP_IRQ_ROUTING */ 2169 2170 void kvm_init_irq_routing(KVMState *s) 2171 { 2172 } 2173 2174 void kvm_irqchip_release_virq(KVMState *s, int virq) 2175 { 2176 } 2177 2178 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2179 { 2180 abort(); 2181 } 2182 2183 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2184 { 2185 return -ENOSYS; 2186 } 2187 2188 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2189 { 2190 return -ENOSYS; 2191 } 2192 2193 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2194 { 2195 return -ENOSYS; 2196 } 2197 2198 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2199 EventNotifier *resample, int virq, 2200 bool assign) 2201 { 2202 abort(); 2203 } 2204 2205 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2206 { 2207 return -ENOSYS; 2208 } 2209 #endif /* !KVM_CAP_IRQ_ROUTING */ 2210 2211 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2212 EventNotifier *rn, int virq) 2213 { 2214 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2215 } 2216 2217 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2218 int virq) 2219 { 2220 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2221 } 2222 2223 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2224 EventNotifier *rn, qemu_irq irq) 2225 { 2226 gpointer key, gsi; 2227 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2228 2229 if (!found) { 2230 return -ENXIO; 2231 } 2232 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2233 } 2234 2235 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2236 qemu_irq irq) 2237 { 2238 gpointer key, gsi; 2239 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2240 2241 if (!found) { 2242 return -ENXIO; 2243 } 2244 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2245 } 2246 2247 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2248 { 2249 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2250 } 2251 2252 static void kvm_irqchip_create(KVMState *s) 2253 { 2254 int ret; 2255 2256 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2257 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2258 ; 2259 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2260 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2261 if (ret < 0) { 2262 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2263 exit(1); 2264 } 2265 } else { 2266 return; 2267 } 2268 2269 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2270 fprintf(stderr, "kvm: irqfd not implemented\n"); 2271 exit(1); 2272 } 2273 2274 /* First probe and see if there's a arch-specific hook to create the 2275 * in-kernel irqchip for us */ 2276 ret = kvm_arch_irqchip_create(s); 2277 if (ret == 0) { 2278 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2279 error_report("Split IRQ chip mode not supported."); 2280 exit(1); 2281 } else { 2282 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2283 } 2284 } 2285 if (ret < 0) { 2286 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2287 exit(1); 2288 } 2289 2290 kvm_kernel_irqchip = true; 2291 /* If we have an in-kernel IRQ chip then we must have asynchronous 2292 * interrupt delivery (though the reverse is not necessarily true) 2293 */ 2294 kvm_async_interrupts_allowed = true; 2295 kvm_halt_in_kernel_allowed = true; 2296 2297 kvm_init_irq_routing(s); 2298 2299 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2300 } 2301 2302 /* Find number of supported CPUs using the recommended 2303 * procedure from the kernel API documentation to cope with 2304 * older kernels that may be missing capabilities. 2305 */ 2306 static int kvm_recommended_vcpus(KVMState *s) 2307 { 2308 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2309 return (ret) ? ret : 4; 2310 } 2311 2312 static int kvm_max_vcpus(KVMState *s) 2313 { 2314 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2315 return (ret) ? ret : kvm_recommended_vcpus(s); 2316 } 2317 2318 static int kvm_max_vcpu_id(KVMState *s) 2319 { 2320 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2321 return (ret) ? ret : kvm_max_vcpus(s); 2322 } 2323 2324 bool kvm_vcpu_id_is_valid(int vcpu_id) 2325 { 2326 KVMState *s = KVM_STATE(current_accel()); 2327 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2328 } 2329 2330 bool kvm_dirty_ring_enabled(void) 2331 { 2332 return kvm_state && kvm_state->kvm_dirty_ring_size; 2333 } 2334 2335 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2336 strList *names, strList *targets, Error **errp); 2337 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2338 2339 uint32_t kvm_dirty_ring_size(void) 2340 { 2341 return kvm_state->kvm_dirty_ring_size; 2342 } 2343 2344 static int kvm_init(MachineState *ms) 2345 { 2346 MachineClass *mc = MACHINE_GET_CLASS(ms); 2347 static const char upgrade_note[] = 2348 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2349 "(see http://sourceforge.net/projects/kvm).\n"; 2350 const struct { 2351 const char *name; 2352 int num; 2353 } num_cpus[] = { 2354 { "SMP", ms->smp.cpus }, 2355 { "hotpluggable", ms->smp.max_cpus }, 2356 { /* end of list */ } 2357 }, *nc = num_cpus; 2358 int soft_vcpus_limit, hard_vcpus_limit; 2359 KVMState *s; 2360 const KVMCapabilityInfo *missing_cap; 2361 int ret; 2362 int type; 2363 uint64_t dirty_log_manual_caps; 2364 2365 qemu_mutex_init(&kml_slots_lock); 2366 2367 s = KVM_STATE(ms->accelerator); 2368 2369 /* 2370 * On systems where the kernel can support different base page 2371 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2372 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2373 * page size for the system though. 2374 */ 2375 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2376 2377 s->sigmask_len = 8; 2378 accel_blocker_init(); 2379 2380 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2381 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2382 #endif 2383 QLIST_INIT(&s->kvm_parked_vcpus); 2384 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2385 if (s->fd == -1) { 2386 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2387 ret = -errno; 2388 goto err; 2389 } 2390 2391 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2392 if (ret < KVM_API_VERSION) { 2393 if (ret >= 0) { 2394 ret = -EINVAL; 2395 } 2396 fprintf(stderr, "kvm version too old\n"); 2397 goto err; 2398 } 2399 2400 if (ret > KVM_API_VERSION) { 2401 ret = -EINVAL; 2402 fprintf(stderr, "kvm version not supported\n"); 2403 goto err; 2404 } 2405 2406 kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2407 kvm_guest_memfd_supported = 2408 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2409 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2410 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2411 2412 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2413 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2414 2415 /* If unspecified, use the default value */ 2416 if (!s->nr_slots) { 2417 s->nr_slots = 32; 2418 } 2419 2420 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2421 if (s->nr_as <= 1) { 2422 s->nr_as = 1; 2423 } 2424 s->as = g_new0(struct KVMAs, s->nr_as); 2425 2426 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2427 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2428 "kvm-type", 2429 &error_abort); 2430 type = mc->kvm_type(ms, kvm_type); 2431 } else if (mc->kvm_type) { 2432 type = mc->kvm_type(ms, NULL); 2433 } else { 2434 type = kvm_arch_get_default_type(ms); 2435 } 2436 2437 if (type < 0) { 2438 ret = -EINVAL; 2439 goto err; 2440 } 2441 2442 do { 2443 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2444 } while (ret == -EINTR); 2445 2446 if (ret < 0) { 2447 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2448 strerror(-ret)); 2449 2450 #ifdef TARGET_S390X 2451 if (ret == -EINVAL) { 2452 fprintf(stderr, 2453 "Host kernel setup problem detected. Please verify:\n"); 2454 fprintf(stderr, "- for kernels supporting the switch_amode or" 2455 " user_mode parameters, whether\n"); 2456 fprintf(stderr, 2457 " user space is running in primary address space\n"); 2458 fprintf(stderr, 2459 "- for kernels supporting the vm.allocate_pgste sysctl, " 2460 "whether it is enabled\n"); 2461 } 2462 #elif defined(TARGET_PPC) 2463 if (ret == -EINVAL) { 2464 fprintf(stderr, 2465 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2466 (type == 2) ? "pr" : "hv"); 2467 } 2468 #endif 2469 goto err; 2470 } 2471 2472 s->vmfd = ret; 2473 2474 /* check the vcpu limits */ 2475 soft_vcpus_limit = kvm_recommended_vcpus(s); 2476 hard_vcpus_limit = kvm_max_vcpus(s); 2477 2478 while (nc->name) { 2479 if (nc->num > soft_vcpus_limit) { 2480 warn_report("Number of %s cpus requested (%d) exceeds " 2481 "the recommended cpus supported by KVM (%d)", 2482 nc->name, nc->num, soft_vcpus_limit); 2483 2484 if (nc->num > hard_vcpus_limit) { 2485 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2486 "the maximum cpus supported by KVM (%d)\n", 2487 nc->name, nc->num, hard_vcpus_limit); 2488 exit(1); 2489 } 2490 } 2491 nc++; 2492 } 2493 2494 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2495 if (!missing_cap) { 2496 missing_cap = 2497 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2498 } 2499 if (missing_cap) { 2500 ret = -EINVAL; 2501 fprintf(stderr, "kvm does not support %s\n%s", 2502 missing_cap->name, upgrade_note); 2503 goto err; 2504 } 2505 2506 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2507 s->coalesced_pio = s->coalesced_mmio && 2508 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2509 2510 /* 2511 * Enable KVM dirty ring if supported, otherwise fall back to 2512 * dirty logging mode 2513 */ 2514 ret = kvm_dirty_ring_init(s); 2515 if (ret < 0) { 2516 goto err; 2517 } 2518 2519 /* 2520 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2521 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2522 * page is wr-protected initially, which is against how kvm dirty ring is 2523 * usage - kvm dirty ring requires all pages are wr-protected at the very 2524 * beginning. Enabling this feature for dirty ring causes data corruption. 2525 * 2526 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2527 * we may expect a higher stall time when starting the migration. In the 2528 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2529 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2530 * guest pages. 2531 */ 2532 if (!s->kvm_dirty_ring_size) { 2533 dirty_log_manual_caps = 2534 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2535 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2536 KVM_DIRTY_LOG_INITIALLY_SET); 2537 s->manual_dirty_log_protect = dirty_log_manual_caps; 2538 if (dirty_log_manual_caps) { 2539 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2540 dirty_log_manual_caps); 2541 if (ret) { 2542 warn_report("Trying to enable capability %"PRIu64" of " 2543 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2544 "Falling back to the legacy mode. ", 2545 dirty_log_manual_caps); 2546 s->manual_dirty_log_protect = 0; 2547 } 2548 } 2549 } 2550 2551 #ifdef KVM_CAP_VCPU_EVENTS 2552 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2553 #endif 2554 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2555 2556 s->irq_set_ioctl = KVM_IRQ_LINE; 2557 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2558 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2559 } 2560 2561 kvm_readonly_mem_allowed = 2562 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2563 2564 kvm_resamplefds_allowed = 2565 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2566 2567 kvm_vm_attributes_allowed = 2568 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2569 2570 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2571 kvm_has_guest_debug = 2572 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2573 #endif 2574 2575 kvm_sstep_flags = 0; 2576 if (kvm_has_guest_debug) { 2577 kvm_sstep_flags = SSTEP_ENABLE; 2578 2579 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2580 int guest_debug_flags = 2581 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2582 2583 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2584 kvm_sstep_flags |= SSTEP_NOIRQ; 2585 } 2586 #endif 2587 } 2588 2589 kvm_state = s; 2590 2591 ret = kvm_arch_init(ms, s); 2592 if (ret < 0) { 2593 goto err; 2594 } 2595 2596 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2597 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2598 } 2599 2600 qemu_register_reset(kvm_unpoison_all, NULL); 2601 2602 if (s->kernel_irqchip_allowed) { 2603 kvm_irqchip_create(s); 2604 } 2605 2606 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2607 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2608 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2609 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2610 2611 kvm_memory_listener_register(s, &s->memory_listener, 2612 &address_space_memory, 0, "kvm-memory"); 2613 memory_listener_register(&kvm_io_listener, 2614 &address_space_io); 2615 2616 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2617 if (!s->sync_mmu) { 2618 ret = ram_block_discard_disable(true); 2619 assert(!ret); 2620 } 2621 2622 if (s->kvm_dirty_ring_size) { 2623 kvm_dirty_ring_reaper_init(s); 2624 } 2625 2626 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2627 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2628 query_stats_schemas_cb); 2629 } 2630 2631 return 0; 2632 2633 err: 2634 assert(ret < 0); 2635 if (s->vmfd >= 0) { 2636 close(s->vmfd); 2637 } 2638 if (s->fd != -1) { 2639 close(s->fd); 2640 } 2641 g_free(s->as); 2642 g_free(s->memory_listener.slots); 2643 2644 return ret; 2645 } 2646 2647 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2648 { 2649 s->sigmask_len = sigmask_len; 2650 } 2651 2652 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2653 int size, uint32_t count) 2654 { 2655 int i; 2656 uint8_t *ptr = data; 2657 2658 for (i = 0; i < count; i++) { 2659 address_space_rw(&address_space_io, port, attrs, 2660 ptr, size, 2661 direction == KVM_EXIT_IO_OUT); 2662 ptr += size; 2663 } 2664 } 2665 2666 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2667 { 2668 int i; 2669 2670 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2671 run->internal.suberror); 2672 2673 for (i = 0; i < run->internal.ndata; ++i) { 2674 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2675 i, (uint64_t)run->internal.data[i]); 2676 } 2677 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2678 fprintf(stderr, "emulation failure\n"); 2679 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2680 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2681 return EXCP_INTERRUPT; 2682 } 2683 } 2684 /* FIXME: Should trigger a qmp message to let management know 2685 * something went wrong. 2686 */ 2687 return -1; 2688 } 2689 2690 void kvm_flush_coalesced_mmio_buffer(void) 2691 { 2692 KVMState *s = kvm_state; 2693 2694 if (!s || s->coalesced_flush_in_progress) { 2695 return; 2696 } 2697 2698 s->coalesced_flush_in_progress = true; 2699 2700 if (s->coalesced_mmio_ring) { 2701 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2702 while (ring->first != ring->last) { 2703 struct kvm_coalesced_mmio *ent; 2704 2705 ent = &ring->coalesced_mmio[ring->first]; 2706 2707 if (ent->pio == 1) { 2708 address_space_write(&address_space_io, ent->phys_addr, 2709 MEMTXATTRS_UNSPECIFIED, ent->data, 2710 ent->len); 2711 } else { 2712 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2713 } 2714 smp_wmb(); 2715 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2716 } 2717 } 2718 2719 s->coalesced_flush_in_progress = false; 2720 } 2721 2722 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2723 { 2724 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2725 int ret = kvm_arch_get_registers(cpu); 2726 if (ret) { 2727 error_report("Failed to get registers: %s", strerror(-ret)); 2728 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2729 vm_stop(RUN_STATE_INTERNAL_ERROR); 2730 } 2731 2732 cpu->vcpu_dirty = true; 2733 } 2734 } 2735 2736 void kvm_cpu_synchronize_state(CPUState *cpu) 2737 { 2738 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2739 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2740 } 2741 } 2742 2743 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2744 { 2745 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2746 if (ret) { 2747 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2748 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2749 vm_stop(RUN_STATE_INTERNAL_ERROR); 2750 } 2751 2752 cpu->vcpu_dirty = false; 2753 } 2754 2755 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2756 { 2757 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2758 } 2759 2760 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2761 { 2762 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2763 if (ret) { 2764 error_report("Failed to put registers after init: %s", strerror(-ret)); 2765 exit(1); 2766 } 2767 2768 cpu->vcpu_dirty = false; 2769 } 2770 2771 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2772 { 2773 if (!kvm_state->guest_state_protected) { 2774 /* 2775 * This runs before the machine_init_done notifiers, and is the last 2776 * opportunity to synchronize the state of confidential guests. 2777 */ 2778 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2779 } 2780 } 2781 2782 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2783 { 2784 cpu->vcpu_dirty = true; 2785 } 2786 2787 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2788 { 2789 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2790 } 2791 2792 #ifdef KVM_HAVE_MCE_INJECTION 2793 static __thread void *pending_sigbus_addr; 2794 static __thread int pending_sigbus_code; 2795 static __thread bool have_sigbus_pending; 2796 #endif 2797 2798 static void kvm_cpu_kick(CPUState *cpu) 2799 { 2800 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2801 } 2802 2803 static void kvm_cpu_kick_self(void) 2804 { 2805 if (kvm_immediate_exit) { 2806 kvm_cpu_kick(current_cpu); 2807 } else { 2808 qemu_cpu_kick_self(); 2809 } 2810 } 2811 2812 static void kvm_eat_signals(CPUState *cpu) 2813 { 2814 struct timespec ts = { 0, 0 }; 2815 siginfo_t siginfo; 2816 sigset_t waitset; 2817 sigset_t chkset; 2818 int r; 2819 2820 if (kvm_immediate_exit) { 2821 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2822 /* Write kvm_run->immediate_exit before the cpu->exit_request 2823 * write in kvm_cpu_exec. 2824 */ 2825 smp_wmb(); 2826 return; 2827 } 2828 2829 sigemptyset(&waitset); 2830 sigaddset(&waitset, SIG_IPI); 2831 2832 do { 2833 r = sigtimedwait(&waitset, &siginfo, &ts); 2834 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2835 perror("sigtimedwait"); 2836 exit(1); 2837 } 2838 2839 r = sigpending(&chkset); 2840 if (r == -1) { 2841 perror("sigpending"); 2842 exit(1); 2843 } 2844 } while (sigismember(&chkset, SIG_IPI)); 2845 } 2846 2847 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 2848 { 2849 MemoryRegionSection section; 2850 ram_addr_t offset; 2851 MemoryRegion *mr; 2852 RAMBlock *rb; 2853 void *addr; 2854 int ret = -1; 2855 2856 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 2857 2858 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 2859 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 2860 return -1; 2861 } 2862 2863 if (!size) { 2864 return -1; 2865 } 2866 2867 section = memory_region_find(get_system_memory(), start, size); 2868 mr = section.mr; 2869 if (!mr) { 2870 /* 2871 * Ignore converting non-assigned region to shared. 2872 * 2873 * TDX requires vMMIO region to be shared to inject #VE to guest. 2874 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 2875 * and vIO-APIC 0xFEC00000 4K page. 2876 * OVMF assigns 32bit PCI MMIO region to 2877 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 2878 */ 2879 if (!to_private) { 2880 return 0; 2881 } 2882 return -1; 2883 } 2884 2885 if (!memory_region_has_guest_memfd(mr)) { 2886 /* 2887 * Because vMMIO region must be shared, guest TD may convert vMMIO 2888 * region to shared explicitly. Don't complain such case. See 2889 * memory_region_type() for checking if the region is MMIO region. 2890 */ 2891 if (!to_private && 2892 !memory_region_is_ram(mr) && 2893 !memory_region_is_ram_device(mr) && 2894 !memory_region_is_rom(mr) && 2895 !memory_region_is_romd(mr)) { 2896 ret = 0; 2897 } else { 2898 error_report("Convert non guest_memfd backed memory region " 2899 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 2900 start, size, to_private ? "private" : "shared"); 2901 } 2902 goto out_unref; 2903 } 2904 2905 if (to_private) { 2906 ret = kvm_set_memory_attributes_private(start, size); 2907 } else { 2908 ret = kvm_set_memory_attributes_shared(start, size); 2909 } 2910 if (ret) { 2911 goto out_unref; 2912 } 2913 2914 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 2915 rb = qemu_ram_block_from_host(addr, false, &offset); 2916 2917 if (to_private) { 2918 if (rb->page_size != qemu_real_host_page_size()) { 2919 /* 2920 * shared memory is backed by hugetlb, which is supposed to be 2921 * pre-allocated and doesn't need to be discarded 2922 */ 2923 goto out_unref; 2924 } 2925 ret = ram_block_discard_range(rb, offset, size); 2926 } else { 2927 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 2928 } 2929 2930 out_unref: 2931 memory_region_unref(mr); 2932 return ret; 2933 } 2934 2935 int kvm_cpu_exec(CPUState *cpu) 2936 { 2937 struct kvm_run *run = cpu->kvm_run; 2938 int ret, run_ret; 2939 2940 trace_kvm_cpu_exec(); 2941 2942 if (kvm_arch_process_async_events(cpu)) { 2943 qatomic_set(&cpu->exit_request, 0); 2944 return EXCP_HLT; 2945 } 2946 2947 bql_unlock(); 2948 cpu_exec_start(cpu); 2949 2950 do { 2951 MemTxAttrs attrs; 2952 2953 if (cpu->vcpu_dirty) { 2954 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2955 if (ret) { 2956 error_report("Failed to put registers after init: %s", 2957 strerror(-ret)); 2958 ret = -1; 2959 break; 2960 } 2961 2962 cpu->vcpu_dirty = false; 2963 } 2964 2965 kvm_arch_pre_run(cpu, run); 2966 if (qatomic_read(&cpu->exit_request)) { 2967 trace_kvm_interrupt_exit_request(); 2968 /* 2969 * KVM requires us to reenter the kernel after IO exits to complete 2970 * instruction emulation. This self-signal will ensure that we 2971 * leave ASAP again. 2972 */ 2973 kvm_cpu_kick_self(); 2974 } 2975 2976 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2977 * Matching barrier in kvm_eat_signals. 2978 */ 2979 smp_rmb(); 2980 2981 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2982 2983 attrs = kvm_arch_post_run(cpu, run); 2984 2985 #ifdef KVM_HAVE_MCE_INJECTION 2986 if (unlikely(have_sigbus_pending)) { 2987 bql_lock(); 2988 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2989 pending_sigbus_addr); 2990 have_sigbus_pending = false; 2991 bql_unlock(); 2992 } 2993 #endif 2994 2995 if (run_ret < 0) { 2996 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2997 trace_kvm_io_window_exit(); 2998 kvm_eat_signals(cpu); 2999 ret = EXCP_INTERRUPT; 3000 break; 3001 } 3002 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3003 fprintf(stderr, "error: kvm run failed %s\n", 3004 strerror(-run_ret)); 3005 #ifdef TARGET_PPC 3006 if (run_ret == -EBUSY) { 3007 fprintf(stderr, 3008 "This is probably because your SMT is enabled.\n" 3009 "VCPU can only run on primary threads with all " 3010 "secondary threads offline.\n"); 3011 } 3012 #endif 3013 ret = -1; 3014 break; 3015 } 3016 } 3017 3018 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3019 switch (run->exit_reason) { 3020 case KVM_EXIT_IO: 3021 /* Called outside BQL */ 3022 kvm_handle_io(run->io.port, attrs, 3023 (uint8_t *)run + run->io.data_offset, 3024 run->io.direction, 3025 run->io.size, 3026 run->io.count); 3027 ret = 0; 3028 break; 3029 case KVM_EXIT_MMIO: 3030 /* Called outside BQL */ 3031 address_space_rw(&address_space_memory, 3032 run->mmio.phys_addr, attrs, 3033 run->mmio.data, 3034 run->mmio.len, 3035 run->mmio.is_write); 3036 ret = 0; 3037 break; 3038 case KVM_EXIT_IRQ_WINDOW_OPEN: 3039 ret = EXCP_INTERRUPT; 3040 break; 3041 case KVM_EXIT_SHUTDOWN: 3042 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3043 ret = EXCP_INTERRUPT; 3044 break; 3045 case KVM_EXIT_UNKNOWN: 3046 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3047 (uint64_t)run->hw.hardware_exit_reason); 3048 ret = -1; 3049 break; 3050 case KVM_EXIT_INTERNAL_ERROR: 3051 ret = kvm_handle_internal_error(cpu, run); 3052 break; 3053 case KVM_EXIT_DIRTY_RING_FULL: 3054 /* 3055 * We shouldn't continue if the dirty ring of this vcpu is 3056 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3057 */ 3058 trace_kvm_dirty_ring_full(cpu->cpu_index); 3059 bql_lock(); 3060 /* 3061 * We throttle vCPU by making it sleep once it exit from kernel 3062 * due to dirty ring full. In the dirtylimit scenario, reaping 3063 * all vCPUs after a single vCPU dirty ring get full result in 3064 * the miss of sleep, so just reap the ring-fulled vCPU. 3065 */ 3066 if (dirtylimit_in_service()) { 3067 kvm_dirty_ring_reap(kvm_state, cpu); 3068 } else { 3069 kvm_dirty_ring_reap(kvm_state, NULL); 3070 } 3071 bql_unlock(); 3072 dirtylimit_vcpu_execute(cpu); 3073 ret = 0; 3074 break; 3075 case KVM_EXIT_SYSTEM_EVENT: 3076 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3077 switch (run->system_event.type) { 3078 case KVM_SYSTEM_EVENT_SHUTDOWN: 3079 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3080 ret = EXCP_INTERRUPT; 3081 break; 3082 case KVM_SYSTEM_EVENT_RESET: 3083 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3084 ret = EXCP_INTERRUPT; 3085 break; 3086 case KVM_SYSTEM_EVENT_CRASH: 3087 kvm_cpu_synchronize_state(cpu); 3088 bql_lock(); 3089 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3090 bql_unlock(); 3091 ret = 0; 3092 break; 3093 default: 3094 ret = kvm_arch_handle_exit(cpu, run); 3095 break; 3096 } 3097 break; 3098 case KVM_EXIT_MEMORY_FAULT: 3099 trace_kvm_memory_fault(run->memory_fault.gpa, 3100 run->memory_fault.size, 3101 run->memory_fault.flags); 3102 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3103 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3104 (uint64_t)run->memory_fault.flags); 3105 ret = -1; 3106 break; 3107 } 3108 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3109 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3110 break; 3111 default: 3112 ret = kvm_arch_handle_exit(cpu, run); 3113 break; 3114 } 3115 } while (ret == 0); 3116 3117 cpu_exec_end(cpu); 3118 bql_lock(); 3119 3120 if (ret < 0) { 3121 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3122 vm_stop(RUN_STATE_INTERNAL_ERROR); 3123 } 3124 3125 qatomic_set(&cpu->exit_request, 0); 3126 return ret; 3127 } 3128 3129 int kvm_ioctl(KVMState *s, int type, ...) 3130 { 3131 int ret; 3132 void *arg; 3133 va_list ap; 3134 3135 va_start(ap, type); 3136 arg = va_arg(ap, void *); 3137 va_end(ap); 3138 3139 trace_kvm_ioctl(type, arg); 3140 ret = ioctl(s->fd, type, arg); 3141 if (ret == -1) { 3142 ret = -errno; 3143 } 3144 return ret; 3145 } 3146 3147 int kvm_vm_ioctl(KVMState *s, int type, ...) 3148 { 3149 int ret; 3150 void *arg; 3151 va_list ap; 3152 3153 va_start(ap, type); 3154 arg = va_arg(ap, void *); 3155 va_end(ap); 3156 3157 trace_kvm_vm_ioctl(type, arg); 3158 accel_ioctl_begin(); 3159 ret = ioctl(s->vmfd, type, arg); 3160 accel_ioctl_end(); 3161 if (ret == -1) { 3162 ret = -errno; 3163 } 3164 return ret; 3165 } 3166 3167 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3168 { 3169 int ret; 3170 void *arg; 3171 va_list ap; 3172 3173 va_start(ap, type); 3174 arg = va_arg(ap, void *); 3175 va_end(ap); 3176 3177 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3178 accel_cpu_ioctl_begin(cpu); 3179 ret = ioctl(cpu->kvm_fd, type, arg); 3180 accel_cpu_ioctl_end(cpu); 3181 if (ret == -1) { 3182 ret = -errno; 3183 } 3184 return ret; 3185 } 3186 3187 int kvm_device_ioctl(int fd, int type, ...) 3188 { 3189 int ret; 3190 void *arg; 3191 va_list ap; 3192 3193 va_start(ap, type); 3194 arg = va_arg(ap, void *); 3195 va_end(ap); 3196 3197 trace_kvm_device_ioctl(fd, type, arg); 3198 accel_ioctl_begin(); 3199 ret = ioctl(fd, type, arg); 3200 accel_ioctl_end(); 3201 if (ret == -1) { 3202 ret = -errno; 3203 } 3204 return ret; 3205 } 3206 3207 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3208 { 3209 int ret; 3210 struct kvm_device_attr attribute = { 3211 .group = group, 3212 .attr = attr, 3213 }; 3214 3215 if (!kvm_vm_attributes_allowed) { 3216 return 0; 3217 } 3218 3219 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3220 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3221 return ret ? 0 : 1; 3222 } 3223 3224 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3225 { 3226 struct kvm_device_attr attribute = { 3227 .group = group, 3228 .attr = attr, 3229 .flags = 0, 3230 }; 3231 3232 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3233 } 3234 3235 int kvm_device_access(int fd, int group, uint64_t attr, 3236 void *val, bool write, Error **errp) 3237 { 3238 struct kvm_device_attr kvmattr; 3239 int err; 3240 3241 kvmattr.flags = 0; 3242 kvmattr.group = group; 3243 kvmattr.attr = attr; 3244 kvmattr.addr = (uintptr_t)val; 3245 3246 err = kvm_device_ioctl(fd, 3247 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3248 &kvmattr); 3249 if (err < 0) { 3250 error_setg_errno(errp, -err, 3251 "KVM_%s_DEVICE_ATTR failed: Group %d " 3252 "attr 0x%016" PRIx64, 3253 write ? "SET" : "GET", group, attr); 3254 } 3255 return err; 3256 } 3257 3258 bool kvm_has_sync_mmu(void) 3259 { 3260 return kvm_state->sync_mmu; 3261 } 3262 3263 int kvm_has_vcpu_events(void) 3264 { 3265 return kvm_state->vcpu_events; 3266 } 3267 3268 int kvm_max_nested_state_length(void) 3269 { 3270 return kvm_state->max_nested_state_len; 3271 } 3272 3273 int kvm_has_gsi_routing(void) 3274 { 3275 #ifdef KVM_CAP_IRQ_ROUTING 3276 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3277 #else 3278 return false; 3279 #endif 3280 } 3281 3282 bool kvm_arm_supports_user_irq(void) 3283 { 3284 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3285 } 3286 3287 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3288 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3289 { 3290 struct kvm_sw_breakpoint *bp; 3291 3292 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3293 if (bp->pc == pc) { 3294 return bp; 3295 } 3296 } 3297 return NULL; 3298 } 3299 3300 int kvm_sw_breakpoints_active(CPUState *cpu) 3301 { 3302 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3303 } 3304 3305 struct kvm_set_guest_debug_data { 3306 struct kvm_guest_debug dbg; 3307 int err; 3308 }; 3309 3310 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3311 { 3312 struct kvm_set_guest_debug_data *dbg_data = 3313 (struct kvm_set_guest_debug_data *) data.host_ptr; 3314 3315 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3316 &dbg_data->dbg); 3317 } 3318 3319 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3320 { 3321 struct kvm_set_guest_debug_data data; 3322 3323 data.dbg.control = reinject_trap; 3324 3325 if (cpu->singlestep_enabled) { 3326 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3327 3328 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3329 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3330 } 3331 } 3332 kvm_arch_update_guest_debug(cpu, &data.dbg); 3333 3334 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3335 RUN_ON_CPU_HOST_PTR(&data)); 3336 return data.err; 3337 } 3338 3339 bool kvm_supports_guest_debug(void) 3340 { 3341 /* probed during kvm_init() */ 3342 return kvm_has_guest_debug; 3343 } 3344 3345 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3346 { 3347 struct kvm_sw_breakpoint *bp; 3348 int err; 3349 3350 if (type == GDB_BREAKPOINT_SW) { 3351 bp = kvm_find_sw_breakpoint(cpu, addr); 3352 if (bp) { 3353 bp->use_count++; 3354 return 0; 3355 } 3356 3357 bp = g_new(struct kvm_sw_breakpoint, 1); 3358 bp->pc = addr; 3359 bp->use_count = 1; 3360 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3361 if (err) { 3362 g_free(bp); 3363 return err; 3364 } 3365 3366 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3367 } else { 3368 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3369 if (err) { 3370 return err; 3371 } 3372 } 3373 3374 CPU_FOREACH(cpu) { 3375 err = kvm_update_guest_debug(cpu, 0); 3376 if (err) { 3377 return err; 3378 } 3379 } 3380 return 0; 3381 } 3382 3383 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3384 { 3385 struct kvm_sw_breakpoint *bp; 3386 int err; 3387 3388 if (type == GDB_BREAKPOINT_SW) { 3389 bp = kvm_find_sw_breakpoint(cpu, addr); 3390 if (!bp) { 3391 return -ENOENT; 3392 } 3393 3394 if (bp->use_count > 1) { 3395 bp->use_count--; 3396 return 0; 3397 } 3398 3399 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3400 if (err) { 3401 return err; 3402 } 3403 3404 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3405 g_free(bp); 3406 } else { 3407 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3408 if (err) { 3409 return err; 3410 } 3411 } 3412 3413 CPU_FOREACH(cpu) { 3414 err = kvm_update_guest_debug(cpu, 0); 3415 if (err) { 3416 return err; 3417 } 3418 } 3419 return 0; 3420 } 3421 3422 void kvm_remove_all_breakpoints(CPUState *cpu) 3423 { 3424 struct kvm_sw_breakpoint *bp, *next; 3425 KVMState *s = cpu->kvm_state; 3426 CPUState *tmpcpu; 3427 3428 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3429 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3430 /* Try harder to find a CPU that currently sees the breakpoint. */ 3431 CPU_FOREACH(tmpcpu) { 3432 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3433 break; 3434 } 3435 } 3436 } 3437 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3438 g_free(bp); 3439 } 3440 kvm_arch_remove_all_hw_breakpoints(); 3441 3442 CPU_FOREACH(cpu) { 3443 kvm_update_guest_debug(cpu, 0); 3444 } 3445 } 3446 3447 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3448 3449 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3450 { 3451 KVMState *s = kvm_state; 3452 struct kvm_signal_mask *sigmask; 3453 int r; 3454 3455 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3456 3457 sigmask->len = s->sigmask_len; 3458 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3459 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3460 g_free(sigmask); 3461 3462 return r; 3463 } 3464 3465 static void kvm_ipi_signal(int sig) 3466 { 3467 if (current_cpu) { 3468 assert(kvm_immediate_exit); 3469 kvm_cpu_kick(current_cpu); 3470 } 3471 } 3472 3473 void kvm_init_cpu_signals(CPUState *cpu) 3474 { 3475 int r; 3476 sigset_t set; 3477 struct sigaction sigact; 3478 3479 memset(&sigact, 0, sizeof(sigact)); 3480 sigact.sa_handler = kvm_ipi_signal; 3481 sigaction(SIG_IPI, &sigact, NULL); 3482 3483 pthread_sigmask(SIG_BLOCK, NULL, &set); 3484 #if defined KVM_HAVE_MCE_INJECTION 3485 sigdelset(&set, SIGBUS); 3486 pthread_sigmask(SIG_SETMASK, &set, NULL); 3487 #endif 3488 sigdelset(&set, SIG_IPI); 3489 if (kvm_immediate_exit) { 3490 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3491 } else { 3492 r = kvm_set_signal_mask(cpu, &set); 3493 } 3494 if (r) { 3495 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3496 exit(1); 3497 } 3498 } 3499 3500 /* Called asynchronously in VCPU thread. */ 3501 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3502 { 3503 #ifdef KVM_HAVE_MCE_INJECTION 3504 if (have_sigbus_pending) { 3505 return 1; 3506 } 3507 have_sigbus_pending = true; 3508 pending_sigbus_addr = addr; 3509 pending_sigbus_code = code; 3510 qatomic_set(&cpu->exit_request, 1); 3511 return 0; 3512 #else 3513 return 1; 3514 #endif 3515 } 3516 3517 /* Called synchronously (via signalfd) in main thread. */ 3518 int kvm_on_sigbus(int code, void *addr) 3519 { 3520 #ifdef KVM_HAVE_MCE_INJECTION 3521 /* Action required MCE kills the process if SIGBUS is blocked. Because 3522 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3523 * we can only get action optional here. 3524 */ 3525 assert(code != BUS_MCEERR_AR); 3526 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3527 return 0; 3528 #else 3529 return 1; 3530 #endif 3531 } 3532 3533 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3534 { 3535 int ret; 3536 struct kvm_create_device create_dev; 3537 3538 create_dev.type = type; 3539 create_dev.fd = -1; 3540 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3541 3542 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3543 return -ENOTSUP; 3544 } 3545 3546 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3547 if (ret) { 3548 return ret; 3549 } 3550 3551 return test ? 0 : create_dev.fd; 3552 } 3553 3554 bool kvm_device_supported(int vmfd, uint64_t type) 3555 { 3556 struct kvm_create_device create_dev = { 3557 .type = type, 3558 .fd = -1, 3559 .flags = KVM_CREATE_DEVICE_TEST, 3560 }; 3561 3562 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3563 return false; 3564 } 3565 3566 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3567 } 3568 3569 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3570 { 3571 struct kvm_one_reg reg; 3572 int r; 3573 3574 reg.id = id; 3575 reg.addr = (uintptr_t) source; 3576 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3577 if (r) { 3578 trace_kvm_failed_reg_set(id, strerror(-r)); 3579 } 3580 return r; 3581 } 3582 3583 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3584 { 3585 struct kvm_one_reg reg; 3586 int r; 3587 3588 reg.id = id; 3589 reg.addr = (uintptr_t) target; 3590 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3591 if (r) { 3592 trace_kvm_failed_reg_get(id, strerror(-r)); 3593 } 3594 return r; 3595 } 3596 3597 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3598 hwaddr start_addr, hwaddr size) 3599 { 3600 KVMState *kvm = KVM_STATE(ms->accelerator); 3601 int i; 3602 3603 for (i = 0; i < kvm->nr_as; ++i) { 3604 if (kvm->as[i].as == as && kvm->as[i].ml) { 3605 size = MIN(kvm_max_slot_size, size); 3606 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3607 start_addr, size); 3608 } 3609 } 3610 3611 return false; 3612 } 3613 3614 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3615 const char *name, void *opaque, 3616 Error **errp) 3617 { 3618 KVMState *s = KVM_STATE(obj); 3619 int64_t value = s->kvm_shadow_mem; 3620 3621 visit_type_int(v, name, &value, errp); 3622 } 3623 3624 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3625 const char *name, void *opaque, 3626 Error **errp) 3627 { 3628 KVMState *s = KVM_STATE(obj); 3629 int64_t value; 3630 3631 if (s->fd != -1) { 3632 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3633 return; 3634 } 3635 3636 if (!visit_type_int(v, name, &value, errp)) { 3637 return; 3638 } 3639 3640 s->kvm_shadow_mem = value; 3641 } 3642 3643 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3644 const char *name, void *opaque, 3645 Error **errp) 3646 { 3647 KVMState *s = KVM_STATE(obj); 3648 OnOffSplit mode; 3649 3650 if (s->fd != -1) { 3651 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3652 return; 3653 } 3654 3655 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3656 return; 3657 } 3658 switch (mode) { 3659 case ON_OFF_SPLIT_ON: 3660 s->kernel_irqchip_allowed = true; 3661 s->kernel_irqchip_required = true; 3662 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3663 break; 3664 case ON_OFF_SPLIT_OFF: 3665 s->kernel_irqchip_allowed = false; 3666 s->kernel_irqchip_required = false; 3667 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3668 break; 3669 case ON_OFF_SPLIT_SPLIT: 3670 s->kernel_irqchip_allowed = true; 3671 s->kernel_irqchip_required = true; 3672 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3673 break; 3674 default: 3675 /* The value was checked in visit_type_OnOffSplit() above. If 3676 * we get here, then something is wrong in QEMU. 3677 */ 3678 abort(); 3679 } 3680 } 3681 3682 bool kvm_kernel_irqchip_allowed(void) 3683 { 3684 return kvm_state->kernel_irqchip_allowed; 3685 } 3686 3687 bool kvm_kernel_irqchip_required(void) 3688 { 3689 return kvm_state->kernel_irqchip_required; 3690 } 3691 3692 bool kvm_kernel_irqchip_split(void) 3693 { 3694 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3695 } 3696 3697 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3698 const char *name, void *opaque, 3699 Error **errp) 3700 { 3701 KVMState *s = KVM_STATE(obj); 3702 uint32_t value = s->kvm_dirty_ring_size; 3703 3704 visit_type_uint32(v, name, &value, errp); 3705 } 3706 3707 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3708 const char *name, void *opaque, 3709 Error **errp) 3710 { 3711 KVMState *s = KVM_STATE(obj); 3712 uint32_t value; 3713 3714 if (s->fd != -1) { 3715 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3716 return; 3717 } 3718 3719 if (!visit_type_uint32(v, name, &value, errp)) { 3720 return; 3721 } 3722 if (value & (value - 1)) { 3723 error_setg(errp, "dirty-ring-size must be a power of two."); 3724 return; 3725 } 3726 3727 s->kvm_dirty_ring_size = value; 3728 } 3729 3730 static char *kvm_get_device(Object *obj, 3731 Error **errp G_GNUC_UNUSED) 3732 { 3733 KVMState *s = KVM_STATE(obj); 3734 3735 return g_strdup(s->device); 3736 } 3737 3738 static void kvm_set_device(Object *obj, 3739 const char *value, 3740 Error **errp G_GNUC_UNUSED) 3741 { 3742 KVMState *s = KVM_STATE(obj); 3743 3744 g_free(s->device); 3745 s->device = g_strdup(value); 3746 } 3747 3748 static void kvm_accel_instance_init(Object *obj) 3749 { 3750 KVMState *s = KVM_STATE(obj); 3751 3752 s->fd = -1; 3753 s->vmfd = -1; 3754 s->kvm_shadow_mem = -1; 3755 s->kernel_irqchip_allowed = true; 3756 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3757 /* KVM dirty ring is by default off */ 3758 s->kvm_dirty_ring_size = 0; 3759 s->kvm_dirty_ring_with_bitmap = false; 3760 s->kvm_eager_split_size = 0; 3761 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3762 s->notify_window = 0; 3763 s->xen_version = 0; 3764 s->xen_gnttab_max_frames = 64; 3765 s->xen_evtchn_max_pirq = 256; 3766 s->device = NULL; 3767 } 3768 3769 /** 3770 * kvm_gdbstub_sstep_flags(): 3771 * 3772 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3773 * support is probed during kvm_init() 3774 */ 3775 static int kvm_gdbstub_sstep_flags(void) 3776 { 3777 return kvm_sstep_flags; 3778 } 3779 3780 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3781 { 3782 AccelClass *ac = ACCEL_CLASS(oc); 3783 ac->name = "KVM"; 3784 ac->init_machine = kvm_init; 3785 ac->has_memory = kvm_accel_has_memory; 3786 ac->allowed = &kvm_allowed; 3787 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3788 3789 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3790 NULL, kvm_set_kernel_irqchip, 3791 NULL, NULL); 3792 object_class_property_set_description(oc, "kernel-irqchip", 3793 "Configure KVM in-kernel irqchip"); 3794 3795 object_class_property_add(oc, "kvm-shadow-mem", "int", 3796 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3797 NULL, NULL); 3798 object_class_property_set_description(oc, "kvm-shadow-mem", 3799 "KVM shadow MMU size"); 3800 3801 object_class_property_add(oc, "dirty-ring-size", "uint32", 3802 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3803 NULL, NULL); 3804 object_class_property_set_description(oc, "dirty-ring-size", 3805 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3806 3807 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3808 object_class_property_set_description(oc, "device", 3809 "Path to the device node to use (default: /dev/kvm)"); 3810 3811 kvm_arch_accel_class_init(oc); 3812 } 3813 3814 static const TypeInfo kvm_accel_type = { 3815 .name = TYPE_KVM_ACCEL, 3816 .parent = TYPE_ACCEL, 3817 .instance_init = kvm_accel_instance_init, 3818 .class_init = kvm_accel_class_init, 3819 .instance_size = sizeof(KVMState), 3820 }; 3821 3822 static void kvm_type_init(void) 3823 { 3824 type_register_static(&kvm_accel_type); 3825 } 3826 3827 type_init(kvm_type_init); 3828 3829 typedef struct StatsArgs { 3830 union StatsResultsType { 3831 StatsResultList **stats; 3832 StatsSchemaList **schema; 3833 } result; 3834 strList *names; 3835 Error **errp; 3836 } StatsArgs; 3837 3838 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3839 uint64_t *stats_data, 3840 StatsList *stats_list, 3841 Error **errp) 3842 { 3843 3844 Stats *stats; 3845 uint64List *val_list = NULL; 3846 3847 /* Only add stats that we understand. */ 3848 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3849 case KVM_STATS_TYPE_CUMULATIVE: 3850 case KVM_STATS_TYPE_INSTANT: 3851 case KVM_STATS_TYPE_PEAK: 3852 case KVM_STATS_TYPE_LINEAR_HIST: 3853 case KVM_STATS_TYPE_LOG_HIST: 3854 break; 3855 default: 3856 return stats_list; 3857 } 3858 3859 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3860 case KVM_STATS_UNIT_NONE: 3861 case KVM_STATS_UNIT_BYTES: 3862 case KVM_STATS_UNIT_CYCLES: 3863 case KVM_STATS_UNIT_SECONDS: 3864 case KVM_STATS_UNIT_BOOLEAN: 3865 break; 3866 default: 3867 return stats_list; 3868 } 3869 3870 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3871 case KVM_STATS_BASE_POW10: 3872 case KVM_STATS_BASE_POW2: 3873 break; 3874 default: 3875 return stats_list; 3876 } 3877 3878 /* Alloc and populate data list */ 3879 stats = g_new0(Stats, 1); 3880 stats->name = g_strdup(pdesc->name); 3881 stats->value = g_new0(StatsValue, 1); 3882 3883 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3884 stats->value->u.boolean = *stats_data; 3885 stats->value->type = QTYPE_QBOOL; 3886 } else if (pdesc->size == 1) { 3887 stats->value->u.scalar = *stats_data; 3888 stats->value->type = QTYPE_QNUM; 3889 } else { 3890 int i; 3891 for (i = 0; i < pdesc->size; i++) { 3892 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3893 } 3894 stats->value->u.list = val_list; 3895 stats->value->type = QTYPE_QLIST; 3896 } 3897 3898 QAPI_LIST_PREPEND(stats_list, stats); 3899 return stats_list; 3900 } 3901 3902 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3903 StatsSchemaValueList *list, 3904 Error **errp) 3905 { 3906 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3907 schema_entry->value = g_new0(StatsSchemaValue, 1); 3908 3909 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3910 case KVM_STATS_TYPE_CUMULATIVE: 3911 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3912 break; 3913 case KVM_STATS_TYPE_INSTANT: 3914 schema_entry->value->type = STATS_TYPE_INSTANT; 3915 break; 3916 case KVM_STATS_TYPE_PEAK: 3917 schema_entry->value->type = STATS_TYPE_PEAK; 3918 break; 3919 case KVM_STATS_TYPE_LINEAR_HIST: 3920 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3921 schema_entry->value->bucket_size = pdesc->bucket_size; 3922 schema_entry->value->has_bucket_size = true; 3923 break; 3924 case KVM_STATS_TYPE_LOG_HIST: 3925 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3926 break; 3927 default: 3928 goto exit; 3929 } 3930 3931 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3932 case KVM_STATS_UNIT_NONE: 3933 break; 3934 case KVM_STATS_UNIT_BOOLEAN: 3935 schema_entry->value->has_unit = true; 3936 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3937 break; 3938 case KVM_STATS_UNIT_BYTES: 3939 schema_entry->value->has_unit = true; 3940 schema_entry->value->unit = STATS_UNIT_BYTES; 3941 break; 3942 case KVM_STATS_UNIT_CYCLES: 3943 schema_entry->value->has_unit = true; 3944 schema_entry->value->unit = STATS_UNIT_CYCLES; 3945 break; 3946 case KVM_STATS_UNIT_SECONDS: 3947 schema_entry->value->has_unit = true; 3948 schema_entry->value->unit = STATS_UNIT_SECONDS; 3949 break; 3950 default: 3951 goto exit; 3952 } 3953 3954 schema_entry->value->exponent = pdesc->exponent; 3955 if (pdesc->exponent) { 3956 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3957 case KVM_STATS_BASE_POW10: 3958 schema_entry->value->has_base = true; 3959 schema_entry->value->base = 10; 3960 break; 3961 case KVM_STATS_BASE_POW2: 3962 schema_entry->value->has_base = true; 3963 schema_entry->value->base = 2; 3964 break; 3965 default: 3966 goto exit; 3967 } 3968 } 3969 3970 schema_entry->value->name = g_strdup(pdesc->name); 3971 schema_entry->next = list; 3972 return schema_entry; 3973 exit: 3974 g_free(schema_entry->value); 3975 g_free(schema_entry); 3976 return list; 3977 } 3978 3979 /* Cached stats descriptors */ 3980 typedef struct StatsDescriptors { 3981 const char *ident; /* cache key, currently the StatsTarget */ 3982 struct kvm_stats_desc *kvm_stats_desc; 3983 struct kvm_stats_header kvm_stats_header; 3984 QTAILQ_ENTRY(StatsDescriptors) next; 3985 } StatsDescriptors; 3986 3987 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3988 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3989 3990 /* 3991 * Return the descriptors for 'target', that either have already been read 3992 * or are retrieved from 'stats_fd'. 3993 */ 3994 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3995 Error **errp) 3996 { 3997 StatsDescriptors *descriptors; 3998 const char *ident; 3999 struct kvm_stats_desc *kvm_stats_desc; 4000 struct kvm_stats_header *kvm_stats_header; 4001 size_t size_desc; 4002 ssize_t ret; 4003 4004 ident = StatsTarget_str(target); 4005 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4006 if (g_str_equal(descriptors->ident, ident)) { 4007 return descriptors; 4008 } 4009 } 4010 4011 descriptors = g_new0(StatsDescriptors, 1); 4012 4013 /* Read stats header */ 4014 kvm_stats_header = &descriptors->kvm_stats_header; 4015 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4016 if (ret != sizeof(*kvm_stats_header)) { 4017 error_setg(errp, "KVM stats: failed to read stats header: " 4018 "expected %zu actual %zu", 4019 sizeof(*kvm_stats_header), ret); 4020 g_free(descriptors); 4021 return NULL; 4022 } 4023 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4024 4025 /* Read stats descriptors */ 4026 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4027 ret = pread(stats_fd, kvm_stats_desc, 4028 size_desc * kvm_stats_header->num_desc, 4029 kvm_stats_header->desc_offset); 4030 4031 if (ret != size_desc * kvm_stats_header->num_desc) { 4032 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4033 "expected %zu actual %zu", 4034 size_desc * kvm_stats_header->num_desc, ret); 4035 g_free(descriptors); 4036 g_free(kvm_stats_desc); 4037 return NULL; 4038 } 4039 descriptors->kvm_stats_desc = kvm_stats_desc; 4040 descriptors->ident = ident; 4041 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4042 return descriptors; 4043 } 4044 4045 static void query_stats(StatsResultList **result, StatsTarget target, 4046 strList *names, int stats_fd, CPUState *cpu, 4047 Error **errp) 4048 { 4049 struct kvm_stats_desc *kvm_stats_desc; 4050 struct kvm_stats_header *kvm_stats_header; 4051 StatsDescriptors *descriptors; 4052 g_autofree uint64_t *stats_data = NULL; 4053 struct kvm_stats_desc *pdesc; 4054 StatsList *stats_list = NULL; 4055 size_t size_desc, size_data = 0; 4056 ssize_t ret; 4057 int i; 4058 4059 descriptors = find_stats_descriptors(target, stats_fd, errp); 4060 if (!descriptors) { 4061 return; 4062 } 4063 4064 kvm_stats_header = &descriptors->kvm_stats_header; 4065 kvm_stats_desc = descriptors->kvm_stats_desc; 4066 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4067 4068 /* Tally the total data size; read schema data */ 4069 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4070 pdesc = (void *)kvm_stats_desc + i * size_desc; 4071 size_data += pdesc->size * sizeof(*stats_data); 4072 } 4073 4074 stats_data = g_malloc0(size_data); 4075 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4076 4077 if (ret != size_data) { 4078 error_setg(errp, "KVM stats: failed to read data: " 4079 "expected %zu actual %zu", size_data, ret); 4080 return; 4081 } 4082 4083 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4084 uint64_t *stats; 4085 pdesc = (void *)kvm_stats_desc + i * size_desc; 4086 4087 /* Add entry to the list */ 4088 stats = (void *)stats_data + pdesc->offset; 4089 if (!apply_str_list_filter(pdesc->name, names)) { 4090 continue; 4091 } 4092 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4093 } 4094 4095 if (!stats_list) { 4096 return; 4097 } 4098 4099 switch (target) { 4100 case STATS_TARGET_VM: 4101 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4102 break; 4103 case STATS_TARGET_VCPU: 4104 add_stats_entry(result, STATS_PROVIDER_KVM, 4105 cpu->parent_obj.canonical_path, 4106 stats_list); 4107 break; 4108 default: 4109 g_assert_not_reached(); 4110 } 4111 } 4112 4113 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4114 int stats_fd, Error **errp) 4115 { 4116 struct kvm_stats_desc *kvm_stats_desc; 4117 struct kvm_stats_header *kvm_stats_header; 4118 StatsDescriptors *descriptors; 4119 struct kvm_stats_desc *pdesc; 4120 StatsSchemaValueList *stats_list = NULL; 4121 size_t size_desc; 4122 int i; 4123 4124 descriptors = find_stats_descriptors(target, stats_fd, errp); 4125 if (!descriptors) { 4126 return; 4127 } 4128 4129 kvm_stats_header = &descriptors->kvm_stats_header; 4130 kvm_stats_desc = descriptors->kvm_stats_desc; 4131 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4132 4133 /* Tally the total data size; read schema data */ 4134 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4135 pdesc = (void *)kvm_stats_desc + i * size_desc; 4136 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4137 } 4138 4139 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4140 } 4141 4142 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4143 { 4144 int stats_fd = cpu->kvm_vcpu_stats_fd; 4145 Error *local_err = NULL; 4146 4147 if (stats_fd == -1) { 4148 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4149 error_propagate(kvm_stats_args->errp, local_err); 4150 return; 4151 } 4152 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4153 kvm_stats_args->names, stats_fd, cpu, 4154 kvm_stats_args->errp); 4155 } 4156 4157 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4158 { 4159 int stats_fd = cpu->kvm_vcpu_stats_fd; 4160 Error *local_err = NULL; 4161 4162 if (stats_fd == -1) { 4163 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4164 error_propagate(kvm_stats_args->errp, local_err); 4165 return; 4166 } 4167 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4168 kvm_stats_args->errp); 4169 } 4170 4171 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4172 strList *names, strList *targets, Error **errp) 4173 { 4174 KVMState *s = kvm_state; 4175 CPUState *cpu; 4176 int stats_fd; 4177 4178 switch (target) { 4179 case STATS_TARGET_VM: 4180 { 4181 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4182 if (stats_fd == -1) { 4183 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4184 return; 4185 } 4186 query_stats(result, target, names, stats_fd, NULL, errp); 4187 close(stats_fd); 4188 break; 4189 } 4190 case STATS_TARGET_VCPU: 4191 { 4192 StatsArgs stats_args; 4193 stats_args.result.stats = result; 4194 stats_args.names = names; 4195 stats_args.errp = errp; 4196 CPU_FOREACH(cpu) { 4197 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4198 continue; 4199 } 4200 query_stats_vcpu(cpu, &stats_args); 4201 } 4202 break; 4203 } 4204 default: 4205 break; 4206 } 4207 } 4208 4209 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4210 { 4211 StatsArgs stats_args; 4212 KVMState *s = kvm_state; 4213 int stats_fd; 4214 4215 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4216 if (stats_fd == -1) { 4217 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4218 return; 4219 } 4220 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4221 close(stats_fd); 4222 4223 if (first_cpu) { 4224 stats_args.result.schema = result; 4225 stats_args.errp = errp; 4226 query_stats_schema_vcpu(first_cpu, &stats_args); 4227 } 4228 } 4229 4230 void kvm_mark_guest_state_protected(void) 4231 { 4232 kvm_state->guest_state_protected = true; 4233 } 4234 4235 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4236 { 4237 int fd; 4238 struct kvm_create_guest_memfd guest_memfd = { 4239 .size = size, 4240 .flags = flags, 4241 }; 4242 4243 if (!kvm_guest_memfd_supported) { 4244 error_setg(errp, "KVM does not support guest_memfd"); 4245 return -1; 4246 } 4247 4248 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4249 if (fd < 0) { 4250 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4251 return -1; 4252 } 4253 4254 return fd; 4255 } 4256