1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "sysemu/reset.h" 47 #include "qemu/guest-random.h" 48 #include "sysemu/hw_accel.h" 49 #include "kvm-cpus.h" 50 51 #include "hw/boards.h" 52 53 /* This check must be after config-host.h is included */ 54 #ifdef CONFIG_EVENTFD 55 #include <sys/eventfd.h> 56 #endif 57 58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 59 * need to use the real host PAGE_SIZE, as that's what KVM will use. 60 */ 61 #define PAGE_SIZE qemu_real_host_page_size 62 63 //#define DEBUG_KVM 64 65 #ifdef DEBUG_KVM 66 #define DPRINTF(fmt, ...) \ 67 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 68 #else 69 #define DPRINTF(fmt, ...) \ 70 do { } while (0) 71 #endif 72 73 #define KVM_MSI_HASHTAB_SIZE 256 74 75 struct KVMParkedVcpu { 76 unsigned long vcpu_id; 77 int kvm_fd; 78 QLIST_ENTRY(KVMParkedVcpu) node; 79 }; 80 81 struct KVMState 82 { 83 AccelState parent_obj; 84 85 int nr_slots; 86 int fd; 87 int vmfd; 88 int coalesced_mmio; 89 int coalesced_pio; 90 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 91 bool coalesced_flush_in_progress; 92 int vcpu_events; 93 int robust_singlestep; 94 int debugregs; 95 #ifdef KVM_CAP_SET_GUEST_DEBUG 96 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 97 #endif 98 int max_nested_state_len; 99 int many_ioeventfds; 100 int intx_set_mask; 101 int kvm_shadow_mem; 102 bool kernel_irqchip_allowed; 103 bool kernel_irqchip_required; 104 OnOffAuto kernel_irqchip_split; 105 bool sync_mmu; 106 uint64_t manual_dirty_log_protect; 107 /* The man page (and posix) say ioctl numbers are signed int, but 108 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 109 * unsigned, and treating them as signed here can break things */ 110 unsigned irq_set_ioctl; 111 unsigned int sigmask_len; 112 GHashTable *gsimap; 113 #ifdef KVM_CAP_IRQ_ROUTING 114 struct kvm_irq_routing *irq_routes; 115 int nr_allocated_irq_routes; 116 unsigned long *used_gsi_bitmap; 117 unsigned int gsi_count; 118 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 119 #endif 120 KVMMemoryListener memory_listener; 121 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 122 123 /* memory encryption */ 124 void *memcrypt_handle; 125 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 126 127 /* For "info mtree -f" to tell if an MR is registered in KVM */ 128 int nr_as; 129 struct KVMAs { 130 KVMMemoryListener *ml; 131 AddressSpace *as; 132 } *as; 133 }; 134 135 KVMState *kvm_state; 136 bool kvm_kernel_irqchip; 137 bool kvm_split_irqchip; 138 bool kvm_async_interrupts_allowed; 139 bool kvm_halt_in_kernel_allowed; 140 bool kvm_eventfds_allowed; 141 bool kvm_irqfds_allowed; 142 bool kvm_resamplefds_allowed; 143 bool kvm_msi_via_irqfd_allowed; 144 bool kvm_gsi_routing_allowed; 145 bool kvm_gsi_direct_mapping; 146 bool kvm_allowed; 147 bool kvm_readonly_mem_allowed; 148 bool kvm_vm_attributes_allowed; 149 bool kvm_direct_msi_allowed; 150 bool kvm_ioeventfd_any_length_allowed; 151 bool kvm_msi_use_devid; 152 static bool kvm_immediate_exit; 153 static hwaddr kvm_max_slot_size = ~0; 154 155 static const KVMCapabilityInfo kvm_required_capabilites[] = { 156 KVM_CAP_INFO(USER_MEMORY), 157 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 158 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 159 KVM_CAP_LAST_INFO 160 }; 161 162 static NotifierList kvm_irqchip_change_notifiers = 163 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 164 165 struct KVMResampleFd { 166 int gsi; 167 EventNotifier *resample_event; 168 QLIST_ENTRY(KVMResampleFd) node; 169 }; 170 typedef struct KVMResampleFd KVMResampleFd; 171 172 /* 173 * Only used with split irqchip where we need to do the resample fd 174 * kick for the kernel from userspace. 175 */ 176 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 177 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 178 179 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 180 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 181 182 static inline void kvm_resample_fd_remove(int gsi) 183 { 184 KVMResampleFd *rfd; 185 186 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 187 if (rfd->gsi == gsi) { 188 QLIST_REMOVE(rfd, node); 189 g_free(rfd); 190 break; 191 } 192 } 193 } 194 195 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 196 { 197 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 198 199 rfd->gsi = gsi; 200 rfd->resample_event = event; 201 202 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 203 } 204 205 void kvm_resample_fd_notify(int gsi) 206 { 207 KVMResampleFd *rfd; 208 209 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 210 if (rfd->gsi == gsi) { 211 event_notifier_set(rfd->resample_event); 212 trace_kvm_resample_fd_notify(gsi); 213 return; 214 } 215 } 216 } 217 218 int kvm_get_max_memslots(void) 219 { 220 KVMState *s = KVM_STATE(current_accel()); 221 222 return s->nr_slots; 223 } 224 225 bool kvm_memcrypt_enabled(void) 226 { 227 if (kvm_state && kvm_state->memcrypt_handle) { 228 return true; 229 } 230 231 return false; 232 } 233 234 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 235 { 236 if (kvm_state->memcrypt_handle && 237 kvm_state->memcrypt_encrypt_data) { 238 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 239 ptr, len); 240 } 241 242 return 1; 243 } 244 245 /* Called with KVMMemoryListener.slots_lock held */ 246 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 247 { 248 KVMState *s = kvm_state; 249 int i; 250 251 for (i = 0; i < s->nr_slots; i++) { 252 if (kml->slots[i].memory_size == 0) { 253 return &kml->slots[i]; 254 } 255 } 256 257 return NULL; 258 } 259 260 bool kvm_has_free_slot(MachineState *ms) 261 { 262 KVMState *s = KVM_STATE(ms->accelerator); 263 bool result; 264 KVMMemoryListener *kml = &s->memory_listener; 265 266 kvm_slots_lock(kml); 267 result = !!kvm_get_free_slot(kml); 268 kvm_slots_unlock(kml); 269 270 return result; 271 } 272 273 /* Called with KVMMemoryListener.slots_lock held */ 274 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 275 { 276 KVMSlot *slot = kvm_get_free_slot(kml); 277 278 if (slot) { 279 return slot; 280 } 281 282 fprintf(stderr, "%s: no free slot available\n", __func__); 283 abort(); 284 } 285 286 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 287 hwaddr start_addr, 288 hwaddr size) 289 { 290 KVMState *s = kvm_state; 291 int i; 292 293 for (i = 0; i < s->nr_slots; i++) { 294 KVMSlot *mem = &kml->slots[i]; 295 296 if (start_addr == mem->start_addr && size == mem->memory_size) { 297 return mem; 298 } 299 } 300 301 return NULL; 302 } 303 304 /* 305 * Calculate and align the start address and the size of the section. 306 * Return the size. If the size is 0, the aligned section is empty. 307 */ 308 static hwaddr kvm_align_section(MemoryRegionSection *section, 309 hwaddr *start) 310 { 311 hwaddr size = int128_get64(section->size); 312 hwaddr delta, aligned; 313 314 /* kvm works in page size chunks, but the function may be called 315 with sub-page size and unaligned start address. Pad the start 316 address to next and truncate size to previous page boundary. */ 317 aligned = ROUND_UP(section->offset_within_address_space, 318 qemu_real_host_page_size); 319 delta = aligned - section->offset_within_address_space; 320 *start = aligned; 321 if (delta > size) { 322 return 0; 323 } 324 325 return (size - delta) & qemu_real_host_page_mask; 326 } 327 328 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 329 hwaddr *phys_addr) 330 { 331 KVMMemoryListener *kml = &s->memory_listener; 332 int i, ret = 0; 333 334 kvm_slots_lock(kml); 335 for (i = 0; i < s->nr_slots; i++) { 336 KVMSlot *mem = &kml->slots[i]; 337 338 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 339 *phys_addr = mem->start_addr + (ram - mem->ram); 340 ret = 1; 341 break; 342 } 343 } 344 kvm_slots_unlock(kml); 345 346 return ret; 347 } 348 349 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 350 { 351 KVMState *s = kvm_state; 352 struct kvm_userspace_memory_region mem; 353 int ret; 354 355 mem.slot = slot->slot | (kml->as_id << 16); 356 mem.guest_phys_addr = slot->start_addr; 357 mem.userspace_addr = (unsigned long)slot->ram; 358 mem.flags = slot->flags; 359 360 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 361 /* Set the slot size to 0 before setting the slot to the desired 362 * value. This is needed based on KVM commit 75d61fbc. */ 363 mem.memory_size = 0; 364 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 365 if (ret < 0) { 366 goto err; 367 } 368 } 369 mem.memory_size = slot->memory_size; 370 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 371 slot->old_flags = mem.flags; 372 err: 373 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 374 mem.memory_size, mem.userspace_addr, ret); 375 if (ret < 0) { 376 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 377 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 378 __func__, mem.slot, slot->start_addr, 379 (uint64_t)mem.memory_size, strerror(errno)); 380 } 381 return ret; 382 } 383 384 static int do_kvm_destroy_vcpu(CPUState *cpu) 385 { 386 KVMState *s = kvm_state; 387 long mmap_size; 388 struct KVMParkedVcpu *vcpu = NULL; 389 int ret = 0; 390 391 DPRINTF("kvm_destroy_vcpu\n"); 392 393 ret = kvm_arch_destroy_vcpu(cpu); 394 if (ret < 0) { 395 goto err; 396 } 397 398 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 399 if (mmap_size < 0) { 400 ret = mmap_size; 401 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 402 goto err; 403 } 404 405 ret = munmap(cpu->kvm_run, mmap_size); 406 if (ret < 0) { 407 goto err; 408 } 409 410 vcpu = g_malloc0(sizeof(*vcpu)); 411 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 412 vcpu->kvm_fd = cpu->kvm_fd; 413 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 414 err: 415 return ret; 416 } 417 418 void kvm_destroy_vcpu(CPUState *cpu) 419 { 420 if (do_kvm_destroy_vcpu(cpu) < 0) { 421 error_report("kvm_destroy_vcpu failed"); 422 exit(EXIT_FAILURE); 423 } 424 } 425 426 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 427 { 428 struct KVMParkedVcpu *cpu; 429 430 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 431 if (cpu->vcpu_id == vcpu_id) { 432 int kvm_fd; 433 434 QLIST_REMOVE(cpu, node); 435 kvm_fd = cpu->kvm_fd; 436 g_free(cpu); 437 return kvm_fd; 438 } 439 } 440 441 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 442 } 443 444 int kvm_init_vcpu(CPUState *cpu, Error **errp) 445 { 446 KVMState *s = kvm_state; 447 long mmap_size; 448 int ret; 449 450 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 451 452 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 453 if (ret < 0) { 454 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 455 kvm_arch_vcpu_id(cpu)); 456 goto err; 457 } 458 459 cpu->kvm_fd = ret; 460 cpu->kvm_state = s; 461 cpu->vcpu_dirty = true; 462 463 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 464 if (mmap_size < 0) { 465 ret = mmap_size; 466 error_setg_errno(errp, -mmap_size, 467 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 468 goto err; 469 } 470 471 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 472 cpu->kvm_fd, 0); 473 if (cpu->kvm_run == MAP_FAILED) { 474 ret = -errno; 475 error_setg_errno(errp, ret, 476 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 477 kvm_arch_vcpu_id(cpu)); 478 goto err; 479 } 480 481 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 482 s->coalesced_mmio_ring = 483 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 484 } 485 486 ret = kvm_arch_init_vcpu(cpu); 487 if (ret < 0) { 488 error_setg_errno(errp, -ret, 489 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 490 kvm_arch_vcpu_id(cpu)); 491 } 492 err: 493 return ret; 494 } 495 496 /* 497 * dirty pages logging control 498 */ 499 500 static int kvm_mem_flags(MemoryRegion *mr) 501 { 502 bool readonly = mr->readonly || memory_region_is_romd(mr); 503 int flags = 0; 504 505 if (memory_region_get_dirty_log_mask(mr) != 0) { 506 flags |= KVM_MEM_LOG_DIRTY_PAGES; 507 } 508 if (readonly && kvm_readonly_mem_allowed) { 509 flags |= KVM_MEM_READONLY; 510 } 511 return flags; 512 } 513 514 /* Called with KVMMemoryListener.slots_lock held */ 515 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 516 MemoryRegion *mr) 517 { 518 mem->flags = kvm_mem_flags(mr); 519 520 /* If nothing changed effectively, no need to issue ioctl */ 521 if (mem->flags == mem->old_flags) { 522 return 0; 523 } 524 525 return kvm_set_user_memory_region(kml, mem, false); 526 } 527 528 static int kvm_section_update_flags(KVMMemoryListener *kml, 529 MemoryRegionSection *section) 530 { 531 hwaddr start_addr, size, slot_size; 532 KVMSlot *mem; 533 int ret = 0; 534 535 size = kvm_align_section(section, &start_addr); 536 if (!size) { 537 return 0; 538 } 539 540 kvm_slots_lock(kml); 541 542 while (size && !ret) { 543 slot_size = MIN(kvm_max_slot_size, size); 544 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 545 if (!mem) { 546 /* We don't have a slot if we want to trap every access. */ 547 goto out; 548 } 549 550 ret = kvm_slot_update_flags(kml, mem, section->mr); 551 start_addr += slot_size; 552 size -= slot_size; 553 } 554 555 out: 556 kvm_slots_unlock(kml); 557 return ret; 558 } 559 560 static void kvm_log_start(MemoryListener *listener, 561 MemoryRegionSection *section, 562 int old, int new) 563 { 564 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 565 int r; 566 567 if (old != 0) { 568 return; 569 } 570 571 r = kvm_section_update_flags(kml, section); 572 if (r < 0) { 573 abort(); 574 } 575 } 576 577 static void kvm_log_stop(MemoryListener *listener, 578 MemoryRegionSection *section, 579 int old, int new) 580 { 581 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 582 int r; 583 584 if (new != 0) { 585 return; 586 } 587 588 r = kvm_section_update_flags(kml, section); 589 if (r < 0) { 590 abort(); 591 } 592 } 593 594 /* get kvm's dirty pages bitmap and update qemu's */ 595 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 596 unsigned long *bitmap) 597 { 598 ram_addr_t start = section->offset_within_region + 599 memory_region_get_ram_addr(section->mr); 600 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 601 602 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 603 return 0; 604 } 605 606 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 607 608 /* Allocate the dirty bitmap for a slot */ 609 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 610 { 611 /* 612 * XXX bad kernel interface alert 613 * For dirty bitmap, kernel allocates array of size aligned to 614 * bits-per-long. But for case when the kernel is 64bits and 615 * the userspace is 32bits, userspace can't align to the same 616 * bits-per-long, since sizeof(long) is different between kernel 617 * and user space. This way, userspace will provide buffer which 618 * may be 4 bytes less than the kernel will use, resulting in 619 * userspace memory corruption (which is not detectable by valgrind 620 * too, in most cases). 621 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 622 * a hope that sizeof(long) won't become >8 any time soon. 623 */ 624 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 625 /*HOST_LONG_BITS*/ 64) / 8; 626 mem->dirty_bmap = g_malloc0(bitmap_size); 627 } 628 629 /** 630 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 631 * 632 * This function will first try to fetch dirty bitmap from the kernel, 633 * and then updates qemu's dirty bitmap. 634 * 635 * NOTE: caller must be with kml->slots_lock held. 636 * 637 * @kml: the KVM memory listener object 638 * @section: the memory section to sync the dirty bitmap with 639 */ 640 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 641 MemoryRegionSection *section) 642 { 643 KVMState *s = kvm_state; 644 struct kvm_dirty_log d = {}; 645 KVMSlot *mem; 646 hwaddr start_addr, size; 647 hwaddr slot_size, slot_offset = 0; 648 int ret = 0; 649 650 size = kvm_align_section(section, &start_addr); 651 while (size) { 652 MemoryRegionSection subsection = *section; 653 654 slot_size = MIN(kvm_max_slot_size, size); 655 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 656 if (!mem) { 657 /* We don't have a slot if we want to trap every access. */ 658 goto out; 659 } 660 661 if (!mem->dirty_bmap) { 662 /* Allocate on the first log_sync, once and for all */ 663 kvm_memslot_init_dirty_bitmap(mem); 664 } 665 666 d.dirty_bitmap = mem->dirty_bmap; 667 d.slot = mem->slot | (kml->as_id << 16); 668 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 669 DPRINTF("ioctl failed %d\n", errno); 670 ret = -1; 671 goto out; 672 } 673 674 subsection.offset_within_region += slot_offset; 675 subsection.size = int128_make64(slot_size); 676 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 677 678 slot_offset += slot_size; 679 start_addr += slot_size; 680 size -= slot_size; 681 } 682 out: 683 return ret; 684 } 685 686 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 687 #define KVM_CLEAR_LOG_SHIFT 6 688 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 689 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 690 691 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 692 uint64_t size) 693 { 694 KVMState *s = kvm_state; 695 uint64_t end, bmap_start, start_delta, bmap_npages; 696 struct kvm_clear_dirty_log d; 697 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 698 int ret; 699 700 /* 701 * We need to extend either the start or the size or both to 702 * satisfy the KVM interface requirement. Firstly, do the start 703 * page alignment on 64 host pages 704 */ 705 bmap_start = start & KVM_CLEAR_LOG_MASK; 706 start_delta = start - bmap_start; 707 bmap_start /= psize; 708 709 /* 710 * The kernel interface has restriction on the size too, that either: 711 * 712 * (1) the size is 64 host pages aligned (just like the start), or 713 * (2) the size fills up until the end of the KVM memslot. 714 */ 715 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 716 << KVM_CLEAR_LOG_SHIFT; 717 end = mem->memory_size / psize; 718 if (bmap_npages > end - bmap_start) { 719 bmap_npages = end - bmap_start; 720 } 721 start_delta /= psize; 722 723 /* 724 * Prepare the bitmap to clear dirty bits. Here we must guarantee 725 * that we won't clear any unknown dirty bits otherwise we might 726 * accidentally clear some set bits which are not yet synced from 727 * the kernel into QEMU's bitmap, then we'll lose track of the 728 * guest modifications upon those pages (which can directly lead 729 * to guest data loss or panic after migration). 730 * 731 * Layout of the KVMSlot.dirty_bmap: 732 * 733 * |<-------- bmap_npages -----------..>| 734 * [1] 735 * start_delta size 736 * |----------------|-------------|------------------|------------| 737 * ^ ^ ^ ^ 738 * | | | | 739 * start bmap_start (start) end 740 * of memslot of memslot 741 * 742 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 743 */ 744 745 assert(bmap_start % BITS_PER_LONG == 0); 746 /* We should never do log_clear before log_sync */ 747 assert(mem->dirty_bmap); 748 if (start_delta || bmap_npages - size / psize) { 749 /* Slow path - we need to manipulate a temp bitmap */ 750 bmap_clear = bitmap_new(bmap_npages); 751 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 752 bmap_start, start_delta + size / psize); 753 /* 754 * We need to fill the holes at start because that was not 755 * specified by the caller and we extended the bitmap only for 756 * 64 pages alignment 757 */ 758 bitmap_clear(bmap_clear, 0, start_delta); 759 d.dirty_bitmap = bmap_clear; 760 } else { 761 /* 762 * Fast path - both start and size align well with BITS_PER_LONG 763 * (or the end of memory slot) 764 */ 765 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 766 } 767 768 d.first_page = bmap_start; 769 /* It should never overflow. If it happens, say something */ 770 assert(bmap_npages <= UINT32_MAX); 771 d.num_pages = bmap_npages; 772 d.slot = mem->slot | (as_id << 16); 773 774 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 775 ret = -errno; 776 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 777 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 778 __func__, d.slot, (uint64_t)d.first_page, 779 (uint32_t)d.num_pages, ret); 780 } else { 781 ret = 0; 782 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 783 } 784 785 /* 786 * After we have updated the remote dirty bitmap, we update the 787 * cached bitmap as well for the memslot, then if another user 788 * clears the same region we know we shouldn't clear it again on 789 * the remote otherwise it's data loss as well. 790 */ 791 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 792 size / psize); 793 /* This handles the NULL case well */ 794 g_free(bmap_clear); 795 return ret; 796 } 797 798 799 /** 800 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 801 * 802 * NOTE: this will be a no-op if we haven't enabled manual dirty log 803 * protection in the host kernel because in that case this operation 804 * will be done within log_sync(). 805 * 806 * @kml: the kvm memory listener 807 * @section: the memory range to clear dirty bitmap 808 */ 809 static int kvm_physical_log_clear(KVMMemoryListener *kml, 810 MemoryRegionSection *section) 811 { 812 KVMState *s = kvm_state; 813 uint64_t start, size, offset, count; 814 KVMSlot *mem; 815 int ret = 0, i; 816 817 if (!s->manual_dirty_log_protect) { 818 /* No need to do explicit clear */ 819 return ret; 820 } 821 822 start = section->offset_within_address_space; 823 size = int128_get64(section->size); 824 825 if (!size) { 826 /* Nothing more we can do... */ 827 return ret; 828 } 829 830 kvm_slots_lock(kml); 831 832 for (i = 0; i < s->nr_slots; i++) { 833 mem = &kml->slots[i]; 834 /* Discard slots that are empty or do not overlap the section */ 835 if (!mem->memory_size || 836 mem->start_addr > start + size - 1 || 837 start > mem->start_addr + mem->memory_size - 1) { 838 continue; 839 } 840 841 if (start >= mem->start_addr) { 842 /* The slot starts before section or is aligned to it. */ 843 offset = start - mem->start_addr; 844 count = MIN(mem->memory_size - offset, size); 845 } else { 846 /* The slot starts after section. */ 847 offset = 0; 848 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 849 } 850 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 851 if (ret < 0) { 852 break; 853 } 854 } 855 856 kvm_slots_unlock(kml); 857 858 return ret; 859 } 860 861 static void kvm_coalesce_mmio_region(MemoryListener *listener, 862 MemoryRegionSection *secion, 863 hwaddr start, hwaddr size) 864 { 865 KVMState *s = kvm_state; 866 867 if (s->coalesced_mmio) { 868 struct kvm_coalesced_mmio_zone zone; 869 870 zone.addr = start; 871 zone.size = size; 872 zone.pad = 0; 873 874 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 875 } 876 } 877 878 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 879 MemoryRegionSection *secion, 880 hwaddr start, hwaddr size) 881 { 882 KVMState *s = kvm_state; 883 884 if (s->coalesced_mmio) { 885 struct kvm_coalesced_mmio_zone zone; 886 887 zone.addr = start; 888 zone.size = size; 889 zone.pad = 0; 890 891 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 892 } 893 } 894 895 static void kvm_coalesce_pio_add(MemoryListener *listener, 896 MemoryRegionSection *section, 897 hwaddr start, hwaddr size) 898 { 899 KVMState *s = kvm_state; 900 901 if (s->coalesced_pio) { 902 struct kvm_coalesced_mmio_zone zone; 903 904 zone.addr = start; 905 zone.size = size; 906 zone.pio = 1; 907 908 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 909 } 910 } 911 912 static void kvm_coalesce_pio_del(MemoryListener *listener, 913 MemoryRegionSection *section, 914 hwaddr start, hwaddr size) 915 { 916 KVMState *s = kvm_state; 917 918 if (s->coalesced_pio) { 919 struct kvm_coalesced_mmio_zone zone; 920 921 zone.addr = start; 922 zone.size = size; 923 zone.pio = 1; 924 925 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 926 } 927 } 928 929 static MemoryListener kvm_coalesced_pio_listener = { 930 .coalesced_io_add = kvm_coalesce_pio_add, 931 .coalesced_io_del = kvm_coalesce_pio_del, 932 }; 933 934 int kvm_check_extension(KVMState *s, unsigned int extension) 935 { 936 int ret; 937 938 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 939 if (ret < 0) { 940 ret = 0; 941 } 942 943 return ret; 944 } 945 946 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 947 { 948 int ret; 949 950 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 951 if (ret < 0) { 952 /* VM wide version not implemented, use global one instead */ 953 ret = kvm_check_extension(s, extension); 954 } 955 956 return ret; 957 } 958 959 typedef struct HWPoisonPage { 960 ram_addr_t ram_addr; 961 QLIST_ENTRY(HWPoisonPage) list; 962 } HWPoisonPage; 963 964 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 965 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 966 967 static void kvm_unpoison_all(void *param) 968 { 969 HWPoisonPage *page, *next_page; 970 971 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 972 QLIST_REMOVE(page, list); 973 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 974 g_free(page); 975 } 976 } 977 978 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 979 { 980 HWPoisonPage *page; 981 982 QLIST_FOREACH(page, &hwpoison_page_list, list) { 983 if (page->ram_addr == ram_addr) { 984 return; 985 } 986 } 987 page = g_new(HWPoisonPage, 1); 988 page->ram_addr = ram_addr; 989 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 990 } 991 992 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 993 { 994 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 995 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 996 * endianness, but the memory core hands them in target endianness. 997 * For example, PPC is always treated as big-endian even if running 998 * on KVM and on PPC64LE. Correct here. 999 */ 1000 switch (size) { 1001 case 2: 1002 val = bswap16(val); 1003 break; 1004 case 4: 1005 val = bswap32(val); 1006 break; 1007 } 1008 #endif 1009 return val; 1010 } 1011 1012 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1013 bool assign, uint32_t size, bool datamatch) 1014 { 1015 int ret; 1016 struct kvm_ioeventfd iofd = { 1017 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1018 .addr = addr, 1019 .len = size, 1020 .flags = 0, 1021 .fd = fd, 1022 }; 1023 1024 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1025 datamatch); 1026 if (!kvm_enabled()) { 1027 return -ENOSYS; 1028 } 1029 1030 if (datamatch) { 1031 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1032 } 1033 if (!assign) { 1034 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1035 } 1036 1037 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1038 1039 if (ret < 0) { 1040 return -errno; 1041 } 1042 1043 return 0; 1044 } 1045 1046 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1047 bool assign, uint32_t size, bool datamatch) 1048 { 1049 struct kvm_ioeventfd kick = { 1050 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1051 .addr = addr, 1052 .flags = KVM_IOEVENTFD_FLAG_PIO, 1053 .len = size, 1054 .fd = fd, 1055 }; 1056 int r; 1057 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1058 if (!kvm_enabled()) { 1059 return -ENOSYS; 1060 } 1061 if (datamatch) { 1062 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1063 } 1064 if (!assign) { 1065 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1066 } 1067 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1068 if (r < 0) { 1069 return r; 1070 } 1071 return 0; 1072 } 1073 1074 1075 static int kvm_check_many_ioeventfds(void) 1076 { 1077 /* Userspace can use ioeventfd for io notification. This requires a host 1078 * that supports eventfd(2) and an I/O thread; since eventfd does not 1079 * support SIGIO it cannot interrupt the vcpu. 1080 * 1081 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1082 * can avoid creating too many ioeventfds. 1083 */ 1084 #if defined(CONFIG_EVENTFD) 1085 int ioeventfds[7]; 1086 int i, ret = 0; 1087 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1088 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1089 if (ioeventfds[i] < 0) { 1090 break; 1091 } 1092 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1093 if (ret < 0) { 1094 close(ioeventfds[i]); 1095 break; 1096 } 1097 } 1098 1099 /* Decide whether many devices are supported or not */ 1100 ret = i == ARRAY_SIZE(ioeventfds); 1101 1102 while (i-- > 0) { 1103 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1104 close(ioeventfds[i]); 1105 } 1106 return ret; 1107 #else 1108 return 0; 1109 #endif 1110 } 1111 1112 static const KVMCapabilityInfo * 1113 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1114 { 1115 while (list->name) { 1116 if (!kvm_check_extension(s, list->value)) { 1117 return list; 1118 } 1119 list++; 1120 } 1121 return NULL; 1122 } 1123 1124 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1125 { 1126 g_assert( 1127 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1128 ); 1129 kvm_max_slot_size = max_slot_size; 1130 } 1131 1132 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1133 MemoryRegionSection *section, bool add) 1134 { 1135 KVMSlot *mem; 1136 int err; 1137 MemoryRegion *mr = section->mr; 1138 bool writeable = !mr->readonly && !mr->rom_device; 1139 hwaddr start_addr, size, slot_size; 1140 void *ram; 1141 1142 if (!memory_region_is_ram(mr)) { 1143 if (writeable || !kvm_readonly_mem_allowed) { 1144 return; 1145 } else if (!mr->romd_mode) { 1146 /* If the memory device is not in romd_mode, then we actually want 1147 * to remove the kvm memory slot so all accesses will trap. */ 1148 add = false; 1149 } 1150 } 1151 1152 size = kvm_align_section(section, &start_addr); 1153 if (!size) { 1154 return; 1155 } 1156 1157 /* use aligned delta to align the ram address */ 1158 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1159 (start_addr - section->offset_within_address_space); 1160 1161 kvm_slots_lock(kml); 1162 1163 if (!add) { 1164 do { 1165 slot_size = MIN(kvm_max_slot_size, size); 1166 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1167 if (!mem) { 1168 goto out; 1169 } 1170 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1171 kvm_physical_sync_dirty_bitmap(kml, section); 1172 } 1173 1174 /* unregister the slot */ 1175 g_free(mem->dirty_bmap); 1176 mem->dirty_bmap = NULL; 1177 mem->memory_size = 0; 1178 mem->flags = 0; 1179 err = kvm_set_user_memory_region(kml, mem, false); 1180 if (err) { 1181 fprintf(stderr, "%s: error unregistering slot: %s\n", 1182 __func__, strerror(-err)); 1183 abort(); 1184 } 1185 start_addr += slot_size; 1186 size -= slot_size; 1187 } while (size); 1188 goto out; 1189 } 1190 1191 /* register the new slot */ 1192 do { 1193 slot_size = MIN(kvm_max_slot_size, size); 1194 mem = kvm_alloc_slot(kml); 1195 mem->memory_size = slot_size; 1196 mem->start_addr = start_addr; 1197 mem->ram = ram; 1198 mem->flags = kvm_mem_flags(mr); 1199 1200 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1201 /* 1202 * Reallocate the bmap; it means it doesn't disappear in 1203 * middle of a migrate. 1204 */ 1205 kvm_memslot_init_dirty_bitmap(mem); 1206 } 1207 err = kvm_set_user_memory_region(kml, mem, true); 1208 if (err) { 1209 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1210 strerror(-err)); 1211 abort(); 1212 } 1213 start_addr += slot_size; 1214 ram += slot_size; 1215 size -= slot_size; 1216 } while (size); 1217 1218 out: 1219 kvm_slots_unlock(kml); 1220 } 1221 1222 static void kvm_region_add(MemoryListener *listener, 1223 MemoryRegionSection *section) 1224 { 1225 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1226 1227 memory_region_ref(section->mr); 1228 kvm_set_phys_mem(kml, section, true); 1229 } 1230 1231 static void kvm_region_del(MemoryListener *listener, 1232 MemoryRegionSection *section) 1233 { 1234 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1235 1236 kvm_set_phys_mem(kml, section, false); 1237 memory_region_unref(section->mr); 1238 } 1239 1240 static void kvm_log_sync(MemoryListener *listener, 1241 MemoryRegionSection *section) 1242 { 1243 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1244 int r; 1245 1246 kvm_slots_lock(kml); 1247 r = kvm_physical_sync_dirty_bitmap(kml, section); 1248 kvm_slots_unlock(kml); 1249 if (r < 0) { 1250 abort(); 1251 } 1252 } 1253 1254 static void kvm_log_clear(MemoryListener *listener, 1255 MemoryRegionSection *section) 1256 { 1257 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1258 int r; 1259 1260 r = kvm_physical_log_clear(kml, section); 1261 if (r < 0) { 1262 error_report_once("%s: kvm log clear failed: mr=%s " 1263 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1264 section->mr->name, section->offset_within_region, 1265 int128_get64(section->size)); 1266 abort(); 1267 } 1268 } 1269 1270 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1271 MemoryRegionSection *section, 1272 bool match_data, uint64_t data, 1273 EventNotifier *e) 1274 { 1275 int fd = event_notifier_get_fd(e); 1276 int r; 1277 1278 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1279 data, true, int128_get64(section->size), 1280 match_data); 1281 if (r < 0) { 1282 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1283 __func__, strerror(-r), -r); 1284 abort(); 1285 } 1286 } 1287 1288 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1289 MemoryRegionSection *section, 1290 bool match_data, uint64_t data, 1291 EventNotifier *e) 1292 { 1293 int fd = event_notifier_get_fd(e); 1294 int r; 1295 1296 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1297 data, false, int128_get64(section->size), 1298 match_data); 1299 if (r < 0) { 1300 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1301 __func__, strerror(-r), -r); 1302 abort(); 1303 } 1304 } 1305 1306 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1307 MemoryRegionSection *section, 1308 bool match_data, uint64_t data, 1309 EventNotifier *e) 1310 { 1311 int fd = event_notifier_get_fd(e); 1312 int r; 1313 1314 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1315 data, true, int128_get64(section->size), 1316 match_data); 1317 if (r < 0) { 1318 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1319 __func__, strerror(-r), -r); 1320 abort(); 1321 } 1322 } 1323 1324 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1325 MemoryRegionSection *section, 1326 bool match_data, uint64_t data, 1327 EventNotifier *e) 1328 1329 { 1330 int fd = event_notifier_get_fd(e); 1331 int r; 1332 1333 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1334 data, false, int128_get64(section->size), 1335 match_data); 1336 if (r < 0) { 1337 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1338 __func__, strerror(-r), -r); 1339 abort(); 1340 } 1341 } 1342 1343 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1344 AddressSpace *as, int as_id) 1345 { 1346 int i; 1347 1348 qemu_mutex_init(&kml->slots_lock); 1349 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1350 kml->as_id = as_id; 1351 1352 for (i = 0; i < s->nr_slots; i++) { 1353 kml->slots[i].slot = i; 1354 } 1355 1356 kml->listener.region_add = kvm_region_add; 1357 kml->listener.region_del = kvm_region_del; 1358 kml->listener.log_start = kvm_log_start; 1359 kml->listener.log_stop = kvm_log_stop; 1360 kml->listener.log_sync = kvm_log_sync; 1361 kml->listener.log_clear = kvm_log_clear; 1362 kml->listener.priority = 10; 1363 1364 memory_listener_register(&kml->listener, as); 1365 1366 for (i = 0; i < s->nr_as; ++i) { 1367 if (!s->as[i].as) { 1368 s->as[i].as = as; 1369 s->as[i].ml = kml; 1370 break; 1371 } 1372 } 1373 } 1374 1375 static MemoryListener kvm_io_listener = { 1376 .eventfd_add = kvm_io_ioeventfd_add, 1377 .eventfd_del = kvm_io_ioeventfd_del, 1378 .priority = 10, 1379 }; 1380 1381 int kvm_set_irq(KVMState *s, int irq, int level) 1382 { 1383 struct kvm_irq_level event; 1384 int ret; 1385 1386 assert(kvm_async_interrupts_enabled()); 1387 1388 event.level = level; 1389 event.irq = irq; 1390 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1391 if (ret < 0) { 1392 perror("kvm_set_irq"); 1393 abort(); 1394 } 1395 1396 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1397 } 1398 1399 #ifdef KVM_CAP_IRQ_ROUTING 1400 typedef struct KVMMSIRoute { 1401 struct kvm_irq_routing_entry kroute; 1402 QTAILQ_ENTRY(KVMMSIRoute) entry; 1403 } KVMMSIRoute; 1404 1405 static void set_gsi(KVMState *s, unsigned int gsi) 1406 { 1407 set_bit(gsi, s->used_gsi_bitmap); 1408 } 1409 1410 static void clear_gsi(KVMState *s, unsigned int gsi) 1411 { 1412 clear_bit(gsi, s->used_gsi_bitmap); 1413 } 1414 1415 void kvm_init_irq_routing(KVMState *s) 1416 { 1417 int gsi_count, i; 1418 1419 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1420 if (gsi_count > 0) { 1421 /* Round up so we can search ints using ffs */ 1422 s->used_gsi_bitmap = bitmap_new(gsi_count); 1423 s->gsi_count = gsi_count; 1424 } 1425 1426 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1427 s->nr_allocated_irq_routes = 0; 1428 1429 if (!kvm_direct_msi_allowed) { 1430 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1431 QTAILQ_INIT(&s->msi_hashtab[i]); 1432 } 1433 } 1434 1435 kvm_arch_init_irq_routing(s); 1436 } 1437 1438 void kvm_irqchip_commit_routes(KVMState *s) 1439 { 1440 int ret; 1441 1442 if (kvm_gsi_direct_mapping()) { 1443 return; 1444 } 1445 1446 if (!kvm_gsi_routing_enabled()) { 1447 return; 1448 } 1449 1450 s->irq_routes->flags = 0; 1451 trace_kvm_irqchip_commit_routes(); 1452 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1453 assert(ret == 0); 1454 } 1455 1456 static void kvm_add_routing_entry(KVMState *s, 1457 struct kvm_irq_routing_entry *entry) 1458 { 1459 struct kvm_irq_routing_entry *new; 1460 int n, size; 1461 1462 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1463 n = s->nr_allocated_irq_routes * 2; 1464 if (n < 64) { 1465 n = 64; 1466 } 1467 size = sizeof(struct kvm_irq_routing); 1468 size += n * sizeof(*new); 1469 s->irq_routes = g_realloc(s->irq_routes, size); 1470 s->nr_allocated_irq_routes = n; 1471 } 1472 n = s->irq_routes->nr++; 1473 new = &s->irq_routes->entries[n]; 1474 1475 *new = *entry; 1476 1477 set_gsi(s, entry->gsi); 1478 } 1479 1480 static int kvm_update_routing_entry(KVMState *s, 1481 struct kvm_irq_routing_entry *new_entry) 1482 { 1483 struct kvm_irq_routing_entry *entry; 1484 int n; 1485 1486 for (n = 0; n < s->irq_routes->nr; n++) { 1487 entry = &s->irq_routes->entries[n]; 1488 if (entry->gsi != new_entry->gsi) { 1489 continue; 1490 } 1491 1492 if(!memcmp(entry, new_entry, sizeof *entry)) { 1493 return 0; 1494 } 1495 1496 *entry = *new_entry; 1497 1498 return 0; 1499 } 1500 1501 return -ESRCH; 1502 } 1503 1504 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1505 { 1506 struct kvm_irq_routing_entry e = {}; 1507 1508 assert(pin < s->gsi_count); 1509 1510 e.gsi = irq; 1511 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1512 e.flags = 0; 1513 e.u.irqchip.irqchip = irqchip; 1514 e.u.irqchip.pin = pin; 1515 kvm_add_routing_entry(s, &e); 1516 } 1517 1518 void kvm_irqchip_release_virq(KVMState *s, int virq) 1519 { 1520 struct kvm_irq_routing_entry *e; 1521 int i; 1522 1523 if (kvm_gsi_direct_mapping()) { 1524 return; 1525 } 1526 1527 for (i = 0; i < s->irq_routes->nr; i++) { 1528 e = &s->irq_routes->entries[i]; 1529 if (e->gsi == virq) { 1530 s->irq_routes->nr--; 1531 *e = s->irq_routes->entries[s->irq_routes->nr]; 1532 } 1533 } 1534 clear_gsi(s, virq); 1535 kvm_arch_release_virq_post(virq); 1536 trace_kvm_irqchip_release_virq(virq); 1537 } 1538 1539 void kvm_irqchip_add_change_notifier(Notifier *n) 1540 { 1541 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1542 } 1543 1544 void kvm_irqchip_remove_change_notifier(Notifier *n) 1545 { 1546 notifier_remove(n); 1547 } 1548 1549 void kvm_irqchip_change_notify(void) 1550 { 1551 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1552 } 1553 1554 static unsigned int kvm_hash_msi(uint32_t data) 1555 { 1556 /* This is optimized for IA32 MSI layout. However, no other arch shall 1557 * repeat the mistake of not providing a direct MSI injection API. */ 1558 return data & 0xff; 1559 } 1560 1561 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1562 { 1563 KVMMSIRoute *route, *next; 1564 unsigned int hash; 1565 1566 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1567 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1568 kvm_irqchip_release_virq(s, route->kroute.gsi); 1569 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1570 g_free(route); 1571 } 1572 } 1573 } 1574 1575 static int kvm_irqchip_get_virq(KVMState *s) 1576 { 1577 int next_virq; 1578 1579 /* 1580 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1581 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1582 * number can succeed even though a new route entry cannot be added. 1583 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1584 */ 1585 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1586 kvm_flush_dynamic_msi_routes(s); 1587 } 1588 1589 /* Return the lowest unused GSI in the bitmap */ 1590 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1591 if (next_virq >= s->gsi_count) { 1592 return -ENOSPC; 1593 } else { 1594 return next_virq; 1595 } 1596 } 1597 1598 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1599 { 1600 unsigned int hash = kvm_hash_msi(msg.data); 1601 KVMMSIRoute *route; 1602 1603 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1604 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1605 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1606 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1607 return route; 1608 } 1609 } 1610 return NULL; 1611 } 1612 1613 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1614 { 1615 struct kvm_msi msi; 1616 KVMMSIRoute *route; 1617 1618 if (kvm_direct_msi_allowed) { 1619 msi.address_lo = (uint32_t)msg.address; 1620 msi.address_hi = msg.address >> 32; 1621 msi.data = le32_to_cpu(msg.data); 1622 msi.flags = 0; 1623 memset(msi.pad, 0, sizeof(msi.pad)); 1624 1625 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1626 } 1627 1628 route = kvm_lookup_msi_route(s, msg); 1629 if (!route) { 1630 int virq; 1631 1632 virq = kvm_irqchip_get_virq(s); 1633 if (virq < 0) { 1634 return virq; 1635 } 1636 1637 route = g_malloc0(sizeof(KVMMSIRoute)); 1638 route->kroute.gsi = virq; 1639 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1640 route->kroute.flags = 0; 1641 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1642 route->kroute.u.msi.address_hi = msg.address >> 32; 1643 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1644 1645 kvm_add_routing_entry(s, &route->kroute); 1646 kvm_irqchip_commit_routes(s); 1647 1648 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1649 entry); 1650 } 1651 1652 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1653 1654 return kvm_set_irq(s, route->kroute.gsi, 1); 1655 } 1656 1657 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1658 { 1659 struct kvm_irq_routing_entry kroute = {}; 1660 int virq; 1661 MSIMessage msg = {0, 0}; 1662 1663 if (pci_available && dev) { 1664 msg = pci_get_msi_message(dev, vector); 1665 } 1666 1667 if (kvm_gsi_direct_mapping()) { 1668 return kvm_arch_msi_data_to_gsi(msg.data); 1669 } 1670 1671 if (!kvm_gsi_routing_enabled()) { 1672 return -ENOSYS; 1673 } 1674 1675 virq = kvm_irqchip_get_virq(s); 1676 if (virq < 0) { 1677 return virq; 1678 } 1679 1680 kroute.gsi = virq; 1681 kroute.type = KVM_IRQ_ROUTING_MSI; 1682 kroute.flags = 0; 1683 kroute.u.msi.address_lo = (uint32_t)msg.address; 1684 kroute.u.msi.address_hi = msg.address >> 32; 1685 kroute.u.msi.data = le32_to_cpu(msg.data); 1686 if (pci_available && kvm_msi_devid_required()) { 1687 kroute.flags = KVM_MSI_VALID_DEVID; 1688 kroute.u.msi.devid = pci_requester_id(dev); 1689 } 1690 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1691 kvm_irqchip_release_virq(s, virq); 1692 return -EINVAL; 1693 } 1694 1695 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1696 vector, virq); 1697 1698 kvm_add_routing_entry(s, &kroute); 1699 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1700 kvm_irqchip_commit_routes(s); 1701 1702 return virq; 1703 } 1704 1705 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1706 PCIDevice *dev) 1707 { 1708 struct kvm_irq_routing_entry kroute = {}; 1709 1710 if (kvm_gsi_direct_mapping()) { 1711 return 0; 1712 } 1713 1714 if (!kvm_irqchip_in_kernel()) { 1715 return -ENOSYS; 1716 } 1717 1718 kroute.gsi = virq; 1719 kroute.type = KVM_IRQ_ROUTING_MSI; 1720 kroute.flags = 0; 1721 kroute.u.msi.address_lo = (uint32_t)msg.address; 1722 kroute.u.msi.address_hi = msg.address >> 32; 1723 kroute.u.msi.data = le32_to_cpu(msg.data); 1724 if (pci_available && kvm_msi_devid_required()) { 1725 kroute.flags = KVM_MSI_VALID_DEVID; 1726 kroute.u.msi.devid = pci_requester_id(dev); 1727 } 1728 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1729 return -EINVAL; 1730 } 1731 1732 trace_kvm_irqchip_update_msi_route(virq); 1733 1734 return kvm_update_routing_entry(s, &kroute); 1735 } 1736 1737 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1738 EventNotifier *resample, int virq, 1739 bool assign) 1740 { 1741 int fd = event_notifier_get_fd(event); 1742 int rfd = resample ? event_notifier_get_fd(resample) : -1; 1743 1744 struct kvm_irqfd irqfd = { 1745 .fd = fd, 1746 .gsi = virq, 1747 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1748 }; 1749 1750 if (rfd != -1) { 1751 assert(assign); 1752 if (kvm_irqchip_is_split()) { 1753 /* 1754 * When the slow irqchip (e.g. IOAPIC) is in the 1755 * userspace, KVM kernel resamplefd will not work because 1756 * the EOI of the interrupt will be delivered to userspace 1757 * instead, so the KVM kernel resamplefd kick will be 1758 * skipped. The userspace here mimics what the kernel 1759 * provides with resamplefd, remember the resamplefd and 1760 * kick it when we receive EOI of this IRQ. 1761 * 1762 * This is hackery because IOAPIC is mostly bypassed 1763 * (except EOI broadcasts) when irqfd is used. However 1764 * this can bring much performance back for split irqchip 1765 * with INTx IRQs (for VFIO, this gives 93% perf of the 1766 * full fast path, which is 46% perf boost comparing to 1767 * the INTx slow path). 1768 */ 1769 kvm_resample_fd_insert(virq, resample); 1770 } else { 1771 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1772 irqfd.resamplefd = rfd; 1773 } 1774 } else if (!assign) { 1775 if (kvm_irqchip_is_split()) { 1776 kvm_resample_fd_remove(virq); 1777 } 1778 } 1779 1780 if (!kvm_irqfds_enabled()) { 1781 return -ENOSYS; 1782 } 1783 1784 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1785 } 1786 1787 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1788 { 1789 struct kvm_irq_routing_entry kroute = {}; 1790 int virq; 1791 1792 if (!kvm_gsi_routing_enabled()) { 1793 return -ENOSYS; 1794 } 1795 1796 virq = kvm_irqchip_get_virq(s); 1797 if (virq < 0) { 1798 return virq; 1799 } 1800 1801 kroute.gsi = virq; 1802 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1803 kroute.flags = 0; 1804 kroute.u.adapter.summary_addr = adapter->summary_addr; 1805 kroute.u.adapter.ind_addr = adapter->ind_addr; 1806 kroute.u.adapter.summary_offset = adapter->summary_offset; 1807 kroute.u.adapter.ind_offset = adapter->ind_offset; 1808 kroute.u.adapter.adapter_id = adapter->adapter_id; 1809 1810 kvm_add_routing_entry(s, &kroute); 1811 1812 return virq; 1813 } 1814 1815 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1816 { 1817 struct kvm_irq_routing_entry kroute = {}; 1818 int virq; 1819 1820 if (!kvm_gsi_routing_enabled()) { 1821 return -ENOSYS; 1822 } 1823 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1824 return -ENOSYS; 1825 } 1826 virq = kvm_irqchip_get_virq(s); 1827 if (virq < 0) { 1828 return virq; 1829 } 1830 1831 kroute.gsi = virq; 1832 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1833 kroute.flags = 0; 1834 kroute.u.hv_sint.vcpu = vcpu; 1835 kroute.u.hv_sint.sint = sint; 1836 1837 kvm_add_routing_entry(s, &kroute); 1838 kvm_irqchip_commit_routes(s); 1839 1840 return virq; 1841 } 1842 1843 #else /* !KVM_CAP_IRQ_ROUTING */ 1844 1845 void kvm_init_irq_routing(KVMState *s) 1846 { 1847 } 1848 1849 void kvm_irqchip_release_virq(KVMState *s, int virq) 1850 { 1851 } 1852 1853 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1854 { 1855 abort(); 1856 } 1857 1858 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1859 { 1860 return -ENOSYS; 1861 } 1862 1863 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1864 { 1865 return -ENOSYS; 1866 } 1867 1868 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1869 { 1870 return -ENOSYS; 1871 } 1872 1873 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1874 EventNotifier *resample, int virq, 1875 bool assign) 1876 { 1877 abort(); 1878 } 1879 1880 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1881 { 1882 return -ENOSYS; 1883 } 1884 #endif /* !KVM_CAP_IRQ_ROUTING */ 1885 1886 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1887 EventNotifier *rn, int virq) 1888 { 1889 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 1890 } 1891 1892 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1893 int virq) 1894 { 1895 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 1896 } 1897 1898 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1899 EventNotifier *rn, qemu_irq irq) 1900 { 1901 gpointer key, gsi; 1902 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1903 1904 if (!found) { 1905 return -ENXIO; 1906 } 1907 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1908 } 1909 1910 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1911 qemu_irq irq) 1912 { 1913 gpointer key, gsi; 1914 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1915 1916 if (!found) { 1917 return -ENXIO; 1918 } 1919 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1920 } 1921 1922 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1923 { 1924 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1925 } 1926 1927 static void kvm_irqchip_create(KVMState *s) 1928 { 1929 int ret; 1930 1931 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1932 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1933 ; 1934 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1935 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1936 if (ret < 0) { 1937 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1938 exit(1); 1939 } 1940 } else { 1941 return; 1942 } 1943 1944 /* First probe and see if there's a arch-specific hook to create the 1945 * in-kernel irqchip for us */ 1946 ret = kvm_arch_irqchip_create(s); 1947 if (ret == 0) { 1948 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1949 perror("Split IRQ chip mode not supported."); 1950 exit(1); 1951 } else { 1952 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1953 } 1954 } 1955 if (ret < 0) { 1956 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1957 exit(1); 1958 } 1959 1960 kvm_kernel_irqchip = true; 1961 /* If we have an in-kernel IRQ chip then we must have asynchronous 1962 * interrupt delivery (though the reverse is not necessarily true) 1963 */ 1964 kvm_async_interrupts_allowed = true; 1965 kvm_halt_in_kernel_allowed = true; 1966 1967 kvm_init_irq_routing(s); 1968 1969 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1970 } 1971 1972 /* Find number of supported CPUs using the recommended 1973 * procedure from the kernel API documentation to cope with 1974 * older kernels that may be missing capabilities. 1975 */ 1976 static int kvm_recommended_vcpus(KVMState *s) 1977 { 1978 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1979 return (ret) ? ret : 4; 1980 } 1981 1982 static int kvm_max_vcpus(KVMState *s) 1983 { 1984 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1985 return (ret) ? ret : kvm_recommended_vcpus(s); 1986 } 1987 1988 static int kvm_max_vcpu_id(KVMState *s) 1989 { 1990 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1991 return (ret) ? ret : kvm_max_vcpus(s); 1992 } 1993 1994 bool kvm_vcpu_id_is_valid(int vcpu_id) 1995 { 1996 KVMState *s = KVM_STATE(current_accel()); 1997 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1998 } 1999 2000 static int kvm_init(MachineState *ms) 2001 { 2002 MachineClass *mc = MACHINE_GET_CLASS(ms); 2003 static const char upgrade_note[] = 2004 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2005 "(see http://sourceforge.net/projects/kvm).\n"; 2006 struct { 2007 const char *name; 2008 int num; 2009 } num_cpus[] = { 2010 { "SMP", ms->smp.cpus }, 2011 { "hotpluggable", ms->smp.max_cpus }, 2012 { NULL, } 2013 }, *nc = num_cpus; 2014 int soft_vcpus_limit, hard_vcpus_limit; 2015 KVMState *s; 2016 const KVMCapabilityInfo *missing_cap; 2017 int ret; 2018 int type = 0; 2019 uint64_t dirty_log_manual_caps; 2020 2021 s = KVM_STATE(ms->accelerator); 2022 2023 /* 2024 * On systems where the kernel can support different base page 2025 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2026 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2027 * page size for the system though. 2028 */ 2029 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2030 2031 s->sigmask_len = 8; 2032 2033 #ifdef KVM_CAP_SET_GUEST_DEBUG 2034 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2035 #endif 2036 QLIST_INIT(&s->kvm_parked_vcpus); 2037 s->vmfd = -1; 2038 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2039 if (s->fd == -1) { 2040 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2041 ret = -errno; 2042 goto err; 2043 } 2044 2045 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2046 if (ret < KVM_API_VERSION) { 2047 if (ret >= 0) { 2048 ret = -EINVAL; 2049 } 2050 fprintf(stderr, "kvm version too old\n"); 2051 goto err; 2052 } 2053 2054 if (ret > KVM_API_VERSION) { 2055 ret = -EINVAL; 2056 fprintf(stderr, "kvm version not supported\n"); 2057 goto err; 2058 } 2059 2060 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2061 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2062 2063 /* If unspecified, use the default value */ 2064 if (!s->nr_slots) { 2065 s->nr_slots = 32; 2066 } 2067 2068 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2069 if (s->nr_as <= 1) { 2070 s->nr_as = 1; 2071 } 2072 s->as = g_new0(struct KVMAs, s->nr_as); 2073 2074 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2075 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2076 "kvm-type", 2077 &error_abort); 2078 type = mc->kvm_type(ms, kvm_type); 2079 } 2080 2081 do { 2082 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2083 } while (ret == -EINTR); 2084 2085 if (ret < 0) { 2086 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2087 strerror(-ret)); 2088 2089 #ifdef TARGET_S390X 2090 if (ret == -EINVAL) { 2091 fprintf(stderr, 2092 "Host kernel setup problem detected. Please verify:\n"); 2093 fprintf(stderr, "- for kernels supporting the switch_amode or" 2094 " user_mode parameters, whether\n"); 2095 fprintf(stderr, 2096 " user space is running in primary address space\n"); 2097 fprintf(stderr, 2098 "- for kernels supporting the vm.allocate_pgste sysctl, " 2099 "whether it is enabled\n"); 2100 } 2101 #endif 2102 goto err; 2103 } 2104 2105 s->vmfd = ret; 2106 2107 /* check the vcpu limits */ 2108 soft_vcpus_limit = kvm_recommended_vcpus(s); 2109 hard_vcpus_limit = kvm_max_vcpus(s); 2110 2111 while (nc->name) { 2112 if (nc->num > soft_vcpus_limit) { 2113 warn_report("Number of %s cpus requested (%d) exceeds " 2114 "the recommended cpus supported by KVM (%d)", 2115 nc->name, nc->num, soft_vcpus_limit); 2116 2117 if (nc->num > hard_vcpus_limit) { 2118 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2119 "the maximum cpus supported by KVM (%d)\n", 2120 nc->name, nc->num, hard_vcpus_limit); 2121 exit(1); 2122 } 2123 } 2124 nc++; 2125 } 2126 2127 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2128 if (!missing_cap) { 2129 missing_cap = 2130 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2131 } 2132 if (missing_cap) { 2133 ret = -EINVAL; 2134 fprintf(stderr, "kvm does not support %s\n%s", 2135 missing_cap->name, upgrade_note); 2136 goto err; 2137 } 2138 2139 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2140 s->coalesced_pio = s->coalesced_mmio && 2141 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2142 2143 dirty_log_manual_caps = 2144 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2145 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2146 KVM_DIRTY_LOG_INITIALLY_SET); 2147 s->manual_dirty_log_protect = dirty_log_manual_caps; 2148 if (dirty_log_manual_caps) { 2149 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2150 dirty_log_manual_caps); 2151 if (ret) { 2152 warn_report("Trying to enable capability %"PRIu64" of " 2153 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2154 "Falling back to the legacy mode. ", 2155 dirty_log_manual_caps); 2156 s->manual_dirty_log_protect = 0; 2157 } 2158 } 2159 2160 #ifdef KVM_CAP_VCPU_EVENTS 2161 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2162 #endif 2163 2164 s->robust_singlestep = 2165 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2166 2167 #ifdef KVM_CAP_DEBUGREGS 2168 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2169 #endif 2170 2171 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2172 2173 #ifdef KVM_CAP_IRQ_ROUTING 2174 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2175 #endif 2176 2177 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2178 2179 s->irq_set_ioctl = KVM_IRQ_LINE; 2180 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2181 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2182 } 2183 2184 kvm_readonly_mem_allowed = 2185 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2186 2187 kvm_eventfds_allowed = 2188 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2189 2190 kvm_irqfds_allowed = 2191 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2192 2193 kvm_resamplefds_allowed = 2194 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2195 2196 kvm_vm_attributes_allowed = 2197 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2198 2199 kvm_ioeventfd_any_length_allowed = 2200 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2201 2202 kvm_state = s; 2203 2204 /* 2205 * if memory encryption object is specified then initialize the memory 2206 * encryption context. 2207 */ 2208 if (ms->memory_encryption) { 2209 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 2210 if (!kvm_state->memcrypt_handle) { 2211 ret = -1; 2212 goto err; 2213 } 2214 2215 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 2216 } 2217 2218 ret = kvm_arch_init(ms, s); 2219 if (ret < 0) { 2220 goto err; 2221 } 2222 2223 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2224 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2225 } 2226 2227 qemu_register_reset(kvm_unpoison_all, NULL); 2228 2229 if (s->kernel_irqchip_allowed) { 2230 kvm_irqchip_create(s); 2231 } 2232 2233 if (kvm_eventfds_allowed) { 2234 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2235 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2236 } 2237 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2238 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2239 2240 kvm_memory_listener_register(s, &s->memory_listener, 2241 &address_space_memory, 0); 2242 if (kvm_eventfds_allowed) { 2243 memory_listener_register(&kvm_io_listener, 2244 &address_space_io); 2245 } 2246 memory_listener_register(&kvm_coalesced_pio_listener, 2247 &address_space_io); 2248 2249 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2250 2251 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2252 if (!s->sync_mmu) { 2253 ret = ram_block_discard_disable(true); 2254 assert(!ret); 2255 } 2256 2257 cpus_register_accel(&kvm_cpus); 2258 return 0; 2259 2260 err: 2261 assert(ret < 0); 2262 if (s->vmfd >= 0) { 2263 close(s->vmfd); 2264 } 2265 if (s->fd != -1) { 2266 close(s->fd); 2267 } 2268 g_free(s->memory_listener.slots); 2269 2270 return ret; 2271 } 2272 2273 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2274 { 2275 s->sigmask_len = sigmask_len; 2276 } 2277 2278 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2279 int size, uint32_t count) 2280 { 2281 int i; 2282 uint8_t *ptr = data; 2283 2284 for (i = 0; i < count; i++) { 2285 address_space_rw(&address_space_io, port, attrs, 2286 ptr, size, 2287 direction == KVM_EXIT_IO_OUT); 2288 ptr += size; 2289 } 2290 } 2291 2292 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2293 { 2294 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2295 run->internal.suberror); 2296 2297 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2298 int i; 2299 2300 for (i = 0; i < run->internal.ndata; ++i) { 2301 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2302 i, (uint64_t)run->internal.data[i]); 2303 } 2304 } 2305 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2306 fprintf(stderr, "emulation failure\n"); 2307 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2308 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2309 return EXCP_INTERRUPT; 2310 } 2311 } 2312 /* FIXME: Should trigger a qmp message to let management know 2313 * something went wrong. 2314 */ 2315 return -1; 2316 } 2317 2318 void kvm_flush_coalesced_mmio_buffer(void) 2319 { 2320 KVMState *s = kvm_state; 2321 2322 if (s->coalesced_flush_in_progress) { 2323 return; 2324 } 2325 2326 s->coalesced_flush_in_progress = true; 2327 2328 if (s->coalesced_mmio_ring) { 2329 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2330 while (ring->first != ring->last) { 2331 struct kvm_coalesced_mmio *ent; 2332 2333 ent = &ring->coalesced_mmio[ring->first]; 2334 2335 if (ent->pio == 1) { 2336 address_space_write(&address_space_io, ent->phys_addr, 2337 MEMTXATTRS_UNSPECIFIED, ent->data, 2338 ent->len); 2339 } else { 2340 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2341 } 2342 smp_wmb(); 2343 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2344 } 2345 } 2346 2347 s->coalesced_flush_in_progress = false; 2348 } 2349 2350 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2351 { 2352 if (!cpu->vcpu_dirty) { 2353 kvm_arch_get_registers(cpu); 2354 cpu->vcpu_dirty = true; 2355 } 2356 } 2357 2358 void kvm_cpu_synchronize_state(CPUState *cpu) 2359 { 2360 if (!cpu->vcpu_dirty) { 2361 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2362 } 2363 } 2364 2365 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2366 { 2367 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2368 cpu->vcpu_dirty = false; 2369 } 2370 2371 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2372 { 2373 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2374 } 2375 2376 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2377 { 2378 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2379 cpu->vcpu_dirty = false; 2380 } 2381 2382 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2383 { 2384 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2385 } 2386 2387 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2388 { 2389 cpu->vcpu_dirty = true; 2390 } 2391 2392 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2393 { 2394 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2395 } 2396 2397 #ifdef KVM_HAVE_MCE_INJECTION 2398 static __thread void *pending_sigbus_addr; 2399 static __thread int pending_sigbus_code; 2400 static __thread bool have_sigbus_pending; 2401 #endif 2402 2403 static void kvm_cpu_kick(CPUState *cpu) 2404 { 2405 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2406 } 2407 2408 static void kvm_cpu_kick_self(void) 2409 { 2410 if (kvm_immediate_exit) { 2411 kvm_cpu_kick(current_cpu); 2412 } else { 2413 qemu_cpu_kick_self(); 2414 } 2415 } 2416 2417 static void kvm_eat_signals(CPUState *cpu) 2418 { 2419 struct timespec ts = { 0, 0 }; 2420 siginfo_t siginfo; 2421 sigset_t waitset; 2422 sigset_t chkset; 2423 int r; 2424 2425 if (kvm_immediate_exit) { 2426 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2427 /* Write kvm_run->immediate_exit before the cpu->exit_request 2428 * write in kvm_cpu_exec. 2429 */ 2430 smp_wmb(); 2431 return; 2432 } 2433 2434 sigemptyset(&waitset); 2435 sigaddset(&waitset, SIG_IPI); 2436 2437 do { 2438 r = sigtimedwait(&waitset, &siginfo, &ts); 2439 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2440 perror("sigtimedwait"); 2441 exit(1); 2442 } 2443 2444 r = sigpending(&chkset); 2445 if (r == -1) { 2446 perror("sigpending"); 2447 exit(1); 2448 } 2449 } while (sigismember(&chkset, SIG_IPI)); 2450 } 2451 2452 int kvm_cpu_exec(CPUState *cpu) 2453 { 2454 struct kvm_run *run = cpu->kvm_run; 2455 int ret, run_ret; 2456 2457 DPRINTF("kvm_cpu_exec()\n"); 2458 2459 if (kvm_arch_process_async_events(cpu)) { 2460 qatomic_set(&cpu->exit_request, 0); 2461 return EXCP_HLT; 2462 } 2463 2464 qemu_mutex_unlock_iothread(); 2465 cpu_exec_start(cpu); 2466 2467 do { 2468 MemTxAttrs attrs; 2469 2470 if (cpu->vcpu_dirty) { 2471 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2472 cpu->vcpu_dirty = false; 2473 } 2474 2475 kvm_arch_pre_run(cpu, run); 2476 if (qatomic_read(&cpu->exit_request)) { 2477 DPRINTF("interrupt exit requested\n"); 2478 /* 2479 * KVM requires us to reenter the kernel after IO exits to complete 2480 * instruction emulation. This self-signal will ensure that we 2481 * leave ASAP again. 2482 */ 2483 kvm_cpu_kick_self(); 2484 } 2485 2486 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2487 * Matching barrier in kvm_eat_signals. 2488 */ 2489 smp_rmb(); 2490 2491 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2492 2493 attrs = kvm_arch_post_run(cpu, run); 2494 2495 #ifdef KVM_HAVE_MCE_INJECTION 2496 if (unlikely(have_sigbus_pending)) { 2497 qemu_mutex_lock_iothread(); 2498 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2499 pending_sigbus_addr); 2500 have_sigbus_pending = false; 2501 qemu_mutex_unlock_iothread(); 2502 } 2503 #endif 2504 2505 if (run_ret < 0) { 2506 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2507 DPRINTF("io window exit\n"); 2508 kvm_eat_signals(cpu); 2509 ret = EXCP_INTERRUPT; 2510 break; 2511 } 2512 fprintf(stderr, "error: kvm run failed %s\n", 2513 strerror(-run_ret)); 2514 #ifdef TARGET_PPC 2515 if (run_ret == -EBUSY) { 2516 fprintf(stderr, 2517 "This is probably because your SMT is enabled.\n" 2518 "VCPU can only run on primary threads with all " 2519 "secondary threads offline.\n"); 2520 } 2521 #endif 2522 ret = -1; 2523 break; 2524 } 2525 2526 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2527 switch (run->exit_reason) { 2528 case KVM_EXIT_IO: 2529 DPRINTF("handle_io\n"); 2530 /* Called outside BQL */ 2531 kvm_handle_io(run->io.port, attrs, 2532 (uint8_t *)run + run->io.data_offset, 2533 run->io.direction, 2534 run->io.size, 2535 run->io.count); 2536 ret = 0; 2537 break; 2538 case KVM_EXIT_MMIO: 2539 DPRINTF("handle_mmio\n"); 2540 /* Called outside BQL */ 2541 address_space_rw(&address_space_memory, 2542 run->mmio.phys_addr, attrs, 2543 run->mmio.data, 2544 run->mmio.len, 2545 run->mmio.is_write); 2546 ret = 0; 2547 break; 2548 case KVM_EXIT_IRQ_WINDOW_OPEN: 2549 DPRINTF("irq_window_open\n"); 2550 ret = EXCP_INTERRUPT; 2551 break; 2552 case KVM_EXIT_SHUTDOWN: 2553 DPRINTF("shutdown\n"); 2554 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2555 ret = EXCP_INTERRUPT; 2556 break; 2557 case KVM_EXIT_UNKNOWN: 2558 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2559 (uint64_t)run->hw.hardware_exit_reason); 2560 ret = -1; 2561 break; 2562 case KVM_EXIT_INTERNAL_ERROR: 2563 ret = kvm_handle_internal_error(cpu, run); 2564 break; 2565 case KVM_EXIT_SYSTEM_EVENT: 2566 switch (run->system_event.type) { 2567 case KVM_SYSTEM_EVENT_SHUTDOWN: 2568 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2569 ret = EXCP_INTERRUPT; 2570 break; 2571 case KVM_SYSTEM_EVENT_RESET: 2572 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2573 ret = EXCP_INTERRUPT; 2574 break; 2575 case KVM_SYSTEM_EVENT_CRASH: 2576 kvm_cpu_synchronize_state(cpu); 2577 qemu_mutex_lock_iothread(); 2578 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2579 qemu_mutex_unlock_iothread(); 2580 ret = 0; 2581 break; 2582 default: 2583 DPRINTF("kvm_arch_handle_exit\n"); 2584 ret = kvm_arch_handle_exit(cpu, run); 2585 break; 2586 } 2587 break; 2588 default: 2589 DPRINTF("kvm_arch_handle_exit\n"); 2590 ret = kvm_arch_handle_exit(cpu, run); 2591 break; 2592 } 2593 } while (ret == 0); 2594 2595 cpu_exec_end(cpu); 2596 qemu_mutex_lock_iothread(); 2597 2598 if (ret < 0) { 2599 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2600 vm_stop(RUN_STATE_INTERNAL_ERROR); 2601 } 2602 2603 qatomic_set(&cpu->exit_request, 0); 2604 return ret; 2605 } 2606 2607 int kvm_ioctl(KVMState *s, int type, ...) 2608 { 2609 int ret; 2610 void *arg; 2611 va_list ap; 2612 2613 va_start(ap, type); 2614 arg = va_arg(ap, void *); 2615 va_end(ap); 2616 2617 trace_kvm_ioctl(type, arg); 2618 ret = ioctl(s->fd, type, arg); 2619 if (ret == -1) { 2620 ret = -errno; 2621 } 2622 return ret; 2623 } 2624 2625 int kvm_vm_ioctl(KVMState *s, int type, ...) 2626 { 2627 int ret; 2628 void *arg; 2629 va_list ap; 2630 2631 va_start(ap, type); 2632 arg = va_arg(ap, void *); 2633 va_end(ap); 2634 2635 trace_kvm_vm_ioctl(type, arg); 2636 ret = ioctl(s->vmfd, type, arg); 2637 if (ret == -1) { 2638 ret = -errno; 2639 } 2640 return ret; 2641 } 2642 2643 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2644 { 2645 int ret; 2646 void *arg; 2647 va_list ap; 2648 2649 va_start(ap, type); 2650 arg = va_arg(ap, void *); 2651 va_end(ap); 2652 2653 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2654 ret = ioctl(cpu->kvm_fd, type, arg); 2655 if (ret == -1) { 2656 ret = -errno; 2657 } 2658 return ret; 2659 } 2660 2661 int kvm_device_ioctl(int fd, int type, ...) 2662 { 2663 int ret; 2664 void *arg; 2665 va_list ap; 2666 2667 va_start(ap, type); 2668 arg = va_arg(ap, void *); 2669 va_end(ap); 2670 2671 trace_kvm_device_ioctl(fd, type, arg); 2672 ret = ioctl(fd, type, arg); 2673 if (ret == -1) { 2674 ret = -errno; 2675 } 2676 return ret; 2677 } 2678 2679 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2680 { 2681 int ret; 2682 struct kvm_device_attr attribute = { 2683 .group = group, 2684 .attr = attr, 2685 }; 2686 2687 if (!kvm_vm_attributes_allowed) { 2688 return 0; 2689 } 2690 2691 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2692 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2693 return ret ? 0 : 1; 2694 } 2695 2696 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2697 { 2698 struct kvm_device_attr attribute = { 2699 .group = group, 2700 .attr = attr, 2701 .flags = 0, 2702 }; 2703 2704 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2705 } 2706 2707 int kvm_device_access(int fd, int group, uint64_t attr, 2708 void *val, bool write, Error **errp) 2709 { 2710 struct kvm_device_attr kvmattr; 2711 int err; 2712 2713 kvmattr.flags = 0; 2714 kvmattr.group = group; 2715 kvmattr.attr = attr; 2716 kvmattr.addr = (uintptr_t)val; 2717 2718 err = kvm_device_ioctl(fd, 2719 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2720 &kvmattr); 2721 if (err < 0) { 2722 error_setg_errno(errp, -err, 2723 "KVM_%s_DEVICE_ATTR failed: Group %d " 2724 "attr 0x%016" PRIx64, 2725 write ? "SET" : "GET", group, attr); 2726 } 2727 return err; 2728 } 2729 2730 bool kvm_has_sync_mmu(void) 2731 { 2732 return kvm_state->sync_mmu; 2733 } 2734 2735 int kvm_has_vcpu_events(void) 2736 { 2737 return kvm_state->vcpu_events; 2738 } 2739 2740 int kvm_has_robust_singlestep(void) 2741 { 2742 return kvm_state->robust_singlestep; 2743 } 2744 2745 int kvm_has_debugregs(void) 2746 { 2747 return kvm_state->debugregs; 2748 } 2749 2750 int kvm_max_nested_state_length(void) 2751 { 2752 return kvm_state->max_nested_state_len; 2753 } 2754 2755 int kvm_has_many_ioeventfds(void) 2756 { 2757 if (!kvm_enabled()) { 2758 return 0; 2759 } 2760 return kvm_state->many_ioeventfds; 2761 } 2762 2763 int kvm_has_gsi_routing(void) 2764 { 2765 #ifdef KVM_CAP_IRQ_ROUTING 2766 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2767 #else 2768 return false; 2769 #endif 2770 } 2771 2772 int kvm_has_intx_set_mask(void) 2773 { 2774 return kvm_state->intx_set_mask; 2775 } 2776 2777 bool kvm_arm_supports_user_irq(void) 2778 { 2779 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2780 } 2781 2782 #ifdef KVM_CAP_SET_GUEST_DEBUG 2783 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2784 target_ulong pc) 2785 { 2786 struct kvm_sw_breakpoint *bp; 2787 2788 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2789 if (bp->pc == pc) { 2790 return bp; 2791 } 2792 } 2793 return NULL; 2794 } 2795 2796 int kvm_sw_breakpoints_active(CPUState *cpu) 2797 { 2798 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2799 } 2800 2801 struct kvm_set_guest_debug_data { 2802 struct kvm_guest_debug dbg; 2803 int err; 2804 }; 2805 2806 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2807 { 2808 struct kvm_set_guest_debug_data *dbg_data = 2809 (struct kvm_set_guest_debug_data *) data.host_ptr; 2810 2811 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2812 &dbg_data->dbg); 2813 } 2814 2815 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2816 { 2817 struct kvm_set_guest_debug_data data; 2818 2819 data.dbg.control = reinject_trap; 2820 2821 if (cpu->singlestep_enabled) { 2822 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2823 } 2824 kvm_arch_update_guest_debug(cpu, &data.dbg); 2825 2826 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2827 RUN_ON_CPU_HOST_PTR(&data)); 2828 return data.err; 2829 } 2830 2831 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2832 target_ulong len, int type) 2833 { 2834 struct kvm_sw_breakpoint *bp; 2835 int err; 2836 2837 if (type == GDB_BREAKPOINT_SW) { 2838 bp = kvm_find_sw_breakpoint(cpu, addr); 2839 if (bp) { 2840 bp->use_count++; 2841 return 0; 2842 } 2843 2844 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2845 bp->pc = addr; 2846 bp->use_count = 1; 2847 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2848 if (err) { 2849 g_free(bp); 2850 return err; 2851 } 2852 2853 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2854 } else { 2855 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2856 if (err) { 2857 return err; 2858 } 2859 } 2860 2861 CPU_FOREACH(cpu) { 2862 err = kvm_update_guest_debug(cpu, 0); 2863 if (err) { 2864 return err; 2865 } 2866 } 2867 return 0; 2868 } 2869 2870 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2871 target_ulong len, int type) 2872 { 2873 struct kvm_sw_breakpoint *bp; 2874 int err; 2875 2876 if (type == GDB_BREAKPOINT_SW) { 2877 bp = kvm_find_sw_breakpoint(cpu, addr); 2878 if (!bp) { 2879 return -ENOENT; 2880 } 2881 2882 if (bp->use_count > 1) { 2883 bp->use_count--; 2884 return 0; 2885 } 2886 2887 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2888 if (err) { 2889 return err; 2890 } 2891 2892 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2893 g_free(bp); 2894 } else { 2895 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2896 if (err) { 2897 return err; 2898 } 2899 } 2900 2901 CPU_FOREACH(cpu) { 2902 err = kvm_update_guest_debug(cpu, 0); 2903 if (err) { 2904 return err; 2905 } 2906 } 2907 return 0; 2908 } 2909 2910 void kvm_remove_all_breakpoints(CPUState *cpu) 2911 { 2912 struct kvm_sw_breakpoint *bp, *next; 2913 KVMState *s = cpu->kvm_state; 2914 CPUState *tmpcpu; 2915 2916 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2917 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2918 /* Try harder to find a CPU that currently sees the breakpoint. */ 2919 CPU_FOREACH(tmpcpu) { 2920 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2921 break; 2922 } 2923 } 2924 } 2925 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2926 g_free(bp); 2927 } 2928 kvm_arch_remove_all_hw_breakpoints(); 2929 2930 CPU_FOREACH(cpu) { 2931 kvm_update_guest_debug(cpu, 0); 2932 } 2933 } 2934 2935 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2936 2937 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2938 { 2939 return -EINVAL; 2940 } 2941 2942 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2943 target_ulong len, int type) 2944 { 2945 return -EINVAL; 2946 } 2947 2948 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2949 target_ulong len, int type) 2950 { 2951 return -EINVAL; 2952 } 2953 2954 void kvm_remove_all_breakpoints(CPUState *cpu) 2955 { 2956 } 2957 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2958 2959 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2960 { 2961 KVMState *s = kvm_state; 2962 struct kvm_signal_mask *sigmask; 2963 int r; 2964 2965 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2966 2967 sigmask->len = s->sigmask_len; 2968 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2969 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2970 g_free(sigmask); 2971 2972 return r; 2973 } 2974 2975 static void kvm_ipi_signal(int sig) 2976 { 2977 if (current_cpu) { 2978 assert(kvm_immediate_exit); 2979 kvm_cpu_kick(current_cpu); 2980 } 2981 } 2982 2983 void kvm_init_cpu_signals(CPUState *cpu) 2984 { 2985 int r; 2986 sigset_t set; 2987 struct sigaction sigact; 2988 2989 memset(&sigact, 0, sizeof(sigact)); 2990 sigact.sa_handler = kvm_ipi_signal; 2991 sigaction(SIG_IPI, &sigact, NULL); 2992 2993 pthread_sigmask(SIG_BLOCK, NULL, &set); 2994 #if defined KVM_HAVE_MCE_INJECTION 2995 sigdelset(&set, SIGBUS); 2996 pthread_sigmask(SIG_SETMASK, &set, NULL); 2997 #endif 2998 sigdelset(&set, SIG_IPI); 2999 if (kvm_immediate_exit) { 3000 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3001 } else { 3002 r = kvm_set_signal_mask(cpu, &set); 3003 } 3004 if (r) { 3005 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3006 exit(1); 3007 } 3008 } 3009 3010 /* Called asynchronously in VCPU thread. */ 3011 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3012 { 3013 #ifdef KVM_HAVE_MCE_INJECTION 3014 if (have_sigbus_pending) { 3015 return 1; 3016 } 3017 have_sigbus_pending = true; 3018 pending_sigbus_addr = addr; 3019 pending_sigbus_code = code; 3020 qatomic_set(&cpu->exit_request, 1); 3021 return 0; 3022 #else 3023 return 1; 3024 #endif 3025 } 3026 3027 /* Called synchronously (via signalfd) in main thread. */ 3028 int kvm_on_sigbus(int code, void *addr) 3029 { 3030 #ifdef KVM_HAVE_MCE_INJECTION 3031 /* Action required MCE kills the process if SIGBUS is blocked. Because 3032 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3033 * we can only get action optional here. 3034 */ 3035 assert(code != BUS_MCEERR_AR); 3036 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3037 return 0; 3038 #else 3039 return 1; 3040 #endif 3041 } 3042 3043 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3044 { 3045 int ret; 3046 struct kvm_create_device create_dev; 3047 3048 create_dev.type = type; 3049 create_dev.fd = -1; 3050 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3051 3052 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3053 return -ENOTSUP; 3054 } 3055 3056 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3057 if (ret) { 3058 return ret; 3059 } 3060 3061 return test ? 0 : create_dev.fd; 3062 } 3063 3064 bool kvm_device_supported(int vmfd, uint64_t type) 3065 { 3066 struct kvm_create_device create_dev = { 3067 .type = type, 3068 .fd = -1, 3069 .flags = KVM_CREATE_DEVICE_TEST, 3070 }; 3071 3072 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3073 return false; 3074 } 3075 3076 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3077 } 3078 3079 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3080 { 3081 struct kvm_one_reg reg; 3082 int r; 3083 3084 reg.id = id; 3085 reg.addr = (uintptr_t) source; 3086 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3087 if (r) { 3088 trace_kvm_failed_reg_set(id, strerror(-r)); 3089 } 3090 return r; 3091 } 3092 3093 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3094 { 3095 struct kvm_one_reg reg; 3096 int r; 3097 3098 reg.id = id; 3099 reg.addr = (uintptr_t) target; 3100 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3101 if (r) { 3102 trace_kvm_failed_reg_get(id, strerror(-r)); 3103 } 3104 return r; 3105 } 3106 3107 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3108 hwaddr start_addr, hwaddr size) 3109 { 3110 KVMState *kvm = KVM_STATE(ms->accelerator); 3111 int i; 3112 3113 for (i = 0; i < kvm->nr_as; ++i) { 3114 if (kvm->as[i].as == as && kvm->as[i].ml) { 3115 size = MIN(kvm_max_slot_size, size); 3116 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3117 start_addr, size); 3118 } 3119 } 3120 3121 return false; 3122 } 3123 3124 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3125 const char *name, void *opaque, 3126 Error **errp) 3127 { 3128 KVMState *s = KVM_STATE(obj); 3129 int64_t value = s->kvm_shadow_mem; 3130 3131 visit_type_int(v, name, &value, errp); 3132 } 3133 3134 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3135 const char *name, void *opaque, 3136 Error **errp) 3137 { 3138 KVMState *s = KVM_STATE(obj); 3139 int64_t value; 3140 3141 if (!visit_type_int(v, name, &value, errp)) { 3142 return; 3143 } 3144 3145 s->kvm_shadow_mem = value; 3146 } 3147 3148 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3149 const char *name, void *opaque, 3150 Error **errp) 3151 { 3152 KVMState *s = KVM_STATE(obj); 3153 OnOffSplit mode; 3154 3155 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3156 return; 3157 } 3158 switch (mode) { 3159 case ON_OFF_SPLIT_ON: 3160 s->kernel_irqchip_allowed = true; 3161 s->kernel_irqchip_required = true; 3162 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3163 break; 3164 case ON_OFF_SPLIT_OFF: 3165 s->kernel_irqchip_allowed = false; 3166 s->kernel_irqchip_required = false; 3167 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3168 break; 3169 case ON_OFF_SPLIT_SPLIT: 3170 s->kernel_irqchip_allowed = true; 3171 s->kernel_irqchip_required = true; 3172 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3173 break; 3174 default: 3175 /* The value was checked in visit_type_OnOffSplit() above. If 3176 * we get here, then something is wrong in QEMU. 3177 */ 3178 abort(); 3179 } 3180 } 3181 3182 bool kvm_kernel_irqchip_allowed(void) 3183 { 3184 return kvm_state->kernel_irqchip_allowed; 3185 } 3186 3187 bool kvm_kernel_irqchip_required(void) 3188 { 3189 return kvm_state->kernel_irqchip_required; 3190 } 3191 3192 bool kvm_kernel_irqchip_split(void) 3193 { 3194 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3195 } 3196 3197 static void kvm_accel_instance_init(Object *obj) 3198 { 3199 KVMState *s = KVM_STATE(obj); 3200 3201 s->kvm_shadow_mem = -1; 3202 s->kernel_irqchip_allowed = true; 3203 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3204 } 3205 3206 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3207 { 3208 AccelClass *ac = ACCEL_CLASS(oc); 3209 ac->name = "KVM"; 3210 ac->init_machine = kvm_init; 3211 ac->has_memory = kvm_accel_has_memory; 3212 ac->allowed = &kvm_allowed; 3213 3214 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3215 NULL, kvm_set_kernel_irqchip, 3216 NULL, NULL); 3217 object_class_property_set_description(oc, "kernel-irqchip", 3218 "Configure KVM in-kernel irqchip"); 3219 3220 object_class_property_add(oc, "kvm-shadow-mem", "int", 3221 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3222 NULL, NULL); 3223 object_class_property_set_description(oc, "kvm-shadow-mem", 3224 "KVM shadow MMU size"); 3225 } 3226 3227 static const TypeInfo kvm_accel_type = { 3228 .name = TYPE_KVM_ACCEL, 3229 .parent = TYPE_ACCEL, 3230 .instance_init = kvm_accel_instance_init, 3231 .class_init = kvm_accel_class_init, 3232 .instance_size = sizeof(KVMState), 3233 }; 3234 3235 static void kvm_type_init(void) 3236 { 3237 type_register_static(&kvm_accel_type); 3238 } 3239 3240 type_init(kvm_type_init); 3241