1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 /* Default num of memslots to be allocated when VM starts */ 73 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 74 /* Default max allowed memslots if kernel reported nothing */ 75 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 76 77 struct KVMParkedVcpu { 78 unsigned long vcpu_id; 79 int kvm_fd; 80 QLIST_ENTRY(KVMParkedVcpu) node; 81 }; 82 83 KVMState *kvm_state; 84 bool kvm_kernel_irqchip; 85 bool kvm_split_irqchip; 86 bool kvm_async_interrupts_allowed; 87 bool kvm_halt_in_kernel_allowed; 88 bool kvm_resamplefds_allowed; 89 bool kvm_msi_via_irqfd_allowed; 90 bool kvm_gsi_routing_allowed; 91 bool kvm_gsi_direct_mapping; 92 bool kvm_allowed; 93 bool kvm_readonly_mem_allowed; 94 bool kvm_vm_attributes_allowed; 95 bool kvm_msi_use_devid; 96 static bool kvm_has_guest_debug; 97 static int kvm_sstep_flags; 98 static bool kvm_immediate_exit; 99 static uint64_t kvm_supported_memory_attributes; 100 static bool kvm_guest_memfd_supported; 101 static hwaddr kvm_max_slot_size = ~0; 102 103 static const KVMCapabilityInfo kvm_required_capabilites[] = { 104 KVM_CAP_INFO(USER_MEMORY), 105 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 106 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 107 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 108 KVM_CAP_INFO(IOEVENTFD), 109 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 110 KVM_CAP_LAST_INFO 111 }; 112 113 static NotifierList kvm_irqchip_change_notifiers = 114 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 115 116 struct KVMResampleFd { 117 int gsi; 118 EventNotifier *resample_event; 119 QLIST_ENTRY(KVMResampleFd) node; 120 }; 121 typedef struct KVMResampleFd KVMResampleFd; 122 123 /* 124 * Only used with split irqchip where we need to do the resample fd 125 * kick for the kernel from userspace. 126 */ 127 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 128 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 129 130 static QemuMutex kml_slots_lock; 131 132 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 133 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 134 135 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 136 137 static inline void kvm_resample_fd_remove(int gsi) 138 { 139 KVMResampleFd *rfd; 140 141 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 142 if (rfd->gsi == gsi) { 143 QLIST_REMOVE(rfd, node); 144 g_free(rfd); 145 break; 146 } 147 } 148 } 149 150 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 151 { 152 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 153 154 rfd->gsi = gsi; 155 rfd->resample_event = event; 156 157 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 158 } 159 160 void kvm_resample_fd_notify(int gsi) 161 { 162 KVMResampleFd *rfd; 163 164 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 165 if (rfd->gsi == gsi) { 166 event_notifier_set(rfd->resample_event); 167 trace_kvm_resample_fd_notify(gsi); 168 return; 169 } 170 } 171 } 172 173 /** 174 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 175 * 176 * @kml: The KVMMemoryListener* to grow the slots[] array 177 * @nr_slots_new: The new size of slots[] array 178 * 179 * Returns: True if the array grows larger, false otherwise. 180 */ 181 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 182 { 183 unsigned int i, cur = kml->nr_slots_allocated; 184 KVMSlot *slots; 185 186 if (nr_slots_new > kvm_state->nr_slots_max) { 187 nr_slots_new = kvm_state->nr_slots_max; 188 } 189 190 if (cur >= nr_slots_new) { 191 /* Big enough, no need to grow, or we reached max */ 192 return false; 193 } 194 195 if (cur == 0) { 196 slots = g_new0(KVMSlot, nr_slots_new); 197 } else { 198 assert(kml->slots); 199 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 200 /* 201 * g_renew() doesn't initialize extended buffers, however kvm 202 * memslots require fields to be zero-initialized. E.g. pointers, 203 * memory_size field, etc. 204 */ 205 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 206 } 207 208 for (i = cur; i < nr_slots_new; i++) { 209 slots[i].slot = i; 210 } 211 212 kml->slots = slots; 213 kml->nr_slots_allocated = nr_slots_new; 214 trace_kvm_slots_grow(cur, nr_slots_new); 215 216 return true; 217 } 218 219 static bool kvm_slots_double(KVMMemoryListener *kml) 220 { 221 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 222 } 223 224 unsigned int kvm_get_max_memslots(void) 225 { 226 KVMState *s = KVM_STATE(current_accel()); 227 228 return s->nr_slots_max; 229 } 230 231 unsigned int kvm_get_free_memslots(void) 232 { 233 unsigned int used_slots = 0; 234 KVMState *s = kvm_state; 235 int i; 236 237 kvm_slots_lock(); 238 for (i = 0; i < s->nr_as; i++) { 239 if (!s->as[i].ml) { 240 continue; 241 } 242 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 243 } 244 kvm_slots_unlock(); 245 246 return s->nr_slots_max - used_slots; 247 } 248 249 /* Called with KVMMemoryListener.slots_lock held */ 250 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 251 { 252 unsigned int n; 253 int i; 254 255 for (i = 0; i < kml->nr_slots_allocated; i++) { 256 if (kml->slots[i].memory_size == 0) { 257 return &kml->slots[i]; 258 } 259 } 260 261 /* 262 * If no free slots, try to grow first by doubling. Cache the old size 263 * here to avoid another round of search: if the grow succeeded, it 264 * means slots[] now must have the existing "n" slots occupied, 265 * followed by one or more free slots starting from slots[n]. 266 */ 267 n = kml->nr_slots_allocated; 268 if (kvm_slots_double(kml)) { 269 return &kml->slots[n]; 270 } 271 272 return NULL; 273 } 274 275 /* Called with KVMMemoryListener.slots_lock held */ 276 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 277 { 278 KVMSlot *slot = kvm_get_free_slot(kml); 279 280 if (slot) { 281 return slot; 282 } 283 284 fprintf(stderr, "%s: no free slot available\n", __func__); 285 abort(); 286 } 287 288 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 289 hwaddr start_addr, 290 hwaddr size) 291 { 292 int i; 293 294 for (i = 0; i < kml->nr_slots_allocated; i++) { 295 KVMSlot *mem = &kml->slots[i]; 296 297 if (start_addr == mem->start_addr && size == mem->memory_size) { 298 return mem; 299 } 300 } 301 302 return NULL; 303 } 304 305 /* 306 * Calculate and align the start address and the size of the section. 307 * Return the size. If the size is 0, the aligned section is empty. 308 */ 309 static hwaddr kvm_align_section(MemoryRegionSection *section, 310 hwaddr *start) 311 { 312 hwaddr size = int128_get64(section->size); 313 hwaddr delta, aligned; 314 315 /* kvm works in page size chunks, but the function may be called 316 with sub-page size and unaligned start address. Pad the start 317 address to next and truncate size to previous page boundary. */ 318 aligned = ROUND_UP(section->offset_within_address_space, 319 qemu_real_host_page_size()); 320 delta = aligned - section->offset_within_address_space; 321 *start = aligned; 322 if (delta > size) { 323 return 0; 324 } 325 326 return (size - delta) & qemu_real_host_page_mask(); 327 } 328 329 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 330 hwaddr *phys_addr) 331 { 332 KVMMemoryListener *kml = &s->memory_listener; 333 int i, ret = 0; 334 335 kvm_slots_lock(); 336 for (i = 0; i < kml->nr_slots_allocated; i++) { 337 KVMSlot *mem = &kml->slots[i]; 338 339 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 340 *phys_addr = mem->start_addr + (ram - mem->ram); 341 ret = 1; 342 break; 343 } 344 } 345 kvm_slots_unlock(); 346 347 return ret; 348 } 349 350 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 351 { 352 KVMState *s = kvm_state; 353 struct kvm_userspace_memory_region2 mem; 354 int ret; 355 356 mem.slot = slot->slot | (kml->as_id << 16); 357 mem.guest_phys_addr = slot->start_addr; 358 mem.userspace_addr = (unsigned long)slot->ram; 359 mem.flags = slot->flags; 360 mem.guest_memfd = slot->guest_memfd; 361 mem.guest_memfd_offset = slot->guest_memfd_offset; 362 363 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 364 /* Set the slot size to 0 before setting the slot to the desired 365 * value. This is needed based on KVM commit 75d61fbc. */ 366 mem.memory_size = 0; 367 368 if (kvm_guest_memfd_supported) { 369 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 370 } else { 371 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 372 } 373 if (ret < 0) { 374 goto err; 375 } 376 } 377 mem.memory_size = slot->memory_size; 378 if (kvm_guest_memfd_supported) { 379 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 380 } else { 381 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 382 } 383 slot->old_flags = mem.flags; 384 err: 385 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 386 mem.guest_phys_addr, mem.memory_size, 387 mem.userspace_addr, mem.guest_memfd, 388 mem.guest_memfd_offset, ret); 389 if (ret < 0) { 390 if (kvm_guest_memfd_supported) { 391 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 392 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 393 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 394 " guest_memfd_offset=0x%" PRIx64 ": %s", 395 __func__, mem.slot, slot->start_addr, 396 (uint64_t)mem.memory_size, mem.flags, 397 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 398 strerror(errno)); 399 } else { 400 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 401 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 402 __func__, mem.slot, slot->start_addr, 403 (uint64_t)mem.memory_size, strerror(errno)); 404 } 405 } 406 return ret; 407 } 408 409 void kvm_park_vcpu(CPUState *cpu) 410 { 411 struct KVMParkedVcpu *vcpu; 412 413 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 414 415 vcpu = g_malloc0(sizeof(*vcpu)); 416 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 417 vcpu->kvm_fd = cpu->kvm_fd; 418 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 419 } 420 421 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 422 { 423 struct KVMParkedVcpu *cpu; 424 int kvm_fd = -ENOENT; 425 426 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 427 if (cpu->vcpu_id == vcpu_id) { 428 QLIST_REMOVE(cpu, node); 429 kvm_fd = cpu->kvm_fd; 430 g_free(cpu); 431 break; 432 } 433 } 434 435 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 436 437 return kvm_fd; 438 } 439 440 int kvm_create_vcpu(CPUState *cpu) 441 { 442 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 443 KVMState *s = kvm_state; 444 int kvm_fd; 445 446 /* check if the KVM vCPU already exist but is parked */ 447 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 448 if (kvm_fd < 0) { 449 /* vCPU not parked: create a new KVM vCPU */ 450 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 451 if (kvm_fd < 0) { 452 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 453 return kvm_fd; 454 } 455 } 456 457 cpu->kvm_fd = kvm_fd; 458 cpu->kvm_state = s; 459 cpu->vcpu_dirty = true; 460 cpu->dirty_pages = 0; 461 cpu->throttle_us_per_full = 0; 462 463 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 464 465 return 0; 466 } 467 468 int kvm_create_and_park_vcpu(CPUState *cpu) 469 { 470 int ret = 0; 471 472 ret = kvm_create_vcpu(cpu); 473 if (!ret) { 474 kvm_park_vcpu(cpu); 475 } 476 477 return ret; 478 } 479 480 static int do_kvm_destroy_vcpu(CPUState *cpu) 481 { 482 KVMState *s = kvm_state; 483 int mmap_size; 484 int ret = 0; 485 486 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 487 488 ret = kvm_arch_destroy_vcpu(cpu); 489 if (ret < 0) { 490 goto err; 491 } 492 493 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 494 if (mmap_size < 0) { 495 ret = mmap_size; 496 trace_kvm_failed_get_vcpu_mmap_size(); 497 goto err; 498 } 499 500 ret = munmap(cpu->kvm_run, mmap_size); 501 if (ret < 0) { 502 goto err; 503 } 504 505 if (cpu->kvm_dirty_gfns) { 506 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 507 if (ret < 0) { 508 goto err; 509 } 510 } 511 512 kvm_park_vcpu(cpu); 513 err: 514 return ret; 515 } 516 517 void kvm_destroy_vcpu(CPUState *cpu) 518 { 519 if (do_kvm_destroy_vcpu(cpu) < 0) { 520 error_report("kvm_destroy_vcpu failed"); 521 exit(EXIT_FAILURE); 522 } 523 } 524 525 int kvm_init_vcpu(CPUState *cpu, Error **errp) 526 { 527 KVMState *s = kvm_state; 528 int mmap_size; 529 int ret; 530 531 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 532 533 ret = kvm_create_vcpu(cpu); 534 if (ret < 0) { 535 error_setg_errno(errp, -ret, 536 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 537 kvm_arch_vcpu_id(cpu)); 538 goto err; 539 } 540 541 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 542 if (mmap_size < 0) { 543 ret = mmap_size; 544 error_setg_errno(errp, -mmap_size, 545 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 546 goto err; 547 } 548 549 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 550 cpu->kvm_fd, 0); 551 if (cpu->kvm_run == MAP_FAILED) { 552 ret = -errno; 553 error_setg_errno(errp, ret, 554 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 555 kvm_arch_vcpu_id(cpu)); 556 goto err; 557 } 558 559 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 560 s->coalesced_mmio_ring = 561 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 562 } 563 564 if (s->kvm_dirty_ring_size) { 565 /* Use MAP_SHARED to share pages with the kernel */ 566 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 567 PROT_READ | PROT_WRITE, MAP_SHARED, 568 cpu->kvm_fd, 569 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 570 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 571 ret = -errno; 572 goto err; 573 } 574 } 575 576 ret = kvm_arch_init_vcpu(cpu); 577 if (ret < 0) { 578 error_setg_errno(errp, -ret, 579 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 580 kvm_arch_vcpu_id(cpu)); 581 } 582 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 583 584 err: 585 return ret; 586 } 587 588 /* 589 * dirty pages logging control 590 */ 591 592 static int kvm_mem_flags(MemoryRegion *mr) 593 { 594 bool readonly = mr->readonly || memory_region_is_romd(mr); 595 int flags = 0; 596 597 if (memory_region_get_dirty_log_mask(mr) != 0) { 598 flags |= KVM_MEM_LOG_DIRTY_PAGES; 599 } 600 if (readonly && kvm_readonly_mem_allowed) { 601 flags |= KVM_MEM_READONLY; 602 } 603 if (memory_region_has_guest_memfd(mr)) { 604 assert(kvm_guest_memfd_supported); 605 flags |= KVM_MEM_GUEST_MEMFD; 606 } 607 return flags; 608 } 609 610 /* Called with KVMMemoryListener.slots_lock held */ 611 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 612 MemoryRegion *mr) 613 { 614 mem->flags = kvm_mem_flags(mr); 615 616 /* If nothing changed effectively, no need to issue ioctl */ 617 if (mem->flags == mem->old_flags) { 618 return 0; 619 } 620 621 kvm_slot_init_dirty_bitmap(mem); 622 return kvm_set_user_memory_region(kml, mem, false); 623 } 624 625 static int kvm_section_update_flags(KVMMemoryListener *kml, 626 MemoryRegionSection *section) 627 { 628 hwaddr start_addr, size, slot_size; 629 KVMSlot *mem; 630 int ret = 0; 631 632 size = kvm_align_section(section, &start_addr); 633 if (!size) { 634 return 0; 635 } 636 637 kvm_slots_lock(); 638 639 while (size && !ret) { 640 slot_size = MIN(kvm_max_slot_size, size); 641 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 642 if (!mem) { 643 /* We don't have a slot if we want to trap every access. */ 644 goto out; 645 } 646 647 ret = kvm_slot_update_flags(kml, mem, section->mr); 648 start_addr += slot_size; 649 size -= slot_size; 650 } 651 652 out: 653 kvm_slots_unlock(); 654 return ret; 655 } 656 657 static void kvm_log_start(MemoryListener *listener, 658 MemoryRegionSection *section, 659 int old, int new) 660 { 661 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 662 int r; 663 664 if (old != 0) { 665 return; 666 } 667 668 r = kvm_section_update_flags(kml, section); 669 if (r < 0) { 670 abort(); 671 } 672 } 673 674 static void kvm_log_stop(MemoryListener *listener, 675 MemoryRegionSection *section, 676 int old, int new) 677 { 678 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 679 int r; 680 681 if (new != 0) { 682 return; 683 } 684 685 r = kvm_section_update_flags(kml, section); 686 if (r < 0) { 687 abort(); 688 } 689 } 690 691 /* get kvm's dirty pages bitmap and update qemu's */ 692 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 693 { 694 ram_addr_t start = slot->ram_start_offset; 695 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 696 697 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 698 } 699 700 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 701 { 702 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 703 } 704 705 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 706 707 /* Allocate the dirty bitmap for a slot */ 708 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 709 { 710 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 711 return; 712 } 713 714 /* 715 * XXX bad kernel interface alert 716 * For dirty bitmap, kernel allocates array of size aligned to 717 * bits-per-long. But for case when the kernel is 64bits and 718 * the userspace is 32bits, userspace can't align to the same 719 * bits-per-long, since sizeof(long) is different between kernel 720 * and user space. This way, userspace will provide buffer which 721 * may be 4 bytes less than the kernel will use, resulting in 722 * userspace memory corruption (which is not detectable by valgrind 723 * too, in most cases). 724 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 725 * a hope that sizeof(long) won't become >8 any time soon. 726 * 727 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 728 * And mem->memory_size is aligned to it (otherwise this mem can't 729 * be registered to KVM). 730 */ 731 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 732 /*HOST_LONG_BITS*/ 64) / 8; 733 mem->dirty_bmap = g_malloc0(bitmap_size); 734 mem->dirty_bmap_size = bitmap_size; 735 } 736 737 /* 738 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 739 * succeeded, false otherwise 740 */ 741 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 742 { 743 struct kvm_dirty_log d = {}; 744 int ret; 745 746 d.dirty_bitmap = slot->dirty_bmap; 747 d.slot = slot->slot | (slot->as_id << 16); 748 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 749 750 if (ret == -ENOENT) { 751 /* kernel does not have dirty bitmap in this slot */ 752 ret = 0; 753 } 754 if (ret) { 755 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 756 __func__, ret); 757 } 758 return ret == 0; 759 } 760 761 /* Should be with all slots_lock held for the address spaces. */ 762 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 763 uint32_t slot_id, uint64_t offset) 764 { 765 KVMMemoryListener *kml; 766 KVMSlot *mem; 767 768 if (as_id >= s->nr_as) { 769 return; 770 } 771 772 kml = s->as[as_id].ml; 773 mem = &kml->slots[slot_id]; 774 775 if (!mem->memory_size || offset >= 776 (mem->memory_size / qemu_real_host_page_size())) { 777 return; 778 } 779 780 set_bit(offset, mem->dirty_bmap); 781 } 782 783 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 784 { 785 /* 786 * Read the flags before the value. Pairs with barrier in 787 * KVM's kvm_dirty_ring_push() function. 788 */ 789 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 790 } 791 792 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 793 { 794 /* 795 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 796 * sees the full content of the ring: 797 * 798 * CPU0 CPU1 CPU2 799 * ------------------------------------------------------------------------------ 800 * fill gfn0 801 * store-rel flags for gfn0 802 * load-acq flags for gfn0 803 * store-rel RESET for gfn0 804 * ioctl(RESET_RINGS) 805 * load-acq flags for gfn0 806 * check if flags have RESET 807 * 808 * The synchronization goes from CPU2 to CPU0 to CPU1. 809 */ 810 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 811 } 812 813 /* 814 * Should be with all slots_lock held for the address spaces. It returns the 815 * dirty page we've collected on this dirty ring. 816 */ 817 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 818 { 819 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 820 uint32_t ring_size = s->kvm_dirty_ring_size; 821 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 822 823 /* 824 * It's possible that we race with vcpu creation code where the vcpu is 825 * put onto the vcpus list but not yet initialized the dirty ring 826 * structures. If so, skip it. 827 */ 828 if (!cpu->created) { 829 return 0; 830 } 831 832 assert(dirty_gfns && ring_size); 833 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 834 835 while (true) { 836 cur = &dirty_gfns[fetch % ring_size]; 837 if (!dirty_gfn_is_dirtied(cur)) { 838 break; 839 } 840 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 841 cur->offset); 842 dirty_gfn_set_collected(cur); 843 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 844 fetch++; 845 count++; 846 } 847 cpu->kvm_fetch_index = fetch; 848 cpu->dirty_pages += count; 849 850 return count; 851 } 852 853 /* Must be with slots_lock held */ 854 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 855 { 856 int ret; 857 uint64_t total = 0; 858 int64_t stamp; 859 860 stamp = get_clock(); 861 862 if (cpu) { 863 total = kvm_dirty_ring_reap_one(s, cpu); 864 } else { 865 CPU_FOREACH(cpu) { 866 total += kvm_dirty_ring_reap_one(s, cpu); 867 } 868 } 869 870 if (total) { 871 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 872 assert(ret == total); 873 } 874 875 stamp = get_clock() - stamp; 876 877 if (total) { 878 trace_kvm_dirty_ring_reap(total, stamp / 1000); 879 } 880 881 return total; 882 } 883 884 /* 885 * Currently for simplicity, we must hold BQL before calling this. We can 886 * consider to drop the BQL if we're clear with all the race conditions. 887 */ 888 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 889 { 890 uint64_t total; 891 892 /* 893 * We need to lock all kvm slots for all address spaces here, 894 * because: 895 * 896 * (1) We need to mark dirty for dirty bitmaps in multiple slots 897 * and for tons of pages, so it's better to take the lock here 898 * once rather than once per page. And more importantly, 899 * 900 * (2) We must _NOT_ publish dirty bits to the other threads 901 * (e.g., the migration thread) via the kvm memory slot dirty 902 * bitmaps before correctly re-protect those dirtied pages. 903 * Otherwise we can have potential risk of data corruption if 904 * the page data is read in the other thread before we do 905 * reset below. 906 */ 907 kvm_slots_lock(); 908 total = kvm_dirty_ring_reap_locked(s, cpu); 909 kvm_slots_unlock(); 910 911 return total; 912 } 913 914 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 915 { 916 /* No need to do anything */ 917 } 918 919 /* 920 * Kick all vcpus out in a synchronized way. When returned, we 921 * guarantee that every vcpu has been kicked and at least returned to 922 * userspace once. 923 */ 924 static void kvm_cpu_synchronize_kick_all(void) 925 { 926 CPUState *cpu; 927 928 CPU_FOREACH(cpu) { 929 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 930 } 931 } 932 933 /* 934 * Flush all the existing dirty pages to the KVM slot buffers. When 935 * this call returns, we guarantee that all the touched dirty pages 936 * before calling this function have been put into the per-kvmslot 937 * dirty bitmap. 938 * 939 * This function must be called with BQL held. 940 */ 941 static void kvm_dirty_ring_flush(void) 942 { 943 trace_kvm_dirty_ring_flush(0); 944 /* 945 * The function needs to be serialized. Since this function 946 * should always be with BQL held, serialization is guaranteed. 947 * However, let's be sure of it. 948 */ 949 assert(bql_locked()); 950 /* 951 * First make sure to flush the hardware buffers by kicking all 952 * vcpus out in a synchronous way. 953 */ 954 kvm_cpu_synchronize_kick_all(); 955 kvm_dirty_ring_reap(kvm_state, NULL); 956 trace_kvm_dirty_ring_flush(1); 957 } 958 959 /** 960 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 961 * 962 * This function will first try to fetch dirty bitmap from the kernel, 963 * and then updates qemu's dirty bitmap. 964 * 965 * NOTE: caller must be with kml->slots_lock held. 966 * 967 * @kml: the KVM memory listener object 968 * @section: the memory section to sync the dirty bitmap with 969 */ 970 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 971 MemoryRegionSection *section) 972 { 973 KVMState *s = kvm_state; 974 KVMSlot *mem; 975 hwaddr start_addr, size; 976 hwaddr slot_size; 977 978 size = kvm_align_section(section, &start_addr); 979 while (size) { 980 slot_size = MIN(kvm_max_slot_size, size); 981 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 982 if (!mem) { 983 /* We don't have a slot if we want to trap every access. */ 984 return; 985 } 986 if (kvm_slot_get_dirty_log(s, mem)) { 987 kvm_slot_sync_dirty_pages(mem); 988 } 989 start_addr += slot_size; 990 size -= slot_size; 991 } 992 } 993 994 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 995 #define KVM_CLEAR_LOG_SHIFT 6 996 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 997 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 998 999 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1000 uint64_t size) 1001 { 1002 KVMState *s = kvm_state; 1003 uint64_t end, bmap_start, start_delta, bmap_npages; 1004 struct kvm_clear_dirty_log d; 1005 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1006 int ret; 1007 1008 /* 1009 * We need to extend either the start or the size or both to 1010 * satisfy the KVM interface requirement. Firstly, do the start 1011 * page alignment on 64 host pages 1012 */ 1013 bmap_start = start & KVM_CLEAR_LOG_MASK; 1014 start_delta = start - bmap_start; 1015 bmap_start /= psize; 1016 1017 /* 1018 * The kernel interface has restriction on the size too, that either: 1019 * 1020 * (1) the size is 64 host pages aligned (just like the start), or 1021 * (2) the size fills up until the end of the KVM memslot. 1022 */ 1023 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1024 << KVM_CLEAR_LOG_SHIFT; 1025 end = mem->memory_size / psize; 1026 if (bmap_npages > end - bmap_start) { 1027 bmap_npages = end - bmap_start; 1028 } 1029 start_delta /= psize; 1030 1031 /* 1032 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1033 * that we won't clear any unknown dirty bits otherwise we might 1034 * accidentally clear some set bits which are not yet synced from 1035 * the kernel into QEMU's bitmap, then we'll lose track of the 1036 * guest modifications upon those pages (which can directly lead 1037 * to guest data loss or panic after migration). 1038 * 1039 * Layout of the KVMSlot.dirty_bmap: 1040 * 1041 * |<-------- bmap_npages -----------..>| 1042 * [1] 1043 * start_delta size 1044 * |----------------|-------------|------------------|------------| 1045 * ^ ^ ^ ^ 1046 * | | | | 1047 * start bmap_start (start) end 1048 * of memslot of memslot 1049 * 1050 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1051 */ 1052 1053 assert(bmap_start % BITS_PER_LONG == 0); 1054 /* We should never do log_clear before log_sync */ 1055 assert(mem->dirty_bmap); 1056 if (start_delta || bmap_npages - size / psize) { 1057 /* Slow path - we need to manipulate a temp bitmap */ 1058 bmap_clear = bitmap_new(bmap_npages); 1059 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1060 bmap_start, start_delta + size / psize); 1061 /* 1062 * We need to fill the holes at start because that was not 1063 * specified by the caller and we extended the bitmap only for 1064 * 64 pages alignment 1065 */ 1066 bitmap_clear(bmap_clear, 0, start_delta); 1067 d.dirty_bitmap = bmap_clear; 1068 } else { 1069 /* 1070 * Fast path - both start and size align well with BITS_PER_LONG 1071 * (or the end of memory slot) 1072 */ 1073 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1074 } 1075 1076 d.first_page = bmap_start; 1077 /* It should never overflow. If it happens, say something */ 1078 assert(bmap_npages <= UINT32_MAX); 1079 d.num_pages = bmap_npages; 1080 d.slot = mem->slot | (as_id << 16); 1081 1082 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1083 if (ret < 0 && ret != -ENOENT) { 1084 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1085 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1086 __func__, d.slot, (uint64_t)d.first_page, 1087 (uint32_t)d.num_pages, ret); 1088 } else { 1089 ret = 0; 1090 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1091 } 1092 1093 /* 1094 * After we have updated the remote dirty bitmap, we update the 1095 * cached bitmap as well for the memslot, then if another user 1096 * clears the same region we know we shouldn't clear it again on 1097 * the remote otherwise it's data loss as well. 1098 */ 1099 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1100 size / psize); 1101 /* This handles the NULL case well */ 1102 g_free(bmap_clear); 1103 return ret; 1104 } 1105 1106 1107 /** 1108 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1109 * 1110 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1111 * protection in the host kernel because in that case this operation 1112 * will be done within log_sync(). 1113 * 1114 * @kml: the kvm memory listener 1115 * @section: the memory range to clear dirty bitmap 1116 */ 1117 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1118 MemoryRegionSection *section) 1119 { 1120 KVMState *s = kvm_state; 1121 uint64_t start, size, offset, count; 1122 KVMSlot *mem; 1123 int ret = 0, i; 1124 1125 if (!s->manual_dirty_log_protect) { 1126 /* No need to do explicit clear */ 1127 return ret; 1128 } 1129 1130 start = section->offset_within_address_space; 1131 size = int128_get64(section->size); 1132 1133 if (!size) { 1134 /* Nothing more we can do... */ 1135 return ret; 1136 } 1137 1138 kvm_slots_lock(); 1139 1140 for (i = 0; i < kml->nr_slots_allocated; i++) { 1141 mem = &kml->slots[i]; 1142 /* Discard slots that are empty or do not overlap the section */ 1143 if (!mem->memory_size || 1144 mem->start_addr > start + size - 1 || 1145 start > mem->start_addr + mem->memory_size - 1) { 1146 continue; 1147 } 1148 1149 if (start >= mem->start_addr) { 1150 /* The slot starts before section or is aligned to it. */ 1151 offset = start - mem->start_addr; 1152 count = MIN(mem->memory_size - offset, size); 1153 } else { 1154 /* The slot starts after section. */ 1155 offset = 0; 1156 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1157 } 1158 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1159 if (ret < 0) { 1160 break; 1161 } 1162 } 1163 1164 kvm_slots_unlock(); 1165 1166 return ret; 1167 } 1168 1169 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1170 MemoryRegionSection *secion, 1171 hwaddr start, hwaddr size) 1172 { 1173 KVMState *s = kvm_state; 1174 1175 if (s->coalesced_mmio) { 1176 struct kvm_coalesced_mmio_zone zone; 1177 1178 zone.addr = start; 1179 zone.size = size; 1180 zone.pad = 0; 1181 1182 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1183 } 1184 } 1185 1186 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1187 MemoryRegionSection *secion, 1188 hwaddr start, hwaddr size) 1189 { 1190 KVMState *s = kvm_state; 1191 1192 if (s->coalesced_mmio) { 1193 struct kvm_coalesced_mmio_zone zone; 1194 1195 zone.addr = start; 1196 zone.size = size; 1197 zone.pad = 0; 1198 1199 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1200 } 1201 } 1202 1203 static void kvm_coalesce_pio_add(MemoryListener *listener, 1204 MemoryRegionSection *section, 1205 hwaddr start, hwaddr size) 1206 { 1207 KVMState *s = kvm_state; 1208 1209 if (s->coalesced_pio) { 1210 struct kvm_coalesced_mmio_zone zone; 1211 1212 zone.addr = start; 1213 zone.size = size; 1214 zone.pio = 1; 1215 1216 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1217 } 1218 } 1219 1220 static void kvm_coalesce_pio_del(MemoryListener *listener, 1221 MemoryRegionSection *section, 1222 hwaddr start, hwaddr size) 1223 { 1224 KVMState *s = kvm_state; 1225 1226 if (s->coalesced_pio) { 1227 struct kvm_coalesced_mmio_zone zone; 1228 1229 zone.addr = start; 1230 zone.size = size; 1231 zone.pio = 1; 1232 1233 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1234 } 1235 } 1236 1237 int kvm_check_extension(KVMState *s, unsigned int extension) 1238 { 1239 int ret; 1240 1241 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1242 if (ret < 0) { 1243 ret = 0; 1244 } 1245 1246 return ret; 1247 } 1248 1249 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1250 { 1251 int ret; 1252 1253 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1254 if (ret < 0) { 1255 /* VM wide version not implemented, use global one instead */ 1256 ret = kvm_check_extension(s, extension); 1257 } 1258 1259 return ret; 1260 } 1261 1262 /* 1263 * We track the poisoned pages to be able to: 1264 * - replace them on VM reset 1265 * - block a migration for a VM with a poisoned page 1266 */ 1267 typedef struct HWPoisonPage { 1268 ram_addr_t ram_addr; 1269 QLIST_ENTRY(HWPoisonPage) list; 1270 } HWPoisonPage; 1271 1272 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1273 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1274 1275 static void kvm_unpoison_all(void *param) 1276 { 1277 HWPoisonPage *page, *next_page; 1278 1279 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1280 QLIST_REMOVE(page, list); 1281 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1282 g_free(page); 1283 } 1284 } 1285 1286 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1287 { 1288 HWPoisonPage *page; 1289 1290 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1291 if (page->ram_addr == ram_addr) { 1292 return; 1293 } 1294 } 1295 page = g_new(HWPoisonPage, 1); 1296 page->ram_addr = ram_addr; 1297 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1298 } 1299 1300 bool kvm_hwpoisoned_mem(void) 1301 { 1302 return !QLIST_EMPTY(&hwpoison_page_list); 1303 } 1304 1305 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1306 { 1307 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1308 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1309 * endianness, but the memory core hands them in target endianness. 1310 * For example, PPC is always treated as big-endian even if running 1311 * on KVM and on PPC64LE. Correct here. 1312 */ 1313 switch (size) { 1314 case 2: 1315 val = bswap16(val); 1316 break; 1317 case 4: 1318 val = bswap32(val); 1319 break; 1320 } 1321 #endif 1322 return val; 1323 } 1324 1325 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1326 bool assign, uint32_t size, bool datamatch) 1327 { 1328 int ret; 1329 struct kvm_ioeventfd iofd = { 1330 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1331 .addr = addr, 1332 .len = size, 1333 .flags = 0, 1334 .fd = fd, 1335 }; 1336 1337 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1338 datamatch); 1339 if (!kvm_enabled()) { 1340 return -ENOSYS; 1341 } 1342 1343 if (datamatch) { 1344 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1345 } 1346 if (!assign) { 1347 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1348 } 1349 1350 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1351 1352 if (ret < 0) { 1353 return -errno; 1354 } 1355 1356 return 0; 1357 } 1358 1359 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1360 bool assign, uint32_t size, bool datamatch) 1361 { 1362 struct kvm_ioeventfd kick = { 1363 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1364 .addr = addr, 1365 .flags = KVM_IOEVENTFD_FLAG_PIO, 1366 .len = size, 1367 .fd = fd, 1368 }; 1369 int r; 1370 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1371 if (!kvm_enabled()) { 1372 return -ENOSYS; 1373 } 1374 if (datamatch) { 1375 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1376 } 1377 if (!assign) { 1378 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1379 } 1380 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1381 if (r < 0) { 1382 return r; 1383 } 1384 return 0; 1385 } 1386 1387 1388 static const KVMCapabilityInfo * 1389 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1390 { 1391 while (list->name) { 1392 if (!kvm_check_extension(s, list->value)) { 1393 return list; 1394 } 1395 list++; 1396 } 1397 return NULL; 1398 } 1399 1400 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1401 { 1402 g_assert( 1403 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1404 ); 1405 kvm_max_slot_size = max_slot_size; 1406 } 1407 1408 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1409 { 1410 struct kvm_memory_attributes attrs; 1411 int r; 1412 1413 assert((attr & kvm_supported_memory_attributes) == attr); 1414 attrs.attributes = attr; 1415 attrs.address = start; 1416 attrs.size = size; 1417 attrs.flags = 0; 1418 1419 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1420 if (r) { 1421 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1422 "with attr 0x%" PRIx64 " error '%s'", 1423 start, size, attr, strerror(errno)); 1424 } 1425 return r; 1426 } 1427 1428 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1429 { 1430 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1431 } 1432 1433 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1434 { 1435 return kvm_set_memory_attributes(start, size, 0); 1436 } 1437 1438 /* Called with KVMMemoryListener.slots_lock held */ 1439 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1440 MemoryRegionSection *section, bool add) 1441 { 1442 KVMSlot *mem; 1443 int err; 1444 MemoryRegion *mr = section->mr; 1445 bool writable = !mr->readonly && !mr->rom_device; 1446 hwaddr start_addr, size, slot_size, mr_offset; 1447 ram_addr_t ram_start_offset; 1448 void *ram; 1449 1450 if (!memory_region_is_ram(mr)) { 1451 if (writable || !kvm_readonly_mem_allowed) { 1452 return; 1453 } else if (!mr->romd_mode) { 1454 /* If the memory device is not in romd_mode, then we actually want 1455 * to remove the kvm memory slot so all accesses will trap. */ 1456 add = false; 1457 } 1458 } 1459 1460 size = kvm_align_section(section, &start_addr); 1461 if (!size) { 1462 return; 1463 } 1464 1465 /* The offset of the kvmslot within the memory region */ 1466 mr_offset = section->offset_within_region + start_addr - 1467 section->offset_within_address_space; 1468 1469 /* use aligned delta to align the ram address and offset */ 1470 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1471 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1472 1473 if (!add) { 1474 do { 1475 slot_size = MIN(kvm_max_slot_size, size); 1476 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1477 if (!mem) { 1478 return; 1479 } 1480 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1481 /* 1482 * NOTE: We should be aware of the fact that here we're only 1483 * doing a best effort to sync dirty bits. No matter whether 1484 * we're using dirty log or dirty ring, we ignored two facts: 1485 * 1486 * (1) dirty bits can reside in hardware buffers (PML) 1487 * 1488 * (2) after we collected dirty bits here, pages can be dirtied 1489 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1490 * remove the slot. 1491 * 1492 * Not easy. Let's cross the fingers until it's fixed. 1493 */ 1494 if (kvm_state->kvm_dirty_ring_size) { 1495 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1496 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1497 kvm_slot_sync_dirty_pages(mem); 1498 kvm_slot_get_dirty_log(kvm_state, mem); 1499 } 1500 } else { 1501 kvm_slot_get_dirty_log(kvm_state, mem); 1502 } 1503 kvm_slot_sync_dirty_pages(mem); 1504 } 1505 1506 /* unregister the slot */ 1507 g_free(mem->dirty_bmap); 1508 mem->dirty_bmap = NULL; 1509 mem->memory_size = 0; 1510 mem->flags = 0; 1511 err = kvm_set_user_memory_region(kml, mem, false); 1512 if (err) { 1513 fprintf(stderr, "%s: error unregistering slot: %s\n", 1514 __func__, strerror(-err)); 1515 abort(); 1516 } 1517 start_addr += slot_size; 1518 size -= slot_size; 1519 kml->nr_slots_used--; 1520 } while (size); 1521 return; 1522 } 1523 1524 /* register the new slot */ 1525 do { 1526 slot_size = MIN(kvm_max_slot_size, size); 1527 mem = kvm_alloc_slot(kml); 1528 mem->as_id = kml->as_id; 1529 mem->memory_size = slot_size; 1530 mem->start_addr = start_addr; 1531 mem->ram_start_offset = ram_start_offset; 1532 mem->ram = ram; 1533 mem->flags = kvm_mem_flags(mr); 1534 mem->guest_memfd = mr->ram_block->guest_memfd; 1535 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1536 1537 kvm_slot_init_dirty_bitmap(mem); 1538 err = kvm_set_user_memory_region(kml, mem, true); 1539 if (err) { 1540 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1541 strerror(-err)); 1542 abort(); 1543 } 1544 1545 if (memory_region_has_guest_memfd(mr)) { 1546 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1547 if (err) { 1548 error_report("%s: failed to set memory attribute private: %s", 1549 __func__, strerror(-err)); 1550 exit(1); 1551 } 1552 } 1553 1554 start_addr += slot_size; 1555 ram_start_offset += slot_size; 1556 ram += slot_size; 1557 size -= slot_size; 1558 kml->nr_slots_used++; 1559 } while (size); 1560 } 1561 1562 static void *kvm_dirty_ring_reaper_thread(void *data) 1563 { 1564 KVMState *s = data; 1565 struct KVMDirtyRingReaper *r = &s->reaper; 1566 1567 rcu_register_thread(); 1568 1569 trace_kvm_dirty_ring_reaper("init"); 1570 1571 while (true) { 1572 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1573 trace_kvm_dirty_ring_reaper("wait"); 1574 /* 1575 * TODO: provide a smarter timeout rather than a constant? 1576 */ 1577 sleep(1); 1578 1579 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1580 if (dirtylimit_in_service()) { 1581 continue; 1582 } 1583 1584 trace_kvm_dirty_ring_reaper("wakeup"); 1585 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1586 1587 bql_lock(); 1588 kvm_dirty_ring_reap(s, NULL); 1589 bql_unlock(); 1590 1591 r->reaper_iteration++; 1592 } 1593 1594 g_assert_not_reached(); 1595 } 1596 1597 static void kvm_dirty_ring_reaper_init(KVMState *s) 1598 { 1599 struct KVMDirtyRingReaper *r = &s->reaper; 1600 1601 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1602 kvm_dirty_ring_reaper_thread, 1603 s, QEMU_THREAD_JOINABLE); 1604 } 1605 1606 static int kvm_dirty_ring_init(KVMState *s) 1607 { 1608 uint32_t ring_size = s->kvm_dirty_ring_size; 1609 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1610 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1611 int ret; 1612 1613 s->kvm_dirty_ring_size = 0; 1614 s->kvm_dirty_ring_bytes = 0; 1615 1616 /* Bail if the dirty ring size isn't specified */ 1617 if (!ring_size) { 1618 return 0; 1619 } 1620 1621 /* 1622 * Read the max supported pages. Fall back to dirty logging mode 1623 * if the dirty ring isn't supported. 1624 */ 1625 ret = kvm_vm_check_extension(s, capability); 1626 if (ret <= 0) { 1627 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1628 ret = kvm_vm_check_extension(s, capability); 1629 } 1630 1631 if (ret <= 0) { 1632 warn_report("KVM dirty ring not available, using bitmap method"); 1633 return 0; 1634 } 1635 1636 if (ring_bytes > ret) { 1637 error_report("KVM dirty ring size %" PRIu32 " too big " 1638 "(maximum is %ld). Please use a smaller value.", 1639 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1640 return -EINVAL; 1641 } 1642 1643 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1644 if (ret) { 1645 error_report("Enabling of KVM dirty ring failed: %s. " 1646 "Suggested minimum value is 1024.", strerror(-ret)); 1647 return -EIO; 1648 } 1649 1650 /* Enable the backup bitmap if it is supported */ 1651 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1652 if (ret > 0) { 1653 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1654 if (ret) { 1655 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1656 "%s. ", strerror(-ret)); 1657 return -EIO; 1658 } 1659 1660 s->kvm_dirty_ring_with_bitmap = true; 1661 } 1662 1663 s->kvm_dirty_ring_size = ring_size; 1664 s->kvm_dirty_ring_bytes = ring_bytes; 1665 1666 return 0; 1667 } 1668 1669 static void kvm_region_add(MemoryListener *listener, 1670 MemoryRegionSection *section) 1671 { 1672 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1673 KVMMemoryUpdate *update; 1674 1675 update = g_new0(KVMMemoryUpdate, 1); 1676 update->section = *section; 1677 1678 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1679 } 1680 1681 static void kvm_region_del(MemoryListener *listener, 1682 MemoryRegionSection *section) 1683 { 1684 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1685 KVMMemoryUpdate *update; 1686 1687 update = g_new0(KVMMemoryUpdate, 1); 1688 update->section = *section; 1689 1690 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1691 } 1692 1693 static void kvm_region_commit(MemoryListener *listener) 1694 { 1695 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1696 listener); 1697 KVMMemoryUpdate *u1, *u2; 1698 bool need_inhibit = false; 1699 1700 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1701 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1702 return; 1703 } 1704 1705 /* 1706 * We have to be careful when regions to add overlap with ranges to remove. 1707 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1708 * is currently active. 1709 * 1710 * The lists are order by addresses, so it's easy to find overlaps. 1711 */ 1712 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1713 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1714 while (u1 && u2) { 1715 Range r1, r2; 1716 1717 range_init_nofail(&r1, u1->section.offset_within_address_space, 1718 int128_get64(u1->section.size)); 1719 range_init_nofail(&r2, u2->section.offset_within_address_space, 1720 int128_get64(u2->section.size)); 1721 1722 if (range_overlaps_range(&r1, &r2)) { 1723 need_inhibit = true; 1724 break; 1725 } 1726 if (range_lob(&r1) < range_lob(&r2)) { 1727 u1 = QSIMPLEQ_NEXT(u1, next); 1728 } else { 1729 u2 = QSIMPLEQ_NEXT(u2, next); 1730 } 1731 } 1732 1733 kvm_slots_lock(); 1734 if (need_inhibit) { 1735 accel_ioctl_inhibit_begin(); 1736 } 1737 1738 /* Remove all memslots before adding the new ones. */ 1739 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1740 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1741 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1742 1743 kvm_set_phys_mem(kml, &u1->section, false); 1744 memory_region_unref(u1->section.mr); 1745 1746 g_free(u1); 1747 } 1748 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1749 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1750 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1751 1752 memory_region_ref(u1->section.mr); 1753 kvm_set_phys_mem(kml, &u1->section, true); 1754 1755 g_free(u1); 1756 } 1757 1758 if (need_inhibit) { 1759 accel_ioctl_inhibit_end(); 1760 } 1761 kvm_slots_unlock(); 1762 } 1763 1764 static void kvm_log_sync(MemoryListener *listener, 1765 MemoryRegionSection *section) 1766 { 1767 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1768 1769 kvm_slots_lock(); 1770 kvm_physical_sync_dirty_bitmap(kml, section); 1771 kvm_slots_unlock(); 1772 } 1773 1774 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1775 { 1776 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1777 KVMState *s = kvm_state; 1778 KVMSlot *mem; 1779 int i; 1780 1781 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1782 kvm_dirty_ring_flush(); 1783 1784 kvm_slots_lock(); 1785 for (i = 0; i < kml->nr_slots_allocated; i++) { 1786 mem = &kml->slots[i]; 1787 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1788 kvm_slot_sync_dirty_pages(mem); 1789 1790 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1791 kvm_slot_get_dirty_log(s, mem)) { 1792 kvm_slot_sync_dirty_pages(mem); 1793 } 1794 1795 /* 1796 * This is not needed by KVM_GET_DIRTY_LOG because the 1797 * ioctl will unconditionally overwrite the whole region. 1798 * However kvm dirty ring has no such side effect. 1799 */ 1800 kvm_slot_reset_dirty_pages(mem); 1801 } 1802 } 1803 kvm_slots_unlock(); 1804 } 1805 1806 static void kvm_log_clear(MemoryListener *listener, 1807 MemoryRegionSection *section) 1808 { 1809 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1810 int r; 1811 1812 r = kvm_physical_log_clear(kml, section); 1813 if (r < 0) { 1814 error_report_once("%s: kvm log clear failed: mr=%s " 1815 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1816 section->mr->name, section->offset_within_region, 1817 int128_get64(section->size)); 1818 abort(); 1819 } 1820 } 1821 1822 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1823 MemoryRegionSection *section, 1824 bool match_data, uint64_t data, 1825 EventNotifier *e) 1826 { 1827 int fd = event_notifier_get_fd(e); 1828 int r; 1829 1830 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1831 data, true, int128_get64(section->size), 1832 match_data); 1833 if (r < 0) { 1834 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1835 __func__, strerror(-r), -r); 1836 abort(); 1837 } 1838 } 1839 1840 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1841 MemoryRegionSection *section, 1842 bool match_data, uint64_t data, 1843 EventNotifier *e) 1844 { 1845 int fd = event_notifier_get_fd(e); 1846 int r; 1847 1848 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1849 data, false, int128_get64(section->size), 1850 match_data); 1851 if (r < 0) { 1852 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1853 __func__, strerror(-r), -r); 1854 abort(); 1855 } 1856 } 1857 1858 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1859 MemoryRegionSection *section, 1860 bool match_data, uint64_t data, 1861 EventNotifier *e) 1862 { 1863 int fd = event_notifier_get_fd(e); 1864 int r; 1865 1866 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1867 data, true, int128_get64(section->size), 1868 match_data); 1869 if (r < 0) { 1870 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1871 __func__, strerror(-r), -r); 1872 abort(); 1873 } 1874 } 1875 1876 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1877 MemoryRegionSection *section, 1878 bool match_data, uint64_t data, 1879 EventNotifier *e) 1880 1881 { 1882 int fd = event_notifier_get_fd(e); 1883 int r; 1884 1885 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1886 data, false, int128_get64(section->size), 1887 match_data); 1888 if (r < 0) { 1889 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1890 __func__, strerror(-r), -r); 1891 abort(); 1892 } 1893 } 1894 1895 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1896 AddressSpace *as, int as_id, const char *name) 1897 { 1898 int i; 1899 1900 kml->as_id = as_id; 1901 1902 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1903 1904 QSIMPLEQ_INIT(&kml->transaction_add); 1905 QSIMPLEQ_INIT(&kml->transaction_del); 1906 1907 kml->listener.region_add = kvm_region_add; 1908 kml->listener.region_del = kvm_region_del; 1909 kml->listener.commit = kvm_region_commit; 1910 kml->listener.log_start = kvm_log_start; 1911 kml->listener.log_stop = kvm_log_stop; 1912 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1913 kml->listener.name = name; 1914 1915 if (s->kvm_dirty_ring_size) { 1916 kml->listener.log_sync_global = kvm_log_sync_global; 1917 } else { 1918 kml->listener.log_sync = kvm_log_sync; 1919 kml->listener.log_clear = kvm_log_clear; 1920 } 1921 1922 memory_listener_register(&kml->listener, as); 1923 1924 for (i = 0; i < s->nr_as; ++i) { 1925 if (!s->as[i].as) { 1926 s->as[i].as = as; 1927 s->as[i].ml = kml; 1928 break; 1929 } 1930 } 1931 } 1932 1933 static MemoryListener kvm_io_listener = { 1934 .name = "kvm-io", 1935 .coalesced_io_add = kvm_coalesce_pio_add, 1936 .coalesced_io_del = kvm_coalesce_pio_del, 1937 .eventfd_add = kvm_io_ioeventfd_add, 1938 .eventfd_del = kvm_io_ioeventfd_del, 1939 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1940 }; 1941 1942 int kvm_set_irq(KVMState *s, int irq, int level) 1943 { 1944 struct kvm_irq_level event; 1945 int ret; 1946 1947 assert(kvm_async_interrupts_enabled()); 1948 1949 event.level = level; 1950 event.irq = irq; 1951 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1952 if (ret < 0) { 1953 perror("kvm_set_irq"); 1954 abort(); 1955 } 1956 1957 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1958 } 1959 1960 #ifdef KVM_CAP_IRQ_ROUTING 1961 typedef struct KVMMSIRoute { 1962 struct kvm_irq_routing_entry kroute; 1963 QTAILQ_ENTRY(KVMMSIRoute) entry; 1964 } KVMMSIRoute; 1965 1966 static void set_gsi(KVMState *s, unsigned int gsi) 1967 { 1968 set_bit(gsi, s->used_gsi_bitmap); 1969 } 1970 1971 static void clear_gsi(KVMState *s, unsigned int gsi) 1972 { 1973 clear_bit(gsi, s->used_gsi_bitmap); 1974 } 1975 1976 void kvm_init_irq_routing(KVMState *s) 1977 { 1978 int gsi_count; 1979 1980 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1981 if (gsi_count > 0) { 1982 /* Round up so we can search ints using ffs */ 1983 s->used_gsi_bitmap = bitmap_new(gsi_count); 1984 s->gsi_count = gsi_count; 1985 } 1986 1987 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1988 s->nr_allocated_irq_routes = 0; 1989 1990 kvm_arch_init_irq_routing(s); 1991 } 1992 1993 void kvm_irqchip_commit_routes(KVMState *s) 1994 { 1995 int ret; 1996 1997 if (kvm_gsi_direct_mapping()) { 1998 return; 1999 } 2000 2001 if (!kvm_gsi_routing_enabled()) { 2002 return; 2003 } 2004 2005 s->irq_routes->flags = 0; 2006 trace_kvm_irqchip_commit_routes(); 2007 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2008 assert(ret == 0); 2009 } 2010 2011 void kvm_add_routing_entry(KVMState *s, 2012 struct kvm_irq_routing_entry *entry) 2013 { 2014 struct kvm_irq_routing_entry *new; 2015 int n, size; 2016 2017 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2018 n = s->nr_allocated_irq_routes * 2; 2019 if (n < 64) { 2020 n = 64; 2021 } 2022 size = sizeof(struct kvm_irq_routing); 2023 size += n * sizeof(*new); 2024 s->irq_routes = g_realloc(s->irq_routes, size); 2025 s->nr_allocated_irq_routes = n; 2026 } 2027 n = s->irq_routes->nr++; 2028 new = &s->irq_routes->entries[n]; 2029 2030 *new = *entry; 2031 2032 set_gsi(s, entry->gsi); 2033 } 2034 2035 static int kvm_update_routing_entry(KVMState *s, 2036 struct kvm_irq_routing_entry *new_entry) 2037 { 2038 struct kvm_irq_routing_entry *entry; 2039 int n; 2040 2041 for (n = 0; n < s->irq_routes->nr; n++) { 2042 entry = &s->irq_routes->entries[n]; 2043 if (entry->gsi != new_entry->gsi) { 2044 continue; 2045 } 2046 2047 if(!memcmp(entry, new_entry, sizeof *entry)) { 2048 return 0; 2049 } 2050 2051 *entry = *new_entry; 2052 2053 return 0; 2054 } 2055 2056 return -ESRCH; 2057 } 2058 2059 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2060 { 2061 struct kvm_irq_routing_entry e = {}; 2062 2063 assert(pin < s->gsi_count); 2064 2065 e.gsi = irq; 2066 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2067 e.flags = 0; 2068 e.u.irqchip.irqchip = irqchip; 2069 e.u.irqchip.pin = pin; 2070 kvm_add_routing_entry(s, &e); 2071 } 2072 2073 void kvm_irqchip_release_virq(KVMState *s, int virq) 2074 { 2075 struct kvm_irq_routing_entry *e; 2076 int i; 2077 2078 if (kvm_gsi_direct_mapping()) { 2079 return; 2080 } 2081 2082 for (i = 0; i < s->irq_routes->nr; i++) { 2083 e = &s->irq_routes->entries[i]; 2084 if (e->gsi == virq) { 2085 s->irq_routes->nr--; 2086 *e = s->irq_routes->entries[s->irq_routes->nr]; 2087 } 2088 } 2089 clear_gsi(s, virq); 2090 kvm_arch_release_virq_post(virq); 2091 trace_kvm_irqchip_release_virq(virq); 2092 } 2093 2094 void kvm_irqchip_add_change_notifier(Notifier *n) 2095 { 2096 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2097 } 2098 2099 void kvm_irqchip_remove_change_notifier(Notifier *n) 2100 { 2101 notifier_remove(n); 2102 } 2103 2104 void kvm_irqchip_change_notify(void) 2105 { 2106 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2107 } 2108 2109 int kvm_irqchip_get_virq(KVMState *s) 2110 { 2111 int next_virq; 2112 2113 /* Return the lowest unused GSI in the bitmap */ 2114 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2115 if (next_virq >= s->gsi_count) { 2116 return -ENOSPC; 2117 } else { 2118 return next_virq; 2119 } 2120 } 2121 2122 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2123 { 2124 struct kvm_msi msi; 2125 2126 msi.address_lo = (uint32_t)msg.address; 2127 msi.address_hi = msg.address >> 32; 2128 msi.data = le32_to_cpu(msg.data); 2129 msi.flags = 0; 2130 memset(msi.pad, 0, sizeof(msi.pad)); 2131 2132 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2133 } 2134 2135 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2136 { 2137 struct kvm_irq_routing_entry kroute = {}; 2138 int virq; 2139 KVMState *s = c->s; 2140 MSIMessage msg = {0, 0}; 2141 2142 if (pci_available && dev) { 2143 msg = pci_get_msi_message(dev, vector); 2144 } 2145 2146 if (kvm_gsi_direct_mapping()) { 2147 return kvm_arch_msi_data_to_gsi(msg.data); 2148 } 2149 2150 if (!kvm_gsi_routing_enabled()) { 2151 return -ENOSYS; 2152 } 2153 2154 virq = kvm_irqchip_get_virq(s); 2155 if (virq < 0) { 2156 return virq; 2157 } 2158 2159 kroute.gsi = virq; 2160 kroute.type = KVM_IRQ_ROUTING_MSI; 2161 kroute.flags = 0; 2162 kroute.u.msi.address_lo = (uint32_t)msg.address; 2163 kroute.u.msi.address_hi = msg.address >> 32; 2164 kroute.u.msi.data = le32_to_cpu(msg.data); 2165 if (pci_available && kvm_msi_devid_required()) { 2166 kroute.flags = KVM_MSI_VALID_DEVID; 2167 kroute.u.msi.devid = pci_requester_id(dev); 2168 } 2169 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2170 kvm_irqchip_release_virq(s, virq); 2171 return -EINVAL; 2172 } 2173 2174 if (s->irq_routes->nr < s->gsi_count) { 2175 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2176 vector, virq); 2177 2178 kvm_add_routing_entry(s, &kroute); 2179 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2180 c->changes++; 2181 } else { 2182 kvm_irqchip_release_virq(s, virq); 2183 return -ENOSPC; 2184 } 2185 2186 return virq; 2187 } 2188 2189 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2190 PCIDevice *dev) 2191 { 2192 struct kvm_irq_routing_entry kroute = {}; 2193 2194 if (kvm_gsi_direct_mapping()) { 2195 return 0; 2196 } 2197 2198 if (!kvm_irqchip_in_kernel()) { 2199 return -ENOSYS; 2200 } 2201 2202 kroute.gsi = virq; 2203 kroute.type = KVM_IRQ_ROUTING_MSI; 2204 kroute.flags = 0; 2205 kroute.u.msi.address_lo = (uint32_t)msg.address; 2206 kroute.u.msi.address_hi = msg.address >> 32; 2207 kroute.u.msi.data = le32_to_cpu(msg.data); 2208 if (pci_available && kvm_msi_devid_required()) { 2209 kroute.flags = KVM_MSI_VALID_DEVID; 2210 kroute.u.msi.devid = pci_requester_id(dev); 2211 } 2212 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2213 return -EINVAL; 2214 } 2215 2216 trace_kvm_irqchip_update_msi_route(virq); 2217 2218 return kvm_update_routing_entry(s, &kroute); 2219 } 2220 2221 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2222 EventNotifier *resample, int virq, 2223 bool assign) 2224 { 2225 int fd = event_notifier_get_fd(event); 2226 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2227 2228 struct kvm_irqfd irqfd = { 2229 .fd = fd, 2230 .gsi = virq, 2231 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2232 }; 2233 2234 if (rfd != -1) { 2235 assert(assign); 2236 if (kvm_irqchip_is_split()) { 2237 /* 2238 * When the slow irqchip (e.g. IOAPIC) is in the 2239 * userspace, KVM kernel resamplefd will not work because 2240 * the EOI of the interrupt will be delivered to userspace 2241 * instead, so the KVM kernel resamplefd kick will be 2242 * skipped. The userspace here mimics what the kernel 2243 * provides with resamplefd, remember the resamplefd and 2244 * kick it when we receive EOI of this IRQ. 2245 * 2246 * This is hackery because IOAPIC is mostly bypassed 2247 * (except EOI broadcasts) when irqfd is used. However 2248 * this can bring much performance back for split irqchip 2249 * with INTx IRQs (for VFIO, this gives 93% perf of the 2250 * full fast path, which is 46% perf boost comparing to 2251 * the INTx slow path). 2252 */ 2253 kvm_resample_fd_insert(virq, resample); 2254 } else { 2255 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2256 irqfd.resamplefd = rfd; 2257 } 2258 } else if (!assign) { 2259 if (kvm_irqchip_is_split()) { 2260 kvm_resample_fd_remove(virq); 2261 } 2262 } 2263 2264 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2265 } 2266 2267 #else /* !KVM_CAP_IRQ_ROUTING */ 2268 2269 void kvm_init_irq_routing(KVMState *s) 2270 { 2271 } 2272 2273 void kvm_irqchip_release_virq(KVMState *s, int virq) 2274 { 2275 } 2276 2277 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2278 { 2279 abort(); 2280 } 2281 2282 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2283 { 2284 return -ENOSYS; 2285 } 2286 2287 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2288 { 2289 return -ENOSYS; 2290 } 2291 2292 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2293 { 2294 return -ENOSYS; 2295 } 2296 2297 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2298 EventNotifier *resample, int virq, 2299 bool assign) 2300 { 2301 abort(); 2302 } 2303 2304 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2305 { 2306 return -ENOSYS; 2307 } 2308 #endif /* !KVM_CAP_IRQ_ROUTING */ 2309 2310 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2311 EventNotifier *rn, int virq) 2312 { 2313 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2314 } 2315 2316 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2317 int virq) 2318 { 2319 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2320 } 2321 2322 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2323 EventNotifier *rn, qemu_irq irq) 2324 { 2325 gpointer key, gsi; 2326 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2327 2328 if (!found) { 2329 return -ENXIO; 2330 } 2331 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2332 } 2333 2334 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2335 qemu_irq irq) 2336 { 2337 gpointer key, gsi; 2338 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2339 2340 if (!found) { 2341 return -ENXIO; 2342 } 2343 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2344 } 2345 2346 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2347 { 2348 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2349 } 2350 2351 static void kvm_irqchip_create(KVMState *s) 2352 { 2353 int ret; 2354 2355 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2356 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2357 ; 2358 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2359 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2360 if (ret < 0) { 2361 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2362 exit(1); 2363 } 2364 } else { 2365 return; 2366 } 2367 2368 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2369 fprintf(stderr, "kvm: irqfd not implemented\n"); 2370 exit(1); 2371 } 2372 2373 /* First probe and see if there's a arch-specific hook to create the 2374 * in-kernel irqchip for us */ 2375 ret = kvm_arch_irqchip_create(s); 2376 if (ret == 0) { 2377 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2378 error_report("Split IRQ chip mode not supported."); 2379 exit(1); 2380 } else { 2381 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2382 } 2383 } 2384 if (ret < 0) { 2385 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2386 exit(1); 2387 } 2388 2389 kvm_kernel_irqchip = true; 2390 /* If we have an in-kernel IRQ chip then we must have asynchronous 2391 * interrupt delivery (though the reverse is not necessarily true) 2392 */ 2393 kvm_async_interrupts_allowed = true; 2394 kvm_halt_in_kernel_allowed = true; 2395 2396 kvm_init_irq_routing(s); 2397 2398 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2399 } 2400 2401 /* Find number of supported CPUs using the recommended 2402 * procedure from the kernel API documentation to cope with 2403 * older kernels that may be missing capabilities. 2404 */ 2405 static int kvm_recommended_vcpus(KVMState *s) 2406 { 2407 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2408 return (ret) ? ret : 4; 2409 } 2410 2411 static int kvm_max_vcpus(KVMState *s) 2412 { 2413 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2414 return (ret) ? ret : kvm_recommended_vcpus(s); 2415 } 2416 2417 static int kvm_max_vcpu_id(KVMState *s) 2418 { 2419 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2420 return (ret) ? ret : kvm_max_vcpus(s); 2421 } 2422 2423 bool kvm_vcpu_id_is_valid(int vcpu_id) 2424 { 2425 KVMState *s = KVM_STATE(current_accel()); 2426 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2427 } 2428 2429 bool kvm_dirty_ring_enabled(void) 2430 { 2431 return kvm_state && kvm_state->kvm_dirty_ring_size; 2432 } 2433 2434 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2435 strList *names, strList *targets, Error **errp); 2436 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2437 2438 uint32_t kvm_dirty_ring_size(void) 2439 { 2440 return kvm_state->kvm_dirty_ring_size; 2441 } 2442 2443 static int do_kvm_create_vm(MachineState *ms, int type) 2444 { 2445 KVMState *s; 2446 int ret; 2447 2448 s = KVM_STATE(ms->accelerator); 2449 2450 do { 2451 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2452 } while (ret == -EINTR); 2453 2454 if (ret < 0) { 2455 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2456 2457 #ifdef TARGET_S390X 2458 if (ret == -EINVAL) { 2459 error_printf("Host kernel setup problem detected." 2460 " Please verify:\n"); 2461 error_printf("- for kernels supporting the" 2462 " switch_amode or user_mode parameters, whether"); 2463 error_printf(" user space is running in primary address space\n"); 2464 error_printf("- for kernels supporting the vm.allocate_pgste" 2465 " sysctl, whether it is enabled\n"); 2466 } 2467 #elif defined(TARGET_PPC) 2468 if (ret == -EINVAL) { 2469 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2470 (type == 2) ? "pr" : "hv"); 2471 } 2472 #endif 2473 } 2474 2475 return ret; 2476 } 2477 2478 static int find_kvm_machine_type(MachineState *ms) 2479 { 2480 MachineClass *mc = MACHINE_GET_CLASS(ms); 2481 int type; 2482 2483 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2484 g_autofree char *kvm_type; 2485 kvm_type = object_property_get_str(OBJECT(current_machine), 2486 "kvm-type", 2487 &error_abort); 2488 type = mc->kvm_type(ms, kvm_type); 2489 } else if (mc->kvm_type) { 2490 type = mc->kvm_type(ms, NULL); 2491 } else { 2492 type = kvm_arch_get_default_type(ms); 2493 } 2494 return type; 2495 } 2496 2497 static int kvm_setup_dirty_ring(KVMState *s) 2498 { 2499 uint64_t dirty_log_manual_caps; 2500 int ret; 2501 2502 /* 2503 * Enable KVM dirty ring if supported, otherwise fall back to 2504 * dirty logging mode 2505 */ 2506 ret = kvm_dirty_ring_init(s); 2507 if (ret < 0) { 2508 return ret; 2509 } 2510 2511 /* 2512 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2513 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2514 * page is wr-protected initially, which is against how kvm dirty ring is 2515 * usage - kvm dirty ring requires all pages are wr-protected at the very 2516 * beginning. Enabling this feature for dirty ring causes data corruption. 2517 * 2518 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2519 * we may expect a higher stall time when starting the migration. In the 2520 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2521 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2522 * guest pages. 2523 */ 2524 if (!s->kvm_dirty_ring_size) { 2525 dirty_log_manual_caps = 2526 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2527 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2528 KVM_DIRTY_LOG_INITIALLY_SET); 2529 s->manual_dirty_log_protect = dirty_log_manual_caps; 2530 if (dirty_log_manual_caps) { 2531 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2532 dirty_log_manual_caps); 2533 if (ret) { 2534 warn_report("Trying to enable capability %"PRIu64" of " 2535 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2536 "Falling back to the legacy mode. ", 2537 dirty_log_manual_caps); 2538 s->manual_dirty_log_protect = 0; 2539 } 2540 } 2541 } 2542 2543 return 0; 2544 } 2545 2546 static int kvm_init(MachineState *ms) 2547 { 2548 MachineClass *mc = MACHINE_GET_CLASS(ms); 2549 static const char upgrade_note[] = 2550 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2551 "(see http://sourceforge.net/projects/kvm).\n"; 2552 const struct { 2553 const char *name; 2554 int num; 2555 } num_cpus[] = { 2556 { "SMP", ms->smp.cpus }, 2557 { "hotpluggable", ms->smp.max_cpus }, 2558 { /* end of list */ } 2559 }, *nc = num_cpus; 2560 int soft_vcpus_limit, hard_vcpus_limit; 2561 KVMState *s; 2562 const KVMCapabilityInfo *missing_cap; 2563 int ret; 2564 int type; 2565 2566 qemu_mutex_init(&kml_slots_lock); 2567 2568 s = KVM_STATE(ms->accelerator); 2569 2570 /* 2571 * On systems where the kernel can support different base page 2572 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2573 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2574 * page size for the system though. 2575 */ 2576 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2577 2578 s->sigmask_len = 8; 2579 accel_blocker_init(); 2580 2581 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2582 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2583 #endif 2584 QLIST_INIT(&s->kvm_parked_vcpus); 2585 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2586 if (s->fd == -1) { 2587 error_report("Could not access KVM kernel module: %m"); 2588 ret = -errno; 2589 goto err; 2590 } 2591 2592 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2593 if (ret < KVM_API_VERSION) { 2594 if (ret >= 0) { 2595 ret = -EINVAL; 2596 } 2597 error_report("kvm version too old"); 2598 goto err; 2599 } 2600 2601 if (ret > KVM_API_VERSION) { 2602 ret = -EINVAL; 2603 error_report("kvm version not supported"); 2604 goto err; 2605 } 2606 2607 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2608 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2609 2610 /* If unspecified, use the default value */ 2611 if (!s->nr_slots_max) { 2612 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2613 } 2614 2615 type = find_kvm_machine_type(ms); 2616 if (type < 0) { 2617 ret = -EINVAL; 2618 goto err; 2619 } 2620 2621 ret = do_kvm_create_vm(ms, type); 2622 if (ret < 0) { 2623 goto err; 2624 } 2625 2626 s->vmfd = ret; 2627 2628 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2629 if (s->nr_as <= 1) { 2630 s->nr_as = 1; 2631 } 2632 s->as = g_new0(struct KVMAs, s->nr_as); 2633 2634 /* check the vcpu limits */ 2635 soft_vcpus_limit = kvm_recommended_vcpus(s); 2636 hard_vcpus_limit = kvm_max_vcpus(s); 2637 2638 while (nc->name) { 2639 if (nc->num > soft_vcpus_limit) { 2640 warn_report("Number of %s cpus requested (%d) exceeds " 2641 "the recommended cpus supported by KVM (%d)", 2642 nc->name, nc->num, soft_vcpus_limit); 2643 2644 if (nc->num > hard_vcpus_limit) { 2645 error_report("Number of %s cpus requested (%d) exceeds " 2646 "the maximum cpus supported by KVM (%d)", 2647 nc->name, nc->num, hard_vcpus_limit); 2648 exit(1); 2649 } 2650 } 2651 nc++; 2652 } 2653 2654 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2655 if (!missing_cap) { 2656 missing_cap = 2657 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2658 } 2659 if (missing_cap) { 2660 ret = -EINVAL; 2661 error_report("kvm does not support %s", missing_cap->name); 2662 error_printf("%s", upgrade_note); 2663 goto err; 2664 } 2665 2666 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2667 s->coalesced_pio = s->coalesced_mmio && 2668 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2669 2670 ret = kvm_setup_dirty_ring(s); 2671 if (ret < 0) { 2672 goto err; 2673 } 2674 2675 #ifdef KVM_CAP_VCPU_EVENTS 2676 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2677 #endif 2678 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2679 2680 s->irq_set_ioctl = KVM_IRQ_LINE; 2681 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2682 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2683 } 2684 2685 kvm_readonly_mem_allowed = 2686 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2687 2688 kvm_resamplefds_allowed = 2689 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2690 2691 kvm_vm_attributes_allowed = 2692 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2693 2694 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2695 kvm_has_guest_debug = 2696 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2697 #endif 2698 2699 kvm_sstep_flags = 0; 2700 if (kvm_has_guest_debug) { 2701 kvm_sstep_flags = SSTEP_ENABLE; 2702 2703 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2704 int guest_debug_flags = 2705 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2706 2707 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2708 kvm_sstep_flags |= SSTEP_NOIRQ; 2709 } 2710 #endif 2711 } 2712 2713 kvm_state = s; 2714 2715 ret = kvm_arch_init(ms, s); 2716 if (ret < 0) { 2717 goto err; 2718 } 2719 2720 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2721 kvm_guest_memfd_supported = 2722 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2723 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2724 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2725 2726 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2727 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2728 } 2729 2730 qemu_register_reset(kvm_unpoison_all, NULL); 2731 2732 if (s->kernel_irqchip_allowed) { 2733 kvm_irqchip_create(s); 2734 } 2735 2736 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2737 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2738 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2739 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2740 2741 kvm_memory_listener_register(s, &s->memory_listener, 2742 &address_space_memory, 0, "kvm-memory"); 2743 memory_listener_register(&kvm_io_listener, 2744 &address_space_io); 2745 2746 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2747 if (!s->sync_mmu) { 2748 ret = ram_block_discard_disable(true); 2749 assert(!ret); 2750 } 2751 2752 if (s->kvm_dirty_ring_size) { 2753 kvm_dirty_ring_reaper_init(s); 2754 } 2755 2756 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2757 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2758 query_stats_schemas_cb); 2759 } 2760 2761 return 0; 2762 2763 err: 2764 assert(ret < 0); 2765 if (s->vmfd >= 0) { 2766 close(s->vmfd); 2767 } 2768 if (s->fd != -1) { 2769 close(s->fd); 2770 } 2771 g_free(s->as); 2772 g_free(s->memory_listener.slots); 2773 2774 return ret; 2775 } 2776 2777 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2778 { 2779 s->sigmask_len = sigmask_len; 2780 } 2781 2782 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2783 int size, uint32_t count) 2784 { 2785 int i; 2786 uint8_t *ptr = data; 2787 2788 for (i = 0; i < count; i++) { 2789 address_space_rw(&address_space_io, port, attrs, 2790 ptr, size, 2791 direction == KVM_EXIT_IO_OUT); 2792 ptr += size; 2793 } 2794 } 2795 2796 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2797 { 2798 int i; 2799 2800 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2801 run->internal.suberror); 2802 2803 for (i = 0; i < run->internal.ndata; ++i) { 2804 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2805 i, (uint64_t)run->internal.data[i]); 2806 } 2807 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2808 fprintf(stderr, "emulation failure\n"); 2809 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2810 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2811 return EXCP_INTERRUPT; 2812 } 2813 } 2814 /* FIXME: Should trigger a qmp message to let management know 2815 * something went wrong. 2816 */ 2817 return -1; 2818 } 2819 2820 void kvm_flush_coalesced_mmio_buffer(void) 2821 { 2822 KVMState *s = kvm_state; 2823 2824 if (!s || s->coalesced_flush_in_progress) { 2825 return; 2826 } 2827 2828 s->coalesced_flush_in_progress = true; 2829 2830 if (s->coalesced_mmio_ring) { 2831 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2832 while (ring->first != ring->last) { 2833 struct kvm_coalesced_mmio *ent; 2834 2835 ent = &ring->coalesced_mmio[ring->first]; 2836 2837 if (ent->pio == 1) { 2838 address_space_write(&address_space_io, ent->phys_addr, 2839 MEMTXATTRS_UNSPECIFIED, ent->data, 2840 ent->len); 2841 } else { 2842 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2843 } 2844 smp_wmb(); 2845 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2846 } 2847 } 2848 2849 s->coalesced_flush_in_progress = false; 2850 } 2851 2852 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2853 { 2854 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2855 Error *err = NULL; 2856 int ret = kvm_arch_get_registers(cpu, &err); 2857 if (ret) { 2858 if (err) { 2859 error_reportf_err(err, "Failed to synchronize CPU state: "); 2860 } else { 2861 error_report("Failed to get registers: %s", strerror(-ret)); 2862 } 2863 2864 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2865 vm_stop(RUN_STATE_INTERNAL_ERROR); 2866 } 2867 2868 cpu->vcpu_dirty = true; 2869 } 2870 } 2871 2872 void kvm_cpu_synchronize_state(CPUState *cpu) 2873 { 2874 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2875 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2876 } 2877 } 2878 2879 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2880 { 2881 Error *err = NULL; 2882 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2883 if (ret) { 2884 if (err) { 2885 error_reportf_err(err, "Restoring resisters after reset: "); 2886 } else { 2887 error_report("Failed to put registers after reset: %s", 2888 strerror(-ret)); 2889 } 2890 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2891 vm_stop(RUN_STATE_INTERNAL_ERROR); 2892 } 2893 2894 cpu->vcpu_dirty = false; 2895 } 2896 2897 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2898 { 2899 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2900 } 2901 2902 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2903 { 2904 Error *err = NULL; 2905 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2906 if (ret) { 2907 if (err) { 2908 error_reportf_err(err, "Putting registers after init: "); 2909 } else { 2910 error_report("Failed to put registers after init: %s", 2911 strerror(-ret)); 2912 } 2913 exit(1); 2914 } 2915 2916 cpu->vcpu_dirty = false; 2917 } 2918 2919 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2920 { 2921 if (!kvm_state->guest_state_protected) { 2922 /* 2923 * This runs before the machine_init_done notifiers, and is the last 2924 * opportunity to synchronize the state of confidential guests. 2925 */ 2926 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2927 } 2928 } 2929 2930 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2931 { 2932 cpu->vcpu_dirty = true; 2933 } 2934 2935 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2936 { 2937 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2938 } 2939 2940 #ifdef KVM_HAVE_MCE_INJECTION 2941 static __thread void *pending_sigbus_addr; 2942 static __thread int pending_sigbus_code; 2943 static __thread bool have_sigbus_pending; 2944 #endif 2945 2946 static void kvm_cpu_kick(CPUState *cpu) 2947 { 2948 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2949 } 2950 2951 static void kvm_cpu_kick_self(void) 2952 { 2953 if (kvm_immediate_exit) { 2954 kvm_cpu_kick(current_cpu); 2955 } else { 2956 qemu_cpu_kick_self(); 2957 } 2958 } 2959 2960 static void kvm_eat_signals(CPUState *cpu) 2961 { 2962 struct timespec ts = { 0, 0 }; 2963 siginfo_t siginfo; 2964 sigset_t waitset; 2965 sigset_t chkset; 2966 int r; 2967 2968 if (kvm_immediate_exit) { 2969 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2970 /* Write kvm_run->immediate_exit before the cpu->exit_request 2971 * write in kvm_cpu_exec. 2972 */ 2973 smp_wmb(); 2974 return; 2975 } 2976 2977 sigemptyset(&waitset); 2978 sigaddset(&waitset, SIG_IPI); 2979 2980 do { 2981 r = sigtimedwait(&waitset, &siginfo, &ts); 2982 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2983 perror("sigtimedwait"); 2984 exit(1); 2985 } 2986 2987 r = sigpending(&chkset); 2988 if (r == -1) { 2989 perror("sigpending"); 2990 exit(1); 2991 } 2992 } while (sigismember(&chkset, SIG_IPI)); 2993 } 2994 2995 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 2996 { 2997 MemoryRegionSection section; 2998 ram_addr_t offset; 2999 MemoryRegion *mr; 3000 RAMBlock *rb; 3001 void *addr; 3002 int ret = -1; 3003 3004 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3005 3006 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3007 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3008 return -1; 3009 } 3010 3011 if (!size) { 3012 return -1; 3013 } 3014 3015 section = memory_region_find(get_system_memory(), start, size); 3016 mr = section.mr; 3017 if (!mr) { 3018 /* 3019 * Ignore converting non-assigned region to shared. 3020 * 3021 * TDX requires vMMIO region to be shared to inject #VE to guest. 3022 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3023 * and vIO-APIC 0xFEC00000 4K page. 3024 * OVMF assigns 32bit PCI MMIO region to 3025 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3026 */ 3027 if (!to_private) { 3028 return 0; 3029 } 3030 return -1; 3031 } 3032 3033 if (!memory_region_has_guest_memfd(mr)) { 3034 /* 3035 * Because vMMIO region must be shared, guest TD may convert vMMIO 3036 * region to shared explicitly. Don't complain such case. See 3037 * memory_region_type() for checking if the region is MMIO region. 3038 */ 3039 if (!to_private && 3040 !memory_region_is_ram(mr) && 3041 !memory_region_is_ram_device(mr) && 3042 !memory_region_is_rom(mr) && 3043 !memory_region_is_romd(mr)) { 3044 ret = 0; 3045 } else { 3046 error_report("Convert non guest_memfd backed memory region " 3047 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3048 start, size, to_private ? "private" : "shared"); 3049 } 3050 goto out_unref; 3051 } 3052 3053 if (to_private) { 3054 ret = kvm_set_memory_attributes_private(start, size); 3055 } else { 3056 ret = kvm_set_memory_attributes_shared(start, size); 3057 } 3058 if (ret) { 3059 goto out_unref; 3060 } 3061 3062 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3063 rb = qemu_ram_block_from_host(addr, false, &offset); 3064 3065 if (to_private) { 3066 if (rb->page_size != qemu_real_host_page_size()) { 3067 /* 3068 * shared memory is backed by hugetlb, which is supposed to be 3069 * pre-allocated and doesn't need to be discarded 3070 */ 3071 goto out_unref; 3072 } 3073 ret = ram_block_discard_range(rb, offset, size); 3074 } else { 3075 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3076 } 3077 3078 out_unref: 3079 memory_region_unref(mr); 3080 return ret; 3081 } 3082 3083 int kvm_cpu_exec(CPUState *cpu) 3084 { 3085 struct kvm_run *run = cpu->kvm_run; 3086 int ret, run_ret; 3087 3088 trace_kvm_cpu_exec(); 3089 3090 if (kvm_arch_process_async_events(cpu)) { 3091 qatomic_set(&cpu->exit_request, 0); 3092 return EXCP_HLT; 3093 } 3094 3095 bql_unlock(); 3096 cpu_exec_start(cpu); 3097 3098 do { 3099 MemTxAttrs attrs; 3100 3101 if (cpu->vcpu_dirty) { 3102 Error *err = NULL; 3103 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3104 if (ret) { 3105 if (err) { 3106 error_reportf_err(err, "Putting registers after init: "); 3107 } else { 3108 error_report("Failed to put registers after init: %s", 3109 strerror(-ret)); 3110 } 3111 ret = -1; 3112 break; 3113 } 3114 3115 cpu->vcpu_dirty = false; 3116 } 3117 3118 kvm_arch_pre_run(cpu, run); 3119 if (qatomic_read(&cpu->exit_request)) { 3120 trace_kvm_interrupt_exit_request(); 3121 /* 3122 * KVM requires us to reenter the kernel after IO exits to complete 3123 * instruction emulation. This self-signal will ensure that we 3124 * leave ASAP again. 3125 */ 3126 kvm_cpu_kick_self(); 3127 } 3128 3129 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3130 * Matching barrier in kvm_eat_signals. 3131 */ 3132 smp_rmb(); 3133 3134 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3135 3136 attrs = kvm_arch_post_run(cpu, run); 3137 3138 #ifdef KVM_HAVE_MCE_INJECTION 3139 if (unlikely(have_sigbus_pending)) { 3140 bql_lock(); 3141 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3142 pending_sigbus_addr); 3143 have_sigbus_pending = false; 3144 bql_unlock(); 3145 } 3146 #endif 3147 3148 if (run_ret < 0) { 3149 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3150 trace_kvm_io_window_exit(); 3151 kvm_eat_signals(cpu); 3152 ret = EXCP_INTERRUPT; 3153 break; 3154 } 3155 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3156 fprintf(stderr, "error: kvm run failed %s\n", 3157 strerror(-run_ret)); 3158 #ifdef TARGET_PPC 3159 if (run_ret == -EBUSY) { 3160 fprintf(stderr, 3161 "This is probably because your SMT is enabled.\n" 3162 "VCPU can only run on primary threads with all " 3163 "secondary threads offline.\n"); 3164 } 3165 #endif 3166 ret = -1; 3167 break; 3168 } 3169 } 3170 3171 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3172 switch (run->exit_reason) { 3173 case KVM_EXIT_IO: 3174 /* Called outside BQL */ 3175 kvm_handle_io(run->io.port, attrs, 3176 (uint8_t *)run + run->io.data_offset, 3177 run->io.direction, 3178 run->io.size, 3179 run->io.count); 3180 ret = 0; 3181 break; 3182 case KVM_EXIT_MMIO: 3183 /* Called outside BQL */ 3184 address_space_rw(&address_space_memory, 3185 run->mmio.phys_addr, attrs, 3186 run->mmio.data, 3187 run->mmio.len, 3188 run->mmio.is_write); 3189 ret = 0; 3190 break; 3191 case KVM_EXIT_IRQ_WINDOW_OPEN: 3192 ret = EXCP_INTERRUPT; 3193 break; 3194 case KVM_EXIT_SHUTDOWN: 3195 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3196 ret = EXCP_INTERRUPT; 3197 break; 3198 case KVM_EXIT_UNKNOWN: 3199 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3200 (uint64_t)run->hw.hardware_exit_reason); 3201 ret = -1; 3202 break; 3203 case KVM_EXIT_INTERNAL_ERROR: 3204 ret = kvm_handle_internal_error(cpu, run); 3205 break; 3206 case KVM_EXIT_DIRTY_RING_FULL: 3207 /* 3208 * We shouldn't continue if the dirty ring of this vcpu is 3209 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3210 */ 3211 trace_kvm_dirty_ring_full(cpu->cpu_index); 3212 bql_lock(); 3213 /* 3214 * We throttle vCPU by making it sleep once it exit from kernel 3215 * due to dirty ring full. In the dirtylimit scenario, reaping 3216 * all vCPUs after a single vCPU dirty ring get full result in 3217 * the miss of sleep, so just reap the ring-fulled vCPU. 3218 */ 3219 if (dirtylimit_in_service()) { 3220 kvm_dirty_ring_reap(kvm_state, cpu); 3221 } else { 3222 kvm_dirty_ring_reap(kvm_state, NULL); 3223 } 3224 bql_unlock(); 3225 dirtylimit_vcpu_execute(cpu); 3226 ret = 0; 3227 break; 3228 case KVM_EXIT_SYSTEM_EVENT: 3229 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3230 switch (run->system_event.type) { 3231 case KVM_SYSTEM_EVENT_SHUTDOWN: 3232 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3233 ret = EXCP_INTERRUPT; 3234 break; 3235 case KVM_SYSTEM_EVENT_RESET: 3236 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3237 ret = EXCP_INTERRUPT; 3238 break; 3239 case KVM_SYSTEM_EVENT_CRASH: 3240 kvm_cpu_synchronize_state(cpu); 3241 bql_lock(); 3242 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3243 bql_unlock(); 3244 ret = 0; 3245 break; 3246 default: 3247 ret = kvm_arch_handle_exit(cpu, run); 3248 break; 3249 } 3250 break; 3251 case KVM_EXIT_MEMORY_FAULT: 3252 trace_kvm_memory_fault(run->memory_fault.gpa, 3253 run->memory_fault.size, 3254 run->memory_fault.flags); 3255 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3256 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3257 (uint64_t)run->memory_fault.flags); 3258 ret = -1; 3259 break; 3260 } 3261 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3262 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3263 break; 3264 default: 3265 ret = kvm_arch_handle_exit(cpu, run); 3266 break; 3267 } 3268 } while (ret == 0); 3269 3270 cpu_exec_end(cpu); 3271 bql_lock(); 3272 3273 if (ret < 0) { 3274 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3275 vm_stop(RUN_STATE_INTERNAL_ERROR); 3276 } 3277 3278 qatomic_set(&cpu->exit_request, 0); 3279 return ret; 3280 } 3281 3282 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3283 { 3284 int ret; 3285 void *arg; 3286 va_list ap; 3287 3288 va_start(ap, type); 3289 arg = va_arg(ap, void *); 3290 va_end(ap); 3291 3292 trace_kvm_ioctl(type, arg); 3293 ret = ioctl(s->fd, type, arg); 3294 if (ret == -1) { 3295 ret = -errno; 3296 } 3297 return ret; 3298 } 3299 3300 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3301 { 3302 int ret; 3303 void *arg; 3304 va_list ap; 3305 3306 va_start(ap, type); 3307 arg = va_arg(ap, void *); 3308 va_end(ap); 3309 3310 trace_kvm_vm_ioctl(type, arg); 3311 accel_ioctl_begin(); 3312 ret = ioctl(s->vmfd, type, arg); 3313 accel_ioctl_end(); 3314 if (ret == -1) { 3315 ret = -errno; 3316 } 3317 return ret; 3318 } 3319 3320 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3321 { 3322 int ret; 3323 void *arg; 3324 va_list ap; 3325 3326 va_start(ap, type); 3327 arg = va_arg(ap, void *); 3328 va_end(ap); 3329 3330 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3331 accel_cpu_ioctl_begin(cpu); 3332 ret = ioctl(cpu->kvm_fd, type, arg); 3333 accel_cpu_ioctl_end(cpu); 3334 if (ret == -1) { 3335 ret = -errno; 3336 } 3337 return ret; 3338 } 3339 3340 int kvm_device_ioctl(int fd, unsigned long type, ...) 3341 { 3342 int ret; 3343 void *arg; 3344 va_list ap; 3345 3346 va_start(ap, type); 3347 arg = va_arg(ap, void *); 3348 va_end(ap); 3349 3350 trace_kvm_device_ioctl(fd, type, arg); 3351 accel_ioctl_begin(); 3352 ret = ioctl(fd, type, arg); 3353 accel_ioctl_end(); 3354 if (ret == -1) { 3355 ret = -errno; 3356 } 3357 return ret; 3358 } 3359 3360 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3361 { 3362 int ret; 3363 struct kvm_device_attr attribute = { 3364 .group = group, 3365 .attr = attr, 3366 }; 3367 3368 if (!kvm_vm_attributes_allowed) { 3369 return 0; 3370 } 3371 3372 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3373 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3374 return ret ? 0 : 1; 3375 } 3376 3377 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3378 { 3379 struct kvm_device_attr attribute = { 3380 .group = group, 3381 .attr = attr, 3382 .flags = 0, 3383 }; 3384 3385 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3386 } 3387 3388 int kvm_device_access(int fd, int group, uint64_t attr, 3389 void *val, bool write, Error **errp) 3390 { 3391 struct kvm_device_attr kvmattr; 3392 int err; 3393 3394 kvmattr.flags = 0; 3395 kvmattr.group = group; 3396 kvmattr.attr = attr; 3397 kvmattr.addr = (uintptr_t)val; 3398 3399 err = kvm_device_ioctl(fd, 3400 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3401 &kvmattr); 3402 if (err < 0) { 3403 error_setg_errno(errp, -err, 3404 "KVM_%s_DEVICE_ATTR failed: Group %d " 3405 "attr 0x%016" PRIx64, 3406 write ? "SET" : "GET", group, attr); 3407 } 3408 return err; 3409 } 3410 3411 bool kvm_has_sync_mmu(void) 3412 { 3413 return kvm_state->sync_mmu; 3414 } 3415 3416 int kvm_has_vcpu_events(void) 3417 { 3418 return kvm_state->vcpu_events; 3419 } 3420 3421 int kvm_max_nested_state_length(void) 3422 { 3423 return kvm_state->max_nested_state_len; 3424 } 3425 3426 int kvm_has_gsi_routing(void) 3427 { 3428 #ifdef KVM_CAP_IRQ_ROUTING 3429 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3430 #else 3431 return false; 3432 #endif 3433 } 3434 3435 bool kvm_arm_supports_user_irq(void) 3436 { 3437 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3438 } 3439 3440 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3441 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3442 { 3443 struct kvm_sw_breakpoint *bp; 3444 3445 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3446 if (bp->pc == pc) { 3447 return bp; 3448 } 3449 } 3450 return NULL; 3451 } 3452 3453 int kvm_sw_breakpoints_active(CPUState *cpu) 3454 { 3455 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3456 } 3457 3458 struct kvm_set_guest_debug_data { 3459 struct kvm_guest_debug dbg; 3460 int err; 3461 }; 3462 3463 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3464 { 3465 struct kvm_set_guest_debug_data *dbg_data = 3466 (struct kvm_set_guest_debug_data *) data.host_ptr; 3467 3468 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3469 &dbg_data->dbg); 3470 } 3471 3472 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3473 { 3474 struct kvm_set_guest_debug_data data; 3475 3476 data.dbg.control = reinject_trap; 3477 3478 if (cpu->singlestep_enabled) { 3479 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3480 3481 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3482 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3483 } 3484 } 3485 kvm_arch_update_guest_debug(cpu, &data.dbg); 3486 3487 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3488 RUN_ON_CPU_HOST_PTR(&data)); 3489 return data.err; 3490 } 3491 3492 bool kvm_supports_guest_debug(void) 3493 { 3494 /* probed during kvm_init() */ 3495 return kvm_has_guest_debug; 3496 } 3497 3498 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3499 { 3500 struct kvm_sw_breakpoint *bp; 3501 int err; 3502 3503 if (type == GDB_BREAKPOINT_SW) { 3504 bp = kvm_find_sw_breakpoint(cpu, addr); 3505 if (bp) { 3506 bp->use_count++; 3507 return 0; 3508 } 3509 3510 bp = g_new(struct kvm_sw_breakpoint, 1); 3511 bp->pc = addr; 3512 bp->use_count = 1; 3513 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3514 if (err) { 3515 g_free(bp); 3516 return err; 3517 } 3518 3519 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3520 } else { 3521 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3522 if (err) { 3523 return err; 3524 } 3525 } 3526 3527 CPU_FOREACH(cpu) { 3528 err = kvm_update_guest_debug(cpu, 0); 3529 if (err) { 3530 return err; 3531 } 3532 } 3533 return 0; 3534 } 3535 3536 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3537 { 3538 struct kvm_sw_breakpoint *bp; 3539 int err; 3540 3541 if (type == GDB_BREAKPOINT_SW) { 3542 bp = kvm_find_sw_breakpoint(cpu, addr); 3543 if (!bp) { 3544 return -ENOENT; 3545 } 3546 3547 if (bp->use_count > 1) { 3548 bp->use_count--; 3549 return 0; 3550 } 3551 3552 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3553 if (err) { 3554 return err; 3555 } 3556 3557 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3558 g_free(bp); 3559 } else { 3560 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3561 if (err) { 3562 return err; 3563 } 3564 } 3565 3566 CPU_FOREACH(cpu) { 3567 err = kvm_update_guest_debug(cpu, 0); 3568 if (err) { 3569 return err; 3570 } 3571 } 3572 return 0; 3573 } 3574 3575 void kvm_remove_all_breakpoints(CPUState *cpu) 3576 { 3577 struct kvm_sw_breakpoint *bp, *next; 3578 KVMState *s = cpu->kvm_state; 3579 CPUState *tmpcpu; 3580 3581 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3582 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3583 /* Try harder to find a CPU that currently sees the breakpoint. */ 3584 CPU_FOREACH(tmpcpu) { 3585 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3586 break; 3587 } 3588 } 3589 } 3590 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3591 g_free(bp); 3592 } 3593 kvm_arch_remove_all_hw_breakpoints(); 3594 3595 CPU_FOREACH(cpu) { 3596 kvm_update_guest_debug(cpu, 0); 3597 } 3598 } 3599 3600 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3601 3602 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3603 { 3604 KVMState *s = kvm_state; 3605 struct kvm_signal_mask *sigmask; 3606 int r; 3607 3608 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3609 3610 sigmask->len = s->sigmask_len; 3611 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3612 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3613 g_free(sigmask); 3614 3615 return r; 3616 } 3617 3618 static void kvm_ipi_signal(int sig) 3619 { 3620 if (current_cpu) { 3621 assert(kvm_immediate_exit); 3622 kvm_cpu_kick(current_cpu); 3623 } 3624 } 3625 3626 void kvm_init_cpu_signals(CPUState *cpu) 3627 { 3628 int r; 3629 sigset_t set; 3630 struct sigaction sigact; 3631 3632 memset(&sigact, 0, sizeof(sigact)); 3633 sigact.sa_handler = kvm_ipi_signal; 3634 sigaction(SIG_IPI, &sigact, NULL); 3635 3636 pthread_sigmask(SIG_BLOCK, NULL, &set); 3637 #if defined KVM_HAVE_MCE_INJECTION 3638 sigdelset(&set, SIGBUS); 3639 pthread_sigmask(SIG_SETMASK, &set, NULL); 3640 #endif 3641 sigdelset(&set, SIG_IPI); 3642 if (kvm_immediate_exit) { 3643 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3644 } else { 3645 r = kvm_set_signal_mask(cpu, &set); 3646 } 3647 if (r) { 3648 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3649 exit(1); 3650 } 3651 } 3652 3653 /* Called asynchronously in VCPU thread. */ 3654 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3655 { 3656 #ifdef KVM_HAVE_MCE_INJECTION 3657 if (have_sigbus_pending) { 3658 return 1; 3659 } 3660 have_sigbus_pending = true; 3661 pending_sigbus_addr = addr; 3662 pending_sigbus_code = code; 3663 qatomic_set(&cpu->exit_request, 1); 3664 return 0; 3665 #else 3666 return 1; 3667 #endif 3668 } 3669 3670 /* Called synchronously (via signalfd) in main thread. */ 3671 int kvm_on_sigbus(int code, void *addr) 3672 { 3673 #ifdef KVM_HAVE_MCE_INJECTION 3674 /* Action required MCE kills the process if SIGBUS is blocked. Because 3675 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3676 * we can only get action optional here. 3677 */ 3678 assert(code != BUS_MCEERR_AR); 3679 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3680 return 0; 3681 #else 3682 return 1; 3683 #endif 3684 } 3685 3686 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3687 { 3688 int ret; 3689 struct kvm_create_device create_dev; 3690 3691 create_dev.type = type; 3692 create_dev.fd = -1; 3693 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3694 3695 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3696 return -ENOTSUP; 3697 } 3698 3699 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3700 if (ret) { 3701 return ret; 3702 } 3703 3704 return test ? 0 : create_dev.fd; 3705 } 3706 3707 bool kvm_device_supported(int vmfd, uint64_t type) 3708 { 3709 struct kvm_create_device create_dev = { 3710 .type = type, 3711 .fd = -1, 3712 .flags = KVM_CREATE_DEVICE_TEST, 3713 }; 3714 3715 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3716 return false; 3717 } 3718 3719 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3720 } 3721 3722 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3723 { 3724 struct kvm_one_reg reg; 3725 int r; 3726 3727 reg.id = id; 3728 reg.addr = (uintptr_t) source; 3729 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3730 if (r) { 3731 trace_kvm_failed_reg_set(id, strerror(-r)); 3732 } 3733 return r; 3734 } 3735 3736 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3737 { 3738 struct kvm_one_reg reg; 3739 int r; 3740 3741 reg.id = id; 3742 reg.addr = (uintptr_t) target; 3743 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3744 if (r) { 3745 trace_kvm_failed_reg_get(id, strerror(-r)); 3746 } 3747 return r; 3748 } 3749 3750 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3751 hwaddr start_addr, hwaddr size) 3752 { 3753 KVMState *kvm = KVM_STATE(ms->accelerator); 3754 int i; 3755 3756 for (i = 0; i < kvm->nr_as; ++i) { 3757 if (kvm->as[i].as == as && kvm->as[i].ml) { 3758 size = MIN(kvm_max_slot_size, size); 3759 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3760 start_addr, size); 3761 } 3762 } 3763 3764 return false; 3765 } 3766 3767 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3768 const char *name, void *opaque, 3769 Error **errp) 3770 { 3771 KVMState *s = KVM_STATE(obj); 3772 int64_t value = s->kvm_shadow_mem; 3773 3774 visit_type_int(v, name, &value, errp); 3775 } 3776 3777 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3778 const char *name, void *opaque, 3779 Error **errp) 3780 { 3781 KVMState *s = KVM_STATE(obj); 3782 int64_t value; 3783 3784 if (s->fd != -1) { 3785 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3786 return; 3787 } 3788 3789 if (!visit_type_int(v, name, &value, errp)) { 3790 return; 3791 } 3792 3793 s->kvm_shadow_mem = value; 3794 } 3795 3796 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3797 const char *name, void *opaque, 3798 Error **errp) 3799 { 3800 KVMState *s = KVM_STATE(obj); 3801 OnOffSplit mode; 3802 3803 if (s->fd != -1) { 3804 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3805 return; 3806 } 3807 3808 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3809 return; 3810 } 3811 switch (mode) { 3812 case ON_OFF_SPLIT_ON: 3813 s->kernel_irqchip_allowed = true; 3814 s->kernel_irqchip_required = true; 3815 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3816 break; 3817 case ON_OFF_SPLIT_OFF: 3818 s->kernel_irqchip_allowed = false; 3819 s->kernel_irqchip_required = false; 3820 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3821 break; 3822 case ON_OFF_SPLIT_SPLIT: 3823 s->kernel_irqchip_allowed = true; 3824 s->kernel_irqchip_required = true; 3825 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3826 break; 3827 default: 3828 /* The value was checked in visit_type_OnOffSplit() above. If 3829 * we get here, then something is wrong in QEMU. 3830 */ 3831 abort(); 3832 } 3833 } 3834 3835 bool kvm_kernel_irqchip_allowed(void) 3836 { 3837 return kvm_state->kernel_irqchip_allowed; 3838 } 3839 3840 bool kvm_kernel_irqchip_required(void) 3841 { 3842 return kvm_state->kernel_irqchip_required; 3843 } 3844 3845 bool kvm_kernel_irqchip_split(void) 3846 { 3847 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3848 } 3849 3850 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3851 const char *name, void *opaque, 3852 Error **errp) 3853 { 3854 KVMState *s = KVM_STATE(obj); 3855 uint32_t value = s->kvm_dirty_ring_size; 3856 3857 visit_type_uint32(v, name, &value, errp); 3858 } 3859 3860 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3861 const char *name, void *opaque, 3862 Error **errp) 3863 { 3864 KVMState *s = KVM_STATE(obj); 3865 uint32_t value; 3866 3867 if (s->fd != -1) { 3868 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3869 return; 3870 } 3871 3872 if (!visit_type_uint32(v, name, &value, errp)) { 3873 return; 3874 } 3875 if (value & (value - 1)) { 3876 error_setg(errp, "dirty-ring-size must be a power of two."); 3877 return; 3878 } 3879 3880 s->kvm_dirty_ring_size = value; 3881 } 3882 3883 static char *kvm_get_device(Object *obj, 3884 Error **errp G_GNUC_UNUSED) 3885 { 3886 KVMState *s = KVM_STATE(obj); 3887 3888 return g_strdup(s->device); 3889 } 3890 3891 static void kvm_set_device(Object *obj, 3892 const char *value, 3893 Error **errp G_GNUC_UNUSED) 3894 { 3895 KVMState *s = KVM_STATE(obj); 3896 3897 g_free(s->device); 3898 s->device = g_strdup(value); 3899 } 3900 3901 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3902 { 3903 KVMState *s = KVM_STATE(obj); 3904 s->msr_energy.enable = value; 3905 } 3906 3907 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3908 const char *str, 3909 Error **errp) 3910 { 3911 KVMState *s = KVM_STATE(obj); 3912 g_free(s->msr_energy.socket_path); 3913 s->msr_energy.socket_path = g_strdup(str); 3914 } 3915 3916 static void kvm_accel_instance_init(Object *obj) 3917 { 3918 KVMState *s = KVM_STATE(obj); 3919 3920 s->fd = -1; 3921 s->vmfd = -1; 3922 s->kvm_shadow_mem = -1; 3923 s->kernel_irqchip_allowed = true; 3924 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3925 /* KVM dirty ring is by default off */ 3926 s->kvm_dirty_ring_size = 0; 3927 s->kvm_dirty_ring_with_bitmap = false; 3928 s->kvm_eager_split_size = 0; 3929 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3930 s->notify_window = 0; 3931 s->xen_version = 0; 3932 s->xen_gnttab_max_frames = 64; 3933 s->xen_evtchn_max_pirq = 256; 3934 s->device = NULL; 3935 s->msr_energy.enable = false; 3936 } 3937 3938 /** 3939 * kvm_gdbstub_sstep_flags(): 3940 * 3941 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3942 * support is probed during kvm_init() 3943 */ 3944 static int kvm_gdbstub_sstep_flags(void) 3945 { 3946 return kvm_sstep_flags; 3947 } 3948 3949 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3950 { 3951 AccelClass *ac = ACCEL_CLASS(oc); 3952 ac->name = "KVM"; 3953 ac->init_machine = kvm_init; 3954 ac->has_memory = kvm_accel_has_memory; 3955 ac->allowed = &kvm_allowed; 3956 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3957 3958 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3959 NULL, kvm_set_kernel_irqchip, 3960 NULL, NULL); 3961 object_class_property_set_description(oc, "kernel-irqchip", 3962 "Configure KVM in-kernel irqchip"); 3963 3964 object_class_property_add(oc, "kvm-shadow-mem", "int", 3965 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3966 NULL, NULL); 3967 object_class_property_set_description(oc, "kvm-shadow-mem", 3968 "KVM shadow MMU size"); 3969 3970 object_class_property_add(oc, "dirty-ring-size", "uint32", 3971 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3972 NULL, NULL); 3973 object_class_property_set_description(oc, "dirty-ring-size", 3974 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3975 3976 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3977 object_class_property_set_description(oc, "device", 3978 "Path to the device node to use (default: /dev/kvm)"); 3979 3980 object_class_property_add_bool(oc, "rapl", 3981 NULL, 3982 kvm_set_kvm_rapl); 3983 object_class_property_set_description(oc, "rapl", 3984 "Allow energy related MSRs for RAPL interface in Guest"); 3985 3986 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 3987 kvm_set_kvm_rapl_socket_path); 3988 object_class_property_set_description(oc, "rapl-helper-socket", 3989 "Socket Path for comminucating with the Virtual MSR helper daemon"); 3990 3991 kvm_arch_accel_class_init(oc); 3992 } 3993 3994 static const TypeInfo kvm_accel_type = { 3995 .name = TYPE_KVM_ACCEL, 3996 .parent = TYPE_ACCEL, 3997 .instance_init = kvm_accel_instance_init, 3998 .class_init = kvm_accel_class_init, 3999 .instance_size = sizeof(KVMState), 4000 }; 4001 4002 static void kvm_type_init(void) 4003 { 4004 type_register_static(&kvm_accel_type); 4005 } 4006 4007 type_init(kvm_type_init); 4008 4009 typedef struct StatsArgs { 4010 union StatsResultsType { 4011 StatsResultList **stats; 4012 StatsSchemaList **schema; 4013 } result; 4014 strList *names; 4015 Error **errp; 4016 } StatsArgs; 4017 4018 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4019 uint64_t *stats_data, 4020 StatsList *stats_list, 4021 Error **errp) 4022 { 4023 4024 Stats *stats; 4025 uint64List *val_list = NULL; 4026 4027 /* Only add stats that we understand. */ 4028 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4029 case KVM_STATS_TYPE_CUMULATIVE: 4030 case KVM_STATS_TYPE_INSTANT: 4031 case KVM_STATS_TYPE_PEAK: 4032 case KVM_STATS_TYPE_LINEAR_HIST: 4033 case KVM_STATS_TYPE_LOG_HIST: 4034 break; 4035 default: 4036 return stats_list; 4037 } 4038 4039 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4040 case KVM_STATS_UNIT_NONE: 4041 case KVM_STATS_UNIT_BYTES: 4042 case KVM_STATS_UNIT_CYCLES: 4043 case KVM_STATS_UNIT_SECONDS: 4044 case KVM_STATS_UNIT_BOOLEAN: 4045 break; 4046 default: 4047 return stats_list; 4048 } 4049 4050 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4051 case KVM_STATS_BASE_POW10: 4052 case KVM_STATS_BASE_POW2: 4053 break; 4054 default: 4055 return stats_list; 4056 } 4057 4058 /* Alloc and populate data list */ 4059 stats = g_new0(Stats, 1); 4060 stats->name = g_strdup(pdesc->name); 4061 stats->value = g_new0(StatsValue, 1); 4062 4063 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4064 stats->value->u.boolean = *stats_data; 4065 stats->value->type = QTYPE_QBOOL; 4066 } else if (pdesc->size == 1) { 4067 stats->value->u.scalar = *stats_data; 4068 stats->value->type = QTYPE_QNUM; 4069 } else { 4070 int i; 4071 for (i = 0; i < pdesc->size; i++) { 4072 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4073 } 4074 stats->value->u.list = val_list; 4075 stats->value->type = QTYPE_QLIST; 4076 } 4077 4078 QAPI_LIST_PREPEND(stats_list, stats); 4079 return stats_list; 4080 } 4081 4082 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4083 StatsSchemaValueList *list, 4084 Error **errp) 4085 { 4086 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4087 schema_entry->value = g_new0(StatsSchemaValue, 1); 4088 4089 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4090 case KVM_STATS_TYPE_CUMULATIVE: 4091 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4092 break; 4093 case KVM_STATS_TYPE_INSTANT: 4094 schema_entry->value->type = STATS_TYPE_INSTANT; 4095 break; 4096 case KVM_STATS_TYPE_PEAK: 4097 schema_entry->value->type = STATS_TYPE_PEAK; 4098 break; 4099 case KVM_STATS_TYPE_LINEAR_HIST: 4100 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4101 schema_entry->value->bucket_size = pdesc->bucket_size; 4102 schema_entry->value->has_bucket_size = true; 4103 break; 4104 case KVM_STATS_TYPE_LOG_HIST: 4105 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4106 break; 4107 default: 4108 goto exit; 4109 } 4110 4111 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4112 case KVM_STATS_UNIT_NONE: 4113 break; 4114 case KVM_STATS_UNIT_BOOLEAN: 4115 schema_entry->value->has_unit = true; 4116 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4117 break; 4118 case KVM_STATS_UNIT_BYTES: 4119 schema_entry->value->has_unit = true; 4120 schema_entry->value->unit = STATS_UNIT_BYTES; 4121 break; 4122 case KVM_STATS_UNIT_CYCLES: 4123 schema_entry->value->has_unit = true; 4124 schema_entry->value->unit = STATS_UNIT_CYCLES; 4125 break; 4126 case KVM_STATS_UNIT_SECONDS: 4127 schema_entry->value->has_unit = true; 4128 schema_entry->value->unit = STATS_UNIT_SECONDS; 4129 break; 4130 default: 4131 goto exit; 4132 } 4133 4134 schema_entry->value->exponent = pdesc->exponent; 4135 if (pdesc->exponent) { 4136 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4137 case KVM_STATS_BASE_POW10: 4138 schema_entry->value->has_base = true; 4139 schema_entry->value->base = 10; 4140 break; 4141 case KVM_STATS_BASE_POW2: 4142 schema_entry->value->has_base = true; 4143 schema_entry->value->base = 2; 4144 break; 4145 default: 4146 goto exit; 4147 } 4148 } 4149 4150 schema_entry->value->name = g_strdup(pdesc->name); 4151 schema_entry->next = list; 4152 return schema_entry; 4153 exit: 4154 g_free(schema_entry->value); 4155 g_free(schema_entry); 4156 return list; 4157 } 4158 4159 /* Cached stats descriptors */ 4160 typedef struct StatsDescriptors { 4161 const char *ident; /* cache key, currently the StatsTarget */ 4162 struct kvm_stats_desc *kvm_stats_desc; 4163 struct kvm_stats_header kvm_stats_header; 4164 QTAILQ_ENTRY(StatsDescriptors) next; 4165 } StatsDescriptors; 4166 4167 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4168 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4169 4170 /* 4171 * Return the descriptors for 'target', that either have already been read 4172 * or are retrieved from 'stats_fd'. 4173 */ 4174 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4175 Error **errp) 4176 { 4177 StatsDescriptors *descriptors; 4178 const char *ident; 4179 struct kvm_stats_desc *kvm_stats_desc; 4180 struct kvm_stats_header *kvm_stats_header; 4181 size_t size_desc; 4182 ssize_t ret; 4183 4184 ident = StatsTarget_str(target); 4185 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4186 if (g_str_equal(descriptors->ident, ident)) { 4187 return descriptors; 4188 } 4189 } 4190 4191 descriptors = g_new0(StatsDescriptors, 1); 4192 4193 /* Read stats header */ 4194 kvm_stats_header = &descriptors->kvm_stats_header; 4195 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4196 if (ret != sizeof(*kvm_stats_header)) { 4197 error_setg(errp, "KVM stats: failed to read stats header: " 4198 "expected %zu actual %zu", 4199 sizeof(*kvm_stats_header), ret); 4200 g_free(descriptors); 4201 return NULL; 4202 } 4203 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4204 4205 /* Read stats descriptors */ 4206 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4207 ret = pread(stats_fd, kvm_stats_desc, 4208 size_desc * kvm_stats_header->num_desc, 4209 kvm_stats_header->desc_offset); 4210 4211 if (ret != size_desc * kvm_stats_header->num_desc) { 4212 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4213 "expected %zu actual %zu", 4214 size_desc * kvm_stats_header->num_desc, ret); 4215 g_free(descriptors); 4216 g_free(kvm_stats_desc); 4217 return NULL; 4218 } 4219 descriptors->kvm_stats_desc = kvm_stats_desc; 4220 descriptors->ident = ident; 4221 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4222 return descriptors; 4223 } 4224 4225 static void query_stats(StatsResultList **result, StatsTarget target, 4226 strList *names, int stats_fd, CPUState *cpu, 4227 Error **errp) 4228 { 4229 struct kvm_stats_desc *kvm_stats_desc; 4230 struct kvm_stats_header *kvm_stats_header; 4231 StatsDescriptors *descriptors; 4232 g_autofree uint64_t *stats_data = NULL; 4233 struct kvm_stats_desc *pdesc; 4234 StatsList *stats_list = NULL; 4235 size_t size_desc, size_data = 0; 4236 ssize_t ret; 4237 int i; 4238 4239 descriptors = find_stats_descriptors(target, stats_fd, errp); 4240 if (!descriptors) { 4241 return; 4242 } 4243 4244 kvm_stats_header = &descriptors->kvm_stats_header; 4245 kvm_stats_desc = descriptors->kvm_stats_desc; 4246 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4247 4248 /* Tally the total data size; read schema data */ 4249 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4250 pdesc = (void *)kvm_stats_desc + i * size_desc; 4251 size_data += pdesc->size * sizeof(*stats_data); 4252 } 4253 4254 stats_data = g_malloc0(size_data); 4255 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4256 4257 if (ret != size_data) { 4258 error_setg(errp, "KVM stats: failed to read data: " 4259 "expected %zu actual %zu", size_data, ret); 4260 return; 4261 } 4262 4263 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4264 uint64_t *stats; 4265 pdesc = (void *)kvm_stats_desc + i * size_desc; 4266 4267 /* Add entry to the list */ 4268 stats = (void *)stats_data + pdesc->offset; 4269 if (!apply_str_list_filter(pdesc->name, names)) { 4270 continue; 4271 } 4272 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4273 } 4274 4275 if (!stats_list) { 4276 return; 4277 } 4278 4279 switch (target) { 4280 case STATS_TARGET_VM: 4281 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4282 break; 4283 case STATS_TARGET_VCPU: 4284 add_stats_entry(result, STATS_PROVIDER_KVM, 4285 cpu->parent_obj.canonical_path, 4286 stats_list); 4287 break; 4288 default: 4289 g_assert_not_reached(); 4290 } 4291 } 4292 4293 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4294 int stats_fd, Error **errp) 4295 { 4296 struct kvm_stats_desc *kvm_stats_desc; 4297 struct kvm_stats_header *kvm_stats_header; 4298 StatsDescriptors *descriptors; 4299 struct kvm_stats_desc *pdesc; 4300 StatsSchemaValueList *stats_list = NULL; 4301 size_t size_desc; 4302 int i; 4303 4304 descriptors = find_stats_descriptors(target, stats_fd, errp); 4305 if (!descriptors) { 4306 return; 4307 } 4308 4309 kvm_stats_header = &descriptors->kvm_stats_header; 4310 kvm_stats_desc = descriptors->kvm_stats_desc; 4311 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4312 4313 /* Tally the total data size; read schema data */ 4314 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4315 pdesc = (void *)kvm_stats_desc + i * size_desc; 4316 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4317 } 4318 4319 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4320 } 4321 4322 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4323 { 4324 int stats_fd = cpu->kvm_vcpu_stats_fd; 4325 Error *local_err = NULL; 4326 4327 if (stats_fd == -1) { 4328 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4329 error_propagate(kvm_stats_args->errp, local_err); 4330 return; 4331 } 4332 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4333 kvm_stats_args->names, stats_fd, cpu, 4334 kvm_stats_args->errp); 4335 } 4336 4337 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4338 { 4339 int stats_fd = cpu->kvm_vcpu_stats_fd; 4340 Error *local_err = NULL; 4341 4342 if (stats_fd == -1) { 4343 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4344 error_propagate(kvm_stats_args->errp, local_err); 4345 return; 4346 } 4347 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4348 kvm_stats_args->errp); 4349 } 4350 4351 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4352 strList *names, strList *targets, Error **errp) 4353 { 4354 KVMState *s = kvm_state; 4355 CPUState *cpu; 4356 int stats_fd; 4357 4358 switch (target) { 4359 case STATS_TARGET_VM: 4360 { 4361 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4362 if (stats_fd == -1) { 4363 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4364 return; 4365 } 4366 query_stats(result, target, names, stats_fd, NULL, errp); 4367 close(stats_fd); 4368 break; 4369 } 4370 case STATS_TARGET_VCPU: 4371 { 4372 StatsArgs stats_args; 4373 stats_args.result.stats = result; 4374 stats_args.names = names; 4375 stats_args.errp = errp; 4376 CPU_FOREACH(cpu) { 4377 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4378 continue; 4379 } 4380 query_stats_vcpu(cpu, &stats_args); 4381 } 4382 break; 4383 } 4384 default: 4385 break; 4386 } 4387 } 4388 4389 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4390 { 4391 StatsArgs stats_args; 4392 KVMState *s = kvm_state; 4393 int stats_fd; 4394 4395 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4396 if (stats_fd == -1) { 4397 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4398 return; 4399 } 4400 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4401 close(stats_fd); 4402 4403 if (first_cpu) { 4404 stats_args.result.schema = result; 4405 stats_args.errp = errp; 4406 query_stats_schema_vcpu(first_cpu, &stats_args); 4407 } 4408 } 4409 4410 void kvm_mark_guest_state_protected(void) 4411 { 4412 kvm_state->guest_state_protected = true; 4413 } 4414 4415 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4416 { 4417 int fd; 4418 struct kvm_create_guest_memfd guest_memfd = { 4419 .size = size, 4420 .flags = flags, 4421 }; 4422 4423 if (!kvm_guest_memfd_supported) { 4424 error_setg(errp, "KVM does not support guest_memfd"); 4425 return -1; 4426 } 4427 4428 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4429 if (fd < 0) { 4430 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4431 return -1; 4432 } 4433 4434 return fd; 4435 } 4436