xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision bb4776be7733659bdbce4548e2c042107bad76f4)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 
19 #include <linux/kvm.h>
20 
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "qapi/visitor.h"
44 #include "qapi/qapi-types-common.h"
45 #include "qapi/qapi-visit-common.h"
46 #include "sysemu/reset.h"
47 #include "qemu/guest-random.h"
48 #include "sysemu/hw_accel.h"
49 #include "kvm-cpus.h"
50 
51 #include "hw/boards.h"
52 
53 /* This check must be after config-host.h is included */
54 #ifdef CONFIG_EVENTFD
55 #include <sys/eventfd.h>
56 #endif
57 
58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
59  * need to use the real host PAGE_SIZE, as that's what KVM will use.
60  */
61 #define PAGE_SIZE qemu_real_host_page_size
62 
63 //#define DEBUG_KVM
64 
65 #ifdef DEBUG_KVM
66 #define DPRINTF(fmt, ...) \
67     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
68 #else
69 #define DPRINTF(fmt, ...) \
70     do { } while (0)
71 #endif
72 
73 #define KVM_MSI_HASHTAB_SIZE    256
74 
75 struct KVMParkedVcpu {
76     unsigned long vcpu_id;
77     int kvm_fd;
78     QLIST_ENTRY(KVMParkedVcpu) node;
79 };
80 
81 struct KVMState
82 {
83     AccelState parent_obj;
84 
85     int nr_slots;
86     int fd;
87     int vmfd;
88     int coalesced_mmio;
89     int coalesced_pio;
90     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
91     bool coalesced_flush_in_progress;
92     int vcpu_events;
93     int robust_singlestep;
94     int debugregs;
95 #ifdef KVM_CAP_SET_GUEST_DEBUG
96     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
97 #endif
98     int max_nested_state_len;
99     int many_ioeventfds;
100     int intx_set_mask;
101     int kvm_shadow_mem;
102     bool kernel_irqchip_allowed;
103     bool kernel_irqchip_required;
104     OnOffAuto kernel_irqchip_split;
105     bool sync_mmu;
106     uint64_t manual_dirty_log_protect;
107     /* The man page (and posix) say ioctl numbers are signed int, but
108      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
109      * unsigned, and treating them as signed here can break things */
110     unsigned irq_set_ioctl;
111     unsigned int sigmask_len;
112     GHashTable *gsimap;
113 #ifdef KVM_CAP_IRQ_ROUTING
114     struct kvm_irq_routing *irq_routes;
115     int nr_allocated_irq_routes;
116     unsigned long *used_gsi_bitmap;
117     unsigned int gsi_count;
118     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
119 #endif
120     KVMMemoryListener memory_listener;
121     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
122 
123     /* memory encryption */
124     void *memcrypt_handle;
125     int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
126 
127     /* For "info mtree -f" to tell if an MR is registered in KVM */
128     int nr_as;
129     struct KVMAs {
130         KVMMemoryListener *ml;
131         AddressSpace *as;
132     } *as;
133 };
134 
135 KVMState *kvm_state;
136 bool kvm_kernel_irqchip;
137 bool kvm_split_irqchip;
138 bool kvm_async_interrupts_allowed;
139 bool kvm_halt_in_kernel_allowed;
140 bool kvm_eventfds_allowed;
141 bool kvm_irqfds_allowed;
142 bool kvm_resamplefds_allowed;
143 bool kvm_msi_via_irqfd_allowed;
144 bool kvm_gsi_routing_allowed;
145 bool kvm_gsi_direct_mapping;
146 bool kvm_allowed;
147 bool kvm_readonly_mem_allowed;
148 bool kvm_vm_attributes_allowed;
149 bool kvm_direct_msi_allowed;
150 bool kvm_ioeventfd_any_length_allowed;
151 bool kvm_msi_use_devid;
152 static bool kvm_immediate_exit;
153 static hwaddr kvm_max_slot_size = ~0;
154 
155 static const KVMCapabilityInfo kvm_required_capabilites[] = {
156     KVM_CAP_INFO(USER_MEMORY),
157     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
158     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
159     KVM_CAP_LAST_INFO
160 };
161 
162 static NotifierList kvm_irqchip_change_notifiers =
163     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
164 
165 struct KVMResampleFd {
166     int gsi;
167     EventNotifier *resample_event;
168     QLIST_ENTRY(KVMResampleFd) node;
169 };
170 typedef struct KVMResampleFd KVMResampleFd;
171 
172 /*
173  * Only used with split irqchip where we need to do the resample fd
174  * kick for the kernel from userspace.
175  */
176 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
177     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
178 
179 #define kvm_slots_lock(kml)      qemu_mutex_lock(&(kml)->slots_lock)
180 #define kvm_slots_unlock(kml)    qemu_mutex_unlock(&(kml)->slots_lock)
181 
182 static inline void kvm_resample_fd_remove(int gsi)
183 {
184     KVMResampleFd *rfd;
185 
186     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
187         if (rfd->gsi == gsi) {
188             QLIST_REMOVE(rfd, node);
189             g_free(rfd);
190             break;
191         }
192     }
193 }
194 
195 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
196 {
197     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
198 
199     rfd->gsi = gsi;
200     rfd->resample_event = event;
201 
202     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
203 }
204 
205 void kvm_resample_fd_notify(int gsi)
206 {
207     KVMResampleFd *rfd;
208 
209     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
210         if (rfd->gsi == gsi) {
211             event_notifier_set(rfd->resample_event);
212             trace_kvm_resample_fd_notify(gsi);
213             return;
214         }
215     }
216 }
217 
218 int kvm_get_max_memslots(void)
219 {
220     KVMState *s = KVM_STATE(current_accel());
221 
222     return s->nr_slots;
223 }
224 
225 bool kvm_memcrypt_enabled(void)
226 {
227     if (kvm_state && kvm_state->memcrypt_handle) {
228         return true;
229     }
230 
231     return false;
232 }
233 
234 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
235 {
236     if (kvm_state->memcrypt_handle &&
237         kvm_state->memcrypt_encrypt_data) {
238         return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
239                                               ptr, len);
240     }
241 
242     return 1;
243 }
244 
245 /* Called with KVMMemoryListener.slots_lock held */
246 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
247 {
248     KVMState *s = kvm_state;
249     int i;
250 
251     for (i = 0; i < s->nr_slots; i++) {
252         if (kml->slots[i].memory_size == 0) {
253             return &kml->slots[i];
254         }
255     }
256 
257     return NULL;
258 }
259 
260 bool kvm_has_free_slot(MachineState *ms)
261 {
262     KVMState *s = KVM_STATE(ms->accelerator);
263     bool result;
264     KVMMemoryListener *kml = &s->memory_listener;
265 
266     kvm_slots_lock(kml);
267     result = !!kvm_get_free_slot(kml);
268     kvm_slots_unlock(kml);
269 
270     return result;
271 }
272 
273 /* Called with KVMMemoryListener.slots_lock held */
274 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
275 {
276     KVMSlot *slot = kvm_get_free_slot(kml);
277 
278     if (slot) {
279         return slot;
280     }
281 
282     fprintf(stderr, "%s: no free slot available\n", __func__);
283     abort();
284 }
285 
286 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
287                                          hwaddr start_addr,
288                                          hwaddr size)
289 {
290     KVMState *s = kvm_state;
291     int i;
292 
293     for (i = 0; i < s->nr_slots; i++) {
294         KVMSlot *mem = &kml->slots[i];
295 
296         if (start_addr == mem->start_addr && size == mem->memory_size) {
297             return mem;
298         }
299     }
300 
301     return NULL;
302 }
303 
304 /*
305  * Calculate and align the start address and the size of the section.
306  * Return the size. If the size is 0, the aligned section is empty.
307  */
308 static hwaddr kvm_align_section(MemoryRegionSection *section,
309                                 hwaddr *start)
310 {
311     hwaddr size = int128_get64(section->size);
312     hwaddr delta, aligned;
313 
314     /* kvm works in page size chunks, but the function may be called
315        with sub-page size and unaligned start address. Pad the start
316        address to next and truncate size to previous page boundary. */
317     aligned = ROUND_UP(section->offset_within_address_space,
318                        qemu_real_host_page_size);
319     delta = aligned - section->offset_within_address_space;
320     *start = aligned;
321     if (delta > size) {
322         return 0;
323     }
324 
325     return (size - delta) & qemu_real_host_page_mask;
326 }
327 
328 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
329                                        hwaddr *phys_addr)
330 {
331     KVMMemoryListener *kml = &s->memory_listener;
332     int i, ret = 0;
333 
334     kvm_slots_lock(kml);
335     for (i = 0; i < s->nr_slots; i++) {
336         KVMSlot *mem = &kml->slots[i];
337 
338         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
339             *phys_addr = mem->start_addr + (ram - mem->ram);
340             ret = 1;
341             break;
342         }
343     }
344     kvm_slots_unlock(kml);
345 
346     return ret;
347 }
348 
349 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
350 {
351     KVMState *s = kvm_state;
352     struct kvm_userspace_memory_region mem;
353     int ret;
354 
355     mem.slot = slot->slot | (kml->as_id << 16);
356     mem.guest_phys_addr = slot->start_addr;
357     mem.userspace_addr = (unsigned long)slot->ram;
358     mem.flags = slot->flags;
359 
360     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
361         /* Set the slot size to 0 before setting the slot to the desired
362          * value. This is needed based on KVM commit 75d61fbc. */
363         mem.memory_size = 0;
364         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
365         if (ret < 0) {
366             goto err;
367         }
368     }
369     mem.memory_size = slot->memory_size;
370     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
371     slot->old_flags = mem.flags;
372 err:
373     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
374                               mem.memory_size, mem.userspace_addr, ret);
375     if (ret < 0) {
376         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
377                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
378                      __func__, mem.slot, slot->start_addr,
379                      (uint64_t)mem.memory_size, strerror(errno));
380     }
381     return ret;
382 }
383 
384 static int do_kvm_destroy_vcpu(CPUState *cpu)
385 {
386     KVMState *s = kvm_state;
387     long mmap_size;
388     struct KVMParkedVcpu *vcpu = NULL;
389     int ret = 0;
390 
391     DPRINTF("kvm_destroy_vcpu\n");
392 
393     ret = kvm_arch_destroy_vcpu(cpu);
394     if (ret < 0) {
395         goto err;
396     }
397 
398     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
399     if (mmap_size < 0) {
400         ret = mmap_size;
401         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
402         goto err;
403     }
404 
405     ret = munmap(cpu->kvm_run, mmap_size);
406     if (ret < 0) {
407         goto err;
408     }
409 
410     vcpu = g_malloc0(sizeof(*vcpu));
411     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
412     vcpu->kvm_fd = cpu->kvm_fd;
413     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
414 err:
415     return ret;
416 }
417 
418 void kvm_destroy_vcpu(CPUState *cpu)
419 {
420     if (do_kvm_destroy_vcpu(cpu) < 0) {
421         error_report("kvm_destroy_vcpu failed");
422         exit(EXIT_FAILURE);
423     }
424 }
425 
426 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
427 {
428     struct KVMParkedVcpu *cpu;
429 
430     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
431         if (cpu->vcpu_id == vcpu_id) {
432             int kvm_fd;
433 
434             QLIST_REMOVE(cpu, node);
435             kvm_fd = cpu->kvm_fd;
436             g_free(cpu);
437             return kvm_fd;
438         }
439     }
440 
441     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
442 }
443 
444 int kvm_init_vcpu(CPUState *cpu)
445 {
446     KVMState *s = kvm_state;
447     long mmap_size;
448     int ret;
449 
450     DPRINTF("kvm_init_vcpu\n");
451 
452     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
453     if (ret < 0) {
454         DPRINTF("kvm_create_vcpu failed\n");
455         goto err;
456     }
457 
458     cpu->kvm_fd = ret;
459     cpu->kvm_state = s;
460     cpu->vcpu_dirty = true;
461 
462     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
463     if (mmap_size < 0) {
464         ret = mmap_size;
465         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
466         goto err;
467     }
468 
469     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
470                         cpu->kvm_fd, 0);
471     if (cpu->kvm_run == MAP_FAILED) {
472         ret = -errno;
473         DPRINTF("mmap'ing vcpu state failed\n");
474         goto err;
475     }
476 
477     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
478         s->coalesced_mmio_ring =
479             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
480     }
481 
482     ret = kvm_arch_init_vcpu(cpu);
483 err:
484     return ret;
485 }
486 
487 /*
488  * dirty pages logging control
489  */
490 
491 static int kvm_mem_flags(MemoryRegion *mr)
492 {
493     bool readonly = mr->readonly || memory_region_is_romd(mr);
494     int flags = 0;
495 
496     if (memory_region_get_dirty_log_mask(mr) != 0) {
497         flags |= KVM_MEM_LOG_DIRTY_PAGES;
498     }
499     if (readonly && kvm_readonly_mem_allowed) {
500         flags |= KVM_MEM_READONLY;
501     }
502     return flags;
503 }
504 
505 /* Called with KVMMemoryListener.slots_lock held */
506 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
507                                  MemoryRegion *mr)
508 {
509     mem->flags = kvm_mem_flags(mr);
510 
511     /* If nothing changed effectively, no need to issue ioctl */
512     if (mem->flags == mem->old_flags) {
513         return 0;
514     }
515 
516     return kvm_set_user_memory_region(kml, mem, false);
517 }
518 
519 static int kvm_section_update_flags(KVMMemoryListener *kml,
520                                     MemoryRegionSection *section)
521 {
522     hwaddr start_addr, size, slot_size;
523     KVMSlot *mem;
524     int ret = 0;
525 
526     size = kvm_align_section(section, &start_addr);
527     if (!size) {
528         return 0;
529     }
530 
531     kvm_slots_lock(kml);
532 
533     while (size && !ret) {
534         slot_size = MIN(kvm_max_slot_size, size);
535         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
536         if (!mem) {
537             /* We don't have a slot if we want to trap every access. */
538             goto out;
539         }
540 
541         ret = kvm_slot_update_flags(kml, mem, section->mr);
542         start_addr += slot_size;
543         size -= slot_size;
544     }
545 
546 out:
547     kvm_slots_unlock(kml);
548     return ret;
549 }
550 
551 static void kvm_log_start(MemoryListener *listener,
552                           MemoryRegionSection *section,
553                           int old, int new)
554 {
555     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
556     int r;
557 
558     if (old != 0) {
559         return;
560     }
561 
562     r = kvm_section_update_flags(kml, section);
563     if (r < 0) {
564         abort();
565     }
566 }
567 
568 static void kvm_log_stop(MemoryListener *listener,
569                           MemoryRegionSection *section,
570                           int old, int new)
571 {
572     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
573     int r;
574 
575     if (new != 0) {
576         return;
577     }
578 
579     r = kvm_section_update_flags(kml, section);
580     if (r < 0) {
581         abort();
582     }
583 }
584 
585 /* get kvm's dirty pages bitmap and update qemu's */
586 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
587                                          unsigned long *bitmap)
588 {
589     ram_addr_t start = section->offset_within_region +
590                        memory_region_get_ram_addr(section->mr);
591     ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
592 
593     cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
594     return 0;
595 }
596 
597 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
598 
599 /* Allocate the dirty bitmap for a slot  */
600 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
601 {
602     /*
603      * XXX bad kernel interface alert
604      * For dirty bitmap, kernel allocates array of size aligned to
605      * bits-per-long.  But for case when the kernel is 64bits and
606      * the userspace is 32bits, userspace can't align to the same
607      * bits-per-long, since sizeof(long) is different between kernel
608      * and user space.  This way, userspace will provide buffer which
609      * may be 4 bytes less than the kernel will use, resulting in
610      * userspace memory corruption (which is not detectable by valgrind
611      * too, in most cases).
612      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
613      * a hope that sizeof(long) won't become >8 any time soon.
614      */
615     hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
616                                         /*HOST_LONG_BITS*/ 64) / 8;
617     mem->dirty_bmap = g_malloc0(bitmap_size);
618 }
619 
620 /**
621  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
622  *
623  * This function will first try to fetch dirty bitmap from the kernel,
624  * and then updates qemu's dirty bitmap.
625  *
626  * NOTE: caller must be with kml->slots_lock held.
627  *
628  * @kml: the KVM memory listener object
629  * @section: the memory section to sync the dirty bitmap with
630  */
631 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
632                                           MemoryRegionSection *section)
633 {
634     KVMState *s = kvm_state;
635     struct kvm_dirty_log d = {};
636     KVMSlot *mem;
637     hwaddr start_addr, size;
638     hwaddr slot_size, slot_offset = 0;
639     int ret = 0;
640 
641     size = kvm_align_section(section, &start_addr);
642     while (size) {
643         MemoryRegionSection subsection = *section;
644 
645         slot_size = MIN(kvm_max_slot_size, size);
646         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
647         if (!mem) {
648             /* We don't have a slot if we want to trap every access. */
649             goto out;
650         }
651 
652         if (!mem->dirty_bmap) {
653             /* Allocate on the first log_sync, once and for all */
654             kvm_memslot_init_dirty_bitmap(mem);
655         }
656 
657         d.dirty_bitmap = mem->dirty_bmap;
658         d.slot = mem->slot | (kml->as_id << 16);
659         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
660             DPRINTF("ioctl failed %d\n", errno);
661             ret = -1;
662             goto out;
663         }
664 
665         subsection.offset_within_region += slot_offset;
666         subsection.size = int128_make64(slot_size);
667         kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
668 
669         slot_offset += slot_size;
670         start_addr += slot_size;
671         size -= slot_size;
672     }
673 out:
674     return ret;
675 }
676 
677 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
678 #define KVM_CLEAR_LOG_SHIFT  6
679 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
680 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
681 
682 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
683                                   uint64_t size)
684 {
685     KVMState *s = kvm_state;
686     uint64_t end, bmap_start, start_delta, bmap_npages;
687     struct kvm_clear_dirty_log d;
688     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
689     int ret;
690 
691     /*
692      * We need to extend either the start or the size or both to
693      * satisfy the KVM interface requirement.  Firstly, do the start
694      * page alignment on 64 host pages
695      */
696     bmap_start = start & KVM_CLEAR_LOG_MASK;
697     start_delta = start - bmap_start;
698     bmap_start /= psize;
699 
700     /*
701      * The kernel interface has restriction on the size too, that either:
702      *
703      * (1) the size is 64 host pages aligned (just like the start), or
704      * (2) the size fills up until the end of the KVM memslot.
705      */
706     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
707         << KVM_CLEAR_LOG_SHIFT;
708     end = mem->memory_size / psize;
709     if (bmap_npages > end - bmap_start) {
710         bmap_npages = end - bmap_start;
711     }
712     start_delta /= psize;
713 
714     /*
715      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
716      * that we won't clear any unknown dirty bits otherwise we might
717      * accidentally clear some set bits which are not yet synced from
718      * the kernel into QEMU's bitmap, then we'll lose track of the
719      * guest modifications upon those pages (which can directly lead
720      * to guest data loss or panic after migration).
721      *
722      * Layout of the KVMSlot.dirty_bmap:
723      *
724      *                   |<-------- bmap_npages -----------..>|
725      *                                                     [1]
726      *                     start_delta         size
727      *  |----------------|-------------|------------------|------------|
728      *  ^                ^             ^                               ^
729      *  |                |             |                               |
730      * start          bmap_start     (start)                         end
731      * of memslot                                             of memslot
732      *
733      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
734      */
735 
736     assert(bmap_start % BITS_PER_LONG == 0);
737     /* We should never do log_clear before log_sync */
738     assert(mem->dirty_bmap);
739     if (start_delta) {
740         /* Slow path - we need to manipulate a temp bitmap */
741         bmap_clear = bitmap_new(bmap_npages);
742         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
743                                     bmap_start, start_delta + size / psize);
744         /*
745          * We need to fill the holes at start because that was not
746          * specified by the caller and we extended the bitmap only for
747          * 64 pages alignment
748          */
749         bitmap_clear(bmap_clear, 0, start_delta);
750         d.dirty_bitmap = bmap_clear;
751     } else {
752         /* Fast path - start address aligns well with BITS_PER_LONG */
753         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
754     }
755 
756     d.first_page = bmap_start;
757     /* It should never overflow.  If it happens, say something */
758     assert(bmap_npages <= UINT32_MAX);
759     d.num_pages = bmap_npages;
760     d.slot = mem->slot | (as_id << 16);
761 
762     if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
763         ret = -errno;
764         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
765                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
766                      __func__, d.slot, (uint64_t)d.first_page,
767                      (uint32_t)d.num_pages, ret);
768     } else {
769         ret = 0;
770         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
771     }
772 
773     /*
774      * After we have updated the remote dirty bitmap, we update the
775      * cached bitmap as well for the memslot, then if another user
776      * clears the same region we know we shouldn't clear it again on
777      * the remote otherwise it's data loss as well.
778      */
779     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
780                  size / psize);
781     /* This handles the NULL case well */
782     g_free(bmap_clear);
783     return ret;
784 }
785 
786 
787 /**
788  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
789  *
790  * NOTE: this will be a no-op if we haven't enabled manual dirty log
791  * protection in the host kernel because in that case this operation
792  * will be done within log_sync().
793  *
794  * @kml:     the kvm memory listener
795  * @section: the memory range to clear dirty bitmap
796  */
797 static int kvm_physical_log_clear(KVMMemoryListener *kml,
798                                   MemoryRegionSection *section)
799 {
800     KVMState *s = kvm_state;
801     uint64_t start, size, offset, count;
802     KVMSlot *mem;
803     int ret = 0, i;
804 
805     if (!s->manual_dirty_log_protect) {
806         /* No need to do explicit clear */
807         return ret;
808     }
809 
810     start = section->offset_within_address_space;
811     size = int128_get64(section->size);
812 
813     if (!size) {
814         /* Nothing more we can do... */
815         return ret;
816     }
817 
818     kvm_slots_lock(kml);
819 
820     for (i = 0; i < s->nr_slots; i++) {
821         mem = &kml->slots[i];
822         /* Discard slots that are empty or do not overlap the section */
823         if (!mem->memory_size ||
824             mem->start_addr > start + size - 1 ||
825             start > mem->start_addr + mem->memory_size - 1) {
826             continue;
827         }
828 
829         if (start >= mem->start_addr) {
830             /* The slot starts before section or is aligned to it.  */
831             offset = start - mem->start_addr;
832             count = MIN(mem->memory_size - offset, size);
833         } else {
834             /* The slot starts after section.  */
835             offset = 0;
836             count = MIN(mem->memory_size, size - (mem->start_addr - start));
837         }
838         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
839         if (ret < 0) {
840             break;
841         }
842     }
843 
844     kvm_slots_unlock(kml);
845 
846     return ret;
847 }
848 
849 static void kvm_coalesce_mmio_region(MemoryListener *listener,
850                                      MemoryRegionSection *secion,
851                                      hwaddr start, hwaddr size)
852 {
853     KVMState *s = kvm_state;
854 
855     if (s->coalesced_mmio) {
856         struct kvm_coalesced_mmio_zone zone;
857 
858         zone.addr = start;
859         zone.size = size;
860         zone.pad = 0;
861 
862         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
863     }
864 }
865 
866 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
867                                        MemoryRegionSection *secion,
868                                        hwaddr start, hwaddr size)
869 {
870     KVMState *s = kvm_state;
871 
872     if (s->coalesced_mmio) {
873         struct kvm_coalesced_mmio_zone zone;
874 
875         zone.addr = start;
876         zone.size = size;
877         zone.pad = 0;
878 
879         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
880     }
881 }
882 
883 static void kvm_coalesce_pio_add(MemoryListener *listener,
884                                 MemoryRegionSection *section,
885                                 hwaddr start, hwaddr size)
886 {
887     KVMState *s = kvm_state;
888 
889     if (s->coalesced_pio) {
890         struct kvm_coalesced_mmio_zone zone;
891 
892         zone.addr = start;
893         zone.size = size;
894         zone.pio = 1;
895 
896         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
897     }
898 }
899 
900 static void kvm_coalesce_pio_del(MemoryListener *listener,
901                                 MemoryRegionSection *section,
902                                 hwaddr start, hwaddr size)
903 {
904     KVMState *s = kvm_state;
905 
906     if (s->coalesced_pio) {
907         struct kvm_coalesced_mmio_zone zone;
908 
909         zone.addr = start;
910         zone.size = size;
911         zone.pio = 1;
912 
913         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
914      }
915 }
916 
917 static MemoryListener kvm_coalesced_pio_listener = {
918     .coalesced_io_add = kvm_coalesce_pio_add,
919     .coalesced_io_del = kvm_coalesce_pio_del,
920 };
921 
922 int kvm_check_extension(KVMState *s, unsigned int extension)
923 {
924     int ret;
925 
926     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
927     if (ret < 0) {
928         ret = 0;
929     }
930 
931     return ret;
932 }
933 
934 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
935 {
936     int ret;
937 
938     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
939     if (ret < 0) {
940         /* VM wide version not implemented, use global one instead */
941         ret = kvm_check_extension(s, extension);
942     }
943 
944     return ret;
945 }
946 
947 typedef struct HWPoisonPage {
948     ram_addr_t ram_addr;
949     QLIST_ENTRY(HWPoisonPage) list;
950 } HWPoisonPage;
951 
952 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
953     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
954 
955 static void kvm_unpoison_all(void *param)
956 {
957     HWPoisonPage *page, *next_page;
958 
959     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
960         QLIST_REMOVE(page, list);
961         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
962         g_free(page);
963     }
964 }
965 
966 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
967 {
968     HWPoisonPage *page;
969 
970     QLIST_FOREACH(page, &hwpoison_page_list, list) {
971         if (page->ram_addr == ram_addr) {
972             return;
973         }
974     }
975     page = g_new(HWPoisonPage, 1);
976     page->ram_addr = ram_addr;
977     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
978 }
979 
980 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
981 {
982 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
983     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
984      * endianness, but the memory core hands them in target endianness.
985      * For example, PPC is always treated as big-endian even if running
986      * on KVM and on PPC64LE.  Correct here.
987      */
988     switch (size) {
989     case 2:
990         val = bswap16(val);
991         break;
992     case 4:
993         val = bswap32(val);
994         break;
995     }
996 #endif
997     return val;
998 }
999 
1000 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1001                                   bool assign, uint32_t size, bool datamatch)
1002 {
1003     int ret;
1004     struct kvm_ioeventfd iofd = {
1005         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1006         .addr = addr,
1007         .len = size,
1008         .flags = 0,
1009         .fd = fd,
1010     };
1011 
1012     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1013                                  datamatch);
1014     if (!kvm_enabled()) {
1015         return -ENOSYS;
1016     }
1017 
1018     if (datamatch) {
1019         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1020     }
1021     if (!assign) {
1022         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1023     }
1024 
1025     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1026 
1027     if (ret < 0) {
1028         return -errno;
1029     }
1030 
1031     return 0;
1032 }
1033 
1034 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1035                                  bool assign, uint32_t size, bool datamatch)
1036 {
1037     struct kvm_ioeventfd kick = {
1038         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1039         .addr = addr,
1040         .flags = KVM_IOEVENTFD_FLAG_PIO,
1041         .len = size,
1042         .fd = fd,
1043     };
1044     int r;
1045     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1046     if (!kvm_enabled()) {
1047         return -ENOSYS;
1048     }
1049     if (datamatch) {
1050         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1051     }
1052     if (!assign) {
1053         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1054     }
1055     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1056     if (r < 0) {
1057         return r;
1058     }
1059     return 0;
1060 }
1061 
1062 
1063 static int kvm_check_many_ioeventfds(void)
1064 {
1065     /* Userspace can use ioeventfd for io notification.  This requires a host
1066      * that supports eventfd(2) and an I/O thread; since eventfd does not
1067      * support SIGIO it cannot interrupt the vcpu.
1068      *
1069      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1070      * can avoid creating too many ioeventfds.
1071      */
1072 #if defined(CONFIG_EVENTFD)
1073     int ioeventfds[7];
1074     int i, ret = 0;
1075     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1076         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1077         if (ioeventfds[i] < 0) {
1078             break;
1079         }
1080         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1081         if (ret < 0) {
1082             close(ioeventfds[i]);
1083             break;
1084         }
1085     }
1086 
1087     /* Decide whether many devices are supported or not */
1088     ret = i == ARRAY_SIZE(ioeventfds);
1089 
1090     while (i-- > 0) {
1091         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1092         close(ioeventfds[i]);
1093     }
1094     return ret;
1095 #else
1096     return 0;
1097 #endif
1098 }
1099 
1100 static const KVMCapabilityInfo *
1101 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1102 {
1103     while (list->name) {
1104         if (!kvm_check_extension(s, list->value)) {
1105             return list;
1106         }
1107         list++;
1108     }
1109     return NULL;
1110 }
1111 
1112 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1113 {
1114     g_assert(
1115         ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1116     );
1117     kvm_max_slot_size = max_slot_size;
1118 }
1119 
1120 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1121                              MemoryRegionSection *section, bool add)
1122 {
1123     KVMSlot *mem;
1124     int err;
1125     MemoryRegion *mr = section->mr;
1126     bool writeable = !mr->readonly && !mr->rom_device;
1127     hwaddr start_addr, size, slot_size;
1128     void *ram;
1129 
1130     if (!memory_region_is_ram(mr)) {
1131         if (writeable || !kvm_readonly_mem_allowed) {
1132             return;
1133         } else if (!mr->romd_mode) {
1134             /* If the memory device is not in romd_mode, then we actually want
1135              * to remove the kvm memory slot so all accesses will trap. */
1136             add = false;
1137         }
1138     }
1139 
1140     size = kvm_align_section(section, &start_addr);
1141     if (!size) {
1142         return;
1143     }
1144 
1145     /* use aligned delta to align the ram address */
1146     ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1147           (start_addr - section->offset_within_address_space);
1148 
1149     kvm_slots_lock(kml);
1150 
1151     if (!add) {
1152         do {
1153             slot_size = MIN(kvm_max_slot_size, size);
1154             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1155             if (!mem) {
1156                 goto out;
1157             }
1158             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1159                 kvm_physical_sync_dirty_bitmap(kml, section);
1160             }
1161 
1162             /* unregister the slot */
1163             g_free(mem->dirty_bmap);
1164             mem->dirty_bmap = NULL;
1165             mem->memory_size = 0;
1166             mem->flags = 0;
1167             err = kvm_set_user_memory_region(kml, mem, false);
1168             if (err) {
1169                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1170                         __func__, strerror(-err));
1171                 abort();
1172             }
1173             start_addr += slot_size;
1174             size -= slot_size;
1175         } while (size);
1176         goto out;
1177     }
1178 
1179     /* register the new slot */
1180     do {
1181         slot_size = MIN(kvm_max_slot_size, size);
1182         mem = kvm_alloc_slot(kml);
1183         mem->memory_size = slot_size;
1184         mem->start_addr = start_addr;
1185         mem->ram = ram;
1186         mem->flags = kvm_mem_flags(mr);
1187 
1188         if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1189             /*
1190              * Reallocate the bmap; it means it doesn't disappear in
1191              * middle of a migrate.
1192              */
1193             kvm_memslot_init_dirty_bitmap(mem);
1194         }
1195         err = kvm_set_user_memory_region(kml, mem, true);
1196         if (err) {
1197             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1198                     strerror(-err));
1199             abort();
1200         }
1201         start_addr += slot_size;
1202         ram += slot_size;
1203         size -= slot_size;
1204     } while (size);
1205 
1206 out:
1207     kvm_slots_unlock(kml);
1208 }
1209 
1210 static void kvm_region_add(MemoryListener *listener,
1211                            MemoryRegionSection *section)
1212 {
1213     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1214 
1215     memory_region_ref(section->mr);
1216     kvm_set_phys_mem(kml, section, true);
1217 }
1218 
1219 static void kvm_region_del(MemoryListener *listener,
1220                            MemoryRegionSection *section)
1221 {
1222     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1223 
1224     kvm_set_phys_mem(kml, section, false);
1225     memory_region_unref(section->mr);
1226 }
1227 
1228 static void kvm_log_sync(MemoryListener *listener,
1229                          MemoryRegionSection *section)
1230 {
1231     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1232     int r;
1233 
1234     kvm_slots_lock(kml);
1235     r = kvm_physical_sync_dirty_bitmap(kml, section);
1236     kvm_slots_unlock(kml);
1237     if (r < 0) {
1238         abort();
1239     }
1240 }
1241 
1242 static void kvm_log_clear(MemoryListener *listener,
1243                           MemoryRegionSection *section)
1244 {
1245     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1246     int r;
1247 
1248     r = kvm_physical_log_clear(kml, section);
1249     if (r < 0) {
1250         error_report_once("%s: kvm log clear failed: mr=%s "
1251                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1252                           section->mr->name, section->offset_within_region,
1253                           int128_get64(section->size));
1254         abort();
1255     }
1256 }
1257 
1258 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1259                                   MemoryRegionSection *section,
1260                                   bool match_data, uint64_t data,
1261                                   EventNotifier *e)
1262 {
1263     int fd = event_notifier_get_fd(e);
1264     int r;
1265 
1266     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1267                                data, true, int128_get64(section->size),
1268                                match_data);
1269     if (r < 0) {
1270         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1271                 __func__, strerror(-r), -r);
1272         abort();
1273     }
1274 }
1275 
1276 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1277                                   MemoryRegionSection *section,
1278                                   bool match_data, uint64_t data,
1279                                   EventNotifier *e)
1280 {
1281     int fd = event_notifier_get_fd(e);
1282     int r;
1283 
1284     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1285                                data, false, int128_get64(section->size),
1286                                match_data);
1287     if (r < 0) {
1288         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1289                 __func__, strerror(-r), -r);
1290         abort();
1291     }
1292 }
1293 
1294 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1295                                  MemoryRegionSection *section,
1296                                  bool match_data, uint64_t data,
1297                                  EventNotifier *e)
1298 {
1299     int fd = event_notifier_get_fd(e);
1300     int r;
1301 
1302     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1303                               data, true, int128_get64(section->size),
1304                               match_data);
1305     if (r < 0) {
1306         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1307                 __func__, strerror(-r), -r);
1308         abort();
1309     }
1310 }
1311 
1312 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1313                                  MemoryRegionSection *section,
1314                                  bool match_data, uint64_t data,
1315                                  EventNotifier *e)
1316 
1317 {
1318     int fd = event_notifier_get_fd(e);
1319     int r;
1320 
1321     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1322                               data, false, int128_get64(section->size),
1323                               match_data);
1324     if (r < 0) {
1325         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1326                 __func__, strerror(-r), -r);
1327         abort();
1328     }
1329 }
1330 
1331 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1332                                   AddressSpace *as, int as_id)
1333 {
1334     int i;
1335 
1336     qemu_mutex_init(&kml->slots_lock);
1337     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1338     kml->as_id = as_id;
1339 
1340     for (i = 0; i < s->nr_slots; i++) {
1341         kml->slots[i].slot = i;
1342     }
1343 
1344     kml->listener.region_add = kvm_region_add;
1345     kml->listener.region_del = kvm_region_del;
1346     kml->listener.log_start = kvm_log_start;
1347     kml->listener.log_stop = kvm_log_stop;
1348     kml->listener.log_sync = kvm_log_sync;
1349     kml->listener.log_clear = kvm_log_clear;
1350     kml->listener.priority = 10;
1351 
1352     memory_listener_register(&kml->listener, as);
1353 
1354     for (i = 0; i < s->nr_as; ++i) {
1355         if (!s->as[i].as) {
1356             s->as[i].as = as;
1357             s->as[i].ml = kml;
1358             break;
1359         }
1360     }
1361 }
1362 
1363 static MemoryListener kvm_io_listener = {
1364     .eventfd_add = kvm_io_ioeventfd_add,
1365     .eventfd_del = kvm_io_ioeventfd_del,
1366     .priority = 10,
1367 };
1368 
1369 int kvm_set_irq(KVMState *s, int irq, int level)
1370 {
1371     struct kvm_irq_level event;
1372     int ret;
1373 
1374     assert(kvm_async_interrupts_enabled());
1375 
1376     event.level = level;
1377     event.irq = irq;
1378     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1379     if (ret < 0) {
1380         perror("kvm_set_irq");
1381         abort();
1382     }
1383 
1384     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1385 }
1386 
1387 #ifdef KVM_CAP_IRQ_ROUTING
1388 typedef struct KVMMSIRoute {
1389     struct kvm_irq_routing_entry kroute;
1390     QTAILQ_ENTRY(KVMMSIRoute) entry;
1391 } KVMMSIRoute;
1392 
1393 static void set_gsi(KVMState *s, unsigned int gsi)
1394 {
1395     set_bit(gsi, s->used_gsi_bitmap);
1396 }
1397 
1398 static void clear_gsi(KVMState *s, unsigned int gsi)
1399 {
1400     clear_bit(gsi, s->used_gsi_bitmap);
1401 }
1402 
1403 void kvm_init_irq_routing(KVMState *s)
1404 {
1405     int gsi_count, i;
1406 
1407     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1408     if (gsi_count > 0) {
1409         /* Round up so we can search ints using ffs */
1410         s->used_gsi_bitmap = bitmap_new(gsi_count);
1411         s->gsi_count = gsi_count;
1412     }
1413 
1414     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1415     s->nr_allocated_irq_routes = 0;
1416 
1417     if (!kvm_direct_msi_allowed) {
1418         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1419             QTAILQ_INIT(&s->msi_hashtab[i]);
1420         }
1421     }
1422 
1423     kvm_arch_init_irq_routing(s);
1424 }
1425 
1426 void kvm_irqchip_commit_routes(KVMState *s)
1427 {
1428     int ret;
1429 
1430     if (kvm_gsi_direct_mapping()) {
1431         return;
1432     }
1433 
1434     if (!kvm_gsi_routing_enabled()) {
1435         return;
1436     }
1437 
1438     s->irq_routes->flags = 0;
1439     trace_kvm_irqchip_commit_routes();
1440     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1441     assert(ret == 0);
1442 }
1443 
1444 static void kvm_add_routing_entry(KVMState *s,
1445                                   struct kvm_irq_routing_entry *entry)
1446 {
1447     struct kvm_irq_routing_entry *new;
1448     int n, size;
1449 
1450     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1451         n = s->nr_allocated_irq_routes * 2;
1452         if (n < 64) {
1453             n = 64;
1454         }
1455         size = sizeof(struct kvm_irq_routing);
1456         size += n * sizeof(*new);
1457         s->irq_routes = g_realloc(s->irq_routes, size);
1458         s->nr_allocated_irq_routes = n;
1459     }
1460     n = s->irq_routes->nr++;
1461     new = &s->irq_routes->entries[n];
1462 
1463     *new = *entry;
1464 
1465     set_gsi(s, entry->gsi);
1466 }
1467 
1468 static int kvm_update_routing_entry(KVMState *s,
1469                                     struct kvm_irq_routing_entry *new_entry)
1470 {
1471     struct kvm_irq_routing_entry *entry;
1472     int n;
1473 
1474     for (n = 0; n < s->irq_routes->nr; n++) {
1475         entry = &s->irq_routes->entries[n];
1476         if (entry->gsi != new_entry->gsi) {
1477             continue;
1478         }
1479 
1480         if(!memcmp(entry, new_entry, sizeof *entry)) {
1481             return 0;
1482         }
1483 
1484         *entry = *new_entry;
1485 
1486         return 0;
1487     }
1488 
1489     return -ESRCH;
1490 }
1491 
1492 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1493 {
1494     struct kvm_irq_routing_entry e = {};
1495 
1496     assert(pin < s->gsi_count);
1497 
1498     e.gsi = irq;
1499     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1500     e.flags = 0;
1501     e.u.irqchip.irqchip = irqchip;
1502     e.u.irqchip.pin = pin;
1503     kvm_add_routing_entry(s, &e);
1504 }
1505 
1506 void kvm_irqchip_release_virq(KVMState *s, int virq)
1507 {
1508     struct kvm_irq_routing_entry *e;
1509     int i;
1510 
1511     if (kvm_gsi_direct_mapping()) {
1512         return;
1513     }
1514 
1515     for (i = 0; i < s->irq_routes->nr; i++) {
1516         e = &s->irq_routes->entries[i];
1517         if (e->gsi == virq) {
1518             s->irq_routes->nr--;
1519             *e = s->irq_routes->entries[s->irq_routes->nr];
1520         }
1521     }
1522     clear_gsi(s, virq);
1523     kvm_arch_release_virq_post(virq);
1524     trace_kvm_irqchip_release_virq(virq);
1525 }
1526 
1527 void kvm_irqchip_add_change_notifier(Notifier *n)
1528 {
1529     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1530 }
1531 
1532 void kvm_irqchip_remove_change_notifier(Notifier *n)
1533 {
1534     notifier_remove(n);
1535 }
1536 
1537 void kvm_irqchip_change_notify(void)
1538 {
1539     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1540 }
1541 
1542 static unsigned int kvm_hash_msi(uint32_t data)
1543 {
1544     /* This is optimized for IA32 MSI layout. However, no other arch shall
1545      * repeat the mistake of not providing a direct MSI injection API. */
1546     return data & 0xff;
1547 }
1548 
1549 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1550 {
1551     KVMMSIRoute *route, *next;
1552     unsigned int hash;
1553 
1554     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1555         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1556             kvm_irqchip_release_virq(s, route->kroute.gsi);
1557             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1558             g_free(route);
1559         }
1560     }
1561 }
1562 
1563 static int kvm_irqchip_get_virq(KVMState *s)
1564 {
1565     int next_virq;
1566 
1567     /*
1568      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1569      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1570      * number can succeed even though a new route entry cannot be added.
1571      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1572      */
1573     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1574         kvm_flush_dynamic_msi_routes(s);
1575     }
1576 
1577     /* Return the lowest unused GSI in the bitmap */
1578     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1579     if (next_virq >= s->gsi_count) {
1580         return -ENOSPC;
1581     } else {
1582         return next_virq;
1583     }
1584 }
1585 
1586 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1587 {
1588     unsigned int hash = kvm_hash_msi(msg.data);
1589     KVMMSIRoute *route;
1590 
1591     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1592         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1593             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1594             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1595             return route;
1596         }
1597     }
1598     return NULL;
1599 }
1600 
1601 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1602 {
1603     struct kvm_msi msi;
1604     KVMMSIRoute *route;
1605 
1606     if (kvm_direct_msi_allowed) {
1607         msi.address_lo = (uint32_t)msg.address;
1608         msi.address_hi = msg.address >> 32;
1609         msi.data = le32_to_cpu(msg.data);
1610         msi.flags = 0;
1611         memset(msi.pad, 0, sizeof(msi.pad));
1612 
1613         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1614     }
1615 
1616     route = kvm_lookup_msi_route(s, msg);
1617     if (!route) {
1618         int virq;
1619 
1620         virq = kvm_irqchip_get_virq(s);
1621         if (virq < 0) {
1622             return virq;
1623         }
1624 
1625         route = g_malloc0(sizeof(KVMMSIRoute));
1626         route->kroute.gsi = virq;
1627         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1628         route->kroute.flags = 0;
1629         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1630         route->kroute.u.msi.address_hi = msg.address >> 32;
1631         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1632 
1633         kvm_add_routing_entry(s, &route->kroute);
1634         kvm_irqchip_commit_routes(s);
1635 
1636         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1637                            entry);
1638     }
1639 
1640     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1641 
1642     return kvm_set_irq(s, route->kroute.gsi, 1);
1643 }
1644 
1645 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1646 {
1647     struct kvm_irq_routing_entry kroute = {};
1648     int virq;
1649     MSIMessage msg = {0, 0};
1650 
1651     if (pci_available && dev) {
1652         msg = pci_get_msi_message(dev, vector);
1653     }
1654 
1655     if (kvm_gsi_direct_mapping()) {
1656         return kvm_arch_msi_data_to_gsi(msg.data);
1657     }
1658 
1659     if (!kvm_gsi_routing_enabled()) {
1660         return -ENOSYS;
1661     }
1662 
1663     virq = kvm_irqchip_get_virq(s);
1664     if (virq < 0) {
1665         return virq;
1666     }
1667 
1668     kroute.gsi = virq;
1669     kroute.type = KVM_IRQ_ROUTING_MSI;
1670     kroute.flags = 0;
1671     kroute.u.msi.address_lo = (uint32_t)msg.address;
1672     kroute.u.msi.address_hi = msg.address >> 32;
1673     kroute.u.msi.data = le32_to_cpu(msg.data);
1674     if (pci_available && kvm_msi_devid_required()) {
1675         kroute.flags = KVM_MSI_VALID_DEVID;
1676         kroute.u.msi.devid = pci_requester_id(dev);
1677     }
1678     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1679         kvm_irqchip_release_virq(s, virq);
1680         return -EINVAL;
1681     }
1682 
1683     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1684                                     vector, virq);
1685 
1686     kvm_add_routing_entry(s, &kroute);
1687     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1688     kvm_irqchip_commit_routes(s);
1689 
1690     return virq;
1691 }
1692 
1693 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1694                                  PCIDevice *dev)
1695 {
1696     struct kvm_irq_routing_entry kroute = {};
1697 
1698     if (kvm_gsi_direct_mapping()) {
1699         return 0;
1700     }
1701 
1702     if (!kvm_irqchip_in_kernel()) {
1703         return -ENOSYS;
1704     }
1705 
1706     kroute.gsi = virq;
1707     kroute.type = KVM_IRQ_ROUTING_MSI;
1708     kroute.flags = 0;
1709     kroute.u.msi.address_lo = (uint32_t)msg.address;
1710     kroute.u.msi.address_hi = msg.address >> 32;
1711     kroute.u.msi.data = le32_to_cpu(msg.data);
1712     if (pci_available && kvm_msi_devid_required()) {
1713         kroute.flags = KVM_MSI_VALID_DEVID;
1714         kroute.u.msi.devid = pci_requester_id(dev);
1715     }
1716     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1717         return -EINVAL;
1718     }
1719 
1720     trace_kvm_irqchip_update_msi_route(virq);
1721 
1722     return kvm_update_routing_entry(s, &kroute);
1723 }
1724 
1725 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1726                                     EventNotifier *resample, int virq,
1727                                     bool assign)
1728 {
1729     int fd = event_notifier_get_fd(event);
1730     int rfd = resample ? event_notifier_get_fd(resample) : -1;
1731 
1732     struct kvm_irqfd irqfd = {
1733         .fd = fd,
1734         .gsi = virq,
1735         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1736     };
1737 
1738     if (rfd != -1) {
1739         assert(assign);
1740         if (kvm_irqchip_is_split()) {
1741             /*
1742              * When the slow irqchip (e.g. IOAPIC) is in the
1743              * userspace, KVM kernel resamplefd will not work because
1744              * the EOI of the interrupt will be delivered to userspace
1745              * instead, so the KVM kernel resamplefd kick will be
1746              * skipped.  The userspace here mimics what the kernel
1747              * provides with resamplefd, remember the resamplefd and
1748              * kick it when we receive EOI of this IRQ.
1749              *
1750              * This is hackery because IOAPIC is mostly bypassed
1751              * (except EOI broadcasts) when irqfd is used.  However
1752              * this can bring much performance back for split irqchip
1753              * with INTx IRQs (for VFIO, this gives 93% perf of the
1754              * full fast path, which is 46% perf boost comparing to
1755              * the INTx slow path).
1756              */
1757             kvm_resample_fd_insert(virq, resample);
1758         } else {
1759             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1760             irqfd.resamplefd = rfd;
1761         }
1762     } else if (!assign) {
1763         if (kvm_irqchip_is_split()) {
1764             kvm_resample_fd_remove(virq);
1765         }
1766     }
1767 
1768     if (!kvm_irqfds_enabled()) {
1769         return -ENOSYS;
1770     }
1771 
1772     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1773 }
1774 
1775 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1776 {
1777     struct kvm_irq_routing_entry kroute = {};
1778     int virq;
1779 
1780     if (!kvm_gsi_routing_enabled()) {
1781         return -ENOSYS;
1782     }
1783 
1784     virq = kvm_irqchip_get_virq(s);
1785     if (virq < 0) {
1786         return virq;
1787     }
1788 
1789     kroute.gsi = virq;
1790     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1791     kroute.flags = 0;
1792     kroute.u.adapter.summary_addr = adapter->summary_addr;
1793     kroute.u.adapter.ind_addr = adapter->ind_addr;
1794     kroute.u.adapter.summary_offset = adapter->summary_offset;
1795     kroute.u.adapter.ind_offset = adapter->ind_offset;
1796     kroute.u.adapter.adapter_id = adapter->adapter_id;
1797 
1798     kvm_add_routing_entry(s, &kroute);
1799 
1800     return virq;
1801 }
1802 
1803 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1804 {
1805     struct kvm_irq_routing_entry kroute = {};
1806     int virq;
1807 
1808     if (!kvm_gsi_routing_enabled()) {
1809         return -ENOSYS;
1810     }
1811     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1812         return -ENOSYS;
1813     }
1814     virq = kvm_irqchip_get_virq(s);
1815     if (virq < 0) {
1816         return virq;
1817     }
1818 
1819     kroute.gsi = virq;
1820     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1821     kroute.flags = 0;
1822     kroute.u.hv_sint.vcpu = vcpu;
1823     kroute.u.hv_sint.sint = sint;
1824 
1825     kvm_add_routing_entry(s, &kroute);
1826     kvm_irqchip_commit_routes(s);
1827 
1828     return virq;
1829 }
1830 
1831 #else /* !KVM_CAP_IRQ_ROUTING */
1832 
1833 void kvm_init_irq_routing(KVMState *s)
1834 {
1835 }
1836 
1837 void kvm_irqchip_release_virq(KVMState *s, int virq)
1838 {
1839 }
1840 
1841 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1842 {
1843     abort();
1844 }
1845 
1846 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1847 {
1848     return -ENOSYS;
1849 }
1850 
1851 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1852 {
1853     return -ENOSYS;
1854 }
1855 
1856 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1857 {
1858     return -ENOSYS;
1859 }
1860 
1861 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1862                                     EventNotifier *resample, int virq,
1863                                     bool assign)
1864 {
1865     abort();
1866 }
1867 
1868 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1869 {
1870     return -ENOSYS;
1871 }
1872 #endif /* !KVM_CAP_IRQ_ROUTING */
1873 
1874 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1875                                        EventNotifier *rn, int virq)
1876 {
1877     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1878 }
1879 
1880 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1881                                           int virq)
1882 {
1883     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1884 }
1885 
1886 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1887                                    EventNotifier *rn, qemu_irq irq)
1888 {
1889     gpointer key, gsi;
1890     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1891 
1892     if (!found) {
1893         return -ENXIO;
1894     }
1895     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1896 }
1897 
1898 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1899                                       qemu_irq irq)
1900 {
1901     gpointer key, gsi;
1902     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1903 
1904     if (!found) {
1905         return -ENXIO;
1906     }
1907     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1908 }
1909 
1910 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1911 {
1912     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1913 }
1914 
1915 static void kvm_irqchip_create(KVMState *s)
1916 {
1917     int ret;
1918 
1919     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1920     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1921         ;
1922     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1923         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1924         if (ret < 0) {
1925             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1926             exit(1);
1927         }
1928     } else {
1929         return;
1930     }
1931 
1932     /* First probe and see if there's a arch-specific hook to create the
1933      * in-kernel irqchip for us */
1934     ret = kvm_arch_irqchip_create(s);
1935     if (ret == 0) {
1936         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1937             perror("Split IRQ chip mode not supported.");
1938             exit(1);
1939         } else {
1940             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1941         }
1942     }
1943     if (ret < 0) {
1944         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1945         exit(1);
1946     }
1947 
1948     kvm_kernel_irqchip = true;
1949     /* If we have an in-kernel IRQ chip then we must have asynchronous
1950      * interrupt delivery (though the reverse is not necessarily true)
1951      */
1952     kvm_async_interrupts_allowed = true;
1953     kvm_halt_in_kernel_allowed = true;
1954 
1955     kvm_init_irq_routing(s);
1956 
1957     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1958 }
1959 
1960 /* Find number of supported CPUs using the recommended
1961  * procedure from the kernel API documentation to cope with
1962  * older kernels that may be missing capabilities.
1963  */
1964 static int kvm_recommended_vcpus(KVMState *s)
1965 {
1966     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1967     return (ret) ? ret : 4;
1968 }
1969 
1970 static int kvm_max_vcpus(KVMState *s)
1971 {
1972     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1973     return (ret) ? ret : kvm_recommended_vcpus(s);
1974 }
1975 
1976 static int kvm_max_vcpu_id(KVMState *s)
1977 {
1978     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1979     return (ret) ? ret : kvm_max_vcpus(s);
1980 }
1981 
1982 bool kvm_vcpu_id_is_valid(int vcpu_id)
1983 {
1984     KVMState *s = KVM_STATE(current_accel());
1985     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1986 }
1987 
1988 static int kvm_init(MachineState *ms)
1989 {
1990     MachineClass *mc = MACHINE_GET_CLASS(ms);
1991     static const char upgrade_note[] =
1992         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1993         "(see http://sourceforge.net/projects/kvm).\n";
1994     struct {
1995         const char *name;
1996         int num;
1997     } num_cpus[] = {
1998         { "SMP",          ms->smp.cpus },
1999         { "hotpluggable", ms->smp.max_cpus },
2000         { NULL, }
2001     }, *nc = num_cpus;
2002     int soft_vcpus_limit, hard_vcpus_limit;
2003     KVMState *s;
2004     const KVMCapabilityInfo *missing_cap;
2005     int ret;
2006     int type = 0;
2007     const char *kvm_type;
2008     uint64_t dirty_log_manual_caps;
2009 
2010     s = KVM_STATE(ms->accelerator);
2011 
2012     /*
2013      * On systems where the kernel can support different base page
2014      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2015      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2016      * page size for the system though.
2017      */
2018     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2019 
2020     s->sigmask_len = 8;
2021 
2022 #ifdef KVM_CAP_SET_GUEST_DEBUG
2023     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2024 #endif
2025     QLIST_INIT(&s->kvm_parked_vcpus);
2026     s->vmfd = -1;
2027     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2028     if (s->fd == -1) {
2029         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2030         ret = -errno;
2031         goto err;
2032     }
2033 
2034     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2035     if (ret < KVM_API_VERSION) {
2036         if (ret >= 0) {
2037             ret = -EINVAL;
2038         }
2039         fprintf(stderr, "kvm version too old\n");
2040         goto err;
2041     }
2042 
2043     if (ret > KVM_API_VERSION) {
2044         ret = -EINVAL;
2045         fprintf(stderr, "kvm version not supported\n");
2046         goto err;
2047     }
2048 
2049     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2050     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2051 
2052     /* If unspecified, use the default value */
2053     if (!s->nr_slots) {
2054         s->nr_slots = 32;
2055     }
2056 
2057     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2058     if (s->nr_as <= 1) {
2059         s->nr_as = 1;
2060     }
2061     s->as = g_new0(struct KVMAs, s->nr_as);
2062 
2063     kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
2064     if (mc->kvm_type) {
2065         type = mc->kvm_type(ms, kvm_type);
2066     } else if (kvm_type) {
2067         ret = -EINVAL;
2068         fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
2069         goto err;
2070     }
2071 
2072     do {
2073         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2074     } while (ret == -EINTR);
2075 
2076     if (ret < 0) {
2077         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2078                 strerror(-ret));
2079 
2080 #ifdef TARGET_S390X
2081         if (ret == -EINVAL) {
2082             fprintf(stderr,
2083                     "Host kernel setup problem detected. Please verify:\n");
2084             fprintf(stderr, "- for kernels supporting the switch_amode or"
2085                     " user_mode parameters, whether\n");
2086             fprintf(stderr,
2087                     "  user space is running in primary address space\n");
2088             fprintf(stderr,
2089                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2090                     "whether it is enabled\n");
2091         }
2092 #endif
2093         goto err;
2094     }
2095 
2096     s->vmfd = ret;
2097 
2098     /* check the vcpu limits */
2099     soft_vcpus_limit = kvm_recommended_vcpus(s);
2100     hard_vcpus_limit = kvm_max_vcpus(s);
2101 
2102     while (nc->name) {
2103         if (nc->num > soft_vcpus_limit) {
2104             warn_report("Number of %s cpus requested (%d) exceeds "
2105                         "the recommended cpus supported by KVM (%d)",
2106                         nc->name, nc->num, soft_vcpus_limit);
2107 
2108             if (nc->num > hard_vcpus_limit) {
2109                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2110                         "the maximum cpus supported by KVM (%d)\n",
2111                         nc->name, nc->num, hard_vcpus_limit);
2112                 exit(1);
2113             }
2114         }
2115         nc++;
2116     }
2117 
2118     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2119     if (!missing_cap) {
2120         missing_cap =
2121             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2122     }
2123     if (missing_cap) {
2124         ret = -EINVAL;
2125         fprintf(stderr, "kvm does not support %s\n%s",
2126                 missing_cap->name, upgrade_note);
2127         goto err;
2128     }
2129 
2130     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2131     s->coalesced_pio = s->coalesced_mmio &&
2132                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2133 
2134     dirty_log_manual_caps =
2135         kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2136     dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2137                               KVM_DIRTY_LOG_INITIALLY_SET);
2138     s->manual_dirty_log_protect = dirty_log_manual_caps;
2139     if (dirty_log_manual_caps) {
2140         ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2141                                    dirty_log_manual_caps);
2142         if (ret) {
2143             warn_report("Trying to enable capability %"PRIu64" of "
2144                         "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2145                         "Falling back to the legacy mode. ",
2146                         dirty_log_manual_caps);
2147             s->manual_dirty_log_protect = 0;
2148         }
2149     }
2150 
2151 #ifdef KVM_CAP_VCPU_EVENTS
2152     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2153 #endif
2154 
2155     s->robust_singlestep =
2156         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2157 
2158 #ifdef KVM_CAP_DEBUGREGS
2159     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2160 #endif
2161 
2162     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2163 
2164 #ifdef KVM_CAP_IRQ_ROUTING
2165     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2166 #endif
2167 
2168     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2169 
2170     s->irq_set_ioctl = KVM_IRQ_LINE;
2171     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2172         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2173     }
2174 
2175     kvm_readonly_mem_allowed =
2176         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2177 
2178     kvm_eventfds_allowed =
2179         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2180 
2181     kvm_irqfds_allowed =
2182         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2183 
2184     kvm_resamplefds_allowed =
2185         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2186 
2187     kvm_vm_attributes_allowed =
2188         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2189 
2190     kvm_ioeventfd_any_length_allowed =
2191         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2192 
2193     kvm_state = s;
2194 
2195     /*
2196      * if memory encryption object is specified then initialize the memory
2197      * encryption context.
2198      */
2199     if (ms->memory_encryption) {
2200         kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2201         if (!kvm_state->memcrypt_handle) {
2202             ret = -1;
2203             goto err;
2204         }
2205 
2206         kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2207     }
2208 
2209     ret = kvm_arch_init(ms, s);
2210     if (ret < 0) {
2211         goto err;
2212     }
2213 
2214     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2215         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2216     }
2217 
2218     qemu_register_reset(kvm_unpoison_all, NULL);
2219 
2220     if (s->kernel_irqchip_allowed) {
2221         kvm_irqchip_create(s);
2222     }
2223 
2224     if (kvm_eventfds_allowed) {
2225         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2226         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2227     }
2228     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2229     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2230 
2231     kvm_memory_listener_register(s, &s->memory_listener,
2232                                  &address_space_memory, 0);
2233     memory_listener_register(&kvm_io_listener,
2234                              &address_space_io);
2235     memory_listener_register(&kvm_coalesced_pio_listener,
2236                              &address_space_io);
2237 
2238     s->many_ioeventfds = kvm_check_many_ioeventfds();
2239 
2240     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2241     if (!s->sync_mmu) {
2242         ret = ram_block_discard_disable(true);
2243         assert(!ret);
2244     }
2245 
2246     cpus_register_accel(&kvm_cpus);
2247     return 0;
2248 
2249 err:
2250     assert(ret < 0);
2251     if (s->vmfd >= 0) {
2252         close(s->vmfd);
2253     }
2254     if (s->fd != -1) {
2255         close(s->fd);
2256     }
2257     g_free(s->memory_listener.slots);
2258 
2259     return ret;
2260 }
2261 
2262 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2263 {
2264     s->sigmask_len = sigmask_len;
2265 }
2266 
2267 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2268                           int size, uint32_t count)
2269 {
2270     int i;
2271     uint8_t *ptr = data;
2272 
2273     for (i = 0; i < count; i++) {
2274         address_space_rw(&address_space_io, port, attrs,
2275                          ptr, size,
2276                          direction == KVM_EXIT_IO_OUT);
2277         ptr += size;
2278     }
2279 }
2280 
2281 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2282 {
2283     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2284             run->internal.suberror);
2285 
2286     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2287         int i;
2288 
2289         for (i = 0; i < run->internal.ndata; ++i) {
2290             fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2291                     i, (uint64_t)run->internal.data[i]);
2292         }
2293     }
2294     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2295         fprintf(stderr, "emulation failure\n");
2296         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2297             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2298             return EXCP_INTERRUPT;
2299         }
2300     }
2301     /* FIXME: Should trigger a qmp message to let management know
2302      * something went wrong.
2303      */
2304     return -1;
2305 }
2306 
2307 void kvm_flush_coalesced_mmio_buffer(void)
2308 {
2309     KVMState *s = kvm_state;
2310 
2311     if (s->coalesced_flush_in_progress) {
2312         return;
2313     }
2314 
2315     s->coalesced_flush_in_progress = true;
2316 
2317     if (s->coalesced_mmio_ring) {
2318         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2319         while (ring->first != ring->last) {
2320             struct kvm_coalesced_mmio *ent;
2321 
2322             ent = &ring->coalesced_mmio[ring->first];
2323 
2324             if (ent->pio == 1) {
2325                 address_space_write(&address_space_io, ent->phys_addr,
2326                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2327                                     ent->len);
2328             } else {
2329                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2330             }
2331             smp_wmb();
2332             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2333         }
2334     }
2335 
2336     s->coalesced_flush_in_progress = false;
2337 }
2338 
2339 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2340 {
2341     if (!cpu->vcpu_dirty) {
2342         kvm_arch_get_registers(cpu);
2343         cpu->vcpu_dirty = true;
2344     }
2345 }
2346 
2347 void kvm_cpu_synchronize_state(CPUState *cpu)
2348 {
2349     if (!cpu->vcpu_dirty) {
2350         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2351     }
2352 }
2353 
2354 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2355 {
2356     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2357     cpu->vcpu_dirty = false;
2358 }
2359 
2360 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2361 {
2362     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2363 }
2364 
2365 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2366 {
2367     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2368     cpu->vcpu_dirty = false;
2369 }
2370 
2371 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2372 {
2373     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2374 }
2375 
2376 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2377 {
2378     cpu->vcpu_dirty = true;
2379 }
2380 
2381 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2382 {
2383     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2384 }
2385 
2386 #ifdef KVM_HAVE_MCE_INJECTION
2387 static __thread void *pending_sigbus_addr;
2388 static __thread int pending_sigbus_code;
2389 static __thread bool have_sigbus_pending;
2390 #endif
2391 
2392 static void kvm_cpu_kick(CPUState *cpu)
2393 {
2394     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2395 }
2396 
2397 static void kvm_cpu_kick_self(void)
2398 {
2399     if (kvm_immediate_exit) {
2400         kvm_cpu_kick(current_cpu);
2401     } else {
2402         qemu_cpu_kick_self();
2403     }
2404 }
2405 
2406 static void kvm_eat_signals(CPUState *cpu)
2407 {
2408     struct timespec ts = { 0, 0 };
2409     siginfo_t siginfo;
2410     sigset_t waitset;
2411     sigset_t chkset;
2412     int r;
2413 
2414     if (kvm_immediate_exit) {
2415         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2416         /* Write kvm_run->immediate_exit before the cpu->exit_request
2417          * write in kvm_cpu_exec.
2418          */
2419         smp_wmb();
2420         return;
2421     }
2422 
2423     sigemptyset(&waitset);
2424     sigaddset(&waitset, SIG_IPI);
2425 
2426     do {
2427         r = sigtimedwait(&waitset, &siginfo, &ts);
2428         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2429             perror("sigtimedwait");
2430             exit(1);
2431         }
2432 
2433         r = sigpending(&chkset);
2434         if (r == -1) {
2435             perror("sigpending");
2436             exit(1);
2437         }
2438     } while (sigismember(&chkset, SIG_IPI));
2439 }
2440 
2441 int kvm_cpu_exec(CPUState *cpu)
2442 {
2443     struct kvm_run *run = cpu->kvm_run;
2444     int ret, run_ret;
2445 
2446     DPRINTF("kvm_cpu_exec()\n");
2447 
2448     if (kvm_arch_process_async_events(cpu)) {
2449         qatomic_set(&cpu->exit_request, 0);
2450         return EXCP_HLT;
2451     }
2452 
2453     qemu_mutex_unlock_iothread();
2454     cpu_exec_start(cpu);
2455 
2456     do {
2457         MemTxAttrs attrs;
2458 
2459         if (cpu->vcpu_dirty) {
2460             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2461             cpu->vcpu_dirty = false;
2462         }
2463 
2464         kvm_arch_pre_run(cpu, run);
2465         if (qatomic_read(&cpu->exit_request)) {
2466             DPRINTF("interrupt exit requested\n");
2467             /*
2468              * KVM requires us to reenter the kernel after IO exits to complete
2469              * instruction emulation. This self-signal will ensure that we
2470              * leave ASAP again.
2471              */
2472             kvm_cpu_kick_self();
2473         }
2474 
2475         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2476          * Matching barrier in kvm_eat_signals.
2477          */
2478         smp_rmb();
2479 
2480         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2481 
2482         attrs = kvm_arch_post_run(cpu, run);
2483 
2484 #ifdef KVM_HAVE_MCE_INJECTION
2485         if (unlikely(have_sigbus_pending)) {
2486             qemu_mutex_lock_iothread();
2487             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2488                                     pending_sigbus_addr);
2489             have_sigbus_pending = false;
2490             qemu_mutex_unlock_iothread();
2491         }
2492 #endif
2493 
2494         if (run_ret < 0) {
2495             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2496                 DPRINTF("io window exit\n");
2497                 kvm_eat_signals(cpu);
2498                 ret = EXCP_INTERRUPT;
2499                 break;
2500             }
2501             fprintf(stderr, "error: kvm run failed %s\n",
2502                     strerror(-run_ret));
2503 #ifdef TARGET_PPC
2504             if (run_ret == -EBUSY) {
2505                 fprintf(stderr,
2506                         "This is probably because your SMT is enabled.\n"
2507                         "VCPU can only run on primary threads with all "
2508                         "secondary threads offline.\n");
2509             }
2510 #endif
2511             ret = -1;
2512             break;
2513         }
2514 
2515         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2516         switch (run->exit_reason) {
2517         case KVM_EXIT_IO:
2518             DPRINTF("handle_io\n");
2519             /* Called outside BQL */
2520             kvm_handle_io(run->io.port, attrs,
2521                           (uint8_t *)run + run->io.data_offset,
2522                           run->io.direction,
2523                           run->io.size,
2524                           run->io.count);
2525             ret = 0;
2526             break;
2527         case KVM_EXIT_MMIO:
2528             DPRINTF("handle_mmio\n");
2529             /* Called outside BQL */
2530             address_space_rw(&address_space_memory,
2531                              run->mmio.phys_addr, attrs,
2532                              run->mmio.data,
2533                              run->mmio.len,
2534                              run->mmio.is_write);
2535             ret = 0;
2536             break;
2537         case KVM_EXIT_IRQ_WINDOW_OPEN:
2538             DPRINTF("irq_window_open\n");
2539             ret = EXCP_INTERRUPT;
2540             break;
2541         case KVM_EXIT_SHUTDOWN:
2542             DPRINTF("shutdown\n");
2543             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2544             ret = EXCP_INTERRUPT;
2545             break;
2546         case KVM_EXIT_UNKNOWN:
2547             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2548                     (uint64_t)run->hw.hardware_exit_reason);
2549             ret = -1;
2550             break;
2551         case KVM_EXIT_INTERNAL_ERROR:
2552             ret = kvm_handle_internal_error(cpu, run);
2553             break;
2554         case KVM_EXIT_SYSTEM_EVENT:
2555             switch (run->system_event.type) {
2556             case KVM_SYSTEM_EVENT_SHUTDOWN:
2557                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2558                 ret = EXCP_INTERRUPT;
2559                 break;
2560             case KVM_SYSTEM_EVENT_RESET:
2561                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2562                 ret = EXCP_INTERRUPT;
2563                 break;
2564             case KVM_SYSTEM_EVENT_CRASH:
2565                 kvm_cpu_synchronize_state(cpu);
2566                 qemu_mutex_lock_iothread();
2567                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2568                 qemu_mutex_unlock_iothread();
2569                 ret = 0;
2570                 break;
2571             default:
2572                 DPRINTF("kvm_arch_handle_exit\n");
2573                 ret = kvm_arch_handle_exit(cpu, run);
2574                 break;
2575             }
2576             break;
2577         default:
2578             DPRINTF("kvm_arch_handle_exit\n");
2579             ret = kvm_arch_handle_exit(cpu, run);
2580             break;
2581         }
2582     } while (ret == 0);
2583 
2584     cpu_exec_end(cpu);
2585     qemu_mutex_lock_iothread();
2586 
2587     if (ret < 0) {
2588         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2589         vm_stop(RUN_STATE_INTERNAL_ERROR);
2590     }
2591 
2592     qatomic_set(&cpu->exit_request, 0);
2593     return ret;
2594 }
2595 
2596 int kvm_ioctl(KVMState *s, int type, ...)
2597 {
2598     int ret;
2599     void *arg;
2600     va_list ap;
2601 
2602     va_start(ap, type);
2603     arg = va_arg(ap, void *);
2604     va_end(ap);
2605 
2606     trace_kvm_ioctl(type, arg);
2607     ret = ioctl(s->fd, type, arg);
2608     if (ret == -1) {
2609         ret = -errno;
2610     }
2611     return ret;
2612 }
2613 
2614 int kvm_vm_ioctl(KVMState *s, int type, ...)
2615 {
2616     int ret;
2617     void *arg;
2618     va_list ap;
2619 
2620     va_start(ap, type);
2621     arg = va_arg(ap, void *);
2622     va_end(ap);
2623 
2624     trace_kvm_vm_ioctl(type, arg);
2625     ret = ioctl(s->vmfd, type, arg);
2626     if (ret == -1) {
2627         ret = -errno;
2628     }
2629     return ret;
2630 }
2631 
2632 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2633 {
2634     int ret;
2635     void *arg;
2636     va_list ap;
2637 
2638     va_start(ap, type);
2639     arg = va_arg(ap, void *);
2640     va_end(ap);
2641 
2642     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2643     ret = ioctl(cpu->kvm_fd, type, arg);
2644     if (ret == -1) {
2645         ret = -errno;
2646     }
2647     return ret;
2648 }
2649 
2650 int kvm_device_ioctl(int fd, int type, ...)
2651 {
2652     int ret;
2653     void *arg;
2654     va_list ap;
2655 
2656     va_start(ap, type);
2657     arg = va_arg(ap, void *);
2658     va_end(ap);
2659 
2660     trace_kvm_device_ioctl(fd, type, arg);
2661     ret = ioctl(fd, type, arg);
2662     if (ret == -1) {
2663         ret = -errno;
2664     }
2665     return ret;
2666 }
2667 
2668 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2669 {
2670     int ret;
2671     struct kvm_device_attr attribute = {
2672         .group = group,
2673         .attr = attr,
2674     };
2675 
2676     if (!kvm_vm_attributes_allowed) {
2677         return 0;
2678     }
2679 
2680     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2681     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2682     return ret ? 0 : 1;
2683 }
2684 
2685 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2686 {
2687     struct kvm_device_attr attribute = {
2688         .group = group,
2689         .attr = attr,
2690         .flags = 0,
2691     };
2692 
2693     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2694 }
2695 
2696 int kvm_device_access(int fd, int group, uint64_t attr,
2697                       void *val, bool write, Error **errp)
2698 {
2699     struct kvm_device_attr kvmattr;
2700     int err;
2701 
2702     kvmattr.flags = 0;
2703     kvmattr.group = group;
2704     kvmattr.attr = attr;
2705     kvmattr.addr = (uintptr_t)val;
2706 
2707     err = kvm_device_ioctl(fd,
2708                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2709                            &kvmattr);
2710     if (err < 0) {
2711         error_setg_errno(errp, -err,
2712                          "KVM_%s_DEVICE_ATTR failed: Group %d "
2713                          "attr 0x%016" PRIx64,
2714                          write ? "SET" : "GET", group, attr);
2715     }
2716     return err;
2717 }
2718 
2719 bool kvm_has_sync_mmu(void)
2720 {
2721     return kvm_state->sync_mmu;
2722 }
2723 
2724 int kvm_has_vcpu_events(void)
2725 {
2726     return kvm_state->vcpu_events;
2727 }
2728 
2729 int kvm_has_robust_singlestep(void)
2730 {
2731     return kvm_state->robust_singlestep;
2732 }
2733 
2734 int kvm_has_debugregs(void)
2735 {
2736     return kvm_state->debugregs;
2737 }
2738 
2739 int kvm_max_nested_state_length(void)
2740 {
2741     return kvm_state->max_nested_state_len;
2742 }
2743 
2744 int kvm_has_many_ioeventfds(void)
2745 {
2746     if (!kvm_enabled()) {
2747         return 0;
2748     }
2749     return kvm_state->many_ioeventfds;
2750 }
2751 
2752 int kvm_has_gsi_routing(void)
2753 {
2754 #ifdef KVM_CAP_IRQ_ROUTING
2755     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2756 #else
2757     return false;
2758 #endif
2759 }
2760 
2761 int kvm_has_intx_set_mask(void)
2762 {
2763     return kvm_state->intx_set_mask;
2764 }
2765 
2766 bool kvm_arm_supports_user_irq(void)
2767 {
2768     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2769 }
2770 
2771 #ifdef KVM_CAP_SET_GUEST_DEBUG
2772 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2773                                                  target_ulong pc)
2774 {
2775     struct kvm_sw_breakpoint *bp;
2776 
2777     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2778         if (bp->pc == pc) {
2779             return bp;
2780         }
2781     }
2782     return NULL;
2783 }
2784 
2785 int kvm_sw_breakpoints_active(CPUState *cpu)
2786 {
2787     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2788 }
2789 
2790 struct kvm_set_guest_debug_data {
2791     struct kvm_guest_debug dbg;
2792     int err;
2793 };
2794 
2795 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2796 {
2797     struct kvm_set_guest_debug_data *dbg_data =
2798         (struct kvm_set_guest_debug_data *) data.host_ptr;
2799 
2800     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2801                                    &dbg_data->dbg);
2802 }
2803 
2804 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2805 {
2806     struct kvm_set_guest_debug_data data;
2807 
2808     data.dbg.control = reinject_trap;
2809 
2810     if (cpu->singlestep_enabled) {
2811         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2812     }
2813     kvm_arch_update_guest_debug(cpu, &data.dbg);
2814 
2815     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2816                RUN_ON_CPU_HOST_PTR(&data));
2817     return data.err;
2818 }
2819 
2820 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2821                           target_ulong len, int type)
2822 {
2823     struct kvm_sw_breakpoint *bp;
2824     int err;
2825 
2826     if (type == GDB_BREAKPOINT_SW) {
2827         bp = kvm_find_sw_breakpoint(cpu, addr);
2828         if (bp) {
2829             bp->use_count++;
2830             return 0;
2831         }
2832 
2833         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2834         bp->pc = addr;
2835         bp->use_count = 1;
2836         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2837         if (err) {
2838             g_free(bp);
2839             return err;
2840         }
2841 
2842         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2843     } else {
2844         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2845         if (err) {
2846             return err;
2847         }
2848     }
2849 
2850     CPU_FOREACH(cpu) {
2851         err = kvm_update_guest_debug(cpu, 0);
2852         if (err) {
2853             return err;
2854         }
2855     }
2856     return 0;
2857 }
2858 
2859 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2860                           target_ulong len, int type)
2861 {
2862     struct kvm_sw_breakpoint *bp;
2863     int err;
2864 
2865     if (type == GDB_BREAKPOINT_SW) {
2866         bp = kvm_find_sw_breakpoint(cpu, addr);
2867         if (!bp) {
2868             return -ENOENT;
2869         }
2870 
2871         if (bp->use_count > 1) {
2872             bp->use_count--;
2873             return 0;
2874         }
2875 
2876         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2877         if (err) {
2878             return err;
2879         }
2880 
2881         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2882         g_free(bp);
2883     } else {
2884         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2885         if (err) {
2886             return err;
2887         }
2888     }
2889 
2890     CPU_FOREACH(cpu) {
2891         err = kvm_update_guest_debug(cpu, 0);
2892         if (err) {
2893             return err;
2894         }
2895     }
2896     return 0;
2897 }
2898 
2899 void kvm_remove_all_breakpoints(CPUState *cpu)
2900 {
2901     struct kvm_sw_breakpoint *bp, *next;
2902     KVMState *s = cpu->kvm_state;
2903     CPUState *tmpcpu;
2904 
2905     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2906         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2907             /* Try harder to find a CPU that currently sees the breakpoint. */
2908             CPU_FOREACH(tmpcpu) {
2909                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2910                     break;
2911                 }
2912             }
2913         }
2914         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2915         g_free(bp);
2916     }
2917     kvm_arch_remove_all_hw_breakpoints();
2918 
2919     CPU_FOREACH(cpu) {
2920         kvm_update_guest_debug(cpu, 0);
2921     }
2922 }
2923 
2924 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2925 
2926 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2927 {
2928     return -EINVAL;
2929 }
2930 
2931 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2932                           target_ulong len, int type)
2933 {
2934     return -EINVAL;
2935 }
2936 
2937 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2938                           target_ulong len, int type)
2939 {
2940     return -EINVAL;
2941 }
2942 
2943 void kvm_remove_all_breakpoints(CPUState *cpu)
2944 {
2945 }
2946 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2947 
2948 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2949 {
2950     KVMState *s = kvm_state;
2951     struct kvm_signal_mask *sigmask;
2952     int r;
2953 
2954     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2955 
2956     sigmask->len = s->sigmask_len;
2957     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2958     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2959     g_free(sigmask);
2960 
2961     return r;
2962 }
2963 
2964 static void kvm_ipi_signal(int sig)
2965 {
2966     if (current_cpu) {
2967         assert(kvm_immediate_exit);
2968         kvm_cpu_kick(current_cpu);
2969     }
2970 }
2971 
2972 void kvm_init_cpu_signals(CPUState *cpu)
2973 {
2974     int r;
2975     sigset_t set;
2976     struct sigaction sigact;
2977 
2978     memset(&sigact, 0, sizeof(sigact));
2979     sigact.sa_handler = kvm_ipi_signal;
2980     sigaction(SIG_IPI, &sigact, NULL);
2981 
2982     pthread_sigmask(SIG_BLOCK, NULL, &set);
2983 #if defined KVM_HAVE_MCE_INJECTION
2984     sigdelset(&set, SIGBUS);
2985     pthread_sigmask(SIG_SETMASK, &set, NULL);
2986 #endif
2987     sigdelset(&set, SIG_IPI);
2988     if (kvm_immediate_exit) {
2989         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2990     } else {
2991         r = kvm_set_signal_mask(cpu, &set);
2992     }
2993     if (r) {
2994         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2995         exit(1);
2996     }
2997 }
2998 
2999 /* Called asynchronously in VCPU thread.  */
3000 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3001 {
3002 #ifdef KVM_HAVE_MCE_INJECTION
3003     if (have_sigbus_pending) {
3004         return 1;
3005     }
3006     have_sigbus_pending = true;
3007     pending_sigbus_addr = addr;
3008     pending_sigbus_code = code;
3009     qatomic_set(&cpu->exit_request, 1);
3010     return 0;
3011 #else
3012     return 1;
3013 #endif
3014 }
3015 
3016 /* Called synchronously (via signalfd) in main thread.  */
3017 int kvm_on_sigbus(int code, void *addr)
3018 {
3019 #ifdef KVM_HAVE_MCE_INJECTION
3020     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3021      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3022      * we can only get action optional here.
3023      */
3024     assert(code != BUS_MCEERR_AR);
3025     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3026     return 0;
3027 #else
3028     return 1;
3029 #endif
3030 }
3031 
3032 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3033 {
3034     int ret;
3035     struct kvm_create_device create_dev;
3036 
3037     create_dev.type = type;
3038     create_dev.fd = -1;
3039     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3040 
3041     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3042         return -ENOTSUP;
3043     }
3044 
3045     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3046     if (ret) {
3047         return ret;
3048     }
3049 
3050     return test ? 0 : create_dev.fd;
3051 }
3052 
3053 bool kvm_device_supported(int vmfd, uint64_t type)
3054 {
3055     struct kvm_create_device create_dev = {
3056         .type = type,
3057         .fd = -1,
3058         .flags = KVM_CREATE_DEVICE_TEST,
3059     };
3060 
3061     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3062         return false;
3063     }
3064 
3065     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3066 }
3067 
3068 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3069 {
3070     struct kvm_one_reg reg;
3071     int r;
3072 
3073     reg.id = id;
3074     reg.addr = (uintptr_t) source;
3075     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3076     if (r) {
3077         trace_kvm_failed_reg_set(id, strerror(-r));
3078     }
3079     return r;
3080 }
3081 
3082 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3083 {
3084     struct kvm_one_reg reg;
3085     int r;
3086 
3087     reg.id = id;
3088     reg.addr = (uintptr_t) target;
3089     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3090     if (r) {
3091         trace_kvm_failed_reg_get(id, strerror(-r));
3092     }
3093     return r;
3094 }
3095 
3096 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3097                                  hwaddr start_addr, hwaddr size)
3098 {
3099     KVMState *kvm = KVM_STATE(ms->accelerator);
3100     int i;
3101 
3102     for (i = 0; i < kvm->nr_as; ++i) {
3103         if (kvm->as[i].as == as && kvm->as[i].ml) {
3104             size = MIN(kvm_max_slot_size, size);
3105             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3106                                                     start_addr, size);
3107         }
3108     }
3109 
3110     return false;
3111 }
3112 
3113 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3114                                    const char *name, void *opaque,
3115                                    Error **errp)
3116 {
3117     KVMState *s = KVM_STATE(obj);
3118     int64_t value = s->kvm_shadow_mem;
3119 
3120     visit_type_int(v, name, &value, errp);
3121 }
3122 
3123 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3124                                    const char *name, void *opaque,
3125                                    Error **errp)
3126 {
3127     KVMState *s = KVM_STATE(obj);
3128     int64_t value;
3129 
3130     if (!visit_type_int(v, name, &value, errp)) {
3131         return;
3132     }
3133 
3134     s->kvm_shadow_mem = value;
3135 }
3136 
3137 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3138                                    const char *name, void *opaque,
3139                                    Error **errp)
3140 {
3141     KVMState *s = KVM_STATE(obj);
3142     OnOffSplit mode;
3143 
3144     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3145         return;
3146     }
3147     switch (mode) {
3148     case ON_OFF_SPLIT_ON:
3149         s->kernel_irqchip_allowed = true;
3150         s->kernel_irqchip_required = true;
3151         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3152         break;
3153     case ON_OFF_SPLIT_OFF:
3154         s->kernel_irqchip_allowed = false;
3155         s->kernel_irqchip_required = false;
3156         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3157         break;
3158     case ON_OFF_SPLIT_SPLIT:
3159         s->kernel_irqchip_allowed = true;
3160         s->kernel_irqchip_required = true;
3161         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3162         break;
3163     default:
3164         /* The value was checked in visit_type_OnOffSplit() above. If
3165          * we get here, then something is wrong in QEMU.
3166          */
3167         abort();
3168     }
3169 }
3170 
3171 bool kvm_kernel_irqchip_allowed(void)
3172 {
3173     return kvm_state->kernel_irqchip_allowed;
3174 }
3175 
3176 bool kvm_kernel_irqchip_required(void)
3177 {
3178     return kvm_state->kernel_irqchip_required;
3179 }
3180 
3181 bool kvm_kernel_irqchip_split(void)
3182 {
3183     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3184 }
3185 
3186 static void kvm_accel_instance_init(Object *obj)
3187 {
3188     KVMState *s = KVM_STATE(obj);
3189 
3190     s->kvm_shadow_mem = -1;
3191     s->kernel_irqchip_allowed = true;
3192     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3193 }
3194 
3195 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3196 {
3197     AccelClass *ac = ACCEL_CLASS(oc);
3198     ac->name = "KVM";
3199     ac->init_machine = kvm_init;
3200     ac->has_memory = kvm_accel_has_memory;
3201     ac->allowed = &kvm_allowed;
3202 
3203     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3204         NULL, kvm_set_kernel_irqchip,
3205         NULL, NULL);
3206     object_class_property_set_description(oc, "kernel-irqchip",
3207         "Configure KVM in-kernel irqchip");
3208 
3209     object_class_property_add(oc, "kvm-shadow-mem", "int",
3210         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3211         NULL, NULL);
3212     object_class_property_set_description(oc, "kvm-shadow-mem",
3213         "KVM shadow MMU size");
3214 }
3215 
3216 static const TypeInfo kvm_accel_type = {
3217     .name = TYPE_KVM_ACCEL,
3218     .parent = TYPE_ACCEL,
3219     .instance_init = kvm_accel_instance_init,
3220     .class_init = kvm_accel_class_init,
3221     .instance_size = sizeof(KVMState),
3222 };
3223 
3224 static void kvm_type_init(void)
3225 {
3226     type_register_static(&kvm_accel_type);
3227 }
3228 
3229 type_init(kvm_type_init);
3230