1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu-common.h" 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/hw.h" 28 #include "hw/pci/msi.h" 29 #include "hw/pci/msix.h" 30 #include "hw/s390x/adapter.h" 31 #include "exec/gdbstub.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "sysemu/sev.h" 42 #include "sysemu/balloon.h" 43 44 #include "hw/boards.h" 45 46 /* This check must be after config-host.h is included */ 47 #ifdef CONFIG_EVENTFD 48 #include <sys/eventfd.h> 49 #endif 50 51 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 52 * need to use the real host PAGE_SIZE, as that's what KVM will use. 53 */ 54 #define PAGE_SIZE getpagesize() 55 56 //#define DEBUG_KVM 57 58 #ifdef DEBUG_KVM 59 #define DPRINTF(fmt, ...) \ 60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 61 #else 62 #define DPRINTF(fmt, ...) \ 63 do { } while (0) 64 #endif 65 66 #define KVM_MSI_HASHTAB_SIZE 256 67 68 struct KVMParkedVcpu { 69 unsigned long vcpu_id; 70 int kvm_fd; 71 QLIST_ENTRY(KVMParkedVcpu) node; 72 }; 73 74 struct KVMState 75 { 76 AccelState parent_obj; 77 78 int nr_slots; 79 int fd; 80 int vmfd; 81 int coalesced_mmio; 82 int coalesced_pio; 83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 84 bool coalesced_flush_in_progress; 85 int vcpu_events; 86 int robust_singlestep; 87 int debugregs; 88 #ifdef KVM_CAP_SET_GUEST_DEBUG 89 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 90 #endif 91 int many_ioeventfds; 92 int intx_set_mask; 93 bool sync_mmu; 94 /* The man page (and posix) say ioctl numbers are signed int, but 95 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 96 * unsigned, and treating them as signed here can break things */ 97 unsigned irq_set_ioctl; 98 unsigned int sigmask_len; 99 GHashTable *gsimap; 100 #ifdef KVM_CAP_IRQ_ROUTING 101 struct kvm_irq_routing *irq_routes; 102 int nr_allocated_irq_routes; 103 unsigned long *used_gsi_bitmap; 104 unsigned int gsi_count; 105 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 106 #endif 107 KVMMemoryListener memory_listener; 108 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 109 110 /* memory encryption */ 111 void *memcrypt_handle; 112 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 113 }; 114 115 KVMState *kvm_state; 116 bool kvm_kernel_irqchip; 117 bool kvm_split_irqchip; 118 bool kvm_async_interrupts_allowed; 119 bool kvm_halt_in_kernel_allowed; 120 bool kvm_eventfds_allowed; 121 bool kvm_irqfds_allowed; 122 bool kvm_resamplefds_allowed; 123 bool kvm_msi_via_irqfd_allowed; 124 bool kvm_gsi_routing_allowed; 125 bool kvm_gsi_direct_mapping; 126 bool kvm_allowed; 127 bool kvm_readonly_mem_allowed; 128 bool kvm_vm_attributes_allowed; 129 bool kvm_direct_msi_allowed; 130 bool kvm_ioeventfd_any_length_allowed; 131 bool kvm_msi_use_devid; 132 static bool kvm_immediate_exit; 133 134 static const KVMCapabilityInfo kvm_required_capabilites[] = { 135 KVM_CAP_INFO(USER_MEMORY), 136 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 137 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 138 KVM_CAP_LAST_INFO 139 }; 140 141 int kvm_get_max_memslots(void) 142 { 143 KVMState *s = KVM_STATE(current_machine->accelerator); 144 145 return s->nr_slots; 146 } 147 148 bool kvm_memcrypt_enabled(void) 149 { 150 if (kvm_state && kvm_state->memcrypt_handle) { 151 return true; 152 } 153 154 return false; 155 } 156 157 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 158 { 159 if (kvm_state->memcrypt_handle && 160 kvm_state->memcrypt_encrypt_data) { 161 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 162 ptr, len); 163 } 164 165 return 1; 166 } 167 168 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 169 { 170 KVMState *s = kvm_state; 171 int i; 172 173 for (i = 0; i < s->nr_slots; i++) { 174 if (kml->slots[i].memory_size == 0) { 175 return &kml->slots[i]; 176 } 177 } 178 179 return NULL; 180 } 181 182 bool kvm_has_free_slot(MachineState *ms) 183 { 184 KVMState *s = KVM_STATE(ms->accelerator); 185 186 return kvm_get_free_slot(&s->memory_listener); 187 } 188 189 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 190 { 191 KVMSlot *slot = kvm_get_free_slot(kml); 192 193 if (slot) { 194 return slot; 195 } 196 197 fprintf(stderr, "%s: no free slot available\n", __func__); 198 abort(); 199 } 200 201 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 202 hwaddr start_addr, 203 hwaddr size) 204 { 205 KVMState *s = kvm_state; 206 int i; 207 208 for (i = 0; i < s->nr_slots; i++) { 209 KVMSlot *mem = &kml->slots[i]; 210 211 if (start_addr == mem->start_addr && size == mem->memory_size) { 212 return mem; 213 } 214 } 215 216 return NULL; 217 } 218 219 /* 220 * Calculate and align the start address and the size of the section. 221 * Return the size. If the size is 0, the aligned section is empty. 222 */ 223 static hwaddr kvm_align_section(MemoryRegionSection *section, 224 hwaddr *start) 225 { 226 hwaddr size = int128_get64(section->size); 227 hwaddr delta, aligned; 228 229 /* kvm works in page size chunks, but the function may be called 230 with sub-page size and unaligned start address. Pad the start 231 address to next and truncate size to previous page boundary. */ 232 aligned = ROUND_UP(section->offset_within_address_space, 233 qemu_real_host_page_size); 234 delta = aligned - section->offset_within_address_space; 235 *start = aligned; 236 if (delta > size) { 237 return 0; 238 } 239 240 return (size - delta) & qemu_real_host_page_mask; 241 } 242 243 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 244 hwaddr *phys_addr) 245 { 246 KVMMemoryListener *kml = &s->memory_listener; 247 int i; 248 249 for (i = 0; i < s->nr_slots; i++) { 250 KVMSlot *mem = &kml->slots[i]; 251 252 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 253 *phys_addr = mem->start_addr + (ram - mem->ram); 254 return 1; 255 } 256 } 257 258 return 0; 259 } 260 261 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 262 { 263 KVMState *s = kvm_state; 264 struct kvm_userspace_memory_region mem; 265 int ret; 266 267 mem.slot = slot->slot | (kml->as_id << 16); 268 mem.guest_phys_addr = slot->start_addr; 269 mem.userspace_addr = (unsigned long)slot->ram; 270 mem.flags = slot->flags; 271 272 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 273 /* Set the slot size to 0 before setting the slot to the desired 274 * value. This is needed based on KVM commit 75d61fbc. */ 275 mem.memory_size = 0; 276 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 277 } 278 mem.memory_size = slot->memory_size; 279 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 280 slot->old_flags = mem.flags; 281 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 282 mem.memory_size, mem.userspace_addr, ret); 283 return ret; 284 } 285 286 int kvm_destroy_vcpu(CPUState *cpu) 287 { 288 KVMState *s = kvm_state; 289 long mmap_size; 290 struct KVMParkedVcpu *vcpu = NULL; 291 int ret = 0; 292 293 DPRINTF("kvm_destroy_vcpu\n"); 294 295 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 296 if (mmap_size < 0) { 297 ret = mmap_size; 298 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 299 goto err; 300 } 301 302 ret = munmap(cpu->kvm_run, mmap_size); 303 if (ret < 0) { 304 goto err; 305 } 306 307 vcpu = g_malloc0(sizeof(*vcpu)); 308 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 309 vcpu->kvm_fd = cpu->kvm_fd; 310 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 311 err: 312 return ret; 313 } 314 315 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 316 { 317 struct KVMParkedVcpu *cpu; 318 319 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 320 if (cpu->vcpu_id == vcpu_id) { 321 int kvm_fd; 322 323 QLIST_REMOVE(cpu, node); 324 kvm_fd = cpu->kvm_fd; 325 g_free(cpu); 326 return kvm_fd; 327 } 328 } 329 330 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 331 } 332 333 int kvm_init_vcpu(CPUState *cpu) 334 { 335 KVMState *s = kvm_state; 336 long mmap_size; 337 int ret; 338 339 DPRINTF("kvm_init_vcpu\n"); 340 341 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 342 if (ret < 0) { 343 DPRINTF("kvm_create_vcpu failed\n"); 344 goto err; 345 } 346 347 cpu->kvm_fd = ret; 348 cpu->kvm_state = s; 349 cpu->vcpu_dirty = true; 350 351 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 352 if (mmap_size < 0) { 353 ret = mmap_size; 354 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 355 goto err; 356 } 357 358 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 359 cpu->kvm_fd, 0); 360 if (cpu->kvm_run == MAP_FAILED) { 361 ret = -errno; 362 DPRINTF("mmap'ing vcpu state failed\n"); 363 goto err; 364 } 365 366 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 367 s->coalesced_mmio_ring = 368 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 369 } 370 371 ret = kvm_arch_init_vcpu(cpu); 372 err: 373 return ret; 374 } 375 376 /* 377 * dirty pages logging control 378 */ 379 380 static int kvm_mem_flags(MemoryRegion *mr) 381 { 382 bool readonly = mr->readonly || memory_region_is_romd(mr); 383 int flags = 0; 384 385 if (memory_region_get_dirty_log_mask(mr) != 0) { 386 flags |= KVM_MEM_LOG_DIRTY_PAGES; 387 } 388 if (readonly && kvm_readonly_mem_allowed) { 389 flags |= KVM_MEM_READONLY; 390 } 391 return flags; 392 } 393 394 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 395 MemoryRegion *mr) 396 { 397 mem->flags = kvm_mem_flags(mr); 398 399 /* If nothing changed effectively, no need to issue ioctl */ 400 if (mem->flags == mem->old_flags) { 401 return 0; 402 } 403 404 return kvm_set_user_memory_region(kml, mem, false); 405 } 406 407 static int kvm_section_update_flags(KVMMemoryListener *kml, 408 MemoryRegionSection *section) 409 { 410 hwaddr start_addr, size; 411 KVMSlot *mem; 412 413 size = kvm_align_section(section, &start_addr); 414 if (!size) { 415 return 0; 416 } 417 418 mem = kvm_lookup_matching_slot(kml, start_addr, size); 419 if (!mem) { 420 /* We don't have a slot if we want to trap every access. */ 421 return 0; 422 } 423 424 return kvm_slot_update_flags(kml, mem, section->mr); 425 } 426 427 static void kvm_log_start(MemoryListener *listener, 428 MemoryRegionSection *section, 429 int old, int new) 430 { 431 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 432 int r; 433 434 if (old != 0) { 435 return; 436 } 437 438 r = kvm_section_update_flags(kml, section); 439 if (r < 0) { 440 abort(); 441 } 442 } 443 444 static void kvm_log_stop(MemoryListener *listener, 445 MemoryRegionSection *section, 446 int old, int new) 447 { 448 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 449 int r; 450 451 if (new != 0) { 452 return; 453 } 454 455 r = kvm_section_update_flags(kml, section); 456 if (r < 0) { 457 abort(); 458 } 459 } 460 461 /* get kvm's dirty pages bitmap and update qemu's */ 462 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 463 unsigned long *bitmap) 464 { 465 ram_addr_t start = section->offset_within_region + 466 memory_region_get_ram_addr(section->mr); 467 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 468 469 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 470 return 0; 471 } 472 473 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 474 475 /** 476 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 477 * This function updates qemu's dirty bitmap using 478 * memory_region_set_dirty(). This means all bits are set 479 * to dirty. 480 * 481 * @start_add: start of logged region. 482 * @end_addr: end of logged region. 483 */ 484 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 485 MemoryRegionSection *section) 486 { 487 KVMState *s = kvm_state; 488 struct kvm_dirty_log d = {}; 489 KVMSlot *mem; 490 hwaddr start_addr, size; 491 492 size = kvm_align_section(section, &start_addr); 493 if (size) { 494 mem = kvm_lookup_matching_slot(kml, start_addr, size); 495 if (!mem) { 496 /* We don't have a slot if we want to trap every access. */ 497 return 0; 498 } 499 500 /* XXX bad kernel interface alert 501 * For dirty bitmap, kernel allocates array of size aligned to 502 * bits-per-long. But for case when the kernel is 64bits and 503 * the userspace is 32bits, userspace can't align to the same 504 * bits-per-long, since sizeof(long) is different between kernel 505 * and user space. This way, userspace will provide buffer which 506 * may be 4 bytes less than the kernel will use, resulting in 507 * userspace memory corruption (which is not detectable by valgrind 508 * too, in most cases). 509 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 510 * a hope that sizeof(long) won't become >8 any time soon. 511 */ 512 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 513 /*HOST_LONG_BITS*/ 64) / 8; 514 d.dirty_bitmap = g_malloc0(size); 515 516 d.slot = mem->slot | (kml->as_id << 16); 517 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 518 DPRINTF("ioctl failed %d\n", errno); 519 g_free(d.dirty_bitmap); 520 return -1; 521 } 522 523 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 524 g_free(d.dirty_bitmap); 525 } 526 527 return 0; 528 } 529 530 static void kvm_coalesce_mmio_region(MemoryListener *listener, 531 MemoryRegionSection *secion, 532 hwaddr start, hwaddr size) 533 { 534 KVMState *s = kvm_state; 535 536 if (s->coalesced_mmio) { 537 struct kvm_coalesced_mmio_zone zone; 538 539 zone.addr = start; 540 zone.size = size; 541 zone.pad = 0; 542 543 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 544 } 545 } 546 547 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 548 MemoryRegionSection *secion, 549 hwaddr start, hwaddr size) 550 { 551 KVMState *s = kvm_state; 552 553 if (s->coalesced_mmio) { 554 struct kvm_coalesced_mmio_zone zone; 555 556 zone.addr = start; 557 zone.size = size; 558 zone.pad = 0; 559 560 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 561 } 562 } 563 564 static void kvm_coalesce_pio_add(MemoryListener *listener, 565 MemoryRegionSection *section, 566 hwaddr start, hwaddr size) 567 { 568 KVMState *s = kvm_state; 569 570 if (s->coalesced_pio) { 571 struct kvm_coalesced_mmio_zone zone; 572 573 zone.addr = start; 574 zone.size = size; 575 zone.pio = 1; 576 577 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 578 } 579 } 580 581 static void kvm_coalesce_pio_del(MemoryListener *listener, 582 MemoryRegionSection *section, 583 hwaddr start, hwaddr size) 584 { 585 KVMState *s = kvm_state; 586 587 if (s->coalesced_pio) { 588 struct kvm_coalesced_mmio_zone zone; 589 590 zone.addr = start; 591 zone.size = size; 592 zone.pio = 1; 593 594 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 595 } 596 } 597 598 static MemoryListener kvm_coalesced_pio_listener = { 599 .coalesced_io_add = kvm_coalesce_pio_add, 600 .coalesced_io_del = kvm_coalesce_pio_del, 601 }; 602 603 int kvm_check_extension(KVMState *s, unsigned int extension) 604 { 605 int ret; 606 607 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 608 if (ret < 0) { 609 ret = 0; 610 } 611 612 return ret; 613 } 614 615 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 616 { 617 int ret; 618 619 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 620 if (ret < 0) { 621 /* VM wide version not implemented, use global one instead */ 622 ret = kvm_check_extension(s, extension); 623 } 624 625 return ret; 626 } 627 628 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 629 { 630 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 631 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 632 * endianness, but the memory core hands them in target endianness. 633 * For example, PPC is always treated as big-endian even if running 634 * on KVM and on PPC64LE. Correct here. 635 */ 636 switch (size) { 637 case 2: 638 val = bswap16(val); 639 break; 640 case 4: 641 val = bswap32(val); 642 break; 643 } 644 #endif 645 return val; 646 } 647 648 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 649 bool assign, uint32_t size, bool datamatch) 650 { 651 int ret; 652 struct kvm_ioeventfd iofd = { 653 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 654 .addr = addr, 655 .len = size, 656 .flags = 0, 657 .fd = fd, 658 }; 659 660 if (!kvm_enabled()) { 661 return -ENOSYS; 662 } 663 664 if (datamatch) { 665 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 666 } 667 if (!assign) { 668 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 669 } 670 671 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 672 673 if (ret < 0) { 674 return -errno; 675 } 676 677 return 0; 678 } 679 680 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 681 bool assign, uint32_t size, bool datamatch) 682 { 683 struct kvm_ioeventfd kick = { 684 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 685 .addr = addr, 686 .flags = KVM_IOEVENTFD_FLAG_PIO, 687 .len = size, 688 .fd = fd, 689 }; 690 int r; 691 if (!kvm_enabled()) { 692 return -ENOSYS; 693 } 694 if (datamatch) { 695 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 696 } 697 if (!assign) { 698 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 699 } 700 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 701 if (r < 0) { 702 return r; 703 } 704 return 0; 705 } 706 707 708 static int kvm_check_many_ioeventfds(void) 709 { 710 /* Userspace can use ioeventfd for io notification. This requires a host 711 * that supports eventfd(2) and an I/O thread; since eventfd does not 712 * support SIGIO it cannot interrupt the vcpu. 713 * 714 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 715 * can avoid creating too many ioeventfds. 716 */ 717 #if defined(CONFIG_EVENTFD) 718 int ioeventfds[7]; 719 int i, ret = 0; 720 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 721 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 722 if (ioeventfds[i] < 0) { 723 break; 724 } 725 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 726 if (ret < 0) { 727 close(ioeventfds[i]); 728 break; 729 } 730 } 731 732 /* Decide whether many devices are supported or not */ 733 ret = i == ARRAY_SIZE(ioeventfds); 734 735 while (i-- > 0) { 736 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 737 close(ioeventfds[i]); 738 } 739 return ret; 740 #else 741 return 0; 742 #endif 743 } 744 745 static const KVMCapabilityInfo * 746 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 747 { 748 while (list->name) { 749 if (!kvm_check_extension(s, list->value)) { 750 return list; 751 } 752 list++; 753 } 754 return NULL; 755 } 756 757 static void kvm_set_phys_mem(KVMMemoryListener *kml, 758 MemoryRegionSection *section, bool add) 759 { 760 KVMSlot *mem; 761 int err; 762 MemoryRegion *mr = section->mr; 763 bool writeable = !mr->readonly && !mr->rom_device; 764 hwaddr start_addr, size; 765 void *ram; 766 767 if (!memory_region_is_ram(mr)) { 768 if (writeable || !kvm_readonly_mem_allowed) { 769 return; 770 } else if (!mr->romd_mode) { 771 /* If the memory device is not in romd_mode, then we actually want 772 * to remove the kvm memory slot so all accesses will trap. */ 773 add = false; 774 } 775 } 776 777 size = kvm_align_section(section, &start_addr); 778 if (!size) { 779 return; 780 } 781 782 /* use aligned delta to align the ram address */ 783 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 784 (start_addr - section->offset_within_address_space); 785 786 if (!add) { 787 mem = kvm_lookup_matching_slot(kml, start_addr, size); 788 if (!mem) { 789 return; 790 } 791 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 792 kvm_physical_sync_dirty_bitmap(kml, section); 793 } 794 795 /* unregister the slot */ 796 mem->memory_size = 0; 797 mem->flags = 0; 798 err = kvm_set_user_memory_region(kml, mem, false); 799 if (err) { 800 fprintf(stderr, "%s: error unregistering slot: %s\n", 801 __func__, strerror(-err)); 802 abort(); 803 } 804 return; 805 } 806 807 /* register the new slot */ 808 mem = kvm_alloc_slot(kml); 809 mem->memory_size = size; 810 mem->start_addr = start_addr; 811 mem->ram = ram; 812 mem->flags = kvm_mem_flags(mr); 813 814 err = kvm_set_user_memory_region(kml, mem, true); 815 if (err) { 816 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 817 strerror(-err)); 818 abort(); 819 } 820 } 821 822 static void kvm_region_add(MemoryListener *listener, 823 MemoryRegionSection *section) 824 { 825 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 826 827 memory_region_ref(section->mr); 828 kvm_set_phys_mem(kml, section, true); 829 } 830 831 static void kvm_region_del(MemoryListener *listener, 832 MemoryRegionSection *section) 833 { 834 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 835 836 kvm_set_phys_mem(kml, section, false); 837 memory_region_unref(section->mr); 838 } 839 840 static void kvm_log_sync(MemoryListener *listener, 841 MemoryRegionSection *section) 842 { 843 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 844 int r; 845 846 r = kvm_physical_sync_dirty_bitmap(kml, section); 847 if (r < 0) { 848 abort(); 849 } 850 } 851 852 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 853 MemoryRegionSection *section, 854 bool match_data, uint64_t data, 855 EventNotifier *e) 856 { 857 int fd = event_notifier_get_fd(e); 858 int r; 859 860 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 861 data, true, int128_get64(section->size), 862 match_data); 863 if (r < 0) { 864 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 865 __func__, strerror(-r)); 866 abort(); 867 } 868 } 869 870 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 871 MemoryRegionSection *section, 872 bool match_data, uint64_t data, 873 EventNotifier *e) 874 { 875 int fd = event_notifier_get_fd(e); 876 int r; 877 878 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 879 data, false, int128_get64(section->size), 880 match_data); 881 if (r < 0) { 882 abort(); 883 } 884 } 885 886 static void kvm_io_ioeventfd_add(MemoryListener *listener, 887 MemoryRegionSection *section, 888 bool match_data, uint64_t data, 889 EventNotifier *e) 890 { 891 int fd = event_notifier_get_fd(e); 892 int r; 893 894 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 895 data, true, int128_get64(section->size), 896 match_data); 897 if (r < 0) { 898 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 899 __func__, strerror(-r)); 900 abort(); 901 } 902 } 903 904 static void kvm_io_ioeventfd_del(MemoryListener *listener, 905 MemoryRegionSection *section, 906 bool match_data, uint64_t data, 907 EventNotifier *e) 908 909 { 910 int fd = event_notifier_get_fd(e); 911 int r; 912 913 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 914 data, false, int128_get64(section->size), 915 match_data); 916 if (r < 0) { 917 abort(); 918 } 919 } 920 921 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 922 AddressSpace *as, int as_id) 923 { 924 int i; 925 926 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 927 kml->as_id = as_id; 928 929 for (i = 0; i < s->nr_slots; i++) { 930 kml->slots[i].slot = i; 931 } 932 933 kml->listener.region_add = kvm_region_add; 934 kml->listener.region_del = kvm_region_del; 935 kml->listener.log_start = kvm_log_start; 936 kml->listener.log_stop = kvm_log_stop; 937 kml->listener.log_sync = kvm_log_sync; 938 kml->listener.priority = 10; 939 940 memory_listener_register(&kml->listener, as); 941 } 942 943 static MemoryListener kvm_io_listener = { 944 .eventfd_add = kvm_io_ioeventfd_add, 945 .eventfd_del = kvm_io_ioeventfd_del, 946 .priority = 10, 947 }; 948 949 int kvm_set_irq(KVMState *s, int irq, int level) 950 { 951 struct kvm_irq_level event; 952 int ret; 953 954 assert(kvm_async_interrupts_enabled()); 955 956 event.level = level; 957 event.irq = irq; 958 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 959 if (ret < 0) { 960 perror("kvm_set_irq"); 961 abort(); 962 } 963 964 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 965 } 966 967 #ifdef KVM_CAP_IRQ_ROUTING 968 typedef struct KVMMSIRoute { 969 struct kvm_irq_routing_entry kroute; 970 QTAILQ_ENTRY(KVMMSIRoute) entry; 971 } KVMMSIRoute; 972 973 static void set_gsi(KVMState *s, unsigned int gsi) 974 { 975 set_bit(gsi, s->used_gsi_bitmap); 976 } 977 978 static void clear_gsi(KVMState *s, unsigned int gsi) 979 { 980 clear_bit(gsi, s->used_gsi_bitmap); 981 } 982 983 void kvm_init_irq_routing(KVMState *s) 984 { 985 int gsi_count, i; 986 987 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 988 if (gsi_count > 0) { 989 /* Round up so we can search ints using ffs */ 990 s->used_gsi_bitmap = bitmap_new(gsi_count); 991 s->gsi_count = gsi_count; 992 } 993 994 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 995 s->nr_allocated_irq_routes = 0; 996 997 if (!kvm_direct_msi_allowed) { 998 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 999 QTAILQ_INIT(&s->msi_hashtab[i]); 1000 } 1001 } 1002 1003 kvm_arch_init_irq_routing(s); 1004 } 1005 1006 void kvm_irqchip_commit_routes(KVMState *s) 1007 { 1008 int ret; 1009 1010 if (kvm_gsi_direct_mapping()) { 1011 return; 1012 } 1013 1014 if (!kvm_gsi_routing_enabled()) { 1015 return; 1016 } 1017 1018 s->irq_routes->flags = 0; 1019 trace_kvm_irqchip_commit_routes(); 1020 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1021 assert(ret == 0); 1022 } 1023 1024 static void kvm_add_routing_entry(KVMState *s, 1025 struct kvm_irq_routing_entry *entry) 1026 { 1027 struct kvm_irq_routing_entry *new; 1028 int n, size; 1029 1030 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1031 n = s->nr_allocated_irq_routes * 2; 1032 if (n < 64) { 1033 n = 64; 1034 } 1035 size = sizeof(struct kvm_irq_routing); 1036 size += n * sizeof(*new); 1037 s->irq_routes = g_realloc(s->irq_routes, size); 1038 s->nr_allocated_irq_routes = n; 1039 } 1040 n = s->irq_routes->nr++; 1041 new = &s->irq_routes->entries[n]; 1042 1043 *new = *entry; 1044 1045 set_gsi(s, entry->gsi); 1046 } 1047 1048 static int kvm_update_routing_entry(KVMState *s, 1049 struct kvm_irq_routing_entry *new_entry) 1050 { 1051 struct kvm_irq_routing_entry *entry; 1052 int n; 1053 1054 for (n = 0; n < s->irq_routes->nr; n++) { 1055 entry = &s->irq_routes->entries[n]; 1056 if (entry->gsi != new_entry->gsi) { 1057 continue; 1058 } 1059 1060 if(!memcmp(entry, new_entry, sizeof *entry)) { 1061 return 0; 1062 } 1063 1064 *entry = *new_entry; 1065 1066 return 0; 1067 } 1068 1069 return -ESRCH; 1070 } 1071 1072 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1073 { 1074 struct kvm_irq_routing_entry e = {}; 1075 1076 assert(pin < s->gsi_count); 1077 1078 e.gsi = irq; 1079 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1080 e.flags = 0; 1081 e.u.irqchip.irqchip = irqchip; 1082 e.u.irqchip.pin = pin; 1083 kvm_add_routing_entry(s, &e); 1084 } 1085 1086 void kvm_irqchip_release_virq(KVMState *s, int virq) 1087 { 1088 struct kvm_irq_routing_entry *e; 1089 int i; 1090 1091 if (kvm_gsi_direct_mapping()) { 1092 return; 1093 } 1094 1095 for (i = 0; i < s->irq_routes->nr; i++) { 1096 e = &s->irq_routes->entries[i]; 1097 if (e->gsi == virq) { 1098 s->irq_routes->nr--; 1099 *e = s->irq_routes->entries[s->irq_routes->nr]; 1100 } 1101 } 1102 clear_gsi(s, virq); 1103 kvm_arch_release_virq_post(virq); 1104 trace_kvm_irqchip_release_virq(virq); 1105 } 1106 1107 static unsigned int kvm_hash_msi(uint32_t data) 1108 { 1109 /* This is optimized for IA32 MSI layout. However, no other arch shall 1110 * repeat the mistake of not providing a direct MSI injection API. */ 1111 return data & 0xff; 1112 } 1113 1114 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1115 { 1116 KVMMSIRoute *route, *next; 1117 unsigned int hash; 1118 1119 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1120 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1121 kvm_irqchip_release_virq(s, route->kroute.gsi); 1122 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1123 g_free(route); 1124 } 1125 } 1126 } 1127 1128 static int kvm_irqchip_get_virq(KVMState *s) 1129 { 1130 int next_virq; 1131 1132 /* 1133 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1134 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1135 * number can succeed even though a new route entry cannot be added. 1136 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1137 */ 1138 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1139 kvm_flush_dynamic_msi_routes(s); 1140 } 1141 1142 /* Return the lowest unused GSI in the bitmap */ 1143 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1144 if (next_virq >= s->gsi_count) { 1145 return -ENOSPC; 1146 } else { 1147 return next_virq; 1148 } 1149 } 1150 1151 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1152 { 1153 unsigned int hash = kvm_hash_msi(msg.data); 1154 KVMMSIRoute *route; 1155 1156 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1157 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1158 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1159 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1160 return route; 1161 } 1162 } 1163 return NULL; 1164 } 1165 1166 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1167 { 1168 struct kvm_msi msi; 1169 KVMMSIRoute *route; 1170 1171 if (kvm_direct_msi_allowed) { 1172 msi.address_lo = (uint32_t)msg.address; 1173 msi.address_hi = msg.address >> 32; 1174 msi.data = le32_to_cpu(msg.data); 1175 msi.flags = 0; 1176 memset(msi.pad, 0, sizeof(msi.pad)); 1177 1178 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1179 } 1180 1181 route = kvm_lookup_msi_route(s, msg); 1182 if (!route) { 1183 int virq; 1184 1185 virq = kvm_irqchip_get_virq(s); 1186 if (virq < 0) { 1187 return virq; 1188 } 1189 1190 route = g_malloc0(sizeof(KVMMSIRoute)); 1191 route->kroute.gsi = virq; 1192 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1193 route->kroute.flags = 0; 1194 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1195 route->kroute.u.msi.address_hi = msg.address >> 32; 1196 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1197 1198 kvm_add_routing_entry(s, &route->kroute); 1199 kvm_irqchip_commit_routes(s); 1200 1201 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1202 entry); 1203 } 1204 1205 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1206 1207 return kvm_set_irq(s, route->kroute.gsi, 1); 1208 } 1209 1210 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1211 { 1212 struct kvm_irq_routing_entry kroute = {}; 1213 int virq; 1214 MSIMessage msg = {0, 0}; 1215 1216 if (pci_available && dev) { 1217 msg = pci_get_msi_message(dev, vector); 1218 } 1219 1220 if (kvm_gsi_direct_mapping()) { 1221 return kvm_arch_msi_data_to_gsi(msg.data); 1222 } 1223 1224 if (!kvm_gsi_routing_enabled()) { 1225 return -ENOSYS; 1226 } 1227 1228 virq = kvm_irqchip_get_virq(s); 1229 if (virq < 0) { 1230 return virq; 1231 } 1232 1233 kroute.gsi = virq; 1234 kroute.type = KVM_IRQ_ROUTING_MSI; 1235 kroute.flags = 0; 1236 kroute.u.msi.address_lo = (uint32_t)msg.address; 1237 kroute.u.msi.address_hi = msg.address >> 32; 1238 kroute.u.msi.data = le32_to_cpu(msg.data); 1239 if (pci_available && kvm_msi_devid_required()) { 1240 kroute.flags = KVM_MSI_VALID_DEVID; 1241 kroute.u.msi.devid = pci_requester_id(dev); 1242 } 1243 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1244 kvm_irqchip_release_virq(s, virq); 1245 return -EINVAL; 1246 } 1247 1248 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1249 vector, virq); 1250 1251 kvm_add_routing_entry(s, &kroute); 1252 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1253 kvm_irqchip_commit_routes(s); 1254 1255 return virq; 1256 } 1257 1258 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1259 PCIDevice *dev) 1260 { 1261 struct kvm_irq_routing_entry kroute = {}; 1262 1263 if (kvm_gsi_direct_mapping()) { 1264 return 0; 1265 } 1266 1267 if (!kvm_irqchip_in_kernel()) { 1268 return -ENOSYS; 1269 } 1270 1271 kroute.gsi = virq; 1272 kroute.type = KVM_IRQ_ROUTING_MSI; 1273 kroute.flags = 0; 1274 kroute.u.msi.address_lo = (uint32_t)msg.address; 1275 kroute.u.msi.address_hi = msg.address >> 32; 1276 kroute.u.msi.data = le32_to_cpu(msg.data); 1277 if (pci_available && kvm_msi_devid_required()) { 1278 kroute.flags = KVM_MSI_VALID_DEVID; 1279 kroute.u.msi.devid = pci_requester_id(dev); 1280 } 1281 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1282 return -EINVAL; 1283 } 1284 1285 trace_kvm_irqchip_update_msi_route(virq); 1286 1287 return kvm_update_routing_entry(s, &kroute); 1288 } 1289 1290 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1291 bool assign) 1292 { 1293 struct kvm_irqfd irqfd = { 1294 .fd = fd, 1295 .gsi = virq, 1296 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1297 }; 1298 1299 if (rfd != -1) { 1300 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1301 irqfd.resamplefd = rfd; 1302 } 1303 1304 if (!kvm_irqfds_enabled()) { 1305 return -ENOSYS; 1306 } 1307 1308 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1309 } 1310 1311 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1312 { 1313 struct kvm_irq_routing_entry kroute = {}; 1314 int virq; 1315 1316 if (!kvm_gsi_routing_enabled()) { 1317 return -ENOSYS; 1318 } 1319 1320 virq = kvm_irqchip_get_virq(s); 1321 if (virq < 0) { 1322 return virq; 1323 } 1324 1325 kroute.gsi = virq; 1326 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1327 kroute.flags = 0; 1328 kroute.u.adapter.summary_addr = adapter->summary_addr; 1329 kroute.u.adapter.ind_addr = adapter->ind_addr; 1330 kroute.u.adapter.summary_offset = adapter->summary_offset; 1331 kroute.u.adapter.ind_offset = adapter->ind_offset; 1332 kroute.u.adapter.adapter_id = adapter->adapter_id; 1333 1334 kvm_add_routing_entry(s, &kroute); 1335 1336 return virq; 1337 } 1338 1339 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1340 { 1341 struct kvm_irq_routing_entry kroute = {}; 1342 int virq; 1343 1344 if (!kvm_gsi_routing_enabled()) { 1345 return -ENOSYS; 1346 } 1347 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1348 return -ENOSYS; 1349 } 1350 virq = kvm_irqchip_get_virq(s); 1351 if (virq < 0) { 1352 return virq; 1353 } 1354 1355 kroute.gsi = virq; 1356 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1357 kroute.flags = 0; 1358 kroute.u.hv_sint.vcpu = vcpu; 1359 kroute.u.hv_sint.sint = sint; 1360 1361 kvm_add_routing_entry(s, &kroute); 1362 kvm_irqchip_commit_routes(s); 1363 1364 return virq; 1365 } 1366 1367 #else /* !KVM_CAP_IRQ_ROUTING */ 1368 1369 void kvm_init_irq_routing(KVMState *s) 1370 { 1371 } 1372 1373 void kvm_irqchip_release_virq(KVMState *s, int virq) 1374 { 1375 } 1376 1377 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1378 { 1379 abort(); 1380 } 1381 1382 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1383 { 1384 return -ENOSYS; 1385 } 1386 1387 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1388 { 1389 return -ENOSYS; 1390 } 1391 1392 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1393 { 1394 return -ENOSYS; 1395 } 1396 1397 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1398 { 1399 abort(); 1400 } 1401 1402 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1403 { 1404 return -ENOSYS; 1405 } 1406 #endif /* !KVM_CAP_IRQ_ROUTING */ 1407 1408 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1409 EventNotifier *rn, int virq) 1410 { 1411 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1412 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1413 } 1414 1415 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1416 int virq) 1417 { 1418 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1419 false); 1420 } 1421 1422 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1423 EventNotifier *rn, qemu_irq irq) 1424 { 1425 gpointer key, gsi; 1426 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1427 1428 if (!found) { 1429 return -ENXIO; 1430 } 1431 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1432 } 1433 1434 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1435 qemu_irq irq) 1436 { 1437 gpointer key, gsi; 1438 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1439 1440 if (!found) { 1441 return -ENXIO; 1442 } 1443 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1444 } 1445 1446 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1447 { 1448 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1449 } 1450 1451 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1452 { 1453 int ret; 1454 1455 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1456 ; 1457 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1458 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1459 if (ret < 0) { 1460 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1461 exit(1); 1462 } 1463 } else { 1464 return; 1465 } 1466 1467 /* First probe and see if there's a arch-specific hook to create the 1468 * in-kernel irqchip for us */ 1469 ret = kvm_arch_irqchip_create(machine, s); 1470 if (ret == 0) { 1471 if (machine_kernel_irqchip_split(machine)) { 1472 perror("Split IRQ chip mode not supported."); 1473 exit(1); 1474 } else { 1475 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1476 } 1477 } 1478 if (ret < 0) { 1479 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1480 exit(1); 1481 } 1482 1483 kvm_kernel_irqchip = true; 1484 /* If we have an in-kernel IRQ chip then we must have asynchronous 1485 * interrupt delivery (though the reverse is not necessarily true) 1486 */ 1487 kvm_async_interrupts_allowed = true; 1488 kvm_halt_in_kernel_allowed = true; 1489 1490 kvm_init_irq_routing(s); 1491 1492 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1493 } 1494 1495 /* Find number of supported CPUs using the recommended 1496 * procedure from the kernel API documentation to cope with 1497 * older kernels that may be missing capabilities. 1498 */ 1499 static int kvm_recommended_vcpus(KVMState *s) 1500 { 1501 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1502 return (ret) ? ret : 4; 1503 } 1504 1505 static int kvm_max_vcpus(KVMState *s) 1506 { 1507 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1508 return (ret) ? ret : kvm_recommended_vcpus(s); 1509 } 1510 1511 static int kvm_max_vcpu_id(KVMState *s) 1512 { 1513 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1514 return (ret) ? ret : kvm_max_vcpus(s); 1515 } 1516 1517 bool kvm_vcpu_id_is_valid(int vcpu_id) 1518 { 1519 KVMState *s = KVM_STATE(current_machine->accelerator); 1520 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1521 } 1522 1523 static int kvm_init(MachineState *ms) 1524 { 1525 MachineClass *mc = MACHINE_GET_CLASS(ms); 1526 static const char upgrade_note[] = 1527 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1528 "(see http://sourceforge.net/projects/kvm).\n"; 1529 struct { 1530 const char *name; 1531 int num; 1532 } num_cpus[] = { 1533 { "SMP", smp_cpus }, 1534 { "hotpluggable", max_cpus }, 1535 { NULL, } 1536 }, *nc = num_cpus; 1537 int soft_vcpus_limit, hard_vcpus_limit; 1538 KVMState *s; 1539 const KVMCapabilityInfo *missing_cap; 1540 int ret; 1541 int type = 0; 1542 const char *kvm_type; 1543 1544 s = KVM_STATE(ms->accelerator); 1545 1546 /* 1547 * On systems where the kernel can support different base page 1548 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1549 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1550 * page size for the system though. 1551 */ 1552 assert(TARGET_PAGE_SIZE <= getpagesize()); 1553 1554 s->sigmask_len = 8; 1555 1556 #ifdef KVM_CAP_SET_GUEST_DEBUG 1557 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1558 #endif 1559 QLIST_INIT(&s->kvm_parked_vcpus); 1560 s->vmfd = -1; 1561 s->fd = qemu_open("/dev/kvm", O_RDWR); 1562 if (s->fd == -1) { 1563 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1564 ret = -errno; 1565 goto err; 1566 } 1567 1568 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1569 if (ret < KVM_API_VERSION) { 1570 if (ret >= 0) { 1571 ret = -EINVAL; 1572 } 1573 fprintf(stderr, "kvm version too old\n"); 1574 goto err; 1575 } 1576 1577 if (ret > KVM_API_VERSION) { 1578 ret = -EINVAL; 1579 fprintf(stderr, "kvm version not supported\n"); 1580 goto err; 1581 } 1582 1583 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1584 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1585 1586 /* If unspecified, use the default value */ 1587 if (!s->nr_slots) { 1588 s->nr_slots = 32; 1589 } 1590 1591 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1592 if (mc->kvm_type) { 1593 type = mc->kvm_type(kvm_type); 1594 } else if (kvm_type) { 1595 ret = -EINVAL; 1596 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1597 goto err; 1598 } 1599 1600 do { 1601 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1602 } while (ret == -EINTR); 1603 1604 if (ret < 0) { 1605 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1606 strerror(-ret)); 1607 1608 #ifdef TARGET_S390X 1609 if (ret == -EINVAL) { 1610 fprintf(stderr, 1611 "Host kernel setup problem detected. Please verify:\n"); 1612 fprintf(stderr, "- for kernels supporting the switch_amode or" 1613 " user_mode parameters, whether\n"); 1614 fprintf(stderr, 1615 " user space is running in primary address space\n"); 1616 fprintf(stderr, 1617 "- for kernels supporting the vm.allocate_pgste sysctl, " 1618 "whether it is enabled\n"); 1619 } 1620 #endif 1621 goto err; 1622 } 1623 1624 s->vmfd = ret; 1625 1626 /* check the vcpu limits */ 1627 soft_vcpus_limit = kvm_recommended_vcpus(s); 1628 hard_vcpus_limit = kvm_max_vcpus(s); 1629 1630 while (nc->name) { 1631 if (nc->num > soft_vcpus_limit) { 1632 warn_report("Number of %s cpus requested (%d) exceeds " 1633 "the recommended cpus supported by KVM (%d)", 1634 nc->name, nc->num, soft_vcpus_limit); 1635 1636 if (nc->num > hard_vcpus_limit) { 1637 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1638 "the maximum cpus supported by KVM (%d)\n", 1639 nc->name, nc->num, hard_vcpus_limit); 1640 exit(1); 1641 } 1642 } 1643 nc++; 1644 } 1645 1646 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1647 if (!missing_cap) { 1648 missing_cap = 1649 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1650 } 1651 if (missing_cap) { 1652 ret = -EINVAL; 1653 fprintf(stderr, "kvm does not support %s\n%s", 1654 missing_cap->name, upgrade_note); 1655 goto err; 1656 } 1657 1658 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1659 s->coalesced_pio = s->coalesced_mmio && 1660 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1661 1662 #ifdef KVM_CAP_VCPU_EVENTS 1663 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1664 #endif 1665 1666 s->robust_singlestep = 1667 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1668 1669 #ifdef KVM_CAP_DEBUGREGS 1670 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1671 #endif 1672 1673 #ifdef KVM_CAP_IRQ_ROUTING 1674 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1675 #endif 1676 1677 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1678 1679 s->irq_set_ioctl = KVM_IRQ_LINE; 1680 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1681 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1682 } 1683 1684 kvm_readonly_mem_allowed = 1685 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1686 1687 kvm_eventfds_allowed = 1688 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1689 1690 kvm_irqfds_allowed = 1691 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1692 1693 kvm_resamplefds_allowed = 1694 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1695 1696 kvm_vm_attributes_allowed = 1697 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1698 1699 kvm_ioeventfd_any_length_allowed = 1700 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1701 1702 kvm_state = s; 1703 1704 /* 1705 * if memory encryption object is specified then initialize the memory 1706 * encryption context. 1707 */ 1708 if (ms->memory_encryption) { 1709 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 1710 if (!kvm_state->memcrypt_handle) { 1711 ret = -1; 1712 goto err; 1713 } 1714 1715 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 1716 } 1717 1718 ret = kvm_arch_init(ms, s); 1719 if (ret < 0) { 1720 goto err; 1721 } 1722 1723 if (machine_kernel_irqchip_allowed(ms)) { 1724 kvm_irqchip_create(ms, s); 1725 } 1726 1727 if (kvm_eventfds_allowed) { 1728 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1729 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1730 } 1731 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 1732 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 1733 1734 kvm_memory_listener_register(s, &s->memory_listener, 1735 &address_space_memory, 0); 1736 memory_listener_register(&kvm_io_listener, 1737 &address_space_io); 1738 memory_listener_register(&kvm_coalesced_pio_listener, 1739 &address_space_io); 1740 1741 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1742 1743 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 1744 if (!s->sync_mmu) { 1745 qemu_balloon_inhibit(true); 1746 } 1747 1748 return 0; 1749 1750 err: 1751 assert(ret < 0); 1752 if (s->vmfd >= 0) { 1753 close(s->vmfd); 1754 } 1755 if (s->fd != -1) { 1756 close(s->fd); 1757 } 1758 g_free(s->memory_listener.slots); 1759 1760 return ret; 1761 } 1762 1763 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1764 { 1765 s->sigmask_len = sigmask_len; 1766 } 1767 1768 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1769 int size, uint32_t count) 1770 { 1771 int i; 1772 uint8_t *ptr = data; 1773 1774 for (i = 0; i < count; i++) { 1775 address_space_rw(&address_space_io, port, attrs, 1776 ptr, size, 1777 direction == KVM_EXIT_IO_OUT); 1778 ptr += size; 1779 } 1780 } 1781 1782 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1783 { 1784 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1785 run->internal.suberror); 1786 1787 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1788 int i; 1789 1790 for (i = 0; i < run->internal.ndata; ++i) { 1791 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1792 i, (uint64_t)run->internal.data[i]); 1793 } 1794 } 1795 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1796 fprintf(stderr, "emulation failure\n"); 1797 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1798 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 1799 return EXCP_INTERRUPT; 1800 } 1801 } 1802 /* FIXME: Should trigger a qmp message to let management know 1803 * something went wrong. 1804 */ 1805 return -1; 1806 } 1807 1808 void kvm_flush_coalesced_mmio_buffer(void) 1809 { 1810 KVMState *s = kvm_state; 1811 1812 if (s->coalesced_flush_in_progress) { 1813 return; 1814 } 1815 1816 s->coalesced_flush_in_progress = true; 1817 1818 if (s->coalesced_mmio_ring) { 1819 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1820 while (ring->first != ring->last) { 1821 struct kvm_coalesced_mmio *ent; 1822 1823 ent = &ring->coalesced_mmio[ring->first]; 1824 1825 if (ent->pio == 1) { 1826 address_space_rw(&address_space_io, ent->phys_addr, 1827 MEMTXATTRS_UNSPECIFIED, ent->data, 1828 ent->len, true); 1829 } else { 1830 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1831 } 1832 smp_wmb(); 1833 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1834 } 1835 } 1836 1837 s->coalesced_flush_in_progress = false; 1838 } 1839 1840 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1841 { 1842 if (!cpu->vcpu_dirty) { 1843 kvm_arch_get_registers(cpu); 1844 cpu->vcpu_dirty = true; 1845 } 1846 } 1847 1848 void kvm_cpu_synchronize_state(CPUState *cpu) 1849 { 1850 if (!cpu->vcpu_dirty) { 1851 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1852 } 1853 } 1854 1855 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1856 { 1857 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1858 cpu->vcpu_dirty = false; 1859 } 1860 1861 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1862 { 1863 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1864 } 1865 1866 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1867 { 1868 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1869 cpu->vcpu_dirty = false; 1870 } 1871 1872 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1873 { 1874 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1875 } 1876 1877 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1878 { 1879 cpu->vcpu_dirty = true; 1880 } 1881 1882 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1883 { 1884 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1885 } 1886 1887 #ifdef KVM_HAVE_MCE_INJECTION 1888 static __thread void *pending_sigbus_addr; 1889 static __thread int pending_sigbus_code; 1890 static __thread bool have_sigbus_pending; 1891 #endif 1892 1893 static void kvm_cpu_kick(CPUState *cpu) 1894 { 1895 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1896 } 1897 1898 static void kvm_cpu_kick_self(void) 1899 { 1900 if (kvm_immediate_exit) { 1901 kvm_cpu_kick(current_cpu); 1902 } else { 1903 qemu_cpu_kick_self(); 1904 } 1905 } 1906 1907 static void kvm_eat_signals(CPUState *cpu) 1908 { 1909 struct timespec ts = { 0, 0 }; 1910 siginfo_t siginfo; 1911 sigset_t waitset; 1912 sigset_t chkset; 1913 int r; 1914 1915 if (kvm_immediate_exit) { 1916 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1917 /* Write kvm_run->immediate_exit before the cpu->exit_request 1918 * write in kvm_cpu_exec. 1919 */ 1920 smp_wmb(); 1921 return; 1922 } 1923 1924 sigemptyset(&waitset); 1925 sigaddset(&waitset, SIG_IPI); 1926 1927 do { 1928 r = sigtimedwait(&waitset, &siginfo, &ts); 1929 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1930 perror("sigtimedwait"); 1931 exit(1); 1932 } 1933 1934 r = sigpending(&chkset); 1935 if (r == -1) { 1936 perror("sigpending"); 1937 exit(1); 1938 } 1939 } while (sigismember(&chkset, SIG_IPI)); 1940 } 1941 1942 int kvm_cpu_exec(CPUState *cpu) 1943 { 1944 struct kvm_run *run = cpu->kvm_run; 1945 int ret, run_ret; 1946 1947 DPRINTF("kvm_cpu_exec()\n"); 1948 1949 if (kvm_arch_process_async_events(cpu)) { 1950 atomic_set(&cpu->exit_request, 0); 1951 return EXCP_HLT; 1952 } 1953 1954 qemu_mutex_unlock_iothread(); 1955 cpu_exec_start(cpu); 1956 1957 do { 1958 MemTxAttrs attrs; 1959 1960 if (cpu->vcpu_dirty) { 1961 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1962 cpu->vcpu_dirty = false; 1963 } 1964 1965 kvm_arch_pre_run(cpu, run); 1966 if (atomic_read(&cpu->exit_request)) { 1967 DPRINTF("interrupt exit requested\n"); 1968 /* 1969 * KVM requires us to reenter the kernel after IO exits to complete 1970 * instruction emulation. This self-signal will ensure that we 1971 * leave ASAP again. 1972 */ 1973 kvm_cpu_kick_self(); 1974 } 1975 1976 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1977 * Matching barrier in kvm_eat_signals. 1978 */ 1979 smp_rmb(); 1980 1981 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1982 1983 attrs = kvm_arch_post_run(cpu, run); 1984 1985 #ifdef KVM_HAVE_MCE_INJECTION 1986 if (unlikely(have_sigbus_pending)) { 1987 qemu_mutex_lock_iothread(); 1988 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1989 pending_sigbus_addr); 1990 have_sigbus_pending = false; 1991 qemu_mutex_unlock_iothread(); 1992 } 1993 #endif 1994 1995 if (run_ret < 0) { 1996 if (run_ret == -EINTR || run_ret == -EAGAIN) { 1997 DPRINTF("io window exit\n"); 1998 kvm_eat_signals(cpu); 1999 ret = EXCP_INTERRUPT; 2000 break; 2001 } 2002 fprintf(stderr, "error: kvm run failed %s\n", 2003 strerror(-run_ret)); 2004 #ifdef TARGET_PPC 2005 if (run_ret == -EBUSY) { 2006 fprintf(stderr, 2007 "This is probably because your SMT is enabled.\n" 2008 "VCPU can only run on primary threads with all " 2009 "secondary threads offline.\n"); 2010 } 2011 #endif 2012 ret = -1; 2013 break; 2014 } 2015 2016 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2017 switch (run->exit_reason) { 2018 case KVM_EXIT_IO: 2019 DPRINTF("handle_io\n"); 2020 /* Called outside BQL */ 2021 kvm_handle_io(run->io.port, attrs, 2022 (uint8_t *)run + run->io.data_offset, 2023 run->io.direction, 2024 run->io.size, 2025 run->io.count); 2026 ret = 0; 2027 break; 2028 case KVM_EXIT_MMIO: 2029 DPRINTF("handle_mmio\n"); 2030 /* Called outside BQL */ 2031 address_space_rw(&address_space_memory, 2032 run->mmio.phys_addr, attrs, 2033 run->mmio.data, 2034 run->mmio.len, 2035 run->mmio.is_write); 2036 ret = 0; 2037 break; 2038 case KVM_EXIT_IRQ_WINDOW_OPEN: 2039 DPRINTF("irq_window_open\n"); 2040 ret = EXCP_INTERRUPT; 2041 break; 2042 case KVM_EXIT_SHUTDOWN: 2043 DPRINTF("shutdown\n"); 2044 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2045 ret = EXCP_INTERRUPT; 2046 break; 2047 case KVM_EXIT_UNKNOWN: 2048 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2049 (uint64_t)run->hw.hardware_exit_reason); 2050 ret = -1; 2051 break; 2052 case KVM_EXIT_INTERNAL_ERROR: 2053 ret = kvm_handle_internal_error(cpu, run); 2054 break; 2055 case KVM_EXIT_SYSTEM_EVENT: 2056 switch (run->system_event.type) { 2057 case KVM_SYSTEM_EVENT_SHUTDOWN: 2058 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2059 ret = EXCP_INTERRUPT; 2060 break; 2061 case KVM_SYSTEM_EVENT_RESET: 2062 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2063 ret = EXCP_INTERRUPT; 2064 break; 2065 case KVM_SYSTEM_EVENT_CRASH: 2066 kvm_cpu_synchronize_state(cpu); 2067 qemu_mutex_lock_iothread(); 2068 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2069 qemu_mutex_unlock_iothread(); 2070 ret = 0; 2071 break; 2072 default: 2073 DPRINTF("kvm_arch_handle_exit\n"); 2074 ret = kvm_arch_handle_exit(cpu, run); 2075 break; 2076 } 2077 break; 2078 default: 2079 DPRINTF("kvm_arch_handle_exit\n"); 2080 ret = kvm_arch_handle_exit(cpu, run); 2081 break; 2082 } 2083 } while (ret == 0); 2084 2085 cpu_exec_end(cpu); 2086 qemu_mutex_lock_iothread(); 2087 2088 if (ret < 0) { 2089 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 2090 vm_stop(RUN_STATE_INTERNAL_ERROR); 2091 } 2092 2093 atomic_set(&cpu->exit_request, 0); 2094 return ret; 2095 } 2096 2097 int kvm_ioctl(KVMState *s, int type, ...) 2098 { 2099 int ret; 2100 void *arg; 2101 va_list ap; 2102 2103 va_start(ap, type); 2104 arg = va_arg(ap, void *); 2105 va_end(ap); 2106 2107 trace_kvm_ioctl(type, arg); 2108 ret = ioctl(s->fd, type, arg); 2109 if (ret == -1) { 2110 ret = -errno; 2111 } 2112 return ret; 2113 } 2114 2115 int kvm_vm_ioctl(KVMState *s, int type, ...) 2116 { 2117 int ret; 2118 void *arg; 2119 va_list ap; 2120 2121 va_start(ap, type); 2122 arg = va_arg(ap, void *); 2123 va_end(ap); 2124 2125 trace_kvm_vm_ioctl(type, arg); 2126 ret = ioctl(s->vmfd, type, arg); 2127 if (ret == -1) { 2128 ret = -errno; 2129 } 2130 return ret; 2131 } 2132 2133 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2134 { 2135 int ret; 2136 void *arg; 2137 va_list ap; 2138 2139 va_start(ap, type); 2140 arg = va_arg(ap, void *); 2141 va_end(ap); 2142 2143 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2144 ret = ioctl(cpu->kvm_fd, type, arg); 2145 if (ret == -1) { 2146 ret = -errno; 2147 } 2148 return ret; 2149 } 2150 2151 int kvm_device_ioctl(int fd, int type, ...) 2152 { 2153 int ret; 2154 void *arg; 2155 va_list ap; 2156 2157 va_start(ap, type); 2158 arg = va_arg(ap, void *); 2159 va_end(ap); 2160 2161 trace_kvm_device_ioctl(fd, type, arg); 2162 ret = ioctl(fd, type, arg); 2163 if (ret == -1) { 2164 ret = -errno; 2165 } 2166 return ret; 2167 } 2168 2169 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2170 { 2171 int ret; 2172 struct kvm_device_attr attribute = { 2173 .group = group, 2174 .attr = attr, 2175 }; 2176 2177 if (!kvm_vm_attributes_allowed) { 2178 return 0; 2179 } 2180 2181 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2182 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2183 return ret ? 0 : 1; 2184 } 2185 2186 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2187 { 2188 struct kvm_device_attr attribute = { 2189 .group = group, 2190 .attr = attr, 2191 .flags = 0, 2192 }; 2193 2194 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2195 } 2196 2197 int kvm_device_access(int fd, int group, uint64_t attr, 2198 void *val, bool write, Error **errp) 2199 { 2200 struct kvm_device_attr kvmattr; 2201 int err; 2202 2203 kvmattr.flags = 0; 2204 kvmattr.group = group; 2205 kvmattr.attr = attr; 2206 kvmattr.addr = (uintptr_t)val; 2207 2208 err = kvm_device_ioctl(fd, 2209 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2210 &kvmattr); 2211 if (err < 0) { 2212 error_setg_errno(errp, -err, 2213 "KVM_%s_DEVICE_ATTR failed: Group %d " 2214 "attr 0x%016" PRIx64, 2215 write ? "SET" : "GET", group, attr); 2216 } 2217 return err; 2218 } 2219 2220 bool kvm_has_sync_mmu(void) 2221 { 2222 return kvm_state->sync_mmu; 2223 } 2224 2225 int kvm_has_vcpu_events(void) 2226 { 2227 return kvm_state->vcpu_events; 2228 } 2229 2230 int kvm_has_robust_singlestep(void) 2231 { 2232 return kvm_state->robust_singlestep; 2233 } 2234 2235 int kvm_has_debugregs(void) 2236 { 2237 return kvm_state->debugregs; 2238 } 2239 2240 int kvm_has_many_ioeventfds(void) 2241 { 2242 if (!kvm_enabled()) { 2243 return 0; 2244 } 2245 return kvm_state->many_ioeventfds; 2246 } 2247 2248 int kvm_has_gsi_routing(void) 2249 { 2250 #ifdef KVM_CAP_IRQ_ROUTING 2251 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2252 #else 2253 return false; 2254 #endif 2255 } 2256 2257 int kvm_has_intx_set_mask(void) 2258 { 2259 return kvm_state->intx_set_mask; 2260 } 2261 2262 bool kvm_arm_supports_user_irq(void) 2263 { 2264 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2265 } 2266 2267 #ifdef KVM_CAP_SET_GUEST_DEBUG 2268 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2269 target_ulong pc) 2270 { 2271 struct kvm_sw_breakpoint *bp; 2272 2273 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2274 if (bp->pc == pc) { 2275 return bp; 2276 } 2277 } 2278 return NULL; 2279 } 2280 2281 int kvm_sw_breakpoints_active(CPUState *cpu) 2282 { 2283 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2284 } 2285 2286 struct kvm_set_guest_debug_data { 2287 struct kvm_guest_debug dbg; 2288 int err; 2289 }; 2290 2291 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2292 { 2293 struct kvm_set_guest_debug_data *dbg_data = 2294 (struct kvm_set_guest_debug_data *) data.host_ptr; 2295 2296 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2297 &dbg_data->dbg); 2298 } 2299 2300 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2301 { 2302 struct kvm_set_guest_debug_data data; 2303 2304 data.dbg.control = reinject_trap; 2305 2306 if (cpu->singlestep_enabled) { 2307 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2308 } 2309 kvm_arch_update_guest_debug(cpu, &data.dbg); 2310 2311 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2312 RUN_ON_CPU_HOST_PTR(&data)); 2313 return data.err; 2314 } 2315 2316 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2317 target_ulong len, int type) 2318 { 2319 struct kvm_sw_breakpoint *bp; 2320 int err; 2321 2322 if (type == GDB_BREAKPOINT_SW) { 2323 bp = kvm_find_sw_breakpoint(cpu, addr); 2324 if (bp) { 2325 bp->use_count++; 2326 return 0; 2327 } 2328 2329 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2330 bp->pc = addr; 2331 bp->use_count = 1; 2332 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2333 if (err) { 2334 g_free(bp); 2335 return err; 2336 } 2337 2338 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2339 } else { 2340 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2341 if (err) { 2342 return err; 2343 } 2344 } 2345 2346 CPU_FOREACH(cpu) { 2347 err = kvm_update_guest_debug(cpu, 0); 2348 if (err) { 2349 return err; 2350 } 2351 } 2352 return 0; 2353 } 2354 2355 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2356 target_ulong len, int type) 2357 { 2358 struct kvm_sw_breakpoint *bp; 2359 int err; 2360 2361 if (type == GDB_BREAKPOINT_SW) { 2362 bp = kvm_find_sw_breakpoint(cpu, addr); 2363 if (!bp) { 2364 return -ENOENT; 2365 } 2366 2367 if (bp->use_count > 1) { 2368 bp->use_count--; 2369 return 0; 2370 } 2371 2372 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2373 if (err) { 2374 return err; 2375 } 2376 2377 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2378 g_free(bp); 2379 } else { 2380 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2381 if (err) { 2382 return err; 2383 } 2384 } 2385 2386 CPU_FOREACH(cpu) { 2387 err = kvm_update_guest_debug(cpu, 0); 2388 if (err) { 2389 return err; 2390 } 2391 } 2392 return 0; 2393 } 2394 2395 void kvm_remove_all_breakpoints(CPUState *cpu) 2396 { 2397 struct kvm_sw_breakpoint *bp, *next; 2398 KVMState *s = cpu->kvm_state; 2399 CPUState *tmpcpu; 2400 2401 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2402 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2403 /* Try harder to find a CPU that currently sees the breakpoint. */ 2404 CPU_FOREACH(tmpcpu) { 2405 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2406 break; 2407 } 2408 } 2409 } 2410 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2411 g_free(bp); 2412 } 2413 kvm_arch_remove_all_hw_breakpoints(); 2414 2415 CPU_FOREACH(cpu) { 2416 kvm_update_guest_debug(cpu, 0); 2417 } 2418 } 2419 2420 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2421 2422 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2423 { 2424 return -EINVAL; 2425 } 2426 2427 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2428 target_ulong len, int type) 2429 { 2430 return -EINVAL; 2431 } 2432 2433 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2434 target_ulong len, int type) 2435 { 2436 return -EINVAL; 2437 } 2438 2439 void kvm_remove_all_breakpoints(CPUState *cpu) 2440 { 2441 } 2442 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2443 2444 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2445 { 2446 KVMState *s = kvm_state; 2447 struct kvm_signal_mask *sigmask; 2448 int r; 2449 2450 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2451 2452 sigmask->len = s->sigmask_len; 2453 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2454 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2455 g_free(sigmask); 2456 2457 return r; 2458 } 2459 2460 static void kvm_ipi_signal(int sig) 2461 { 2462 if (current_cpu) { 2463 assert(kvm_immediate_exit); 2464 kvm_cpu_kick(current_cpu); 2465 } 2466 } 2467 2468 void kvm_init_cpu_signals(CPUState *cpu) 2469 { 2470 int r; 2471 sigset_t set; 2472 struct sigaction sigact; 2473 2474 memset(&sigact, 0, sizeof(sigact)); 2475 sigact.sa_handler = kvm_ipi_signal; 2476 sigaction(SIG_IPI, &sigact, NULL); 2477 2478 pthread_sigmask(SIG_BLOCK, NULL, &set); 2479 #if defined KVM_HAVE_MCE_INJECTION 2480 sigdelset(&set, SIGBUS); 2481 pthread_sigmask(SIG_SETMASK, &set, NULL); 2482 #endif 2483 sigdelset(&set, SIG_IPI); 2484 if (kvm_immediate_exit) { 2485 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2486 } else { 2487 r = kvm_set_signal_mask(cpu, &set); 2488 } 2489 if (r) { 2490 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2491 exit(1); 2492 } 2493 } 2494 2495 /* Called asynchronously in VCPU thread. */ 2496 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2497 { 2498 #ifdef KVM_HAVE_MCE_INJECTION 2499 if (have_sigbus_pending) { 2500 return 1; 2501 } 2502 have_sigbus_pending = true; 2503 pending_sigbus_addr = addr; 2504 pending_sigbus_code = code; 2505 atomic_set(&cpu->exit_request, 1); 2506 return 0; 2507 #else 2508 return 1; 2509 #endif 2510 } 2511 2512 /* Called synchronously (via signalfd) in main thread. */ 2513 int kvm_on_sigbus(int code, void *addr) 2514 { 2515 #ifdef KVM_HAVE_MCE_INJECTION 2516 /* Action required MCE kills the process if SIGBUS is blocked. Because 2517 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2518 * we can only get action optional here. 2519 */ 2520 assert(code != BUS_MCEERR_AR); 2521 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2522 return 0; 2523 #else 2524 return 1; 2525 #endif 2526 } 2527 2528 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2529 { 2530 int ret; 2531 struct kvm_create_device create_dev; 2532 2533 create_dev.type = type; 2534 create_dev.fd = -1; 2535 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2536 2537 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2538 return -ENOTSUP; 2539 } 2540 2541 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2542 if (ret) { 2543 return ret; 2544 } 2545 2546 return test ? 0 : create_dev.fd; 2547 } 2548 2549 bool kvm_device_supported(int vmfd, uint64_t type) 2550 { 2551 struct kvm_create_device create_dev = { 2552 .type = type, 2553 .fd = -1, 2554 .flags = KVM_CREATE_DEVICE_TEST, 2555 }; 2556 2557 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2558 return false; 2559 } 2560 2561 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2562 } 2563 2564 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2565 { 2566 struct kvm_one_reg reg; 2567 int r; 2568 2569 reg.id = id; 2570 reg.addr = (uintptr_t) source; 2571 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2572 if (r) { 2573 trace_kvm_failed_reg_set(id, strerror(-r)); 2574 } 2575 return r; 2576 } 2577 2578 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2579 { 2580 struct kvm_one_reg reg; 2581 int r; 2582 2583 reg.id = id; 2584 reg.addr = (uintptr_t) target; 2585 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2586 if (r) { 2587 trace_kvm_failed_reg_get(id, strerror(-r)); 2588 } 2589 return r; 2590 } 2591 2592 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2593 { 2594 AccelClass *ac = ACCEL_CLASS(oc); 2595 ac->name = "KVM"; 2596 ac->init_machine = kvm_init; 2597 ac->allowed = &kvm_allowed; 2598 } 2599 2600 static const TypeInfo kvm_accel_type = { 2601 .name = TYPE_KVM_ACCEL, 2602 .parent = TYPE_ACCEL, 2603 .class_init = kvm_accel_class_init, 2604 .instance_size = sizeof(KVMState), 2605 }; 2606 2607 static void kvm_type_init(void) 2608 { 2609 type_register_static(&kvm_accel_type); 2610 } 2611 2612 type_init(kvm_type_init); 2613