1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 KVMState *kvm_state; 79 bool kvm_kernel_irqchip; 80 bool kvm_split_irqchip; 81 bool kvm_async_interrupts_allowed; 82 bool kvm_halt_in_kernel_allowed; 83 bool kvm_resamplefds_allowed; 84 bool kvm_msi_via_irqfd_allowed; 85 bool kvm_gsi_routing_allowed; 86 bool kvm_gsi_direct_mapping; 87 bool kvm_allowed; 88 bool kvm_readonly_mem_allowed; 89 bool kvm_vm_attributes_allowed; 90 bool kvm_msi_use_devid; 91 static bool kvm_has_guest_debug; 92 static int kvm_sstep_flags; 93 static bool kvm_immediate_exit; 94 static uint64_t kvm_supported_memory_attributes; 95 static bool kvm_guest_memfd_supported; 96 static hwaddr kvm_max_slot_size = ~0; 97 98 static const KVMCapabilityInfo kvm_required_capabilites[] = { 99 KVM_CAP_INFO(USER_MEMORY), 100 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 101 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 102 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 103 KVM_CAP_INFO(IOEVENTFD), 104 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 105 KVM_CAP_LAST_INFO 106 }; 107 108 static NotifierList kvm_irqchip_change_notifiers = 109 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 110 111 struct KVMResampleFd { 112 int gsi; 113 EventNotifier *resample_event; 114 QLIST_ENTRY(KVMResampleFd) node; 115 }; 116 typedef struct KVMResampleFd KVMResampleFd; 117 118 /* 119 * Only used with split irqchip where we need to do the resample fd 120 * kick for the kernel from userspace. 121 */ 122 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 123 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 124 125 static QemuMutex kml_slots_lock; 126 127 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 128 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 129 130 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 131 132 static inline void kvm_resample_fd_remove(int gsi) 133 { 134 KVMResampleFd *rfd; 135 136 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 137 if (rfd->gsi == gsi) { 138 QLIST_REMOVE(rfd, node); 139 g_free(rfd); 140 break; 141 } 142 } 143 } 144 145 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 146 { 147 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 148 149 rfd->gsi = gsi; 150 rfd->resample_event = event; 151 152 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 153 } 154 155 void kvm_resample_fd_notify(int gsi) 156 { 157 KVMResampleFd *rfd; 158 159 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 160 if (rfd->gsi == gsi) { 161 event_notifier_set(rfd->resample_event); 162 trace_kvm_resample_fd_notify(gsi); 163 return; 164 } 165 } 166 } 167 168 unsigned int kvm_get_max_memslots(void) 169 { 170 KVMState *s = KVM_STATE(current_accel()); 171 172 return s->nr_slots; 173 } 174 175 unsigned int kvm_get_free_memslots(void) 176 { 177 unsigned int used_slots = 0; 178 KVMState *s = kvm_state; 179 int i; 180 181 kvm_slots_lock(); 182 for (i = 0; i < s->nr_as; i++) { 183 if (!s->as[i].ml) { 184 continue; 185 } 186 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 187 } 188 kvm_slots_unlock(); 189 190 return s->nr_slots - used_slots; 191 } 192 193 /* Called with KVMMemoryListener.slots_lock held */ 194 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 195 { 196 KVMState *s = kvm_state; 197 int i; 198 199 for (i = 0; i < s->nr_slots; i++) { 200 if (kml->slots[i].memory_size == 0) { 201 return &kml->slots[i]; 202 } 203 } 204 205 return NULL; 206 } 207 208 /* Called with KVMMemoryListener.slots_lock held */ 209 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 210 { 211 KVMSlot *slot = kvm_get_free_slot(kml); 212 213 if (slot) { 214 return slot; 215 } 216 217 fprintf(stderr, "%s: no free slot available\n", __func__); 218 abort(); 219 } 220 221 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 222 hwaddr start_addr, 223 hwaddr size) 224 { 225 KVMState *s = kvm_state; 226 int i; 227 228 for (i = 0; i < s->nr_slots; i++) { 229 KVMSlot *mem = &kml->slots[i]; 230 231 if (start_addr == mem->start_addr && size == mem->memory_size) { 232 return mem; 233 } 234 } 235 236 return NULL; 237 } 238 239 /* 240 * Calculate and align the start address and the size of the section. 241 * Return the size. If the size is 0, the aligned section is empty. 242 */ 243 static hwaddr kvm_align_section(MemoryRegionSection *section, 244 hwaddr *start) 245 { 246 hwaddr size = int128_get64(section->size); 247 hwaddr delta, aligned; 248 249 /* kvm works in page size chunks, but the function may be called 250 with sub-page size and unaligned start address. Pad the start 251 address to next and truncate size to previous page boundary. */ 252 aligned = ROUND_UP(section->offset_within_address_space, 253 qemu_real_host_page_size()); 254 delta = aligned - section->offset_within_address_space; 255 *start = aligned; 256 if (delta > size) { 257 return 0; 258 } 259 260 return (size - delta) & qemu_real_host_page_mask(); 261 } 262 263 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 264 hwaddr *phys_addr) 265 { 266 KVMMemoryListener *kml = &s->memory_listener; 267 int i, ret = 0; 268 269 kvm_slots_lock(); 270 for (i = 0; i < s->nr_slots; i++) { 271 KVMSlot *mem = &kml->slots[i]; 272 273 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 274 *phys_addr = mem->start_addr + (ram - mem->ram); 275 ret = 1; 276 break; 277 } 278 } 279 kvm_slots_unlock(); 280 281 return ret; 282 } 283 284 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 285 { 286 KVMState *s = kvm_state; 287 struct kvm_userspace_memory_region2 mem; 288 int ret; 289 290 mem.slot = slot->slot | (kml->as_id << 16); 291 mem.guest_phys_addr = slot->start_addr; 292 mem.userspace_addr = (unsigned long)slot->ram; 293 mem.flags = slot->flags; 294 mem.guest_memfd = slot->guest_memfd; 295 mem.guest_memfd_offset = slot->guest_memfd_offset; 296 297 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 298 /* Set the slot size to 0 before setting the slot to the desired 299 * value. This is needed based on KVM commit 75d61fbc. */ 300 mem.memory_size = 0; 301 302 if (kvm_guest_memfd_supported) { 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 304 } else { 305 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 306 } 307 if (ret < 0) { 308 goto err; 309 } 310 } 311 mem.memory_size = slot->memory_size; 312 if (kvm_guest_memfd_supported) { 313 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 314 } else { 315 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 316 } 317 slot->old_flags = mem.flags; 318 err: 319 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 320 mem.guest_phys_addr, mem.memory_size, 321 mem.userspace_addr, mem.guest_memfd, 322 mem.guest_memfd_offset, ret); 323 if (ret < 0) { 324 if (kvm_guest_memfd_supported) { 325 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 326 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 327 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 328 " guest_memfd_offset=0x%" PRIx64 ": %s", 329 __func__, mem.slot, slot->start_addr, 330 (uint64_t)mem.memory_size, mem.flags, 331 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 332 strerror(errno)); 333 } else { 334 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 335 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 336 __func__, mem.slot, slot->start_addr, 337 (uint64_t)mem.memory_size, strerror(errno)); 338 } 339 } 340 return ret; 341 } 342 343 void kvm_park_vcpu(CPUState *cpu) 344 { 345 struct KVMParkedVcpu *vcpu; 346 347 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 348 349 vcpu = g_malloc0(sizeof(*vcpu)); 350 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 351 vcpu->kvm_fd = cpu->kvm_fd; 352 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 353 } 354 355 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 356 { 357 struct KVMParkedVcpu *cpu; 358 int kvm_fd = -ENOENT; 359 360 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 361 if (cpu->vcpu_id == vcpu_id) { 362 QLIST_REMOVE(cpu, node); 363 kvm_fd = cpu->kvm_fd; 364 g_free(cpu); 365 } 366 } 367 368 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 369 370 return kvm_fd; 371 } 372 373 int kvm_create_vcpu(CPUState *cpu) 374 { 375 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 376 KVMState *s = kvm_state; 377 int kvm_fd; 378 379 /* check if the KVM vCPU already exist but is parked */ 380 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 381 if (kvm_fd < 0) { 382 /* vCPU not parked: create a new KVM vCPU */ 383 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 384 if (kvm_fd < 0) { 385 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 386 return kvm_fd; 387 } 388 } 389 390 cpu->kvm_fd = kvm_fd; 391 cpu->kvm_state = s; 392 cpu->vcpu_dirty = true; 393 cpu->dirty_pages = 0; 394 cpu->throttle_us_per_full = 0; 395 396 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 397 398 return 0; 399 } 400 401 int kvm_create_and_park_vcpu(CPUState *cpu) 402 { 403 int ret = 0; 404 405 ret = kvm_create_vcpu(cpu); 406 if (!ret) { 407 kvm_park_vcpu(cpu); 408 } 409 410 return ret; 411 } 412 413 static int do_kvm_destroy_vcpu(CPUState *cpu) 414 { 415 KVMState *s = kvm_state; 416 long mmap_size; 417 int ret = 0; 418 419 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 420 421 ret = kvm_arch_destroy_vcpu(cpu); 422 if (ret < 0) { 423 goto err; 424 } 425 426 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 427 if (mmap_size < 0) { 428 ret = mmap_size; 429 trace_kvm_failed_get_vcpu_mmap_size(); 430 goto err; 431 } 432 433 ret = munmap(cpu->kvm_run, mmap_size); 434 if (ret < 0) { 435 goto err; 436 } 437 438 if (cpu->kvm_dirty_gfns) { 439 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 440 if (ret < 0) { 441 goto err; 442 } 443 } 444 445 kvm_park_vcpu(cpu); 446 err: 447 return ret; 448 } 449 450 void kvm_destroy_vcpu(CPUState *cpu) 451 { 452 if (do_kvm_destroy_vcpu(cpu) < 0) { 453 error_report("kvm_destroy_vcpu failed"); 454 exit(EXIT_FAILURE); 455 } 456 } 457 458 int kvm_init_vcpu(CPUState *cpu, Error **errp) 459 { 460 KVMState *s = kvm_state; 461 long mmap_size; 462 int ret; 463 464 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 465 466 ret = kvm_create_vcpu(cpu); 467 if (ret < 0) { 468 error_setg_errno(errp, -ret, 469 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 470 kvm_arch_vcpu_id(cpu)); 471 goto err; 472 } 473 474 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 475 if (mmap_size < 0) { 476 ret = mmap_size; 477 error_setg_errno(errp, -mmap_size, 478 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 479 goto err; 480 } 481 482 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 483 cpu->kvm_fd, 0); 484 if (cpu->kvm_run == MAP_FAILED) { 485 ret = -errno; 486 error_setg_errno(errp, ret, 487 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 488 kvm_arch_vcpu_id(cpu)); 489 goto err; 490 } 491 492 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 493 s->coalesced_mmio_ring = 494 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 495 } 496 497 if (s->kvm_dirty_ring_size) { 498 /* Use MAP_SHARED to share pages with the kernel */ 499 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 500 PROT_READ | PROT_WRITE, MAP_SHARED, 501 cpu->kvm_fd, 502 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 503 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 504 ret = -errno; 505 goto err; 506 } 507 } 508 509 ret = kvm_arch_init_vcpu(cpu); 510 if (ret < 0) { 511 error_setg_errno(errp, -ret, 512 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 513 kvm_arch_vcpu_id(cpu)); 514 } 515 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 516 517 err: 518 return ret; 519 } 520 521 /* 522 * dirty pages logging control 523 */ 524 525 static int kvm_mem_flags(MemoryRegion *mr) 526 { 527 bool readonly = mr->readonly || memory_region_is_romd(mr); 528 int flags = 0; 529 530 if (memory_region_get_dirty_log_mask(mr) != 0) { 531 flags |= KVM_MEM_LOG_DIRTY_PAGES; 532 } 533 if (readonly && kvm_readonly_mem_allowed) { 534 flags |= KVM_MEM_READONLY; 535 } 536 if (memory_region_has_guest_memfd(mr)) { 537 assert(kvm_guest_memfd_supported); 538 flags |= KVM_MEM_GUEST_MEMFD; 539 } 540 return flags; 541 } 542 543 /* Called with KVMMemoryListener.slots_lock held */ 544 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 545 MemoryRegion *mr) 546 { 547 mem->flags = kvm_mem_flags(mr); 548 549 /* If nothing changed effectively, no need to issue ioctl */ 550 if (mem->flags == mem->old_flags) { 551 return 0; 552 } 553 554 kvm_slot_init_dirty_bitmap(mem); 555 return kvm_set_user_memory_region(kml, mem, false); 556 } 557 558 static int kvm_section_update_flags(KVMMemoryListener *kml, 559 MemoryRegionSection *section) 560 { 561 hwaddr start_addr, size, slot_size; 562 KVMSlot *mem; 563 int ret = 0; 564 565 size = kvm_align_section(section, &start_addr); 566 if (!size) { 567 return 0; 568 } 569 570 kvm_slots_lock(); 571 572 while (size && !ret) { 573 slot_size = MIN(kvm_max_slot_size, size); 574 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 575 if (!mem) { 576 /* We don't have a slot if we want to trap every access. */ 577 goto out; 578 } 579 580 ret = kvm_slot_update_flags(kml, mem, section->mr); 581 start_addr += slot_size; 582 size -= slot_size; 583 } 584 585 out: 586 kvm_slots_unlock(); 587 return ret; 588 } 589 590 static void kvm_log_start(MemoryListener *listener, 591 MemoryRegionSection *section, 592 int old, int new) 593 { 594 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 595 int r; 596 597 if (old != 0) { 598 return; 599 } 600 601 r = kvm_section_update_flags(kml, section); 602 if (r < 0) { 603 abort(); 604 } 605 } 606 607 static void kvm_log_stop(MemoryListener *listener, 608 MemoryRegionSection *section, 609 int old, int new) 610 { 611 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 612 int r; 613 614 if (new != 0) { 615 return; 616 } 617 618 r = kvm_section_update_flags(kml, section); 619 if (r < 0) { 620 abort(); 621 } 622 } 623 624 /* get kvm's dirty pages bitmap and update qemu's */ 625 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 626 { 627 ram_addr_t start = slot->ram_start_offset; 628 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 629 630 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 631 } 632 633 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 634 { 635 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 636 } 637 638 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 639 640 /* Allocate the dirty bitmap for a slot */ 641 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 642 { 643 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 644 return; 645 } 646 647 /* 648 * XXX bad kernel interface alert 649 * For dirty bitmap, kernel allocates array of size aligned to 650 * bits-per-long. But for case when the kernel is 64bits and 651 * the userspace is 32bits, userspace can't align to the same 652 * bits-per-long, since sizeof(long) is different between kernel 653 * and user space. This way, userspace will provide buffer which 654 * may be 4 bytes less than the kernel will use, resulting in 655 * userspace memory corruption (which is not detectable by valgrind 656 * too, in most cases). 657 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 658 * a hope that sizeof(long) won't become >8 any time soon. 659 * 660 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 661 * And mem->memory_size is aligned to it (otherwise this mem can't 662 * be registered to KVM). 663 */ 664 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 665 /*HOST_LONG_BITS*/ 64) / 8; 666 mem->dirty_bmap = g_malloc0(bitmap_size); 667 mem->dirty_bmap_size = bitmap_size; 668 } 669 670 /* 671 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 672 * succeeded, false otherwise 673 */ 674 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 675 { 676 struct kvm_dirty_log d = {}; 677 int ret; 678 679 d.dirty_bitmap = slot->dirty_bmap; 680 d.slot = slot->slot | (slot->as_id << 16); 681 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 682 683 if (ret == -ENOENT) { 684 /* kernel does not have dirty bitmap in this slot */ 685 ret = 0; 686 } 687 if (ret) { 688 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 689 __func__, ret); 690 } 691 return ret == 0; 692 } 693 694 /* Should be with all slots_lock held for the address spaces. */ 695 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 696 uint32_t slot_id, uint64_t offset) 697 { 698 KVMMemoryListener *kml; 699 KVMSlot *mem; 700 701 if (as_id >= s->nr_as) { 702 return; 703 } 704 705 kml = s->as[as_id].ml; 706 mem = &kml->slots[slot_id]; 707 708 if (!mem->memory_size || offset >= 709 (mem->memory_size / qemu_real_host_page_size())) { 710 return; 711 } 712 713 set_bit(offset, mem->dirty_bmap); 714 } 715 716 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 717 { 718 /* 719 * Read the flags before the value. Pairs with barrier in 720 * KVM's kvm_dirty_ring_push() function. 721 */ 722 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 723 } 724 725 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 726 { 727 /* 728 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 729 * sees the full content of the ring: 730 * 731 * CPU0 CPU1 CPU2 732 * ------------------------------------------------------------------------------ 733 * fill gfn0 734 * store-rel flags for gfn0 735 * load-acq flags for gfn0 736 * store-rel RESET for gfn0 737 * ioctl(RESET_RINGS) 738 * load-acq flags for gfn0 739 * check if flags have RESET 740 * 741 * The synchronization goes from CPU2 to CPU0 to CPU1. 742 */ 743 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 744 } 745 746 /* 747 * Should be with all slots_lock held for the address spaces. It returns the 748 * dirty page we've collected on this dirty ring. 749 */ 750 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 751 { 752 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 753 uint32_t ring_size = s->kvm_dirty_ring_size; 754 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 755 756 /* 757 * It's possible that we race with vcpu creation code where the vcpu is 758 * put onto the vcpus list but not yet initialized the dirty ring 759 * structures. If so, skip it. 760 */ 761 if (!cpu->created) { 762 return 0; 763 } 764 765 assert(dirty_gfns && ring_size); 766 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 767 768 while (true) { 769 cur = &dirty_gfns[fetch % ring_size]; 770 if (!dirty_gfn_is_dirtied(cur)) { 771 break; 772 } 773 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 774 cur->offset); 775 dirty_gfn_set_collected(cur); 776 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 777 fetch++; 778 count++; 779 } 780 cpu->kvm_fetch_index = fetch; 781 cpu->dirty_pages += count; 782 783 return count; 784 } 785 786 /* Must be with slots_lock held */ 787 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 788 { 789 int ret; 790 uint64_t total = 0; 791 int64_t stamp; 792 793 stamp = get_clock(); 794 795 if (cpu) { 796 total = kvm_dirty_ring_reap_one(s, cpu); 797 } else { 798 CPU_FOREACH(cpu) { 799 total += kvm_dirty_ring_reap_one(s, cpu); 800 } 801 } 802 803 if (total) { 804 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 805 assert(ret == total); 806 } 807 808 stamp = get_clock() - stamp; 809 810 if (total) { 811 trace_kvm_dirty_ring_reap(total, stamp / 1000); 812 } 813 814 return total; 815 } 816 817 /* 818 * Currently for simplicity, we must hold BQL before calling this. We can 819 * consider to drop the BQL if we're clear with all the race conditions. 820 */ 821 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 822 { 823 uint64_t total; 824 825 /* 826 * We need to lock all kvm slots for all address spaces here, 827 * because: 828 * 829 * (1) We need to mark dirty for dirty bitmaps in multiple slots 830 * and for tons of pages, so it's better to take the lock here 831 * once rather than once per page. And more importantly, 832 * 833 * (2) We must _NOT_ publish dirty bits to the other threads 834 * (e.g., the migration thread) via the kvm memory slot dirty 835 * bitmaps before correctly re-protect those dirtied pages. 836 * Otherwise we can have potential risk of data corruption if 837 * the page data is read in the other thread before we do 838 * reset below. 839 */ 840 kvm_slots_lock(); 841 total = kvm_dirty_ring_reap_locked(s, cpu); 842 kvm_slots_unlock(); 843 844 return total; 845 } 846 847 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 848 { 849 /* No need to do anything */ 850 } 851 852 /* 853 * Kick all vcpus out in a synchronized way. When returned, we 854 * guarantee that every vcpu has been kicked and at least returned to 855 * userspace once. 856 */ 857 static void kvm_cpu_synchronize_kick_all(void) 858 { 859 CPUState *cpu; 860 861 CPU_FOREACH(cpu) { 862 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 863 } 864 } 865 866 /* 867 * Flush all the existing dirty pages to the KVM slot buffers. When 868 * this call returns, we guarantee that all the touched dirty pages 869 * before calling this function have been put into the per-kvmslot 870 * dirty bitmap. 871 * 872 * This function must be called with BQL held. 873 */ 874 static void kvm_dirty_ring_flush(void) 875 { 876 trace_kvm_dirty_ring_flush(0); 877 /* 878 * The function needs to be serialized. Since this function 879 * should always be with BQL held, serialization is guaranteed. 880 * However, let's be sure of it. 881 */ 882 assert(bql_locked()); 883 /* 884 * First make sure to flush the hardware buffers by kicking all 885 * vcpus out in a synchronous way. 886 */ 887 kvm_cpu_synchronize_kick_all(); 888 kvm_dirty_ring_reap(kvm_state, NULL); 889 trace_kvm_dirty_ring_flush(1); 890 } 891 892 /** 893 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 894 * 895 * This function will first try to fetch dirty bitmap from the kernel, 896 * and then updates qemu's dirty bitmap. 897 * 898 * NOTE: caller must be with kml->slots_lock held. 899 * 900 * @kml: the KVM memory listener object 901 * @section: the memory section to sync the dirty bitmap with 902 */ 903 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 904 MemoryRegionSection *section) 905 { 906 KVMState *s = kvm_state; 907 KVMSlot *mem; 908 hwaddr start_addr, size; 909 hwaddr slot_size; 910 911 size = kvm_align_section(section, &start_addr); 912 while (size) { 913 slot_size = MIN(kvm_max_slot_size, size); 914 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 915 if (!mem) { 916 /* We don't have a slot if we want to trap every access. */ 917 return; 918 } 919 if (kvm_slot_get_dirty_log(s, mem)) { 920 kvm_slot_sync_dirty_pages(mem); 921 } 922 start_addr += slot_size; 923 size -= slot_size; 924 } 925 } 926 927 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 928 #define KVM_CLEAR_LOG_SHIFT 6 929 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 930 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 931 932 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 933 uint64_t size) 934 { 935 KVMState *s = kvm_state; 936 uint64_t end, bmap_start, start_delta, bmap_npages; 937 struct kvm_clear_dirty_log d; 938 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 939 int ret; 940 941 /* 942 * We need to extend either the start or the size or both to 943 * satisfy the KVM interface requirement. Firstly, do the start 944 * page alignment on 64 host pages 945 */ 946 bmap_start = start & KVM_CLEAR_LOG_MASK; 947 start_delta = start - bmap_start; 948 bmap_start /= psize; 949 950 /* 951 * The kernel interface has restriction on the size too, that either: 952 * 953 * (1) the size is 64 host pages aligned (just like the start), or 954 * (2) the size fills up until the end of the KVM memslot. 955 */ 956 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 957 << KVM_CLEAR_LOG_SHIFT; 958 end = mem->memory_size / psize; 959 if (bmap_npages > end - bmap_start) { 960 bmap_npages = end - bmap_start; 961 } 962 start_delta /= psize; 963 964 /* 965 * Prepare the bitmap to clear dirty bits. Here we must guarantee 966 * that we won't clear any unknown dirty bits otherwise we might 967 * accidentally clear some set bits which are not yet synced from 968 * the kernel into QEMU's bitmap, then we'll lose track of the 969 * guest modifications upon those pages (which can directly lead 970 * to guest data loss or panic after migration). 971 * 972 * Layout of the KVMSlot.dirty_bmap: 973 * 974 * |<-------- bmap_npages -----------..>| 975 * [1] 976 * start_delta size 977 * |----------------|-------------|------------------|------------| 978 * ^ ^ ^ ^ 979 * | | | | 980 * start bmap_start (start) end 981 * of memslot of memslot 982 * 983 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 984 */ 985 986 assert(bmap_start % BITS_PER_LONG == 0); 987 /* We should never do log_clear before log_sync */ 988 assert(mem->dirty_bmap); 989 if (start_delta || bmap_npages - size / psize) { 990 /* Slow path - we need to manipulate a temp bitmap */ 991 bmap_clear = bitmap_new(bmap_npages); 992 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 993 bmap_start, start_delta + size / psize); 994 /* 995 * We need to fill the holes at start because that was not 996 * specified by the caller and we extended the bitmap only for 997 * 64 pages alignment 998 */ 999 bitmap_clear(bmap_clear, 0, start_delta); 1000 d.dirty_bitmap = bmap_clear; 1001 } else { 1002 /* 1003 * Fast path - both start and size align well with BITS_PER_LONG 1004 * (or the end of memory slot) 1005 */ 1006 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1007 } 1008 1009 d.first_page = bmap_start; 1010 /* It should never overflow. If it happens, say something */ 1011 assert(bmap_npages <= UINT32_MAX); 1012 d.num_pages = bmap_npages; 1013 d.slot = mem->slot | (as_id << 16); 1014 1015 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1016 if (ret < 0 && ret != -ENOENT) { 1017 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1018 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1019 __func__, d.slot, (uint64_t)d.first_page, 1020 (uint32_t)d.num_pages, ret); 1021 } else { 1022 ret = 0; 1023 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1024 } 1025 1026 /* 1027 * After we have updated the remote dirty bitmap, we update the 1028 * cached bitmap as well for the memslot, then if another user 1029 * clears the same region we know we shouldn't clear it again on 1030 * the remote otherwise it's data loss as well. 1031 */ 1032 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1033 size / psize); 1034 /* This handles the NULL case well */ 1035 g_free(bmap_clear); 1036 return ret; 1037 } 1038 1039 1040 /** 1041 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1042 * 1043 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1044 * protection in the host kernel because in that case this operation 1045 * will be done within log_sync(). 1046 * 1047 * @kml: the kvm memory listener 1048 * @section: the memory range to clear dirty bitmap 1049 */ 1050 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1051 MemoryRegionSection *section) 1052 { 1053 KVMState *s = kvm_state; 1054 uint64_t start, size, offset, count; 1055 KVMSlot *mem; 1056 int ret = 0, i; 1057 1058 if (!s->manual_dirty_log_protect) { 1059 /* No need to do explicit clear */ 1060 return ret; 1061 } 1062 1063 start = section->offset_within_address_space; 1064 size = int128_get64(section->size); 1065 1066 if (!size) { 1067 /* Nothing more we can do... */ 1068 return ret; 1069 } 1070 1071 kvm_slots_lock(); 1072 1073 for (i = 0; i < s->nr_slots; i++) { 1074 mem = &kml->slots[i]; 1075 /* Discard slots that are empty or do not overlap the section */ 1076 if (!mem->memory_size || 1077 mem->start_addr > start + size - 1 || 1078 start > mem->start_addr + mem->memory_size - 1) { 1079 continue; 1080 } 1081 1082 if (start >= mem->start_addr) { 1083 /* The slot starts before section or is aligned to it. */ 1084 offset = start - mem->start_addr; 1085 count = MIN(mem->memory_size - offset, size); 1086 } else { 1087 /* The slot starts after section. */ 1088 offset = 0; 1089 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1090 } 1091 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1092 if (ret < 0) { 1093 break; 1094 } 1095 } 1096 1097 kvm_slots_unlock(); 1098 1099 return ret; 1100 } 1101 1102 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1103 MemoryRegionSection *secion, 1104 hwaddr start, hwaddr size) 1105 { 1106 KVMState *s = kvm_state; 1107 1108 if (s->coalesced_mmio) { 1109 struct kvm_coalesced_mmio_zone zone; 1110 1111 zone.addr = start; 1112 zone.size = size; 1113 zone.pad = 0; 1114 1115 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1116 } 1117 } 1118 1119 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1120 MemoryRegionSection *secion, 1121 hwaddr start, hwaddr size) 1122 { 1123 KVMState *s = kvm_state; 1124 1125 if (s->coalesced_mmio) { 1126 struct kvm_coalesced_mmio_zone zone; 1127 1128 zone.addr = start; 1129 zone.size = size; 1130 zone.pad = 0; 1131 1132 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1133 } 1134 } 1135 1136 static void kvm_coalesce_pio_add(MemoryListener *listener, 1137 MemoryRegionSection *section, 1138 hwaddr start, hwaddr size) 1139 { 1140 KVMState *s = kvm_state; 1141 1142 if (s->coalesced_pio) { 1143 struct kvm_coalesced_mmio_zone zone; 1144 1145 zone.addr = start; 1146 zone.size = size; 1147 zone.pio = 1; 1148 1149 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1150 } 1151 } 1152 1153 static void kvm_coalesce_pio_del(MemoryListener *listener, 1154 MemoryRegionSection *section, 1155 hwaddr start, hwaddr size) 1156 { 1157 KVMState *s = kvm_state; 1158 1159 if (s->coalesced_pio) { 1160 struct kvm_coalesced_mmio_zone zone; 1161 1162 zone.addr = start; 1163 zone.size = size; 1164 zone.pio = 1; 1165 1166 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1167 } 1168 } 1169 1170 int kvm_check_extension(KVMState *s, unsigned int extension) 1171 { 1172 int ret; 1173 1174 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1175 if (ret < 0) { 1176 ret = 0; 1177 } 1178 1179 return ret; 1180 } 1181 1182 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1183 { 1184 int ret; 1185 1186 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1187 if (ret < 0) { 1188 /* VM wide version not implemented, use global one instead */ 1189 ret = kvm_check_extension(s, extension); 1190 } 1191 1192 return ret; 1193 } 1194 1195 /* 1196 * We track the poisoned pages to be able to: 1197 * - replace them on VM reset 1198 * - block a migration for a VM with a poisoned page 1199 */ 1200 typedef struct HWPoisonPage { 1201 ram_addr_t ram_addr; 1202 QLIST_ENTRY(HWPoisonPage) list; 1203 } HWPoisonPage; 1204 1205 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1206 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1207 1208 static void kvm_unpoison_all(void *param) 1209 { 1210 HWPoisonPage *page, *next_page; 1211 1212 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1213 QLIST_REMOVE(page, list); 1214 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1215 g_free(page); 1216 } 1217 } 1218 1219 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1220 { 1221 HWPoisonPage *page; 1222 1223 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1224 if (page->ram_addr == ram_addr) { 1225 return; 1226 } 1227 } 1228 page = g_new(HWPoisonPage, 1); 1229 page->ram_addr = ram_addr; 1230 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1231 } 1232 1233 bool kvm_hwpoisoned_mem(void) 1234 { 1235 return !QLIST_EMPTY(&hwpoison_page_list); 1236 } 1237 1238 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1239 { 1240 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1241 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1242 * endianness, but the memory core hands them in target endianness. 1243 * For example, PPC is always treated as big-endian even if running 1244 * on KVM and on PPC64LE. Correct here. 1245 */ 1246 switch (size) { 1247 case 2: 1248 val = bswap16(val); 1249 break; 1250 case 4: 1251 val = bswap32(val); 1252 break; 1253 } 1254 #endif 1255 return val; 1256 } 1257 1258 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1259 bool assign, uint32_t size, bool datamatch) 1260 { 1261 int ret; 1262 struct kvm_ioeventfd iofd = { 1263 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1264 .addr = addr, 1265 .len = size, 1266 .flags = 0, 1267 .fd = fd, 1268 }; 1269 1270 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1271 datamatch); 1272 if (!kvm_enabled()) { 1273 return -ENOSYS; 1274 } 1275 1276 if (datamatch) { 1277 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1278 } 1279 if (!assign) { 1280 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1281 } 1282 1283 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1284 1285 if (ret < 0) { 1286 return -errno; 1287 } 1288 1289 return 0; 1290 } 1291 1292 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1293 bool assign, uint32_t size, bool datamatch) 1294 { 1295 struct kvm_ioeventfd kick = { 1296 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1297 .addr = addr, 1298 .flags = KVM_IOEVENTFD_FLAG_PIO, 1299 .len = size, 1300 .fd = fd, 1301 }; 1302 int r; 1303 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1304 if (!kvm_enabled()) { 1305 return -ENOSYS; 1306 } 1307 if (datamatch) { 1308 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1309 } 1310 if (!assign) { 1311 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1312 } 1313 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1314 if (r < 0) { 1315 return r; 1316 } 1317 return 0; 1318 } 1319 1320 1321 static const KVMCapabilityInfo * 1322 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1323 { 1324 while (list->name) { 1325 if (!kvm_check_extension(s, list->value)) { 1326 return list; 1327 } 1328 list++; 1329 } 1330 return NULL; 1331 } 1332 1333 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1334 { 1335 g_assert( 1336 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1337 ); 1338 kvm_max_slot_size = max_slot_size; 1339 } 1340 1341 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1342 { 1343 struct kvm_memory_attributes attrs; 1344 int r; 1345 1346 assert((attr & kvm_supported_memory_attributes) == attr); 1347 attrs.attributes = attr; 1348 attrs.address = start; 1349 attrs.size = size; 1350 attrs.flags = 0; 1351 1352 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1353 if (r) { 1354 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1355 "with attr 0x%" PRIx64 " error '%s'", 1356 start, size, attr, strerror(errno)); 1357 } 1358 return r; 1359 } 1360 1361 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1362 { 1363 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1364 } 1365 1366 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1367 { 1368 return kvm_set_memory_attributes(start, size, 0); 1369 } 1370 1371 /* Called with KVMMemoryListener.slots_lock held */ 1372 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1373 MemoryRegionSection *section, bool add) 1374 { 1375 KVMSlot *mem; 1376 int err; 1377 MemoryRegion *mr = section->mr; 1378 bool writable = !mr->readonly && !mr->rom_device; 1379 hwaddr start_addr, size, slot_size, mr_offset; 1380 ram_addr_t ram_start_offset; 1381 void *ram; 1382 1383 if (!memory_region_is_ram(mr)) { 1384 if (writable || !kvm_readonly_mem_allowed) { 1385 return; 1386 } else if (!mr->romd_mode) { 1387 /* If the memory device is not in romd_mode, then we actually want 1388 * to remove the kvm memory slot so all accesses will trap. */ 1389 add = false; 1390 } 1391 } 1392 1393 size = kvm_align_section(section, &start_addr); 1394 if (!size) { 1395 return; 1396 } 1397 1398 /* The offset of the kvmslot within the memory region */ 1399 mr_offset = section->offset_within_region + start_addr - 1400 section->offset_within_address_space; 1401 1402 /* use aligned delta to align the ram address and offset */ 1403 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1404 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1405 1406 if (!add) { 1407 do { 1408 slot_size = MIN(kvm_max_slot_size, size); 1409 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1410 if (!mem) { 1411 return; 1412 } 1413 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1414 /* 1415 * NOTE: We should be aware of the fact that here we're only 1416 * doing a best effort to sync dirty bits. No matter whether 1417 * we're using dirty log or dirty ring, we ignored two facts: 1418 * 1419 * (1) dirty bits can reside in hardware buffers (PML) 1420 * 1421 * (2) after we collected dirty bits here, pages can be dirtied 1422 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1423 * remove the slot. 1424 * 1425 * Not easy. Let's cross the fingers until it's fixed. 1426 */ 1427 if (kvm_state->kvm_dirty_ring_size) { 1428 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1429 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1430 kvm_slot_sync_dirty_pages(mem); 1431 kvm_slot_get_dirty_log(kvm_state, mem); 1432 } 1433 } else { 1434 kvm_slot_get_dirty_log(kvm_state, mem); 1435 } 1436 kvm_slot_sync_dirty_pages(mem); 1437 } 1438 1439 /* unregister the slot */ 1440 g_free(mem->dirty_bmap); 1441 mem->dirty_bmap = NULL; 1442 mem->memory_size = 0; 1443 mem->flags = 0; 1444 err = kvm_set_user_memory_region(kml, mem, false); 1445 if (err) { 1446 fprintf(stderr, "%s: error unregistering slot: %s\n", 1447 __func__, strerror(-err)); 1448 abort(); 1449 } 1450 start_addr += slot_size; 1451 size -= slot_size; 1452 kml->nr_used_slots--; 1453 } while (size); 1454 return; 1455 } 1456 1457 /* register the new slot */ 1458 do { 1459 slot_size = MIN(kvm_max_slot_size, size); 1460 mem = kvm_alloc_slot(kml); 1461 mem->as_id = kml->as_id; 1462 mem->memory_size = slot_size; 1463 mem->start_addr = start_addr; 1464 mem->ram_start_offset = ram_start_offset; 1465 mem->ram = ram; 1466 mem->flags = kvm_mem_flags(mr); 1467 mem->guest_memfd = mr->ram_block->guest_memfd; 1468 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1469 1470 kvm_slot_init_dirty_bitmap(mem); 1471 err = kvm_set_user_memory_region(kml, mem, true); 1472 if (err) { 1473 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1474 strerror(-err)); 1475 abort(); 1476 } 1477 1478 if (memory_region_has_guest_memfd(mr)) { 1479 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1480 if (err) { 1481 error_report("%s: failed to set memory attribute private: %s", 1482 __func__, strerror(-err)); 1483 exit(1); 1484 } 1485 } 1486 1487 start_addr += slot_size; 1488 ram_start_offset += slot_size; 1489 ram += slot_size; 1490 size -= slot_size; 1491 kml->nr_used_slots++; 1492 } while (size); 1493 } 1494 1495 static void *kvm_dirty_ring_reaper_thread(void *data) 1496 { 1497 KVMState *s = data; 1498 struct KVMDirtyRingReaper *r = &s->reaper; 1499 1500 rcu_register_thread(); 1501 1502 trace_kvm_dirty_ring_reaper("init"); 1503 1504 while (true) { 1505 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1506 trace_kvm_dirty_ring_reaper("wait"); 1507 /* 1508 * TODO: provide a smarter timeout rather than a constant? 1509 */ 1510 sleep(1); 1511 1512 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1513 if (dirtylimit_in_service()) { 1514 continue; 1515 } 1516 1517 trace_kvm_dirty_ring_reaper("wakeup"); 1518 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1519 1520 bql_lock(); 1521 kvm_dirty_ring_reap(s, NULL); 1522 bql_unlock(); 1523 1524 r->reaper_iteration++; 1525 } 1526 1527 trace_kvm_dirty_ring_reaper("exit"); 1528 1529 rcu_unregister_thread(); 1530 1531 return NULL; 1532 } 1533 1534 static void kvm_dirty_ring_reaper_init(KVMState *s) 1535 { 1536 struct KVMDirtyRingReaper *r = &s->reaper; 1537 1538 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1539 kvm_dirty_ring_reaper_thread, 1540 s, QEMU_THREAD_JOINABLE); 1541 } 1542 1543 static int kvm_dirty_ring_init(KVMState *s) 1544 { 1545 uint32_t ring_size = s->kvm_dirty_ring_size; 1546 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1547 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1548 int ret; 1549 1550 s->kvm_dirty_ring_size = 0; 1551 s->kvm_dirty_ring_bytes = 0; 1552 1553 /* Bail if the dirty ring size isn't specified */ 1554 if (!ring_size) { 1555 return 0; 1556 } 1557 1558 /* 1559 * Read the max supported pages. Fall back to dirty logging mode 1560 * if the dirty ring isn't supported. 1561 */ 1562 ret = kvm_vm_check_extension(s, capability); 1563 if (ret <= 0) { 1564 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1565 ret = kvm_vm_check_extension(s, capability); 1566 } 1567 1568 if (ret <= 0) { 1569 warn_report("KVM dirty ring not available, using bitmap method"); 1570 return 0; 1571 } 1572 1573 if (ring_bytes > ret) { 1574 error_report("KVM dirty ring size %" PRIu32 " too big " 1575 "(maximum is %ld). Please use a smaller value.", 1576 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1577 return -EINVAL; 1578 } 1579 1580 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1581 if (ret) { 1582 error_report("Enabling of KVM dirty ring failed: %s. " 1583 "Suggested minimum value is 1024.", strerror(-ret)); 1584 return -EIO; 1585 } 1586 1587 /* Enable the backup bitmap if it is supported */ 1588 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1589 if (ret > 0) { 1590 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1591 if (ret) { 1592 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1593 "%s. ", strerror(-ret)); 1594 return -EIO; 1595 } 1596 1597 s->kvm_dirty_ring_with_bitmap = true; 1598 } 1599 1600 s->kvm_dirty_ring_size = ring_size; 1601 s->kvm_dirty_ring_bytes = ring_bytes; 1602 1603 return 0; 1604 } 1605 1606 static void kvm_region_add(MemoryListener *listener, 1607 MemoryRegionSection *section) 1608 { 1609 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1610 KVMMemoryUpdate *update; 1611 1612 update = g_new0(KVMMemoryUpdate, 1); 1613 update->section = *section; 1614 1615 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1616 } 1617 1618 static void kvm_region_del(MemoryListener *listener, 1619 MemoryRegionSection *section) 1620 { 1621 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1622 KVMMemoryUpdate *update; 1623 1624 update = g_new0(KVMMemoryUpdate, 1); 1625 update->section = *section; 1626 1627 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1628 } 1629 1630 static void kvm_region_commit(MemoryListener *listener) 1631 { 1632 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1633 listener); 1634 KVMMemoryUpdate *u1, *u2; 1635 bool need_inhibit = false; 1636 1637 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1638 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1639 return; 1640 } 1641 1642 /* 1643 * We have to be careful when regions to add overlap with ranges to remove. 1644 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1645 * is currently active. 1646 * 1647 * The lists are order by addresses, so it's easy to find overlaps. 1648 */ 1649 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1650 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1651 while (u1 && u2) { 1652 Range r1, r2; 1653 1654 range_init_nofail(&r1, u1->section.offset_within_address_space, 1655 int128_get64(u1->section.size)); 1656 range_init_nofail(&r2, u2->section.offset_within_address_space, 1657 int128_get64(u2->section.size)); 1658 1659 if (range_overlaps_range(&r1, &r2)) { 1660 need_inhibit = true; 1661 break; 1662 } 1663 if (range_lob(&r1) < range_lob(&r2)) { 1664 u1 = QSIMPLEQ_NEXT(u1, next); 1665 } else { 1666 u2 = QSIMPLEQ_NEXT(u2, next); 1667 } 1668 } 1669 1670 kvm_slots_lock(); 1671 if (need_inhibit) { 1672 accel_ioctl_inhibit_begin(); 1673 } 1674 1675 /* Remove all memslots before adding the new ones. */ 1676 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1677 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1678 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1679 1680 kvm_set_phys_mem(kml, &u1->section, false); 1681 memory_region_unref(u1->section.mr); 1682 1683 g_free(u1); 1684 } 1685 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1686 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1687 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1688 1689 memory_region_ref(u1->section.mr); 1690 kvm_set_phys_mem(kml, &u1->section, true); 1691 1692 g_free(u1); 1693 } 1694 1695 if (need_inhibit) { 1696 accel_ioctl_inhibit_end(); 1697 } 1698 kvm_slots_unlock(); 1699 } 1700 1701 static void kvm_log_sync(MemoryListener *listener, 1702 MemoryRegionSection *section) 1703 { 1704 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1705 1706 kvm_slots_lock(); 1707 kvm_physical_sync_dirty_bitmap(kml, section); 1708 kvm_slots_unlock(); 1709 } 1710 1711 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1712 { 1713 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1714 KVMState *s = kvm_state; 1715 KVMSlot *mem; 1716 int i; 1717 1718 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1719 kvm_dirty_ring_flush(); 1720 1721 /* 1722 * TODO: make this faster when nr_slots is big while there are 1723 * only a few used slots (small VMs). 1724 */ 1725 kvm_slots_lock(); 1726 for (i = 0; i < s->nr_slots; i++) { 1727 mem = &kml->slots[i]; 1728 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1729 kvm_slot_sync_dirty_pages(mem); 1730 1731 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1732 kvm_slot_get_dirty_log(s, mem)) { 1733 kvm_slot_sync_dirty_pages(mem); 1734 } 1735 1736 /* 1737 * This is not needed by KVM_GET_DIRTY_LOG because the 1738 * ioctl will unconditionally overwrite the whole region. 1739 * However kvm dirty ring has no such side effect. 1740 */ 1741 kvm_slot_reset_dirty_pages(mem); 1742 } 1743 } 1744 kvm_slots_unlock(); 1745 } 1746 1747 static void kvm_log_clear(MemoryListener *listener, 1748 MemoryRegionSection *section) 1749 { 1750 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1751 int r; 1752 1753 r = kvm_physical_log_clear(kml, section); 1754 if (r < 0) { 1755 error_report_once("%s: kvm log clear failed: mr=%s " 1756 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1757 section->mr->name, section->offset_within_region, 1758 int128_get64(section->size)); 1759 abort(); 1760 } 1761 } 1762 1763 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1764 MemoryRegionSection *section, 1765 bool match_data, uint64_t data, 1766 EventNotifier *e) 1767 { 1768 int fd = event_notifier_get_fd(e); 1769 int r; 1770 1771 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1772 data, true, int128_get64(section->size), 1773 match_data); 1774 if (r < 0) { 1775 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1776 __func__, strerror(-r), -r); 1777 abort(); 1778 } 1779 } 1780 1781 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1782 MemoryRegionSection *section, 1783 bool match_data, uint64_t data, 1784 EventNotifier *e) 1785 { 1786 int fd = event_notifier_get_fd(e); 1787 int r; 1788 1789 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1790 data, false, int128_get64(section->size), 1791 match_data); 1792 if (r < 0) { 1793 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1794 __func__, strerror(-r), -r); 1795 abort(); 1796 } 1797 } 1798 1799 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1800 MemoryRegionSection *section, 1801 bool match_data, uint64_t data, 1802 EventNotifier *e) 1803 { 1804 int fd = event_notifier_get_fd(e); 1805 int r; 1806 1807 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1808 data, true, int128_get64(section->size), 1809 match_data); 1810 if (r < 0) { 1811 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1812 __func__, strerror(-r), -r); 1813 abort(); 1814 } 1815 } 1816 1817 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1818 MemoryRegionSection *section, 1819 bool match_data, uint64_t data, 1820 EventNotifier *e) 1821 1822 { 1823 int fd = event_notifier_get_fd(e); 1824 int r; 1825 1826 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1827 data, false, int128_get64(section->size), 1828 match_data); 1829 if (r < 0) { 1830 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1831 __func__, strerror(-r), -r); 1832 abort(); 1833 } 1834 } 1835 1836 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1837 AddressSpace *as, int as_id, const char *name) 1838 { 1839 int i; 1840 1841 kml->slots = g_new0(KVMSlot, s->nr_slots); 1842 kml->as_id = as_id; 1843 1844 for (i = 0; i < s->nr_slots; i++) { 1845 kml->slots[i].slot = i; 1846 } 1847 1848 QSIMPLEQ_INIT(&kml->transaction_add); 1849 QSIMPLEQ_INIT(&kml->transaction_del); 1850 1851 kml->listener.region_add = kvm_region_add; 1852 kml->listener.region_del = kvm_region_del; 1853 kml->listener.commit = kvm_region_commit; 1854 kml->listener.log_start = kvm_log_start; 1855 kml->listener.log_stop = kvm_log_stop; 1856 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1857 kml->listener.name = name; 1858 1859 if (s->kvm_dirty_ring_size) { 1860 kml->listener.log_sync_global = kvm_log_sync_global; 1861 } else { 1862 kml->listener.log_sync = kvm_log_sync; 1863 kml->listener.log_clear = kvm_log_clear; 1864 } 1865 1866 memory_listener_register(&kml->listener, as); 1867 1868 for (i = 0; i < s->nr_as; ++i) { 1869 if (!s->as[i].as) { 1870 s->as[i].as = as; 1871 s->as[i].ml = kml; 1872 break; 1873 } 1874 } 1875 } 1876 1877 static MemoryListener kvm_io_listener = { 1878 .name = "kvm-io", 1879 .coalesced_io_add = kvm_coalesce_pio_add, 1880 .coalesced_io_del = kvm_coalesce_pio_del, 1881 .eventfd_add = kvm_io_ioeventfd_add, 1882 .eventfd_del = kvm_io_ioeventfd_del, 1883 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1884 }; 1885 1886 int kvm_set_irq(KVMState *s, int irq, int level) 1887 { 1888 struct kvm_irq_level event; 1889 int ret; 1890 1891 assert(kvm_async_interrupts_enabled()); 1892 1893 event.level = level; 1894 event.irq = irq; 1895 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1896 if (ret < 0) { 1897 perror("kvm_set_irq"); 1898 abort(); 1899 } 1900 1901 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1902 } 1903 1904 #ifdef KVM_CAP_IRQ_ROUTING 1905 typedef struct KVMMSIRoute { 1906 struct kvm_irq_routing_entry kroute; 1907 QTAILQ_ENTRY(KVMMSIRoute) entry; 1908 } KVMMSIRoute; 1909 1910 static void set_gsi(KVMState *s, unsigned int gsi) 1911 { 1912 set_bit(gsi, s->used_gsi_bitmap); 1913 } 1914 1915 static void clear_gsi(KVMState *s, unsigned int gsi) 1916 { 1917 clear_bit(gsi, s->used_gsi_bitmap); 1918 } 1919 1920 void kvm_init_irq_routing(KVMState *s) 1921 { 1922 int gsi_count; 1923 1924 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1925 if (gsi_count > 0) { 1926 /* Round up so we can search ints using ffs */ 1927 s->used_gsi_bitmap = bitmap_new(gsi_count); 1928 s->gsi_count = gsi_count; 1929 } 1930 1931 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1932 s->nr_allocated_irq_routes = 0; 1933 1934 kvm_arch_init_irq_routing(s); 1935 } 1936 1937 void kvm_irqchip_commit_routes(KVMState *s) 1938 { 1939 int ret; 1940 1941 if (kvm_gsi_direct_mapping()) { 1942 return; 1943 } 1944 1945 if (!kvm_gsi_routing_enabled()) { 1946 return; 1947 } 1948 1949 s->irq_routes->flags = 0; 1950 trace_kvm_irqchip_commit_routes(); 1951 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1952 assert(ret == 0); 1953 } 1954 1955 void kvm_add_routing_entry(KVMState *s, 1956 struct kvm_irq_routing_entry *entry) 1957 { 1958 struct kvm_irq_routing_entry *new; 1959 int n, size; 1960 1961 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1962 n = s->nr_allocated_irq_routes * 2; 1963 if (n < 64) { 1964 n = 64; 1965 } 1966 size = sizeof(struct kvm_irq_routing); 1967 size += n * sizeof(*new); 1968 s->irq_routes = g_realloc(s->irq_routes, size); 1969 s->nr_allocated_irq_routes = n; 1970 } 1971 n = s->irq_routes->nr++; 1972 new = &s->irq_routes->entries[n]; 1973 1974 *new = *entry; 1975 1976 set_gsi(s, entry->gsi); 1977 } 1978 1979 static int kvm_update_routing_entry(KVMState *s, 1980 struct kvm_irq_routing_entry *new_entry) 1981 { 1982 struct kvm_irq_routing_entry *entry; 1983 int n; 1984 1985 for (n = 0; n < s->irq_routes->nr; n++) { 1986 entry = &s->irq_routes->entries[n]; 1987 if (entry->gsi != new_entry->gsi) { 1988 continue; 1989 } 1990 1991 if(!memcmp(entry, new_entry, sizeof *entry)) { 1992 return 0; 1993 } 1994 1995 *entry = *new_entry; 1996 1997 return 0; 1998 } 1999 2000 return -ESRCH; 2001 } 2002 2003 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2004 { 2005 struct kvm_irq_routing_entry e = {}; 2006 2007 assert(pin < s->gsi_count); 2008 2009 e.gsi = irq; 2010 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2011 e.flags = 0; 2012 e.u.irqchip.irqchip = irqchip; 2013 e.u.irqchip.pin = pin; 2014 kvm_add_routing_entry(s, &e); 2015 } 2016 2017 void kvm_irqchip_release_virq(KVMState *s, int virq) 2018 { 2019 struct kvm_irq_routing_entry *e; 2020 int i; 2021 2022 if (kvm_gsi_direct_mapping()) { 2023 return; 2024 } 2025 2026 for (i = 0; i < s->irq_routes->nr; i++) { 2027 e = &s->irq_routes->entries[i]; 2028 if (e->gsi == virq) { 2029 s->irq_routes->nr--; 2030 *e = s->irq_routes->entries[s->irq_routes->nr]; 2031 } 2032 } 2033 clear_gsi(s, virq); 2034 kvm_arch_release_virq_post(virq); 2035 trace_kvm_irqchip_release_virq(virq); 2036 } 2037 2038 void kvm_irqchip_add_change_notifier(Notifier *n) 2039 { 2040 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2041 } 2042 2043 void kvm_irqchip_remove_change_notifier(Notifier *n) 2044 { 2045 notifier_remove(n); 2046 } 2047 2048 void kvm_irqchip_change_notify(void) 2049 { 2050 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2051 } 2052 2053 int kvm_irqchip_get_virq(KVMState *s) 2054 { 2055 int next_virq; 2056 2057 /* Return the lowest unused GSI in the bitmap */ 2058 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2059 if (next_virq >= s->gsi_count) { 2060 return -ENOSPC; 2061 } else { 2062 return next_virq; 2063 } 2064 } 2065 2066 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2067 { 2068 struct kvm_msi msi; 2069 2070 msi.address_lo = (uint32_t)msg.address; 2071 msi.address_hi = msg.address >> 32; 2072 msi.data = le32_to_cpu(msg.data); 2073 msi.flags = 0; 2074 memset(msi.pad, 0, sizeof(msi.pad)); 2075 2076 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2077 } 2078 2079 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2080 { 2081 struct kvm_irq_routing_entry kroute = {}; 2082 int virq; 2083 KVMState *s = c->s; 2084 MSIMessage msg = {0, 0}; 2085 2086 if (pci_available && dev) { 2087 msg = pci_get_msi_message(dev, vector); 2088 } 2089 2090 if (kvm_gsi_direct_mapping()) { 2091 return kvm_arch_msi_data_to_gsi(msg.data); 2092 } 2093 2094 if (!kvm_gsi_routing_enabled()) { 2095 return -ENOSYS; 2096 } 2097 2098 virq = kvm_irqchip_get_virq(s); 2099 if (virq < 0) { 2100 return virq; 2101 } 2102 2103 kroute.gsi = virq; 2104 kroute.type = KVM_IRQ_ROUTING_MSI; 2105 kroute.flags = 0; 2106 kroute.u.msi.address_lo = (uint32_t)msg.address; 2107 kroute.u.msi.address_hi = msg.address >> 32; 2108 kroute.u.msi.data = le32_to_cpu(msg.data); 2109 if (pci_available && kvm_msi_devid_required()) { 2110 kroute.flags = KVM_MSI_VALID_DEVID; 2111 kroute.u.msi.devid = pci_requester_id(dev); 2112 } 2113 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2114 kvm_irqchip_release_virq(s, virq); 2115 return -EINVAL; 2116 } 2117 2118 if (s->irq_routes->nr < s->gsi_count) { 2119 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2120 vector, virq); 2121 2122 kvm_add_routing_entry(s, &kroute); 2123 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2124 c->changes++; 2125 } else { 2126 kvm_irqchip_release_virq(s, virq); 2127 return -ENOSPC; 2128 } 2129 2130 return virq; 2131 } 2132 2133 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2134 PCIDevice *dev) 2135 { 2136 struct kvm_irq_routing_entry kroute = {}; 2137 2138 if (kvm_gsi_direct_mapping()) { 2139 return 0; 2140 } 2141 2142 if (!kvm_irqchip_in_kernel()) { 2143 return -ENOSYS; 2144 } 2145 2146 kroute.gsi = virq; 2147 kroute.type = KVM_IRQ_ROUTING_MSI; 2148 kroute.flags = 0; 2149 kroute.u.msi.address_lo = (uint32_t)msg.address; 2150 kroute.u.msi.address_hi = msg.address >> 32; 2151 kroute.u.msi.data = le32_to_cpu(msg.data); 2152 if (pci_available && kvm_msi_devid_required()) { 2153 kroute.flags = KVM_MSI_VALID_DEVID; 2154 kroute.u.msi.devid = pci_requester_id(dev); 2155 } 2156 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2157 return -EINVAL; 2158 } 2159 2160 trace_kvm_irqchip_update_msi_route(virq); 2161 2162 return kvm_update_routing_entry(s, &kroute); 2163 } 2164 2165 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2166 EventNotifier *resample, int virq, 2167 bool assign) 2168 { 2169 int fd = event_notifier_get_fd(event); 2170 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2171 2172 struct kvm_irqfd irqfd = { 2173 .fd = fd, 2174 .gsi = virq, 2175 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2176 }; 2177 2178 if (rfd != -1) { 2179 assert(assign); 2180 if (kvm_irqchip_is_split()) { 2181 /* 2182 * When the slow irqchip (e.g. IOAPIC) is in the 2183 * userspace, KVM kernel resamplefd will not work because 2184 * the EOI of the interrupt will be delivered to userspace 2185 * instead, so the KVM kernel resamplefd kick will be 2186 * skipped. The userspace here mimics what the kernel 2187 * provides with resamplefd, remember the resamplefd and 2188 * kick it when we receive EOI of this IRQ. 2189 * 2190 * This is hackery because IOAPIC is mostly bypassed 2191 * (except EOI broadcasts) when irqfd is used. However 2192 * this can bring much performance back for split irqchip 2193 * with INTx IRQs (for VFIO, this gives 93% perf of the 2194 * full fast path, which is 46% perf boost comparing to 2195 * the INTx slow path). 2196 */ 2197 kvm_resample_fd_insert(virq, resample); 2198 } else { 2199 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2200 irqfd.resamplefd = rfd; 2201 } 2202 } else if (!assign) { 2203 if (kvm_irqchip_is_split()) { 2204 kvm_resample_fd_remove(virq); 2205 } 2206 } 2207 2208 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2209 } 2210 2211 #else /* !KVM_CAP_IRQ_ROUTING */ 2212 2213 void kvm_init_irq_routing(KVMState *s) 2214 { 2215 } 2216 2217 void kvm_irqchip_release_virq(KVMState *s, int virq) 2218 { 2219 } 2220 2221 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2222 { 2223 abort(); 2224 } 2225 2226 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2227 { 2228 return -ENOSYS; 2229 } 2230 2231 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2232 { 2233 return -ENOSYS; 2234 } 2235 2236 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2237 { 2238 return -ENOSYS; 2239 } 2240 2241 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2242 EventNotifier *resample, int virq, 2243 bool assign) 2244 { 2245 abort(); 2246 } 2247 2248 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2249 { 2250 return -ENOSYS; 2251 } 2252 #endif /* !KVM_CAP_IRQ_ROUTING */ 2253 2254 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2255 EventNotifier *rn, int virq) 2256 { 2257 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2258 } 2259 2260 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2261 int virq) 2262 { 2263 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2264 } 2265 2266 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2267 EventNotifier *rn, qemu_irq irq) 2268 { 2269 gpointer key, gsi; 2270 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2271 2272 if (!found) { 2273 return -ENXIO; 2274 } 2275 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2276 } 2277 2278 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2279 qemu_irq irq) 2280 { 2281 gpointer key, gsi; 2282 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2283 2284 if (!found) { 2285 return -ENXIO; 2286 } 2287 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2288 } 2289 2290 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2291 { 2292 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2293 } 2294 2295 static void kvm_irqchip_create(KVMState *s) 2296 { 2297 int ret; 2298 2299 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2300 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2301 ; 2302 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2303 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2304 if (ret < 0) { 2305 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2306 exit(1); 2307 } 2308 } else { 2309 return; 2310 } 2311 2312 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2313 fprintf(stderr, "kvm: irqfd not implemented\n"); 2314 exit(1); 2315 } 2316 2317 /* First probe and see if there's a arch-specific hook to create the 2318 * in-kernel irqchip for us */ 2319 ret = kvm_arch_irqchip_create(s); 2320 if (ret == 0) { 2321 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2322 error_report("Split IRQ chip mode not supported."); 2323 exit(1); 2324 } else { 2325 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2326 } 2327 } 2328 if (ret < 0) { 2329 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2330 exit(1); 2331 } 2332 2333 kvm_kernel_irqchip = true; 2334 /* If we have an in-kernel IRQ chip then we must have asynchronous 2335 * interrupt delivery (though the reverse is not necessarily true) 2336 */ 2337 kvm_async_interrupts_allowed = true; 2338 kvm_halt_in_kernel_allowed = true; 2339 2340 kvm_init_irq_routing(s); 2341 2342 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2343 } 2344 2345 /* Find number of supported CPUs using the recommended 2346 * procedure from the kernel API documentation to cope with 2347 * older kernels that may be missing capabilities. 2348 */ 2349 static int kvm_recommended_vcpus(KVMState *s) 2350 { 2351 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2352 return (ret) ? ret : 4; 2353 } 2354 2355 static int kvm_max_vcpus(KVMState *s) 2356 { 2357 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2358 return (ret) ? ret : kvm_recommended_vcpus(s); 2359 } 2360 2361 static int kvm_max_vcpu_id(KVMState *s) 2362 { 2363 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2364 return (ret) ? ret : kvm_max_vcpus(s); 2365 } 2366 2367 bool kvm_vcpu_id_is_valid(int vcpu_id) 2368 { 2369 KVMState *s = KVM_STATE(current_accel()); 2370 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2371 } 2372 2373 bool kvm_dirty_ring_enabled(void) 2374 { 2375 return kvm_state && kvm_state->kvm_dirty_ring_size; 2376 } 2377 2378 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2379 strList *names, strList *targets, Error **errp); 2380 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2381 2382 uint32_t kvm_dirty_ring_size(void) 2383 { 2384 return kvm_state->kvm_dirty_ring_size; 2385 } 2386 2387 static int kvm_init(MachineState *ms) 2388 { 2389 MachineClass *mc = MACHINE_GET_CLASS(ms); 2390 static const char upgrade_note[] = 2391 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2392 "(see http://sourceforge.net/projects/kvm).\n"; 2393 const struct { 2394 const char *name; 2395 int num; 2396 } num_cpus[] = { 2397 { "SMP", ms->smp.cpus }, 2398 { "hotpluggable", ms->smp.max_cpus }, 2399 { /* end of list */ } 2400 }, *nc = num_cpus; 2401 int soft_vcpus_limit, hard_vcpus_limit; 2402 KVMState *s; 2403 const KVMCapabilityInfo *missing_cap; 2404 int ret; 2405 int type; 2406 uint64_t dirty_log_manual_caps; 2407 2408 qemu_mutex_init(&kml_slots_lock); 2409 2410 s = KVM_STATE(ms->accelerator); 2411 2412 /* 2413 * On systems where the kernel can support different base page 2414 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2415 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2416 * page size for the system though. 2417 */ 2418 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2419 2420 s->sigmask_len = 8; 2421 accel_blocker_init(); 2422 2423 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2424 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2425 #endif 2426 QLIST_INIT(&s->kvm_parked_vcpus); 2427 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2428 if (s->fd == -1) { 2429 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2430 ret = -errno; 2431 goto err; 2432 } 2433 2434 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2435 if (ret < KVM_API_VERSION) { 2436 if (ret >= 0) { 2437 ret = -EINVAL; 2438 } 2439 fprintf(stderr, "kvm version too old\n"); 2440 goto err; 2441 } 2442 2443 if (ret > KVM_API_VERSION) { 2444 ret = -EINVAL; 2445 fprintf(stderr, "kvm version not supported\n"); 2446 goto err; 2447 } 2448 2449 kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2450 kvm_guest_memfd_supported = 2451 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2452 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2453 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2454 2455 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2456 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2457 2458 /* If unspecified, use the default value */ 2459 if (!s->nr_slots) { 2460 s->nr_slots = 32; 2461 } 2462 2463 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2464 if (s->nr_as <= 1) { 2465 s->nr_as = 1; 2466 } 2467 s->as = g_new0(struct KVMAs, s->nr_as); 2468 2469 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2470 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2471 "kvm-type", 2472 &error_abort); 2473 type = mc->kvm_type(ms, kvm_type); 2474 } else if (mc->kvm_type) { 2475 type = mc->kvm_type(ms, NULL); 2476 } else { 2477 type = kvm_arch_get_default_type(ms); 2478 } 2479 2480 if (type < 0) { 2481 ret = -EINVAL; 2482 goto err; 2483 } 2484 2485 do { 2486 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2487 } while (ret == -EINTR); 2488 2489 if (ret < 0) { 2490 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2491 strerror(-ret)); 2492 2493 #ifdef TARGET_S390X 2494 if (ret == -EINVAL) { 2495 fprintf(stderr, 2496 "Host kernel setup problem detected. Please verify:\n"); 2497 fprintf(stderr, "- for kernels supporting the switch_amode or" 2498 " user_mode parameters, whether\n"); 2499 fprintf(stderr, 2500 " user space is running in primary address space\n"); 2501 fprintf(stderr, 2502 "- for kernels supporting the vm.allocate_pgste sysctl, " 2503 "whether it is enabled\n"); 2504 } 2505 #elif defined(TARGET_PPC) 2506 if (ret == -EINVAL) { 2507 fprintf(stderr, 2508 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2509 (type == 2) ? "pr" : "hv"); 2510 } 2511 #endif 2512 goto err; 2513 } 2514 2515 s->vmfd = ret; 2516 2517 /* check the vcpu limits */ 2518 soft_vcpus_limit = kvm_recommended_vcpus(s); 2519 hard_vcpus_limit = kvm_max_vcpus(s); 2520 2521 while (nc->name) { 2522 if (nc->num > soft_vcpus_limit) { 2523 warn_report("Number of %s cpus requested (%d) exceeds " 2524 "the recommended cpus supported by KVM (%d)", 2525 nc->name, nc->num, soft_vcpus_limit); 2526 2527 if (nc->num > hard_vcpus_limit) { 2528 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2529 "the maximum cpus supported by KVM (%d)\n", 2530 nc->name, nc->num, hard_vcpus_limit); 2531 exit(1); 2532 } 2533 } 2534 nc++; 2535 } 2536 2537 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2538 if (!missing_cap) { 2539 missing_cap = 2540 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2541 } 2542 if (missing_cap) { 2543 ret = -EINVAL; 2544 fprintf(stderr, "kvm does not support %s\n%s", 2545 missing_cap->name, upgrade_note); 2546 goto err; 2547 } 2548 2549 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2550 s->coalesced_pio = s->coalesced_mmio && 2551 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2552 2553 /* 2554 * Enable KVM dirty ring if supported, otherwise fall back to 2555 * dirty logging mode 2556 */ 2557 ret = kvm_dirty_ring_init(s); 2558 if (ret < 0) { 2559 goto err; 2560 } 2561 2562 /* 2563 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2564 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2565 * page is wr-protected initially, which is against how kvm dirty ring is 2566 * usage - kvm dirty ring requires all pages are wr-protected at the very 2567 * beginning. Enabling this feature for dirty ring causes data corruption. 2568 * 2569 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2570 * we may expect a higher stall time when starting the migration. In the 2571 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2572 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2573 * guest pages. 2574 */ 2575 if (!s->kvm_dirty_ring_size) { 2576 dirty_log_manual_caps = 2577 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2578 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2579 KVM_DIRTY_LOG_INITIALLY_SET); 2580 s->manual_dirty_log_protect = dirty_log_manual_caps; 2581 if (dirty_log_manual_caps) { 2582 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2583 dirty_log_manual_caps); 2584 if (ret) { 2585 warn_report("Trying to enable capability %"PRIu64" of " 2586 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2587 "Falling back to the legacy mode. ", 2588 dirty_log_manual_caps); 2589 s->manual_dirty_log_protect = 0; 2590 } 2591 } 2592 } 2593 2594 #ifdef KVM_CAP_VCPU_EVENTS 2595 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2596 #endif 2597 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2598 2599 s->irq_set_ioctl = KVM_IRQ_LINE; 2600 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2601 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2602 } 2603 2604 kvm_readonly_mem_allowed = 2605 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2606 2607 kvm_resamplefds_allowed = 2608 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2609 2610 kvm_vm_attributes_allowed = 2611 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2612 2613 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2614 kvm_has_guest_debug = 2615 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2616 #endif 2617 2618 kvm_sstep_flags = 0; 2619 if (kvm_has_guest_debug) { 2620 kvm_sstep_flags = SSTEP_ENABLE; 2621 2622 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2623 int guest_debug_flags = 2624 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2625 2626 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2627 kvm_sstep_flags |= SSTEP_NOIRQ; 2628 } 2629 #endif 2630 } 2631 2632 kvm_state = s; 2633 2634 ret = kvm_arch_init(ms, s); 2635 if (ret < 0) { 2636 goto err; 2637 } 2638 2639 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2640 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2641 } 2642 2643 qemu_register_reset(kvm_unpoison_all, NULL); 2644 2645 if (s->kernel_irqchip_allowed) { 2646 kvm_irqchip_create(s); 2647 } 2648 2649 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2650 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2651 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2652 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2653 2654 kvm_memory_listener_register(s, &s->memory_listener, 2655 &address_space_memory, 0, "kvm-memory"); 2656 memory_listener_register(&kvm_io_listener, 2657 &address_space_io); 2658 2659 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2660 if (!s->sync_mmu) { 2661 ret = ram_block_discard_disable(true); 2662 assert(!ret); 2663 } 2664 2665 if (s->kvm_dirty_ring_size) { 2666 kvm_dirty_ring_reaper_init(s); 2667 } 2668 2669 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2670 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2671 query_stats_schemas_cb); 2672 } 2673 2674 return 0; 2675 2676 err: 2677 assert(ret < 0); 2678 if (s->vmfd >= 0) { 2679 close(s->vmfd); 2680 } 2681 if (s->fd != -1) { 2682 close(s->fd); 2683 } 2684 g_free(s->as); 2685 g_free(s->memory_listener.slots); 2686 2687 return ret; 2688 } 2689 2690 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2691 { 2692 s->sigmask_len = sigmask_len; 2693 } 2694 2695 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2696 int size, uint32_t count) 2697 { 2698 int i; 2699 uint8_t *ptr = data; 2700 2701 for (i = 0; i < count; i++) { 2702 address_space_rw(&address_space_io, port, attrs, 2703 ptr, size, 2704 direction == KVM_EXIT_IO_OUT); 2705 ptr += size; 2706 } 2707 } 2708 2709 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2710 { 2711 int i; 2712 2713 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2714 run->internal.suberror); 2715 2716 for (i = 0; i < run->internal.ndata; ++i) { 2717 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2718 i, (uint64_t)run->internal.data[i]); 2719 } 2720 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2721 fprintf(stderr, "emulation failure\n"); 2722 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2723 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2724 return EXCP_INTERRUPT; 2725 } 2726 } 2727 /* FIXME: Should trigger a qmp message to let management know 2728 * something went wrong. 2729 */ 2730 return -1; 2731 } 2732 2733 void kvm_flush_coalesced_mmio_buffer(void) 2734 { 2735 KVMState *s = kvm_state; 2736 2737 if (!s || s->coalesced_flush_in_progress) { 2738 return; 2739 } 2740 2741 s->coalesced_flush_in_progress = true; 2742 2743 if (s->coalesced_mmio_ring) { 2744 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2745 while (ring->first != ring->last) { 2746 struct kvm_coalesced_mmio *ent; 2747 2748 ent = &ring->coalesced_mmio[ring->first]; 2749 2750 if (ent->pio == 1) { 2751 address_space_write(&address_space_io, ent->phys_addr, 2752 MEMTXATTRS_UNSPECIFIED, ent->data, 2753 ent->len); 2754 } else { 2755 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2756 } 2757 smp_wmb(); 2758 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2759 } 2760 } 2761 2762 s->coalesced_flush_in_progress = false; 2763 } 2764 2765 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2766 { 2767 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2768 int ret = kvm_arch_get_registers(cpu); 2769 if (ret) { 2770 error_report("Failed to get registers: %s", strerror(-ret)); 2771 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2772 vm_stop(RUN_STATE_INTERNAL_ERROR); 2773 } 2774 2775 cpu->vcpu_dirty = true; 2776 } 2777 } 2778 2779 void kvm_cpu_synchronize_state(CPUState *cpu) 2780 { 2781 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2782 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2783 } 2784 } 2785 2786 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2787 { 2788 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2789 if (ret) { 2790 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2791 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2792 vm_stop(RUN_STATE_INTERNAL_ERROR); 2793 } 2794 2795 cpu->vcpu_dirty = false; 2796 } 2797 2798 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2799 { 2800 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2801 } 2802 2803 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2804 { 2805 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2806 if (ret) { 2807 error_report("Failed to put registers after init: %s", strerror(-ret)); 2808 exit(1); 2809 } 2810 2811 cpu->vcpu_dirty = false; 2812 } 2813 2814 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2815 { 2816 if (!kvm_state->guest_state_protected) { 2817 /* 2818 * This runs before the machine_init_done notifiers, and is the last 2819 * opportunity to synchronize the state of confidential guests. 2820 */ 2821 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2822 } 2823 } 2824 2825 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2826 { 2827 cpu->vcpu_dirty = true; 2828 } 2829 2830 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2831 { 2832 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2833 } 2834 2835 #ifdef KVM_HAVE_MCE_INJECTION 2836 static __thread void *pending_sigbus_addr; 2837 static __thread int pending_sigbus_code; 2838 static __thread bool have_sigbus_pending; 2839 #endif 2840 2841 static void kvm_cpu_kick(CPUState *cpu) 2842 { 2843 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2844 } 2845 2846 static void kvm_cpu_kick_self(void) 2847 { 2848 if (kvm_immediate_exit) { 2849 kvm_cpu_kick(current_cpu); 2850 } else { 2851 qemu_cpu_kick_self(); 2852 } 2853 } 2854 2855 static void kvm_eat_signals(CPUState *cpu) 2856 { 2857 struct timespec ts = { 0, 0 }; 2858 siginfo_t siginfo; 2859 sigset_t waitset; 2860 sigset_t chkset; 2861 int r; 2862 2863 if (kvm_immediate_exit) { 2864 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2865 /* Write kvm_run->immediate_exit before the cpu->exit_request 2866 * write in kvm_cpu_exec. 2867 */ 2868 smp_wmb(); 2869 return; 2870 } 2871 2872 sigemptyset(&waitset); 2873 sigaddset(&waitset, SIG_IPI); 2874 2875 do { 2876 r = sigtimedwait(&waitset, &siginfo, &ts); 2877 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2878 perror("sigtimedwait"); 2879 exit(1); 2880 } 2881 2882 r = sigpending(&chkset); 2883 if (r == -1) { 2884 perror("sigpending"); 2885 exit(1); 2886 } 2887 } while (sigismember(&chkset, SIG_IPI)); 2888 } 2889 2890 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 2891 { 2892 MemoryRegionSection section; 2893 ram_addr_t offset; 2894 MemoryRegion *mr; 2895 RAMBlock *rb; 2896 void *addr; 2897 int ret = -1; 2898 2899 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 2900 2901 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 2902 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 2903 return -1; 2904 } 2905 2906 if (!size) { 2907 return -1; 2908 } 2909 2910 section = memory_region_find(get_system_memory(), start, size); 2911 mr = section.mr; 2912 if (!mr) { 2913 /* 2914 * Ignore converting non-assigned region to shared. 2915 * 2916 * TDX requires vMMIO region to be shared to inject #VE to guest. 2917 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 2918 * and vIO-APIC 0xFEC00000 4K page. 2919 * OVMF assigns 32bit PCI MMIO region to 2920 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 2921 */ 2922 if (!to_private) { 2923 return 0; 2924 } 2925 return -1; 2926 } 2927 2928 if (!memory_region_has_guest_memfd(mr)) { 2929 /* 2930 * Because vMMIO region must be shared, guest TD may convert vMMIO 2931 * region to shared explicitly. Don't complain such case. See 2932 * memory_region_type() for checking if the region is MMIO region. 2933 */ 2934 if (!to_private && 2935 !memory_region_is_ram(mr) && 2936 !memory_region_is_ram_device(mr) && 2937 !memory_region_is_rom(mr) && 2938 !memory_region_is_romd(mr)) { 2939 ret = 0; 2940 } else { 2941 error_report("Convert non guest_memfd backed memory region " 2942 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 2943 start, size, to_private ? "private" : "shared"); 2944 } 2945 goto out_unref; 2946 } 2947 2948 if (to_private) { 2949 ret = kvm_set_memory_attributes_private(start, size); 2950 } else { 2951 ret = kvm_set_memory_attributes_shared(start, size); 2952 } 2953 if (ret) { 2954 goto out_unref; 2955 } 2956 2957 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 2958 rb = qemu_ram_block_from_host(addr, false, &offset); 2959 2960 if (to_private) { 2961 if (rb->page_size != qemu_real_host_page_size()) { 2962 /* 2963 * shared memory is backed by hugetlb, which is supposed to be 2964 * pre-allocated and doesn't need to be discarded 2965 */ 2966 goto out_unref; 2967 } 2968 ret = ram_block_discard_range(rb, offset, size); 2969 } else { 2970 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 2971 } 2972 2973 out_unref: 2974 memory_region_unref(mr); 2975 return ret; 2976 } 2977 2978 int kvm_cpu_exec(CPUState *cpu) 2979 { 2980 struct kvm_run *run = cpu->kvm_run; 2981 int ret, run_ret; 2982 2983 trace_kvm_cpu_exec(); 2984 2985 if (kvm_arch_process_async_events(cpu)) { 2986 qatomic_set(&cpu->exit_request, 0); 2987 return EXCP_HLT; 2988 } 2989 2990 bql_unlock(); 2991 cpu_exec_start(cpu); 2992 2993 do { 2994 MemTxAttrs attrs; 2995 2996 if (cpu->vcpu_dirty) { 2997 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2998 if (ret) { 2999 error_report("Failed to put registers after init: %s", 3000 strerror(-ret)); 3001 ret = -1; 3002 break; 3003 } 3004 3005 cpu->vcpu_dirty = false; 3006 } 3007 3008 kvm_arch_pre_run(cpu, run); 3009 if (qatomic_read(&cpu->exit_request)) { 3010 trace_kvm_interrupt_exit_request(); 3011 /* 3012 * KVM requires us to reenter the kernel after IO exits to complete 3013 * instruction emulation. This self-signal will ensure that we 3014 * leave ASAP again. 3015 */ 3016 kvm_cpu_kick_self(); 3017 } 3018 3019 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3020 * Matching barrier in kvm_eat_signals. 3021 */ 3022 smp_rmb(); 3023 3024 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3025 3026 attrs = kvm_arch_post_run(cpu, run); 3027 3028 #ifdef KVM_HAVE_MCE_INJECTION 3029 if (unlikely(have_sigbus_pending)) { 3030 bql_lock(); 3031 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3032 pending_sigbus_addr); 3033 have_sigbus_pending = false; 3034 bql_unlock(); 3035 } 3036 #endif 3037 3038 if (run_ret < 0) { 3039 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3040 trace_kvm_io_window_exit(); 3041 kvm_eat_signals(cpu); 3042 ret = EXCP_INTERRUPT; 3043 break; 3044 } 3045 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3046 fprintf(stderr, "error: kvm run failed %s\n", 3047 strerror(-run_ret)); 3048 #ifdef TARGET_PPC 3049 if (run_ret == -EBUSY) { 3050 fprintf(stderr, 3051 "This is probably because your SMT is enabled.\n" 3052 "VCPU can only run on primary threads with all " 3053 "secondary threads offline.\n"); 3054 } 3055 #endif 3056 ret = -1; 3057 break; 3058 } 3059 } 3060 3061 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3062 switch (run->exit_reason) { 3063 case KVM_EXIT_IO: 3064 /* Called outside BQL */ 3065 kvm_handle_io(run->io.port, attrs, 3066 (uint8_t *)run + run->io.data_offset, 3067 run->io.direction, 3068 run->io.size, 3069 run->io.count); 3070 ret = 0; 3071 break; 3072 case KVM_EXIT_MMIO: 3073 /* Called outside BQL */ 3074 address_space_rw(&address_space_memory, 3075 run->mmio.phys_addr, attrs, 3076 run->mmio.data, 3077 run->mmio.len, 3078 run->mmio.is_write); 3079 ret = 0; 3080 break; 3081 case KVM_EXIT_IRQ_WINDOW_OPEN: 3082 ret = EXCP_INTERRUPT; 3083 break; 3084 case KVM_EXIT_SHUTDOWN: 3085 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3086 ret = EXCP_INTERRUPT; 3087 break; 3088 case KVM_EXIT_UNKNOWN: 3089 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3090 (uint64_t)run->hw.hardware_exit_reason); 3091 ret = -1; 3092 break; 3093 case KVM_EXIT_INTERNAL_ERROR: 3094 ret = kvm_handle_internal_error(cpu, run); 3095 break; 3096 case KVM_EXIT_DIRTY_RING_FULL: 3097 /* 3098 * We shouldn't continue if the dirty ring of this vcpu is 3099 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3100 */ 3101 trace_kvm_dirty_ring_full(cpu->cpu_index); 3102 bql_lock(); 3103 /* 3104 * We throttle vCPU by making it sleep once it exit from kernel 3105 * due to dirty ring full. In the dirtylimit scenario, reaping 3106 * all vCPUs after a single vCPU dirty ring get full result in 3107 * the miss of sleep, so just reap the ring-fulled vCPU. 3108 */ 3109 if (dirtylimit_in_service()) { 3110 kvm_dirty_ring_reap(kvm_state, cpu); 3111 } else { 3112 kvm_dirty_ring_reap(kvm_state, NULL); 3113 } 3114 bql_unlock(); 3115 dirtylimit_vcpu_execute(cpu); 3116 ret = 0; 3117 break; 3118 case KVM_EXIT_SYSTEM_EVENT: 3119 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3120 switch (run->system_event.type) { 3121 case KVM_SYSTEM_EVENT_SHUTDOWN: 3122 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3123 ret = EXCP_INTERRUPT; 3124 break; 3125 case KVM_SYSTEM_EVENT_RESET: 3126 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3127 ret = EXCP_INTERRUPT; 3128 break; 3129 case KVM_SYSTEM_EVENT_CRASH: 3130 kvm_cpu_synchronize_state(cpu); 3131 bql_lock(); 3132 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3133 bql_unlock(); 3134 ret = 0; 3135 break; 3136 default: 3137 ret = kvm_arch_handle_exit(cpu, run); 3138 break; 3139 } 3140 break; 3141 case KVM_EXIT_MEMORY_FAULT: 3142 trace_kvm_memory_fault(run->memory_fault.gpa, 3143 run->memory_fault.size, 3144 run->memory_fault.flags); 3145 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3146 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3147 (uint64_t)run->memory_fault.flags); 3148 ret = -1; 3149 break; 3150 } 3151 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3152 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3153 break; 3154 default: 3155 ret = kvm_arch_handle_exit(cpu, run); 3156 break; 3157 } 3158 } while (ret == 0); 3159 3160 cpu_exec_end(cpu); 3161 bql_lock(); 3162 3163 if (ret < 0) { 3164 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3165 vm_stop(RUN_STATE_INTERNAL_ERROR); 3166 } 3167 3168 qatomic_set(&cpu->exit_request, 0); 3169 return ret; 3170 } 3171 3172 int kvm_ioctl(KVMState *s, int type, ...) 3173 { 3174 int ret; 3175 void *arg; 3176 va_list ap; 3177 3178 va_start(ap, type); 3179 arg = va_arg(ap, void *); 3180 va_end(ap); 3181 3182 trace_kvm_ioctl(type, arg); 3183 ret = ioctl(s->fd, type, arg); 3184 if (ret == -1) { 3185 ret = -errno; 3186 } 3187 return ret; 3188 } 3189 3190 int kvm_vm_ioctl(KVMState *s, int type, ...) 3191 { 3192 int ret; 3193 void *arg; 3194 va_list ap; 3195 3196 va_start(ap, type); 3197 arg = va_arg(ap, void *); 3198 va_end(ap); 3199 3200 trace_kvm_vm_ioctl(type, arg); 3201 accel_ioctl_begin(); 3202 ret = ioctl(s->vmfd, type, arg); 3203 accel_ioctl_end(); 3204 if (ret == -1) { 3205 ret = -errno; 3206 } 3207 return ret; 3208 } 3209 3210 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3211 { 3212 int ret; 3213 void *arg; 3214 va_list ap; 3215 3216 va_start(ap, type); 3217 arg = va_arg(ap, void *); 3218 va_end(ap); 3219 3220 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3221 accel_cpu_ioctl_begin(cpu); 3222 ret = ioctl(cpu->kvm_fd, type, arg); 3223 accel_cpu_ioctl_end(cpu); 3224 if (ret == -1) { 3225 ret = -errno; 3226 } 3227 return ret; 3228 } 3229 3230 int kvm_device_ioctl(int fd, int type, ...) 3231 { 3232 int ret; 3233 void *arg; 3234 va_list ap; 3235 3236 va_start(ap, type); 3237 arg = va_arg(ap, void *); 3238 va_end(ap); 3239 3240 trace_kvm_device_ioctl(fd, type, arg); 3241 accel_ioctl_begin(); 3242 ret = ioctl(fd, type, arg); 3243 accel_ioctl_end(); 3244 if (ret == -1) { 3245 ret = -errno; 3246 } 3247 return ret; 3248 } 3249 3250 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3251 { 3252 int ret; 3253 struct kvm_device_attr attribute = { 3254 .group = group, 3255 .attr = attr, 3256 }; 3257 3258 if (!kvm_vm_attributes_allowed) { 3259 return 0; 3260 } 3261 3262 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3263 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3264 return ret ? 0 : 1; 3265 } 3266 3267 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3268 { 3269 struct kvm_device_attr attribute = { 3270 .group = group, 3271 .attr = attr, 3272 .flags = 0, 3273 }; 3274 3275 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3276 } 3277 3278 int kvm_device_access(int fd, int group, uint64_t attr, 3279 void *val, bool write, Error **errp) 3280 { 3281 struct kvm_device_attr kvmattr; 3282 int err; 3283 3284 kvmattr.flags = 0; 3285 kvmattr.group = group; 3286 kvmattr.attr = attr; 3287 kvmattr.addr = (uintptr_t)val; 3288 3289 err = kvm_device_ioctl(fd, 3290 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3291 &kvmattr); 3292 if (err < 0) { 3293 error_setg_errno(errp, -err, 3294 "KVM_%s_DEVICE_ATTR failed: Group %d " 3295 "attr 0x%016" PRIx64, 3296 write ? "SET" : "GET", group, attr); 3297 } 3298 return err; 3299 } 3300 3301 bool kvm_has_sync_mmu(void) 3302 { 3303 return kvm_state->sync_mmu; 3304 } 3305 3306 int kvm_has_vcpu_events(void) 3307 { 3308 return kvm_state->vcpu_events; 3309 } 3310 3311 int kvm_max_nested_state_length(void) 3312 { 3313 return kvm_state->max_nested_state_len; 3314 } 3315 3316 int kvm_has_gsi_routing(void) 3317 { 3318 #ifdef KVM_CAP_IRQ_ROUTING 3319 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3320 #else 3321 return false; 3322 #endif 3323 } 3324 3325 bool kvm_arm_supports_user_irq(void) 3326 { 3327 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3328 } 3329 3330 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3331 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3332 { 3333 struct kvm_sw_breakpoint *bp; 3334 3335 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3336 if (bp->pc == pc) { 3337 return bp; 3338 } 3339 } 3340 return NULL; 3341 } 3342 3343 int kvm_sw_breakpoints_active(CPUState *cpu) 3344 { 3345 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3346 } 3347 3348 struct kvm_set_guest_debug_data { 3349 struct kvm_guest_debug dbg; 3350 int err; 3351 }; 3352 3353 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3354 { 3355 struct kvm_set_guest_debug_data *dbg_data = 3356 (struct kvm_set_guest_debug_data *) data.host_ptr; 3357 3358 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3359 &dbg_data->dbg); 3360 } 3361 3362 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3363 { 3364 struct kvm_set_guest_debug_data data; 3365 3366 data.dbg.control = reinject_trap; 3367 3368 if (cpu->singlestep_enabled) { 3369 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3370 3371 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3372 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3373 } 3374 } 3375 kvm_arch_update_guest_debug(cpu, &data.dbg); 3376 3377 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3378 RUN_ON_CPU_HOST_PTR(&data)); 3379 return data.err; 3380 } 3381 3382 bool kvm_supports_guest_debug(void) 3383 { 3384 /* probed during kvm_init() */ 3385 return kvm_has_guest_debug; 3386 } 3387 3388 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3389 { 3390 struct kvm_sw_breakpoint *bp; 3391 int err; 3392 3393 if (type == GDB_BREAKPOINT_SW) { 3394 bp = kvm_find_sw_breakpoint(cpu, addr); 3395 if (bp) { 3396 bp->use_count++; 3397 return 0; 3398 } 3399 3400 bp = g_new(struct kvm_sw_breakpoint, 1); 3401 bp->pc = addr; 3402 bp->use_count = 1; 3403 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3404 if (err) { 3405 g_free(bp); 3406 return err; 3407 } 3408 3409 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3410 } else { 3411 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3412 if (err) { 3413 return err; 3414 } 3415 } 3416 3417 CPU_FOREACH(cpu) { 3418 err = kvm_update_guest_debug(cpu, 0); 3419 if (err) { 3420 return err; 3421 } 3422 } 3423 return 0; 3424 } 3425 3426 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3427 { 3428 struct kvm_sw_breakpoint *bp; 3429 int err; 3430 3431 if (type == GDB_BREAKPOINT_SW) { 3432 bp = kvm_find_sw_breakpoint(cpu, addr); 3433 if (!bp) { 3434 return -ENOENT; 3435 } 3436 3437 if (bp->use_count > 1) { 3438 bp->use_count--; 3439 return 0; 3440 } 3441 3442 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3443 if (err) { 3444 return err; 3445 } 3446 3447 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3448 g_free(bp); 3449 } else { 3450 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3451 if (err) { 3452 return err; 3453 } 3454 } 3455 3456 CPU_FOREACH(cpu) { 3457 err = kvm_update_guest_debug(cpu, 0); 3458 if (err) { 3459 return err; 3460 } 3461 } 3462 return 0; 3463 } 3464 3465 void kvm_remove_all_breakpoints(CPUState *cpu) 3466 { 3467 struct kvm_sw_breakpoint *bp, *next; 3468 KVMState *s = cpu->kvm_state; 3469 CPUState *tmpcpu; 3470 3471 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3472 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3473 /* Try harder to find a CPU that currently sees the breakpoint. */ 3474 CPU_FOREACH(tmpcpu) { 3475 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3476 break; 3477 } 3478 } 3479 } 3480 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3481 g_free(bp); 3482 } 3483 kvm_arch_remove_all_hw_breakpoints(); 3484 3485 CPU_FOREACH(cpu) { 3486 kvm_update_guest_debug(cpu, 0); 3487 } 3488 } 3489 3490 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3491 3492 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3493 { 3494 KVMState *s = kvm_state; 3495 struct kvm_signal_mask *sigmask; 3496 int r; 3497 3498 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3499 3500 sigmask->len = s->sigmask_len; 3501 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3502 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3503 g_free(sigmask); 3504 3505 return r; 3506 } 3507 3508 static void kvm_ipi_signal(int sig) 3509 { 3510 if (current_cpu) { 3511 assert(kvm_immediate_exit); 3512 kvm_cpu_kick(current_cpu); 3513 } 3514 } 3515 3516 void kvm_init_cpu_signals(CPUState *cpu) 3517 { 3518 int r; 3519 sigset_t set; 3520 struct sigaction sigact; 3521 3522 memset(&sigact, 0, sizeof(sigact)); 3523 sigact.sa_handler = kvm_ipi_signal; 3524 sigaction(SIG_IPI, &sigact, NULL); 3525 3526 pthread_sigmask(SIG_BLOCK, NULL, &set); 3527 #if defined KVM_HAVE_MCE_INJECTION 3528 sigdelset(&set, SIGBUS); 3529 pthread_sigmask(SIG_SETMASK, &set, NULL); 3530 #endif 3531 sigdelset(&set, SIG_IPI); 3532 if (kvm_immediate_exit) { 3533 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3534 } else { 3535 r = kvm_set_signal_mask(cpu, &set); 3536 } 3537 if (r) { 3538 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3539 exit(1); 3540 } 3541 } 3542 3543 /* Called asynchronously in VCPU thread. */ 3544 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3545 { 3546 #ifdef KVM_HAVE_MCE_INJECTION 3547 if (have_sigbus_pending) { 3548 return 1; 3549 } 3550 have_sigbus_pending = true; 3551 pending_sigbus_addr = addr; 3552 pending_sigbus_code = code; 3553 qatomic_set(&cpu->exit_request, 1); 3554 return 0; 3555 #else 3556 return 1; 3557 #endif 3558 } 3559 3560 /* Called synchronously (via signalfd) in main thread. */ 3561 int kvm_on_sigbus(int code, void *addr) 3562 { 3563 #ifdef KVM_HAVE_MCE_INJECTION 3564 /* Action required MCE kills the process if SIGBUS is blocked. Because 3565 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3566 * we can only get action optional here. 3567 */ 3568 assert(code != BUS_MCEERR_AR); 3569 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3570 return 0; 3571 #else 3572 return 1; 3573 #endif 3574 } 3575 3576 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3577 { 3578 int ret; 3579 struct kvm_create_device create_dev; 3580 3581 create_dev.type = type; 3582 create_dev.fd = -1; 3583 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3584 3585 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3586 return -ENOTSUP; 3587 } 3588 3589 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3590 if (ret) { 3591 return ret; 3592 } 3593 3594 return test ? 0 : create_dev.fd; 3595 } 3596 3597 bool kvm_device_supported(int vmfd, uint64_t type) 3598 { 3599 struct kvm_create_device create_dev = { 3600 .type = type, 3601 .fd = -1, 3602 .flags = KVM_CREATE_DEVICE_TEST, 3603 }; 3604 3605 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3606 return false; 3607 } 3608 3609 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3610 } 3611 3612 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3613 { 3614 struct kvm_one_reg reg; 3615 int r; 3616 3617 reg.id = id; 3618 reg.addr = (uintptr_t) source; 3619 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3620 if (r) { 3621 trace_kvm_failed_reg_set(id, strerror(-r)); 3622 } 3623 return r; 3624 } 3625 3626 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3627 { 3628 struct kvm_one_reg reg; 3629 int r; 3630 3631 reg.id = id; 3632 reg.addr = (uintptr_t) target; 3633 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3634 if (r) { 3635 trace_kvm_failed_reg_get(id, strerror(-r)); 3636 } 3637 return r; 3638 } 3639 3640 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3641 hwaddr start_addr, hwaddr size) 3642 { 3643 KVMState *kvm = KVM_STATE(ms->accelerator); 3644 int i; 3645 3646 for (i = 0; i < kvm->nr_as; ++i) { 3647 if (kvm->as[i].as == as && kvm->as[i].ml) { 3648 size = MIN(kvm_max_slot_size, size); 3649 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3650 start_addr, size); 3651 } 3652 } 3653 3654 return false; 3655 } 3656 3657 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3658 const char *name, void *opaque, 3659 Error **errp) 3660 { 3661 KVMState *s = KVM_STATE(obj); 3662 int64_t value = s->kvm_shadow_mem; 3663 3664 visit_type_int(v, name, &value, errp); 3665 } 3666 3667 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3668 const char *name, void *opaque, 3669 Error **errp) 3670 { 3671 KVMState *s = KVM_STATE(obj); 3672 int64_t value; 3673 3674 if (s->fd != -1) { 3675 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3676 return; 3677 } 3678 3679 if (!visit_type_int(v, name, &value, errp)) { 3680 return; 3681 } 3682 3683 s->kvm_shadow_mem = value; 3684 } 3685 3686 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3687 const char *name, void *opaque, 3688 Error **errp) 3689 { 3690 KVMState *s = KVM_STATE(obj); 3691 OnOffSplit mode; 3692 3693 if (s->fd != -1) { 3694 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3695 return; 3696 } 3697 3698 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3699 return; 3700 } 3701 switch (mode) { 3702 case ON_OFF_SPLIT_ON: 3703 s->kernel_irqchip_allowed = true; 3704 s->kernel_irqchip_required = true; 3705 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3706 break; 3707 case ON_OFF_SPLIT_OFF: 3708 s->kernel_irqchip_allowed = false; 3709 s->kernel_irqchip_required = false; 3710 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3711 break; 3712 case ON_OFF_SPLIT_SPLIT: 3713 s->kernel_irqchip_allowed = true; 3714 s->kernel_irqchip_required = true; 3715 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3716 break; 3717 default: 3718 /* The value was checked in visit_type_OnOffSplit() above. If 3719 * we get here, then something is wrong in QEMU. 3720 */ 3721 abort(); 3722 } 3723 } 3724 3725 bool kvm_kernel_irqchip_allowed(void) 3726 { 3727 return kvm_state->kernel_irqchip_allowed; 3728 } 3729 3730 bool kvm_kernel_irqchip_required(void) 3731 { 3732 return kvm_state->kernel_irqchip_required; 3733 } 3734 3735 bool kvm_kernel_irqchip_split(void) 3736 { 3737 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3738 } 3739 3740 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3741 const char *name, void *opaque, 3742 Error **errp) 3743 { 3744 KVMState *s = KVM_STATE(obj); 3745 uint32_t value = s->kvm_dirty_ring_size; 3746 3747 visit_type_uint32(v, name, &value, errp); 3748 } 3749 3750 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3751 const char *name, void *opaque, 3752 Error **errp) 3753 { 3754 KVMState *s = KVM_STATE(obj); 3755 uint32_t value; 3756 3757 if (s->fd != -1) { 3758 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3759 return; 3760 } 3761 3762 if (!visit_type_uint32(v, name, &value, errp)) { 3763 return; 3764 } 3765 if (value & (value - 1)) { 3766 error_setg(errp, "dirty-ring-size must be a power of two."); 3767 return; 3768 } 3769 3770 s->kvm_dirty_ring_size = value; 3771 } 3772 3773 static char *kvm_get_device(Object *obj, 3774 Error **errp G_GNUC_UNUSED) 3775 { 3776 KVMState *s = KVM_STATE(obj); 3777 3778 return g_strdup(s->device); 3779 } 3780 3781 static void kvm_set_device(Object *obj, 3782 const char *value, 3783 Error **errp G_GNUC_UNUSED) 3784 { 3785 KVMState *s = KVM_STATE(obj); 3786 3787 g_free(s->device); 3788 s->device = g_strdup(value); 3789 } 3790 3791 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3792 { 3793 KVMState *s = KVM_STATE(obj); 3794 s->msr_energy.enable = value; 3795 } 3796 3797 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3798 const char *str, 3799 Error **errp) 3800 { 3801 KVMState *s = KVM_STATE(obj); 3802 g_free(s->msr_energy.socket_path); 3803 s->msr_energy.socket_path = g_strdup(str); 3804 } 3805 3806 static void kvm_accel_instance_init(Object *obj) 3807 { 3808 KVMState *s = KVM_STATE(obj); 3809 3810 s->fd = -1; 3811 s->vmfd = -1; 3812 s->kvm_shadow_mem = -1; 3813 s->kernel_irqchip_allowed = true; 3814 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3815 /* KVM dirty ring is by default off */ 3816 s->kvm_dirty_ring_size = 0; 3817 s->kvm_dirty_ring_with_bitmap = false; 3818 s->kvm_eager_split_size = 0; 3819 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3820 s->notify_window = 0; 3821 s->xen_version = 0; 3822 s->xen_gnttab_max_frames = 64; 3823 s->xen_evtchn_max_pirq = 256; 3824 s->device = NULL; 3825 s->msr_energy.enable = false; 3826 } 3827 3828 /** 3829 * kvm_gdbstub_sstep_flags(): 3830 * 3831 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3832 * support is probed during kvm_init() 3833 */ 3834 static int kvm_gdbstub_sstep_flags(void) 3835 { 3836 return kvm_sstep_flags; 3837 } 3838 3839 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3840 { 3841 AccelClass *ac = ACCEL_CLASS(oc); 3842 ac->name = "KVM"; 3843 ac->init_machine = kvm_init; 3844 ac->has_memory = kvm_accel_has_memory; 3845 ac->allowed = &kvm_allowed; 3846 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3847 3848 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3849 NULL, kvm_set_kernel_irqchip, 3850 NULL, NULL); 3851 object_class_property_set_description(oc, "kernel-irqchip", 3852 "Configure KVM in-kernel irqchip"); 3853 3854 object_class_property_add(oc, "kvm-shadow-mem", "int", 3855 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3856 NULL, NULL); 3857 object_class_property_set_description(oc, "kvm-shadow-mem", 3858 "KVM shadow MMU size"); 3859 3860 object_class_property_add(oc, "dirty-ring-size", "uint32", 3861 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3862 NULL, NULL); 3863 object_class_property_set_description(oc, "dirty-ring-size", 3864 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3865 3866 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 3867 object_class_property_set_description(oc, "device", 3868 "Path to the device node to use (default: /dev/kvm)"); 3869 3870 object_class_property_add_bool(oc, "rapl", 3871 NULL, 3872 kvm_set_kvm_rapl); 3873 object_class_property_set_description(oc, "rapl", 3874 "Allow energy related MSRs for RAPL interface in Guest"); 3875 3876 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 3877 kvm_set_kvm_rapl_socket_path); 3878 object_class_property_set_description(oc, "rapl-helper-socket", 3879 "Socket Path for comminucating with the Virtual MSR helper daemon"); 3880 3881 kvm_arch_accel_class_init(oc); 3882 } 3883 3884 static const TypeInfo kvm_accel_type = { 3885 .name = TYPE_KVM_ACCEL, 3886 .parent = TYPE_ACCEL, 3887 .instance_init = kvm_accel_instance_init, 3888 .class_init = kvm_accel_class_init, 3889 .instance_size = sizeof(KVMState), 3890 }; 3891 3892 static void kvm_type_init(void) 3893 { 3894 type_register_static(&kvm_accel_type); 3895 } 3896 3897 type_init(kvm_type_init); 3898 3899 typedef struct StatsArgs { 3900 union StatsResultsType { 3901 StatsResultList **stats; 3902 StatsSchemaList **schema; 3903 } result; 3904 strList *names; 3905 Error **errp; 3906 } StatsArgs; 3907 3908 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3909 uint64_t *stats_data, 3910 StatsList *stats_list, 3911 Error **errp) 3912 { 3913 3914 Stats *stats; 3915 uint64List *val_list = NULL; 3916 3917 /* Only add stats that we understand. */ 3918 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3919 case KVM_STATS_TYPE_CUMULATIVE: 3920 case KVM_STATS_TYPE_INSTANT: 3921 case KVM_STATS_TYPE_PEAK: 3922 case KVM_STATS_TYPE_LINEAR_HIST: 3923 case KVM_STATS_TYPE_LOG_HIST: 3924 break; 3925 default: 3926 return stats_list; 3927 } 3928 3929 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3930 case KVM_STATS_UNIT_NONE: 3931 case KVM_STATS_UNIT_BYTES: 3932 case KVM_STATS_UNIT_CYCLES: 3933 case KVM_STATS_UNIT_SECONDS: 3934 case KVM_STATS_UNIT_BOOLEAN: 3935 break; 3936 default: 3937 return stats_list; 3938 } 3939 3940 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3941 case KVM_STATS_BASE_POW10: 3942 case KVM_STATS_BASE_POW2: 3943 break; 3944 default: 3945 return stats_list; 3946 } 3947 3948 /* Alloc and populate data list */ 3949 stats = g_new0(Stats, 1); 3950 stats->name = g_strdup(pdesc->name); 3951 stats->value = g_new0(StatsValue, 1); 3952 3953 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3954 stats->value->u.boolean = *stats_data; 3955 stats->value->type = QTYPE_QBOOL; 3956 } else if (pdesc->size == 1) { 3957 stats->value->u.scalar = *stats_data; 3958 stats->value->type = QTYPE_QNUM; 3959 } else { 3960 int i; 3961 for (i = 0; i < pdesc->size; i++) { 3962 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3963 } 3964 stats->value->u.list = val_list; 3965 stats->value->type = QTYPE_QLIST; 3966 } 3967 3968 QAPI_LIST_PREPEND(stats_list, stats); 3969 return stats_list; 3970 } 3971 3972 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3973 StatsSchemaValueList *list, 3974 Error **errp) 3975 { 3976 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3977 schema_entry->value = g_new0(StatsSchemaValue, 1); 3978 3979 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3980 case KVM_STATS_TYPE_CUMULATIVE: 3981 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3982 break; 3983 case KVM_STATS_TYPE_INSTANT: 3984 schema_entry->value->type = STATS_TYPE_INSTANT; 3985 break; 3986 case KVM_STATS_TYPE_PEAK: 3987 schema_entry->value->type = STATS_TYPE_PEAK; 3988 break; 3989 case KVM_STATS_TYPE_LINEAR_HIST: 3990 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3991 schema_entry->value->bucket_size = pdesc->bucket_size; 3992 schema_entry->value->has_bucket_size = true; 3993 break; 3994 case KVM_STATS_TYPE_LOG_HIST: 3995 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3996 break; 3997 default: 3998 goto exit; 3999 } 4000 4001 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4002 case KVM_STATS_UNIT_NONE: 4003 break; 4004 case KVM_STATS_UNIT_BOOLEAN: 4005 schema_entry->value->has_unit = true; 4006 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4007 break; 4008 case KVM_STATS_UNIT_BYTES: 4009 schema_entry->value->has_unit = true; 4010 schema_entry->value->unit = STATS_UNIT_BYTES; 4011 break; 4012 case KVM_STATS_UNIT_CYCLES: 4013 schema_entry->value->has_unit = true; 4014 schema_entry->value->unit = STATS_UNIT_CYCLES; 4015 break; 4016 case KVM_STATS_UNIT_SECONDS: 4017 schema_entry->value->has_unit = true; 4018 schema_entry->value->unit = STATS_UNIT_SECONDS; 4019 break; 4020 default: 4021 goto exit; 4022 } 4023 4024 schema_entry->value->exponent = pdesc->exponent; 4025 if (pdesc->exponent) { 4026 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4027 case KVM_STATS_BASE_POW10: 4028 schema_entry->value->has_base = true; 4029 schema_entry->value->base = 10; 4030 break; 4031 case KVM_STATS_BASE_POW2: 4032 schema_entry->value->has_base = true; 4033 schema_entry->value->base = 2; 4034 break; 4035 default: 4036 goto exit; 4037 } 4038 } 4039 4040 schema_entry->value->name = g_strdup(pdesc->name); 4041 schema_entry->next = list; 4042 return schema_entry; 4043 exit: 4044 g_free(schema_entry->value); 4045 g_free(schema_entry); 4046 return list; 4047 } 4048 4049 /* Cached stats descriptors */ 4050 typedef struct StatsDescriptors { 4051 const char *ident; /* cache key, currently the StatsTarget */ 4052 struct kvm_stats_desc *kvm_stats_desc; 4053 struct kvm_stats_header kvm_stats_header; 4054 QTAILQ_ENTRY(StatsDescriptors) next; 4055 } StatsDescriptors; 4056 4057 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4058 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4059 4060 /* 4061 * Return the descriptors for 'target', that either have already been read 4062 * or are retrieved from 'stats_fd'. 4063 */ 4064 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4065 Error **errp) 4066 { 4067 StatsDescriptors *descriptors; 4068 const char *ident; 4069 struct kvm_stats_desc *kvm_stats_desc; 4070 struct kvm_stats_header *kvm_stats_header; 4071 size_t size_desc; 4072 ssize_t ret; 4073 4074 ident = StatsTarget_str(target); 4075 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4076 if (g_str_equal(descriptors->ident, ident)) { 4077 return descriptors; 4078 } 4079 } 4080 4081 descriptors = g_new0(StatsDescriptors, 1); 4082 4083 /* Read stats header */ 4084 kvm_stats_header = &descriptors->kvm_stats_header; 4085 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4086 if (ret != sizeof(*kvm_stats_header)) { 4087 error_setg(errp, "KVM stats: failed to read stats header: " 4088 "expected %zu actual %zu", 4089 sizeof(*kvm_stats_header), ret); 4090 g_free(descriptors); 4091 return NULL; 4092 } 4093 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4094 4095 /* Read stats descriptors */ 4096 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4097 ret = pread(stats_fd, kvm_stats_desc, 4098 size_desc * kvm_stats_header->num_desc, 4099 kvm_stats_header->desc_offset); 4100 4101 if (ret != size_desc * kvm_stats_header->num_desc) { 4102 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4103 "expected %zu actual %zu", 4104 size_desc * kvm_stats_header->num_desc, ret); 4105 g_free(descriptors); 4106 g_free(kvm_stats_desc); 4107 return NULL; 4108 } 4109 descriptors->kvm_stats_desc = kvm_stats_desc; 4110 descriptors->ident = ident; 4111 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4112 return descriptors; 4113 } 4114 4115 static void query_stats(StatsResultList **result, StatsTarget target, 4116 strList *names, int stats_fd, CPUState *cpu, 4117 Error **errp) 4118 { 4119 struct kvm_stats_desc *kvm_stats_desc; 4120 struct kvm_stats_header *kvm_stats_header; 4121 StatsDescriptors *descriptors; 4122 g_autofree uint64_t *stats_data = NULL; 4123 struct kvm_stats_desc *pdesc; 4124 StatsList *stats_list = NULL; 4125 size_t size_desc, size_data = 0; 4126 ssize_t ret; 4127 int i; 4128 4129 descriptors = find_stats_descriptors(target, stats_fd, errp); 4130 if (!descriptors) { 4131 return; 4132 } 4133 4134 kvm_stats_header = &descriptors->kvm_stats_header; 4135 kvm_stats_desc = descriptors->kvm_stats_desc; 4136 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4137 4138 /* Tally the total data size; read schema data */ 4139 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4140 pdesc = (void *)kvm_stats_desc + i * size_desc; 4141 size_data += pdesc->size * sizeof(*stats_data); 4142 } 4143 4144 stats_data = g_malloc0(size_data); 4145 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4146 4147 if (ret != size_data) { 4148 error_setg(errp, "KVM stats: failed to read data: " 4149 "expected %zu actual %zu", size_data, ret); 4150 return; 4151 } 4152 4153 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4154 uint64_t *stats; 4155 pdesc = (void *)kvm_stats_desc + i * size_desc; 4156 4157 /* Add entry to the list */ 4158 stats = (void *)stats_data + pdesc->offset; 4159 if (!apply_str_list_filter(pdesc->name, names)) { 4160 continue; 4161 } 4162 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4163 } 4164 4165 if (!stats_list) { 4166 return; 4167 } 4168 4169 switch (target) { 4170 case STATS_TARGET_VM: 4171 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4172 break; 4173 case STATS_TARGET_VCPU: 4174 add_stats_entry(result, STATS_PROVIDER_KVM, 4175 cpu->parent_obj.canonical_path, 4176 stats_list); 4177 break; 4178 default: 4179 g_assert_not_reached(); 4180 } 4181 } 4182 4183 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4184 int stats_fd, Error **errp) 4185 { 4186 struct kvm_stats_desc *kvm_stats_desc; 4187 struct kvm_stats_header *kvm_stats_header; 4188 StatsDescriptors *descriptors; 4189 struct kvm_stats_desc *pdesc; 4190 StatsSchemaValueList *stats_list = NULL; 4191 size_t size_desc; 4192 int i; 4193 4194 descriptors = find_stats_descriptors(target, stats_fd, errp); 4195 if (!descriptors) { 4196 return; 4197 } 4198 4199 kvm_stats_header = &descriptors->kvm_stats_header; 4200 kvm_stats_desc = descriptors->kvm_stats_desc; 4201 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4202 4203 /* Tally the total data size; read schema data */ 4204 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4205 pdesc = (void *)kvm_stats_desc + i * size_desc; 4206 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4207 } 4208 4209 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4210 } 4211 4212 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4213 { 4214 int stats_fd = cpu->kvm_vcpu_stats_fd; 4215 Error *local_err = NULL; 4216 4217 if (stats_fd == -1) { 4218 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4219 error_propagate(kvm_stats_args->errp, local_err); 4220 return; 4221 } 4222 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4223 kvm_stats_args->names, stats_fd, cpu, 4224 kvm_stats_args->errp); 4225 } 4226 4227 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4228 { 4229 int stats_fd = cpu->kvm_vcpu_stats_fd; 4230 Error *local_err = NULL; 4231 4232 if (stats_fd == -1) { 4233 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4234 error_propagate(kvm_stats_args->errp, local_err); 4235 return; 4236 } 4237 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4238 kvm_stats_args->errp); 4239 } 4240 4241 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4242 strList *names, strList *targets, Error **errp) 4243 { 4244 KVMState *s = kvm_state; 4245 CPUState *cpu; 4246 int stats_fd; 4247 4248 switch (target) { 4249 case STATS_TARGET_VM: 4250 { 4251 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4252 if (stats_fd == -1) { 4253 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4254 return; 4255 } 4256 query_stats(result, target, names, stats_fd, NULL, errp); 4257 close(stats_fd); 4258 break; 4259 } 4260 case STATS_TARGET_VCPU: 4261 { 4262 StatsArgs stats_args; 4263 stats_args.result.stats = result; 4264 stats_args.names = names; 4265 stats_args.errp = errp; 4266 CPU_FOREACH(cpu) { 4267 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4268 continue; 4269 } 4270 query_stats_vcpu(cpu, &stats_args); 4271 } 4272 break; 4273 } 4274 default: 4275 break; 4276 } 4277 } 4278 4279 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4280 { 4281 StatsArgs stats_args; 4282 KVMState *s = kvm_state; 4283 int stats_fd; 4284 4285 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4286 if (stats_fd == -1) { 4287 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4288 return; 4289 } 4290 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4291 close(stats_fd); 4292 4293 if (first_cpu) { 4294 stats_args.result.schema = result; 4295 stats_args.errp = errp; 4296 query_stats_schema_vcpu(first_cpu, &stats_args); 4297 } 4298 } 4299 4300 void kvm_mark_guest_state_protected(void) 4301 { 4302 kvm_state->guest_state_protected = true; 4303 } 4304 4305 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4306 { 4307 int fd; 4308 struct kvm_create_guest_memfd guest_memfd = { 4309 .size = size, 4310 .flags = flags, 4311 }; 4312 4313 if (!kvm_guest_memfd_supported) { 4314 error_setg(errp, "KVM does not support guest_memfd"); 4315 return -1; 4316 } 4317 4318 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4319 if (fd < 0) { 4320 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4321 return -1; 4322 } 4323 4324 return fd; 4325 } 4326