1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "sysemu/reset.h" 47 #include "qemu/guest-random.h" 48 #include "sysemu/hw_accel.h" 49 #include "kvm-cpus.h" 50 51 #include "hw/boards.h" 52 53 /* This check must be after config-host.h is included */ 54 #ifdef CONFIG_EVENTFD 55 #include <sys/eventfd.h> 56 #endif 57 58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 59 * need to use the real host PAGE_SIZE, as that's what KVM will use. 60 */ 61 #ifdef PAGE_SIZE 62 #undef PAGE_SIZE 63 #endif 64 #define PAGE_SIZE qemu_real_host_page_size 65 66 //#define DEBUG_KVM 67 68 #ifdef DEBUG_KVM 69 #define DPRINTF(fmt, ...) \ 70 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 71 #else 72 #define DPRINTF(fmt, ...) \ 73 do { } while (0) 74 #endif 75 76 #define KVM_MSI_HASHTAB_SIZE 256 77 78 struct KVMParkedVcpu { 79 unsigned long vcpu_id; 80 int kvm_fd; 81 QLIST_ENTRY(KVMParkedVcpu) node; 82 }; 83 84 struct KVMState 85 { 86 AccelState parent_obj; 87 88 int nr_slots; 89 int fd; 90 int vmfd; 91 int coalesced_mmio; 92 int coalesced_pio; 93 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 94 bool coalesced_flush_in_progress; 95 int vcpu_events; 96 int robust_singlestep; 97 int debugregs; 98 #ifdef KVM_CAP_SET_GUEST_DEBUG 99 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 100 #endif 101 int max_nested_state_len; 102 int many_ioeventfds; 103 int intx_set_mask; 104 int kvm_shadow_mem; 105 bool kernel_irqchip_allowed; 106 bool kernel_irqchip_required; 107 OnOffAuto kernel_irqchip_split; 108 bool sync_mmu; 109 uint64_t manual_dirty_log_protect; 110 /* The man page (and posix) say ioctl numbers are signed int, but 111 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 112 * unsigned, and treating them as signed here can break things */ 113 unsigned irq_set_ioctl; 114 unsigned int sigmask_len; 115 GHashTable *gsimap; 116 #ifdef KVM_CAP_IRQ_ROUTING 117 struct kvm_irq_routing *irq_routes; 118 int nr_allocated_irq_routes; 119 unsigned long *used_gsi_bitmap; 120 unsigned int gsi_count; 121 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 122 #endif 123 KVMMemoryListener memory_listener; 124 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 125 126 /* memory encryption */ 127 void *memcrypt_handle; 128 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 129 130 /* For "info mtree -f" to tell if an MR is registered in KVM */ 131 int nr_as; 132 struct KVMAs { 133 KVMMemoryListener *ml; 134 AddressSpace *as; 135 } *as; 136 }; 137 138 KVMState *kvm_state; 139 bool kvm_kernel_irqchip; 140 bool kvm_split_irqchip; 141 bool kvm_async_interrupts_allowed; 142 bool kvm_halt_in_kernel_allowed; 143 bool kvm_eventfds_allowed; 144 bool kvm_irqfds_allowed; 145 bool kvm_resamplefds_allowed; 146 bool kvm_msi_via_irqfd_allowed; 147 bool kvm_gsi_routing_allowed; 148 bool kvm_gsi_direct_mapping; 149 bool kvm_allowed; 150 bool kvm_readonly_mem_allowed; 151 bool kvm_vm_attributes_allowed; 152 bool kvm_direct_msi_allowed; 153 bool kvm_ioeventfd_any_length_allowed; 154 bool kvm_msi_use_devid; 155 static bool kvm_immediate_exit; 156 static hwaddr kvm_max_slot_size = ~0; 157 158 static const KVMCapabilityInfo kvm_required_capabilites[] = { 159 KVM_CAP_INFO(USER_MEMORY), 160 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 161 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 162 KVM_CAP_LAST_INFO 163 }; 164 165 static NotifierList kvm_irqchip_change_notifiers = 166 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 167 168 struct KVMResampleFd { 169 int gsi; 170 EventNotifier *resample_event; 171 QLIST_ENTRY(KVMResampleFd) node; 172 }; 173 typedef struct KVMResampleFd KVMResampleFd; 174 175 /* 176 * Only used with split irqchip where we need to do the resample fd 177 * kick for the kernel from userspace. 178 */ 179 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 180 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 181 182 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 183 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 184 185 static inline void kvm_resample_fd_remove(int gsi) 186 { 187 KVMResampleFd *rfd; 188 189 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 190 if (rfd->gsi == gsi) { 191 QLIST_REMOVE(rfd, node); 192 g_free(rfd); 193 break; 194 } 195 } 196 } 197 198 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 199 { 200 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 201 202 rfd->gsi = gsi; 203 rfd->resample_event = event; 204 205 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 206 } 207 208 void kvm_resample_fd_notify(int gsi) 209 { 210 KVMResampleFd *rfd; 211 212 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 213 if (rfd->gsi == gsi) { 214 event_notifier_set(rfd->resample_event); 215 trace_kvm_resample_fd_notify(gsi); 216 return; 217 } 218 } 219 } 220 221 int kvm_get_max_memslots(void) 222 { 223 KVMState *s = KVM_STATE(current_accel()); 224 225 return s->nr_slots; 226 } 227 228 bool kvm_memcrypt_enabled(void) 229 { 230 if (kvm_state && kvm_state->memcrypt_handle) { 231 return true; 232 } 233 234 return false; 235 } 236 237 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 238 { 239 if (kvm_state->memcrypt_handle && 240 kvm_state->memcrypt_encrypt_data) { 241 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 242 ptr, len); 243 } 244 245 return 1; 246 } 247 248 /* Called with KVMMemoryListener.slots_lock held */ 249 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 250 { 251 KVMState *s = kvm_state; 252 int i; 253 254 for (i = 0; i < s->nr_slots; i++) { 255 if (kml->slots[i].memory_size == 0) { 256 return &kml->slots[i]; 257 } 258 } 259 260 return NULL; 261 } 262 263 bool kvm_has_free_slot(MachineState *ms) 264 { 265 KVMState *s = KVM_STATE(ms->accelerator); 266 bool result; 267 KVMMemoryListener *kml = &s->memory_listener; 268 269 kvm_slots_lock(kml); 270 result = !!kvm_get_free_slot(kml); 271 kvm_slots_unlock(kml); 272 273 return result; 274 } 275 276 /* Called with KVMMemoryListener.slots_lock held */ 277 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 278 { 279 KVMSlot *slot = kvm_get_free_slot(kml); 280 281 if (slot) { 282 return slot; 283 } 284 285 fprintf(stderr, "%s: no free slot available\n", __func__); 286 abort(); 287 } 288 289 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 290 hwaddr start_addr, 291 hwaddr size) 292 { 293 KVMState *s = kvm_state; 294 int i; 295 296 for (i = 0; i < s->nr_slots; i++) { 297 KVMSlot *mem = &kml->slots[i]; 298 299 if (start_addr == mem->start_addr && size == mem->memory_size) { 300 return mem; 301 } 302 } 303 304 return NULL; 305 } 306 307 /* 308 * Calculate and align the start address and the size of the section. 309 * Return the size. If the size is 0, the aligned section is empty. 310 */ 311 static hwaddr kvm_align_section(MemoryRegionSection *section, 312 hwaddr *start) 313 { 314 hwaddr size = int128_get64(section->size); 315 hwaddr delta, aligned; 316 317 /* kvm works in page size chunks, but the function may be called 318 with sub-page size and unaligned start address. Pad the start 319 address to next and truncate size to previous page boundary. */ 320 aligned = ROUND_UP(section->offset_within_address_space, 321 qemu_real_host_page_size); 322 delta = aligned - section->offset_within_address_space; 323 *start = aligned; 324 if (delta > size) { 325 return 0; 326 } 327 328 return (size - delta) & qemu_real_host_page_mask; 329 } 330 331 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 332 hwaddr *phys_addr) 333 { 334 KVMMemoryListener *kml = &s->memory_listener; 335 int i, ret = 0; 336 337 kvm_slots_lock(kml); 338 for (i = 0; i < s->nr_slots; i++) { 339 KVMSlot *mem = &kml->slots[i]; 340 341 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 342 *phys_addr = mem->start_addr + (ram - mem->ram); 343 ret = 1; 344 break; 345 } 346 } 347 kvm_slots_unlock(kml); 348 349 return ret; 350 } 351 352 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 353 { 354 KVMState *s = kvm_state; 355 struct kvm_userspace_memory_region mem; 356 int ret; 357 358 mem.slot = slot->slot | (kml->as_id << 16); 359 mem.guest_phys_addr = slot->start_addr; 360 mem.userspace_addr = (unsigned long)slot->ram; 361 mem.flags = slot->flags; 362 363 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 364 /* Set the slot size to 0 before setting the slot to the desired 365 * value. This is needed based on KVM commit 75d61fbc. */ 366 mem.memory_size = 0; 367 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 368 if (ret < 0) { 369 goto err; 370 } 371 } 372 mem.memory_size = slot->memory_size; 373 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 374 slot->old_flags = mem.flags; 375 err: 376 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 377 mem.memory_size, mem.userspace_addr, ret); 378 if (ret < 0) { 379 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 380 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 381 __func__, mem.slot, slot->start_addr, 382 (uint64_t)mem.memory_size, strerror(errno)); 383 } 384 return ret; 385 } 386 387 static int do_kvm_destroy_vcpu(CPUState *cpu) 388 { 389 KVMState *s = kvm_state; 390 long mmap_size; 391 struct KVMParkedVcpu *vcpu = NULL; 392 int ret = 0; 393 394 DPRINTF("kvm_destroy_vcpu\n"); 395 396 ret = kvm_arch_destroy_vcpu(cpu); 397 if (ret < 0) { 398 goto err; 399 } 400 401 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 402 if (mmap_size < 0) { 403 ret = mmap_size; 404 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 405 goto err; 406 } 407 408 ret = munmap(cpu->kvm_run, mmap_size); 409 if (ret < 0) { 410 goto err; 411 } 412 413 vcpu = g_malloc0(sizeof(*vcpu)); 414 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 415 vcpu->kvm_fd = cpu->kvm_fd; 416 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 417 err: 418 return ret; 419 } 420 421 void kvm_destroy_vcpu(CPUState *cpu) 422 { 423 if (do_kvm_destroy_vcpu(cpu) < 0) { 424 error_report("kvm_destroy_vcpu failed"); 425 exit(EXIT_FAILURE); 426 } 427 } 428 429 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 430 { 431 struct KVMParkedVcpu *cpu; 432 433 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 434 if (cpu->vcpu_id == vcpu_id) { 435 int kvm_fd; 436 437 QLIST_REMOVE(cpu, node); 438 kvm_fd = cpu->kvm_fd; 439 g_free(cpu); 440 return kvm_fd; 441 } 442 } 443 444 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 445 } 446 447 int kvm_init_vcpu(CPUState *cpu, Error **errp) 448 { 449 KVMState *s = kvm_state; 450 long mmap_size; 451 int ret; 452 453 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 454 455 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 456 if (ret < 0) { 457 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 458 kvm_arch_vcpu_id(cpu)); 459 goto err; 460 } 461 462 cpu->kvm_fd = ret; 463 cpu->kvm_state = s; 464 cpu->vcpu_dirty = true; 465 466 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 467 if (mmap_size < 0) { 468 ret = mmap_size; 469 error_setg_errno(errp, -mmap_size, 470 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 471 goto err; 472 } 473 474 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 475 cpu->kvm_fd, 0); 476 if (cpu->kvm_run == MAP_FAILED) { 477 ret = -errno; 478 error_setg_errno(errp, ret, 479 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 480 kvm_arch_vcpu_id(cpu)); 481 goto err; 482 } 483 484 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 485 s->coalesced_mmio_ring = 486 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 487 } 488 489 ret = kvm_arch_init_vcpu(cpu); 490 if (ret < 0) { 491 error_setg_errno(errp, -ret, 492 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 493 kvm_arch_vcpu_id(cpu)); 494 } 495 err: 496 return ret; 497 } 498 499 /* 500 * dirty pages logging control 501 */ 502 503 static int kvm_mem_flags(MemoryRegion *mr) 504 { 505 bool readonly = mr->readonly || memory_region_is_romd(mr); 506 int flags = 0; 507 508 if (memory_region_get_dirty_log_mask(mr) != 0) { 509 flags |= KVM_MEM_LOG_DIRTY_PAGES; 510 } 511 if (readonly && kvm_readonly_mem_allowed) { 512 flags |= KVM_MEM_READONLY; 513 } 514 return flags; 515 } 516 517 /* Called with KVMMemoryListener.slots_lock held */ 518 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 519 MemoryRegion *mr) 520 { 521 mem->flags = kvm_mem_flags(mr); 522 523 /* If nothing changed effectively, no need to issue ioctl */ 524 if (mem->flags == mem->old_flags) { 525 return 0; 526 } 527 528 return kvm_set_user_memory_region(kml, mem, false); 529 } 530 531 static int kvm_section_update_flags(KVMMemoryListener *kml, 532 MemoryRegionSection *section) 533 { 534 hwaddr start_addr, size, slot_size; 535 KVMSlot *mem; 536 int ret = 0; 537 538 size = kvm_align_section(section, &start_addr); 539 if (!size) { 540 return 0; 541 } 542 543 kvm_slots_lock(kml); 544 545 while (size && !ret) { 546 slot_size = MIN(kvm_max_slot_size, size); 547 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 548 if (!mem) { 549 /* We don't have a slot if we want to trap every access. */ 550 goto out; 551 } 552 553 ret = kvm_slot_update_flags(kml, mem, section->mr); 554 start_addr += slot_size; 555 size -= slot_size; 556 } 557 558 out: 559 kvm_slots_unlock(kml); 560 return ret; 561 } 562 563 static void kvm_log_start(MemoryListener *listener, 564 MemoryRegionSection *section, 565 int old, int new) 566 { 567 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 568 int r; 569 570 if (old != 0) { 571 return; 572 } 573 574 r = kvm_section_update_flags(kml, section); 575 if (r < 0) { 576 abort(); 577 } 578 } 579 580 static void kvm_log_stop(MemoryListener *listener, 581 MemoryRegionSection *section, 582 int old, int new) 583 { 584 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 585 int r; 586 587 if (new != 0) { 588 return; 589 } 590 591 r = kvm_section_update_flags(kml, section); 592 if (r < 0) { 593 abort(); 594 } 595 } 596 597 /* get kvm's dirty pages bitmap and update qemu's */ 598 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 599 unsigned long *bitmap) 600 { 601 ram_addr_t start = section->offset_within_region + 602 memory_region_get_ram_addr(section->mr); 603 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 604 605 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 606 return 0; 607 } 608 609 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 610 611 /* Allocate the dirty bitmap for a slot */ 612 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 613 { 614 /* 615 * XXX bad kernel interface alert 616 * For dirty bitmap, kernel allocates array of size aligned to 617 * bits-per-long. But for case when the kernel is 64bits and 618 * the userspace is 32bits, userspace can't align to the same 619 * bits-per-long, since sizeof(long) is different between kernel 620 * and user space. This way, userspace will provide buffer which 621 * may be 4 bytes less than the kernel will use, resulting in 622 * userspace memory corruption (which is not detectable by valgrind 623 * too, in most cases). 624 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 625 * a hope that sizeof(long) won't become >8 any time soon. 626 */ 627 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 628 /*HOST_LONG_BITS*/ 64) / 8; 629 mem->dirty_bmap = g_malloc0(bitmap_size); 630 } 631 632 /** 633 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 634 * 635 * This function will first try to fetch dirty bitmap from the kernel, 636 * and then updates qemu's dirty bitmap. 637 * 638 * NOTE: caller must be with kml->slots_lock held. 639 * 640 * @kml: the KVM memory listener object 641 * @section: the memory section to sync the dirty bitmap with 642 */ 643 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 644 MemoryRegionSection *section) 645 { 646 KVMState *s = kvm_state; 647 struct kvm_dirty_log d = {}; 648 KVMSlot *mem; 649 hwaddr start_addr, size; 650 hwaddr slot_size, slot_offset = 0; 651 int ret = 0; 652 653 size = kvm_align_section(section, &start_addr); 654 while (size) { 655 MemoryRegionSection subsection = *section; 656 657 slot_size = MIN(kvm_max_slot_size, size); 658 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 659 if (!mem) { 660 /* We don't have a slot if we want to trap every access. */ 661 goto out; 662 } 663 664 if (!mem->dirty_bmap) { 665 /* Allocate on the first log_sync, once and for all */ 666 kvm_memslot_init_dirty_bitmap(mem); 667 } 668 669 d.dirty_bitmap = mem->dirty_bmap; 670 d.slot = mem->slot | (kml->as_id << 16); 671 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 672 DPRINTF("ioctl failed %d\n", errno); 673 ret = -1; 674 goto out; 675 } 676 677 subsection.offset_within_region += slot_offset; 678 subsection.size = int128_make64(slot_size); 679 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 680 681 slot_offset += slot_size; 682 start_addr += slot_size; 683 size -= slot_size; 684 } 685 out: 686 return ret; 687 } 688 689 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 690 #define KVM_CLEAR_LOG_SHIFT 6 691 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 692 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 693 694 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 695 uint64_t size) 696 { 697 KVMState *s = kvm_state; 698 uint64_t end, bmap_start, start_delta, bmap_npages; 699 struct kvm_clear_dirty_log d; 700 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 701 int ret; 702 703 /* 704 * We need to extend either the start or the size or both to 705 * satisfy the KVM interface requirement. Firstly, do the start 706 * page alignment on 64 host pages 707 */ 708 bmap_start = start & KVM_CLEAR_LOG_MASK; 709 start_delta = start - bmap_start; 710 bmap_start /= psize; 711 712 /* 713 * The kernel interface has restriction on the size too, that either: 714 * 715 * (1) the size is 64 host pages aligned (just like the start), or 716 * (2) the size fills up until the end of the KVM memslot. 717 */ 718 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 719 << KVM_CLEAR_LOG_SHIFT; 720 end = mem->memory_size / psize; 721 if (bmap_npages > end - bmap_start) { 722 bmap_npages = end - bmap_start; 723 } 724 start_delta /= psize; 725 726 /* 727 * Prepare the bitmap to clear dirty bits. Here we must guarantee 728 * that we won't clear any unknown dirty bits otherwise we might 729 * accidentally clear some set bits which are not yet synced from 730 * the kernel into QEMU's bitmap, then we'll lose track of the 731 * guest modifications upon those pages (which can directly lead 732 * to guest data loss or panic after migration). 733 * 734 * Layout of the KVMSlot.dirty_bmap: 735 * 736 * |<-------- bmap_npages -----------..>| 737 * [1] 738 * start_delta size 739 * |----------------|-------------|------------------|------------| 740 * ^ ^ ^ ^ 741 * | | | | 742 * start bmap_start (start) end 743 * of memslot of memslot 744 * 745 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 746 */ 747 748 assert(bmap_start % BITS_PER_LONG == 0); 749 /* We should never do log_clear before log_sync */ 750 assert(mem->dirty_bmap); 751 if (start_delta || bmap_npages - size / psize) { 752 /* Slow path - we need to manipulate a temp bitmap */ 753 bmap_clear = bitmap_new(bmap_npages); 754 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 755 bmap_start, start_delta + size / psize); 756 /* 757 * We need to fill the holes at start because that was not 758 * specified by the caller and we extended the bitmap only for 759 * 64 pages alignment 760 */ 761 bitmap_clear(bmap_clear, 0, start_delta); 762 d.dirty_bitmap = bmap_clear; 763 } else { 764 /* 765 * Fast path - both start and size align well with BITS_PER_LONG 766 * (or the end of memory slot) 767 */ 768 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 769 } 770 771 d.first_page = bmap_start; 772 /* It should never overflow. If it happens, say something */ 773 assert(bmap_npages <= UINT32_MAX); 774 d.num_pages = bmap_npages; 775 d.slot = mem->slot | (as_id << 16); 776 777 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 778 ret = -errno; 779 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 780 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 781 __func__, d.slot, (uint64_t)d.first_page, 782 (uint32_t)d.num_pages, ret); 783 } else { 784 ret = 0; 785 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 786 } 787 788 /* 789 * After we have updated the remote dirty bitmap, we update the 790 * cached bitmap as well for the memslot, then if another user 791 * clears the same region we know we shouldn't clear it again on 792 * the remote otherwise it's data loss as well. 793 */ 794 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 795 size / psize); 796 /* This handles the NULL case well */ 797 g_free(bmap_clear); 798 return ret; 799 } 800 801 802 /** 803 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 804 * 805 * NOTE: this will be a no-op if we haven't enabled manual dirty log 806 * protection in the host kernel because in that case this operation 807 * will be done within log_sync(). 808 * 809 * @kml: the kvm memory listener 810 * @section: the memory range to clear dirty bitmap 811 */ 812 static int kvm_physical_log_clear(KVMMemoryListener *kml, 813 MemoryRegionSection *section) 814 { 815 KVMState *s = kvm_state; 816 uint64_t start, size, offset, count; 817 KVMSlot *mem; 818 int ret = 0, i; 819 820 if (!s->manual_dirty_log_protect) { 821 /* No need to do explicit clear */ 822 return ret; 823 } 824 825 start = section->offset_within_address_space; 826 size = int128_get64(section->size); 827 828 if (!size) { 829 /* Nothing more we can do... */ 830 return ret; 831 } 832 833 kvm_slots_lock(kml); 834 835 for (i = 0; i < s->nr_slots; i++) { 836 mem = &kml->slots[i]; 837 /* Discard slots that are empty or do not overlap the section */ 838 if (!mem->memory_size || 839 mem->start_addr > start + size - 1 || 840 start > mem->start_addr + mem->memory_size - 1) { 841 continue; 842 } 843 844 if (start >= mem->start_addr) { 845 /* The slot starts before section or is aligned to it. */ 846 offset = start - mem->start_addr; 847 count = MIN(mem->memory_size - offset, size); 848 } else { 849 /* The slot starts after section. */ 850 offset = 0; 851 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 852 } 853 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 854 if (ret < 0) { 855 break; 856 } 857 } 858 859 kvm_slots_unlock(kml); 860 861 return ret; 862 } 863 864 static void kvm_coalesce_mmio_region(MemoryListener *listener, 865 MemoryRegionSection *secion, 866 hwaddr start, hwaddr size) 867 { 868 KVMState *s = kvm_state; 869 870 if (s->coalesced_mmio) { 871 struct kvm_coalesced_mmio_zone zone; 872 873 zone.addr = start; 874 zone.size = size; 875 zone.pad = 0; 876 877 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 878 } 879 } 880 881 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 882 MemoryRegionSection *secion, 883 hwaddr start, hwaddr size) 884 { 885 KVMState *s = kvm_state; 886 887 if (s->coalesced_mmio) { 888 struct kvm_coalesced_mmio_zone zone; 889 890 zone.addr = start; 891 zone.size = size; 892 zone.pad = 0; 893 894 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 895 } 896 } 897 898 static void kvm_coalesce_pio_add(MemoryListener *listener, 899 MemoryRegionSection *section, 900 hwaddr start, hwaddr size) 901 { 902 KVMState *s = kvm_state; 903 904 if (s->coalesced_pio) { 905 struct kvm_coalesced_mmio_zone zone; 906 907 zone.addr = start; 908 zone.size = size; 909 zone.pio = 1; 910 911 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 912 } 913 } 914 915 static void kvm_coalesce_pio_del(MemoryListener *listener, 916 MemoryRegionSection *section, 917 hwaddr start, hwaddr size) 918 { 919 KVMState *s = kvm_state; 920 921 if (s->coalesced_pio) { 922 struct kvm_coalesced_mmio_zone zone; 923 924 zone.addr = start; 925 zone.size = size; 926 zone.pio = 1; 927 928 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 929 } 930 } 931 932 static MemoryListener kvm_coalesced_pio_listener = { 933 .coalesced_io_add = kvm_coalesce_pio_add, 934 .coalesced_io_del = kvm_coalesce_pio_del, 935 }; 936 937 int kvm_check_extension(KVMState *s, unsigned int extension) 938 { 939 int ret; 940 941 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 942 if (ret < 0) { 943 ret = 0; 944 } 945 946 return ret; 947 } 948 949 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 950 { 951 int ret; 952 953 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 954 if (ret < 0) { 955 /* VM wide version not implemented, use global one instead */ 956 ret = kvm_check_extension(s, extension); 957 } 958 959 return ret; 960 } 961 962 typedef struct HWPoisonPage { 963 ram_addr_t ram_addr; 964 QLIST_ENTRY(HWPoisonPage) list; 965 } HWPoisonPage; 966 967 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 968 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 969 970 static void kvm_unpoison_all(void *param) 971 { 972 HWPoisonPage *page, *next_page; 973 974 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 975 QLIST_REMOVE(page, list); 976 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 977 g_free(page); 978 } 979 } 980 981 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 982 { 983 HWPoisonPage *page; 984 985 QLIST_FOREACH(page, &hwpoison_page_list, list) { 986 if (page->ram_addr == ram_addr) { 987 return; 988 } 989 } 990 page = g_new(HWPoisonPage, 1); 991 page->ram_addr = ram_addr; 992 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 993 } 994 995 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 996 { 997 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 998 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 999 * endianness, but the memory core hands them in target endianness. 1000 * For example, PPC is always treated as big-endian even if running 1001 * on KVM and on PPC64LE. Correct here. 1002 */ 1003 switch (size) { 1004 case 2: 1005 val = bswap16(val); 1006 break; 1007 case 4: 1008 val = bswap32(val); 1009 break; 1010 } 1011 #endif 1012 return val; 1013 } 1014 1015 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1016 bool assign, uint32_t size, bool datamatch) 1017 { 1018 int ret; 1019 struct kvm_ioeventfd iofd = { 1020 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1021 .addr = addr, 1022 .len = size, 1023 .flags = 0, 1024 .fd = fd, 1025 }; 1026 1027 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1028 datamatch); 1029 if (!kvm_enabled()) { 1030 return -ENOSYS; 1031 } 1032 1033 if (datamatch) { 1034 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1035 } 1036 if (!assign) { 1037 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1038 } 1039 1040 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1041 1042 if (ret < 0) { 1043 return -errno; 1044 } 1045 1046 return 0; 1047 } 1048 1049 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1050 bool assign, uint32_t size, bool datamatch) 1051 { 1052 struct kvm_ioeventfd kick = { 1053 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1054 .addr = addr, 1055 .flags = KVM_IOEVENTFD_FLAG_PIO, 1056 .len = size, 1057 .fd = fd, 1058 }; 1059 int r; 1060 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1061 if (!kvm_enabled()) { 1062 return -ENOSYS; 1063 } 1064 if (datamatch) { 1065 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1066 } 1067 if (!assign) { 1068 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1069 } 1070 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1071 if (r < 0) { 1072 return r; 1073 } 1074 return 0; 1075 } 1076 1077 1078 static int kvm_check_many_ioeventfds(void) 1079 { 1080 /* Userspace can use ioeventfd for io notification. This requires a host 1081 * that supports eventfd(2) and an I/O thread; since eventfd does not 1082 * support SIGIO it cannot interrupt the vcpu. 1083 * 1084 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1085 * can avoid creating too many ioeventfds. 1086 */ 1087 #if defined(CONFIG_EVENTFD) 1088 int ioeventfds[7]; 1089 int i, ret = 0; 1090 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1091 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1092 if (ioeventfds[i] < 0) { 1093 break; 1094 } 1095 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1096 if (ret < 0) { 1097 close(ioeventfds[i]); 1098 break; 1099 } 1100 } 1101 1102 /* Decide whether many devices are supported or not */ 1103 ret = i == ARRAY_SIZE(ioeventfds); 1104 1105 while (i-- > 0) { 1106 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1107 close(ioeventfds[i]); 1108 } 1109 return ret; 1110 #else 1111 return 0; 1112 #endif 1113 } 1114 1115 static const KVMCapabilityInfo * 1116 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1117 { 1118 while (list->name) { 1119 if (!kvm_check_extension(s, list->value)) { 1120 return list; 1121 } 1122 list++; 1123 } 1124 return NULL; 1125 } 1126 1127 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1128 { 1129 g_assert( 1130 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1131 ); 1132 kvm_max_slot_size = max_slot_size; 1133 } 1134 1135 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1136 MemoryRegionSection *section, bool add) 1137 { 1138 KVMSlot *mem; 1139 int err; 1140 MemoryRegion *mr = section->mr; 1141 bool writeable = !mr->readonly && !mr->rom_device; 1142 hwaddr start_addr, size, slot_size; 1143 void *ram; 1144 1145 if (!memory_region_is_ram(mr)) { 1146 if (writeable || !kvm_readonly_mem_allowed) { 1147 return; 1148 } else if (!mr->romd_mode) { 1149 /* If the memory device is not in romd_mode, then we actually want 1150 * to remove the kvm memory slot so all accesses will trap. */ 1151 add = false; 1152 } 1153 } 1154 1155 size = kvm_align_section(section, &start_addr); 1156 if (!size) { 1157 return; 1158 } 1159 1160 /* use aligned delta to align the ram address */ 1161 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1162 (start_addr - section->offset_within_address_space); 1163 1164 kvm_slots_lock(kml); 1165 1166 if (!add) { 1167 do { 1168 slot_size = MIN(kvm_max_slot_size, size); 1169 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1170 if (!mem) { 1171 goto out; 1172 } 1173 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1174 kvm_physical_sync_dirty_bitmap(kml, section); 1175 } 1176 1177 /* unregister the slot */ 1178 g_free(mem->dirty_bmap); 1179 mem->dirty_bmap = NULL; 1180 mem->memory_size = 0; 1181 mem->flags = 0; 1182 err = kvm_set_user_memory_region(kml, mem, false); 1183 if (err) { 1184 fprintf(stderr, "%s: error unregistering slot: %s\n", 1185 __func__, strerror(-err)); 1186 abort(); 1187 } 1188 start_addr += slot_size; 1189 size -= slot_size; 1190 } while (size); 1191 goto out; 1192 } 1193 1194 /* register the new slot */ 1195 do { 1196 slot_size = MIN(kvm_max_slot_size, size); 1197 mem = kvm_alloc_slot(kml); 1198 mem->memory_size = slot_size; 1199 mem->start_addr = start_addr; 1200 mem->ram = ram; 1201 mem->flags = kvm_mem_flags(mr); 1202 1203 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1204 /* 1205 * Reallocate the bmap; it means it doesn't disappear in 1206 * middle of a migrate. 1207 */ 1208 kvm_memslot_init_dirty_bitmap(mem); 1209 } 1210 err = kvm_set_user_memory_region(kml, mem, true); 1211 if (err) { 1212 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1213 strerror(-err)); 1214 abort(); 1215 } 1216 start_addr += slot_size; 1217 ram += slot_size; 1218 size -= slot_size; 1219 } while (size); 1220 1221 out: 1222 kvm_slots_unlock(kml); 1223 } 1224 1225 static void kvm_region_add(MemoryListener *listener, 1226 MemoryRegionSection *section) 1227 { 1228 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1229 1230 memory_region_ref(section->mr); 1231 kvm_set_phys_mem(kml, section, true); 1232 } 1233 1234 static void kvm_region_del(MemoryListener *listener, 1235 MemoryRegionSection *section) 1236 { 1237 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1238 1239 kvm_set_phys_mem(kml, section, false); 1240 memory_region_unref(section->mr); 1241 } 1242 1243 static void kvm_log_sync(MemoryListener *listener, 1244 MemoryRegionSection *section) 1245 { 1246 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1247 int r; 1248 1249 kvm_slots_lock(kml); 1250 r = kvm_physical_sync_dirty_bitmap(kml, section); 1251 kvm_slots_unlock(kml); 1252 if (r < 0) { 1253 abort(); 1254 } 1255 } 1256 1257 static void kvm_log_clear(MemoryListener *listener, 1258 MemoryRegionSection *section) 1259 { 1260 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1261 int r; 1262 1263 r = kvm_physical_log_clear(kml, section); 1264 if (r < 0) { 1265 error_report_once("%s: kvm log clear failed: mr=%s " 1266 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1267 section->mr->name, section->offset_within_region, 1268 int128_get64(section->size)); 1269 abort(); 1270 } 1271 } 1272 1273 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1274 MemoryRegionSection *section, 1275 bool match_data, uint64_t data, 1276 EventNotifier *e) 1277 { 1278 int fd = event_notifier_get_fd(e); 1279 int r; 1280 1281 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1282 data, true, int128_get64(section->size), 1283 match_data); 1284 if (r < 0) { 1285 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1286 __func__, strerror(-r), -r); 1287 abort(); 1288 } 1289 } 1290 1291 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1292 MemoryRegionSection *section, 1293 bool match_data, uint64_t data, 1294 EventNotifier *e) 1295 { 1296 int fd = event_notifier_get_fd(e); 1297 int r; 1298 1299 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1300 data, false, int128_get64(section->size), 1301 match_data); 1302 if (r < 0) { 1303 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1304 __func__, strerror(-r), -r); 1305 abort(); 1306 } 1307 } 1308 1309 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1310 MemoryRegionSection *section, 1311 bool match_data, uint64_t data, 1312 EventNotifier *e) 1313 { 1314 int fd = event_notifier_get_fd(e); 1315 int r; 1316 1317 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1318 data, true, int128_get64(section->size), 1319 match_data); 1320 if (r < 0) { 1321 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1322 __func__, strerror(-r), -r); 1323 abort(); 1324 } 1325 } 1326 1327 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1328 MemoryRegionSection *section, 1329 bool match_data, uint64_t data, 1330 EventNotifier *e) 1331 1332 { 1333 int fd = event_notifier_get_fd(e); 1334 int r; 1335 1336 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1337 data, false, int128_get64(section->size), 1338 match_data); 1339 if (r < 0) { 1340 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1341 __func__, strerror(-r), -r); 1342 abort(); 1343 } 1344 } 1345 1346 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1347 AddressSpace *as, int as_id) 1348 { 1349 int i; 1350 1351 qemu_mutex_init(&kml->slots_lock); 1352 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1353 kml->as_id = as_id; 1354 1355 for (i = 0; i < s->nr_slots; i++) { 1356 kml->slots[i].slot = i; 1357 } 1358 1359 kml->listener.region_add = kvm_region_add; 1360 kml->listener.region_del = kvm_region_del; 1361 kml->listener.log_start = kvm_log_start; 1362 kml->listener.log_stop = kvm_log_stop; 1363 kml->listener.log_sync = kvm_log_sync; 1364 kml->listener.log_clear = kvm_log_clear; 1365 kml->listener.priority = 10; 1366 1367 memory_listener_register(&kml->listener, as); 1368 1369 for (i = 0; i < s->nr_as; ++i) { 1370 if (!s->as[i].as) { 1371 s->as[i].as = as; 1372 s->as[i].ml = kml; 1373 break; 1374 } 1375 } 1376 } 1377 1378 static MemoryListener kvm_io_listener = { 1379 .eventfd_add = kvm_io_ioeventfd_add, 1380 .eventfd_del = kvm_io_ioeventfd_del, 1381 .priority = 10, 1382 }; 1383 1384 int kvm_set_irq(KVMState *s, int irq, int level) 1385 { 1386 struct kvm_irq_level event; 1387 int ret; 1388 1389 assert(kvm_async_interrupts_enabled()); 1390 1391 event.level = level; 1392 event.irq = irq; 1393 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1394 if (ret < 0) { 1395 perror("kvm_set_irq"); 1396 abort(); 1397 } 1398 1399 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1400 } 1401 1402 #ifdef KVM_CAP_IRQ_ROUTING 1403 typedef struct KVMMSIRoute { 1404 struct kvm_irq_routing_entry kroute; 1405 QTAILQ_ENTRY(KVMMSIRoute) entry; 1406 } KVMMSIRoute; 1407 1408 static void set_gsi(KVMState *s, unsigned int gsi) 1409 { 1410 set_bit(gsi, s->used_gsi_bitmap); 1411 } 1412 1413 static void clear_gsi(KVMState *s, unsigned int gsi) 1414 { 1415 clear_bit(gsi, s->used_gsi_bitmap); 1416 } 1417 1418 void kvm_init_irq_routing(KVMState *s) 1419 { 1420 int gsi_count, i; 1421 1422 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1423 if (gsi_count > 0) { 1424 /* Round up so we can search ints using ffs */ 1425 s->used_gsi_bitmap = bitmap_new(gsi_count); 1426 s->gsi_count = gsi_count; 1427 } 1428 1429 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1430 s->nr_allocated_irq_routes = 0; 1431 1432 if (!kvm_direct_msi_allowed) { 1433 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1434 QTAILQ_INIT(&s->msi_hashtab[i]); 1435 } 1436 } 1437 1438 kvm_arch_init_irq_routing(s); 1439 } 1440 1441 void kvm_irqchip_commit_routes(KVMState *s) 1442 { 1443 int ret; 1444 1445 if (kvm_gsi_direct_mapping()) { 1446 return; 1447 } 1448 1449 if (!kvm_gsi_routing_enabled()) { 1450 return; 1451 } 1452 1453 s->irq_routes->flags = 0; 1454 trace_kvm_irqchip_commit_routes(); 1455 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1456 assert(ret == 0); 1457 } 1458 1459 static void kvm_add_routing_entry(KVMState *s, 1460 struct kvm_irq_routing_entry *entry) 1461 { 1462 struct kvm_irq_routing_entry *new; 1463 int n, size; 1464 1465 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1466 n = s->nr_allocated_irq_routes * 2; 1467 if (n < 64) { 1468 n = 64; 1469 } 1470 size = sizeof(struct kvm_irq_routing); 1471 size += n * sizeof(*new); 1472 s->irq_routes = g_realloc(s->irq_routes, size); 1473 s->nr_allocated_irq_routes = n; 1474 } 1475 n = s->irq_routes->nr++; 1476 new = &s->irq_routes->entries[n]; 1477 1478 *new = *entry; 1479 1480 set_gsi(s, entry->gsi); 1481 } 1482 1483 static int kvm_update_routing_entry(KVMState *s, 1484 struct kvm_irq_routing_entry *new_entry) 1485 { 1486 struct kvm_irq_routing_entry *entry; 1487 int n; 1488 1489 for (n = 0; n < s->irq_routes->nr; n++) { 1490 entry = &s->irq_routes->entries[n]; 1491 if (entry->gsi != new_entry->gsi) { 1492 continue; 1493 } 1494 1495 if(!memcmp(entry, new_entry, sizeof *entry)) { 1496 return 0; 1497 } 1498 1499 *entry = *new_entry; 1500 1501 return 0; 1502 } 1503 1504 return -ESRCH; 1505 } 1506 1507 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1508 { 1509 struct kvm_irq_routing_entry e = {}; 1510 1511 assert(pin < s->gsi_count); 1512 1513 e.gsi = irq; 1514 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1515 e.flags = 0; 1516 e.u.irqchip.irqchip = irqchip; 1517 e.u.irqchip.pin = pin; 1518 kvm_add_routing_entry(s, &e); 1519 } 1520 1521 void kvm_irqchip_release_virq(KVMState *s, int virq) 1522 { 1523 struct kvm_irq_routing_entry *e; 1524 int i; 1525 1526 if (kvm_gsi_direct_mapping()) { 1527 return; 1528 } 1529 1530 for (i = 0; i < s->irq_routes->nr; i++) { 1531 e = &s->irq_routes->entries[i]; 1532 if (e->gsi == virq) { 1533 s->irq_routes->nr--; 1534 *e = s->irq_routes->entries[s->irq_routes->nr]; 1535 } 1536 } 1537 clear_gsi(s, virq); 1538 kvm_arch_release_virq_post(virq); 1539 trace_kvm_irqchip_release_virq(virq); 1540 } 1541 1542 void kvm_irqchip_add_change_notifier(Notifier *n) 1543 { 1544 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1545 } 1546 1547 void kvm_irqchip_remove_change_notifier(Notifier *n) 1548 { 1549 notifier_remove(n); 1550 } 1551 1552 void kvm_irqchip_change_notify(void) 1553 { 1554 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1555 } 1556 1557 static unsigned int kvm_hash_msi(uint32_t data) 1558 { 1559 /* This is optimized for IA32 MSI layout. However, no other arch shall 1560 * repeat the mistake of not providing a direct MSI injection API. */ 1561 return data & 0xff; 1562 } 1563 1564 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1565 { 1566 KVMMSIRoute *route, *next; 1567 unsigned int hash; 1568 1569 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1570 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1571 kvm_irqchip_release_virq(s, route->kroute.gsi); 1572 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1573 g_free(route); 1574 } 1575 } 1576 } 1577 1578 static int kvm_irqchip_get_virq(KVMState *s) 1579 { 1580 int next_virq; 1581 1582 /* 1583 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1584 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1585 * number can succeed even though a new route entry cannot be added. 1586 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1587 */ 1588 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1589 kvm_flush_dynamic_msi_routes(s); 1590 } 1591 1592 /* Return the lowest unused GSI in the bitmap */ 1593 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1594 if (next_virq >= s->gsi_count) { 1595 return -ENOSPC; 1596 } else { 1597 return next_virq; 1598 } 1599 } 1600 1601 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1602 { 1603 unsigned int hash = kvm_hash_msi(msg.data); 1604 KVMMSIRoute *route; 1605 1606 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1607 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1608 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1609 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1610 return route; 1611 } 1612 } 1613 return NULL; 1614 } 1615 1616 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1617 { 1618 struct kvm_msi msi; 1619 KVMMSIRoute *route; 1620 1621 if (kvm_direct_msi_allowed) { 1622 msi.address_lo = (uint32_t)msg.address; 1623 msi.address_hi = msg.address >> 32; 1624 msi.data = le32_to_cpu(msg.data); 1625 msi.flags = 0; 1626 memset(msi.pad, 0, sizeof(msi.pad)); 1627 1628 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1629 } 1630 1631 route = kvm_lookup_msi_route(s, msg); 1632 if (!route) { 1633 int virq; 1634 1635 virq = kvm_irqchip_get_virq(s); 1636 if (virq < 0) { 1637 return virq; 1638 } 1639 1640 route = g_malloc0(sizeof(KVMMSIRoute)); 1641 route->kroute.gsi = virq; 1642 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1643 route->kroute.flags = 0; 1644 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1645 route->kroute.u.msi.address_hi = msg.address >> 32; 1646 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1647 1648 kvm_add_routing_entry(s, &route->kroute); 1649 kvm_irqchip_commit_routes(s); 1650 1651 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1652 entry); 1653 } 1654 1655 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1656 1657 return kvm_set_irq(s, route->kroute.gsi, 1); 1658 } 1659 1660 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1661 { 1662 struct kvm_irq_routing_entry kroute = {}; 1663 int virq; 1664 MSIMessage msg = {0, 0}; 1665 1666 if (pci_available && dev) { 1667 msg = pci_get_msi_message(dev, vector); 1668 } 1669 1670 if (kvm_gsi_direct_mapping()) { 1671 return kvm_arch_msi_data_to_gsi(msg.data); 1672 } 1673 1674 if (!kvm_gsi_routing_enabled()) { 1675 return -ENOSYS; 1676 } 1677 1678 virq = kvm_irqchip_get_virq(s); 1679 if (virq < 0) { 1680 return virq; 1681 } 1682 1683 kroute.gsi = virq; 1684 kroute.type = KVM_IRQ_ROUTING_MSI; 1685 kroute.flags = 0; 1686 kroute.u.msi.address_lo = (uint32_t)msg.address; 1687 kroute.u.msi.address_hi = msg.address >> 32; 1688 kroute.u.msi.data = le32_to_cpu(msg.data); 1689 if (pci_available && kvm_msi_devid_required()) { 1690 kroute.flags = KVM_MSI_VALID_DEVID; 1691 kroute.u.msi.devid = pci_requester_id(dev); 1692 } 1693 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1694 kvm_irqchip_release_virq(s, virq); 1695 return -EINVAL; 1696 } 1697 1698 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1699 vector, virq); 1700 1701 kvm_add_routing_entry(s, &kroute); 1702 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1703 kvm_irqchip_commit_routes(s); 1704 1705 return virq; 1706 } 1707 1708 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1709 PCIDevice *dev) 1710 { 1711 struct kvm_irq_routing_entry kroute = {}; 1712 1713 if (kvm_gsi_direct_mapping()) { 1714 return 0; 1715 } 1716 1717 if (!kvm_irqchip_in_kernel()) { 1718 return -ENOSYS; 1719 } 1720 1721 kroute.gsi = virq; 1722 kroute.type = KVM_IRQ_ROUTING_MSI; 1723 kroute.flags = 0; 1724 kroute.u.msi.address_lo = (uint32_t)msg.address; 1725 kroute.u.msi.address_hi = msg.address >> 32; 1726 kroute.u.msi.data = le32_to_cpu(msg.data); 1727 if (pci_available && kvm_msi_devid_required()) { 1728 kroute.flags = KVM_MSI_VALID_DEVID; 1729 kroute.u.msi.devid = pci_requester_id(dev); 1730 } 1731 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1732 return -EINVAL; 1733 } 1734 1735 trace_kvm_irqchip_update_msi_route(virq); 1736 1737 return kvm_update_routing_entry(s, &kroute); 1738 } 1739 1740 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1741 EventNotifier *resample, int virq, 1742 bool assign) 1743 { 1744 int fd = event_notifier_get_fd(event); 1745 int rfd = resample ? event_notifier_get_fd(resample) : -1; 1746 1747 struct kvm_irqfd irqfd = { 1748 .fd = fd, 1749 .gsi = virq, 1750 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1751 }; 1752 1753 if (rfd != -1) { 1754 assert(assign); 1755 if (kvm_irqchip_is_split()) { 1756 /* 1757 * When the slow irqchip (e.g. IOAPIC) is in the 1758 * userspace, KVM kernel resamplefd will not work because 1759 * the EOI of the interrupt will be delivered to userspace 1760 * instead, so the KVM kernel resamplefd kick will be 1761 * skipped. The userspace here mimics what the kernel 1762 * provides with resamplefd, remember the resamplefd and 1763 * kick it when we receive EOI of this IRQ. 1764 * 1765 * This is hackery because IOAPIC is mostly bypassed 1766 * (except EOI broadcasts) when irqfd is used. However 1767 * this can bring much performance back for split irqchip 1768 * with INTx IRQs (for VFIO, this gives 93% perf of the 1769 * full fast path, which is 46% perf boost comparing to 1770 * the INTx slow path). 1771 */ 1772 kvm_resample_fd_insert(virq, resample); 1773 } else { 1774 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1775 irqfd.resamplefd = rfd; 1776 } 1777 } else if (!assign) { 1778 if (kvm_irqchip_is_split()) { 1779 kvm_resample_fd_remove(virq); 1780 } 1781 } 1782 1783 if (!kvm_irqfds_enabled()) { 1784 return -ENOSYS; 1785 } 1786 1787 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1788 } 1789 1790 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1791 { 1792 struct kvm_irq_routing_entry kroute = {}; 1793 int virq; 1794 1795 if (!kvm_gsi_routing_enabled()) { 1796 return -ENOSYS; 1797 } 1798 1799 virq = kvm_irqchip_get_virq(s); 1800 if (virq < 0) { 1801 return virq; 1802 } 1803 1804 kroute.gsi = virq; 1805 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1806 kroute.flags = 0; 1807 kroute.u.adapter.summary_addr = adapter->summary_addr; 1808 kroute.u.adapter.ind_addr = adapter->ind_addr; 1809 kroute.u.adapter.summary_offset = adapter->summary_offset; 1810 kroute.u.adapter.ind_offset = adapter->ind_offset; 1811 kroute.u.adapter.adapter_id = adapter->adapter_id; 1812 1813 kvm_add_routing_entry(s, &kroute); 1814 1815 return virq; 1816 } 1817 1818 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1819 { 1820 struct kvm_irq_routing_entry kroute = {}; 1821 int virq; 1822 1823 if (!kvm_gsi_routing_enabled()) { 1824 return -ENOSYS; 1825 } 1826 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1827 return -ENOSYS; 1828 } 1829 virq = kvm_irqchip_get_virq(s); 1830 if (virq < 0) { 1831 return virq; 1832 } 1833 1834 kroute.gsi = virq; 1835 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1836 kroute.flags = 0; 1837 kroute.u.hv_sint.vcpu = vcpu; 1838 kroute.u.hv_sint.sint = sint; 1839 1840 kvm_add_routing_entry(s, &kroute); 1841 kvm_irqchip_commit_routes(s); 1842 1843 return virq; 1844 } 1845 1846 #else /* !KVM_CAP_IRQ_ROUTING */ 1847 1848 void kvm_init_irq_routing(KVMState *s) 1849 { 1850 } 1851 1852 void kvm_irqchip_release_virq(KVMState *s, int virq) 1853 { 1854 } 1855 1856 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1857 { 1858 abort(); 1859 } 1860 1861 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1862 { 1863 return -ENOSYS; 1864 } 1865 1866 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1867 { 1868 return -ENOSYS; 1869 } 1870 1871 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1872 { 1873 return -ENOSYS; 1874 } 1875 1876 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1877 EventNotifier *resample, int virq, 1878 bool assign) 1879 { 1880 abort(); 1881 } 1882 1883 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1884 { 1885 return -ENOSYS; 1886 } 1887 #endif /* !KVM_CAP_IRQ_ROUTING */ 1888 1889 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1890 EventNotifier *rn, int virq) 1891 { 1892 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 1893 } 1894 1895 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1896 int virq) 1897 { 1898 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 1899 } 1900 1901 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1902 EventNotifier *rn, qemu_irq irq) 1903 { 1904 gpointer key, gsi; 1905 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1906 1907 if (!found) { 1908 return -ENXIO; 1909 } 1910 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1911 } 1912 1913 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1914 qemu_irq irq) 1915 { 1916 gpointer key, gsi; 1917 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1918 1919 if (!found) { 1920 return -ENXIO; 1921 } 1922 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1923 } 1924 1925 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1926 { 1927 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1928 } 1929 1930 static void kvm_irqchip_create(KVMState *s) 1931 { 1932 int ret; 1933 1934 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1935 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1936 ; 1937 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1938 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1939 if (ret < 0) { 1940 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1941 exit(1); 1942 } 1943 } else { 1944 return; 1945 } 1946 1947 /* First probe and see if there's a arch-specific hook to create the 1948 * in-kernel irqchip for us */ 1949 ret = kvm_arch_irqchip_create(s); 1950 if (ret == 0) { 1951 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1952 perror("Split IRQ chip mode not supported."); 1953 exit(1); 1954 } else { 1955 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1956 } 1957 } 1958 if (ret < 0) { 1959 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1960 exit(1); 1961 } 1962 1963 kvm_kernel_irqchip = true; 1964 /* If we have an in-kernel IRQ chip then we must have asynchronous 1965 * interrupt delivery (though the reverse is not necessarily true) 1966 */ 1967 kvm_async_interrupts_allowed = true; 1968 kvm_halt_in_kernel_allowed = true; 1969 1970 kvm_init_irq_routing(s); 1971 1972 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1973 } 1974 1975 /* Find number of supported CPUs using the recommended 1976 * procedure from the kernel API documentation to cope with 1977 * older kernels that may be missing capabilities. 1978 */ 1979 static int kvm_recommended_vcpus(KVMState *s) 1980 { 1981 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1982 return (ret) ? ret : 4; 1983 } 1984 1985 static int kvm_max_vcpus(KVMState *s) 1986 { 1987 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1988 return (ret) ? ret : kvm_recommended_vcpus(s); 1989 } 1990 1991 static int kvm_max_vcpu_id(KVMState *s) 1992 { 1993 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1994 return (ret) ? ret : kvm_max_vcpus(s); 1995 } 1996 1997 bool kvm_vcpu_id_is_valid(int vcpu_id) 1998 { 1999 KVMState *s = KVM_STATE(current_accel()); 2000 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2001 } 2002 2003 static int kvm_init(MachineState *ms) 2004 { 2005 MachineClass *mc = MACHINE_GET_CLASS(ms); 2006 static const char upgrade_note[] = 2007 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2008 "(see http://sourceforge.net/projects/kvm).\n"; 2009 struct { 2010 const char *name; 2011 int num; 2012 } num_cpus[] = { 2013 { "SMP", ms->smp.cpus }, 2014 { "hotpluggable", ms->smp.max_cpus }, 2015 { NULL, } 2016 }, *nc = num_cpus; 2017 int soft_vcpus_limit, hard_vcpus_limit; 2018 KVMState *s; 2019 const KVMCapabilityInfo *missing_cap; 2020 int ret; 2021 int type = 0; 2022 uint64_t dirty_log_manual_caps; 2023 2024 s = KVM_STATE(ms->accelerator); 2025 2026 /* 2027 * On systems where the kernel can support different base page 2028 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2029 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2030 * page size for the system though. 2031 */ 2032 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2033 2034 s->sigmask_len = 8; 2035 2036 #ifdef KVM_CAP_SET_GUEST_DEBUG 2037 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2038 #endif 2039 QLIST_INIT(&s->kvm_parked_vcpus); 2040 s->vmfd = -1; 2041 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2042 if (s->fd == -1) { 2043 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2044 ret = -errno; 2045 goto err; 2046 } 2047 2048 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2049 if (ret < KVM_API_VERSION) { 2050 if (ret >= 0) { 2051 ret = -EINVAL; 2052 } 2053 fprintf(stderr, "kvm version too old\n"); 2054 goto err; 2055 } 2056 2057 if (ret > KVM_API_VERSION) { 2058 ret = -EINVAL; 2059 fprintf(stderr, "kvm version not supported\n"); 2060 goto err; 2061 } 2062 2063 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2064 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2065 2066 /* If unspecified, use the default value */ 2067 if (!s->nr_slots) { 2068 s->nr_slots = 32; 2069 } 2070 2071 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2072 if (s->nr_as <= 1) { 2073 s->nr_as = 1; 2074 } 2075 s->as = g_new0(struct KVMAs, s->nr_as); 2076 2077 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2078 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2079 "kvm-type", 2080 &error_abort); 2081 type = mc->kvm_type(ms, kvm_type); 2082 } 2083 2084 do { 2085 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2086 } while (ret == -EINTR); 2087 2088 if (ret < 0) { 2089 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2090 strerror(-ret)); 2091 2092 #ifdef TARGET_S390X 2093 if (ret == -EINVAL) { 2094 fprintf(stderr, 2095 "Host kernel setup problem detected. Please verify:\n"); 2096 fprintf(stderr, "- for kernels supporting the switch_amode or" 2097 " user_mode parameters, whether\n"); 2098 fprintf(stderr, 2099 " user space is running in primary address space\n"); 2100 fprintf(stderr, 2101 "- for kernels supporting the vm.allocate_pgste sysctl, " 2102 "whether it is enabled\n"); 2103 } 2104 #endif 2105 goto err; 2106 } 2107 2108 s->vmfd = ret; 2109 2110 /* check the vcpu limits */ 2111 soft_vcpus_limit = kvm_recommended_vcpus(s); 2112 hard_vcpus_limit = kvm_max_vcpus(s); 2113 2114 while (nc->name) { 2115 if (nc->num > soft_vcpus_limit) { 2116 warn_report("Number of %s cpus requested (%d) exceeds " 2117 "the recommended cpus supported by KVM (%d)", 2118 nc->name, nc->num, soft_vcpus_limit); 2119 2120 if (nc->num > hard_vcpus_limit) { 2121 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2122 "the maximum cpus supported by KVM (%d)\n", 2123 nc->name, nc->num, hard_vcpus_limit); 2124 exit(1); 2125 } 2126 } 2127 nc++; 2128 } 2129 2130 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2131 if (!missing_cap) { 2132 missing_cap = 2133 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2134 } 2135 if (missing_cap) { 2136 ret = -EINVAL; 2137 fprintf(stderr, "kvm does not support %s\n%s", 2138 missing_cap->name, upgrade_note); 2139 goto err; 2140 } 2141 2142 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2143 s->coalesced_pio = s->coalesced_mmio && 2144 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2145 2146 dirty_log_manual_caps = 2147 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2148 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2149 KVM_DIRTY_LOG_INITIALLY_SET); 2150 s->manual_dirty_log_protect = dirty_log_manual_caps; 2151 if (dirty_log_manual_caps) { 2152 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2153 dirty_log_manual_caps); 2154 if (ret) { 2155 warn_report("Trying to enable capability %"PRIu64" of " 2156 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2157 "Falling back to the legacy mode. ", 2158 dirty_log_manual_caps); 2159 s->manual_dirty_log_protect = 0; 2160 } 2161 } 2162 2163 #ifdef KVM_CAP_VCPU_EVENTS 2164 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2165 #endif 2166 2167 s->robust_singlestep = 2168 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2169 2170 #ifdef KVM_CAP_DEBUGREGS 2171 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2172 #endif 2173 2174 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2175 2176 #ifdef KVM_CAP_IRQ_ROUTING 2177 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2178 #endif 2179 2180 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2181 2182 s->irq_set_ioctl = KVM_IRQ_LINE; 2183 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2184 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2185 } 2186 2187 kvm_readonly_mem_allowed = 2188 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2189 2190 kvm_eventfds_allowed = 2191 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2192 2193 kvm_irqfds_allowed = 2194 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2195 2196 kvm_resamplefds_allowed = 2197 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2198 2199 kvm_vm_attributes_allowed = 2200 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2201 2202 kvm_ioeventfd_any_length_allowed = 2203 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2204 2205 kvm_state = s; 2206 2207 /* 2208 * if memory encryption object is specified then initialize the memory 2209 * encryption context. 2210 */ 2211 if (ms->memory_encryption) { 2212 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 2213 if (!kvm_state->memcrypt_handle) { 2214 ret = -1; 2215 goto err; 2216 } 2217 2218 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 2219 } 2220 2221 ret = kvm_arch_init(ms, s); 2222 if (ret < 0) { 2223 goto err; 2224 } 2225 2226 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2227 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2228 } 2229 2230 qemu_register_reset(kvm_unpoison_all, NULL); 2231 2232 if (s->kernel_irqchip_allowed) { 2233 kvm_irqchip_create(s); 2234 } 2235 2236 if (kvm_eventfds_allowed) { 2237 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2238 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2239 } 2240 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2241 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2242 2243 kvm_memory_listener_register(s, &s->memory_listener, 2244 &address_space_memory, 0); 2245 if (kvm_eventfds_allowed) { 2246 memory_listener_register(&kvm_io_listener, 2247 &address_space_io); 2248 } 2249 memory_listener_register(&kvm_coalesced_pio_listener, 2250 &address_space_io); 2251 2252 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2253 2254 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2255 if (!s->sync_mmu) { 2256 ret = ram_block_discard_disable(true); 2257 assert(!ret); 2258 } 2259 2260 cpus_register_accel(&kvm_cpus); 2261 return 0; 2262 2263 err: 2264 assert(ret < 0); 2265 if (s->vmfd >= 0) { 2266 close(s->vmfd); 2267 } 2268 if (s->fd != -1) { 2269 close(s->fd); 2270 } 2271 g_free(s->memory_listener.slots); 2272 2273 return ret; 2274 } 2275 2276 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2277 { 2278 s->sigmask_len = sigmask_len; 2279 } 2280 2281 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2282 int size, uint32_t count) 2283 { 2284 int i; 2285 uint8_t *ptr = data; 2286 2287 for (i = 0; i < count; i++) { 2288 address_space_rw(&address_space_io, port, attrs, 2289 ptr, size, 2290 direction == KVM_EXIT_IO_OUT); 2291 ptr += size; 2292 } 2293 } 2294 2295 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2296 { 2297 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2298 run->internal.suberror); 2299 2300 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2301 int i; 2302 2303 for (i = 0; i < run->internal.ndata; ++i) { 2304 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2305 i, (uint64_t)run->internal.data[i]); 2306 } 2307 } 2308 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2309 fprintf(stderr, "emulation failure\n"); 2310 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2311 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2312 return EXCP_INTERRUPT; 2313 } 2314 } 2315 /* FIXME: Should trigger a qmp message to let management know 2316 * something went wrong. 2317 */ 2318 return -1; 2319 } 2320 2321 void kvm_flush_coalesced_mmio_buffer(void) 2322 { 2323 KVMState *s = kvm_state; 2324 2325 if (s->coalesced_flush_in_progress) { 2326 return; 2327 } 2328 2329 s->coalesced_flush_in_progress = true; 2330 2331 if (s->coalesced_mmio_ring) { 2332 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2333 while (ring->first != ring->last) { 2334 struct kvm_coalesced_mmio *ent; 2335 2336 ent = &ring->coalesced_mmio[ring->first]; 2337 2338 if (ent->pio == 1) { 2339 address_space_write(&address_space_io, ent->phys_addr, 2340 MEMTXATTRS_UNSPECIFIED, ent->data, 2341 ent->len); 2342 } else { 2343 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2344 } 2345 smp_wmb(); 2346 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2347 } 2348 } 2349 2350 s->coalesced_flush_in_progress = false; 2351 } 2352 2353 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2354 { 2355 if (!cpu->vcpu_dirty) { 2356 kvm_arch_get_registers(cpu); 2357 cpu->vcpu_dirty = true; 2358 } 2359 } 2360 2361 void kvm_cpu_synchronize_state(CPUState *cpu) 2362 { 2363 if (!cpu->vcpu_dirty) { 2364 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2365 } 2366 } 2367 2368 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2369 { 2370 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2371 cpu->vcpu_dirty = false; 2372 } 2373 2374 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2375 { 2376 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2377 } 2378 2379 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2380 { 2381 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2382 cpu->vcpu_dirty = false; 2383 } 2384 2385 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2386 { 2387 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2388 } 2389 2390 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2391 { 2392 cpu->vcpu_dirty = true; 2393 } 2394 2395 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2396 { 2397 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2398 } 2399 2400 #ifdef KVM_HAVE_MCE_INJECTION 2401 static __thread void *pending_sigbus_addr; 2402 static __thread int pending_sigbus_code; 2403 static __thread bool have_sigbus_pending; 2404 #endif 2405 2406 static void kvm_cpu_kick(CPUState *cpu) 2407 { 2408 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2409 } 2410 2411 static void kvm_cpu_kick_self(void) 2412 { 2413 if (kvm_immediate_exit) { 2414 kvm_cpu_kick(current_cpu); 2415 } else { 2416 qemu_cpu_kick_self(); 2417 } 2418 } 2419 2420 static void kvm_eat_signals(CPUState *cpu) 2421 { 2422 struct timespec ts = { 0, 0 }; 2423 siginfo_t siginfo; 2424 sigset_t waitset; 2425 sigset_t chkset; 2426 int r; 2427 2428 if (kvm_immediate_exit) { 2429 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2430 /* Write kvm_run->immediate_exit before the cpu->exit_request 2431 * write in kvm_cpu_exec. 2432 */ 2433 smp_wmb(); 2434 return; 2435 } 2436 2437 sigemptyset(&waitset); 2438 sigaddset(&waitset, SIG_IPI); 2439 2440 do { 2441 r = sigtimedwait(&waitset, &siginfo, &ts); 2442 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2443 perror("sigtimedwait"); 2444 exit(1); 2445 } 2446 2447 r = sigpending(&chkset); 2448 if (r == -1) { 2449 perror("sigpending"); 2450 exit(1); 2451 } 2452 } while (sigismember(&chkset, SIG_IPI)); 2453 } 2454 2455 int kvm_cpu_exec(CPUState *cpu) 2456 { 2457 struct kvm_run *run = cpu->kvm_run; 2458 int ret, run_ret; 2459 2460 DPRINTF("kvm_cpu_exec()\n"); 2461 2462 if (kvm_arch_process_async_events(cpu)) { 2463 qatomic_set(&cpu->exit_request, 0); 2464 return EXCP_HLT; 2465 } 2466 2467 qemu_mutex_unlock_iothread(); 2468 cpu_exec_start(cpu); 2469 2470 do { 2471 MemTxAttrs attrs; 2472 2473 if (cpu->vcpu_dirty) { 2474 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2475 cpu->vcpu_dirty = false; 2476 } 2477 2478 kvm_arch_pre_run(cpu, run); 2479 if (qatomic_read(&cpu->exit_request)) { 2480 DPRINTF("interrupt exit requested\n"); 2481 /* 2482 * KVM requires us to reenter the kernel after IO exits to complete 2483 * instruction emulation. This self-signal will ensure that we 2484 * leave ASAP again. 2485 */ 2486 kvm_cpu_kick_self(); 2487 } 2488 2489 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2490 * Matching barrier in kvm_eat_signals. 2491 */ 2492 smp_rmb(); 2493 2494 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2495 2496 attrs = kvm_arch_post_run(cpu, run); 2497 2498 #ifdef KVM_HAVE_MCE_INJECTION 2499 if (unlikely(have_sigbus_pending)) { 2500 qemu_mutex_lock_iothread(); 2501 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2502 pending_sigbus_addr); 2503 have_sigbus_pending = false; 2504 qemu_mutex_unlock_iothread(); 2505 } 2506 #endif 2507 2508 if (run_ret < 0) { 2509 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2510 DPRINTF("io window exit\n"); 2511 kvm_eat_signals(cpu); 2512 ret = EXCP_INTERRUPT; 2513 break; 2514 } 2515 fprintf(stderr, "error: kvm run failed %s\n", 2516 strerror(-run_ret)); 2517 #ifdef TARGET_PPC 2518 if (run_ret == -EBUSY) { 2519 fprintf(stderr, 2520 "This is probably because your SMT is enabled.\n" 2521 "VCPU can only run on primary threads with all " 2522 "secondary threads offline.\n"); 2523 } 2524 #endif 2525 ret = -1; 2526 break; 2527 } 2528 2529 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2530 switch (run->exit_reason) { 2531 case KVM_EXIT_IO: 2532 DPRINTF("handle_io\n"); 2533 /* Called outside BQL */ 2534 kvm_handle_io(run->io.port, attrs, 2535 (uint8_t *)run + run->io.data_offset, 2536 run->io.direction, 2537 run->io.size, 2538 run->io.count); 2539 ret = 0; 2540 break; 2541 case KVM_EXIT_MMIO: 2542 DPRINTF("handle_mmio\n"); 2543 /* Called outside BQL */ 2544 address_space_rw(&address_space_memory, 2545 run->mmio.phys_addr, attrs, 2546 run->mmio.data, 2547 run->mmio.len, 2548 run->mmio.is_write); 2549 ret = 0; 2550 break; 2551 case KVM_EXIT_IRQ_WINDOW_OPEN: 2552 DPRINTF("irq_window_open\n"); 2553 ret = EXCP_INTERRUPT; 2554 break; 2555 case KVM_EXIT_SHUTDOWN: 2556 DPRINTF("shutdown\n"); 2557 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2558 ret = EXCP_INTERRUPT; 2559 break; 2560 case KVM_EXIT_UNKNOWN: 2561 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2562 (uint64_t)run->hw.hardware_exit_reason); 2563 ret = -1; 2564 break; 2565 case KVM_EXIT_INTERNAL_ERROR: 2566 ret = kvm_handle_internal_error(cpu, run); 2567 break; 2568 case KVM_EXIT_SYSTEM_EVENT: 2569 switch (run->system_event.type) { 2570 case KVM_SYSTEM_EVENT_SHUTDOWN: 2571 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2572 ret = EXCP_INTERRUPT; 2573 break; 2574 case KVM_SYSTEM_EVENT_RESET: 2575 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2576 ret = EXCP_INTERRUPT; 2577 break; 2578 case KVM_SYSTEM_EVENT_CRASH: 2579 kvm_cpu_synchronize_state(cpu); 2580 qemu_mutex_lock_iothread(); 2581 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2582 qemu_mutex_unlock_iothread(); 2583 ret = 0; 2584 break; 2585 default: 2586 DPRINTF("kvm_arch_handle_exit\n"); 2587 ret = kvm_arch_handle_exit(cpu, run); 2588 break; 2589 } 2590 break; 2591 default: 2592 DPRINTF("kvm_arch_handle_exit\n"); 2593 ret = kvm_arch_handle_exit(cpu, run); 2594 break; 2595 } 2596 } while (ret == 0); 2597 2598 cpu_exec_end(cpu); 2599 qemu_mutex_lock_iothread(); 2600 2601 if (ret < 0) { 2602 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2603 vm_stop(RUN_STATE_INTERNAL_ERROR); 2604 } 2605 2606 qatomic_set(&cpu->exit_request, 0); 2607 return ret; 2608 } 2609 2610 int kvm_ioctl(KVMState *s, int type, ...) 2611 { 2612 int ret; 2613 void *arg; 2614 va_list ap; 2615 2616 va_start(ap, type); 2617 arg = va_arg(ap, void *); 2618 va_end(ap); 2619 2620 trace_kvm_ioctl(type, arg); 2621 ret = ioctl(s->fd, type, arg); 2622 if (ret == -1) { 2623 ret = -errno; 2624 } 2625 return ret; 2626 } 2627 2628 int kvm_vm_ioctl(KVMState *s, int type, ...) 2629 { 2630 int ret; 2631 void *arg; 2632 va_list ap; 2633 2634 va_start(ap, type); 2635 arg = va_arg(ap, void *); 2636 va_end(ap); 2637 2638 trace_kvm_vm_ioctl(type, arg); 2639 ret = ioctl(s->vmfd, type, arg); 2640 if (ret == -1) { 2641 ret = -errno; 2642 } 2643 return ret; 2644 } 2645 2646 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2647 { 2648 int ret; 2649 void *arg; 2650 va_list ap; 2651 2652 va_start(ap, type); 2653 arg = va_arg(ap, void *); 2654 va_end(ap); 2655 2656 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2657 ret = ioctl(cpu->kvm_fd, type, arg); 2658 if (ret == -1) { 2659 ret = -errno; 2660 } 2661 return ret; 2662 } 2663 2664 int kvm_device_ioctl(int fd, int type, ...) 2665 { 2666 int ret; 2667 void *arg; 2668 va_list ap; 2669 2670 va_start(ap, type); 2671 arg = va_arg(ap, void *); 2672 va_end(ap); 2673 2674 trace_kvm_device_ioctl(fd, type, arg); 2675 ret = ioctl(fd, type, arg); 2676 if (ret == -1) { 2677 ret = -errno; 2678 } 2679 return ret; 2680 } 2681 2682 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2683 { 2684 int ret; 2685 struct kvm_device_attr attribute = { 2686 .group = group, 2687 .attr = attr, 2688 }; 2689 2690 if (!kvm_vm_attributes_allowed) { 2691 return 0; 2692 } 2693 2694 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2695 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2696 return ret ? 0 : 1; 2697 } 2698 2699 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2700 { 2701 struct kvm_device_attr attribute = { 2702 .group = group, 2703 .attr = attr, 2704 .flags = 0, 2705 }; 2706 2707 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2708 } 2709 2710 int kvm_device_access(int fd, int group, uint64_t attr, 2711 void *val, bool write, Error **errp) 2712 { 2713 struct kvm_device_attr kvmattr; 2714 int err; 2715 2716 kvmattr.flags = 0; 2717 kvmattr.group = group; 2718 kvmattr.attr = attr; 2719 kvmattr.addr = (uintptr_t)val; 2720 2721 err = kvm_device_ioctl(fd, 2722 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2723 &kvmattr); 2724 if (err < 0) { 2725 error_setg_errno(errp, -err, 2726 "KVM_%s_DEVICE_ATTR failed: Group %d " 2727 "attr 0x%016" PRIx64, 2728 write ? "SET" : "GET", group, attr); 2729 } 2730 return err; 2731 } 2732 2733 bool kvm_has_sync_mmu(void) 2734 { 2735 return kvm_state->sync_mmu; 2736 } 2737 2738 int kvm_has_vcpu_events(void) 2739 { 2740 return kvm_state->vcpu_events; 2741 } 2742 2743 int kvm_has_robust_singlestep(void) 2744 { 2745 return kvm_state->robust_singlestep; 2746 } 2747 2748 int kvm_has_debugregs(void) 2749 { 2750 return kvm_state->debugregs; 2751 } 2752 2753 int kvm_max_nested_state_length(void) 2754 { 2755 return kvm_state->max_nested_state_len; 2756 } 2757 2758 int kvm_has_many_ioeventfds(void) 2759 { 2760 if (!kvm_enabled()) { 2761 return 0; 2762 } 2763 return kvm_state->many_ioeventfds; 2764 } 2765 2766 int kvm_has_gsi_routing(void) 2767 { 2768 #ifdef KVM_CAP_IRQ_ROUTING 2769 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2770 #else 2771 return false; 2772 #endif 2773 } 2774 2775 int kvm_has_intx_set_mask(void) 2776 { 2777 return kvm_state->intx_set_mask; 2778 } 2779 2780 bool kvm_arm_supports_user_irq(void) 2781 { 2782 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2783 } 2784 2785 #ifdef KVM_CAP_SET_GUEST_DEBUG 2786 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2787 target_ulong pc) 2788 { 2789 struct kvm_sw_breakpoint *bp; 2790 2791 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2792 if (bp->pc == pc) { 2793 return bp; 2794 } 2795 } 2796 return NULL; 2797 } 2798 2799 int kvm_sw_breakpoints_active(CPUState *cpu) 2800 { 2801 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2802 } 2803 2804 struct kvm_set_guest_debug_data { 2805 struct kvm_guest_debug dbg; 2806 int err; 2807 }; 2808 2809 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2810 { 2811 struct kvm_set_guest_debug_data *dbg_data = 2812 (struct kvm_set_guest_debug_data *) data.host_ptr; 2813 2814 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2815 &dbg_data->dbg); 2816 } 2817 2818 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2819 { 2820 struct kvm_set_guest_debug_data data; 2821 2822 data.dbg.control = reinject_trap; 2823 2824 if (cpu->singlestep_enabled) { 2825 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2826 } 2827 kvm_arch_update_guest_debug(cpu, &data.dbg); 2828 2829 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2830 RUN_ON_CPU_HOST_PTR(&data)); 2831 return data.err; 2832 } 2833 2834 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2835 target_ulong len, int type) 2836 { 2837 struct kvm_sw_breakpoint *bp; 2838 int err; 2839 2840 if (type == GDB_BREAKPOINT_SW) { 2841 bp = kvm_find_sw_breakpoint(cpu, addr); 2842 if (bp) { 2843 bp->use_count++; 2844 return 0; 2845 } 2846 2847 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2848 bp->pc = addr; 2849 bp->use_count = 1; 2850 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2851 if (err) { 2852 g_free(bp); 2853 return err; 2854 } 2855 2856 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2857 } else { 2858 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2859 if (err) { 2860 return err; 2861 } 2862 } 2863 2864 CPU_FOREACH(cpu) { 2865 err = kvm_update_guest_debug(cpu, 0); 2866 if (err) { 2867 return err; 2868 } 2869 } 2870 return 0; 2871 } 2872 2873 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2874 target_ulong len, int type) 2875 { 2876 struct kvm_sw_breakpoint *bp; 2877 int err; 2878 2879 if (type == GDB_BREAKPOINT_SW) { 2880 bp = kvm_find_sw_breakpoint(cpu, addr); 2881 if (!bp) { 2882 return -ENOENT; 2883 } 2884 2885 if (bp->use_count > 1) { 2886 bp->use_count--; 2887 return 0; 2888 } 2889 2890 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2891 if (err) { 2892 return err; 2893 } 2894 2895 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2896 g_free(bp); 2897 } else { 2898 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2899 if (err) { 2900 return err; 2901 } 2902 } 2903 2904 CPU_FOREACH(cpu) { 2905 err = kvm_update_guest_debug(cpu, 0); 2906 if (err) { 2907 return err; 2908 } 2909 } 2910 return 0; 2911 } 2912 2913 void kvm_remove_all_breakpoints(CPUState *cpu) 2914 { 2915 struct kvm_sw_breakpoint *bp, *next; 2916 KVMState *s = cpu->kvm_state; 2917 CPUState *tmpcpu; 2918 2919 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2920 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2921 /* Try harder to find a CPU that currently sees the breakpoint. */ 2922 CPU_FOREACH(tmpcpu) { 2923 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2924 break; 2925 } 2926 } 2927 } 2928 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2929 g_free(bp); 2930 } 2931 kvm_arch_remove_all_hw_breakpoints(); 2932 2933 CPU_FOREACH(cpu) { 2934 kvm_update_guest_debug(cpu, 0); 2935 } 2936 } 2937 2938 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2939 2940 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2941 { 2942 return -EINVAL; 2943 } 2944 2945 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2946 target_ulong len, int type) 2947 { 2948 return -EINVAL; 2949 } 2950 2951 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2952 target_ulong len, int type) 2953 { 2954 return -EINVAL; 2955 } 2956 2957 void kvm_remove_all_breakpoints(CPUState *cpu) 2958 { 2959 } 2960 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2961 2962 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2963 { 2964 KVMState *s = kvm_state; 2965 struct kvm_signal_mask *sigmask; 2966 int r; 2967 2968 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2969 2970 sigmask->len = s->sigmask_len; 2971 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2972 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2973 g_free(sigmask); 2974 2975 return r; 2976 } 2977 2978 static void kvm_ipi_signal(int sig) 2979 { 2980 if (current_cpu) { 2981 assert(kvm_immediate_exit); 2982 kvm_cpu_kick(current_cpu); 2983 } 2984 } 2985 2986 void kvm_init_cpu_signals(CPUState *cpu) 2987 { 2988 int r; 2989 sigset_t set; 2990 struct sigaction sigact; 2991 2992 memset(&sigact, 0, sizeof(sigact)); 2993 sigact.sa_handler = kvm_ipi_signal; 2994 sigaction(SIG_IPI, &sigact, NULL); 2995 2996 pthread_sigmask(SIG_BLOCK, NULL, &set); 2997 #if defined KVM_HAVE_MCE_INJECTION 2998 sigdelset(&set, SIGBUS); 2999 pthread_sigmask(SIG_SETMASK, &set, NULL); 3000 #endif 3001 sigdelset(&set, SIG_IPI); 3002 if (kvm_immediate_exit) { 3003 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3004 } else { 3005 r = kvm_set_signal_mask(cpu, &set); 3006 } 3007 if (r) { 3008 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3009 exit(1); 3010 } 3011 } 3012 3013 /* Called asynchronously in VCPU thread. */ 3014 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3015 { 3016 #ifdef KVM_HAVE_MCE_INJECTION 3017 if (have_sigbus_pending) { 3018 return 1; 3019 } 3020 have_sigbus_pending = true; 3021 pending_sigbus_addr = addr; 3022 pending_sigbus_code = code; 3023 qatomic_set(&cpu->exit_request, 1); 3024 return 0; 3025 #else 3026 return 1; 3027 #endif 3028 } 3029 3030 /* Called synchronously (via signalfd) in main thread. */ 3031 int kvm_on_sigbus(int code, void *addr) 3032 { 3033 #ifdef KVM_HAVE_MCE_INJECTION 3034 /* Action required MCE kills the process if SIGBUS is blocked. Because 3035 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3036 * we can only get action optional here. 3037 */ 3038 assert(code != BUS_MCEERR_AR); 3039 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3040 return 0; 3041 #else 3042 return 1; 3043 #endif 3044 } 3045 3046 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3047 { 3048 int ret; 3049 struct kvm_create_device create_dev; 3050 3051 create_dev.type = type; 3052 create_dev.fd = -1; 3053 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3054 3055 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3056 return -ENOTSUP; 3057 } 3058 3059 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3060 if (ret) { 3061 return ret; 3062 } 3063 3064 return test ? 0 : create_dev.fd; 3065 } 3066 3067 bool kvm_device_supported(int vmfd, uint64_t type) 3068 { 3069 struct kvm_create_device create_dev = { 3070 .type = type, 3071 .fd = -1, 3072 .flags = KVM_CREATE_DEVICE_TEST, 3073 }; 3074 3075 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3076 return false; 3077 } 3078 3079 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3080 } 3081 3082 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3083 { 3084 struct kvm_one_reg reg; 3085 int r; 3086 3087 reg.id = id; 3088 reg.addr = (uintptr_t) source; 3089 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3090 if (r) { 3091 trace_kvm_failed_reg_set(id, strerror(-r)); 3092 } 3093 return r; 3094 } 3095 3096 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3097 { 3098 struct kvm_one_reg reg; 3099 int r; 3100 3101 reg.id = id; 3102 reg.addr = (uintptr_t) target; 3103 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3104 if (r) { 3105 trace_kvm_failed_reg_get(id, strerror(-r)); 3106 } 3107 return r; 3108 } 3109 3110 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3111 hwaddr start_addr, hwaddr size) 3112 { 3113 KVMState *kvm = KVM_STATE(ms->accelerator); 3114 int i; 3115 3116 for (i = 0; i < kvm->nr_as; ++i) { 3117 if (kvm->as[i].as == as && kvm->as[i].ml) { 3118 size = MIN(kvm_max_slot_size, size); 3119 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3120 start_addr, size); 3121 } 3122 } 3123 3124 return false; 3125 } 3126 3127 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3128 const char *name, void *opaque, 3129 Error **errp) 3130 { 3131 KVMState *s = KVM_STATE(obj); 3132 int64_t value = s->kvm_shadow_mem; 3133 3134 visit_type_int(v, name, &value, errp); 3135 } 3136 3137 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3138 const char *name, void *opaque, 3139 Error **errp) 3140 { 3141 KVMState *s = KVM_STATE(obj); 3142 int64_t value; 3143 3144 if (!visit_type_int(v, name, &value, errp)) { 3145 return; 3146 } 3147 3148 s->kvm_shadow_mem = value; 3149 } 3150 3151 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3152 const char *name, void *opaque, 3153 Error **errp) 3154 { 3155 KVMState *s = KVM_STATE(obj); 3156 OnOffSplit mode; 3157 3158 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3159 return; 3160 } 3161 switch (mode) { 3162 case ON_OFF_SPLIT_ON: 3163 s->kernel_irqchip_allowed = true; 3164 s->kernel_irqchip_required = true; 3165 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3166 break; 3167 case ON_OFF_SPLIT_OFF: 3168 s->kernel_irqchip_allowed = false; 3169 s->kernel_irqchip_required = false; 3170 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3171 break; 3172 case ON_OFF_SPLIT_SPLIT: 3173 s->kernel_irqchip_allowed = true; 3174 s->kernel_irqchip_required = true; 3175 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3176 break; 3177 default: 3178 /* The value was checked in visit_type_OnOffSplit() above. If 3179 * we get here, then something is wrong in QEMU. 3180 */ 3181 abort(); 3182 } 3183 } 3184 3185 bool kvm_kernel_irqchip_allowed(void) 3186 { 3187 return kvm_state->kernel_irqchip_allowed; 3188 } 3189 3190 bool kvm_kernel_irqchip_required(void) 3191 { 3192 return kvm_state->kernel_irqchip_required; 3193 } 3194 3195 bool kvm_kernel_irqchip_split(void) 3196 { 3197 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3198 } 3199 3200 static void kvm_accel_instance_init(Object *obj) 3201 { 3202 KVMState *s = KVM_STATE(obj); 3203 3204 s->kvm_shadow_mem = -1; 3205 s->kernel_irqchip_allowed = true; 3206 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3207 } 3208 3209 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3210 { 3211 AccelClass *ac = ACCEL_CLASS(oc); 3212 ac->name = "KVM"; 3213 ac->init_machine = kvm_init; 3214 ac->has_memory = kvm_accel_has_memory; 3215 ac->allowed = &kvm_allowed; 3216 3217 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3218 NULL, kvm_set_kernel_irqchip, 3219 NULL, NULL); 3220 object_class_property_set_description(oc, "kernel-irqchip", 3221 "Configure KVM in-kernel irqchip"); 3222 3223 object_class_property_add(oc, "kvm-shadow-mem", "int", 3224 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3225 NULL, NULL); 3226 object_class_property_set_description(oc, "kvm-shadow-mem", 3227 "KVM shadow MMU size"); 3228 } 3229 3230 static const TypeInfo kvm_accel_type = { 3231 .name = TYPE_KVM_ACCEL, 3232 .parent = TYPE_ACCEL, 3233 .instance_init = kvm_accel_instance_init, 3234 .class_init = kvm_accel_class_init, 3235 .instance_size = sizeof(KVMState), 3236 }; 3237 3238 static void kvm_type_init(void) 3239 { 3240 type_register_static(&kvm_accel_type); 3241 } 3242 3243 type_init(kvm_type_init); 3244