xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision b15c0f7d)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 
19 #include <linux/kvm.h>
20 
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "sysemu/sev.h"
42 #include "sysemu/balloon.h"
43 
44 #include "hw/boards.h"
45 
46 /* This check must be after config-host.h is included */
47 #ifdef CONFIG_EVENTFD
48 #include <sys/eventfd.h>
49 #endif
50 
51 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
52  * need to use the real host PAGE_SIZE, as that's what KVM will use.
53  */
54 #define PAGE_SIZE getpagesize()
55 
56 //#define DEBUG_KVM
57 
58 #ifdef DEBUG_KVM
59 #define DPRINTF(fmt, ...) \
60     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
61 #else
62 #define DPRINTF(fmt, ...) \
63     do { } while (0)
64 #endif
65 
66 #define KVM_MSI_HASHTAB_SIZE    256
67 
68 struct KVMParkedVcpu {
69     unsigned long vcpu_id;
70     int kvm_fd;
71     QLIST_ENTRY(KVMParkedVcpu) node;
72 };
73 
74 struct KVMState
75 {
76     AccelState parent_obj;
77 
78     int nr_slots;
79     int fd;
80     int vmfd;
81     int coalesced_mmio;
82     int coalesced_pio;
83     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84     bool coalesced_flush_in_progress;
85     int vcpu_events;
86     int robust_singlestep;
87     int debugregs;
88 #ifdef KVM_CAP_SET_GUEST_DEBUG
89     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
90 #endif
91     int many_ioeventfds;
92     int intx_set_mask;
93     bool sync_mmu;
94     /* The man page (and posix) say ioctl numbers are signed int, but
95      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
96      * unsigned, and treating them as signed here can break things */
97     unsigned irq_set_ioctl;
98     unsigned int sigmask_len;
99     GHashTable *gsimap;
100 #ifdef KVM_CAP_IRQ_ROUTING
101     struct kvm_irq_routing *irq_routes;
102     int nr_allocated_irq_routes;
103     unsigned long *used_gsi_bitmap;
104     unsigned int gsi_count;
105     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
106 #endif
107     KVMMemoryListener memory_listener;
108     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
109 
110     /* memory encryption */
111     void *memcrypt_handle;
112     int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
113 };
114 
115 KVMState *kvm_state;
116 bool kvm_kernel_irqchip;
117 bool kvm_split_irqchip;
118 bool kvm_async_interrupts_allowed;
119 bool kvm_halt_in_kernel_allowed;
120 bool kvm_eventfds_allowed;
121 bool kvm_irqfds_allowed;
122 bool kvm_resamplefds_allowed;
123 bool kvm_msi_via_irqfd_allowed;
124 bool kvm_gsi_routing_allowed;
125 bool kvm_gsi_direct_mapping;
126 bool kvm_allowed;
127 bool kvm_readonly_mem_allowed;
128 bool kvm_vm_attributes_allowed;
129 bool kvm_direct_msi_allowed;
130 bool kvm_ioeventfd_any_length_allowed;
131 bool kvm_msi_use_devid;
132 static bool kvm_immediate_exit;
133 
134 static const KVMCapabilityInfo kvm_required_capabilites[] = {
135     KVM_CAP_INFO(USER_MEMORY),
136     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
137     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
138     KVM_CAP_LAST_INFO
139 };
140 
141 int kvm_get_max_memslots(void)
142 {
143     KVMState *s = KVM_STATE(current_machine->accelerator);
144 
145     return s->nr_slots;
146 }
147 
148 bool kvm_memcrypt_enabled(void)
149 {
150     if (kvm_state && kvm_state->memcrypt_handle) {
151         return true;
152     }
153 
154     return false;
155 }
156 
157 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
158 {
159     if (kvm_state->memcrypt_handle &&
160         kvm_state->memcrypt_encrypt_data) {
161         return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
162                                               ptr, len);
163     }
164 
165     return 1;
166 }
167 
168 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
169 {
170     KVMState *s = kvm_state;
171     int i;
172 
173     for (i = 0; i < s->nr_slots; i++) {
174         if (kml->slots[i].memory_size == 0) {
175             return &kml->slots[i];
176         }
177     }
178 
179     return NULL;
180 }
181 
182 bool kvm_has_free_slot(MachineState *ms)
183 {
184     KVMState *s = KVM_STATE(ms->accelerator);
185 
186     return kvm_get_free_slot(&s->memory_listener);
187 }
188 
189 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
190 {
191     KVMSlot *slot = kvm_get_free_slot(kml);
192 
193     if (slot) {
194         return slot;
195     }
196 
197     fprintf(stderr, "%s: no free slot available\n", __func__);
198     abort();
199 }
200 
201 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
202                                          hwaddr start_addr,
203                                          hwaddr size)
204 {
205     KVMState *s = kvm_state;
206     int i;
207 
208     for (i = 0; i < s->nr_slots; i++) {
209         KVMSlot *mem = &kml->slots[i];
210 
211         if (start_addr == mem->start_addr && size == mem->memory_size) {
212             return mem;
213         }
214     }
215 
216     return NULL;
217 }
218 
219 /*
220  * Calculate and align the start address and the size of the section.
221  * Return the size. If the size is 0, the aligned section is empty.
222  */
223 static hwaddr kvm_align_section(MemoryRegionSection *section,
224                                 hwaddr *start)
225 {
226     hwaddr size = int128_get64(section->size);
227     hwaddr delta, aligned;
228 
229     /* kvm works in page size chunks, but the function may be called
230        with sub-page size and unaligned start address. Pad the start
231        address to next and truncate size to previous page boundary. */
232     aligned = ROUND_UP(section->offset_within_address_space,
233                        qemu_real_host_page_size);
234     delta = aligned - section->offset_within_address_space;
235     *start = aligned;
236     if (delta > size) {
237         return 0;
238     }
239 
240     return (size - delta) & qemu_real_host_page_mask;
241 }
242 
243 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
244                                        hwaddr *phys_addr)
245 {
246     KVMMemoryListener *kml = &s->memory_listener;
247     int i;
248 
249     for (i = 0; i < s->nr_slots; i++) {
250         KVMSlot *mem = &kml->slots[i];
251 
252         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
253             *phys_addr = mem->start_addr + (ram - mem->ram);
254             return 1;
255         }
256     }
257 
258     return 0;
259 }
260 
261 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
262 {
263     KVMState *s = kvm_state;
264     struct kvm_userspace_memory_region mem;
265     int ret;
266 
267     mem.slot = slot->slot | (kml->as_id << 16);
268     mem.guest_phys_addr = slot->start_addr;
269     mem.userspace_addr = (unsigned long)slot->ram;
270     mem.flags = slot->flags;
271 
272     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
273         /* Set the slot size to 0 before setting the slot to the desired
274          * value. This is needed based on KVM commit 75d61fbc. */
275         mem.memory_size = 0;
276         kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
277     }
278     mem.memory_size = slot->memory_size;
279     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
280     slot->old_flags = mem.flags;
281     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
282                               mem.memory_size, mem.userspace_addr, ret);
283     return ret;
284 }
285 
286 int kvm_destroy_vcpu(CPUState *cpu)
287 {
288     KVMState *s = kvm_state;
289     long mmap_size;
290     struct KVMParkedVcpu *vcpu = NULL;
291     int ret = 0;
292 
293     DPRINTF("kvm_destroy_vcpu\n");
294 
295     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
296     if (mmap_size < 0) {
297         ret = mmap_size;
298         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
299         goto err;
300     }
301 
302     ret = munmap(cpu->kvm_run, mmap_size);
303     if (ret < 0) {
304         goto err;
305     }
306 
307     vcpu = g_malloc0(sizeof(*vcpu));
308     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
309     vcpu->kvm_fd = cpu->kvm_fd;
310     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
311 err:
312     return ret;
313 }
314 
315 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
316 {
317     struct KVMParkedVcpu *cpu;
318 
319     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
320         if (cpu->vcpu_id == vcpu_id) {
321             int kvm_fd;
322 
323             QLIST_REMOVE(cpu, node);
324             kvm_fd = cpu->kvm_fd;
325             g_free(cpu);
326             return kvm_fd;
327         }
328     }
329 
330     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
331 }
332 
333 int kvm_init_vcpu(CPUState *cpu)
334 {
335     KVMState *s = kvm_state;
336     long mmap_size;
337     int ret;
338 
339     DPRINTF("kvm_init_vcpu\n");
340 
341     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
342     if (ret < 0) {
343         DPRINTF("kvm_create_vcpu failed\n");
344         goto err;
345     }
346 
347     cpu->kvm_fd = ret;
348     cpu->kvm_state = s;
349     cpu->vcpu_dirty = true;
350 
351     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
352     if (mmap_size < 0) {
353         ret = mmap_size;
354         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
355         goto err;
356     }
357 
358     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
359                         cpu->kvm_fd, 0);
360     if (cpu->kvm_run == MAP_FAILED) {
361         ret = -errno;
362         DPRINTF("mmap'ing vcpu state failed\n");
363         goto err;
364     }
365 
366     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
367         s->coalesced_mmio_ring =
368             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
369     }
370 
371     ret = kvm_arch_init_vcpu(cpu);
372 err:
373     return ret;
374 }
375 
376 /*
377  * dirty pages logging control
378  */
379 
380 static int kvm_mem_flags(MemoryRegion *mr)
381 {
382     bool readonly = mr->readonly || memory_region_is_romd(mr);
383     int flags = 0;
384 
385     if (memory_region_get_dirty_log_mask(mr) != 0) {
386         flags |= KVM_MEM_LOG_DIRTY_PAGES;
387     }
388     if (readonly && kvm_readonly_mem_allowed) {
389         flags |= KVM_MEM_READONLY;
390     }
391     return flags;
392 }
393 
394 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
395                                  MemoryRegion *mr)
396 {
397     mem->flags = kvm_mem_flags(mr);
398 
399     /* If nothing changed effectively, no need to issue ioctl */
400     if (mem->flags == mem->old_flags) {
401         return 0;
402     }
403 
404     return kvm_set_user_memory_region(kml, mem, false);
405 }
406 
407 static int kvm_section_update_flags(KVMMemoryListener *kml,
408                                     MemoryRegionSection *section)
409 {
410     hwaddr start_addr, size;
411     KVMSlot *mem;
412 
413     size = kvm_align_section(section, &start_addr);
414     if (!size) {
415         return 0;
416     }
417 
418     mem = kvm_lookup_matching_slot(kml, start_addr, size);
419     if (!mem) {
420         /* We don't have a slot if we want to trap every access. */
421         return 0;
422     }
423 
424     return kvm_slot_update_flags(kml, mem, section->mr);
425 }
426 
427 static void kvm_log_start(MemoryListener *listener,
428                           MemoryRegionSection *section,
429                           int old, int new)
430 {
431     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
432     int r;
433 
434     if (old != 0) {
435         return;
436     }
437 
438     r = kvm_section_update_flags(kml, section);
439     if (r < 0) {
440         abort();
441     }
442 }
443 
444 static void kvm_log_stop(MemoryListener *listener,
445                           MemoryRegionSection *section,
446                           int old, int new)
447 {
448     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
449     int r;
450 
451     if (new != 0) {
452         return;
453     }
454 
455     r = kvm_section_update_flags(kml, section);
456     if (r < 0) {
457         abort();
458     }
459 }
460 
461 /* get kvm's dirty pages bitmap and update qemu's */
462 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
463                                          unsigned long *bitmap)
464 {
465     ram_addr_t start = section->offset_within_region +
466                        memory_region_get_ram_addr(section->mr);
467     ram_addr_t pages = int128_get64(section->size) / getpagesize();
468 
469     cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
470     return 0;
471 }
472 
473 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
474 
475 /**
476  * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
477  * This function updates qemu's dirty bitmap using
478  * memory_region_set_dirty().  This means all bits are set
479  * to dirty.
480  *
481  * @start_add: start of logged region.
482  * @end_addr: end of logged region.
483  */
484 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
485                                           MemoryRegionSection *section)
486 {
487     KVMState *s = kvm_state;
488     struct kvm_dirty_log d = {};
489     KVMSlot *mem;
490     hwaddr start_addr, size;
491 
492     size = kvm_align_section(section, &start_addr);
493     if (size) {
494         mem = kvm_lookup_matching_slot(kml, start_addr, size);
495         if (!mem) {
496             /* We don't have a slot if we want to trap every access. */
497             return 0;
498         }
499 
500         /* XXX bad kernel interface alert
501          * For dirty bitmap, kernel allocates array of size aligned to
502          * bits-per-long.  But for case when the kernel is 64bits and
503          * the userspace is 32bits, userspace can't align to the same
504          * bits-per-long, since sizeof(long) is different between kernel
505          * and user space.  This way, userspace will provide buffer which
506          * may be 4 bytes less than the kernel will use, resulting in
507          * userspace memory corruption (which is not detectable by valgrind
508          * too, in most cases).
509          * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
510          * a hope that sizeof(long) won't become >8 any time soon.
511          */
512         size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
513                      /*HOST_LONG_BITS*/ 64) / 8;
514         d.dirty_bitmap = g_malloc0(size);
515 
516         d.slot = mem->slot | (kml->as_id << 16);
517         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
518             DPRINTF("ioctl failed %d\n", errno);
519             g_free(d.dirty_bitmap);
520             return -1;
521         }
522 
523         kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
524         g_free(d.dirty_bitmap);
525     }
526 
527     return 0;
528 }
529 
530 static void kvm_coalesce_mmio_region(MemoryListener *listener,
531                                      MemoryRegionSection *secion,
532                                      hwaddr start, hwaddr size)
533 {
534     KVMState *s = kvm_state;
535 
536     if (s->coalesced_mmio) {
537         struct kvm_coalesced_mmio_zone zone;
538 
539         zone.addr = start;
540         zone.size = size;
541         zone.pad = 0;
542 
543         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
544     }
545 }
546 
547 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
548                                        MemoryRegionSection *secion,
549                                        hwaddr start, hwaddr size)
550 {
551     KVMState *s = kvm_state;
552 
553     if (s->coalesced_mmio) {
554         struct kvm_coalesced_mmio_zone zone;
555 
556         zone.addr = start;
557         zone.size = size;
558         zone.pad = 0;
559 
560         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
561     }
562 }
563 
564 static void kvm_coalesce_pio_add(MemoryListener *listener,
565                                 MemoryRegionSection *section,
566                                 hwaddr start, hwaddr size)
567 {
568     KVMState *s = kvm_state;
569 
570     if (s->coalesced_pio) {
571         struct kvm_coalesced_mmio_zone zone;
572 
573         zone.addr = start;
574         zone.size = size;
575         zone.pio = 1;
576 
577         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
578     }
579 }
580 
581 static void kvm_coalesce_pio_del(MemoryListener *listener,
582                                 MemoryRegionSection *section,
583                                 hwaddr start, hwaddr size)
584 {
585     KVMState *s = kvm_state;
586 
587     if (s->coalesced_pio) {
588         struct kvm_coalesced_mmio_zone zone;
589 
590         zone.addr = start;
591         zone.size = size;
592         zone.pio = 1;
593 
594         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
595      }
596 }
597 
598 static MemoryListener kvm_coalesced_pio_listener = {
599     .coalesced_io_add = kvm_coalesce_pio_add,
600     .coalesced_io_del = kvm_coalesce_pio_del,
601 };
602 
603 int kvm_check_extension(KVMState *s, unsigned int extension)
604 {
605     int ret;
606 
607     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
608     if (ret < 0) {
609         ret = 0;
610     }
611 
612     return ret;
613 }
614 
615 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
616 {
617     int ret;
618 
619     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
620     if (ret < 0) {
621         /* VM wide version not implemented, use global one instead */
622         ret = kvm_check_extension(s, extension);
623     }
624 
625     return ret;
626 }
627 
628 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
629 {
630 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
631     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
632      * endianness, but the memory core hands them in target endianness.
633      * For example, PPC is always treated as big-endian even if running
634      * on KVM and on PPC64LE.  Correct here.
635      */
636     switch (size) {
637     case 2:
638         val = bswap16(val);
639         break;
640     case 4:
641         val = bswap32(val);
642         break;
643     }
644 #endif
645     return val;
646 }
647 
648 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
649                                   bool assign, uint32_t size, bool datamatch)
650 {
651     int ret;
652     struct kvm_ioeventfd iofd = {
653         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
654         .addr = addr,
655         .len = size,
656         .flags = 0,
657         .fd = fd,
658     };
659 
660     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
661                                  datamatch);
662     if (!kvm_enabled()) {
663         return -ENOSYS;
664     }
665 
666     if (datamatch) {
667         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
668     }
669     if (!assign) {
670         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
671     }
672 
673     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
674 
675     if (ret < 0) {
676         return -errno;
677     }
678 
679     return 0;
680 }
681 
682 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
683                                  bool assign, uint32_t size, bool datamatch)
684 {
685     struct kvm_ioeventfd kick = {
686         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
687         .addr = addr,
688         .flags = KVM_IOEVENTFD_FLAG_PIO,
689         .len = size,
690         .fd = fd,
691     };
692     int r;
693     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
694     if (!kvm_enabled()) {
695         return -ENOSYS;
696     }
697     if (datamatch) {
698         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
699     }
700     if (!assign) {
701         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
702     }
703     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
704     if (r < 0) {
705         return r;
706     }
707     return 0;
708 }
709 
710 
711 static int kvm_check_many_ioeventfds(void)
712 {
713     /* Userspace can use ioeventfd for io notification.  This requires a host
714      * that supports eventfd(2) and an I/O thread; since eventfd does not
715      * support SIGIO it cannot interrupt the vcpu.
716      *
717      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
718      * can avoid creating too many ioeventfds.
719      */
720 #if defined(CONFIG_EVENTFD)
721     int ioeventfds[7];
722     int i, ret = 0;
723     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
724         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
725         if (ioeventfds[i] < 0) {
726             break;
727         }
728         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
729         if (ret < 0) {
730             close(ioeventfds[i]);
731             break;
732         }
733     }
734 
735     /* Decide whether many devices are supported or not */
736     ret = i == ARRAY_SIZE(ioeventfds);
737 
738     while (i-- > 0) {
739         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
740         close(ioeventfds[i]);
741     }
742     return ret;
743 #else
744     return 0;
745 #endif
746 }
747 
748 static const KVMCapabilityInfo *
749 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
750 {
751     while (list->name) {
752         if (!kvm_check_extension(s, list->value)) {
753             return list;
754         }
755         list++;
756     }
757     return NULL;
758 }
759 
760 static void kvm_set_phys_mem(KVMMemoryListener *kml,
761                              MemoryRegionSection *section, bool add)
762 {
763     KVMSlot *mem;
764     int err;
765     MemoryRegion *mr = section->mr;
766     bool writeable = !mr->readonly && !mr->rom_device;
767     hwaddr start_addr, size;
768     void *ram;
769 
770     if (!memory_region_is_ram(mr)) {
771         if (writeable || !kvm_readonly_mem_allowed) {
772             return;
773         } else if (!mr->romd_mode) {
774             /* If the memory device is not in romd_mode, then we actually want
775              * to remove the kvm memory slot so all accesses will trap. */
776             add = false;
777         }
778     }
779 
780     size = kvm_align_section(section, &start_addr);
781     if (!size) {
782         return;
783     }
784 
785     /* use aligned delta to align the ram address */
786     ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
787           (start_addr - section->offset_within_address_space);
788 
789     if (!add) {
790         mem = kvm_lookup_matching_slot(kml, start_addr, size);
791         if (!mem) {
792             return;
793         }
794         if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
795             kvm_physical_sync_dirty_bitmap(kml, section);
796         }
797 
798         /* unregister the slot */
799         mem->memory_size = 0;
800         mem->flags = 0;
801         err = kvm_set_user_memory_region(kml, mem, false);
802         if (err) {
803             fprintf(stderr, "%s: error unregistering slot: %s\n",
804                     __func__, strerror(-err));
805             abort();
806         }
807         return;
808     }
809 
810     /* register the new slot */
811     mem = kvm_alloc_slot(kml);
812     mem->memory_size = size;
813     mem->start_addr = start_addr;
814     mem->ram = ram;
815     mem->flags = kvm_mem_flags(mr);
816 
817     err = kvm_set_user_memory_region(kml, mem, true);
818     if (err) {
819         fprintf(stderr, "%s: error registering slot: %s\n", __func__,
820                 strerror(-err));
821         abort();
822     }
823 }
824 
825 static void kvm_region_add(MemoryListener *listener,
826                            MemoryRegionSection *section)
827 {
828     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
829 
830     memory_region_ref(section->mr);
831     kvm_set_phys_mem(kml, section, true);
832 }
833 
834 static void kvm_region_del(MemoryListener *listener,
835                            MemoryRegionSection *section)
836 {
837     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
838 
839     kvm_set_phys_mem(kml, section, false);
840     memory_region_unref(section->mr);
841 }
842 
843 static void kvm_log_sync(MemoryListener *listener,
844                          MemoryRegionSection *section)
845 {
846     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
847     int r;
848 
849     r = kvm_physical_sync_dirty_bitmap(kml, section);
850     if (r < 0) {
851         abort();
852     }
853 }
854 
855 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
856                                   MemoryRegionSection *section,
857                                   bool match_data, uint64_t data,
858                                   EventNotifier *e)
859 {
860     int fd = event_notifier_get_fd(e);
861     int r;
862 
863     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
864                                data, true, int128_get64(section->size),
865                                match_data);
866     if (r < 0) {
867         fprintf(stderr, "%s: error adding ioeventfd: %s\n",
868                 __func__, strerror(-r));
869         abort();
870     }
871 }
872 
873 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
874                                   MemoryRegionSection *section,
875                                   bool match_data, uint64_t data,
876                                   EventNotifier *e)
877 {
878     int fd = event_notifier_get_fd(e);
879     int r;
880 
881     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
882                                data, false, int128_get64(section->size),
883                                match_data);
884     if (r < 0) {
885         abort();
886     }
887 }
888 
889 static void kvm_io_ioeventfd_add(MemoryListener *listener,
890                                  MemoryRegionSection *section,
891                                  bool match_data, uint64_t data,
892                                  EventNotifier *e)
893 {
894     int fd = event_notifier_get_fd(e);
895     int r;
896 
897     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
898                               data, true, int128_get64(section->size),
899                               match_data);
900     if (r < 0) {
901         fprintf(stderr, "%s: error adding ioeventfd: %s\n",
902                 __func__, strerror(-r));
903         abort();
904     }
905 }
906 
907 static void kvm_io_ioeventfd_del(MemoryListener *listener,
908                                  MemoryRegionSection *section,
909                                  bool match_data, uint64_t data,
910                                  EventNotifier *e)
911 
912 {
913     int fd = event_notifier_get_fd(e);
914     int r;
915 
916     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
917                               data, false, int128_get64(section->size),
918                               match_data);
919     if (r < 0) {
920         abort();
921     }
922 }
923 
924 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
925                                   AddressSpace *as, int as_id)
926 {
927     int i;
928 
929     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
930     kml->as_id = as_id;
931 
932     for (i = 0; i < s->nr_slots; i++) {
933         kml->slots[i].slot = i;
934     }
935 
936     kml->listener.region_add = kvm_region_add;
937     kml->listener.region_del = kvm_region_del;
938     kml->listener.log_start = kvm_log_start;
939     kml->listener.log_stop = kvm_log_stop;
940     kml->listener.log_sync = kvm_log_sync;
941     kml->listener.priority = 10;
942 
943     memory_listener_register(&kml->listener, as);
944 }
945 
946 static MemoryListener kvm_io_listener = {
947     .eventfd_add = kvm_io_ioeventfd_add,
948     .eventfd_del = kvm_io_ioeventfd_del,
949     .priority = 10,
950 };
951 
952 int kvm_set_irq(KVMState *s, int irq, int level)
953 {
954     struct kvm_irq_level event;
955     int ret;
956 
957     assert(kvm_async_interrupts_enabled());
958 
959     event.level = level;
960     event.irq = irq;
961     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
962     if (ret < 0) {
963         perror("kvm_set_irq");
964         abort();
965     }
966 
967     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
968 }
969 
970 #ifdef KVM_CAP_IRQ_ROUTING
971 typedef struct KVMMSIRoute {
972     struct kvm_irq_routing_entry kroute;
973     QTAILQ_ENTRY(KVMMSIRoute) entry;
974 } KVMMSIRoute;
975 
976 static void set_gsi(KVMState *s, unsigned int gsi)
977 {
978     set_bit(gsi, s->used_gsi_bitmap);
979 }
980 
981 static void clear_gsi(KVMState *s, unsigned int gsi)
982 {
983     clear_bit(gsi, s->used_gsi_bitmap);
984 }
985 
986 void kvm_init_irq_routing(KVMState *s)
987 {
988     int gsi_count, i;
989 
990     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
991     if (gsi_count > 0) {
992         /* Round up so we can search ints using ffs */
993         s->used_gsi_bitmap = bitmap_new(gsi_count);
994         s->gsi_count = gsi_count;
995     }
996 
997     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
998     s->nr_allocated_irq_routes = 0;
999 
1000     if (!kvm_direct_msi_allowed) {
1001         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1002             QTAILQ_INIT(&s->msi_hashtab[i]);
1003         }
1004     }
1005 
1006     kvm_arch_init_irq_routing(s);
1007 }
1008 
1009 void kvm_irqchip_commit_routes(KVMState *s)
1010 {
1011     int ret;
1012 
1013     if (kvm_gsi_direct_mapping()) {
1014         return;
1015     }
1016 
1017     if (!kvm_gsi_routing_enabled()) {
1018         return;
1019     }
1020 
1021     s->irq_routes->flags = 0;
1022     trace_kvm_irqchip_commit_routes();
1023     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1024     assert(ret == 0);
1025 }
1026 
1027 static void kvm_add_routing_entry(KVMState *s,
1028                                   struct kvm_irq_routing_entry *entry)
1029 {
1030     struct kvm_irq_routing_entry *new;
1031     int n, size;
1032 
1033     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1034         n = s->nr_allocated_irq_routes * 2;
1035         if (n < 64) {
1036             n = 64;
1037         }
1038         size = sizeof(struct kvm_irq_routing);
1039         size += n * sizeof(*new);
1040         s->irq_routes = g_realloc(s->irq_routes, size);
1041         s->nr_allocated_irq_routes = n;
1042     }
1043     n = s->irq_routes->nr++;
1044     new = &s->irq_routes->entries[n];
1045 
1046     *new = *entry;
1047 
1048     set_gsi(s, entry->gsi);
1049 }
1050 
1051 static int kvm_update_routing_entry(KVMState *s,
1052                                     struct kvm_irq_routing_entry *new_entry)
1053 {
1054     struct kvm_irq_routing_entry *entry;
1055     int n;
1056 
1057     for (n = 0; n < s->irq_routes->nr; n++) {
1058         entry = &s->irq_routes->entries[n];
1059         if (entry->gsi != new_entry->gsi) {
1060             continue;
1061         }
1062 
1063         if(!memcmp(entry, new_entry, sizeof *entry)) {
1064             return 0;
1065         }
1066 
1067         *entry = *new_entry;
1068 
1069         return 0;
1070     }
1071 
1072     return -ESRCH;
1073 }
1074 
1075 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1076 {
1077     struct kvm_irq_routing_entry e = {};
1078 
1079     assert(pin < s->gsi_count);
1080 
1081     e.gsi = irq;
1082     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1083     e.flags = 0;
1084     e.u.irqchip.irqchip = irqchip;
1085     e.u.irqchip.pin = pin;
1086     kvm_add_routing_entry(s, &e);
1087 }
1088 
1089 void kvm_irqchip_release_virq(KVMState *s, int virq)
1090 {
1091     struct kvm_irq_routing_entry *e;
1092     int i;
1093 
1094     if (kvm_gsi_direct_mapping()) {
1095         return;
1096     }
1097 
1098     for (i = 0; i < s->irq_routes->nr; i++) {
1099         e = &s->irq_routes->entries[i];
1100         if (e->gsi == virq) {
1101             s->irq_routes->nr--;
1102             *e = s->irq_routes->entries[s->irq_routes->nr];
1103         }
1104     }
1105     clear_gsi(s, virq);
1106     kvm_arch_release_virq_post(virq);
1107     trace_kvm_irqchip_release_virq(virq);
1108 }
1109 
1110 static unsigned int kvm_hash_msi(uint32_t data)
1111 {
1112     /* This is optimized for IA32 MSI layout. However, no other arch shall
1113      * repeat the mistake of not providing a direct MSI injection API. */
1114     return data & 0xff;
1115 }
1116 
1117 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1118 {
1119     KVMMSIRoute *route, *next;
1120     unsigned int hash;
1121 
1122     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1123         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1124             kvm_irqchip_release_virq(s, route->kroute.gsi);
1125             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1126             g_free(route);
1127         }
1128     }
1129 }
1130 
1131 static int kvm_irqchip_get_virq(KVMState *s)
1132 {
1133     int next_virq;
1134 
1135     /*
1136      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1137      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1138      * number can succeed even though a new route entry cannot be added.
1139      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1140      */
1141     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1142         kvm_flush_dynamic_msi_routes(s);
1143     }
1144 
1145     /* Return the lowest unused GSI in the bitmap */
1146     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1147     if (next_virq >= s->gsi_count) {
1148         return -ENOSPC;
1149     } else {
1150         return next_virq;
1151     }
1152 }
1153 
1154 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1155 {
1156     unsigned int hash = kvm_hash_msi(msg.data);
1157     KVMMSIRoute *route;
1158 
1159     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1160         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1161             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1162             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1163             return route;
1164         }
1165     }
1166     return NULL;
1167 }
1168 
1169 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1170 {
1171     struct kvm_msi msi;
1172     KVMMSIRoute *route;
1173 
1174     if (kvm_direct_msi_allowed) {
1175         msi.address_lo = (uint32_t)msg.address;
1176         msi.address_hi = msg.address >> 32;
1177         msi.data = le32_to_cpu(msg.data);
1178         msi.flags = 0;
1179         memset(msi.pad, 0, sizeof(msi.pad));
1180 
1181         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1182     }
1183 
1184     route = kvm_lookup_msi_route(s, msg);
1185     if (!route) {
1186         int virq;
1187 
1188         virq = kvm_irqchip_get_virq(s);
1189         if (virq < 0) {
1190             return virq;
1191         }
1192 
1193         route = g_malloc0(sizeof(KVMMSIRoute));
1194         route->kroute.gsi = virq;
1195         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1196         route->kroute.flags = 0;
1197         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1198         route->kroute.u.msi.address_hi = msg.address >> 32;
1199         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1200 
1201         kvm_add_routing_entry(s, &route->kroute);
1202         kvm_irqchip_commit_routes(s);
1203 
1204         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1205                            entry);
1206     }
1207 
1208     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1209 
1210     return kvm_set_irq(s, route->kroute.gsi, 1);
1211 }
1212 
1213 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1214 {
1215     struct kvm_irq_routing_entry kroute = {};
1216     int virq;
1217     MSIMessage msg = {0, 0};
1218 
1219     if (pci_available && dev) {
1220         msg = pci_get_msi_message(dev, vector);
1221     }
1222 
1223     if (kvm_gsi_direct_mapping()) {
1224         return kvm_arch_msi_data_to_gsi(msg.data);
1225     }
1226 
1227     if (!kvm_gsi_routing_enabled()) {
1228         return -ENOSYS;
1229     }
1230 
1231     virq = kvm_irqchip_get_virq(s);
1232     if (virq < 0) {
1233         return virq;
1234     }
1235 
1236     kroute.gsi = virq;
1237     kroute.type = KVM_IRQ_ROUTING_MSI;
1238     kroute.flags = 0;
1239     kroute.u.msi.address_lo = (uint32_t)msg.address;
1240     kroute.u.msi.address_hi = msg.address >> 32;
1241     kroute.u.msi.data = le32_to_cpu(msg.data);
1242     if (pci_available && kvm_msi_devid_required()) {
1243         kroute.flags = KVM_MSI_VALID_DEVID;
1244         kroute.u.msi.devid = pci_requester_id(dev);
1245     }
1246     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1247         kvm_irqchip_release_virq(s, virq);
1248         return -EINVAL;
1249     }
1250 
1251     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1252                                     vector, virq);
1253 
1254     kvm_add_routing_entry(s, &kroute);
1255     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1256     kvm_irqchip_commit_routes(s);
1257 
1258     return virq;
1259 }
1260 
1261 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1262                                  PCIDevice *dev)
1263 {
1264     struct kvm_irq_routing_entry kroute = {};
1265 
1266     if (kvm_gsi_direct_mapping()) {
1267         return 0;
1268     }
1269 
1270     if (!kvm_irqchip_in_kernel()) {
1271         return -ENOSYS;
1272     }
1273 
1274     kroute.gsi = virq;
1275     kroute.type = KVM_IRQ_ROUTING_MSI;
1276     kroute.flags = 0;
1277     kroute.u.msi.address_lo = (uint32_t)msg.address;
1278     kroute.u.msi.address_hi = msg.address >> 32;
1279     kroute.u.msi.data = le32_to_cpu(msg.data);
1280     if (pci_available && kvm_msi_devid_required()) {
1281         kroute.flags = KVM_MSI_VALID_DEVID;
1282         kroute.u.msi.devid = pci_requester_id(dev);
1283     }
1284     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1285         return -EINVAL;
1286     }
1287 
1288     trace_kvm_irqchip_update_msi_route(virq);
1289 
1290     return kvm_update_routing_entry(s, &kroute);
1291 }
1292 
1293 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1294                                     bool assign)
1295 {
1296     struct kvm_irqfd irqfd = {
1297         .fd = fd,
1298         .gsi = virq,
1299         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1300     };
1301 
1302     if (rfd != -1) {
1303         irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1304         irqfd.resamplefd = rfd;
1305     }
1306 
1307     if (!kvm_irqfds_enabled()) {
1308         return -ENOSYS;
1309     }
1310 
1311     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1312 }
1313 
1314 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1315 {
1316     struct kvm_irq_routing_entry kroute = {};
1317     int virq;
1318 
1319     if (!kvm_gsi_routing_enabled()) {
1320         return -ENOSYS;
1321     }
1322 
1323     virq = kvm_irqchip_get_virq(s);
1324     if (virq < 0) {
1325         return virq;
1326     }
1327 
1328     kroute.gsi = virq;
1329     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1330     kroute.flags = 0;
1331     kroute.u.adapter.summary_addr = adapter->summary_addr;
1332     kroute.u.adapter.ind_addr = adapter->ind_addr;
1333     kroute.u.adapter.summary_offset = adapter->summary_offset;
1334     kroute.u.adapter.ind_offset = adapter->ind_offset;
1335     kroute.u.adapter.adapter_id = adapter->adapter_id;
1336 
1337     kvm_add_routing_entry(s, &kroute);
1338 
1339     return virq;
1340 }
1341 
1342 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1343 {
1344     struct kvm_irq_routing_entry kroute = {};
1345     int virq;
1346 
1347     if (!kvm_gsi_routing_enabled()) {
1348         return -ENOSYS;
1349     }
1350     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1351         return -ENOSYS;
1352     }
1353     virq = kvm_irqchip_get_virq(s);
1354     if (virq < 0) {
1355         return virq;
1356     }
1357 
1358     kroute.gsi = virq;
1359     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1360     kroute.flags = 0;
1361     kroute.u.hv_sint.vcpu = vcpu;
1362     kroute.u.hv_sint.sint = sint;
1363 
1364     kvm_add_routing_entry(s, &kroute);
1365     kvm_irqchip_commit_routes(s);
1366 
1367     return virq;
1368 }
1369 
1370 #else /* !KVM_CAP_IRQ_ROUTING */
1371 
1372 void kvm_init_irq_routing(KVMState *s)
1373 {
1374 }
1375 
1376 void kvm_irqchip_release_virq(KVMState *s, int virq)
1377 {
1378 }
1379 
1380 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1381 {
1382     abort();
1383 }
1384 
1385 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1386 {
1387     return -ENOSYS;
1388 }
1389 
1390 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1391 {
1392     return -ENOSYS;
1393 }
1394 
1395 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1396 {
1397     return -ENOSYS;
1398 }
1399 
1400 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1401 {
1402     abort();
1403 }
1404 
1405 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1406 {
1407     return -ENOSYS;
1408 }
1409 #endif /* !KVM_CAP_IRQ_ROUTING */
1410 
1411 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1412                                        EventNotifier *rn, int virq)
1413 {
1414     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1415            rn ? event_notifier_get_fd(rn) : -1, virq, true);
1416 }
1417 
1418 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1419                                           int virq)
1420 {
1421     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1422            false);
1423 }
1424 
1425 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1426                                    EventNotifier *rn, qemu_irq irq)
1427 {
1428     gpointer key, gsi;
1429     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1430 
1431     if (!found) {
1432         return -ENXIO;
1433     }
1434     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1435 }
1436 
1437 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1438                                       qemu_irq irq)
1439 {
1440     gpointer key, gsi;
1441     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1442 
1443     if (!found) {
1444         return -ENXIO;
1445     }
1446     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1447 }
1448 
1449 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1450 {
1451     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1452 }
1453 
1454 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1455 {
1456     int ret;
1457 
1458     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1459         ;
1460     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1461         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1462         if (ret < 0) {
1463             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1464             exit(1);
1465         }
1466     } else {
1467         return;
1468     }
1469 
1470     /* First probe and see if there's a arch-specific hook to create the
1471      * in-kernel irqchip for us */
1472     ret = kvm_arch_irqchip_create(machine, s);
1473     if (ret == 0) {
1474         if (machine_kernel_irqchip_split(machine)) {
1475             perror("Split IRQ chip mode not supported.");
1476             exit(1);
1477         } else {
1478             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1479         }
1480     }
1481     if (ret < 0) {
1482         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1483         exit(1);
1484     }
1485 
1486     kvm_kernel_irqchip = true;
1487     /* If we have an in-kernel IRQ chip then we must have asynchronous
1488      * interrupt delivery (though the reverse is not necessarily true)
1489      */
1490     kvm_async_interrupts_allowed = true;
1491     kvm_halt_in_kernel_allowed = true;
1492 
1493     kvm_init_irq_routing(s);
1494 
1495     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1496 }
1497 
1498 /* Find number of supported CPUs using the recommended
1499  * procedure from the kernel API documentation to cope with
1500  * older kernels that may be missing capabilities.
1501  */
1502 static int kvm_recommended_vcpus(KVMState *s)
1503 {
1504     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1505     return (ret) ? ret : 4;
1506 }
1507 
1508 static int kvm_max_vcpus(KVMState *s)
1509 {
1510     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1511     return (ret) ? ret : kvm_recommended_vcpus(s);
1512 }
1513 
1514 static int kvm_max_vcpu_id(KVMState *s)
1515 {
1516     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1517     return (ret) ? ret : kvm_max_vcpus(s);
1518 }
1519 
1520 bool kvm_vcpu_id_is_valid(int vcpu_id)
1521 {
1522     KVMState *s = KVM_STATE(current_machine->accelerator);
1523     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1524 }
1525 
1526 static int kvm_init(MachineState *ms)
1527 {
1528     MachineClass *mc = MACHINE_GET_CLASS(ms);
1529     static const char upgrade_note[] =
1530         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1531         "(see http://sourceforge.net/projects/kvm).\n";
1532     struct {
1533         const char *name;
1534         int num;
1535     } num_cpus[] = {
1536         { "SMP",          smp_cpus },
1537         { "hotpluggable", max_cpus },
1538         { NULL, }
1539     }, *nc = num_cpus;
1540     int soft_vcpus_limit, hard_vcpus_limit;
1541     KVMState *s;
1542     const KVMCapabilityInfo *missing_cap;
1543     int ret;
1544     int type = 0;
1545     const char *kvm_type;
1546 
1547     s = KVM_STATE(ms->accelerator);
1548 
1549     /*
1550      * On systems where the kernel can support different base page
1551      * sizes, host page size may be different from TARGET_PAGE_SIZE,
1552      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1553      * page size for the system though.
1554      */
1555     assert(TARGET_PAGE_SIZE <= getpagesize());
1556 
1557     s->sigmask_len = 8;
1558 
1559 #ifdef KVM_CAP_SET_GUEST_DEBUG
1560     QTAILQ_INIT(&s->kvm_sw_breakpoints);
1561 #endif
1562     QLIST_INIT(&s->kvm_parked_vcpus);
1563     s->vmfd = -1;
1564     s->fd = qemu_open("/dev/kvm", O_RDWR);
1565     if (s->fd == -1) {
1566         fprintf(stderr, "Could not access KVM kernel module: %m\n");
1567         ret = -errno;
1568         goto err;
1569     }
1570 
1571     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1572     if (ret < KVM_API_VERSION) {
1573         if (ret >= 0) {
1574             ret = -EINVAL;
1575         }
1576         fprintf(stderr, "kvm version too old\n");
1577         goto err;
1578     }
1579 
1580     if (ret > KVM_API_VERSION) {
1581         ret = -EINVAL;
1582         fprintf(stderr, "kvm version not supported\n");
1583         goto err;
1584     }
1585 
1586     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1587     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1588 
1589     /* If unspecified, use the default value */
1590     if (!s->nr_slots) {
1591         s->nr_slots = 32;
1592     }
1593 
1594     kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1595     if (mc->kvm_type) {
1596         type = mc->kvm_type(ms, kvm_type);
1597     } else if (kvm_type) {
1598         ret = -EINVAL;
1599         fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1600         goto err;
1601     }
1602 
1603     do {
1604         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1605     } while (ret == -EINTR);
1606 
1607     if (ret < 0) {
1608         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1609                 strerror(-ret));
1610 
1611 #ifdef TARGET_S390X
1612         if (ret == -EINVAL) {
1613             fprintf(stderr,
1614                     "Host kernel setup problem detected. Please verify:\n");
1615             fprintf(stderr, "- for kernels supporting the switch_amode or"
1616                     " user_mode parameters, whether\n");
1617             fprintf(stderr,
1618                     "  user space is running in primary address space\n");
1619             fprintf(stderr,
1620                     "- for kernels supporting the vm.allocate_pgste sysctl, "
1621                     "whether it is enabled\n");
1622         }
1623 #endif
1624         goto err;
1625     }
1626 
1627     s->vmfd = ret;
1628 
1629     /* check the vcpu limits */
1630     soft_vcpus_limit = kvm_recommended_vcpus(s);
1631     hard_vcpus_limit = kvm_max_vcpus(s);
1632 
1633     while (nc->name) {
1634         if (nc->num > soft_vcpus_limit) {
1635             warn_report("Number of %s cpus requested (%d) exceeds "
1636                         "the recommended cpus supported by KVM (%d)",
1637                         nc->name, nc->num, soft_vcpus_limit);
1638 
1639             if (nc->num > hard_vcpus_limit) {
1640                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1641                         "the maximum cpus supported by KVM (%d)\n",
1642                         nc->name, nc->num, hard_vcpus_limit);
1643                 exit(1);
1644             }
1645         }
1646         nc++;
1647     }
1648 
1649     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1650     if (!missing_cap) {
1651         missing_cap =
1652             kvm_check_extension_list(s, kvm_arch_required_capabilities);
1653     }
1654     if (missing_cap) {
1655         ret = -EINVAL;
1656         fprintf(stderr, "kvm does not support %s\n%s",
1657                 missing_cap->name, upgrade_note);
1658         goto err;
1659     }
1660 
1661     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1662     s->coalesced_pio = s->coalesced_mmio &&
1663                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1664 
1665 #ifdef KVM_CAP_VCPU_EVENTS
1666     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1667 #endif
1668 
1669     s->robust_singlestep =
1670         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1671 
1672 #ifdef KVM_CAP_DEBUGREGS
1673     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1674 #endif
1675 
1676 #ifdef KVM_CAP_IRQ_ROUTING
1677     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1678 #endif
1679 
1680     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1681 
1682     s->irq_set_ioctl = KVM_IRQ_LINE;
1683     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1684         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1685     }
1686 
1687     kvm_readonly_mem_allowed =
1688         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1689 
1690     kvm_eventfds_allowed =
1691         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1692 
1693     kvm_irqfds_allowed =
1694         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1695 
1696     kvm_resamplefds_allowed =
1697         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1698 
1699     kvm_vm_attributes_allowed =
1700         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1701 
1702     kvm_ioeventfd_any_length_allowed =
1703         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1704 
1705     kvm_state = s;
1706 
1707     /*
1708      * if memory encryption object is specified then initialize the memory
1709      * encryption context.
1710      */
1711     if (ms->memory_encryption) {
1712         kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
1713         if (!kvm_state->memcrypt_handle) {
1714             ret = -1;
1715             goto err;
1716         }
1717 
1718         kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
1719     }
1720 
1721     ret = kvm_arch_init(ms, s);
1722     if (ret < 0) {
1723         goto err;
1724     }
1725 
1726     if (machine_kernel_irqchip_allowed(ms)) {
1727         kvm_irqchip_create(ms, s);
1728     }
1729 
1730     if (kvm_eventfds_allowed) {
1731         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1732         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1733     }
1734     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
1735     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
1736 
1737     kvm_memory_listener_register(s, &s->memory_listener,
1738                                  &address_space_memory, 0);
1739     memory_listener_register(&kvm_io_listener,
1740                              &address_space_io);
1741     memory_listener_register(&kvm_coalesced_pio_listener,
1742                              &address_space_io);
1743 
1744     s->many_ioeventfds = kvm_check_many_ioeventfds();
1745 
1746     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1747     if (!s->sync_mmu) {
1748         qemu_balloon_inhibit(true);
1749     }
1750 
1751     return 0;
1752 
1753 err:
1754     assert(ret < 0);
1755     if (s->vmfd >= 0) {
1756         close(s->vmfd);
1757     }
1758     if (s->fd != -1) {
1759         close(s->fd);
1760     }
1761     g_free(s->memory_listener.slots);
1762 
1763     return ret;
1764 }
1765 
1766 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1767 {
1768     s->sigmask_len = sigmask_len;
1769 }
1770 
1771 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1772                           int size, uint32_t count)
1773 {
1774     int i;
1775     uint8_t *ptr = data;
1776 
1777     for (i = 0; i < count; i++) {
1778         address_space_rw(&address_space_io, port, attrs,
1779                          ptr, size,
1780                          direction == KVM_EXIT_IO_OUT);
1781         ptr += size;
1782     }
1783 }
1784 
1785 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1786 {
1787     fprintf(stderr, "KVM internal error. Suberror: %d\n",
1788             run->internal.suberror);
1789 
1790     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1791         int i;
1792 
1793         for (i = 0; i < run->internal.ndata; ++i) {
1794             fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1795                     i, (uint64_t)run->internal.data[i]);
1796         }
1797     }
1798     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1799         fprintf(stderr, "emulation failure\n");
1800         if (!kvm_arch_stop_on_emulation_error(cpu)) {
1801             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
1802             return EXCP_INTERRUPT;
1803         }
1804     }
1805     /* FIXME: Should trigger a qmp message to let management know
1806      * something went wrong.
1807      */
1808     return -1;
1809 }
1810 
1811 void kvm_flush_coalesced_mmio_buffer(void)
1812 {
1813     KVMState *s = kvm_state;
1814 
1815     if (s->coalesced_flush_in_progress) {
1816         return;
1817     }
1818 
1819     s->coalesced_flush_in_progress = true;
1820 
1821     if (s->coalesced_mmio_ring) {
1822         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1823         while (ring->first != ring->last) {
1824             struct kvm_coalesced_mmio *ent;
1825 
1826             ent = &ring->coalesced_mmio[ring->first];
1827 
1828             if (ent->pio == 1) {
1829                 address_space_rw(&address_space_io, ent->phys_addr,
1830                                  MEMTXATTRS_UNSPECIFIED, ent->data,
1831                                  ent->len, true);
1832             } else {
1833                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1834             }
1835             smp_wmb();
1836             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1837         }
1838     }
1839 
1840     s->coalesced_flush_in_progress = false;
1841 }
1842 
1843 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1844 {
1845     if (!cpu->vcpu_dirty) {
1846         kvm_arch_get_registers(cpu);
1847         cpu->vcpu_dirty = true;
1848     }
1849 }
1850 
1851 void kvm_cpu_synchronize_state(CPUState *cpu)
1852 {
1853     if (!cpu->vcpu_dirty) {
1854         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1855     }
1856 }
1857 
1858 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1859 {
1860     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1861     cpu->vcpu_dirty = false;
1862 }
1863 
1864 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1865 {
1866     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1867 }
1868 
1869 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1870 {
1871     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1872     cpu->vcpu_dirty = false;
1873 }
1874 
1875 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1876 {
1877     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1878 }
1879 
1880 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1881 {
1882     cpu->vcpu_dirty = true;
1883 }
1884 
1885 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1886 {
1887     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1888 }
1889 
1890 #ifdef KVM_HAVE_MCE_INJECTION
1891 static __thread void *pending_sigbus_addr;
1892 static __thread int pending_sigbus_code;
1893 static __thread bool have_sigbus_pending;
1894 #endif
1895 
1896 static void kvm_cpu_kick(CPUState *cpu)
1897 {
1898     atomic_set(&cpu->kvm_run->immediate_exit, 1);
1899 }
1900 
1901 static void kvm_cpu_kick_self(void)
1902 {
1903     if (kvm_immediate_exit) {
1904         kvm_cpu_kick(current_cpu);
1905     } else {
1906         qemu_cpu_kick_self();
1907     }
1908 }
1909 
1910 static void kvm_eat_signals(CPUState *cpu)
1911 {
1912     struct timespec ts = { 0, 0 };
1913     siginfo_t siginfo;
1914     sigset_t waitset;
1915     sigset_t chkset;
1916     int r;
1917 
1918     if (kvm_immediate_exit) {
1919         atomic_set(&cpu->kvm_run->immediate_exit, 0);
1920         /* Write kvm_run->immediate_exit before the cpu->exit_request
1921          * write in kvm_cpu_exec.
1922          */
1923         smp_wmb();
1924         return;
1925     }
1926 
1927     sigemptyset(&waitset);
1928     sigaddset(&waitset, SIG_IPI);
1929 
1930     do {
1931         r = sigtimedwait(&waitset, &siginfo, &ts);
1932         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1933             perror("sigtimedwait");
1934             exit(1);
1935         }
1936 
1937         r = sigpending(&chkset);
1938         if (r == -1) {
1939             perror("sigpending");
1940             exit(1);
1941         }
1942     } while (sigismember(&chkset, SIG_IPI));
1943 }
1944 
1945 int kvm_cpu_exec(CPUState *cpu)
1946 {
1947     struct kvm_run *run = cpu->kvm_run;
1948     int ret, run_ret;
1949 
1950     DPRINTF("kvm_cpu_exec()\n");
1951 
1952     if (kvm_arch_process_async_events(cpu)) {
1953         atomic_set(&cpu->exit_request, 0);
1954         return EXCP_HLT;
1955     }
1956 
1957     qemu_mutex_unlock_iothread();
1958     cpu_exec_start(cpu);
1959 
1960     do {
1961         MemTxAttrs attrs;
1962 
1963         if (cpu->vcpu_dirty) {
1964             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1965             cpu->vcpu_dirty = false;
1966         }
1967 
1968         kvm_arch_pre_run(cpu, run);
1969         if (atomic_read(&cpu->exit_request)) {
1970             DPRINTF("interrupt exit requested\n");
1971             /*
1972              * KVM requires us to reenter the kernel after IO exits to complete
1973              * instruction emulation. This self-signal will ensure that we
1974              * leave ASAP again.
1975              */
1976             kvm_cpu_kick_self();
1977         }
1978 
1979         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1980          * Matching barrier in kvm_eat_signals.
1981          */
1982         smp_rmb();
1983 
1984         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1985 
1986         attrs = kvm_arch_post_run(cpu, run);
1987 
1988 #ifdef KVM_HAVE_MCE_INJECTION
1989         if (unlikely(have_sigbus_pending)) {
1990             qemu_mutex_lock_iothread();
1991             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1992                                     pending_sigbus_addr);
1993             have_sigbus_pending = false;
1994             qemu_mutex_unlock_iothread();
1995         }
1996 #endif
1997 
1998         if (run_ret < 0) {
1999             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2000                 DPRINTF("io window exit\n");
2001                 kvm_eat_signals(cpu);
2002                 ret = EXCP_INTERRUPT;
2003                 break;
2004             }
2005             fprintf(stderr, "error: kvm run failed %s\n",
2006                     strerror(-run_ret));
2007 #ifdef TARGET_PPC
2008             if (run_ret == -EBUSY) {
2009                 fprintf(stderr,
2010                         "This is probably because your SMT is enabled.\n"
2011                         "VCPU can only run on primary threads with all "
2012                         "secondary threads offline.\n");
2013             }
2014 #endif
2015             ret = -1;
2016             break;
2017         }
2018 
2019         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2020         switch (run->exit_reason) {
2021         case KVM_EXIT_IO:
2022             DPRINTF("handle_io\n");
2023             /* Called outside BQL */
2024             kvm_handle_io(run->io.port, attrs,
2025                           (uint8_t *)run + run->io.data_offset,
2026                           run->io.direction,
2027                           run->io.size,
2028                           run->io.count);
2029             ret = 0;
2030             break;
2031         case KVM_EXIT_MMIO:
2032             DPRINTF("handle_mmio\n");
2033             /* Called outside BQL */
2034             address_space_rw(&address_space_memory,
2035                              run->mmio.phys_addr, attrs,
2036                              run->mmio.data,
2037                              run->mmio.len,
2038                              run->mmio.is_write);
2039             ret = 0;
2040             break;
2041         case KVM_EXIT_IRQ_WINDOW_OPEN:
2042             DPRINTF("irq_window_open\n");
2043             ret = EXCP_INTERRUPT;
2044             break;
2045         case KVM_EXIT_SHUTDOWN:
2046             DPRINTF("shutdown\n");
2047             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2048             ret = EXCP_INTERRUPT;
2049             break;
2050         case KVM_EXIT_UNKNOWN:
2051             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2052                     (uint64_t)run->hw.hardware_exit_reason);
2053             ret = -1;
2054             break;
2055         case KVM_EXIT_INTERNAL_ERROR:
2056             ret = kvm_handle_internal_error(cpu, run);
2057             break;
2058         case KVM_EXIT_SYSTEM_EVENT:
2059             switch (run->system_event.type) {
2060             case KVM_SYSTEM_EVENT_SHUTDOWN:
2061                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2062                 ret = EXCP_INTERRUPT;
2063                 break;
2064             case KVM_SYSTEM_EVENT_RESET:
2065                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2066                 ret = EXCP_INTERRUPT;
2067                 break;
2068             case KVM_SYSTEM_EVENT_CRASH:
2069                 kvm_cpu_synchronize_state(cpu);
2070                 qemu_mutex_lock_iothread();
2071                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2072                 qemu_mutex_unlock_iothread();
2073                 ret = 0;
2074                 break;
2075             default:
2076                 DPRINTF("kvm_arch_handle_exit\n");
2077                 ret = kvm_arch_handle_exit(cpu, run);
2078                 break;
2079             }
2080             break;
2081         default:
2082             DPRINTF("kvm_arch_handle_exit\n");
2083             ret = kvm_arch_handle_exit(cpu, run);
2084             break;
2085         }
2086     } while (ret == 0);
2087 
2088     cpu_exec_end(cpu);
2089     qemu_mutex_lock_iothread();
2090 
2091     if (ret < 0) {
2092         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2093         vm_stop(RUN_STATE_INTERNAL_ERROR);
2094     }
2095 
2096     atomic_set(&cpu->exit_request, 0);
2097     return ret;
2098 }
2099 
2100 int kvm_ioctl(KVMState *s, int type, ...)
2101 {
2102     int ret;
2103     void *arg;
2104     va_list ap;
2105 
2106     va_start(ap, type);
2107     arg = va_arg(ap, void *);
2108     va_end(ap);
2109 
2110     trace_kvm_ioctl(type, arg);
2111     ret = ioctl(s->fd, type, arg);
2112     if (ret == -1) {
2113         ret = -errno;
2114     }
2115     return ret;
2116 }
2117 
2118 int kvm_vm_ioctl(KVMState *s, int type, ...)
2119 {
2120     int ret;
2121     void *arg;
2122     va_list ap;
2123 
2124     va_start(ap, type);
2125     arg = va_arg(ap, void *);
2126     va_end(ap);
2127 
2128     trace_kvm_vm_ioctl(type, arg);
2129     ret = ioctl(s->vmfd, type, arg);
2130     if (ret == -1) {
2131         ret = -errno;
2132     }
2133     return ret;
2134 }
2135 
2136 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2137 {
2138     int ret;
2139     void *arg;
2140     va_list ap;
2141 
2142     va_start(ap, type);
2143     arg = va_arg(ap, void *);
2144     va_end(ap);
2145 
2146     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2147     ret = ioctl(cpu->kvm_fd, type, arg);
2148     if (ret == -1) {
2149         ret = -errno;
2150     }
2151     return ret;
2152 }
2153 
2154 int kvm_device_ioctl(int fd, int type, ...)
2155 {
2156     int ret;
2157     void *arg;
2158     va_list ap;
2159 
2160     va_start(ap, type);
2161     arg = va_arg(ap, void *);
2162     va_end(ap);
2163 
2164     trace_kvm_device_ioctl(fd, type, arg);
2165     ret = ioctl(fd, type, arg);
2166     if (ret == -1) {
2167         ret = -errno;
2168     }
2169     return ret;
2170 }
2171 
2172 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2173 {
2174     int ret;
2175     struct kvm_device_attr attribute = {
2176         .group = group,
2177         .attr = attr,
2178     };
2179 
2180     if (!kvm_vm_attributes_allowed) {
2181         return 0;
2182     }
2183 
2184     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2185     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2186     return ret ? 0 : 1;
2187 }
2188 
2189 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2190 {
2191     struct kvm_device_attr attribute = {
2192         .group = group,
2193         .attr = attr,
2194         .flags = 0,
2195     };
2196 
2197     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2198 }
2199 
2200 int kvm_device_access(int fd, int group, uint64_t attr,
2201                       void *val, bool write, Error **errp)
2202 {
2203     struct kvm_device_attr kvmattr;
2204     int err;
2205 
2206     kvmattr.flags = 0;
2207     kvmattr.group = group;
2208     kvmattr.attr = attr;
2209     kvmattr.addr = (uintptr_t)val;
2210 
2211     err = kvm_device_ioctl(fd,
2212                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2213                            &kvmattr);
2214     if (err < 0) {
2215         error_setg_errno(errp, -err,
2216                          "KVM_%s_DEVICE_ATTR failed: Group %d "
2217                          "attr 0x%016" PRIx64,
2218                          write ? "SET" : "GET", group, attr);
2219     }
2220     return err;
2221 }
2222 
2223 bool kvm_has_sync_mmu(void)
2224 {
2225     return kvm_state->sync_mmu;
2226 }
2227 
2228 int kvm_has_vcpu_events(void)
2229 {
2230     return kvm_state->vcpu_events;
2231 }
2232 
2233 int kvm_has_robust_singlestep(void)
2234 {
2235     return kvm_state->robust_singlestep;
2236 }
2237 
2238 int kvm_has_debugregs(void)
2239 {
2240     return kvm_state->debugregs;
2241 }
2242 
2243 int kvm_has_many_ioeventfds(void)
2244 {
2245     if (!kvm_enabled()) {
2246         return 0;
2247     }
2248     return kvm_state->many_ioeventfds;
2249 }
2250 
2251 int kvm_has_gsi_routing(void)
2252 {
2253 #ifdef KVM_CAP_IRQ_ROUTING
2254     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2255 #else
2256     return false;
2257 #endif
2258 }
2259 
2260 int kvm_has_intx_set_mask(void)
2261 {
2262     return kvm_state->intx_set_mask;
2263 }
2264 
2265 bool kvm_arm_supports_user_irq(void)
2266 {
2267     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2268 }
2269 
2270 #ifdef KVM_CAP_SET_GUEST_DEBUG
2271 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2272                                                  target_ulong pc)
2273 {
2274     struct kvm_sw_breakpoint *bp;
2275 
2276     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2277         if (bp->pc == pc) {
2278             return bp;
2279         }
2280     }
2281     return NULL;
2282 }
2283 
2284 int kvm_sw_breakpoints_active(CPUState *cpu)
2285 {
2286     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2287 }
2288 
2289 struct kvm_set_guest_debug_data {
2290     struct kvm_guest_debug dbg;
2291     int err;
2292 };
2293 
2294 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2295 {
2296     struct kvm_set_guest_debug_data *dbg_data =
2297         (struct kvm_set_guest_debug_data *) data.host_ptr;
2298 
2299     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2300                                    &dbg_data->dbg);
2301 }
2302 
2303 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2304 {
2305     struct kvm_set_guest_debug_data data;
2306 
2307     data.dbg.control = reinject_trap;
2308 
2309     if (cpu->singlestep_enabled) {
2310         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2311     }
2312     kvm_arch_update_guest_debug(cpu, &data.dbg);
2313 
2314     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2315                RUN_ON_CPU_HOST_PTR(&data));
2316     return data.err;
2317 }
2318 
2319 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2320                           target_ulong len, int type)
2321 {
2322     struct kvm_sw_breakpoint *bp;
2323     int err;
2324 
2325     if (type == GDB_BREAKPOINT_SW) {
2326         bp = kvm_find_sw_breakpoint(cpu, addr);
2327         if (bp) {
2328             bp->use_count++;
2329             return 0;
2330         }
2331 
2332         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2333         bp->pc = addr;
2334         bp->use_count = 1;
2335         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2336         if (err) {
2337             g_free(bp);
2338             return err;
2339         }
2340 
2341         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2342     } else {
2343         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2344         if (err) {
2345             return err;
2346         }
2347     }
2348 
2349     CPU_FOREACH(cpu) {
2350         err = kvm_update_guest_debug(cpu, 0);
2351         if (err) {
2352             return err;
2353         }
2354     }
2355     return 0;
2356 }
2357 
2358 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2359                           target_ulong len, int type)
2360 {
2361     struct kvm_sw_breakpoint *bp;
2362     int err;
2363 
2364     if (type == GDB_BREAKPOINT_SW) {
2365         bp = kvm_find_sw_breakpoint(cpu, addr);
2366         if (!bp) {
2367             return -ENOENT;
2368         }
2369 
2370         if (bp->use_count > 1) {
2371             bp->use_count--;
2372             return 0;
2373         }
2374 
2375         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2376         if (err) {
2377             return err;
2378         }
2379 
2380         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2381         g_free(bp);
2382     } else {
2383         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2384         if (err) {
2385             return err;
2386         }
2387     }
2388 
2389     CPU_FOREACH(cpu) {
2390         err = kvm_update_guest_debug(cpu, 0);
2391         if (err) {
2392             return err;
2393         }
2394     }
2395     return 0;
2396 }
2397 
2398 void kvm_remove_all_breakpoints(CPUState *cpu)
2399 {
2400     struct kvm_sw_breakpoint *bp, *next;
2401     KVMState *s = cpu->kvm_state;
2402     CPUState *tmpcpu;
2403 
2404     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2405         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2406             /* Try harder to find a CPU that currently sees the breakpoint. */
2407             CPU_FOREACH(tmpcpu) {
2408                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2409                     break;
2410                 }
2411             }
2412         }
2413         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2414         g_free(bp);
2415     }
2416     kvm_arch_remove_all_hw_breakpoints();
2417 
2418     CPU_FOREACH(cpu) {
2419         kvm_update_guest_debug(cpu, 0);
2420     }
2421 }
2422 
2423 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2424 
2425 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2426 {
2427     return -EINVAL;
2428 }
2429 
2430 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2431                           target_ulong len, int type)
2432 {
2433     return -EINVAL;
2434 }
2435 
2436 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2437                           target_ulong len, int type)
2438 {
2439     return -EINVAL;
2440 }
2441 
2442 void kvm_remove_all_breakpoints(CPUState *cpu)
2443 {
2444 }
2445 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2446 
2447 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2448 {
2449     KVMState *s = kvm_state;
2450     struct kvm_signal_mask *sigmask;
2451     int r;
2452 
2453     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2454 
2455     sigmask->len = s->sigmask_len;
2456     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2457     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2458     g_free(sigmask);
2459 
2460     return r;
2461 }
2462 
2463 static void kvm_ipi_signal(int sig)
2464 {
2465     if (current_cpu) {
2466         assert(kvm_immediate_exit);
2467         kvm_cpu_kick(current_cpu);
2468     }
2469 }
2470 
2471 void kvm_init_cpu_signals(CPUState *cpu)
2472 {
2473     int r;
2474     sigset_t set;
2475     struct sigaction sigact;
2476 
2477     memset(&sigact, 0, sizeof(sigact));
2478     sigact.sa_handler = kvm_ipi_signal;
2479     sigaction(SIG_IPI, &sigact, NULL);
2480 
2481     pthread_sigmask(SIG_BLOCK, NULL, &set);
2482 #if defined KVM_HAVE_MCE_INJECTION
2483     sigdelset(&set, SIGBUS);
2484     pthread_sigmask(SIG_SETMASK, &set, NULL);
2485 #endif
2486     sigdelset(&set, SIG_IPI);
2487     if (kvm_immediate_exit) {
2488         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2489     } else {
2490         r = kvm_set_signal_mask(cpu, &set);
2491     }
2492     if (r) {
2493         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2494         exit(1);
2495     }
2496 }
2497 
2498 /* Called asynchronously in VCPU thread.  */
2499 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2500 {
2501 #ifdef KVM_HAVE_MCE_INJECTION
2502     if (have_sigbus_pending) {
2503         return 1;
2504     }
2505     have_sigbus_pending = true;
2506     pending_sigbus_addr = addr;
2507     pending_sigbus_code = code;
2508     atomic_set(&cpu->exit_request, 1);
2509     return 0;
2510 #else
2511     return 1;
2512 #endif
2513 }
2514 
2515 /* Called synchronously (via signalfd) in main thread.  */
2516 int kvm_on_sigbus(int code, void *addr)
2517 {
2518 #ifdef KVM_HAVE_MCE_INJECTION
2519     /* Action required MCE kills the process if SIGBUS is blocked.  Because
2520      * that's what happens in the I/O thread, where we handle MCE via signalfd,
2521      * we can only get action optional here.
2522      */
2523     assert(code != BUS_MCEERR_AR);
2524     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2525     return 0;
2526 #else
2527     return 1;
2528 #endif
2529 }
2530 
2531 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2532 {
2533     int ret;
2534     struct kvm_create_device create_dev;
2535 
2536     create_dev.type = type;
2537     create_dev.fd = -1;
2538     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2539 
2540     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2541         return -ENOTSUP;
2542     }
2543 
2544     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2545     if (ret) {
2546         return ret;
2547     }
2548 
2549     return test ? 0 : create_dev.fd;
2550 }
2551 
2552 bool kvm_device_supported(int vmfd, uint64_t type)
2553 {
2554     struct kvm_create_device create_dev = {
2555         .type = type,
2556         .fd = -1,
2557         .flags = KVM_CREATE_DEVICE_TEST,
2558     };
2559 
2560     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2561         return false;
2562     }
2563 
2564     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2565 }
2566 
2567 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2568 {
2569     struct kvm_one_reg reg;
2570     int r;
2571 
2572     reg.id = id;
2573     reg.addr = (uintptr_t) source;
2574     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2575     if (r) {
2576         trace_kvm_failed_reg_set(id, strerror(-r));
2577     }
2578     return r;
2579 }
2580 
2581 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2582 {
2583     struct kvm_one_reg reg;
2584     int r;
2585 
2586     reg.id = id;
2587     reg.addr = (uintptr_t) target;
2588     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2589     if (r) {
2590         trace_kvm_failed_reg_get(id, strerror(-r));
2591     }
2592     return r;
2593 }
2594 
2595 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2596 {
2597     AccelClass *ac = ACCEL_CLASS(oc);
2598     ac->name = "KVM";
2599     ac->init_machine = kvm_init;
2600     ac->allowed = &kvm_allowed;
2601 }
2602 
2603 static const TypeInfo kvm_accel_type = {
2604     .name = TYPE_KVM_ACCEL,
2605     .parent = TYPE_ACCEL,
2606     .class_init = kvm_accel_class_init,
2607     .instance_size = sizeof(KVMState),
2608 };
2609 
2610 static void kvm_type_init(void)
2611 {
2612     type_register_static(&kvm_accel_type);
2613 }
2614 
2615 type_init(kvm_type_init);
2616