1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/hw.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/cpus.h" 33 #include "qemu/bswap.h" 34 #include "exec/memory.h" 35 #include "exec/ram_addr.h" 36 #include "exec/address-spaces.h" 37 #include "qemu/event_notifier.h" 38 #include "trace.h" 39 #include "hw/irq.h" 40 #include "sysemu/sev.h" 41 #include "sysemu/balloon.h" 42 43 #include "hw/boards.h" 44 45 /* This check must be after config-host.h is included */ 46 #ifdef CONFIG_EVENTFD 47 #include <sys/eventfd.h> 48 #endif 49 50 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 51 * need to use the real host PAGE_SIZE, as that's what KVM will use. 52 */ 53 #define PAGE_SIZE getpagesize() 54 55 //#define DEBUG_KVM 56 57 #ifdef DEBUG_KVM 58 #define DPRINTF(fmt, ...) \ 59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 60 #else 61 #define DPRINTF(fmt, ...) \ 62 do { } while (0) 63 #endif 64 65 #define KVM_MSI_HASHTAB_SIZE 256 66 67 struct KVMParkedVcpu { 68 unsigned long vcpu_id; 69 int kvm_fd; 70 QLIST_ENTRY(KVMParkedVcpu) node; 71 }; 72 73 struct KVMState 74 { 75 AccelState parent_obj; 76 77 int nr_slots; 78 int fd; 79 int vmfd; 80 int coalesced_mmio; 81 int coalesced_pio; 82 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 83 bool coalesced_flush_in_progress; 84 int vcpu_events; 85 int robust_singlestep; 86 int debugregs; 87 #ifdef KVM_CAP_SET_GUEST_DEBUG 88 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 89 #endif 90 int many_ioeventfds; 91 int intx_set_mask; 92 bool sync_mmu; 93 /* The man page (and posix) say ioctl numbers are signed int, but 94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 95 * unsigned, and treating them as signed here can break things */ 96 unsigned irq_set_ioctl; 97 unsigned int sigmask_len; 98 GHashTable *gsimap; 99 #ifdef KVM_CAP_IRQ_ROUTING 100 struct kvm_irq_routing *irq_routes; 101 int nr_allocated_irq_routes; 102 unsigned long *used_gsi_bitmap; 103 unsigned int gsi_count; 104 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 105 #endif 106 KVMMemoryListener memory_listener; 107 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 108 109 /* memory encryption */ 110 void *memcrypt_handle; 111 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 112 }; 113 114 KVMState *kvm_state; 115 bool kvm_kernel_irqchip; 116 bool kvm_split_irqchip; 117 bool kvm_async_interrupts_allowed; 118 bool kvm_halt_in_kernel_allowed; 119 bool kvm_eventfds_allowed; 120 bool kvm_irqfds_allowed; 121 bool kvm_resamplefds_allowed; 122 bool kvm_msi_via_irqfd_allowed; 123 bool kvm_gsi_routing_allowed; 124 bool kvm_gsi_direct_mapping; 125 bool kvm_allowed; 126 bool kvm_readonly_mem_allowed; 127 bool kvm_vm_attributes_allowed; 128 bool kvm_direct_msi_allowed; 129 bool kvm_ioeventfd_any_length_allowed; 130 bool kvm_msi_use_devid; 131 static bool kvm_immediate_exit; 132 133 static const KVMCapabilityInfo kvm_required_capabilites[] = { 134 KVM_CAP_INFO(USER_MEMORY), 135 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 136 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 137 KVM_CAP_LAST_INFO 138 }; 139 140 int kvm_get_max_memslots(void) 141 { 142 KVMState *s = KVM_STATE(current_machine->accelerator); 143 144 return s->nr_slots; 145 } 146 147 bool kvm_memcrypt_enabled(void) 148 { 149 if (kvm_state && kvm_state->memcrypt_handle) { 150 return true; 151 } 152 153 return false; 154 } 155 156 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 157 { 158 if (kvm_state->memcrypt_handle && 159 kvm_state->memcrypt_encrypt_data) { 160 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 161 ptr, len); 162 } 163 164 return 1; 165 } 166 167 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 168 { 169 KVMState *s = kvm_state; 170 int i; 171 172 for (i = 0; i < s->nr_slots; i++) { 173 if (kml->slots[i].memory_size == 0) { 174 return &kml->slots[i]; 175 } 176 } 177 178 return NULL; 179 } 180 181 bool kvm_has_free_slot(MachineState *ms) 182 { 183 KVMState *s = KVM_STATE(ms->accelerator); 184 185 return kvm_get_free_slot(&s->memory_listener); 186 } 187 188 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 189 { 190 KVMSlot *slot = kvm_get_free_slot(kml); 191 192 if (slot) { 193 return slot; 194 } 195 196 fprintf(stderr, "%s: no free slot available\n", __func__); 197 abort(); 198 } 199 200 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 201 hwaddr start_addr, 202 hwaddr size) 203 { 204 KVMState *s = kvm_state; 205 int i; 206 207 for (i = 0; i < s->nr_slots; i++) { 208 KVMSlot *mem = &kml->slots[i]; 209 210 if (start_addr == mem->start_addr && size == mem->memory_size) { 211 return mem; 212 } 213 } 214 215 return NULL; 216 } 217 218 /* 219 * Calculate and align the start address and the size of the section. 220 * Return the size. If the size is 0, the aligned section is empty. 221 */ 222 static hwaddr kvm_align_section(MemoryRegionSection *section, 223 hwaddr *start) 224 { 225 hwaddr size = int128_get64(section->size); 226 hwaddr delta, aligned; 227 228 /* kvm works in page size chunks, but the function may be called 229 with sub-page size and unaligned start address. Pad the start 230 address to next and truncate size to previous page boundary. */ 231 aligned = ROUND_UP(section->offset_within_address_space, 232 qemu_real_host_page_size); 233 delta = aligned - section->offset_within_address_space; 234 *start = aligned; 235 if (delta > size) { 236 return 0; 237 } 238 239 return (size - delta) & qemu_real_host_page_mask; 240 } 241 242 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 243 hwaddr *phys_addr) 244 { 245 KVMMemoryListener *kml = &s->memory_listener; 246 int i; 247 248 for (i = 0; i < s->nr_slots; i++) { 249 KVMSlot *mem = &kml->slots[i]; 250 251 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 252 *phys_addr = mem->start_addr + (ram - mem->ram); 253 return 1; 254 } 255 } 256 257 return 0; 258 } 259 260 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 261 { 262 KVMState *s = kvm_state; 263 struct kvm_userspace_memory_region mem; 264 int ret; 265 266 mem.slot = slot->slot | (kml->as_id << 16); 267 mem.guest_phys_addr = slot->start_addr; 268 mem.userspace_addr = (unsigned long)slot->ram; 269 mem.flags = slot->flags; 270 271 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 272 /* Set the slot size to 0 before setting the slot to the desired 273 * value. This is needed based on KVM commit 75d61fbc. */ 274 mem.memory_size = 0; 275 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 276 } 277 mem.memory_size = slot->memory_size; 278 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 279 slot->old_flags = mem.flags; 280 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 281 mem.memory_size, mem.userspace_addr, ret); 282 return ret; 283 } 284 285 int kvm_destroy_vcpu(CPUState *cpu) 286 { 287 KVMState *s = kvm_state; 288 long mmap_size; 289 struct KVMParkedVcpu *vcpu = NULL; 290 int ret = 0; 291 292 DPRINTF("kvm_destroy_vcpu\n"); 293 294 ret = kvm_arch_destroy_vcpu(cpu); 295 if (ret < 0) { 296 goto err; 297 } 298 299 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 300 if (mmap_size < 0) { 301 ret = mmap_size; 302 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 303 goto err; 304 } 305 306 ret = munmap(cpu->kvm_run, mmap_size); 307 if (ret < 0) { 308 goto err; 309 } 310 311 vcpu = g_malloc0(sizeof(*vcpu)); 312 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 313 vcpu->kvm_fd = cpu->kvm_fd; 314 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 315 err: 316 return ret; 317 } 318 319 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 320 { 321 struct KVMParkedVcpu *cpu; 322 323 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 324 if (cpu->vcpu_id == vcpu_id) { 325 int kvm_fd; 326 327 QLIST_REMOVE(cpu, node); 328 kvm_fd = cpu->kvm_fd; 329 g_free(cpu); 330 return kvm_fd; 331 } 332 } 333 334 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 335 } 336 337 int kvm_init_vcpu(CPUState *cpu) 338 { 339 KVMState *s = kvm_state; 340 long mmap_size; 341 int ret; 342 343 DPRINTF("kvm_init_vcpu\n"); 344 345 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 346 if (ret < 0) { 347 DPRINTF("kvm_create_vcpu failed\n"); 348 goto err; 349 } 350 351 cpu->kvm_fd = ret; 352 cpu->kvm_state = s; 353 cpu->vcpu_dirty = true; 354 355 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 356 if (mmap_size < 0) { 357 ret = mmap_size; 358 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 359 goto err; 360 } 361 362 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 363 cpu->kvm_fd, 0); 364 if (cpu->kvm_run == MAP_FAILED) { 365 ret = -errno; 366 DPRINTF("mmap'ing vcpu state failed\n"); 367 goto err; 368 } 369 370 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 371 s->coalesced_mmio_ring = 372 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 373 } 374 375 ret = kvm_arch_init_vcpu(cpu); 376 err: 377 return ret; 378 } 379 380 /* 381 * dirty pages logging control 382 */ 383 384 static int kvm_mem_flags(MemoryRegion *mr) 385 { 386 bool readonly = mr->readonly || memory_region_is_romd(mr); 387 int flags = 0; 388 389 if (memory_region_get_dirty_log_mask(mr) != 0) { 390 flags |= KVM_MEM_LOG_DIRTY_PAGES; 391 } 392 if (readonly && kvm_readonly_mem_allowed) { 393 flags |= KVM_MEM_READONLY; 394 } 395 return flags; 396 } 397 398 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 399 MemoryRegion *mr) 400 { 401 mem->flags = kvm_mem_flags(mr); 402 403 /* If nothing changed effectively, no need to issue ioctl */ 404 if (mem->flags == mem->old_flags) { 405 return 0; 406 } 407 408 return kvm_set_user_memory_region(kml, mem, false); 409 } 410 411 static int kvm_section_update_flags(KVMMemoryListener *kml, 412 MemoryRegionSection *section) 413 { 414 hwaddr start_addr, size; 415 KVMSlot *mem; 416 417 size = kvm_align_section(section, &start_addr); 418 if (!size) { 419 return 0; 420 } 421 422 mem = kvm_lookup_matching_slot(kml, start_addr, size); 423 if (!mem) { 424 /* We don't have a slot if we want to trap every access. */ 425 return 0; 426 } 427 428 return kvm_slot_update_flags(kml, mem, section->mr); 429 } 430 431 static void kvm_log_start(MemoryListener *listener, 432 MemoryRegionSection *section, 433 int old, int new) 434 { 435 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 436 int r; 437 438 if (old != 0) { 439 return; 440 } 441 442 r = kvm_section_update_flags(kml, section); 443 if (r < 0) { 444 abort(); 445 } 446 } 447 448 static void kvm_log_stop(MemoryListener *listener, 449 MemoryRegionSection *section, 450 int old, int new) 451 { 452 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 453 int r; 454 455 if (new != 0) { 456 return; 457 } 458 459 r = kvm_section_update_flags(kml, section); 460 if (r < 0) { 461 abort(); 462 } 463 } 464 465 /* get kvm's dirty pages bitmap and update qemu's */ 466 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 467 unsigned long *bitmap) 468 { 469 ram_addr_t start = section->offset_within_region + 470 memory_region_get_ram_addr(section->mr); 471 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 472 473 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 474 return 0; 475 } 476 477 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 478 479 /** 480 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 481 * This function updates qemu's dirty bitmap using 482 * memory_region_set_dirty(). This means all bits are set 483 * to dirty. 484 * 485 * @start_add: start of logged region. 486 * @end_addr: end of logged region. 487 */ 488 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 489 MemoryRegionSection *section) 490 { 491 KVMState *s = kvm_state; 492 struct kvm_dirty_log d = {}; 493 KVMSlot *mem; 494 hwaddr start_addr, size; 495 496 size = kvm_align_section(section, &start_addr); 497 if (size) { 498 mem = kvm_lookup_matching_slot(kml, start_addr, size); 499 if (!mem) { 500 /* We don't have a slot if we want to trap every access. */ 501 return 0; 502 } 503 504 /* XXX bad kernel interface alert 505 * For dirty bitmap, kernel allocates array of size aligned to 506 * bits-per-long. But for case when the kernel is 64bits and 507 * the userspace is 32bits, userspace can't align to the same 508 * bits-per-long, since sizeof(long) is different between kernel 509 * and user space. This way, userspace will provide buffer which 510 * may be 4 bytes less than the kernel will use, resulting in 511 * userspace memory corruption (which is not detectable by valgrind 512 * too, in most cases). 513 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 514 * a hope that sizeof(long) won't become >8 any time soon. 515 */ 516 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 517 /*HOST_LONG_BITS*/ 64) / 8; 518 d.dirty_bitmap = g_malloc0(size); 519 520 d.slot = mem->slot | (kml->as_id << 16); 521 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 522 DPRINTF("ioctl failed %d\n", errno); 523 g_free(d.dirty_bitmap); 524 return -1; 525 } 526 527 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 528 g_free(d.dirty_bitmap); 529 } 530 531 return 0; 532 } 533 534 static void kvm_coalesce_mmio_region(MemoryListener *listener, 535 MemoryRegionSection *secion, 536 hwaddr start, hwaddr size) 537 { 538 KVMState *s = kvm_state; 539 540 if (s->coalesced_mmio) { 541 struct kvm_coalesced_mmio_zone zone; 542 543 zone.addr = start; 544 zone.size = size; 545 zone.pad = 0; 546 547 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 548 } 549 } 550 551 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 552 MemoryRegionSection *secion, 553 hwaddr start, hwaddr size) 554 { 555 KVMState *s = kvm_state; 556 557 if (s->coalesced_mmio) { 558 struct kvm_coalesced_mmio_zone zone; 559 560 zone.addr = start; 561 zone.size = size; 562 zone.pad = 0; 563 564 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 565 } 566 } 567 568 static void kvm_coalesce_pio_add(MemoryListener *listener, 569 MemoryRegionSection *section, 570 hwaddr start, hwaddr size) 571 { 572 KVMState *s = kvm_state; 573 574 if (s->coalesced_pio) { 575 struct kvm_coalesced_mmio_zone zone; 576 577 zone.addr = start; 578 zone.size = size; 579 zone.pio = 1; 580 581 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 582 } 583 } 584 585 static void kvm_coalesce_pio_del(MemoryListener *listener, 586 MemoryRegionSection *section, 587 hwaddr start, hwaddr size) 588 { 589 KVMState *s = kvm_state; 590 591 if (s->coalesced_pio) { 592 struct kvm_coalesced_mmio_zone zone; 593 594 zone.addr = start; 595 zone.size = size; 596 zone.pio = 1; 597 598 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 599 } 600 } 601 602 static MemoryListener kvm_coalesced_pio_listener = { 603 .coalesced_io_add = kvm_coalesce_pio_add, 604 .coalesced_io_del = kvm_coalesce_pio_del, 605 }; 606 607 int kvm_check_extension(KVMState *s, unsigned int extension) 608 { 609 int ret; 610 611 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 612 if (ret < 0) { 613 ret = 0; 614 } 615 616 return ret; 617 } 618 619 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 620 { 621 int ret; 622 623 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 624 if (ret < 0) { 625 /* VM wide version not implemented, use global one instead */ 626 ret = kvm_check_extension(s, extension); 627 } 628 629 return ret; 630 } 631 632 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 633 { 634 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 635 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 636 * endianness, but the memory core hands them in target endianness. 637 * For example, PPC is always treated as big-endian even if running 638 * on KVM and on PPC64LE. Correct here. 639 */ 640 switch (size) { 641 case 2: 642 val = bswap16(val); 643 break; 644 case 4: 645 val = bswap32(val); 646 break; 647 } 648 #endif 649 return val; 650 } 651 652 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 653 bool assign, uint32_t size, bool datamatch) 654 { 655 int ret; 656 struct kvm_ioeventfd iofd = { 657 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 658 .addr = addr, 659 .len = size, 660 .flags = 0, 661 .fd = fd, 662 }; 663 664 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 665 datamatch); 666 if (!kvm_enabled()) { 667 return -ENOSYS; 668 } 669 670 if (datamatch) { 671 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 672 } 673 if (!assign) { 674 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 675 } 676 677 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 678 679 if (ret < 0) { 680 return -errno; 681 } 682 683 return 0; 684 } 685 686 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 687 bool assign, uint32_t size, bool datamatch) 688 { 689 struct kvm_ioeventfd kick = { 690 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 691 .addr = addr, 692 .flags = KVM_IOEVENTFD_FLAG_PIO, 693 .len = size, 694 .fd = fd, 695 }; 696 int r; 697 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 698 if (!kvm_enabled()) { 699 return -ENOSYS; 700 } 701 if (datamatch) { 702 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 703 } 704 if (!assign) { 705 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 706 } 707 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 708 if (r < 0) { 709 return r; 710 } 711 return 0; 712 } 713 714 715 static int kvm_check_many_ioeventfds(void) 716 { 717 /* Userspace can use ioeventfd for io notification. This requires a host 718 * that supports eventfd(2) and an I/O thread; since eventfd does not 719 * support SIGIO it cannot interrupt the vcpu. 720 * 721 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 722 * can avoid creating too many ioeventfds. 723 */ 724 #if defined(CONFIG_EVENTFD) 725 int ioeventfds[7]; 726 int i, ret = 0; 727 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 728 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 729 if (ioeventfds[i] < 0) { 730 break; 731 } 732 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 733 if (ret < 0) { 734 close(ioeventfds[i]); 735 break; 736 } 737 } 738 739 /* Decide whether many devices are supported or not */ 740 ret = i == ARRAY_SIZE(ioeventfds); 741 742 while (i-- > 0) { 743 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 744 close(ioeventfds[i]); 745 } 746 return ret; 747 #else 748 return 0; 749 #endif 750 } 751 752 static const KVMCapabilityInfo * 753 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 754 { 755 while (list->name) { 756 if (!kvm_check_extension(s, list->value)) { 757 return list; 758 } 759 list++; 760 } 761 return NULL; 762 } 763 764 static void kvm_set_phys_mem(KVMMemoryListener *kml, 765 MemoryRegionSection *section, bool add) 766 { 767 KVMSlot *mem; 768 int err; 769 MemoryRegion *mr = section->mr; 770 bool writeable = !mr->readonly && !mr->rom_device; 771 hwaddr start_addr, size; 772 void *ram; 773 774 if (!memory_region_is_ram(mr)) { 775 if (writeable || !kvm_readonly_mem_allowed) { 776 return; 777 } else if (!mr->romd_mode) { 778 /* If the memory device is not in romd_mode, then we actually want 779 * to remove the kvm memory slot so all accesses will trap. */ 780 add = false; 781 } 782 } 783 784 size = kvm_align_section(section, &start_addr); 785 if (!size) { 786 return; 787 } 788 789 /* use aligned delta to align the ram address */ 790 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 791 (start_addr - section->offset_within_address_space); 792 793 if (!add) { 794 mem = kvm_lookup_matching_slot(kml, start_addr, size); 795 if (!mem) { 796 return; 797 } 798 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 799 kvm_physical_sync_dirty_bitmap(kml, section); 800 } 801 802 /* unregister the slot */ 803 mem->memory_size = 0; 804 mem->flags = 0; 805 err = kvm_set_user_memory_region(kml, mem, false); 806 if (err) { 807 fprintf(stderr, "%s: error unregistering slot: %s\n", 808 __func__, strerror(-err)); 809 abort(); 810 } 811 return; 812 } 813 814 /* register the new slot */ 815 mem = kvm_alloc_slot(kml); 816 mem->memory_size = size; 817 mem->start_addr = start_addr; 818 mem->ram = ram; 819 mem->flags = kvm_mem_flags(mr); 820 821 err = kvm_set_user_memory_region(kml, mem, true); 822 if (err) { 823 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 824 strerror(-err)); 825 abort(); 826 } 827 } 828 829 static void kvm_region_add(MemoryListener *listener, 830 MemoryRegionSection *section) 831 { 832 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 833 834 memory_region_ref(section->mr); 835 kvm_set_phys_mem(kml, section, true); 836 } 837 838 static void kvm_region_del(MemoryListener *listener, 839 MemoryRegionSection *section) 840 { 841 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 842 843 kvm_set_phys_mem(kml, section, false); 844 memory_region_unref(section->mr); 845 } 846 847 static void kvm_log_sync(MemoryListener *listener, 848 MemoryRegionSection *section) 849 { 850 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 851 int r; 852 853 r = kvm_physical_sync_dirty_bitmap(kml, section); 854 if (r < 0) { 855 abort(); 856 } 857 } 858 859 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 860 MemoryRegionSection *section, 861 bool match_data, uint64_t data, 862 EventNotifier *e) 863 { 864 int fd = event_notifier_get_fd(e); 865 int r; 866 867 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 868 data, true, int128_get64(section->size), 869 match_data); 870 if (r < 0) { 871 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 872 __func__, strerror(-r), -r); 873 abort(); 874 } 875 } 876 877 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 878 MemoryRegionSection *section, 879 bool match_data, uint64_t data, 880 EventNotifier *e) 881 { 882 int fd = event_notifier_get_fd(e); 883 int r; 884 885 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 886 data, false, int128_get64(section->size), 887 match_data); 888 if (r < 0) { 889 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 890 __func__, strerror(-r), -r); 891 abort(); 892 } 893 } 894 895 static void kvm_io_ioeventfd_add(MemoryListener *listener, 896 MemoryRegionSection *section, 897 bool match_data, uint64_t data, 898 EventNotifier *e) 899 { 900 int fd = event_notifier_get_fd(e); 901 int r; 902 903 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 904 data, true, int128_get64(section->size), 905 match_data); 906 if (r < 0) { 907 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 908 __func__, strerror(-r), -r); 909 abort(); 910 } 911 } 912 913 static void kvm_io_ioeventfd_del(MemoryListener *listener, 914 MemoryRegionSection *section, 915 bool match_data, uint64_t data, 916 EventNotifier *e) 917 918 { 919 int fd = event_notifier_get_fd(e); 920 int r; 921 922 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 923 data, false, int128_get64(section->size), 924 match_data); 925 if (r < 0) { 926 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 927 __func__, strerror(-r), -r); 928 abort(); 929 } 930 } 931 932 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 933 AddressSpace *as, int as_id) 934 { 935 int i; 936 937 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 938 kml->as_id = as_id; 939 940 for (i = 0; i < s->nr_slots; i++) { 941 kml->slots[i].slot = i; 942 } 943 944 kml->listener.region_add = kvm_region_add; 945 kml->listener.region_del = kvm_region_del; 946 kml->listener.log_start = kvm_log_start; 947 kml->listener.log_stop = kvm_log_stop; 948 kml->listener.log_sync = kvm_log_sync; 949 kml->listener.priority = 10; 950 951 memory_listener_register(&kml->listener, as); 952 } 953 954 static MemoryListener kvm_io_listener = { 955 .eventfd_add = kvm_io_ioeventfd_add, 956 .eventfd_del = kvm_io_ioeventfd_del, 957 .priority = 10, 958 }; 959 960 int kvm_set_irq(KVMState *s, int irq, int level) 961 { 962 struct kvm_irq_level event; 963 int ret; 964 965 assert(kvm_async_interrupts_enabled()); 966 967 event.level = level; 968 event.irq = irq; 969 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 970 if (ret < 0) { 971 perror("kvm_set_irq"); 972 abort(); 973 } 974 975 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 976 } 977 978 #ifdef KVM_CAP_IRQ_ROUTING 979 typedef struct KVMMSIRoute { 980 struct kvm_irq_routing_entry kroute; 981 QTAILQ_ENTRY(KVMMSIRoute) entry; 982 } KVMMSIRoute; 983 984 static void set_gsi(KVMState *s, unsigned int gsi) 985 { 986 set_bit(gsi, s->used_gsi_bitmap); 987 } 988 989 static void clear_gsi(KVMState *s, unsigned int gsi) 990 { 991 clear_bit(gsi, s->used_gsi_bitmap); 992 } 993 994 void kvm_init_irq_routing(KVMState *s) 995 { 996 int gsi_count, i; 997 998 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 999 if (gsi_count > 0) { 1000 /* Round up so we can search ints using ffs */ 1001 s->used_gsi_bitmap = bitmap_new(gsi_count); 1002 s->gsi_count = gsi_count; 1003 } 1004 1005 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1006 s->nr_allocated_irq_routes = 0; 1007 1008 if (!kvm_direct_msi_allowed) { 1009 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1010 QTAILQ_INIT(&s->msi_hashtab[i]); 1011 } 1012 } 1013 1014 kvm_arch_init_irq_routing(s); 1015 } 1016 1017 void kvm_irqchip_commit_routes(KVMState *s) 1018 { 1019 int ret; 1020 1021 if (kvm_gsi_direct_mapping()) { 1022 return; 1023 } 1024 1025 if (!kvm_gsi_routing_enabled()) { 1026 return; 1027 } 1028 1029 s->irq_routes->flags = 0; 1030 trace_kvm_irqchip_commit_routes(); 1031 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1032 assert(ret == 0); 1033 } 1034 1035 static void kvm_add_routing_entry(KVMState *s, 1036 struct kvm_irq_routing_entry *entry) 1037 { 1038 struct kvm_irq_routing_entry *new; 1039 int n, size; 1040 1041 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1042 n = s->nr_allocated_irq_routes * 2; 1043 if (n < 64) { 1044 n = 64; 1045 } 1046 size = sizeof(struct kvm_irq_routing); 1047 size += n * sizeof(*new); 1048 s->irq_routes = g_realloc(s->irq_routes, size); 1049 s->nr_allocated_irq_routes = n; 1050 } 1051 n = s->irq_routes->nr++; 1052 new = &s->irq_routes->entries[n]; 1053 1054 *new = *entry; 1055 1056 set_gsi(s, entry->gsi); 1057 } 1058 1059 static int kvm_update_routing_entry(KVMState *s, 1060 struct kvm_irq_routing_entry *new_entry) 1061 { 1062 struct kvm_irq_routing_entry *entry; 1063 int n; 1064 1065 for (n = 0; n < s->irq_routes->nr; n++) { 1066 entry = &s->irq_routes->entries[n]; 1067 if (entry->gsi != new_entry->gsi) { 1068 continue; 1069 } 1070 1071 if(!memcmp(entry, new_entry, sizeof *entry)) { 1072 return 0; 1073 } 1074 1075 *entry = *new_entry; 1076 1077 return 0; 1078 } 1079 1080 return -ESRCH; 1081 } 1082 1083 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1084 { 1085 struct kvm_irq_routing_entry e = {}; 1086 1087 assert(pin < s->gsi_count); 1088 1089 e.gsi = irq; 1090 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1091 e.flags = 0; 1092 e.u.irqchip.irqchip = irqchip; 1093 e.u.irqchip.pin = pin; 1094 kvm_add_routing_entry(s, &e); 1095 } 1096 1097 void kvm_irqchip_release_virq(KVMState *s, int virq) 1098 { 1099 struct kvm_irq_routing_entry *e; 1100 int i; 1101 1102 if (kvm_gsi_direct_mapping()) { 1103 return; 1104 } 1105 1106 for (i = 0; i < s->irq_routes->nr; i++) { 1107 e = &s->irq_routes->entries[i]; 1108 if (e->gsi == virq) { 1109 s->irq_routes->nr--; 1110 *e = s->irq_routes->entries[s->irq_routes->nr]; 1111 } 1112 } 1113 clear_gsi(s, virq); 1114 kvm_arch_release_virq_post(virq); 1115 trace_kvm_irqchip_release_virq(virq); 1116 } 1117 1118 static unsigned int kvm_hash_msi(uint32_t data) 1119 { 1120 /* This is optimized for IA32 MSI layout. However, no other arch shall 1121 * repeat the mistake of not providing a direct MSI injection API. */ 1122 return data & 0xff; 1123 } 1124 1125 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1126 { 1127 KVMMSIRoute *route, *next; 1128 unsigned int hash; 1129 1130 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1131 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1132 kvm_irqchip_release_virq(s, route->kroute.gsi); 1133 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1134 g_free(route); 1135 } 1136 } 1137 } 1138 1139 static int kvm_irqchip_get_virq(KVMState *s) 1140 { 1141 int next_virq; 1142 1143 /* 1144 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1145 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1146 * number can succeed even though a new route entry cannot be added. 1147 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1148 */ 1149 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1150 kvm_flush_dynamic_msi_routes(s); 1151 } 1152 1153 /* Return the lowest unused GSI in the bitmap */ 1154 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1155 if (next_virq >= s->gsi_count) { 1156 return -ENOSPC; 1157 } else { 1158 return next_virq; 1159 } 1160 } 1161 1162 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1163 { 1164 unsigned int hash = kvm_hash_msi(msg.data); 1165 KVMMSIRoute *route; 1166 1167 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1168 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1169 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1170 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1171 return route; 1172 } 1173 } 1174 return NULL; 1175 } 1176 1177 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1178 { 1179 struct kvm_msi msi; 1180 KVMMSIRoute *route; 1181 1182 if (kvm_direct_msi_allowed) { 1183 msi.address_lo = (uint32_t)msg.address; 1184 msi.address_hi = msg.address >> 32; 1185 msi.data = le32_to_cpu(msg.data); 1186 msi.flags = 0; 1187 memset(msi.pad, 0, sizeof(msi.pad)); 1188 1189 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1190 } 1191 1192 route = kvm_lookup_msi_route(s, msg); 1193 if (!route) { 1194 int virq; 1195 1196 virq = kvm_irqchip_get_virq(s); 1197 if (virq < 0) { 1198 return virq; 1199 } 1200 1201 route = g_malloc0(sizeof(KVMMSIRoute)); 1202 route->kroute.gsi = virq; 1203 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1204 route->kroute.flags = 0; 1205 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1206 route->kroute.u.msi.address_hi = msg.address >> 32; 1207 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1208 1209 kvm_add_routing_entry(s, &route->kroute); 1210 kvm_irqchip_commit_routes(s); 1211 1212 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1213 entry); 1214 } 1215 1216 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1217 1218 return kvm_set_irq(s, route->kroute.gsi, 1); 1219 } 1220 1221 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1222 { 1223 struct kvm_irq_routing_entry kroute = {}; 1224 int virq; 1225 MSIMessage msg = {0, 0}; 1226 1227 if (pci_available && dev) { 1228 msg = pci_get_msi_message(dev, vector); 1229 } 1230 1231 if (kvm_gsi_direct_mapping()) { 1232 return kvm_arch_msi_data_to_gsi(msg.data); 1233 } 1234 1235 if (!kvm_gsi_routing_enabled()) { 1236 return -ENOSYS; 1237 } 1238 1239 virq = kvm_irqchip_get_virq(s); 1240 if (virq < 0) { 1241 return virq; 1242 } 1243 1244 kroute.gsi = virq; 1245 kroute.type = KVM_IRQ_ROUTING_MSI; 1246 kroute.flags = 0; 1247 kroute.u.msi.address_lo = (uint32_t)msg.address; 1248 kroute.u.msi.address_hi = msg.address >> 32; 1249 kroute.u.msi.data = le32_to_cpu(msg.data); 1250 if (pci_available && kvm_msi_devid_required()) { 1251 kroute.flags = KVM_MSI_VALID_DEVID; 1252 kroute.u.msi.devid = pci_requester_id(dev); 1253 } 1254 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1255 kvm_irqchip_release_virq(s, virq); 1256 return -EINVAL; 1257 } 1258 1259 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1260 vector, virq); 1261 1262 kvm_add_routing_entry(s, &kroute); 1263 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1264 kvm_irqchip_commit_routes(s); 1265 1266 return virq; 1267 } 1268 1269 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1270 PCIDevice *dev) 1271 { 1272 struct kvm_irq_routing_entry kroute = {}; 1273 1274 if (kvm_gsi_direct_mapping()) { 1275 return 0; 1276 } 1277 1278 if (!kvm_irqchip_in_kernel()) { 1279 return -ENOSYS; 1280 } 1281 1282 kroute.gsi = virq; 1283 kroute.type = KVM_IRQ_ROUTING_MSI; 1284 kroute.flags = 0; 1285 kroute.u.msi.address_lo = (uint32_t)msg.address; 1286 kroute.u.msi.address_hi = msg.address >> 32; 1287 kroute.u.msi.data = le32_to_cpu(msg.data); 1288 if (pci_available && kvm_msi_devid_required()) { 1289 kroute.flags = KVM_MSI_VALID_DEVID; 1290 kroute.u.msi.devid = pci_requester_id(dev); 1291 } 1292 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1293 return -EINVAL; 1294 } 1295 1296 trace_kvm_irqchip_update_msi_route(virq); 1297 1298 return kvm_update_routing_entry(s, &kroute); 1299 } 1300 1301 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1302 bool assign) 1303 { 1304 struct kvm_irqfd irqfd = { 1305 .fd = fd, 1306 .gsi = virq, 1307 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1308 }; 1309 1310 if (rfd != -1) { 1311 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1312 irqfd.resamplefd = rfd; 1313 } 1314 1315 if (!kvm_irqfds_enabled()) { 1316 return -ENOSYS; 1317 } 1318 1319 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1320 } 1321 1322 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1323 { 1324 struct kvm_irq_routing_entry kroute = {}; 1325 int virq; 1326 1327 if (!kvm_gsi_routing_enabled()) { 1328 return -ENOSYS; 1329 } 1330 1331 virq = kvm_irqchip_get_virq(s); 1332 if (virq < 0) { 1333 return virq; 1334 } 1335 1336 kroute.gsi = virq; 1337 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1338 kroute.flags = 0; 1339 kroute.u.adapter.summary_addr = adapter->summary_addr; 1340 kroute.u.adapter.ind_addr = adapter->ind_addr; 1341 kroute.u.adapter.summary_offset = adapter->summary_offset; 1342 kroute.u.adapter.ind_offset = adapter->ind_offset; 1343 kroute.u.adapter.adapter_id = adapter->adapter_id; 1344 1345 kvm_add_routing_entry(s, &kroute); 1346 1347 return virq; 1348 } 1349 1350 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1351 { 1352 struct kvm_irq_routing_entry kroute = {}; 1353 int virq; 1354 1355 if (!kvm_gsi_routing_enabled()) { 1356 return -ENOSYS; 1357 } 1358 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1359 return -ENOSYS; 1360 } 1361 virq = kvm_irqchip_get_virq(s); 1362 if (virq < 0) { 1363 return virq; 1364 } 1365 1366 kroute.gsi = virq; 1367 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1368 kroute.flags = 0; 1369 kroute.u.hv_sint.vcpu = vcpu; 1370 kroute.u.hv_sint.sint = sint; 1371 1372 kvm_add_routing_entry(s, &kroute); 1373 kvm_irqchip_commit_routes(s); 1374 1375 return virq; 1376 } 1377 1378 #else /* !KVM_CAP_IRQ_ROUTING */ 1379 1380 void kvm_init_irq_routing(KVMState *s) 1381 { 1382 } 1383 1384 void kvm_irqchip_release_virq(KVMState *s, int virq) 1385 { 1386 } 1387 1388 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1389 { 1390 abort(); 1391 } 1392 1393 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1394 { 1395 return -ENOSYS; 1396 } 1397 1398 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1399 { 1400 return -ENOSYS; 1401 } 1402 1403 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1404 { 1405 return -ENOSYS; 1406 } 1407 1408 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1409 { 1410 abort(); 1411 } 1412 1413 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1414 { 1415 return -ENOSYS; 1416 } 1417 #endif /* !KVM_CAP_IRQ_ROUTING */ 1418 1419 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1420 EventNotifier *rn, int virq) 1421 { 1422 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1423 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1424 } 1425 1426 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1427 int virq) 1428 { 1429 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1430 false); 1431 } 1432 1433 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1434 EventNotifier *rn, qemu_irq irq) 1435 { 1436 gpointer key, gsi; 1437 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1438 1439 if (!found) { 1440 return -ENXIO; 1441 } 1442 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1443 } 1444 1445 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1446 qemu_irq irq) 1447 { 1448 gpointer key, gsi; 1449 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1450 1451 if (!found) { 1452 return -ENXIO; 1453 } 1454 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1455 } 1456 1457 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1458 { 1459 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1460 } 1461 1462 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1463 { 1464 int ret; 1465 1466 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1467 ; 1468 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1469 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1470 if (ret < 0) { 1471 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1472 exit(1); 1473 } 1474 } else { 1475 return; 1476 } 1477 1478 /* First probe and see if there's a arch-specific hook to create the 1479 * in-kernel irqchip for us */ 1480 ret = kvm_arch_irqchip_create(machine, s); 1481 if (ret == 0) { 1482 if (machine_kernel_irqchip_split(machine)) { 1483 perror("Split IRQ chip mode not supported."); 1484 exit(1); 1485 } else { 1486 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1487 } 1488 } 1489 if (ret < 0) { 1490 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1491 exit(1); 1492 } 1493 1494 kvm_kernel_irqchip = true; 1495 /* If we have an in-kernel IRQ chip then we must have asynchronous 1496 * interrupt delivery (though the reverse is not necessarily true) 1497 */ 1498 kvm_async_interrupts_allowed = true; 1499 kvm_halt_in_kernel_allowed = true; 1500 1501 kvm_init_irq_routing(s); 1502 1503 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1504 } 1505 1506 /* Find number of supported CPUs using the recommended 1507 * procedure from the kernel API documentation to cope with 1508 * older kernels that may be missing capabilities. 1509 */ 1510 static int kvm_recommended_vcpus(KVMState *s) 1511 { 1512 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1513 return (ret) ? ret : 4; 1514 } 1515 1516 static int kvm_max_vcpus(KVMState *s) 1517 { 1518 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1519 return (ret) ? ret : kvm_recommended_vcpus(s); 1520 } 1521 1522 static int kvm_max_vcpu_id(KVMState *s) 1523 { 1524 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1525 return (ret) ? ret : kvm_max_vcpus(s); 1526 } 1527 1528 bool kvm_vcpu_id_is_valid(int vcpu_id) 1529 { 1530 KVMState *s = KVM_STATE(current_machine->accelerator); 1531 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1532 } 1533 1534 static int kvm_init(MachineState *ms) 1535 { 1536 MachineClass *mc = MACHINE_GET_CLASS(ms); 1537 static const char upgrade_note[] = 1538 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1539 "(see http://sourceforge.net/projects/kvm).\n"; 1540 struct { 1541 const char *name; 1542 int num; 1543 } num_cpus[] = { 1544 { "SMP", smp_cpus }, 1545 { "hotpluggable", max_cpus }, 1546 { NULL, } 1547 }, *nc = num_cpus; 1548 int soft_vcpus_limit, hard_vcpus_limit; 1549 KVMState *s; 1550 const KVMCapabilityInfo *missing_cap; 1551 int ret; 1552 int type = 0; 1553 const char *kvm_type; 1554 1555 s = KVM_STATE(ms->accelerator); 1556 1557 /* 1558 * On systems where the kernel can support different base page 1559 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1560 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1561 * page size for the system though. 1562 */ 1563 assert(TARGET_PAGE_SIZE <= getpagesize()); 1564 1565 s->sigmask_len = 8; 1566 1567 #ifdef KVM_CAP_SET_GUEST_DEBUG 1568 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1569 #endif 1570 QLIST_INIT(&s->kvm_parked_vcpus); 1571 s->vmfd = -1; 1572 s->fd = qemu_open("/dev/kvm", O_RDWR); 1573 if (s->fd == -1) { 1574 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1575 ret = -errno; 1576 goto err; 1577 } 1578 1579 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1580 if (ret < KVM_API_VERSION) { 1581 if (ret >= 0) { 1582 ret = -EINVAL; 1583 } 1584 fprintf(stderr, "kvm version too old\n"); 1585 goto err; 1586 } 1587 1588 if (ret > KVM_API_VERSION) { 1589 ret = -EINVAL; 1590 fprintf(stderr, "kvm version not supported\n"); 1591 goto err; 1592 } 1593 1594 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1595 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1596 1597 /* If unspecified, use the default value */ 1598 if (!s->nr_slots) { 1599 s->nr_slots = 32; 1600 } 1601 1602 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1603 if (mc->kvm_type) { 1604 type = mc->kvm_type(ms, kvm_type); 1605 } else if (kvm_type) { 1606 ret = -EINVAL; 1607 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1608 goto err; 1609 } 1610 1611 do { 1612 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1613 } while (ret == -EINTR); 1614 1615 if (ret < 0) { 1616 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1617 strerror(-ret)); 1618 1619 #ifdef TARGET_S390X 1620 if (ret == -EINVAL) { 1621 fprintf(stderr, 1622 "Host kernel setup problem detected. Please verify:\n"); 1623 fprintf(stderr, "- for kernels supporting the switch_amode or" 1624 " user_mode parameters, whether\n"); 1625 fprintf(stderr, 1626 " user space is running in primary address space\n"); 1627 fprintf(stderr, 1628 "- for kernels supporting the vm.allocate_pgste sysctl, " 1629 "whether it is enabled\n"); 1630 } 1631 #endif 1632 goto err; 1633 } 1634 1635 s->vmfd = ret; 1636 1637 /* check the vcpu limits */ 1638 soft_vcpus_limit = kvm_recommended_vcpus(s); 1639 hard_vcpus_limit = kvm_max_vcpus(s); 1640 1641 while (nc->name) { 1642 if (nc->num > soft_vcpus_limit) { 1643 warn_report("Number of %s cpus requested (%d) exceeds " 1644 "the recommended cpus supported by KVM (%d)", 1645 nc->name, nc->num, soft_vcpus_limit); 1646 1647 if (nc->num > hard_vcpus_limit) { 1648 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1649 "the maximum cpus supported by KVM (%d)\n", 1650 nc->name, nc->num, hard_vcpus_limit); 1651 exit(1); 1652 } 1653 } 1654 nc++; 1655 } 1656 1657 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1658 if (!missing_cap) { 1659 missing_cap = 1660 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1661 } 1662 if (missing_cap) { 1663 ret = -EINVAL; 1664 fprintf(stderr, "kvm does not support %s\n%s", 1665 missing_cap->name, upgrade_note); 1666 goto err; 1667 } 1668 1669 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1670 s->coalesced_pio = s->coalesced_mmio && 1671 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1672 1673 #ifdef KVM_CAP_VCPU_EVENTS 1674 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1675 #endif 1676 1677 s->robust_singlestep = 1678 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1679 1680 #ifdef KVM_CAP_DEBUGREGS 1681 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1682 #endif 1683 1684 #ifdef KVM_CAP_IRQ_ROUTING 1685 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1686 #endif 1687 1688 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1689 1690 s->irq_set_ioctl = KVM_IRQ_LINE; 1691 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1692 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1693 } 1694 1695 kvm_readonly_mem_allowed = 1696 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1697 1698 kvm_eventfds_allowed = 1699 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1700 1701 kvm_irqfds_allowed = 1702 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1703 1704 kvm_resamplefds_allowed = 1705 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1706 1707 kvm_vm_attributes_allowed = 1708 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1709 1710 kvm_ioeventfd_any_length_allowed = 1711 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1712 1713 kvm_state = s; 1714 1715 /* 1716 * if memory encryption object is specified then initialize the memory 1717 * encryption context. 1718 */ 1719 if (ms->memory_encryption) { 1720 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 1721 if (!kvm_state->memcrypt_handle) { 1722 ret = -1; 1723 goto err; 1724 } 1725 1726 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 1727 } 1728 1729 ret = kvm_arch_init(ms, s); 1730 if (ret < 0) { 1731 goto err; 1732 } 1733 1734 if (machine_kernel_irqchip_allowed(ms)) { 1735 kvm_irqchip_create(ms, s); 1736 } 1737 1738 if (kvm_eventfds_allowed) { 1739 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1740 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1741 } 1742 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 1743 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 1744 1745 kvm_memory_listener_register(s, &s->memory_listener, 1746 &address_space_memory, 0); 1747 memory_listener_register(&kvm_io_listener, 1748 &address_space_io); 1749 memory_listener_register(&kvm_coalesced_pio_listener, 1750 &address_space_io); 1751 1752 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1753 1754 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 1755 if (!s->sync_mmu) { 1756 qemu_balloon_inhibit(true); 1757 } 1758 1759 return 0; 1760 1761 err: 1762 assert(ret < 0); 1763 if (s->vmfd >= 0) { 1764 close(s->vmfd); 1765 } 1766 if (s->fd != -1) { 1767 close(s->fd); 1768 } 1769 g_free(s->memory_listener.slots); 1770 1771 return ret; 1772 } 1773 1774 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1775 { 1776 s->sigmask_len = sigmask_len; 1777 } 1778 1779 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1780 int size, uint32_t count) 1781 { 1782 int i; 1783 uint8_t *ptr = data; 1784 1785 for (i = 0; i < count; i++) { 1786 address_space_rw(&address_space_io, port, attrs, 1787 ptr, size, 1788 direction == KVM_EXIT_IO_OUT); 1789 ptr += size; 1790 } 1791 } 1792 1793 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1794 { 1795 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1796 run->internal.suberror); 1797 1798 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1799 int i; 1800 1801 for (i = 0; i < run->internal.ndata; ++i) { 1802 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1803 i, (uint64_t)run->internal.data[i]); 1804 } 1805 } 1806 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1807 fprintf(stderr, "emulation failure\n"); 1808 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1809 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 1810 return EXCP_INTERRUPT; 1811 } 1812 } 1813 /* FIXME: Should trigger a qmp message to let management know 1814 * something went wrong. 1815 */ 1816 return -1; 1817 } 1818 1819 void kvm_flush_coalesced_mmio_buffer(void) 1820 { 1821 KVMState *s = kvm_state; 1822 1823 if (s->coalesced_flush_in_progress) { 1824 return; 1825 } 1826 1827 s->coalesced_flush_in_progress = true; 1828 1829 if (s->coalesced_mmio_ring) { 1830 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1831 while (ring->first != ring->last) { 1832 struct kvm_coalesced_mmio *ent; 1833 1834 ent = &ring->coalesced_mmio[ring->first]; 1835 1836 if (ent->pio == 1) { 1837 address_space_rw(&address_space_io, ent->phys_addr, 1838 MEMTXATTRS_UNSPECIFIED, ent->data, 1839 ent->len, true); 1840 } else { 1841 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1842 } 1843 smp_wmb(); 1844 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1845 } 1846 } 1847 1848 s->coalesced_flush_in_progress = false; 1849 } 1850 1851 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1852 { 1853 if (!cpu->vcpu_dirty) { 1854 kvm_arch_get_registers(cpu); 1855 cpu->vcpu_dirty = true; 1856 } 1857 } 1858 1859 void kvm_cpu_synchronize_state(CPUState *cpu) 1860 { 1861 if (!cpu->vcpu_dirty) { 1862 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1863 } 1864 } 1865 1866 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1867 { 1868 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1869 cpu->vcpu_dirty = false; 1870 } 1871 1872 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1873 { 1874 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1875 } 1876 1877 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1878 { 1879 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1880 cpu->vcpu_dirty = false; 1881 } 1882 1883 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1884 { 1885 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1886 } 1887 1888 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1889 { 1890 cpu->vcpu_dirty = true; 1891 } 1892 1893 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1894 { 1895 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1896 } 1897 1898 #ifdef KVM_HAVE_MCE_INJECTION 1899 static __thread void *pending_sigbus_addr; 1900 static __thread int pending_sigbus_code; 1901 static __thread bool have_sigbus_pending; 1902 #endif 1903 1904 static void kvm_cpu_kick(CPUState *cpu) 1905 { 1906 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1907 } 1908 1909 static void kvm_cpu_kick_self(void) 1910 { 1911 if (kvm_immediate_exit) { 1912 kvm_cpu_kick(current_cpu); 1913 } else { 1914 qemu_cpu_kick_self(); 1915 } 1916 } 1917 1918 static void kvm_eat_signals(CPUState *cpu) 1919 { 1920 struct timespec ts = { 0, 0 }; 1921 siginfo_t siginfo; 1922 sigset_t waitset; 1923 sigset_t chkset; 1924 int r; 1925 1926 if (kvm_immediate_exit) { 1927 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1928 /* Write kvm_run->immediate_exit before the cpu->exit_request 1929 * write in kvm_cpu_exec. 1930 */ 1931 smp_wmb(); 1932 return; 1933 } 1934 1935 sigemptyset(&waitset); 1936 sigaddset(&waitset, SIG_IPI); 1937 1938 do { 1939 r = sigtimedwait(&waitset, &siginfo, &ts); 1940 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1941 perror("sigtimedwait"); 1942 exit(1); 1943 } 1944 1945 r = sigpending(&chkset); 1946 if (r == -1) { 1947 perror("sigpending"); 1948 exit(1); 1949 } 1950 } while (sigismember(&chkset, SIG_IPI)); 1951 } 1952 1953 int kvm_cpu_exec(CPUState *cpu) 1954 { 1955 struct kvm_run *run = cpu->kvm_run; 1956 int ret, run_ret; 1957 1958 DPRINTF("kvm_cpu_exec()\n"); 1959 1960 if (kvm_arch_process_async_events(cpu)) { 1961 atomic_set(&cpu->exit_request, 0); 1962 return EXCP_HLT; 1963 } 1964 1965 qemu_mutex_unlock_iothread(); 1966 cpu_exec_start(cpu); 1967 1968 do { 1969 MemTxAttrs attrs; 1970 1971 if (cpu->vcpu_dirty) { 1972 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1973 cpu->vcpu_dirty = false; 1974 } 1975 1976 kvm_arch_pre_run(cpu, run); 1977 if (atomic_read(&cpu->exit_request)) { 1978 DPRINTF("interrupt exit requested\n"); 1979 /* 1980 * KVM requires us to reenter the kernel after IO exits to complete 1981 * instruction emulation. This self-signal will ensure that we 1982 * leave ASAP again. 1983 */ 1984 kvm_cpu_kick_self(); 1985 } 1986 1987 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1988 * Matching barrier in kvm_eat_signals. 1989 */ 1990 smp_rmb(); 1991 1992 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1993 1994 attrs = kvm_arch_post_run(cpu, run); 1995 1996 #ifdef KVM_HAVE_MCE_INJECTION 1997 if (unlikely(have_sigbus_pending)) { 1998 qemu_mutex_lock_iothread(); 1999 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2000 pending_sigbus_addr); 2001 have_sigbus_pending = false; 2002 qemu_mutex_unlock_iothread(); 2003 } 2004 #endif 2005 2006 if (run_ret < 0) { 2007 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2008 DPRINTF("io window exit\n"); 2009 kvm_eat_signals(cpu); 2010 ret = EXCP_INTERRUPT; 2011 break; 2012 } 2013 fprintf(stderr, "error: kvm run failed %s\n", 2014 strerror(-run_ret)); 2015 #ifdef TARGET_PPC 2016 if (run_ret == -EBUSY) { 2017 fprintf(stderr, 2018 "This is probably because your SMT is enabled.\n" 2019 "VCPU can only run on primary threads with all " 2020 "secondary threads offline.\n"); 2021 } 2022 #endif 2023 ret = -1; 2024 break; 2025 } 2026 2027 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2028 switch (run->exit_reason) { 2029 case KVM_EXIT_IO: 2030 DPRINTF("handle_io\n"); 2031 /* Called outside BQL */ 2032 kvm_handle_io(run->io.port, attrs, 2033 (uint8_t *)run + run->io.data_offset, 2034 run->io.direction, 2035 run->io.size, 2036 run->io.count); 2037 ret = 0; 2038 break; 2039 case KVM_EXIT_MMIO: 2040 DPRINTF("handle_mmio\n"); 2041 /* Called outside BQL */ 2042 address_space_rw(&address_space_memory, 2043 run->mmio.phys_addr, attrs, 2044 run->mmio.data, 2045 run->mmio.len, 2046 run->mmio.is_write); 2047 ret = 0; 2048 break; 2049 case KVM_EXIT_IRQ_WINDOW_OPEN: 2050 DPRINTF("irq_window_open\n"); 2051 ret = EXCP_INTERRUPT; 2052 break; 2053 case KVM_EXIT_SHUTDOWN: 2054 DPRINTF("shutdown\n"); 2055 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2056 ret = EXCP_INTERRUPT; 2057 break; 2058 case KVM_EXIT_UNKNOWN: 2059 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2060 (uint64_t)run->hw.hardware_exit_reason); 2061 ret = -1; 2062 break; 2063 case KVM_EXIT_INTERNAL_ERROR: 2064 ret = kvm_handle_internal_error(cpu, run); 2065 break; 2066 case KVM_EXIT_SYSTEM_EVENT: 2067 switch (run->system_event.type) { 2068 case KVM_SYSTEM_EVENT_SHUTDOWN: 2069 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2070 ret = EXCP_INTERRUPT; 2071 break; 2072 case KVM_SYSTEM_EVENT_RESET: 2073 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2074 ret = EXCP_INTERRUPT; 2075 break; 2076 case KVM_SYSTEM_EVENT_CRASH: 2077 kvm_cpu_synchronize_state(cpu); 2078 qemu_mutex_lock_iothread(); 2079 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2080 qemu_mutex_unlock_iothread(); 2081 ret = 0; 2082 break; 2083 default: 2084 DPRINTF("kvm_arch_handle_exit\n"); 2085 ret = kvm_arch_handle_exit(cpu, run); 2086 break; 2087 } 2088 break; 2089 default: 2090 DPRINTF("kvm_arch_handle_exit\n"); 2091 ret = kvm_arch_handle_exit(cpu, run); 2092 break; 2093 } 2094 } while (ret == 0); 2095 2096 cpu_exec_end(cpu); 2097 qemu_mutex_lock_iothread(); 2098 2099 if (ret < 0) { 2100 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2101 vm_stop(RUN_STATE_INTERNAL_ERROR); 2102 } 2103 2104 atomic_set(&cpu->exit_request, 0); 2105 return ret; 2106 } 2107 2108 int kvm_ioctl(KVMState *s, int type, ...) 2109 { 2110 int ret; 2111 void *arg; 2112 va_list ap; 2113 2114 va_start(ap, type); 2115 arg = va_arg(ap, void *); 2116 va_end(ap); 2117 2118 trace_kvm_ioctl(type, arg); 2119 ret = ioctl(s->fd, type, arg); 2120 if (ret == -1) { 2121 ret = -errno; 2122 } 2123 return ret; 2124 } 2125 2126 int kvm_vm_ioctl(KVMState *s, int type, ...) 2127 { 2128 int ret; 2129 void *arg; 2130 va_list ap; 2131 2132 va_start(ap, type); 2133 arg = va_arg(ap, void *); 2134 va_end(ap); 2135 2136 trace_kvm_vm_ioctl(type, arg); 2137 ret = ioctl(s->vmfd, type, arg); 2138 if (ret == -1) { 2139 ret = -errno; 2140 } 2141 return ret; 2142 } 2143 2144 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2145 { 2146 int ret; 2147 void *arg; 2148 va_list ap; 2149 2150 va_start(ap, type); 2151 arg = va_arg(ap, void *); 2152 va_end(ap); 2153 2154 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2155 ret = ioctl(cpu->kvm_fd, type, arg); 2156 if (ret == -1) { 2157 ret = -errno; 2158 } 2159 return ret; 2160 } 2161 2162 int kvm_device_ioctl(int fd, int type, ...) 2163 { 2164 int ret; 2165 void *arg; 2166 va_list ap; 2167 2168 va_start(ap, type); 2169 arg = va_arg(ap, void *); 2170 va_end(ap); 2171 2172 trace_kvm_device_ioctl(fd, type, arg); 2173 ret = ioctl(fd, type, arg); 2174 if (ret == -1) { 2175 ret = -errno; 2176 } 2177 return ret; 2178 } 2179 2180 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2181 { 2182 int ret; 2183 struct kvm_device_attr attribute = { 2184 .group = group, 2185 .attr = attr, 2186 }; 2187 2188 if (!kvm_vm_attributes_allowed) { 2189 return 0; 2190 } 2191 2192 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2193 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2194 return ret ? 0 : 1; 2195 } 2196 2197 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2198 { 2199 struct kvm_device_attr attribute = { 2200 .group = group, 2201 .attr = attr, 2202 .flags = 0, 2203 }; 2204 2205 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2206 } 2207 2208 int kvm_device_access(int fd, int group, uint64_t attr, 2209 void *val, bool write, Error **errp) 2210 { 2211 struct kvm_device_attr kvmattr; 2212 int err; 2213 2214 kvmattr.flags = 0; 2215 kvmattr.group = group; 2216 kvmattr.attr = attr; 2217 kvmattr.addr = (uintptr_t)val; 2218 2219 err = kvm_device_ioctl(fd, 2220 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2221 &kvmattr); 2222 if (err < 0) { 2223 error_setg_errno(errp, -err, 2224 "KVM_%s_DEVICE_ATTR failed: Group %d " 2225 "attr 0x%016" PRIx64, 2226 write ? "SET" : "GET", group, attr); 2227 } 2228 return err; 2229 } 2230 2231 bool kvm_has_sync_mmu(void) 2232 { 2233 return kvm_state->sync_mmu; 2234 } 2235 2236 int kvm_has_vcpu_events(void) 2237 { 2238 return kvm_state->vcpu_events; 2239 } 2240 2241 int kvm_has_robust_singlestep(void) 2242 { 2243 return kvm_state->robust_singlestep; 2244 } 2245 2246 int kvm_has_debugregs(void) 2247 { 2248 return kvm_state->debugregs; 2249 } 2250 2251 int kvm_has_many_ioeventfds(void) 2252 { 2253 if (!kvm_enabled()) { 2254 return 0; 2255 } 2256 return kvm_state->many_ioeventfds; 2257 } 2258 2259 int kvm_has_gsi_routing(void) 2260 { 2261 #ifdef KVM_CAP_IRQ_ROUTING 2262 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2263 #else 2264 return false; 2265 #endif 2266 } 2267 2268 int kvm_has_intx_set_mask(void) 2269 { 2270 return kvm_state->intx_set_mask; 2271 } 2272 2273 bool kvm_arm_supports_user_irq(void) 2274 { 2275 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2276 } 2277 2278 #ifdef KVM_CAP_SET_GUEST_DEBUG 2279 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2280 target_ulong pc) 2281 { 2282 struct kvm_sw_breakpoint *bp; 2283 2284 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2285 if (bp->pc == pc) { 2286 return bp; 2287 } 2288 } 2289 return NULL; 2290 } 2291 2292 int kvm_sw_breakpoints_active(CPUState *cpu) 2293 { 2294 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2295 } 2296 2297 struct kvm_set_guest_debug_data { 2298 struct kvm_guest_debug dbg; 2299 int err; 2300 }; 2301 2302 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2303 { 2304 struct kvm_set_guest_debug_data *dbg_data = 2305 (struct kvm_set_guest_debug_data *) data.host_ptr; 2306 2307 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2308 &dbg_data->dbg); 2309 } 2310 2311 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2312 { 2313 struct kvm_set_guest_debug_data data; 2314 2315 data.dbg.control = reinject_trap; 2316 2317 if (cpu->singlestep_enabled) { 2318 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2319 } 2320 kvm_arch_update_guest_debug(cpu, &data.dbg); 2321 2322 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2323 RUN_ON_CPU_HOST_PTR(&data)); 2324 return data.err; 2325 } 2326 2327 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2328 target_ulong len, int type) 2329 { 2330 struct kvm_sw_breakpoint *bp; 2331 int err; 2332 2333 if (type == GDB_BREAKPOINT_SW) { 2334 bp = kvm_find_sw_breakpoint(cpu, addr); 2335 if (bp) { 2336 bp->use_count++; 2337 return 0; 2338 } 2339 2340 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2341 bp->pc = addr; 2342 bp->use_count = 1; 2343 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2344 if (err) { 2345 g_free(bp); 2346 return err; 2347 } 2348 2349 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2350 } else { 2351 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2352 if (err) { 2353 return err; 2354 } 2355 } 2356 2357 CPU_FOREACH(cpu) { 2358 err = kvm_update_guest_debug(cpu, 0); 2359 if (err) { 2360 return err; 2361 } 2362 } 2363 return 0; 2364 } 2365 2366 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2367 target_ulong len, int type) 2368 { 2369 struct kvm_sw_breakpoint *bp; 2370 int err; 2371 2372 if (type == GDB_BREAKPOINT_SW) { 2373 bp = kvm_find_sw_breakpoint(cpu, addr); 2374 if (!bp) { 2375 return -ENOENT; 2376 } 2377 2378 if (bp->use_count > 1) { 2379 bp->use_count--; 2380 return 0; 2381 } 2382 2383 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2384 if (err) { 2385 return err; 2386 } 2387 2388 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2389 g_free(bp); 2390 } else { 2391 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2392 if (err) { 2393 return err; 2394 } 2395 } 2396 2397 CPU_FOREACH(cpu) { 2398 err = kvm_update_guest_debug(cpu, 0); 2399 if (err) { 2400 return err; 2401 } 2402 } 2403 return 0; 2404 } 2405 2406 void kvm_remove_all_breakpoints(CPUState *cpu) 2407 { 2408 struct kvm_sw_breakpoint *bp, *next; 2409 KVMState *s = cpu->kvm_state; 2410 CPUState *tmpcpu; 2411 2412 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2413 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2414 /* Try harder to find a CPU that currently sees the breakpoint. */ 2415 CPU_FOREACH(tmpcpu) { 2416 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2417 break; 2418 } 2419 } 2420 } 2421 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2422 g_free(bp); 2423 } 2424 kvm_arch_remove_all_hw_breakpoints(); 2425 2426 CPU_FOREACH(cpu) { 2427 kvm_update_guest_debug(cpu, 0); 2428 } 2429 } 2430 2431 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2432 2433 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2434 { 2435 return -EINVAL; 2436 } 2437 2438 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2439 target_ulong len, int type) 2440 { 2441 return -EINVAL; 2442 } 2443 2444 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2445 target_ulong len, int type) 2446 { 2447 return -EINVAL; 2448 } 2449 2450 void kvm_remove_all_breakpoints(CPUState *cpu) 2451 { 2452 } 2453 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2454 2455 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2456 { 2457 KVMState *s = kvm_state; 2458 struct kvm_signal_mask *sigmask; 2459 int r; 2460 2461 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2462 2463 sigmask->len = s->sigmask_len; 2464 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2465 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2466 g_free(sigmask); 2467 2468 return r; 2469 } 2470 2471 static void kvm_ipi_signal(int sig) 2472 { 2473 if (current_cpu) { 2474 assert(kvm_immediate_exit); 2475 kvm_cpu_kick(current_cpu); 2476 } 2477 } 2478 2479 void kvm_init_cpu_signals(CPUState *cpu) 2480 { 2481 int r; 2482 sigset_t set; 2483 struct sigaction sigact; 2484 2485 memset(&sigact, 0, sizeof(sigact)); 2486 sigact.sa_handler = kvm_ipi_signal; 2487 sigaction(SIG_IPI, &sigact, NULL); 2488 2489 pthread_sigmask(SIG_BLOCK, NULL, &set); 2490 #if defined KVM_HAVE_MCE_INJECTION 2491 sigdelset(&set, SIGBUS); 2492 pthread_sigmask(SIG_SETMASK, &set, NULL); 2493 #endif 2494 sigdelset(&set, SIG_IPI); 2495 if (kvm_immediate_exit) { 2496 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2497 } else { 2498 r = kvm_set_signal_mask(cpu, &set); 2499 } 2500 if (r) { 2501 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2502 exit(1); 2503 } 2504 } 2505 2506 /* Called asynchronously in VCPU thread. */ 2507 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2508 { 2509 #ifdef KVM_HAVE_MCE_INJECTION 2510 if (have_sigbus_pending) { 2511 return 1; 2512 } 2513 have_sigbus_pending = true; 2514 pending_sigbus_addr = addr; 2515 pending_sigbus_code = code; 2516 atomic_set(&cpu->exit_request, 1); 2517 return 0; 2518 #else 2519 return 1; 2520 #endif 2521 } 2522 2523 /* Called synchronously (via signalfd) in main thread. */ 2524 int kvm_on_sigbus(int code, void *addr) 2525 { 2526 #ifdef KVM_HAVE_MCE_INJECTION 2527 /* Action required MCE kills the process if SIGBUS is blocked. Because 2528 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2529 * we can only get action optional here. 2530 */ 2531 assert(code != BUS_MCEERR_AR); 2532 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2533 return 0; 2534 #else 2535 return 1; 2536 #endif 2537 } 2538 2539 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2540 { 2541 int ret; 2542 struct kvm_create_device create_dev; 2543 2544 create_dev.type = type; 2545 create_dev.fd = -1; 2546 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2547 2548 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2549 return -ENOTSUP; 2550 } 2551 2552 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2553 if (ret) { 2554 return ret; 2555 } 2556 2557 return test ? 0 : create_dev.fd; 2558 } 2559 2560 bool kvm_device_supported(int vmfd, uint64_t type) 2561 { 2562 struct kvm_create_device create_dev = { 2563 .type = type, 2564 .fd = -1, 2565 .flags = KVM_CREATE_DEVICE_TEST, 2566 }; 2567 2568 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2569 return false; 2570 } 2571 2572 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2573 } 2574 2575 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2576 { 2577 struct kvm_one_reg reg; 2578 int r; 2579 2580 reg.id = id; 2581 reg.addr = (uintptr_t) source; 2582 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2583 if (r) { 2584 trace_kvm_failed_reg_set(id, strerror(-r)); 2585 } 2586 return r; 2587 } 2588 2589 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2590 { 2591 struct kvm_one_reg reg; 2592 int r; 2593 2594 reg.id = id; 2595 reg.addr = (uintptr_t) target; 2596 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2597 if (r) { 2598 trace_kvm_failed_reg_get(id, strerror(-r)); 2599 } 2600 return r; 2601 } 2602 2603 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2604 { 2605 AccelClass *ac = ACCEL_CLASS(oc); 2606 ac->name = "KVM"; 2607 ac->init_machine = kvm_init; 2608 ac->allowed = &kvm_allowed; 2609 } 2610 2611 static const TypeInfo kvm_accel_type = { 2612 .name = TYPE_KVM_ACCEL, 2613 .parent = TYPE_ACCEL, 2614 .class_init = kvm_accel_class_init, 2615 .instance_size = sizeof(KVMState), 2616 }; 2617 2618 static void kvm_type_init(void) 2619 { 2620 type_register_static(&kvm_accel_type); 2621 } 2622 2623 type_init(kvm_type_init); 2624