1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/main-loop.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "qapi/visitor.h" 42 #include "qapi/qapi-types-common.h" 43 #include "qapi/qapi-visit-common.h" 44 #include "sysemu/reset.h" 45 #include "qemu/guest-random.h" 46 #include "sysemu/hw_accel.h" 47 #include "kvm-cpus.h" 48 49 #include "hw/boards.h" 50 51 /* This check must be after config-host.h is included */ 52 #ifdef CONFIG_EVENTFD 53 #include <sys/eventfd.h> 54 #endif 55 56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 57 * need to use the real host PAGE_SIZE, as that's what KVM will use. 58 */ 59 #ifdef PAGE_SIZE 60 #undef PAGE_SIZE 61 #endif 62 #define PAGE_SIZE qemu_real_host_page_size 63 64 //#define DEBUG_KVM 65 66 #ifdef DEBUG_KVM 67 #define DPRINTF(fmt, ...) \ 68 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 69 #else 70 #define DPRINTF(fmt, ...) \ 71 do { } while (0) 72 #endif 73 74 #define KVM_MSI_HASHTAB_SIZE 256 75 76 struct KVMParkedVcpu { 77 unsigned long vcpu_id; 78 int kvm_fd; 79 QLIST_ENTRY(KVMParkedVcpu) node; 80 }; 81 82 enum KVMDirtyRingReaperState { 83 KVM_DIRTY_RING_REAPER_NONE = 0, 84 /* The reaper is sleeping */ 85 KVM_DIRTY_RING_REAPER_WAIT, 86 /* The reaper is reaping for dirty pages */ 87 KVM_DIRTY_RING_REAPER_REAPING, 88 }; 89 90 /* 91 * KVM reaper instance, responsible for collecting the KVM dirty bits 92 * via the dirty ring. 93 */ 94 struct KVMDirtyRingReaper { 95 /* The reaper thread */ 96 QemuThread reaper_thr; 97 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */ 98 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */ 99 }; 100 101 struct KVMState 102 { 103 AccelState parent_obj; 104 105 int nr_slots; 106 int fd; 107 int vmfd; 108 int coalesced_mmio; 109 int coalesced_pio; 110 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 111 bool coalesced_flush_in_progress; 112 int vcpu_events; 113 int robust_singlestep; 114 int debugregs; 115 #ifdef KVM_CAP_SET_GUEST_DEBUG 116 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 117 #endif 118 int max_nested_state_len; 119 int many_ioeventfds; 120 int intx_set_mask; 121 int kvm_shadow_mem; 122 bool kernel_irqchip_allowed; 123 bool kernel_irqchip_required; 124 OnOffAuto kernel_irqchip_split; 125 bool sync_mmu; 126 uint64_t manual_dirty_log_protect; 127 /* The man page (and posix) say ioctl numbers are signed int, but 128 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 129 * unsigned, and treating them as signed here can break things */ 130 unsigned irq_set_ioctl; 131 unsigned int sigmask_len; 132 GHashTable *gsimap; 133 #ifdef KVM_CAP_IRQ_ROUTING 134 struct kvm_irq_routing *irq_routes; 135 int nr_allocated_irq_routes; 136 unsigned long *used_gsi_bitmap; 137 unsigned int gsi_count; 138 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 139 #endif 140 KVMMemoryListener memory_listener; 141 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 142 143 /* For "info mtree -f" to tell if an MR is registered in KVM */ 144 int nr_as; 145 struct KVMAs { 146 KVMMemoryListener *ml; 147 AddressSpace *as; 148 } *as; 149 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */ 150 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */ 151 struct KVMDirtyRingReaper reaper; 152 }; 153 154 KVMState *kvm_state; 155 bool kvm_kernel_irqchip; 156 bool kvm_split_irqchip; 157 bool kvm_async_interrupts_allowed; 158 bool kvm_halt_in_kernel_allowed; 159 bool kvm_eventfds_allowed; 160 bool kvm_irqfds_allowed; 161 bool kvm_resamplefds_allowed; 162 bool kvm_msi_via_irqfd_allowed; 163 bool kvm_gsi_routing_allowed; 164 bool kvm_gsi_direct_mapping; 165 bool kvm_allowed; 166 bool kvm_readonly_mem_allowed; 167 bool kvm_vm_attributes_allowed; 168 bool kvm_direct_msi_allowed; 169 bool kvm_ioeventfd_any_length_allowed; 170 bool kvm_msi_use_devid; 171 static bool kvm_immediate_exit; 172 static hwaddr kvm_max_slot_size = ~0; 173 174 static const KVMCapabilityInfo kvm_required_capabilites[] = { 175 KVM_CAP_INFO(USER_MEMORY), 176 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 177 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 178 KVM_CAP_LAST_INFO 179 }; 180 181 static NotifierList kvm_irqchip_change_notifiers = 182 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 183 184 struct KVMResampleFd { 185 int gsi; 186 EventNotifier *resample_event; 187 QLIST_ENTRY(KVMResampleFd) node; 188 }; 189 typedef struct KVMResampleFd KVMResampleFd; 190 191 /* 192 * Only used with split irqchip where we need to do the resample fd 193 * kick for the kernel from userspace. 194 */ 195 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 196 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 197 198 static QemuMutex kml_slots_lock; 199 200 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 201 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 202 203 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 204 205 static inline void kvm_resample_fd_remove(int gsi) 206 { 207 KVMResampleFd *rfd; 208 209 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 210 if (rfd->gsi == gsi) { 211 QLIST_REMOVE(rfd, node); 212 g_free(rfd); 213 break; 214 } 215 } 216 } 217 218 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 219 { 220 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 221 222 rfd->gsi = gsi; 223 rfd->resample_event = event; 224 225 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 226 } 227 228 void kvm_resample_fd_notify(int gsi) 229 { 230 KVMResampleFd *rfd; 231 232 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 233 if (rfd->gsi == gsi) { 234 event_notifier_set(rfd->resample_event); 235 trace_kvm_resample_fd_notify(gsi); 236 return; 237 } 238 } 239 } 240 241 int kvm_get_max_memslots(void) 242 { 243 KVMState *s = KVM_STATE(current_accel()); 244 245 return s->nr_slots; 246 } 247 248 /* Called with KVMMemoryListener.slots_lock held */ 249 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 250 { 251 KVMState *s = kvm_state; 252 int i; 253 254 for (i = 0; i < s->nr_slots; i++) { 255 if (kml->slots[i].memory_size == 0) { 256 return &kml->slots[i]; 257 } 258 } 259 260 return NULL; 261 } 262 263 bool kvm_has_free_slot(MachineState *ms) 264 { 265 KVMState *s = KVM_STATE(ms->accelerator); 266 bool result; 267 KVMMemoryListener *kml = &s->memory_listener; 268 269 kvm_slots_lock(); 270 result = !!kvm_get_free_slot(kml); 271 kvm_slots_unlock(); 272 273 return result; 274 } 275 276 /* Called with KVMMemoryListener.slots_lock held */ 277 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 278 { 279 KVMSlot *slot = kvm_get_free_slot(kml); 280 281 if (slot) { 282 return slot; 283 } 284 285 fprintf(stderr, "%s: no free slot available\n", __func__); 286 abort(); 287 } 288 289 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 290 hwaddr start_addr, 291 hwaddr size) 292 { 293 KVMState *s = kvm_state; 294 int i; 295 296 for (i = 0; i < s->nr_slots; i++) { 297 KVMSlot *mem = &kml->slots[i]; 298 299 if (start_addr == mem->start_addr && size == mem->memory_size) { 300 return mem; 301 } 302 } 303 304 return NULL; 305 } 306 307 /* 308 * Calculate and align the start address and the size of the section. 309 * Return the size. If the size is 0, the aligned section is empty. 310 */ 311 static hwaddr kvm_align_section(MemoryRegionSection *section, 312 hwaddr *start) 313 { 314 hwaddr size = int128_get64(section->size); 315 hwaddr delta, aligned; 316 317 /* kvm works in page size chunks, but the function may be called 318 with sub-page size and unaligned start address. Pad the start 319 address to next and truncate size to previous page boundary. */ 320 aligned = ROUND_UP(section->offset_within_address_space, 321 qemu_real_host_page_size); 322 delta = aligned - section->offset_within_address_space; 323 *start = aligned; 324 if (delta > size) { 325 return 0; 326 } 327 328 return (size - delta) & qemu_real_host_page_mask; 329 } 330 331 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 332 hwaddr *phys_addr) 333 { 334 KVMMemoryListener *kml = &s->memory_listener; 335 int i, ret = 0; 336 337 kvm_slots_lock(); 338 for (i = 0; i < s->nr_slots; i++) { 339 KVMSlot *mem = &kml->slots[i]; 340 341 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 342 *phys_addr = mem->start_addr + (ram - mem->ram); 343 ret = 1; 344 break; 345 } 346 } 347 kvm_slots_unlock(); 348 349 return ret; 350 } 351 352 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 353 { 354 KVMState *s = kvm_state; 355 struct kvm_userspace_memory_region mem; 356 int ret; 357 358 mem.slot = slot->slot | (kml->as_id << 16); 359 mem.guest_phys_addr = slot->start_addr; 360 mem.userspace_addr = (unsigned long)slot->ram; 361 mem.flags = slot->flags; 362 363 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 364 /* Set the slot size to 0 before setting the slot to the desired 365 * value. This is needed based on KVM commit 75d61fbc. */ 366 mem.memory_size = 0; 367 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 368 if (ret < 0) { 369 goto err; 370 } 371 } 372 mem.memory_size = slot->memory_size; 373 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 374 slot->old_flags = mem.flags; 375 err: 376 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 377 mem.memory_size, mem.userspace_addr, ret); 378 if (ret < 0) { 379 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 380 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 381 __func__, mem.slot, slot->start_addr, 382 (uint64_t)mem.memory_size, strerror(errno)); 383 } 384 return ret; 385 } 386 387 static int do_kvm_destroy_vcpu(CPUState *cpu) 388 { 389 KVMState *s = kvm_state; 390 long mmap_size; 391 struct KVMParkedVcpu *vcpu = NULL; 392 int ret = 0; 393 394 DPRINTF("kvm_destroy_vcpu\n"); 395 396 ret = kvm_arch_destroy_vcpu(cpu); 397 if (ret < 0) { 398 goto err; 399 } 400 401 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 402 if (mmap_size < 0) { 403 ret = mmap_size; 404 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 405 goto err; 406 } 407 408 ret = munmap(cpu->kvm_run, mmap_size); 409 if (ret < 0) { 410 goto err; 411 } 412 413 if (cpu->kvm_dirty_gfns) { 414 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 415 if (ret < 0) { 416 goto err; 417 } 418 } 419 420 vcpu = g_malloc0(sizeof(*vcpu)); 421 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 422 vcpu->kvm_fd = cpu->kvm_fd; 423 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 424 err: 425 return ret; 426 } 427 428 void kvm_destroy_vcpu(CPUState *cpu) 429 { 430 if (do_kvm_destroy_vcpu(cpu) < 0) { 431 error_report("kvm_destroy_vcpu failed"); 432 exit(EXIT_FAILURE); 433 } 434 } 435 436 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 437 { 438 struct KVMParkedVcpu *cpu; 439 440 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 441 if (cpu->vcpu_id == vcpu_id) { 442 int kvm_fd; 443 444 QLIST_REMOVE(cpu, node); 445 kvm_fd = cpu->kvm_fd; 446 g_free(cpu); 447 return kvm_fd; 448 } 449 } 450 451 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 452 } 453 454 int kvm_init_vcpu(CPUState *cpu, Error **errp) 455 { 456 KVMState *s = kvm_state; 457 long mmap_size; 458 int ret; 459 460 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 461 462 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 463 if (ret < 0) { 464 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 465 kvm_arch_vcpu_id(cpu)); 466 goto err; 467 } 468 469 cpu->kvm_fd = ret; 470 cpu->kvm_state = s; 471 cpu->vcpu_dirty = true; 472 473 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 474 if (mmap_size < 0) { 475 ret = mmap_size; 476 error_setg_errno(errp, -mmap_size, 477 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 478 goto err; 479 } 480 481 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 482 cpu->kvm_fd, 0); 483 if (cpu->kvm_run == MAP_FAILED) { 484 ret = -errno; 485 error_setg_errno(errp, ret, 486 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 487 kvm_arch_vcpu_id(cpu)); 488 goto err; 489 } 490 491 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 492 s->coalesced_mmio_ring = 493 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 494 } 495 496 if (s->kvm_dirty_ring_size) { 497 /* Use MAP_SHARED to share pages with the kernel */ 498 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 499 PROT_READ | PROT_WRITE, MAP_SHARED, 500 cpu->kvm_fd, 501 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 502 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 503 ret = -errno; 504 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 505 goto err; 506 } 507 } 508 509 ret = kvm_arch_init_vcpu(cpu); 510 if (ret < 0) { 511 error_setg_errno(errp, -ret, 512 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 513 kvm_arch_vcpu_id(cpu)); 514 } 515 err: 516 return ret; 517 } 518 519 /* 520 * dirty pages logging control 521 */ 522 523 static int kvm_mem_flags(MemoryRegion *mr) 524 { 525 bool readonly = mr->readonly || memory_region_is_romd(mr); 526 int flags = 0; 527 528 if (memory_region_get_dirty_log_mask(mr) != 0) { 529 flags |= KVM_MEM_LOG_DIRTY_PAGES; 530 } 531 if (readonly && kvm_readonly_mem_allowed) { 532 flags |= KVM_MEM_READONLY; 533 } 534 return flags; 535 } 536 537 /* Called with KVMMemoryListener.slots_lock held */ 538 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 539 MemoryRegion *mr) 540 { 541 mem->flags = kvm_mem_flags(mr); 542 543 /* If nothing changed effectively, no need to issue ioctl */ 544 if (mem->flags == mem->old_flags) { 545 return 0; 546 } 547 548 kvm_slot_init_dirty_bitmap(mem); 549 return kvm_set_user_memory_region(kml, mem, false); 550 } 551 552 static int kvm_section_update_flags(KVMMemoryListener *kml, 553 MemoryRegionSection *section) 554 { 555 hwaddr start_addr, size, slot_size; 556 KVMSlot *mem; 557 int ret = 0; 558 559 size = kvm_align_section(section, &start_addr); 560 if (!size) { 561 return 0; 562 } 563 564 kvm_slots_lock(); 565 566 while (size && !ret) { 567 slot_size = MIN(kvm_max_slot_size, size); 568 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 569 if (!mem) { 570 /* We don't have a slot if we want to trap every access. */ 571 goto out; 572 } 573 574 ret = kvm_slot_update_flags(kml, mem, section->mr); 575 start_addr += slot_size; 576 size -= slot_size; 577 } 578 579 out: 580 kvm_slots_unlock(); 581 return ret; 582 } 583 584 static void kvm_log_start(MemoryListener *listener, 585 MemoryRegionSection *section, 586 int old, int new) 587 { 588 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 589 int r; 590 591 if (old != 0) { 592 return; 593 } 594 595 r = kvm_section_update_flags(kml, section); 596 if (r < 0) { 597 abort(); 598 } 599 } 600 601 static void kvm_log_stop(MemoryListener *listener, 602 MemoryRegionSection *section, 603 int old, int new) 604 { 605 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 606 int r; 607 608 if (new != 0) { 609 return; 610 } 611 612 r = kvm_section_update_flags(kml, section); 613 if (r < 0) { 614 abort(); 615 } 616 } 617 618 /* get kvm's dirty pages bitmap and update qemu's */ 619 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 620 { 621 ram_addr_t start = slot->ram_start_offset; 622 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size; 623 624 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 625 } 626 627 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 628 { 629 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 630 } 631 632 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 633 634 /* Allocate the dirty bitmap for a slot */ 635 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 636 { 637 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 638 return; 639 } 640 641 /* 642 * XXX bad kernel interface alert 643 * For dirty bitmap, kernel allocates array of size aligned to 644 * bits-per-long. But for case when the kernel is 64bits and 645 * the userspace is 32bits, userspace can't align to the same 646 * bits-per-long, since sizeof(long) is different between kernel 647 * and user space. This way, userspace will provide buffer which 648 * may be 4 bytes less than the kernel will use, resulting in 649 * userspace memory corruption (which is not detectable by valgrind 650 * too, in most cases). 651 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 652 * a hope that sizeof(long) won't become >8 any time soon. 653 * 654 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 655 * And mem->memory_size is aligned to it (otherwise this mem can't 656 * be registered to KVM). 657 */ 658 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size, 659 /*HOST_LONG_BITS*/ 64) / 8; 660 mem->dirty_bmap = g_malloc0(bitmap_size); 661 mem->dirty_bmap_size = bitmap_size; 662 } 663 664 /* 665 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 666 * succeeded, false otherwise 667 */ 668 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 669 { 670 struct kvm_dirty_log d = {}; 671 int ret; 672 673 d.dirty_bitmap = slot->dirty_bmap; 674 d.slot = slot->slot | (slot->as_id << 16); 675 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 676 677 if (ret == -ENOENT) { 678 /* kernel does not have dirty bitmap in this slot */ 679 ret = 0; 680 } 681 if (ret) { 682 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 683 __func__, ret); 684 } 685 return ret == 0; 686 } 687 688 /* Should be with all slots_lock held for the address spaces. */ 689 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 690 uint32_t slot_id, uint64_t offset) 691 { 692 KVMMemoryListener *kml; 693 KVMSlot *mem; 694 695 if (as_id >= s->nr_as) { 696 return; 697 } 698 699 kml = s->as[as_id].ml; 700 mem = &kml->slots[slot_id]; 701 702 if (!mem->memory_size || offset >= 703 (mem->memory_size / qemu_real_host_page_size)) { 704 return; 705 } 706 707 set_bit(offset, mem->dirty_bmap); 708 } 709 710 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 711 { 712 return gfn->flags == KVM_DIRTY_GFN_F_DIRTY; 713 } 714 715 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 716 { 717 gfn->flags = KVM_DIRTY_GFN_F_RESET; 718 } 719 720 /* 721 * Should be with all slots_lock held for the address spaces. It returns the 722 * dirty page we've collected on this dirty ring. 723 */ 724 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 725 { 726 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 727 uint32_t ring_size = s->kvm_dirty_ring_size; 728 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 729 730 assert(dirty_gfns && ring_size); 731 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 732 733 while (true) { 734 cur = &dirty_gfns[fetch % ring_size]; 735 if (!dirty_gfn_is_dirtied(cur)) { 736 break; 737 } 738 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 739 cur->offset); 740 dirty_gfn_set_collected(cur); 741 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 742 fetch++; 743 count++; 744 } 745 cpu->kvm_fetch_index = fetch; 746 747 return count; 748 } 749 750 /* Must be with slots_lock held */ 751 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s) 752 { 753 int ret; 754 CPUState *cpu; 755 uint64_t total = 0; 756 int64_t stamp; 757 758 stamp = get_clock(); 759 760 CPU_FOREACH(cpu) { 761 total += kvm_dirty_ring_reap_one(s, cpu); 762 } 763 764 if (total) { 765 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 766 assert(ret == total); 767 } 768 769 stamp = get_clock() - stamp; 770 771 if (total) { 772 trace_kvm_dirty_ring_reap(total, stamp / 1000); 773 } 774 775 return total; 776 } 777 778 /* 779 * Currently for simplicity, we must hold BQL before calling this. We can 780 * consider to drop the BQL if we're clear with all the race conditions. 781 */ 782 static uint64_t kvm_dirty_ring_reap(KVMState *s) 783 { 784 uint64_t total; 785 786 /* 787 * We need to lock all kvm slots for all address spaces here, 788 * because: 789 * 790 * (1) We need to mark dirty for dirty bitmaps in multiple slots 791 * and for tons of pages, so it's better to take the lock here 792 * once rather than once per page. And more importantly, 793 * 794 * (2) We must _NOT_ publish dirty bits to the other threads 795 * (e.g., the migration thread) via the kvm memory slot dirty 796 * bitmaps before correctly re-protect those dirtied pages. 797 * Otherwise we can have potential risk of data corruption if 798 * the page data is read in the other thread before we do 799 * reset below. 800 */ 801 kvm_slots_lock(); 802 total = kvm_dirty_ring_reap_locked(s); 803 kvm_slots_unlock(); 804 805 return total; 806 } 807 808 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 809 { 810 /* No need to do anything */ 811 } 812 813 /* 814 * Kick all vcpus out in a synchronized way. When returned, we 815 * guarantee that every vcpu has been kicked and at least returned to 816 * userspace once. 817 */ 818 static void kvm_cpu_synchronize_kick_all(void) 819 { 820 CPUState *cpu; 821 822 CPU_FOREACH(cpu) { 823 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 824 } 825 } 826 827 /* 828 * Flush all the existing dirty pages to the KVM slot buffers. When 829 * this call returns, we guarantee that all the touched dirty pages 830 * before calling this function have been put into the per-kvmslot 831 * dirty bitmap. 832 * 833 * This function must be called with BQL held. 834 */ 835 static void kvm_dirty_ring_flush(void) 836 { 837 trace_kvm_dirty_ring_flush(0); 838 /* 839 * The function needs to be serialized. Since this function 840 * should always be with BQL held, serialization is guaranteed. 841 * However, let's be sure of it. 842 */ 843 assert(qemu_mutex_iothread_locked()); 844 /* 845 * First make sure to flush the hardware buffers by kicking all 846 * vcpus out in a synchronous way. 847 */ 848 kvm_cpu_synchronize_kick_all(); 849 kvm_dirty_ring_reap(kvm_state); 850 trace_kvm_dirty_ring_flush(1); 851 } 852 853 /** 854 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 855 * 856 * This function will first try to fetch dirty bitmap from the kernel, 857 * and then updates qemu's dirty bitmap. 858 * 859 * NOTE: caller must be with kml->slots_lock held. 860 * 861 * @kml: the KVM memory listener object 862 * @section: the memory section to sync the dirty bitmap with 863 */ 864 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 865 MemoryRegionSection *section) 866 { 867 KVMState *s = kvm_state; 868 KVMSlot *mem; 869 hwaddr start_addr, size; 870 hwaddr slot_size; 871 872 size = kvm_align_section(section, &start_addr); 873 while (size) { 874 slot_size = MIN(kvm_max_slot_size, size); 875 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 876 if (!mem) { 877 /* We don't have a slot if we want to trap every access. */ 878 return; 879 } 880 if (kvm_slot_get_dirty_log(s, mem)) { 881 kvm_slot_sync_dirty_pages(mem); 882 } 883 start_addr += slot_size; 884 size -= slot_size; 885 } 886 } 887 888 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 889 #define KVM_CLEAR_LOG_SHIFT 6 890 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 891 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 892 893 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 894 uint64_t size) 895 { 896 KVMState *s = kvm_state; 897 uint64_t end, bmap_start, start_delta, bmap_npages; 898 struct kvm_clear_dirty_log d; 899 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 900 int ret; 901 902 /* 903 * We need to extend either the start or the size or both to 904 * satisfy the KVM interface requirement. Firstly, do the start 905 * page alignment on 64 host pages 906 */ 907 bmap_start = start & KVM_CLEAR_LOG_MASK; 908 start_delta = start - bmap_start; 909 bmap_start /= psize; 910 911 /* 912 * The kernel interface has restriction on the size too, that either: 913 * 914 * (1) the size is 64 host pages aligned (just like the start), or 915 * (2) the size fills up until the end of the KVM memslot. 916 */ 917 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 918 << KVM_CLEAR_LOG_SHIFT; 919 end = mem->memory_size / psize; 920 if (bmap_npages > end - bmap_start) { 921 bmap_npages = end - bmap_start; 922 } 923 start_delta /= psize; 924 925 /* 926 * Prepare the bitmap to clear dirty bits. Here we must guarantee 927 * that we won't clear any unknown dirty bits otherwise we might 928 * accidentally clear some set bits which are not yet synced from 929 * the kernel into QEMU's bitmap, then we'll lose track of the 930 * guest modifications upon those pages (which can directly lead 931 * to guest data loss or panic after migration). 932 * 933 * Layout of the KVMSlot.dirty_bmap: 934 * 935 * |<-------- bmap_npages -----------..>| 936 * [1] 937 * start_delta size 938 * |----------------|-------------|------------------|------------| 939 * ^ ^ ^ ^ 940 * | | | | 941 * start bmap_start (start) end 942 * of memslot of memslot 943 * 944 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 945 */ 946 947 assert(bmap_start % BITS_PER_LONG == 0); 948 /* We should never do log_clear before log_sync */ 949 assert(mem->dirty_bmap); 950 if (start_delta || bmap_npages - size / psize) { 951 /* Slow path - we need to manipulate a temp bitmap */ 952 bmap_clear = bitmap_new(bmap_npages); 953 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 954 bmap_start, start_delta + size / psize); 955 /* 956 * We need to fill the holes at start because that was not 957 * specified by the caller and we extended the bitmap only for 958 * 64 pages alignment 959 */ 960 bitmap_clear(bmap_clear, 0, start_delta); 961 d.dirty_bitmap = bmap_clear; 962 } else { 963 /* 964 * Fast path - both start and size align well with BITS_PER_LONG 965 * (or the end of memory slot) 966 */ 967 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 968 } 969 970 d.first_page = bmap_start; 971 /* It should never overflow. If it happens, say something */ 972 assert(bmap_npages <= UINT32_MAX); 973 d.num_pages = bmap_npages; 974 d.slot = mem->slot | (as_id << 16); 975 976 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 977 if (ret < 0 && ret != -ENOENT) { 978 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 979 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 980 __func__, d.slot, (uint64_t)d.first_page, 981 (uint32_t)d.num_pages, ret); 982 } else { 983 ret = 0; 984 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 985 } 986 987 /* 988 * After we have updated the remote dirty bitmap, we update the 989 * cached bitmap as well for the memslot, then if another user 990 * clears the same region we know we shouldn't clear it again on 991 * the remote otherwise it's data loss as well. 992 */ 993 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 994 size / psize); 995 /* This handles the NULL case well */ 996 g_free(bmap_clear); 997 return ret; 998 } 999 1000 1001 /** 1002 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1003 * 1004 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1005 * protection in the host kernel because in that case this operation 1006 * will be done within log_sync(). 1007 * 1008 * @kml: the kvm memory listener 1009 * @section: the memory range to clear dirty bitmap 1010 */ 1011 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1012 MemoryRegionSection *section) 1013 { 1014 KVMState *s = kvm_state; 1015 uint64_t start, size, offset, count; 1016 KVMSlot *mem; 1017 int ret = 0, i; 1018 1019 if (!s->manual_dirty_log_protect) { 1020 /* No need to do explicit clear */ 1021 return ret; 1022 } 1023 1024 start = section->offset_within_address_space; 1025 size = int128_get64(section->size); 1026 1027 if (!size) { 1028 /* Nothing more we can do... */ 1029 return ret; 1030 } 1031 1032 kvm_slots_lock(); 1033 1034 for (i = 0; i < s->nr_slots; i++) { 1035 mem = &kml->slots[i]; 1036 /* Discard slots that are empty or do not overlap the section */ 1037 if (!mem->memory_size || 1038 mem->start_addr > start + size - 1 || 1039 start > mem->start_addr + mem->memory_size - 1) { 1040 continue; 1041 } 1042 1043 if (start >= mem->start_addr) { 1044 /* The slot starts before section or is aligned to it. */ 1045 offset = start - mem->start_addr; 1046 count = MIN(mem->memory_size - offset, size); 1047 } else { 1048 /* The slot starts after section. */ 1049 offset = 0; 1050 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1051 } 1052 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1053 if (ret < 0) { 1054 break; 1055 } 1056 } 1057 1058 kvm_slots_unlock(); 1059 1060 return ret; 1061 } 1062 1063 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1064 MemoryRegionSection *secion, 1065 hwaddr start, hwaddr size) 1066 { 1067 KVMState *s = kvm_state; 1068 1069 if (s->coalesced_mmio) { 1070 struct kvm_coalesced_mmio_zone zone; 1071 1072 zone.addr = start; 1073 zone.size = size; 1074 zone.pad = 0; 1075 1076 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1077 } 1078 } 1079 1080 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1081 MemoryRegionSection *secion, 1082 hwaddr start, hwaddr size) 1083 { 1084 KVMState *s = kvm_state; 1085 1086 if (s->coalesced_mmio) { 1087 struct kvm_coalesced_mmio_zone zone; 1088 1089 zone.addr = start; 1090 zone.size = size; 1091 zone.pad = 0; 1092 1093 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1094 } 1095 } 1096 1097 static void kvm_coalesce_pio_add(MemoryListener *listener, 1098 MemoryRegionSection *section, 1099 hwaddr start, hwaddr size) 1100 { 1101 KVMState *s = kvm_state; 1102 1103 if (s->coalesced_pio) { 1104 struct kvm_coalesced_mmio_zone zone; 1105 1106 zone.addr = start; 1107 zone.size = size; 1108 zone.pio = 1; 1109 1110 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1111 } 1112 } 1113 1114 static void kvm_coalesce_pio_del(MemoryListener *listener, 1115 MemoryRegionSection *section, 1116 hwaddr start, hwaddr size) 1117 { 1118 KVMState *s = kvm_state; 1119 1120 if (s->coalesced_pio) { 1121 struct kvm_coalesced_mmio_zone zone; 1122 1123 zone.addr = start; 1124 zone.size = size; 1125 zone.pio = 1; 1126 1127 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1128 } 1129 } 1130 1131 static MemoryListener kvm_coalesced_pio_listener = { 1132 .coalesced_io_add = kvm_coalesce_pio_add, 1133 .coalesced_io_del = kvm_coalesce_pio_del, 1134 }; 1135 1136 int kvm_check_extension(KVMState *s, unsigned int extension) 1137 { 1138 int ret; 1139 1140 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1141 if (ret < 0) { 1142 ret = 0; 1143 } 1144 1145 return ret; 1146 } 1147 1148 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1149 { 1150 int ret; 1151 1152 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1153 if (ret < 0) { 1154 /* VM wide version not implemented, use global one instead */ 1155 ret = kvm_check_extension(s, extension); 1156 } 1157 1158 return ret; 1159 } 1160 1161 typedef struct HWPoisonPage { 1162 ram_addr_t ram_addr; 1163 QLIST_ENTRY(HWPoisonPage) list; 1164 } HWPoisonPage; 1165 1166 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1167 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1168 1169 static void kvm_unpoison_all(void *param) 1170 { 1171 HWPoisonPage *page, *next_page; 1172 1173 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1174 QLIST_REMOVE(page, list); 1175 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1176 g_free(page); 1177 } 1178 } 1179 1180 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1181 { 1182 HWPoisonPage *page; 1183 1184 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1185 if (page->ram_addr == ram_addr) { 1186 return; 1187 } 1188 } 1189 page = g_new(HWPoisonPage, 1); 1190 page->ram_addr = ram_addr; 1191 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1192 } 1193 1194 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1195 { 1196 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 1197 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 1198 * endianness, but the memory core hands them in target endianness. 1199 * For example, PPC is always treated as big-endian even if running 1200 * on KVM and on PPC64LE. Correct here. 1201 */ 1202 switch (size) { 1203 case 2: 1204 val = bswap16(val); 1205 break; 1206 case 4: 1207 val = bswap32(val); 1208 break; 1209 } 1210 #endif 1211 return val; 1212 } 1213 1214 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1215 bool assign, uint32_t size, bool datamatch) 1216 { 1217 int ret; 1218 struct kvm_ioeventfd iofd = { 1219 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1220 .addr = addr, 1221 .len = size, 1222 .flags = 0, 1223 .fd = fd, 1224 }; 1225 1226 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1227 datamatch); 1228 if (!kvm_enabled()) { 1229 return -ENOSYS; 1230 } 1231 1232 if (datamatch) { 1233 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1234 } 1235 if (!assign) { 1236 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1237 } 1238 1239 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1240 1241 if (ret < 0) { 1242 return -errno; 1243 } 1244 1245 return 0; 1246 } 1247 1248 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1249 bool assign, uint32_t size, bool datamatch) 1250 { 1251 struct kvm_ioeventfd kick = { 1252 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1253 .addr = addr, 1254 .flags = KVM_IOEVENTFD_FLAG_PIO, 1255 .len = size, 1256 .fd = fd, 1257 }; 1258 int r; 1259 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1260 if (!kvm_enabled()) { 1261 return -ENOSYS; 1262 } 1263 if (datamatch) { 1264 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1265 } 1266 if (!assign) { 1267 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1268 } 1269 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1270 if (r < 0) { 1271 return r; 1272 } 1273 return 0; 1274 } 1275 1276 1277 static int kvm_check_many_ioeventfds(void) 1278 { 1279 /* Userspace can use ioeventfd for io notification. This requires a host 1280 * that supports eventfd(2) and an I/O thread; since eventfd does not 1281 * support SIGIO it cannot interrupt the vcpu. 1282 * 1283 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1284 * can avoid creating too many ioeventfds. 1285 */ 1286 #if defined(CONFIG_EVENTFD) 1287 int ioeventfds[7]; 1288 int i, ret = 0; 1289 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1290 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1291 if (ioeventfds[i] < 0) { 1292 break; 1293 } 1294 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1295 if (ret < 0) { 1296 close(ioeventfds[i]); 1297 break; 1298 } 1299 } 1300 1301 /* Decide whether many devices are supported or not */ 1302 ret = i == ARRAY_SIZE(ioeventfds); 1303 1304 while (i-- > 0) { 1305 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1306 close(ioeventfds[i]); 1307 } 1308 return ret; 1309 #else 1310 return 0; 1311 #endif 1312 } 1313 1314 static const KVMCapabilityInfo * 1315 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1316 { 1317 while (list->name) { 1318 if (!kvm_check_extension(s, list->value)) { 1319 return list; 1320 } 1321 list++; 1322 } 1323 return NULL; 1324 } 1325 1326 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1327 { 1328 g_assert( 1329 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1330 ); 1331 kvm_max_slot_size = max_slot_size; 1332 } 1333 1334 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1335 MemoryRegionSection *section, bool add) 1336 { 1337 KVMSlot *mem; 1338 int err; 1339 MemoryRegion *mr = section->mr; 1340 bool writeable = !mr->readonly && !mr->rom_device; 1341 hwaddr start_addr, size, slot_size, mr_offset; 1342 ram_addr_t ram_start_offset; 1343 void *ram; 1344 1345 if (!memory_region_is_ram(mr)) { 1346 if (writeable || !kvm_readonly_mem_allowed) { 1347 return; 1348 } else if (!mr->romd_mode) { 1349 /* If the memory device is not in romd_mode, then we actually want 1350 * to remove the kvm memory slot so all accesses will trap. */ 1351 add = false; 1352 } 1353 } 1354 1355 size = kvm_align_section(section, &start_addr); 1356 if (!size) { 1357 return; 1358 } 1359 1360 /* The offset of the kvmslot within the memory region */ 1361 mr_offset = section->offset_within_region + start_addr - 1362 section->offset_within_address_space; 1363 1364 /* use aligned delta to align the ram address and offset */ 1365 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1366 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1367 1368 kvm_slots_lock(); 1369 1370 if (!add) { 1371 do { 1372 slot_size = MIN(kvm_max_slot_size, size); 1373 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1374 if (!mem) { 1375 goto out; 1376 } 1377 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1378 /* 1379 * NOTE: We should be aware of the fact that here we're only 1380 * doing a best effort to sync dirty bits. No matter whether 1381 * we're using dirty log or dirty ring, we ignored two facts: 1382 * 1383 * (1) dirty bits can reside in hardware buffers (PML) 1384 * 1385 * (2) after we collected dirty bits here, pages can be dirtied 1386 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1387 * remove the slot. 1388 * 1389 * Not easy. Let's cross the fingers until it's fixed. 1390 */ 1391 if (kvm_state->kvm_dirty_ring_size) { 1392 kvm_dirty_ring_reap_locked(kvm_state); 1393 } else { 1394 kvm_slot_get_dirty_log(kvm_state, mem); 1395 } 1396 kvm_slot_sync_dirty_pages(mem); 1397 } 1398 1399 /* unregister the slot */ 1400 g_free(mem->dirty_bmap); 1401 mem->dirty_bmap = NULL; 1402 mem->memory_size = 0; 1403 mem->flags = 0; 1404 err = kvm_set_user_memory_region(kml, mem, false); 1405 if (err) { 1406 fprintf(stderr, "%s: error unregistering slot: %s\n", 1407 __func__, strerror(-err)); 1408 abort(); 1409 } 1410 start_addr += slot_size; 1411 size -= slot_size; 1412 } while (size); 1413 goto out; 1414 } 1415 1416 /* register the new slot */ 1417 do { 1418 slot_size = MIN(kvm_max_slot_size, size); 1419 mem = kvm_alloc_slot(kml); 1420 mem->as_id = kml->as_id; 1421 mem->memory_size = slot_size; 1422 mem->start_addr = start_addr; 1423 mem->ram_start_offset = ram_start_offset; 1424 mem->ram = ram; 1425 mem->flags = kvm_mem_flags(mr); 1426 kvm_slot_init_dirty_bitmap(mem); 1427 err = kvm_set_user_memory_region(kml, mem, true); 1428 if (err) { 1429 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1430 strerror(-err)); 1431 abort(); 1432 } 1433 start_addr += slot_size; 1434 ram_start_offset += slot_size; 1435 ram += slot_size; 1436 size -= slot_size; 1437 } while (size); 1438 1439 out: 1440 kvm_slots_unlock(); 1441 } 1442 1443 static void *kvm_dirty_ring_reaper_thread(void *data) 1444 { 1445 KVMState *s = data; 1446 struct KVMDirtyRingReaper *r = &s->reaper; 1447 1448 rcu_register_thread(); 1449 1450 trace_kvm_dirty_ring_reaper("init"); 1451 1452 while (true) { 1453 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1454 trace_kvm_dirty_ring_reaper("wait"); 1455 /* 1456 * TODO: provide a smarter timeout rather than a constant? 1457 */ 1458 sleep(1); 1459 1460 trace_kvm_dirty_ring_reaper("wakeup"); 1461 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1462 1463 qemu_mutex_lock_iothread(); 1464 kvm_dirty_ring_reap(s); 1465 qemu_mutex_unlock_iothread(); 1466 1467 r->reaper_iteration++; 1468 } 1469 1470 trace_kvm_dirty_ring_reaper("exit"); 1471 1472 rcu_unregister_thread(); 1473 1474 return NULL; 1475 } 1476 1477 static int kvm_dirty_ring_reaper_init(KVMState *s) 1478 { 1479 struct KVMDirtyRingReaper *r = &s->reaper; 1480 1481 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1482 kvm_dirty_ring_reaper_thread, 1483 s, QEMU_THREAD_JOINABLE); 1484 1485 return 0; 1486 } 1487 1488 static void kvm_region_add(MemoryListener *listener, 1489 MemoryRegionSection *section) 1490 { 1491 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1492 1493 memory_region_ref(section->mr); 1494 kvm_set_phys_mem(kml, section, true); 1495 } 1496 1497 static void kvm_region_del(MemoryListener *listener, 1498 MemoryRegionSection *section) 1499 { 1500 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1501 1502 kvm_set_phys_mem(kml, section, false); 1503 memory_region_unref(section->mr); 1504 } 1505 1506 static void kvm_log_sync(MemoryListener *listener, 1507 MemoryRegionSection *section) 1508 { 1509 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1510 1511 kvm_slots_lock(); 1512 kvm_physical_sync_dirty_bitmap(kml, section); 1513 kvm_slots_unlock(); 1514 } 1515 1516 static void kvm_log_sync_global(MemoryListener *l) 1517 { 1518 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1519 KVMState *s = kvm_state; 1520 KVMSlot *mem; 1521 int i; 1522 1523 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1524 kvm_dirty_ring_flush(); 1525 1526 /* 1527 * TODO: make this faster when nr_slots is big while there are 1528 * only a few used slots (small VMs). 1529 */ 1530 kvm_slots_lock(); 1531 for (i = 0; i < s->nr_slots; i++) { 1532 mem = &kml->slots[i]; 1533 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1534 kvm_slot_sync_dirty_pages(mem); 1535 /* 1536 * This is not needed by KVM_GET_DIRTY_LOG because the 1537 * ioctl will unconditionally overwrite the whole region. 1538 * However kvm dirty ring has no such side effect. 1539 */ 1540 kvm_slot_reset_dirty_pages(mem); 1541 } 1542 } 1543 kvm_slots_unlock(); 1544 } 1545 1546 static void kvm_log_clear(MemoryListener *listener, 1547 MemoryRegionSection *section) 1548 { 1549 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1550 int r; 1551 1552 r = kvm_physical_log_clear(kml, section); 1553 if (r < 0) { 1554 error_report_once("%s: kvm log clear failed: mr=%s " 1555 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1556 section->mr->name, section->offset_within_region, 1557 int128_get64(section->size)); 1558 abort(); 1559 } 1560 } 1561 1562 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1563 MemoryRegionSection *section, 1564 bool match_data, uint64_t data, 1565 EventNotifier *e) 1566 { 1567 int fd = event_notifier_get_fd(e); 1568 int r; 1569 1570 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1571 data, true, int128_get64(section->size), 1572 match_data); 1573 if (r < 0) { 1574 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1575 __func__, strerror(-r), -r); 1576 abort(); 1577 } 1578 } 1579 1580 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1581 MemoryRegionSection *section, 1582 bool match_data, uint64_t data, 1583 EventNotifier *e) 1584 { 1585 int fd = event_notifier_get_fd(e); 1586 int r; 1587 1588 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1589 data, false, int128_get64(section->size), 1590 match_data); 1591 if (r < 0) { 1592 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1593 __func__, strerror(-r), -r); 1594 abort(); 1595 } 1596 } 1597 1598 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1599 MemoryRegionSection *section, 1600 bool match_data, uint64_t data, 1601 EventNotifier *e) 1602 { 1603 int fd = event_notifier_get_fd(e); 1604 int r; 1605 1606 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1607 data, true, int128_get64(section->size), 1608 match_data); 1609 if (r < 0) { 1610 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1611 __func__, strerror(-r), -r); 1612 abort(); 1613 } 1614 } 1615 1616 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1617 MemoryRegionSection *section, 1618 bool match_data, uint64_t data, 1619 EventNotifier *e) 1620 1621 { 1622 int fd = event_notifier_get_fd(e); 1623 int r; 1624 1625 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1626 data, false, int128_get64(section->size), 1627 match_data); 1628 if (r < 0) { 1629 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1630 __func__, strerror(-r), -r); 1631 abort(); 1632 } 1633 } 1634 1635 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1636 AddressSpace *as, int as_id) 1637 { 1638 int i; 1639 1640 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1641 kml->as_id = as_id; 1642 1643 for (i = 0; i < s->nr_slots; i++) { 1644 kml->slots[i].slot = i; 1645 } 1646 1647 kml->listener.region_add = kvm_region_add; 1648 kml->listener.region_del = kvm_region_del; 1649 kml->listener.log_start = kvm_log_start; 1650 kml->listener.log_stop = kvm_log_stop; 1651 kml->listener.priority = 10; 1652 1653 if (s->kvm_dirty_ring_size) { 1654 kml->listener.log_sync_global = kvm_log_sync_global; 1655 } else { 1656 kml->listener.log_sync = kvm_log_sync; 1657 kml->listener.log_clear = kvm_log_clear; 1658 } 1659 1660 memory_listener_register(&kml->listener, as); 1661 1662 for (i = 0; i < s->nr_as; ++i) { 1663 if (!s->as[i].as) { 1664 s->as[i].as = as; 1665 s->as[i].ml = kml; 1666 break; 1667 } 1668 } 1669 } 1670 1671 static MemoryListener kvm_io_listener = { 1672 .eventfd_add = kvm_io_ioeventfd_add, 1673 .eventfd_del = kvm_io_ioeventfd_del, 1674 .priority = 10, 1675 }; 1676 1677 int kvm_set_irq(KVMState *s, int irq, int level) 1678 { 1679 struct kvm_irq_level event; 1680 int ret; 1681 1682 assert(kvm_async_interrupts_enabled()); 1683 1684 event.level = level; 1685 event.irq = irq; 1686 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1687 if (ret < 0) { 1688 perror("kvm_set_irq"); 1689 abort(); 1690 } 1691 1692 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1693 } 1694 1695 #ifdef KVM_CAP_IRQ_ROUTING 1696 typedef struct KVMMSIRoute { 1697 struct kvm_irq_routing_entry kroute; 1698 QTAILQ_ENTRY(KVMMSIRoute) entry; 1699 } KVMMSIRoute; 1700 1701 static void set_gsi(KVMState *s, unsigned int gsi) 1702 { 1703 set_bit(gsi, s->used_gsi_bitmap); 1704 } 1705 1706 static void clear_gsi(KVMState *s, unsigned int gsi) 1707 { 1708 clear_bit(gsi, s->used_gsi_bitmap); 1709 } 1710 1711 void kvm_init_irq_routing(KVMState *s) 1712 { 1713 int gsi_count, i; 1714 1715 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1716 if (gsi_count > 0) { 1717 /* Round up so we can search ints using ffs */ 1718 s->used_gsi_bitmap = bitmap_new(gsi_count); 1719 s->gsi_count = gsi_count; 1720 } 1721 1722 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1723 s->nr_allocated_irq_routes = 0; 1724 1725 if (!kvm_direct_msi_allowed) { 1726 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1727 QTAILQ_INIT(&s->msi_hashtab[i]); 1728 } 1729 } 1730 1731 kvm_arch_init_irq_routing(s); 1732 } 1733 1734 void kvm_irqchip_commit_routes(KVMState *s) 1735 { 1736 int ret; 1737 1738 if (kvm_gsi_direct_mapping()) { 1739 return; 1740 } 1741 1742 if (!kvm_gsi_routing_enabled()) { 1743 return; 1744 } 1745 1746 s->irq_routes->flags = 0; 1747 trace_kvm_irqchip_commit_routes(); 1748 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1749 assert(ret == 0); 1750 } 1751 1752 static void kvm_add_routing_entry(KVMState *s, 1753 struct kvm_irq_routing_entry *entry) 1754 { 1755 struct kvm_irq_routing_entry *new; 1756 int n, size; 1757 1758 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1759 n = s->nr_allocated_irq_routes * 2; 1760 if (n < 64) { 1761 n = 64; 1762 } 1763 size = sizeof(struct kvm_irq_routing); 1764 size += n * sizeof(*new); 1765 s->irq_routes = g_realloc(s->irq_routes, size); 1766 s->nr_allocated_irq_routes = n; 1767 } 1768 n = s->irq_routes->nr++; 1769 new = &s->irq_routes->entries[n]; 1770 1771 *new = *entry; 1772 1773 set_gsi(s, entry->gsi); 1774 } 1775 1776 static int kvm_update_routing_entry(KVMState *s, 1777 struct kvm_irq_routing_entry *new_entry) 1778 { 1779 struct kvm_irq_routing_entry *entry; 1780 int n; 1781 1782 for (n = 0; n < s->irq_routes->nr; n++) { 1783 entry = &s->irq_routes->entries[n]; 1784 if (entry->gsi != new_entry->gsi) { 1785 continue; 1786 } 1787 1788 if(!memcmp(entry, new_entry, sizeof *entry)) { 1789 return 0; 1790 } 1791 1792 *entry = *new_entry; 1793 1794 return 0; 1795 } 1796 1797 return -ESRCH; 1798 } 1799 1800 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1801 { 1802 struct kvm_irq_routing_entry e = {}; 1803 1804 assert(pin < s->gsi_count); 1805 1806 e.gsi = irq; 1807 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1808 e.flags = 0; 1809 e.u.irqchip.irqchip = irqchip; 1810 e.u.irqchip.pin = pin; 1811 kvm_add_routing_entry(s, &e); 1812 } 1813 1814 void kvm_irqchip_release_virq(KVMState *s, int virq) 1815 { 1816 struct kvm_irq_routing_entry *e; 1817 int i; 1818 1819 if (kvm_gsi_direct_mapping()) { 1820 return; 1821 } 1822 1823 for (i = 0; i < s->irq_routes->nr; i++) { 1824 e = &s->irq_routes->entries[i]; 1825 if (e->gsi == virq) { 1826 s->irq_routes->nr--; 1827 *e = s->irq_routes->entries[s->irq_routes->nr]; 1828 } 1829 } 1830 clear_gsi(s, virq); 1831 kvm_arch_release_virq_post(virq); 1832 trace_kvm_irqchip_release_virq(virq); 1833 } 1834 1835 void kvm_irqchip_add_change_notifier(Notifier *n) 1836 { 1837 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1838 } 1839 1840 void kvm_irqchip_remove_change_notifier(Notifier *n) 1841 { 1842 notifier_remove(n); 1843 } 1844 1845 void kvm_irqchip_change_notify(void) 1846 { 1847 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1848 } 1849 1850 static unsigned int kvm_hash_msi(uint32_t data) 1851 { 1852 /* This is optimized for IA32 MSI layout. However, no other arch shall 1853 * repeat the mistake of not providing a direct MSI injection API. */ 1854 return data & 0xff; 1855 } 1856 1857 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1858 { 1859 KVMMSIRoute *route, *next; 1860 unsigned int hash; 1861 1862 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1863 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1864 kvm_irqchip_release_virq(s, route->kroute.gsi); 1865 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1866 g_free(route); 1867 } 1868 } 1869 } 1870 1871 static int kvm_irqchip_get_virq(KVMState *s) 1872 { 1873 int next_virq; 1874 1875 /* 1876 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1877 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1878 * number can succeed even though a new route entry cannot be added. 1879 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1880 */ 1881 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1882 kvm_flush_dynamic_msi_routes(s); 1883 } 1884 1885 /* Return the lowest unused GSI in the bitmap */ 1886 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1887 if (next_virq >= s->gsi_count) { 1888 return -ENOSPC; 1889 } else { 1890 return next_virq; 1891 } 1892 } 1893 1894 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1895 { 1896 unsigned int hash = kvm_hash_msi(msg.data); 1897 KVMMSIRoute *route; 1898 1899 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1900 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1901 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1902 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1903 return route; 1904 } 1905 } 1906 return NULL; 1907 } 1908 1909 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1910 { 1911 struct kvm_msi msi; 1912 KVMMSIRoute *route; 1913 1914 if (kvm_direct_msi_allowed) { 1915 msi.address_lo = (uint32_t)msg.address; 1916 msi.address_hi = msg.address >> 32; 1917 msi.data = le32_to_cpu(msg.data); 1918 msi.flags = 0; 1919 memset(msi.pad, 0, sizeof(msi.pad)); 1920 1921 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1922 } 1923 1924 route = kvm_lookup_msi_route(s, msg); 1925 if (!route) { 1926 int virq; 1927 1928 virq = kvm_irqchip_get_virq(s); 1929 if (virq < 0) { 1930 return virq; 1931 } 1932 1933 route = g_malloc0(sizeof(KVMMSIRoute)); 1934 route->kroute.gsi = virq; 1935 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1936 route->kroute.flags = 0; 1937 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1938 route->kroute.u.msi.address_hi = msg.address >> 32; 1939 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1940 1941 kvm_add_routing_entry(s, &route->kroute); 1942 kvm_irqchip_commit_routes(s); 1943 1944 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1945 entry); 1946 } 1947 1948 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1949 1950 return kvm_set_irq(s, route->kroute.gsi, 1); 1951 } 1952 1953 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1954 { 1955 struct kvm_irq_routing_entry kroute = {}; 1956 int virq; 1957 MSIMessage msg = {0, 0}; 1958 1959 if (pci_available && dev) { 1960 msg = pci_get_msi_message(dev, vector); 1961 } 1962 1963 if (kvm_gsi_direct_mapping()) { 1964 return kvm_arch_msi_data_to_gsi(msg.data); 1965 } 1966 1967 if (!kvm_gsi_routing_enabled()) { 1968 return -ENOSYS; 1969 } 1970 1971 virq = kvm_irqchip_get_virq(s); 1972 if (virq < 0) { 1973 return virq; 1974 } 1975 1976 kroute.gsi = virq; 1977 kroute.type = KVM_IRQ_ROUTING_MSI; 1978 kroute.flags = 0; 1979 kroute.u.msi.address_lo = (uint32_t)msg.address; 1980 kroute.u.msi.address_hi = msg.address >> 32; 1981 kroute.u.msi.data = le32_to_cpu(msg.data); 1982 if (pci_available && kvm_msi_devid_required()) { 1983 kroute.flags = KVM_MSI_VALID_DEVID; 1984 kroute.u.msi.devid = pci_requester_id(dev); 1985 } 1986 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1987 kvm_irqchip_release_virq(s, virq); 1988 return -EINVAL; 1989 } 1990 1991 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1992 vector, virq); 1993 1994 kvm_add_routing_entry(s, &kroute); 1995 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1996 kvm_irqchip_commit_routes(s); 1997 1998 return virq; 1999 } 2000 2001 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2002 PCIDevice *dev) 2003 { 2004 struct kvm_irq_routing_entry kroute = {}; 2005 2006 if (kvm_gsi_direct_mapping()) { 2007 return 0; 2008 } 2009 2010 if (!kvm_irqchip_in_kernel()) { 2011 return -ENOSYS; 2012 } 2013 2014 kroute.gsi = virq; 2015 kroute.type = KVM_IRQ_ROUTING_MSI; 2016 kroute.flags = 0; 2017 kroute.u.msi.address_lo = (uint32_t)msg.address; 2018 kroute.u.msi.address_hi = msg.address >> 32; 2019 kroute.u.msi.data = le32_to_cpu(msg.data); 2020 if (pci_available && kvm_msi_devid_required()) { 2021 kroute.flags = KVM_MSI_VALID_DEVID; 2022 kroute.u.msi.devid = pci_requester_id(dev); 2023 } 2024 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2025 return -EINVAL; 2026 } 2027 2028 trace_kvm_irqchip_update_msi_route(virq); 2029 2030 return kvm_update_routing_entry(s, &kroute); 2031 } 2032 2033 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2034 EventNotifier *resample, int virq, 2035 bool assign) 2036 { 2037 int fd = event_notifier_get_fd(event); 2038 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2039 2040 struct kvm_irqfd irqfd = { 2041 .fd = fd, 2042 .gsi = virq, 2043 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2044 }; 2045 2046 if (rfd != -1) { 2047 assert(assign); 2048 if (kvm_irqchip_is_split()) { 2049 /* 2050 * When the slow irqchip (e.g. IOAPIC) is in the 2051 * userspace, KVM kernel resamplefd will not work because 2052 * the EOI of the interrupt will be delivered to userspace 2053 * instead, so the KVM kernel resamplefd kick will be 2054 * skipped. The userspace here mimics what the kernel 2055 * provides with resamplefd, remember the resamplefd and 2056 * kick it when we receive EOI of this IRQ. 2057 * 2058 * This is hackery because IOAPIC is mostly bypassed 2059 * (except EOI broadcasts) when irqfd is used. However 2060 * this can bring much performance back for split irqchip 2061 * with INTx IRQs (for VFIO, this gives 93% perf of the 2062 * full fast path, which is 46% perf boost comparing to 2063 * the INTx slow path). 2064 */ 2065 kvm_resample_fd_insert(virq, resample); 2066 } else { 2067 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2068 irqfd.resamplefd = rfd; 2069 } 2070 } else if (!assign) { 2071 if (kvm_irqchip_is_split()) { 2072 kvm_resample_fd_remove(virq); 2073 } 2074 } 2075 2076 if (!kvm_irqfds_enabled()) { 2077 return -ENOSYS; 2078 } 2079 2080 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2081 } 2082 2083 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2084 { 2085 struct kvm_irq_routing_entry kroute = {}; 2086 int virq; 2087 2088 if (!kvm_gsi_routing_enabled()) { 2089 return -ENOSYS; 2090 } 2091 2092 virq = kvm_irqchip_get_virq(s); 2093 if (virq < 0) { 2094 return virq; 2095 } 2096 2097 kroute.gsi = virq; 2098 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2099 kroute.flags = 0; 2100 kroute.u.adapter.summary_addr = adapter->summary_addr; 2101 kroute.u.adapter.ind_addr = adapter->ind_addr; 2102 kroute.u.adapter.summary_offset = adapter->summary_offset; 2103 kroute.u.adapter.ind_offset = adapter->ind_offset; 2104 kroute.u.adapter.adapter_id = adapter->adapter_id; 2105 2106 kvm_add_routing_entry(s, &kroute); 2107 2108 return virq; 2109 } 2110 2111 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2112 { 2113 struct kvm_irq_routing_entry kroute = {}; 2114 int virq; 2115 2116 if (!kvm_gsi_routing_enabled()) { 2117 return -ENOSYS; 2118 } 2119 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2120 return -ENOSYS; 2121 } 2122 virq = kvm_irqchip_get_virq(s); 2123 if (virq < 0) { 2124 return virq; 2125 } 2126 2127 kroute.gsi = virq; 2128 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2129 kroute.flags = 0; 2130 kroute.u.hv_sint.vcpu = vcpu; 2131 kroute.u.hv_sint.sint = sint; 2132 2133 kvm_add_routing_entry(s, &kroute); 2134 kvm_irqchip_commit_routes(s); 2135 2136 return virq; 2137 } 2138 2139 #else /* !KVM_CAP_IRQ_ROUTING */ 2140 2141 void kvm_init_irq_routing(KVMState *s) 2142 { 2143 } 2144 2145 void kvm_irqchip_release_virq(KVMState *s, int virq) 2146 { 2147 } 2148 2149 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2150 { 2151 abort(); 2152 } 2153 2154 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 2155 { 2156 return -ENOSYS; 2157 } 2158 2159 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2160 { 2161 return -ENOSYS; 2162 } 2163 2164 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2165 { 2166 return -ENOSYS; 2167 } 2168 2169 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2170 EventNotifier *resample, int virq, 2171 bool assign) 2172 { 2173 abort(); 2174 } 2175 2176 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2177 { 2178 return -ENOSYS; 2179 } 2180 #endif /* !KVM_CAP_IRQ_ROUTING */ 2181 2182 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2183 EventNotifier *rn, int virq) 2184 { 2185 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2186 } 2187 2188 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2189 int virq) 2190 { 2191 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2192 } 2193 2194 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2195 EventNotifier *rn, qemu_irq irq) 2196 { 2197 gpointer key, gsi; 2198 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2199 2200 if (!found) { 2201 return -ENXIO; 2202 } 2203 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2204 } 2205 2206 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2207 qemu_irq irq) 2208 { 2209 gpointer key, gsi; 2210 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2211 2212 if (!found) { 2213 return -ENXIO; 2214 } 2215 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2216 } 2217 2218 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2219 { 2220 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2221 } 2222 2223 static void kvm_irqchip_create(KVMState *s) 2224 { 2225 int ret; 2226 2227 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2228 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2229 ; 2230 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2231 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2232 if (ret < 0) { 2233 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2234 exit(1); 2235 } 2236 } else { 2237 return; 2238 } 2239 2240 /* First probe and see if there's a arch-specific hook to create the 2241 * in-kernel irqchip for us */ 2242 ret = kvm_arch_irqchip_create(s); 2243 if (ret == 0) { 2244 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2245 perror("Split IRQ chip mode not supported."); 2246 exit(1); 2247 } else { 2248 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2249 } 2250 } 2251 if (ret < 0) { 2252 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2253 exit(1); 2254 } 2255 2256 kvm_kernel_irqchip = true; 2257 /* If we have an in-kernel IRQ chip then we must have asynchronous 2258 * interrupt delivery (though the reverse is not necessarily true) 2259 */ 2260 kvm_async_interrupts_allowed = true; 2261 kvm_halt_in_kernel_allowed = true; 2262 2263 kvm_init_irq_routing(s); 2264 2265 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2266 } 2267 2268 /* Find number of supported CPUs using the recommended 2269 * procedure from the kernel API documentation to cope with 2270 * older kernels that may be missing capabilities. 2271 */ 2272 static int kvm_recommended_vcpus(KVMState *s) 2273 { 2274 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2275 return (ret) ? ret : 4; 2276 } 2277 2278 static int kvm_max_vcpus(KVMState *s) 2279 { 2280 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2281 return (ret) ? ret : kvm_recommended_vcpus(s); 2282 } 2283 2284 static int kvm_max_vcpu_id(KVMState *s) 2285 { 2286 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2287 return (ret) ? ret : kvm_max_vcpus(s); 2288 } 2289 2290 bool kvm_vcpu_id_is_valid(int vcpu_id) 2291 { 2292 KVMState *s = KVM_STATE(current_accel()); 2293 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2294 } 2295 2296 static int kvm_init(MachineState *ms) 2297 { 2298 MachineClass *mc = MACHINE_GET_CLASS(ms); 2299 static const char upgrade_note[] = 2300 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2301 "(see http://sourceforge.net/projects/kvm).\n"; 2302 struct { 2303 const char *name; 2304 int num; 2305 } num_cpus[] = { 2306 { "SMP", ms->smp.cpus }, 2307 { "hotpluggable", ms->smp.max_cpus }, 2308 { NULL, } 2309 }, *nc = num_cpus; 2310 int soft_vcpus_limit, hard_vcpus_limit; 2311 KVMState *s; 2312 const KVMCapabilityInfo *missing_cap; 2313 int ret; 2314 int type = 0; 2315 uint64_t dirty_log_manual_caps; 2316 2317 qemu_mutex_init(&kml_slots_lock); 2318 2319 s = KVM_STATE(ms->accelerator); 2320 2321 /* 2322 * On systems where the kernel can support different base page 2323 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2324 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2325 * page size for the system though. 2326 */ 2327 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2328 2329 s->sigmask_len = 8; 2330 2331 #ifdef KVM_CAP_SET_GUEST_DEBUG 2332 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2333 #endif 2334 QLIST_INIT(&s->kvm_parked_vcpus); 2335 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2336 if (s->fd == -1) { 2337 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2338 ret = -errno; 2339 goto err; 2340 } 2341 2342 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2343 if (ret < KVM_API_VERSION) { 2344 if (ret >= 0) { 2345 ret = -EINVAL; 2346 } 2347 fprintf(stderr, "kvm version too old\n"); 2348 goto err; 2349 } 2350 2351 if (ret > KVM_API_VERSION) { 2352 ret = -EINVAL; 2353 fprintf(stderr, "kvm version not supported\n"); 2354 goto err; 2355 } 2356 2357 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2358 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2359 2360 /* If unspecified, use the default value */ 2361 if (!s->nr_slots) { 2362 s->nr_slots = 32; 2363 } 2364 2365 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2366 if (s->nr_as <= 1) { 2367 s->nr_as = 1; 2368 } 2369 s->as = g_new0(struct KVMAs, s->nr_as); 2370 2371 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2372 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2373 "kvm-type", 2374 &error_abort); 2375 type = mc->kvm_type(ms, kvm_type); 2376 } else if (mc->kvm_type) { 2377 type = mc->kvm_type(ms, NULL); 2378 } 2379 2380 do { 2381 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2382 } while (ret == -EINTR); 2383 2384 if (ret < 0) { 2385 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2386 strerror(-ret)); 2387 2388 #ifdef TARGET_S390X 2389 if (ret == -EINVAL) { 2390 fprintf(stderr, 2391 "Host kernel setup problem detected. Please verify:\n"); 2392 fprintf(stderr, "- for kernels supporting the switch_amode or" 2393 " user_mode parameters, whether\n"); 2394 fprintf(stderr, 2395 " user space is running in primary address space\n"); 2396 fprintf(stderr, 2397 "- for kernels supporting the vm.allocate_pgste sysctl, " 2398 "whether it is enabled\n"); 2399 } 2400 #endif 2401 goto err; 2402 } 2403 2404 s->vmfd = ret; 2405 2406 /* check the vcpu limits */ 2407 soft_vcpus_limit = kvm_recommended_vcpus(s); 2408 hard_vcpus_limit = kvm_max_vcpus(s); 2409 2410 while (nc->name) { 2411 if (nc->num > soft_vcpus_limit) { 2412 warn_report("Number of %s cpus requested (%d) exceeds " 2413 "the recommended cpus supported by KVM (%d)", 2414 nc->name, nc->num, soft_vcpus_limit); 2415 2416 if (nc->num > hard_vcpus_limit) { 2417 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2418 "the maximum cpus supported by KVM (%d)\n", 2419 nc->name, nc->num, hard_vcpus_limit); 2420 exit(1); 2421 } 2422 } 2423 nc++; 2424 } 2425 2426 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2427 if (!missing_cap) { 2428 missing_cap = 2429 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2430 } 2431 if (missing_cap) { 2432 ret = -EINVAL; 2433 fprintf(stderr, "kvm does not support %s\n%s", 2434 missing_cap->name, upgrade_note); 2435 goto err; 2436 } 2437 2438 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2439 s->coalesced_pio = s->coalesced_mmio && 2440 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2441 2442 /* 2443 * Enable KVM dirty ring if supported, otherwise fall back to 2444 * dirty logging mode 2445 */ 2446 if (s->kvm_dirty_ring_size > 0) { 2447 uint64_t ring_bytes; 2448 2449 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn); 2450 2451 /* Read the max supported pages */ 2452 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING); 2453 if (ret > 0) { 2454 if (ring_bytes > ret) { 2455 error_report("KVM dirty ring size %" PRIu32 " too big " 2456 "(maximum is %ld). Please use a smaller value.", 2457 s->kvm_dirty_ring_size, 2458 (long)ret / sizeof(struct kvm_dirty_gfn)); 2459 ret = -EINVAL; 2460 goto err; 2461 } 2462 2463 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes); 2464 if (ret) { 2465 error_report("Enabling of KVM dirty ring failed: %s. " 2466 "Suggested mininum value is 1024.", strerror(-ret)); 2467 goto err; 2468 } 2469 2470 s->kvm_dirty_ring_bytes = ring_bytes; 2471 } else { 2472 warn_report("KVM dirty ring not available, using bitmap method"); 2473 s->kvm_dirty_ring_size = 0; 2474 } 2475 } 2476 2477 /* 2478 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2479 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2480 * page is wr-protected initially, which is against how kvm dirty ring is 2481 * usage - kvm dirty ring requires all pages are wr-protected at the very 2482 * beginning. Enabling this feature for dirty ring causes data corruption. 2483 * 2484 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2485 * we may expect a higher stall time when starting the migration. In the 2486 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2487 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2488 * guest pages. 2489 */ 2490 if (!s->kvm_dirty_ring_size) { 2491 dirty_log_manual_caps = 2492 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2493 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2494 KVM_DIRTY_LOG_INITIALLY_SET); 2495 s->manual_dirty_log_protect = dirty_log_manual_caps; 2496 if (dirty_log_manual_caps) { 2497 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2498 dirty_log_manual_caps); 2499 if (ret) { 2500 warn_report("Trying to enable capability %"PRIu64" of " 2501 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2502 "Falling back to the legacy mode. ", 2503 dirty_log_manual_caps); 2504 s->manual_dirty_log_protect = 0; 2505 } 2506 } 2507 } 2508 2509 #ifdef KVM_CAP_VCPU_EVENTS 2510 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2511 #endif 2512 2513 s->robust_singlestep = 2514 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2515 2516 #ifdef KVM_CAP_DEBUGREGS 2517 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2518 #endif 2519 2520 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2521 2522 #ifdef KVM_CAP_IRQ_ROUTING 2523 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2524 #endif 2525 2526 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2527 2528 s->irq_set_ioctl = KVM_IRQ_LINE; 2529 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2530 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2531 } 2532 2533 kvm_readonly_mem_allowed = 2534 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2535 2536 kvm_eventfds_allowed = 2537 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2538 2539 kvm_irqfds_allowed = 2540 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2541 2542 kvm_resamplefds_allowed = 2543 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2544 2545 kvm_vm_attributes_allowed = 2546 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2547 2548 kvm_ioeventfd_any_length_allowed = 2549 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2550 2551 kvm_state = s; 2552 2553 ret = kvm_arch_init(ms, s); 2554 if (ret < 0) { 2555 goto err; 2556 } 2557 2558 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2559 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2560 } 2561 2562 qemu_register_reset(kvm_unpoison_all, NULL); 2563 2564 if (s->kernel_irqchip_allowed) { 2565 kvm_irqchip_create(s); 2566 } 2567 2568 if (kvm_eventfds_allowed) { 2569 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2570 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2571 } 2572 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2573 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2574 2575 kvm_memory_listener_register(s, &s->memory_listener, 2576 &address_space_memory, 0); 2577 if (kvm_eventfds_allowed) { 2578 memory_listener_register(&kvm_io_listener, 2579 &address_space_io); 2580 } 2581 memory_listener_register(&kvm_coalesced_pio_listener, 2582 &address_space_io); 2583 2584 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2585 2586 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2587 if (!s->sync_mmu) { 2588 ret = ram_block_discard_disable(true); 2589 assert(!ret); 2590 } 2591 2592 if (s->kvm_dirty_ring_size) { 2593 ret = kvm_dirty_ring_reaper_init(s); 2594 if (ret) { 2595 goto err; 2596 } 2597 } 2598 2599 return 0; 2600 2601 err: 2602 assert(ret < 0); 2603 if (s->vmfd >= 0) { 2604 close(s->vmfd); 2605 } 2606 if (s->fd != -1) { 2607 close(s->fd); 2608 } 2609 g_free(s->memory_listener.slots); 2610 2611 return ret; 2612 } 2613 2614 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2615 { 2616 s->sigmask_len = sigmask_len; 2617 } 2618 2619 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2620 int size, uint32_t count) 2621 { 2622 int i; 2623 uint8_t *ptr = data; 2624 2625 for (i = 0; i < count; i++) { 2626 address_space_rw(&address_space_io, port, attrs, 2627 ptr, size, 2628 direction == KVM_EXIT_IO_OUT); 2629 ptr += size; 2630 } 2631 } 2632 2633 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2634 { 2635 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2636 run->internal.suberror); 2637 2638 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2639 int i; 2640 2641 for (i = 0; i < run->internal.ndata; ++i) { 2642 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2643 i, (uint64_t)run->internal.data[i]); 2644 } 2645 } 2646 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2647 fprintf(stderr, "emulation failure\n"); 2648 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2649 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2650 return EXCP_INTERRUPT; 2651 } 2652 } 2653 /* FIXME: Should trigger a qmp message to let management know 2654 * something went wrong. 2655 */ 2656 return -1; 2657 } 2658 2659 void kvm_flush_coalesced_mmio_buffer(void) 2660 { 2661 KVMState *s = kvm_state; 2662 2663 if (s->coalesced_flush_in_progress) { 2664 return; 2665 } 2666 2667 s->coalesced_flush_in_progress = true; 2668 2669 if (s->coalesced_mmio_ring) { 2670 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2671 while (ring->first != ring->last) { 2672 struct kvm_coalesced_mmio *ent; 2673 2674 ent = &ring->coalesced_mmio[ring->first]; 2675 2676 if (ent->pio == 1) { 2677 address_space_write(&address_space_io, ent->phys_addr, 2678 MEMTXATTRS_UNSPECIFIED, ent->data, 2679 ent->len); 2680 } else { 2681 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2682 } 2683 smp_wmb(); 2684 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2685 } 2686 } 2687 2688 s->coalesced_flush_in_progress = false; 2689 } 2690 2691 bool kvm_cpu_check_are_resettable(void) 2692 { 2693 return kvm_arch_cpu_check_are_resettable(); 2694 } 2695 2696 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2697 { 2698 if (!cpu->vcpu_dirty) { 2699 kvm_arch_get_registers(cpu); 2700 cpu->vcpu_dirty = true; 2701 } 2702 } 2703 2704 void kvm_cpu_synchronize_state(CPUState *cpu) 2705 { 2706 if (!cpu->vcpu_dirty) { 2707 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2708 } 2709 } 2710 2711 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2712 { 2713 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2714 cpu->vcpu_dirty = false; 2715 } 2716 2717 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2718 { 2719 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2720 } 2721 2722 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2723 { 2724 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2725 cpu->vcpu_dirty = false; 2726 } 2727 2728 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2729 { 2730 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2731 } 2732 2733 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2734 { 2735 cpu->vcpu_dirty = true; 2736 } 2737 2738 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2739 { 2740 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2741 } 2742 2743 #ifdef KVM_HAVE_MCE_INJECTION 2744 static __thread void *pending_sigbus_addr; 2745 static __thread int pending_sigbus_code; 2746 static __thread bool have_sigbus_pending; 2747 #endif 2748 2749 static void kvm_cpu_kick(CPUState *cpu) 2750 { 2751 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2752 } 2753 2754 static void kvm_cpu_kick_self(void) 2755 { 2756 if (kvm_immediate_exit) { 2757 kvm_cpu_kick(current_cpu); 2758 } else { 2759 qemu_cpu_kick_self(); 2760 } 2761 } 2762 2763 static void kvm_eat_signals(CPUState *cpu) 2764 { 2765 struct timespec ts = { 0, 0 }; 2766 siginfo_t siginfo; 2767 sigset_t waitset; 2768 sigset_t chkset; 2769 int r; 2770 2771 if (kvm_immediate_exit) { 2772 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2773 /* Write kvm_run->immediate_exit before the cpu->exit_request 2774 * write in kvm_cpu_exec. 2775 */ 2776 smp_wmb(); 2777 return; 2778 } 2779 2780 sigemptyset(&waitset); 2781 sigaddset(&waitset, SIG_IPI); 2782 2783 do { 2784 r = sigtimedwait(&waitset, &siginfo, &ts); 2785 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2786 perror("sigtimedwait"); 2787 exit(1); 2788 } 2789 2790 r = sigpending(&chkset); 2791 if (r == -1) { 2792 perror("sigpending"); 2793 exit(1); 2794 } 2795 } while (sigismember(&chkset, SIG_IPI)); 2796 } 2797 2798 int kvm_cpu_exec(CPUState *cpu) 2799 { 2800 struct kvm_run *run = cpu->kvm_run; 2801 int ret, run_ret; 2802 2803 DPRINTF("kvm_cpu_exec()\n"); 2804 2805 if (kvm_arch_process_async_events(cpu)) { 2806 qatomic_set(&cpu->exit_request, 0); 2807 return EXCP_HLT; 2808 } 2809 2810 qemu_mutex_unlock_iothread(); 2811 cpu_exec_start(cpu); 2812 2813 do { 2814 MemTxAttrs attrs; 2815 2816 if (cpu->vcpu_dirty) { 2817 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2818 cpu->vcpu_dirty = false; 2819 } 2820 2821 kvm_arch_pre_run(cpu, run); 2822 if (qatomic_read(&cpu->exit_request)) { 2823 DPRINTF("interrupt exit requested\n"); 2824 /* 2825 * KVM requires us to reenter the kernel after IO exits to complete 2826 * instruction emulation. This self-signal will ensure that we 2827 * leave ASAP again. 2828 */ 2829 kvm_cpu_kick_self(); 2830 } 2831 2832 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2833 * Matching barrier in kvm_eat_signals. 2834 */ 2835 smp_rmb(); 2836 2837 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2838 2839 attrs = kvm_arch_post_run(cpu, run); 2840 2841 #ifdef KVM_HAVE_MCE_INJECTION 2842 if (unlikely(have_sigbus_pending)) { 2843 qemu_mutex_lock_iothread(); 2844 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2845 pending_sigbus_addr); 2846 have_sigbus_pending = false; 2847 qemu_mutex_unlock_iothread(); 2848 } 2849 #endif 2850 2851 if (run_ret < 0) { 2852 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2853 DPRINTF("io window exit\n"); 2854 kvm_eat_signals(cpu); 2855 ret = EXCP_INTERRUPT; 2856 break; 2857 } 2858 fprintf(stderr, "error: kvm run failed %s\n", 2859 strerror(-run_ret)); 2860 #ifdef TARGET_PPC 2861 if (run_ret == -EBUSY) { 2862 fprintf(stderr, 2863 "This is probably because your SMT is enabled.\n" 2864 "VCPU can only run on primary threads with all " 2865 "secondary threads offline.\n"); 2866 } 2867 #endif 2868 ret = -1; 2869 break; 2870 } 2871 2872 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2873 switch (run->exit_reason) { 2874 case KVM_EXIT_IO: 2875 DPRINTF("handle_io\n"); 2876 /* Called outside BQL */ 2877 kvm_handle_io(run->io.port, attrs, 2878 (uint8_t *)run + run->io.data_offset, 2879 run->io.direction, 2880 run->io.size, 2881 run->io.count); 2882 ret = 0; 2883 break; 2884 case KVM_EXIT_MMIO: 2885 DPRINTF("handle_mmio\n"); 2886 /* Called outside BQL */ 2887 address_space_rw(&address_space_memory, 2888 run->mmio.phys_addr, attrs, 2889 run->mmio.data, 2890 run->mmio.len, 2891 run->mmio.is_write); 2892 ret = 0; 2893 break; 2894 case KVM_EXIT_IRQ_WINDOW_OPEN: 2895 DPRINTF("irq_window_open\n"); 2896 ret = EXCP_INTERRUPT; 2897 break; 2898 case KVM_EXIT_SHUTDOWN: 2899 DPRINTF("shutdown\n"); 2900 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2901 ret = EXCP_INTERRUPT; 2902 break; 2903 case KVM_EXIT_UNKNOWN: 2904 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2905 (uint64_t)run->hw.hardware_exit_reason); 2906 ret = -1; 2907 break; 2908 case KVM_EXIT_INTERNAL_ERROR: 2909 ret = kvm_handle_internal_error(cpu, run); 2910 break; 2911 case KVM_EXIT_DIRTY_RING_FULL: 2912 /* 2913 * We shouldn't continue if the dirty ring of this vcpu is 2914 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2915 */ 2916 trace_kvm_dirty_ring_full(cpu->cpu_index); 2917 qemu_mutex_lock_iothread(); 2918 kvm_dirty_ring_reap(kvm_state); 2919 qemu_mutex_unlock_iothread(); 2920 ret = 0; 2921 break; 2922 case KVM_EXIT_SYSTEM_EVENT: 2923 switch (run->system_event.type) { 2924 case KVM_SYSTEM_EVENT_SHUTDOWN: 2925 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2926 ret = EXCP_INTERRUPT; 2927 break; 2928 case KVM_SYSTEM_EVENT_RESET: 2929 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2930 ret = EXCP_INTERRUPT; 2931 break; 2932 case KVM_SYSTEM_EVENT_CRASH: 2933 kvm_cpu_synchronize_state(cpu); 2934 qemu_mutex_lock_iothread(); 2935 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2936 qemu_mutex_unlock_iothread(); 2937 ret = 0; 2938 break; 2939 default: 2940 DPRINTF("kvm_arch_handle_exit\n"); 2941 ret = kvm_arch_handle_exit(cpu, run); 2942 break; 2943 } 2944 break; 2945 default: 2946 DPRINTF("kvm_arch_handle_exit\n"); 2947 ret = kvm_arch_handle_exit(cpu, run); 2948 break; 2949 } 2950 } while (ret == 0); 2951 2952 cpu_exec_end(cpu); 2953 qemu_mutex_lock_iothread(); 2954 2955 if (ret < 0) { 2956 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2957 vm_stop(RUN_STATE_INTERNAL_ERROR); 2958 } 2959 2960 qatomic_set(&cpu->exit_request, 0); 2961 return ret; 2962 } 2963 2964 int kvm_ioctl(KVMState *s, int type, ...) 2965 { 2966 int ret; 2967 void *arg; 2968 va_list ap; 2969 2970 va_start(ap, type); 2971 arg = va_arg(ap, void *); 2972 va_end(ap); 2973 2974 trace_kvm_ioctl(type, arg); 2975 ret = ioctl(s->fd, type, arg); 2976 if (ret == -1) { 2977 ret = -errno; 2978 } 2979 return ret; 2980 } 2981 2982 int kvm_vm_ioctl(KVMState *s, int type, ...) 2983 { 2984 int ret; 2985 void *arg; 2986 va_list ap; 2987 2988 va_start(ap, type); 2989 arg = va_arg(ap, void *); 2990 va_end(ap); 2991 2992 trace_kvm_vm_ioctl(type, arg); 2993 ret = ioctl(s->vmfd, type, arg); 2994 if (ret == -1) { 2995 ret = -errno; 2996 } 2997 return ret; 2998 } 2999 3000 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3001 { 3002 int ret; 3003 void *arg; 3004 va_list ap; 3005 3006 va_start(ap, type); 3007 arg = va_arg(ap, void *); 3008 va_end(ap); 3009 3010 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3011 ret = ioctl(cpu->kvm_fd, type, arg); 3012 if (ret == -1) { 3013 ret = -errno; 3014 } 3015 return ret; 3016 } 3017 3018 int kvm_device_ioctl(int fd, int type, ...) 3019 { 3020 int ret; 3021 void *arg; 3022 va_list ap; 3023 3024 va_start(ap, type); 3025 arg = va_arg(ap, void *); 3026 va_end(ap); 3027 3028 trace_kvm_device_ioctl(fd, type, arg); 3029 ret = ioctl(fd, type, arg); 3030 if (ret == -1) { 3031 ret = -errno; 3032 } 3033 return ret; 3034 } 3035 3036 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3037 { 3038 int ret; 3039 struct kvm_device_attr attribute = { 3040 .group = group, 3041 .attr = attr, 3042 }; 3043 3044 if (!kvm_vm_attributes_allowed) { 3045 return 0; 3046 } 3047 3048 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3049 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3050 return ret ? 0 : 1; 3051 } 3052 3053 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3054 { 3055 struct kvm_device_attr attribute = { 3056 .group = group, 3057 .attr = attr, 3058 .flags = 0, 3059 }; 3060 3061 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3062 } 3063 3064 int kvm_device_access(int fd, int group, uint64_t attr, 3065 void *val, bool write, Error **errp) 3066 { 3067 struct kvm_device_attr kvmattr; 3068 int err; 3069 3070 kvmattr.flags = 0; 3071 kvmattr.group = group; 3072 kvmattr.attr = attr; 3073 kvmattr.addr = (uintptr_t)val; 3074 3075 err = kvm_device_ioctl(fd, 3076 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3077 &kvmattr); 3078 if (err < 0) { 3079 error_setg_errno(errp, -err, 3080 "KVM_%s_DEVICE_ATTR failed: Group %d " 3081 "attr 0x%016" PRIx64, 3082 write ? "SET" : "GET", group, attr); 3083 } 3084 return err; 3085 } 3086 3087 bool kvm_has_sync_mmu(void) 3088 { 3089 return kvm_state->sync_mmu; 3090 } 3091 3092 int kvm_has_vcpu_events(void) 3093 { 3094 return kvm_state->vcpu_events; 3095 } 3096 3097 int kvm_has_robust_singlestep(void) 3098 { 3099 return kvm_state->robust_singlestep; 3100 } 3101 3102 int kvm_has_debugregs(void) 3103 { 3104 return kvm_state->debugregs; 3105 } 3106 3107 int kvm_max_nested_state_length(void) 3108 { 3109 return kvm_state->max_nested_state_len; 3110 } 3111 3112 int kvm_has_many_ioeventfds(void) 3113 { 3114 if (!kvm_enabled()) { 3115 return 0; 3116 } 3117 return kvm_state->many_ioeventfds; 3118 } 3119 3120 int kvm_has_gsi_routing(void) 3121 { 3122 #ifdef KVM_CAP_IRQ_ROUTING 3123 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3124 #else 3125 return false; 3126 #endif 3127 } 3128 3129 int kvm_has_intx_set_mask(void) 3130 { 3131 return kvm_state->intx_set_mask; 3132 } 3133 3134 bool kvm_arm_supports_user_irq(void) 3135 { 3136 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3137 } 3138 3139 #ifdef KVM_CAP_SET_GUEST_DEBUG 3140 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3141 target_ulong pc) 3142 { 3143 struct kvm_sw_breakpoint *bp; 3144 3145 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3146 if (bp->pc == pc) { 3147 return bp; 3148 } 3149 } 3150 return NULL; 3151 } 3152 3153 int kvm_sw_breakpoints_active(CPUState *cpu) 3154 { 3155 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3156 } 3157 3158 struct kvm_set_guest_debug_data { 3159 struct kvm_guest_debug dbg; 3160 int err; 3161 }; 3162 3163 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3164 { 3165 struct kvm_set_guest_debug_data *dbg_data = 3166 (struct kvm_set_guest_debug_data *) data.host_ptr; 3167 3168 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3169 &dbg_data->dbg); 3170 } 3171 3172 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3173 { 3174 struct kvm_set_guest_debug_data data; 3175 3176 data.dbg.control = reinject_trap; 3177 3178 if (cpu->singlestep_enabled) { 3179 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3180 } 3181 kvm_arch_update_guest_debug(cpu, &data.dbg); 3182 3183 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3184 RUN_ON_CPU_HOST_PTR(&data)); 3185 return data.err; 3186 } 3187 3188 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 3189 target_ulong len, int type) 3190 { 3191 struct kvm_sw_breakpoint *bp; 3192 int err; 3193 3194 if (type == GDB_BREAKPOINT_SW) { 3195 bp = kvm_find_sw_breakpoint(cpu, addr); 3196 if (bp) { 3197 bp->use_count++; 3198 return 0; 3199 } 3200 3201 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 3202 bp->pc = addr; 3203 bp->use_count = 1; 3204 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3205 if (err) { 3206 g_free(bp); 3207 return err; 3208 } 3209 3210 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3211 } else { 3212 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3213 if (err) { 3214 return err; 3215 } 3216 } 3217 3218 CPU_FOREACH(cpu) { 3219 err = kvm_update_guest_debug(cpu, 0); 3220 if (err) { 3221 return err; 3222 } 3223 } 3224 return 0; 3225 } 3226 3227 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 3228 target_ulong len, int type) 3229 { 3230 struct kvm_sw_breakpoint *bp; 3231 int err; 3232 3233 if (type == GDB_BREAKPOINT_SW) { 3234 bp = kvm_find_sw_breakpoint(cpu, addr); 3235 if (!bp) { 3236 return -ENOENT; 3237 } 3238 3239 if (bp->use_count > 1) { 3240 bp->use_count--; 3241 return 0; 3242 } 3243 3244 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3245 if (err) { 3246 return err; 3247 } 3248 3249 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3250 g_free(bp); 3251 } else { 3252 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3253 if (err) { 3254 return err; 3255 } 3256 } 3257 3258 CPU_FOREACH(cpu) { 3259 err = kvm_update_guest_debug(cpu, 0); 3260 if (err) { 3261 return err; 3262 } 3263 } 3264 return 0; 3265 } 3266 3267 void kvm_remove_all_breakpoints(CPUState *cpu) 3268 { 3269 struct kvm_sw_breakpoint *bp, *next; 3270 KVMState *s = cpu->kvm_state; 3271 CPUState *tmpcpu; 3272 3273 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3274 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3275 /* Try harder to find a CPU that currently sees the breakpoint. */ 3276 CPU_FOREACH(tmpcpu) { 3277 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3278 break; 3279 } 3280 } 3281 } 3282 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3283 g_free(bp); 3284 } 3285 kvm_arch_remove_all_hw_breakpoints(); 3286 3287 CPU_FOREACH(cpu) { 3288 kvm_update_guest_debug(cpu, 0); 3289 } 3290 } 3291 3292 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 3293 3294 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3295 { 3296 return -EINVAL; 3297 } 3298 3299 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 3300 target_ulong len, int type) 3301 { 3302 return -EINVAL; 3303 } 3304 3305 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 3306 target_ulong len, int type) 3307 { 3308 return -EINVAL; 3309 } 3310 3311 void kvm_remove_all_breakpoints(CPUState *cpu) 3312 { 3313 } 3314 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3315 3316 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3317 { 3318 KVMState *s = kvm_state; 3319 struct kvm_signal_mask *sigmask; 3320 int r; 3321 3322 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3323 3324 sigmask->len = s->sigmask_len; 3325 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3326 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3327 g_free(sigmask); 3328 3329 return r; 3330 } 3331 3332 static void kvm_ipi_signal(int sig) 3333 { 3334 if (current_cpu) { 3335 assert(kvm_immediate_exit); 3336 kvm_cpu_kick(current_cpu); 3337 } 3338 } 3339 3340 void kvm_init_cpu_signals(CPUState *cpu) 3341 { 3342 int r; 3343 sigset_t set; 3344 struct sigaction sigact; 3345 3346 memset(&sigact, 0, sizeof(sigact)); 3347 sigact.sa_handler = kvm_ipi_signal; 3348 sigaction(SIG_IPI, &sigact, NULL); 3349 3350 pthread_sigmask(SIG_BLOCK, NULL, &set); 3351 #if defined KVM_HAVE_MCE_INJECTION 3352 sigdelset(&set, SIGBUS); 3353 pthread_sigmask(SIG_SETMASK, &set, NULL); 3354 #endif 3355 sigdelset(&set, SIG_IPI); 3356 if (kvm_immediate_exit) { 3357 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3358 } else { 3359 r = kvm_set_signal_mask(cpu, &set); 3360 } 3361 if (r) { 3362 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3363 exit(1); 3364 } 3365 } 3366 3367 /* Called asynchronously in VCPU thread. */ 3368 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3369 { 3370 #ifdef KVM_HAVE_MCE_INJECTION 3371 if (have_sigbus_pending) { 3372 return 1; 3373 } 3374 have_sigbus_pending = true; 3375 pending_sigbus_addr = addr; 3376 pending_sigbus_code = code; 3377 qatomic_set(&cpu->exit_request, 1); 3378 return 0; 3379 #else 3380 return 1; 3381 #endif 3382 } 3383 3384 /* Called synchronously (via signalfd) in main thread. */ 3385 int kvm_on_sigbus(int code, void *addr) 3386 { 3387 #ifdef KVM_HAVE_MCE_INJECTION 3388 /* Action required MCE kills the process if SIGBUS is blocked. Because 3389 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3390 * we can only get action optional here. 3391 */ 3392 assert(code != BUS_MCEERR_AR); 3393 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3394 return 0; 3395 #else 3396 return 1; 3397 #endif 3398 } 3399 3400 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3401 { 3402 int ret; 3403 struct kvm_create_device create_dev; 3404 3405 create_dev.type = type; 3406 create_dev.fd = -1; 3407 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3408 3409 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3410 return -ENOTSUP; 3411 } 3412 3413 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3414 if (ret) { 3415 return ret; 3416 } 3417 3418 return test ? 0 : create_dev.fd; 3419 } 3420 3421 bool kvm_device_supported(int vmfd, uint64_t type) 3422 { 3423 struct kvm_create_device create_dev = { 3424 .type = type, 3425 .fd = -1, 3426 .flags = KVM_CREATE_DEVICE_TEST, 3427 }; 3428 3429 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3430 return false; 3431 } 3432 3433 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3434 } 3435 3436 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3437 { 3438 struct kvm_one_reg reg; 3439 int r; 3440 3441 reg.id = id; 3442 reg.addr = (uintptr_t) source; 3443 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3444 if (r) { 3445 trace_kvm_failed_reg_set(id, strerror(-r)); 3446 } 3447 return r; 3448 } 3449 3450 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3451 { 3452 struct kvm_one_reg reg; 3453 int r; 3454 3455 reg.id = id; 3456 reg.addr = (uintptr_t) target; 3457 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3458 if (r) { 3459 trace_kvm_failed_reg_get(id, strerror(-r)); 3460 } 3461 return r; 3462 } 3463 3464 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3465 hwaddr start_addr, hwaddr size) 3466 { 3467 KVMState *kvm = KVM_STATE(ms->accelerator); 3468 int i; 3469 3470 for (i = 0; i < kvm->nr_as; ++i) { 3471 if (kvm->as[i].as == as && kvm->as[i].ml) { 3472 size = MIN(kvm_max_slot_size, size); 3473 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3474 start_addr, size); 3475 } 3476 } 3477 3478 return false; 3479 } 3480 3481 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3482 const char *name, void *opaque, 3483 Error **errp) 3484 { 3485 KVMState *s = KVM_STATE(obj); 3486 int64_t value = s->kvm_shadow_mem; 3487 3488 visit_type_int(v, name, &value, errp); 3489 } 3490 3491 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3492 const char *name, void *opaque, 3493 Error **errp) 3494 { 3495 KVMState *s = KVM_STATE(obj); 3496 int64_t value; 3497 3498 if (s->fd != -1) { 3499 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3500 return; 3501 } 3502 3503 if (!visit_type_int(v, name, &value, errp)) { 3504 return; 3505 } 3506 3507 s->kvm_shadow_mem = value; 3508 } 3509 3510 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3511 const char *name, void *opaque, 3512 Error **errp) 3513 { 3514 KVMState *s = KVM_STATE(obj); 3515 OnOffSplit mode; 3516 3517 if (s->fd != -1) { 3518 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3519 return; 3520 } 3521 3522 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3523 return; 3524 } 3525 switch (mode) { 3526 case ON_OFF_SPLIT_ON: 3527 s->kernel_irqchip_allowed = true; 3528 s->kernel_irqchip_required = true; 3529 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3530 break; 3531 case ON_OFF_SPLIT_OFF: 3532 s->kernel_irqchip_allowed = false; 3533 s->kernel_irqchip_required = false; 3534 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3535 break; 3536 case ON_OFF_SPLIT_SPLIT: 3537 s->kernel_irqchip_allowed = true; 3538 s->kernel_irqchip_required = true; 3539 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3540 break; 3541 default: 3542 /* The value was checked in visit_type_OnOffSplit() above. If 3543 * we get here, then something is wrong in QEMU. 3544 */ 3545 abort(); 3546 } 3547 } 3548 3549 bool kvm_kernel_irqchip_allowed(void) 3550 { 3551 return kvm_state->kernel_irqchip_allowed; 3552 } 3553 3554 bool kvm_kernel_irqchip_required(void) 3555 { 3556 return kvm_state->kernel_irqchip_required; 3557 } 3558 3559 bool kvm_kernel_irqchip_split(void) 3560 { 3561 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3562 } 3563 3564 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3565 const char *name, void *opaque, 3566 Error **errp) 3567 { 3568 KVMState *s = KVM_STATE(obj); 3569 uint32_t value = s->kvm_dirty_ring_size; 3570 3571 visit_type_uint32(v, name, &value, errp); 3572 } 3573 3574 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3575 const char *name, void *opaque, 3576 Error **errp) 3577 { 3578 KVMState *s = KVM_STATE(obj); 3579 Error *error = NULL; 3580 uint32_t value; 3581 3582 if (s->fd != -1) { 3583 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3584 return; 3585 } 3586 3587 visit_type_uint32(v, name, &value, &error); 3588 if (error) { 3589 error_propagate(errp, error); 3590 return; 3591 } 3592 if (value & (value - 1)) { 3593 error_setg(errp, "dirty-ring-size must be a power of two."); 3594 return; 3595 } 3596 3597 s->kvm_dirty_ring_size = value; 3598 } 3599 3600 static void kvm_accel_instance_init(Object *obj) 3601 { 3602 KVMState *s = KVM_STATE(obj); 3603 3604 s->fd = -1; 3605 s->vmfd = -1; 3606 s->kvm_shadow_mem = -1; 3607 s->kernel_irqchip_allowed = true; 3608 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3609 /* KVM dirty ring is by default off */ 3610 s->kvm_dirty_ring_size = 0; 3611 } 3612 3613 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3614 { 3615 AccelClass *ac = ACCEL_CLASS(oc); 3616 ac->name = "KVM"; 3617 ac->init_machine = kvm_init; 3618 ac->has_memory = kvm_accel_has_memory; 3619 ac->allowed = &kvm_allowed; 3620 3621 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3622 NULL, kvm_set_kernel_irqchip, 3623 NULL, NULL); 3624 object_class_property_set_description(oc, "kernel-irqchip", 3625 "Configure KVM in-kernel irqchip"); 3626 3627 object_class_property_add(oc, "kvm-shadow-mem", "int", 3628 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3629 NULL, NULL); 3630 object_class_property_set_description(oc, "kvm-shadow-mem", 3631 "KVM shadow MMU size"); 3632 3633 object_class_property_add(oc, "dirty-ring-size", "uint32", 3634 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3635 NULL, NULL); 3636 object_class_property_set_description(oc, "dirty-ring-size", 3637 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3638 } 3639 3640 static const TypeInfo kvm_accel_type = { 3641 .name = TYPE_KVM_ACCEL, 3642 .parent = TYPE_ACCEL, 3643 .instance_init = kvm_accel_instance_init, 3644 .class_init = kvm_accel_class_init, 3645 .instance_size = sizeof(KVMState), 3646 }; 3647 3648 static void kvm_type_init(void) 3649 { 3650 type_register_static(&kvm_accel_type); 3651 } 3652 3653 type_init(kvm_type_init); 3654