xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision a75b180f)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 struct KVMParkedVcpu {
73     unsigned long vcpu_id;
74     int kvm_fd;
75     QLIST_ENTRY(KVMParkedVcpu) node;
76 };
77 
78 KVMState *kvm_state;
79 bool kvm_kernel_irqchip;
80 bool kvm_split_irqchip;
81 bool kvm_async_interrupts_allowed;
82 bool kvm_halt_in_kernel_allowed;
83 bool kvm_resamplefds_allowed;
84 bool kvm_msi_via_irqfd_allowed;
85 bool kvm_gsi_routing_allowed;
86 bool kvm_gsi_direct_mapping;
87 bool kvm_allowed;
88 bool kvm_readonly_mem_allowed;
89 bool kvm_vm_attributes_allowed;
90 bool kvm_msi_use_devid;
91 static bool kvm_has_guest_debug;
92 static int kvm_sstep_flags;
93 static bool kvm_immediate_exit;
94 static uint64_t kvm_supported_memory_attributes;
95 static bool kvm_guest_memfd_supported;
96 static hwaddr kvm_max_slot_size = ~0;
97 
98 static const KVMCapabilityInfo kvm_required_capabilites[] = {
99     KVM_CAP_INFO(USER_MEMORY),
100     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
101     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
102     KVM_CAP_INFO(INTERNAL_ERROR_DATA),
103     KVM_CAP_INFO(IOEVENTFD),
104     KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
105     KVM_CAP_LAST_INFO
106 };
107 
108 static NotifierList kvm_irqchip_change_notifiers =
109     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
110 
111 struct KVMResampleFd {
112     int gsi;
113     EventNotifier *resample_event;
114     QLIST_ENTRY(KVMResampleFd) node;
115 };
116 typedef struct KVMResampleFd KVMResampleFd;
117 
118 /*
119  * Only used with split irqchip where we need to do the resample fd
120  * kick for the kernel from userspace.
121  */
122 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
123     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
124 
125 static QemuMutex kml_slots_lock;
126 
127 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
128 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
129 
130 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
131 
132 static inline void kvm_resample_fd_remove(int gsi)
133 {
134     KVMResampleFd *rfd;
135 
136     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
137         if (rfd->gsi == gsi) {
138             QLIST_REMOVE(rfd, node);
139             g_free(rfd);
140             break;
141         }
142     }
143 }
144 
145 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
146 {
147     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
148 
149     rfd->gsi = gsi;
150     rfd->resample_event = event;
151 
152     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
153 }
154 
155 void kvm_resample_fd_notify(int gsi)
156 {
157     KVMResampleFd *rfd;
158 
159     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
160         if (rfd->gsi == gsi) {
161             event_notifier_set(rfd->resample_event);
162             trace_kvm_resample_fd_notify(gsi);
163             return;
164         }
165     }
166 }
167 
168 unsigned int kvm_get_max_memslots(void)
169 {
170     KVMState *s = KVM_STATE(current_accel());
171 
172     return s->nr_slots;
173 }
174 
175 unsigned int kvm_get_free_memslots(void)
176 {
177     unsigned int used_slots = 0;
178     KVMState *s = kvm_state;
179     int i;
180 
181     kvm_slots_lock();
182     for (i = 0; i < s->nr_as; i++) {
183         if (!s->as[i].ml) {
184             continue;
185         }
186         used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
187     }
188     kvm_slots_unlock();
189 
190     return s->nr_slots - used_slots;
191 }
192 
193 /* Called with KVMMemoryListener.slots_lock held */
194 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
195 {
196     KVMState *s = kvm_state;
197     int i;
198 
199     for (i = 0; i < s->nr_slots; i++) {
200         if (kml->slots[i].memory_size == 0) {
201             return &kml->slots[i];
202         }
203     }
204 
205     return NULL;
206 }
207 
208 /* Called with KVMMemoryListener.slots_lock held */
209 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
210 {
211     KVMSlot *slot = kvm_get_free_slot(kml);
212 
213     if (slot) {
214         return slot;
215     }
216 
217     fprintf(stderr, "%s: no free slot available\n", __func__);
218     abort();
219 }
220 
221 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
222                                          hwaddr start_addr,
223                                          hwaddr size)
224 {
225     KVMState *s = kvm_state;
226     int i;
227 
228     for (i = 0; i < s->nr_slots; i++) {
229         KVMSlot *mem = &kml->slots[i];
230 
231         if (start_addr == mem->start_addr && size == mem->memory_size) {
232             return mem;
233         }
234     }
235 
236     return NULL;
237 }
238 
239 /*
240  * Calculate and align the start address and the size of the section.
241  * Return the size. If the size is 0, the aligned section is empty.
242  */
243 static hwaddr kvm_align_section(MemoryRegionSection *section,
244                                 hwaddr *start)
245 {
246     hwaddr size = int128_get64(section->size);
247     hwaddr delta, aligned;
248 
249     /* kvm works in page size chunks, but the function may be called
250        with sub-page size and unaligned start address. Pad the start
251        address to next and truncate size to previous page boundary. */
252     aligned = ROUND_UP(section->offset_within_address_space,
253                        qemu_real_host_page_size());
254     delta = aligned - section->offset_within_address_space;
255     *start = aligned;
256     if (delta > size) {
257         return 0;
258     }
259 
260     return (size - delta) & qemu_real_host_page_mask();
261 }
262 
263 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
264                                        hwaddr *phys_addr)
265 {
266     KVMMemoryListener *kml = &s->memory_listener;
267     int i, ret = 0;
268 
269     kvm_slots_lock();
270     for (i = 0; i < s->nr_slots; i++) {
271         KVMSlot *mem = &kml->slots[i];
272 
273         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
274             *phys_addr = mem->start_addr + (ram - mem->ram);
275             ret = 1;
276             break;
277         }
278     }
279     kvm_slots_unlock();
280 
281     return ret;
282 }
283 
284 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
285 {
286     KVMState *s = kvm_state;
287     struct kvm_userspace_memory_region2 mem;
288     int ret;
289 
290     mem.slot = slot->slot | (kml->as_id << 16);
291     mem.guest_phys_addr = slot->start_addr;
292     mem.userspace_addr = (unsigned long)slot->ram;
293     mem.flags = slot->flags;
294     mem.guest_memfd = slot->guest_memfd;
295     mem.guest_memfd_offset = slot->guest_memfd_offset;
296 
297     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
298         /* Set the slot size to 0 before setting the slot to the desired
299          * value. This is needed based on KVM commit 75d61fbc. */
300         mem.memory_size = 0;
301 
302         if (kvm_guest_memfd_supported) {
303             ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
304         } else {
305             ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
306         }
307         if (ret < 0) {
308             goto err;
309         }
310     }
311     mem.memory_size = slot->memory_size;
312     if (kvm_guest_memfd_supported) {
313         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
314     } else {
315         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
316     }
317     slot->old_flags = mem.flags;
318 err:
319     trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags,
320                               mem.guest_phys_addr, mem.memory_size,
321                               mem.userspace_addr, mem.guest_memfd,
322                               mem.guest_memfd_offset, ret);
323     if (ret < 0) {
324         if (kvm_guest_memfd_supported) {
325                 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d,"
326                         " start=0x%" PRIx64 ", size=0x%" PRIx64 ","
327                         " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 ","
328                         " guest_memfd_offset=0x%" PRIx64 ": %s",
329                         __func__, mem.slot, slot->start_addr,
330                         (uint64_t)mem.memory_size, mem.flags,
331                         mem.guest_memfd, (uint64_t)mem.guest_memfd_offset,
332                         strerror(errno));
333         } else {
334                 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
335                             " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
336                             __func__, mem.slot, slot->start_addr,
337                             (uint64_t)mem.memory_size, strerror(errno));
338         }
339     }
340     return ret;
341 }
342 
343 static int do_kvm_destroy_vcpu(CPUState *cpu)
344 {
345     KVMState *s = kvm_state;
346     long mmap_size;
347     struct KVMParkedVcpu *vcpu = NULL;
348     int ret = 0;
349 
350     trace_kvm_destroy_vcpu();
351 
352     ret = kvm_arch_destroy_vcpu(cpu);
353     if (ret < 0) {
354         goto err;
355     }
356 
357     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
358     if (mmap_size < 0) {
359         ret = mmap_size;
360         trace_kvm_failed_get_vcpu_mmap_size();
361         goto err;
362     }
363 
364     ret = munmap(cpu->kvm_run, mmap_size);
365     if (ret < 0) {
366         goto err;
367     }
368 
369     if (cpu->kvm_dirty_gfns) {
370         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
371         if (ret < 0) {
372             goto err;
373         }
374     }
375 
376     vcpu = g_malloc0(sizeof(*vcpu));
377     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
378     vcpu->kvm_fd = cpu->kvm_fd;
379     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
380 err:
381     return ret;
382 }
383 
384 void kvm_destroy_vcpu(CPUState *cpu)
385 {
386     if (do_kvm_destroy_vcpu(cpu) < 0) {
387         error_report("kvm_destroy_vcpu failed");
388         exit(EXIT_FAILURE);
389     }
390 }
391 
392 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
393 {
394     struct KVMParkedVcpu *cpu;
395 
396     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
397         if (cpu->vcpu_id == vcpu_id) {
398             int kvm_fd;
399 
400             QLIST_REMOVE(cpu, node);
401             kvm_fd = cpu->kvm_fd;
402             g_free(cpu);
403             return kvm_fd;
404         }
405     }
406 
407     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
408 }
409 
410 int kvm_init_vcpu(CPUState *cpu, Error **errp)
411 {
412     KVMState *s = kvm_state;
413     long mmap_size;
414     int ret;
415 
416     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
417 
418     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
419     if (ret < 0) {
420         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
421                          kvm_arch_vcpu_id(cpu));
422         goto err;
423     }
424 
425     cpu->kvm_fd = ret;
426     cpu->kvm_state = s;
427     cpu->vcpu_dirty = true;
428     cpu->dirty_pages = 0;
429     cpu->throttle_us_per_full = 0;
430 
431     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
432     if (mmap_size < 0) {
433         ret = mmap_size;
434         error_setg_errno(errp, -mmap_size,
435                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
436         goto err;
437     }
438 
439     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
440                         cpu->kvm_fd, 0);
441     if (cpu->kvm_run == MAP_FAILED) {
442         ret = -errno;
443         error_setg_errno(errp, ret,
444                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
445                          kvm_arch_vcpu_id(cpu));
446         goto err;
447     }
448 
449     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
450         s->coalesced_mmio_ring =
451             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
452     }
453 
454     if (s->kvm_dirty_ring_size) {
455         /* Use MAP_SHARED to share pages with the kernel */
456         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
457                                    PROT_READ | PROT_WRITE, MAP_SHARED,
458                                    cpu->kvm_fd,
459                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
460         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
461             ret = -errno;
462             goto err;
463         }
464     }
465 
466     ret = kvm_arch_init_vcpu(cpu);
467     if (ret < 0) {
468         error_setg_errno(errp, -ret,
469                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
470                          kvm_arch_vcpu_id(cpu));
471     }
472     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
473 
474 err:
475     return ret;
476 }
477 
478 /*
479  * dirty pages logging control
480  */
481 
482 static int kvm_mem_flags(MemoryRegion *mr)
483 {
484     bool readonly = mr->readonly || memory_region_is_romd(mr);
485     int flags = 0;
486 
487     if (memory_region_get_dirty_log_mask(mr) != 0) {
488         flags |= KVM_MEM_LOG_DIRTY_PAGES;
489     }
490     if (readonly && kvm_readonly_mem_allowed) {
491         flags |= KVM_MEM_READONLY;
492     }
493     if (memory_region_has_guest_memfd(mr)) {
494         assert(kvm_guest_memfd_supported);
495         flags |= KVM_MEM_GUEST_MEMFD;
496     }
497     return flags;
498 }
499 
500 /* Called with KVMMemoryListener.slots_lock held */
501 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
502                                  MemoryRegion *mr)
503 {
504     mem->flags = kvm_mem_flags(mr);
505 
506     /* If nothing changed effectively, no need to issue ioctl */
507     if (mem->flags == mem->old_flags) {
508         return 0;
509     }
510 
511     kvm_slot_init_dirty_bitmap(mem);
512     return kvm_set_user_memory_region(kml, mem, false);
513 }
514 
515 static int kvm_section_update_flags(KVMMemoryListener *kml,
516                                     MemoryRegionSection *section)
517 {
518     hwaddr start_addr, size, slot_size;
519     KVMSlot *mem;
520     int ret = 0;
521 
522     size = kvm_align_section(section, &start_addr);
523     if (!size) {
524         return 0;
525     }
526 
527     kvm_slots_lock();
528 
529     while (size && !ret) {
530         slot_size = MIN(kvm_max_slot_size, size);
531         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
532         if (!mem) {
533             /* We don't have a slot if we want to trap every access. */
534             goto out;
535         }
536 
537         ret = kvm_slot_update_flags(kml, mem, section->mr);
538         start_addr += slot_size;
539         size -= slot_size;
540     }
541 
542 out:
543     kvm_slots_unlock();
544     return ret;
545 }
546 
547 static void kvm_log_start(MemoryListener *listener,
548                           MemoryRegionSection *section,
549                           int old, int new)
550 {
551     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
552     int r;
553 
554     if (old != 0) {
555         return;
556     }
557 
558     r = kvm_section_update_flags(kml, section);
559     if (r < 0) {
560         abort();
561     }
562 }
563 
564 static void kvm_log_stop(MemoryListener *listener,
565                           MemoryRegionSection *section,
566                           int old, int new)
567 {
568     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
569     int r;
570 
571     if (new != 0) {
572         return;
573     }
574 
575     r = kvm_section_update_flags(kml, section);
576     if (r < 0) {
577         abort();
578     }
579 }
580 
581 /* get kvm's dirty pages bitmap and update qemu's */
582 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
583 {
584     ram_addr_t start = slot->ram_start_offset;
585     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
586 
587     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
588 }
589 
590 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
591 {
592     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
593 }
594 
595 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
596 
597 /* Allocate the dirty bitmap for a slot  */
598 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
599 {
600     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
601         return;
602     }
603 
604     /*
605      * XXX bad kernel interface alert
606      * For dirty bitmap, kernel allocates array of size aligned to
607      * bits-per-long.  But for case when the kernel is 64bits and
608      * the userspace is 32bits, userspace can't align to the same
609      * bits-per-long, since sizeof(long) is different between kernel
610      * and user space.  This way, userspace will provide buffer which
611      * may be 4 bytes less than the kernel will use, resulting in
612      * userspace memory corruption (which is not detectable by valgrind
613      * too, in most cases).
614      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
615      * a hope that sizeof(long) won't become >8 any time soon.
616      *
617      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
618      * And mem->memory_size is aligned to it (otherwise this mem can't
619      * be registered to KVM).
620      */
621     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
622                                         /*HOST_LONG_BITS*/ 64) / 8;
623     mem->dirty_bmap = g_malloc0(bitmap_size);
624     mem->dirty_bmap_size = bitmap_size;
625 }
626 
627 /*
628  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
629  * succeeded, false otherwise
630  */
631 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
632 {
633     struct kvm_dirty_log d = {};
634     int ret;
635 
636     d.dirty_bitmap = slot->dirty_bmap;
637     d.slot = slot->slot | (slot->as_id << 16);
638     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
639 
640     if (ret == -ENOENT) {
641         /* kernel does not have dirty bitmap in this slot */
642         ret = 0;
643     }
644     if (ret) {
645         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
646                           __func__, ret);
647     }
648     return ret == 0;
649 }
650 
651 /* Should be with all slots_lock held for the address spaces. */
652 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
653                                      uint32_t slot_id, uint64_t offset)
654 {
655     KVMMemoryListener *kml;
656     KVMSlot *mem;
657 
658     if (as_id >= s->nr_as) {
659         return;
660     }
661 
662     kml = s->as[as_id].ml;
663     mem = &kml->slots[slot_id];
664 
665     if (!mem->memory_size || offset >=
666         (mem->memory_size / qemu_real_host_page_size())) {
667         return;
668     }
669 
670     set_bit(offset, mem->dirty_bmap);
671 }
672 
673 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
674 {
675     /*
676      * Read the flags before the value.  Pairs with barrier in
677      * KVM's kvm_dirty_ring_push() function.
678      */
679     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
680 }
681 
682 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
683 {
684     /*
685      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
686      * sees the full content of the ring:
687      *
688      * CPU0                     CPU1                         CPU2
689      * ------------------------------------------------------------------------------
690      *                                                       fill gfn0
691      *                                                       store-rel flags for gfn0
692      * load-acq flags for gfn0
693      * store-rel RESET for gfn0
694      *                          ioctl(RESET_RINGS)
695      *                            load-acq flags for gfn0
696      *                            check if flags have RESET
697      *
698      * The synchronization goes from CPU2 to CPU0 to CPU1.
699      */
700     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
701 }
702 
703 /*
704  * Should be with all slots_lock held for the address spaces.  It returns the
705  * dirty page we've collected on this dirty ring.
706  */
707 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
708 {
709     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
710     uint32_t ring_size = s->kvm_dirty_ring_size;
711     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
712 
713     /*
714      * It's possible that we race with vcpu creation code where the vcpu is
715      * put onto the vcpus list but not yet initialized the dirty ring
716      * structures.  If so, skip it.
717      */
718     if (!cpu->created) {
719         return 0;
720     }
721 
722     assert(dirty_gfns && ring_size);
723     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
724 
725     while (true) {
726         cur = &dirty_gfns[fetch % ring_size];
727         if (!dirty_gfn_is_dirtied(cur)) {
728             break;
729         }
730         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
731                                  cur->offset);
732         dirty_gfn_set_collected(cur);
733         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
734         fetch++;
735         count++;
736     }
737     cpu->kvm_fetch_index = fetch;
738     cpu->dirty_pages += count;
739 
740     return count;
741 }
742 
743 /* Must be with slots_lock held */
744 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
745 {
746     int ret;
747     uint64_t total = 0;
748     int64_t stamp;
749 
750     stamp = get_clock();
751 
752     if (cpu) {
753         total = kvm_dirty_ring_reap_one(s, cpu);
754     } else {
755         CPU_FOREACH(cpu) {
756             total += kvm_dirty_ring_reap_one(s, cpu);
757         }
758     }
759 
760     if (total) {
761         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
762         assert(ret == total);
763     }
764 
765     stamp = get_clock() - stamp;
766 
767     if (total) {
768         trace_kvm_dirty_ring_reap(total, stamp / 1000);
769     }
770 
771     return total;
772 }
773 
774 /*
775  * Currently for simplicity, we must hold BQL before calling this.  We can
776  * consider to drop the BQL if we're clear with all the race conditions.
777  */
778 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
779 {
780     uint64_t total;
781 
782     /*
783      * We need to lock all kvm slots for all address spaces here,
784      * because:
785      *
786      * (1) We need to mark dirty for dirty bitmaps in multiple slots
787      *     and for tons of pages, so it's better to take the lock here
788      *     once rather than once per page.  And more importantly,
789      *
790      * (2) We must _NOT_ publish dirty bits to the other threads
791      *     (e.g., the migration thread) via the kvm memory slot dirty
792      *     bitmaps before correctly re-protect those dirtied pages.
793      *     Otherwise we can have potential risk of data corruption if
794      *     the page data is read in the other thread before we do
795      *     reset below.
796      */
797     kvm_slots_lock();
798     total = kvm_dirty_ring_reap_locked(s, cpu);
799     kvm_slots_unlock();
800 
801     return total;
802 }
803 
804 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
805 {
806     /* No need to do anything */
807 }
808 
809 /*
810  * Kick all vcpus out in a synchronized way.  When returned, we
811  * guarantee that every vcpu has been kicked and at least returned to
812  * userspace once.
813  */
814 static void kvm_cpu_synchronize_kick_all(void)
815 {
816     CPUState *cpu;
817 
818     CPU_FOREACH(cpu) {
819         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
820     }
821 }
822 
823 /*
824  * Flush all the existing dirty pages to the KVM slot buffers.  When
825  * this call returns, we guarantee that all the touched dirty pages
826  * before calling this function have been put into the per-kvmslot
827  * dirty bitmap.
828  *
829  * This function must be called with BQL held.
830  */
831 static void kvm_dirty_ring_flush(void)
832 {
833     trace_kvm_dirty_ring_flush(0);
834     /*
835      * The function needs to be serialized.  Since this function
836      * should always be with BQL held, serialization is guaranteed.
837      * However, let's be sure of it.
838      */
839     assert(bql_locked());
840     /*
841      * First make sure to flush the hardware buffers by kicking all
842      * vcpus out in a synchronous way.
843      */
844     kvm_cpu_synchronize_kick_all();
845     kvm_dirty_ring_reap(kvm_state, NULL);
846     trace_kvm_dirty_ring_flush(1);
847 }
848 
849 /**
850  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
851  *
852  * This function will first try to fetch dirty bitmap from the kernel,
853  * and then updates qemu's dirty bitmap.
854  *
855  * NOTE: caller must be with kml->slots_lock held.
856  *
857  * @kml: the KVM memory listener object
858  * @section: the memory section to sync the dirty bitmap with
859  */
860 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
861                                            MemoryRegionSection *section)
862 {
863     KVMState *s = kvm_state;
864     KVMSlot *mem;
865     hwaddr start_addr, size;
866     hwaddr slot_size;
867 
868     size = kvm_align_section(section, &start_addr);
869     while (size) {
870         slot_size = MIN(kvm_max_slot_size, size);
871         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
872         if (!mem) {
873             /* We don't have a slot if we want to trap every access. */
874             return;
875         }
876         if (kvm_slot_get_dirty_log(s, mem)) {
877             kvm_slot_sync_dirty_pages(mem);
878         }
879         start_addr += slot_size;
880         size -= slot_size;
881     }
882 }
883 
884 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
885 #define KVM_CLEAR_LOG_SHIFT  6
886 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
887 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
888 
889 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
890                                   uint64_t size)
891 {
892     KVMState *s = kvm_state;
893     uint64_t end, bmap_start, start_delta, bmap_npages;
894     struct kvm_clear_dirty_log d;
895     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
896     int ret;
897 
898     /*
899      * We need to extend either the start or the size or both to
900      * satisfy the KVM interface requirement.  Firstly, do the start
901      * page alignment on 64 host pages
902      */
903     bmap_start = start & KVM_CLEAR_LOG_MASK;
904     start_delta = start - bmap_start;
905     bmap_start /= psize;
906 
907     /*
908      * The kernel interface has restriction on the size too, that either:
909      *
910      * (1) the size is 64 host pages aligned (just like the start), or
911      * (2) the size fills up until the end of the KVM memslot.
912      */
913     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
914         << KVM_CLEAR_LOG_SHIFT;
915     end = mem->memory_size / psize;
916     if (bmap_npages > end - bmap_start) {
917         bmap_npages = end - bmap_start;
918     }
919     start_delta /= psize;
920 
921     /*
922      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
923      * that we won't clear any unknown dirty bits otherwise we might
924      * accidentally clear some set bits which are not yet synced from
925      * the kernel into QEMU's bitmap, then we'll lose track of the
926      * guest modifications upon those pages (which can directly lead
927      * to guest data loss or panic after migration).
928      *
929      * Layout of the KVMSlot.dirty_bmap:
930      *
931      *                   |<-------- bmap_npages -----------..>|
932      *                                                     [1]
933      *                     start_delta         size
934      *  |----------------|-------------|------------------|------------|
935      *  ^                ^             ^                               ^
936      *  |                |             |                               |
937      * start          bmap_start     (start)                         end
938      * of memslot                                             of memslot
939      *
940      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
941      */
942 
943     assert(bmap_start % BITS_PER_LONG == 0);
944     /* We should never do log_clear before log_sync */
945     assert(mem->dirty_bmap);
946     if (start_delta || bmap_npages - size / psize) {
947         /* Slow path - we need to manipulate a temp bitmap */
948         bmap_clear = bitmap_new(bmap_npages);
949         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
950                                     bmap_start, start_delta + size / psize);
951         /*
952          * We need to fill the holes at start because that was not
953          * specified by the caller and we extended the bitmap only for
954          * 64 pages alignment
955          */
956         bitmap_clear(bmap_clear, 0, start_delta);
957         d.dirty_bitmap = bmap_clear;
958     } else {
959         /*
960          * Fast path - both start and size align well with BITS_PER_LONG
961          * (or the end of memory slot)
962          */
963         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
964     }
965 
966     d.first_page = bmap_start;
967     /* It should never overflow.  If it happens, say something */
968     assert(bmap_npages <= UINT32_MAX);
969     d.num_pages = bmap_npages;
970     d.slot = mem->slot | (as_id << 16);
971 
972     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
973     if (ret < 0 && ret != -ENOENT) {
974         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
975                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
976                      __func__, d.slot, (uint64_t)d.first_page,
977                      (uint32_t)d.num_pages, ret);
978     } else {
979         ret = 0;
980         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
981     }
982 
983     /*
984      * After we have updated the remote dirty bitmap, we update the
985      * cached bitmap as well for the memslot, then if another user
986      * clears the same region we know we shouldn't clear it again on
987      * the remote otherwise it's data loss as well.
988      */
989     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
990                  size / psize);
991     /* This handles the NULL case well */
992     g_free(bmap_clear);
993     return ret;
994 }
995 
996 
997 /**
998  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
999  *
1000  * NOTE: this will be a no-op if we haven't enabled manual dirty log
1001  * protection in the host kernel because in that case this operation
1002  * will be done within log_sync().
1003  *
1004  * @kml:     the kvm memory listener
1005  * @section: the memory range to clear dirty bitmap
1006  */
1007 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1008                                   MemoryRegionSection *section)
1009 {
1010     KVMState *s = kvm_state;
1011     uint64_t start, size, offset, count;
1012     KVMSlot *mem;
1013     int ret = 0, i;
1014 
1015     if (!s->manual_dirty_log_protect) {
1016         /* No need to do explicit clear */
1017         return ret;
1018     }
1019 
1020     start = section->offset_within_address_space;
1021     size = int128_get64(section->size);
1022 
1023     if (!size) {
1024         /* Nothing more we can do... */
1025         return ret;
1026     }
1027 
1028     kvm_slots_lock();
1029 
1030     for (i = 0; i < s->nr_slots; i++) {
1031         mem = &kml->slots[i];
1032         /* Discard slots that are empty or do not overlap the section */
1033         if (!mem->memory_size ||
1034             mem->start_addr > start + size - 1 ||
1035             start > mem->start_addr + mem->memory_size - 1) {
1036             continue;
1037         }
1038 
1039         if (start >= mem->start_addr) {
1040             /* The slot starts before section or is aligned to it.  */
1041             offset = start - mem->start_addr;
1042             count = MIN(mem->memory_size - offset, size);
1043         } else {
1044             /* The slot starts after section.  */
1045             offset = 0;
1046             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1047         }
1048         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1049         if (ret < 0) {
1050             break;
1051         }
1052     }
1053 
1054     kvm_slots_unlock();
1055 
1056     return ret;
1057 }
1058 
1059 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1060                                      MemoryRegionSection *secion,
1061                                      hwaddr start, hwaddr size)
1062 {
1063     KVMState *s = kvm_state;
1064 
1065     if (s->coalesced_mmio) {
1066         struct kvm_coalesced_mmio_zone zone;
1067 
1068         zone.addr = start;
1069         zone.size = size;
1070         zone.pad = 0;
1071 
1072         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1073     }
1074 }
1075 
1076 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1077                                        MemoryRegionSection *secion,
1078                                        hwaddr start, hwaddr size)
1079 {
1080     KVMState *s = kvm_state;
1081 
1082     if (s->coalesced_mmio) {
1083         struct kvm_coalesced_mmio_zone zone;
1084 
1085         zone.addr = start;
1086         zone.size = size;
1087         zone.pad = 0;
1088 
1089         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1090     }
1091 }
1092 
1093 static void kvm_coalesce_pio_add(MemoryListener *listener,
1094                                 MemoryRegionSection *section,
1095                                 hwaddr start, hwaddr size)
1096 {
1097     KVMState *s = kvm_state;
1098 
1099     if (s->coalesced_pio) {
1100         struct kvm_coalesced_mmio_zone zone;
1101 
1102         zone.addr = start;
1103         zone.size = size;
1104         zone.pio = 1;
1105 
1106         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1107     }
1108 }
1109 
1110 static void kvm_coalesce_pio_del(MemoryListener *listener,
1111                                 MemoryRegionSection *section,
1112                                 hwaddr start, hwaddr size)
1113 {
1114     KVMState *s = kvm_state;
1115 
1116     if (s->coalesced_pio) {
1117         struct kvm_coalesced_mmio_zone zone;
1118 
1119         zone.addr = start;
1120         zone.size = size;
1121         zone.pio = 1;
1122 
1123         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1124      }
1125 }
1126 
1127 int kvm_check_extension(KVMState *s, unsigned int extension)
1128 {
1129     int ret;
1130 
1131     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1132     if (ret < 0) {
1133         ret = 0;
1134     }
1135 
1136     return ret;
1137 }
1138 
1139 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1140 {
1141     int ret;
1142 
1143     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1144     if (ret < 0) {
1145         /* VM wide version not implemented, use global one instead */
1146         ret = kvm_check_extension(s, extension);
1147     }
1148 
1149     return ret;
1150 }
1151 
1152 /*
1153  * We track the poisoned pages to be able to:
1154  * - replace them on VM reset
1155  * - block a migration for a VM with a poisoned page
1156  */
1157 typedef struct HWPoisonPage {
1158     ram_addr_t ram_addr;
1159     QLIST_ENTRY(HWPoisonPage) list;
1160 } HWPoisonPage;
1161 
1162 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1163     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1164 
1165 static void kvm_unpoison_all(void *param)
1166 {
1167     HWPoisonPage *page, *next_page;
1168 
1169     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1170         QLIST_REMOVE(page, list);
1171         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1172         g_free(page);
1173     }
1174 }
1175 
1176 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1177 {
1178     HWPoisonPage *page;
1179 
1180     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1181         if (page->ram_addr == ram_addr) {
1182             return;
1183         }
1184     }
1185     page = g_new(HWPoisonPage, 1);
1186     page->ram_addr = ram_addr;
1187     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1188 }
1189 
1190 bool kvm_hwpoisoned_mem(void)
1191 {
1192     return !QLIST_EMPTY(&hwpoison_page_list);
1193 }
1194 
1195 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1196 {
1197 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1198     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1199      * endianness, but the memory core hands them in target endianness.
1200      * For example, PPC is always treated as big-endian even if running
1201      * on KVM and on PPC64LE.  Correct here.
1202      */
1203     switch (size) {
1204     case 2:
1205         val = bswap16(val);
1206         break;
1207     case 4:
1208         val = bswap32(val);
1209         break;
1210     }
1211 #endif
1212     return val;
1213 }
1214 
1215 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1216                                   bool assign, uint32_t size, bool datamatch)
1217 {
1218     int ret;
1219     struct kvm_ioeventfd iofd = {
1220         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1221         .addr = addr,
1222         .len = size,
1223         .flags = 0,
1224         .fd = fd,
1225     };
1226 
1227     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1228                                  datamatch);
1229     if (!kvm_enabled()) {
1230         return -ENOSYS;
1231     }
1232 
1233     if (datamatch) {
1234         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1235     }
1236     if (!assign) {
1237         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1238     }
1239 
1240     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1241 
1242     if (ret < 0) {
1243         return -errno;
1244     }
1245 
1246     return 0;
1247 }
1248 
1249 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1250                                  bool assign, uint32_t size, bool datamatch)
1251 {
1252     struct kvm_ioeventfd kick = {
1253         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1254         .addr = addr,
1255         .flags = KVM_IOEVENTFD_FLAG_PIO,
1256         .len = size,
1257         .fd = fd,
1258     };
1259     int r;
1260     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1261     if (!kvm_enabled()) {
1262         return -ENOSYS;
1263     }
1264     if (datamatch) {
1265         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1266     }
1267     if (!assign) {
1268         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1269     }
1270     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1271     if (r < 0) {
1272         return r;
1273     }
1274     return 0;
1275 }
1276 
1277 
1278 static const KVMCapabilityInfo *
1279 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1280 {
1281     while (list->name) {
1282         if (!kvm_check_extension(s, list->value)) {
1283             return list;
1284         }
1285         list++;
1286     }
1287     return NULL;
1288 }
1289 
1290 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1291 {
1292     g_assert(
1293         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1294     );
1295     kvm_max_slot_size = max_slot_size;
1296 }
1297 
1298 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr)
1299 {
1300     struct kvm_memory_attributes attrs;
1301     int r;
1302 
1303     assert((attr & kvm_supported_memory_attributes) == attr);
1304     attrs.attributes = attr;
1305     attrs.address = start;
1306     attrs.size = size;
1307     attrs.flags = 0;
1308 
1309     r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs);
1310     if (r) {
1311         error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") "
1312                      "with attr 0x%" PRIx64 " error '%s'",
1313                      start, size, attr, strerror(errno));
1314     }
1315     return r;
1316 }
1317 
1318 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size)
1319 {
1320     return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
1321 }
1322 
1323 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size)
1324 {
1325     return kvm_set_memory_attributes(start, size, 0);
1326 }
1327 
1328 /* Called with KVMMemoryListener.slots_lock held */
1329 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1330                              MemoryRegionSection *section, bool add)
1331 {
1332     KVMSlot *mem;
1333     int err;
1334     MemoryRegion *mr = section->mr;
1335     bool writable = !mr->readonly && !mr->rom_device;
1336     hwaddr start_addr, size, slot_size, mr_offset;
1337     ram_addr_t ram_start_offset;
1338     void *ram;
1339 
1340     if (!memory_region_is_ram(mr)) {
1341         if (writable || !kvm_readonly_mem_allowed) {
1342             return;
1343         } else if (!mr->romd_mode) {
1344             /* If the memory device is not in romd_mode, then we actually want
1345              * to remove the kvm memory slot so all accesses will trap. */
1346             add = false;
1347         }
1348     }
1349 
1350     size = kvm_align_section(section, &start_addr);
1351     if (!size) {
1352         return;
1353     }
1354 
1355     /* The offset of the kvmslot within the memory region */
1356     mr_offset = section->offset_within_region + start_addr -
1357         section->offset_within_address_space;
1358 
1359     /* use aligned delta to align the ram address and offset */
1360     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1361     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1362 
1363     if (!add) {
1364         do {
1365             slot_size = MIN(kvm_max_slot_size, size);
1366             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1367             if (!mem) {
1368                 return;
1369             }
1370             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1371                 /*
1372                  * NOTE: We should be aware of the fact that here we're only
1373                  * doing a best effort to sync dirty bits.  No matter whether
1374                  * we're using dirty log or dirty ring, we ignored two facts:
1375                  *
1376                  * (1) dirty bits can reside in hardware buffers (PML)
1377                  *
1378                  * (2) after we collected dirty bits here, pages can be dirtied
1379                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1380                  * remove the slot.
1381                  *
1382                  * Not easy.  Let's cross the fingers until it's fixed.
1383                  */
1384                 if (kvm_state->kvm_dirty_ring_size) {
1385                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1386                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1387                         kvm_slot_sync_dirty_pages(mem);
1388                         kvm_slot_get_dirty_log(kvm_state, mem);
1389                     }
1390                 } else {
1391                     kvm_slot_get_dirty_log(kvm_state, mem);
1392                 }
1393                 kvm_slot_sync_dirty_pages(mem);
1394             }
1395 
1396             /* unregister the slot */
1397             g_free(mem->dirty_bmap);
1398             mem->dirty_bmap = NULL;
1399             mem->memory_size = 0;
1400             mem->flags = 0;
1401             err = kvm_set_user_memory_region(kml, mem, false);
1402             if (err) {
1403                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1404                         __func__, strerror(-err));
1405                 abort();
1406             }
1407             start_addr += slot_size;
1408             size -= slot_size;
1409             kml->nr_used_slots--;
1410         } while (size);
1411         return;
1412     }
1413 
1414     /* register the new slot */
1415     do {
1416         slot_size = MIN(kvm_max_slot_size, size);
1417         mem = kvm_alloc_slot(kml);
1418         mem->as_id = kml->as_id;
1419         mem->memory_size = slot_size;
1420         mem->start_addr = start_addr;
1421         mem->ram_start_offset = ram_start_offset;
1422         mem->ram = ram;
1423         mem->flags = kvm_mem_flags(mr);
1424         mem->guest_memfd = mr->ram_block->guest_memfd;
1425         mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host;
1426 
1427         kvm_slot_init_dirty_bitmap(mem);
1428         err = kvm_set_user_memory_region(kml, mem, true);
1429         if (err) {
1430             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1431                     strerror(-err));
1432             abort();
1433         }
1434 
1435         if (memory_region_has_guest_memfd(mr)) {
1436             err = kvm_set_memory_attributes_private(start_addr, slot_size);
1437             if (err) {
1438                 error_report("%s: failed to set memory attribute private: %s",
1439                              __func__, strerror(-err));
1440                 exit(1);
1441             }
1442         }
1443 
1444         start_addr += slot_size;
1445         ram_start_offset += slot_size;
1446         ram += slot_size;
1447         size -= slot_size;
1448         kml->nr_used_slots++;
1449     } while (size);
1450 }
1451 
1452 static void *kvm_dirty_ring_reaper_thread(void *data)
1453 {
1454     KVMState *s = data;
1455     struct KVMDirtyRingReaper *r = &s->reaper;
1456 
1457     rcu_register_thread();
1458 
1459     trace_kvm_dirty_ring_reaper("init");
1460 
1461     while (true) {
1462         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1463         trace_kvm_dirty_ring_reaper("wait");
1464         /*
1465          * TODO: provide a smarter timeout rather than a constant?
1466          */
1467         sleep(1);
1468 
1469         /* keep sleeping so that dirtylimit not be interfered by reaper */
1470         if (dirtylimit_in_service()) {
1471             continue;
1472         }
1473 
1474         trace_kvm_dirty_ring_reaper("wakeup");
1475         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1476 
1477         bql_lock();
1478         kvm_dirty_ring_reap(s, NULL);
1479         bql_unlock();
1480 
1481         r->reaper_iteration++;
1482     }
1483 
1484     trace_kvm_dirty_ring_reaper("exit");
1485 
1486     rcu_unregister_thread();
1487 
1488     return NULL;
1489 }
1490 
1491 static void kvm_dirty_ring_reaper_init(KVMState *s)
1492 {
1493     struct KVMDirtyRingReaper *r = &s->reaper;
1494 
1495     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1496                        kvm_dirty_ring_reaper_thread,
1497                        s, QEMU_THREAD_JOINABLE);
1498 }
1499 
1500 static int kvm_dirty_ring_init(KVMState *s)
1501 {
1502     uint32_t ring_size = s->kvm_dirty_ring_size;
1503     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1504     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1505     int ret;
1506 
1507     s->kvm_dirty_ring_size = 0;
1508     s->kvm_dirty_ring_bytes = 0;
1509 
1510     /* Bail if the dirty ring size isn't specified */
1511     if (!ring_size) {
1512         return 0;
1513     }
1514 
1515     /*
1516      * Read the max supported pages. Fall back to dirty logging mode
1517      * if the dirty ring isn't supported.
1518      */
1519     ret = kvm_vm_check_extension(s, capability);
1520     if (ret <= 0) {
1521         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1522         ret = kvm_vm_check_extension(s, capability);
1523     }
1524 
1525     if (ret <= 0) {
1526         warn_report("KVM dirty ring not available, using bitmap method");
1527         return 0;
1528     }
1529 
1530     if (ring_bytes > ret) {
1531         error_report("KVM dirty ring size %" PRIu32 " too big "
1532                      "(maximum is %ld).  Please use a smaller value.",
1533                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1534         return -EINVAL;
1535     }
1536 
1537     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1538     if (ret) {
1539         error_report("Enabling of KVM dirty ring failed: %s. "
1540                      "Suggested minimum value is 1024.", strerror(-ret));
1541         return -EIO;
1542     }
1543 
1544     /* Enable the backup bitmap if it is supported */
1545     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1546     if (ret > 0) {
1547         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1548         if (ret) {
1549             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1550                          "%s. ", strerror(-ret));
1551             return -EIO;
1552         }
1553 
1554         s->kvm_dirty_ring_with_bitmap = true;
1555     }
1556 
1557     s->kvm_dirty_ring_size = ring_size;
1558     s->kvm_dirty_ring_bytes = ring_bytes;
1559 
1560     return 0;
1561 }
1562 
1563 static void kvm_region_add(MemoryListener *listener,
1564                            MemoryRegionSection *section)
1565 {
1566     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1567     KVMMemoryUpdate *update;
1568 
1569     update = g_new0(KVMMemoryUpdate, 1);
1570     update->section = *section;
1571 
1572     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1573 }
1574 
1575 static void kvm_region_del(MemoryListener *listener,
1576                            MemoryRegionSection *section)
1577 {
1578     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1579     KVMMemoryUpdate *update;
1580 
1581     update = g_new0(KVMMemoryUpdate, 1);
1582     update->section = *section;
1583 
1584     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1585 }
1586 
1587 static void kvm_region_commit(MemoryListener *listener)
1588 {
1589     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1590                                           listener);
1591     KVMMemoryUpdate *u1, *u2;
1592     bool need_inhibit = false;
1593 
1594     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1595         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1596         return;
1597     }
1598 
1599     /*
1600      * We have to be careful when regions to add overlap with ranges to remove.
1601      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1602      * is currently active.
1603      *
1604      * The lists are order by addresses, so it's easy to find overlaps.
1605      */
1606     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1607     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1608     while (u1 && u2) {
1609         Range r1, r2;
1610 
1611         range_init_nofail(&r1, u1->section.offset_within_address_space,
1612                           int128_get64(u1->section.size));
1613         range_init_nofail(&r2, u2->section.offset_within_address_space,
1614                           int128_get64(u2->section.size));
1615 
1616         if (range_overlaps_range(&r1, &r2)) {
1617             need_inhibit = true;
1618             break;
1619         }
1620         if (range_lob(&r1) < range_lob(&r2)) {
1621             u1 = QSIMPLEQ_NEXT(u1, next);
1622         } else {
1623             u2 = QSIMPLEQ_NEXT(u2, next);
1624         }
1625     }
1626 
1627     kvm_slots_lock();
1628     if (need_inhibit) {
1629         accel_ioctl_inhibit_begin();
1630     }
1631 
1632     /* Remove all memslots before adding the new ones. */
1633     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1634         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1635         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1636 
1637         kvm_set_phys_mem(kml, &u1->section, false);
1638         memory_region_unref(u1->section.mr);
1639 
1640         g_free(u1);
1641     }
1642     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1643         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1644         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1645 
1646         memory_region_ref(u1->section.mr);
1647         kvm_set_phys_mem(kml, &u1->section, true);
1648 
1649         g_free(u1);
1650     }
1651 
1652     if (need_inhibit) {
1653         accel_ioctl_inhibit_end();
1654     }
1655     kvm_slots_unlock();
1656 }
1657 
1658 static void kvm_log_sync(MemoryListener *listener,
1659                          MemoryRegionSection *section)
1660 {
1661     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1662 
1663     kvm_slots_lock();
1664     kvm_physical_sync_dirty_bitmap(kml, section);
1665     kvm_slots_unlock();
1666 }
1667 
1668 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1669 {
1670     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1671     KVMState *s = kvm_state;
1672     KVMSlot *mem;
1673     int i;
1674 
1675     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1676     kvm_dirty_ring_flush();
1677 
1678     /*
1679      * TODO: make this faster when nr_slots is big while there are
1680      * only a few used slots (small VMs).
1681      */
1682     kvm_slots_lock();
1683     for (i = 0; i < s->nr_slots; i++) {
1684         mem = &kml->slots[i];
1685         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1686             kvm_slot_sync_dirty_pages(mem);
1687 
1688             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1689                 kvm_slot_get_dirty_log(s, mem)) {
1690                 kvm_slot_sync_dirty_pages(mem);
1691             }
1692 
1693             /*
1694              * This is not needed by KVM_GET_DIRTY_LOG because the
1695              * ioctl will unconditionally overwrite the whole region.
1696              * However kvm dirty ring has no such side effect.
1697              */
1698             kvm_slot_reset_dirty_pages(mem);
1699         }
1700     }
1701     kvm_slots_unlock();
1702 }
1703 
1704 static void kvm_log_clear(MemoryListener *listener,
1705                           MemoryRegionSection *section)
1706 {
1707     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1708     int r;
1709 
1710     r = kvm_physical_log_clear(kml, section);
1711     if (r < 0) {
1712         error_report_once("%s: kvm log clear failed: mr=%s "
1713                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1714                           section->mr->name, section->offset_within_region,
1715                           int128_get64(section->size));
1716         abort();
1717     }
1718 }
1719 
1720 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1721                                   MemoryRegionSection *section,
1722                                   bool match_data, uint64_t data,
1723                                   EventNotifier *e)
1724 {
1725     int fd = event_notifier_get_fd(e);
1726     int r;
1727 
1728     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1729                                data, true, int128_get64(section->size),
1730                                match_data);
1731     if (r < 0) {
1732         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1733                 __func__, strerror(-r), -r);
1734         abort();
1735     }
1736 }
1737 
1738 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1739                                   MemoryRegionSection *section,
1740                                   bool match_data, uint64_t data,
1741                                   EventNotifier *e)
1742 {
1743     int fd = event_notifier_get_fd(e);
1744     int r;
1745 
1746     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1747                                data, false, int128_get64(section->size),
1748                                match_data);
1749     if (r < 0) {
1750         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1751                 __func__, strerror(-r), -r);
1752         abort();
1753     }
1754 }
1755 
1756 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1757                                  MemoryRegionSection *section,
1758                                  bool match_data, uint64_t data,
1759                                  EventNotifier *e)
1760 {
1761     int fd = event_notifier_get_fd(e);
1762     int r;
1763 
1764     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1765                               data, true, int128_get64(section->size),
1766                               match_data);
1767     if (r < 0) {
1768         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1769                 __func__, strerror(-r), -r);
1770         abort();
1771     }
1772 }
1773 
1774 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1775                                  MemoryRegionSection *section,
1776                                  bool match_data, uint64_t data,
1777                                  EventNotifier *e)
1778 
1779 {
1780     int fd = event_notifier_get_fd(e);
1781     int r;
1782 
1783     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1784                               data, false, int128_get64(section->size),
1785                               match_data);
1786     if (r < 0) {
1787         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1788                 __func__, strerror(-r), -r);
1789         abort();
1790     }
1791 }
1792 
1793 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1794                                   AddressSpace *as, int as_id, const char *name)
1795 {
1796     int i;
1797 
1798     kml->slots = g_new0(KVMSlot, s->nr_slots);
1799     kml->as_id = as_id;
1800 
1801     for (i = 0; i < s->nr_slots; i++) {
1802         kml->slots[i].slot = i;
1803     }
1804 
1805     QSIMPLEQ_INIT(&kml->transaction_add);
1806     QSIMPLEQ_INIT(&kml->transaction_del);
1807 
1808     kml->listener.region_add = kvm_region_add;
1809     kml->listener.region_del = kvm_region_del;
1810     kml->listener.commit = kvm_region_commit;
1811     kml->listener.log_start = kvm_log_start;
1812     kml->listener.log_stop = kvm_log_stop;
1813     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1814     kml->listener.name = name;
1815 
1816     if (s->kvm_dirty_ring_size) {
1817         kml->listener.log_sync_global = kvm_log_sync_global;
1818     } else {
1819         kml->listener.log_sync = kvm_log_sync;
1820         kml->listener.log_clear = kvm_log_clear;
1821     }
1822 
1823     memory_listener_register(&kml->listener, as);
1824 
1825     for (i = 0; i < s->nr_as; ++i) {
1826         if (!s->as[i].as) {
1827             s->as[i].as = as;
1828             s->as[i].ml = kml;
1829             break;
1830         }
1831     }
1832 }
1833 
1834 static MemoryListener kvm_io_listener = {
1835     .name = "kvm-io",
1836     .coalesced_io_add = kvm_coalesce_pio_add,
1837     .coalesced_io_del = kvm_coalesce_pio_del,
1838     .eventfd_add = kvm_io_ioeventfd_add,
1839     .eventfd_del = kvm_io_ioeventfd_del,
1840     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1841 };
1842 
1843 int kvm_set_irq(KVMState *s, int irq, int level)
1844 {
1845     struct kvm_irq_level event;
1846     int ret;
1847 
1848     assert(kvm_async_interrupts_enabled());
1849 
1850     event.level = level;
1851     event.irq = irq;
1852     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1853     if (ret < 0) {
1854         perror("kvm_set_irq");
1855         abort();
1856     }
1857 
1858     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1859 }
1860 
1861 #ifdef KVM_CAP_IRQ_ROUTING
1862 typedef struct KVMMSIRoute {
1863     struct kvm_irq_routing_entry kroute;
1864     QTAILQ_ENTRY(KVMMSIRoute) entry;
1865 } KVMMSIRoute;
1866 
1867 static void set_gsi(KVMState *s, unsigned int gsi)
1868 {
1869     set_bit(gsi, s->used_gsi_bitmap);
1870 }
1871 
1872 static void clear_gsi(KVMState *s, unsigned int gsi)
1873 {
1874     clear_bit(gsi, s->used_gsi_bitmap);
1875 }
1876 
1877 void kvm_init_irq_routing(KVMState *s)
1878 {
1879     int gsi_count;
1880 
1881     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1882     if (gsi_count > 0) {
1883         /* Round up so we can search ints using ffs */
1884         s->used_gsi_bitmap = bitmap_new(gsi_count);
1885         s->gsi_count = gsi_count;
1886     }
1887 
1888     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1889     s->nr_allocated_irq_routes = 0;
1890 
1891     kvm_arch_init_irq_routing(s);
1892 }
1893 
1894 void kvm_irqchip_commit_routes(KVMState *s)
1895 {
1896     int ret;
1897 
1898     if (kvm_gsi_direct_mapping()) {
1899         return;
1900     }
1901 
1902     if (!kvm_gsi_routing_enabled()) {
1903         return;
1904     }
1905 
1906     s->irq_routes->flags = 0;
1907     trace_kvm_irqchip_commit_routes();
1908     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1909     assert(ret == 0);
1910 }
1911 
1912 static void kvm_add_routing_entry(KVMState *s,
1913                                   struct kvm_irq_routing_entry *entry)
1914 {
1915     struct kvm_irq_routing_entry *new;
1916     int n, size;
1917 
1918     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1919         n = s->nr_allocated_irq_routes * 2;
1920         if (n < 64) {
1921             n = 64;
1922         }
1923         size = sizeof(struct kvm_irq_routing);
1924         size += n * sizeof(*new);
1925         s->irq_routes = g_realloc(s->irq_routes, size);
1926         s->nr_allocated_irq_routes = n;
1927     }
1928     n = s->irq_routes->nr++;
1929     new = &s->irq_routes->entries[n];
1930 
1931     *new = *entry;
1932 
1933     set_gsi(s, entry->gsi);
1934 }
1935 
1936 static int kvm_update_routing_entry(KVMState *s,
1937                                     struct kvm_irq_routing_entry *new_entry)
1938 {
1939     struct kvm_irq_routing_entry *entry;
1940     int n;
1941 
1942     for (n = 0; n < s->irq_routes->nr; n++) {
1943         entry = &s->irq_routes->entries[n];
1944         if (entry->gsi != new_entry->gsi) {
1945             continue;
1946         }
1947 
1948         if(!memcmp(entry, new_entry, sizeof *entry)) {
1949             return 0;
1950         }
1951 
1952         *entry = *new_entry;
1953 
1954         return 0;
1955     }
1956 
1957     return -ESRCH;
1958 }
1959 
1960 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1961 {
1962     struct kvm_irq_routing_entry e = {};
1963 
1964     assert(pin < s->gsi_count);
1965 
1966     e.gsi = irq;
1967     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1968     e.flags = 0;
1969     e.u.irqchip.irqchip = irqchip;
1970     e.u.irqchip.pin = pin;
1971     kvm_add_routing_entry(s, &e);
1972 }
1973 
1974 void kvm_irqchip_release_virq(KVMState *s, int virq)
1975 {
1976     struct kvm_irq_routing_entry *e;
1977     int i;
1978 
1979     if (kvm_gsi_direct_mapping()) {
1980         return;
1981     }
1982 
1983     for (i = 0; i < s->irq_routes->nr; i++) {
1984         e = &s->irq_routes->entries[i];
1985         if (e->gsi == virq) {
1986             s->irq_routes->nr--;
1987             *e = s->irq_routes->entries[s->irq_routes->nr];
1988         }
1989     }
1990     clear_gsi(s, virq);
1991     kvm_arch_release_virq_post(virq);
1992     trace_kvm_irqchip_release_virq(virq);
1993 }
1994 
1995 void kvm_irqchip_add_change_notifier(Notifier *n)
1996 {
1997     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1998 }
1999 
2000 void kvm_irqchip_remove_change_notifier(Notifier *n)
2001 {
2002     notifier_remove(n);
2003 }
2004 
2005 void kvm_irqchip_change_notify(void)
2006 {
2007     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
2008 }
2009 
2010 static int kvm_irqchip_get_virq(KVMState *s)
2011 {
2012     int next_virq;
2013 
2014     /* Return the lowest unused GSI in the bitmap */
2015     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2016     if (next_virq >= s->gsi_count) {
2017         return -ENOSPC;
2018     } else {
2019         return next_virq;
2020     }
2021 }
2022 
2023 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2024 {
2025     struct kvm_msi msi;
2026 
2027     msi.address_lo = (uint32_t)msg.address;
2028     msi.address_hi = msg.address >> 32;
2029     msi.data = le32_to_cpu(msg.data);
2030     msi.flags = 0;
2031     memset(msi.pad, 0, sizeof(msi.pad));
2032 
2033     return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2034 }
2035 
2036 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2037 {
2038     struct kvm_irq_routing_entry kroute = {};
2039     int virq;
2040     KVMState *s = c->s;
2041     MSIMessage msg = {0, 0};
2042 
2043     if (pci_available && dev) {
2044         msg = pci_get_msi_message(dev, vector);
2045     }
2046 
2047     if (kvm_gsi_direct_mapping()) {
2048         return kvm_arch_msi_data_to_gsi(msg.data);
2049     }
2050 
2051     if (!kvm_gsi_routing_enabled()) {
2052         return -ENOSYS;
2053     }
2054 
2055     virq = kvm_irqchip_get_virq(s);
2056     if (virq < 0) {
2057         return virq;
2058     }
2059 
2060     kroute.gsi = virq;
2061     kroute.type = KVM_IRQ_ROUTING_MSI;
2062     kroute.flags = 0;
2063     kroute.u.msi.address_lo = (uint32_t)msg.address;
2064     kroute.u.msi.address_hi = msg.address >> 32;
2065     kroute.u.msi.data = le32_to_cpu(msg.data);
2066     if (pci_available && kvm_msi_devid_required()) {
2067         kroute.flags = KVM_MSI_VALID_DEVID;
2068         kroute.u.msi.devid = pci_requester_id(dev);
2069     }
2070     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2071         kvm_irqchip_release_virq(s, virq);
2072         return -EINVAL;
2073     }
2074 
2075     if (s->irq_routes->nr < s->gsi_count) {
2076         trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2077                                         vector, virq);
2078 
2079         kvm_add_routing_entry(s, &kroute);
2080         kvm_arch_add_msi_route_post(&kroute, vector, dev);
2081         c->changes++;
2082     } else {
2083         kvm_irqchip_release_virq(s, virq);
2084         return -ENOSPC;
2085     }
2086 
2087     return virq;
2088 }
2089 
2090 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2091                                  PCIDevice *dev)
2092 {
2093     struct kvm_irq_routing_entry kroute = {};
2094 
2095     if (kvm_gsi_direct_mapping()) {
2096         return 0;
2097     }
2098 
2099     if (!kvm_irqchip_in_kernel()) {
2100         return -ENOSYS;
2101     }
2102 
2103     kroute.gsi = virq;
2104     kroute.type = KVM_IRQ_ROUTING_MSI;
2105     kroute.flags = 0;
2106     kroute.u.msi.address_lo = (uint32_t)msg.address;
2107     kroute.u.msi.address_hi = msg.address >> 32;
2108     kroute.u.msi.data = le32_to_cpu(msg.data);
2109     if (pci_available && kvm_msi_devid_required()) {
2110         kroute.flags = KVM_MSI_VALID_DEVID;
2111         kroute.u.msi.devid = pci_requester_id(dev);
2112     }
2113     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2114         return -EINVAL;
2115     }
2116 
2117     trace_kvm_irqchip_update_msi_route(virq);
2118 
2119     return kvm_update_routing_entry(s, &kroute);
2120 }
2121 
2122 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2123                                     EventNotifier *resample, int virq,
2124                                     bool assign)
2125 {
2126     int fd = event_notifier_get_fd(event);
2127     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2128 
2129     struct kvm_irqfd irqfd = {
2130         .fd = fd,
2131         .gsi = virq,
2132         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2133     };
2134 
2135     if (rfd != -1) {
2136         assert(assign);
2137         if (kvm_irqchip_is_split()) {
2138             /*
2139              * When the slow irqchip (e.g. IOAPIC) is in the
2140              * userspace, KVM kernel resamplefd will not work because
2141              * the EOI of the interrupt will be delivered to userspace
2142              * instead, so the KVM kernel resamplefd kick will be
2143              * skipped.  The userspace here mimics what the kernel
2144              * provides with resamplefd, remember the resamplefd and
2145              * kick it when we receive EOI of this IRQ.
2146              *
2147              * This is hackery because IOAPIC is mostly bypassed
2148              * (except EOI broadcasts) when irqfd is used.  However
2149              * this can bring much performance back for split irqchip
2150              * with INTx IRQs (for VFIO, this gives 93% perf of the
2151              * full fast path, which is 46% perf boost comparing to
2152              * the INTx slow path).
2153              */
2154             kvm_resample_fd_insert(virq, resample);
2155         } else {
2156             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2157             irqfd.resamplefd = rfd;
2158         }
2159     } else if (!assign) {
2160         if (kvm_irqchip_is_split()) {
2161             kvm_resample_fd_remove(virq);
2162         }
2163     }
2164 
2165     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2166 }
2167 
2168 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2169 {
2170     struct kvm_irq_routing_entry kroute = {};
2171     int virq;
2172 
2173     if (!kvm_gsi_routing_enabled()) {
2174         return -ENOSYS;
2175     }
2176 
2177     virq = kvm_irqchip_get_virq(s);
2178     if (virq < 0) {
2179         return virq;
2180     }
2181 
2182     kroute.gsi = virq;
2183     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2184     kroute.flags = 0;
2185     kroute.u.adapter.summary_addr = adapter->summary_addr;
2186     kroute.u.adapter.ind_addr = adapter->ind_addr;
2187     kroute.u.adapter.summary_offset = adapter->summary_offset;
2188     kroute.u.adapter.ind_offset = adapter->ind_offset;
2189     kroute.u.adapter.adapter_id = adapter->adapter_id;
2190 
2191     kvm_add_routing_entry(s, &kroute);
2192 
2193     return virq;
2194 }
2195 
2196 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2197 {
2198     struct kvm_irq_routing_entry kroute = {};
2199     int virq;
2200 
2201     if (!kvm_gsi_routing_enabled()) {
2202         return -ENOSYS;
2203     }
2204     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2205         return -ENOSYS;
2206     }
2207     virq = kvm_irqchip_get_virq(s);
2208     if (virq < 0) {
2209         return virq;
2210     }
2211 
2212     kroute.gsi = virq;
2213     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2214     kroute.flags = 0;
2215     kroute.u.hv_sint.vcpu = vcpu;
2216     kroute.u.hv_sint.sint = sint;
2217 
2218     kvm_add_routing_entry(s, &kroute);
2219     kvm_irqchip_commit_routes(s);
2220 
2221     return virq;
2222 }
2223 
2224 #else /* !KVM_CAP_IRQ_ROUTING */
2225 
2226 void kvm_init_irq_routing(KVMState *s)
2227 {
2228 }
2229 
2230 void kvm_irqchip_release_virq(KVMState *s, int virq)
2231 {
2232 }
2233 
2234 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2235 {
2236     abort();
2237 }
2238 
2239 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2240 {
2241     return -ENOSYS;
2242 }
2243 
2244 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2245 {
2246     return -ENOSYS;
2247 }
2248 
2249 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2250 {
2251     return -ENOSYS;
2252 }
2253 
2254 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2255                                     EventNotifier *resample, int virq,
2256                                     bool assign)
2257 {
2258     abort();
2259 }
2260 
2261 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2262 {
2263     return -ENOSYS;
2264 }
2265 #endif /* !KVM_CAP_IRQ_ROUTING */
2266 
2267 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2268                                        EventNotifier *rn, int virq)
2269 {
2270     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2271 }
2272 
2273 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2274                                           int virq)
2275 {
2276     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2277 }
2278 
2279 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2280                                    EventNotifier *rn, qemu_irq irq)
2281 {
2282     gpointer key, gsi;
2283     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2284 
2285     if (!found) {
2286         return -ENXIO;
2287     }
2288     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2289 }
2290 
2291 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2292                                       qemu_irq irq)
2293 {
2294     gpointer key, gsi;
2295     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2296 
2297     if (!found) {
2298         return -ENXIO;
2299     }
2300     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2301 }
2302 
2303 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2304 {
2305     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2306 }
2307 
2308 static void kvm_irqchip_create(KVMState *s)
2309 {
2310     int ret;
2311 
2312     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2313     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2314         ;
2315     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2316         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2317         if (ret < 0) {
2318             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2319             exit(1);
2320         }
2321     } else {
2322         return;
2323     }
2324 
2325     if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2326         fprintf(stderr, "kvm: irqfd not implemented\n");
2327         exit(1);
2328     }
2329 
2330     /* First probe and see if there's a arch-specific hook to create the
2331      * in-kernel irqchip for us */
2332     ret = kvm_arch_irqchip_create(s);
2333     if (ret == 0) {
2334         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2335             error_report("Split IRQ chip mode not supported.");
2336             exit(1);
2337         } else {
2338             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2339         }
2340     }
2341     if (ret < 0) {
2342         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2343         exit(1);
2344     }
2345 
2346     kvm_kernel_irqchip = true;
2347     /* If we have an in-kernel IRQ chip then we must have asynchronous
2348      * interrupt delivery (though the reverse is not necessarily true)
2349      */
2350     kvm_async_interrupts_allowed = true;
2351     kvm_halt_in_kernel_allowed = true;
2352 
2353     kvm_init_irq_routing(s);
2354 
2355     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2356 }
2357 
2358 /* Find number of supported CPUs using the recommended
2359  * procedure from the kernel API documentation to cope with
2360  * older kernels that may be missing capabilities.
2361  */
2362 static int kvm_recommended_vcpus(KVMState *s)
2363 {
2364     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2365     return (ret) ? ret : 4;
2366 }
2367 
2368 static int kvm_max_vcpus(KVMState *s)
2369 {
2370     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2371     return (ret) ? ret : kvm_recommended_vcpus(s);
2372 }
2373 
2374 static int kvm_max_vcpu_id(KVMState *s)
2375 {
2376     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2377     return (ret) ? ret : kvm_max_vcpus(s);
2378 }
2379 
2380 bool kvm_vcpu_id_is_valid(int vcpu_id)
2381 {
2382     KVMState *s = KVM_STATE(current_accel());
2383     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2384 }
2385 
2386 bool kvm_dirty_ring_enabled(void)
2387 {
2388     return kvm_state->kvm_dirty_ring_size ? true : false;
2389 }
2390 
2391 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2392                            strList *names, strList *targets, Error **errp);
2393 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2394 
2395 uint32_t kvm_dirty_ring_size(void)
2396 {
2397     return kvm_state->kvm_dirty_ring_size;
2398 }
2399 
2400 static int kvm_init(MachineState *ms)
2401 {
2402     MachineClass *mc = MACHINE_GET_CLASS(ms);
2403     static const char upgrade_note[] =
2404         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2405         "(see http://sourceforge.net/projects/kvm).\n";
2406     const struct {
2407         const char *name;
2408         int num;
2409     } num_cpus[] = {
2410         { "SMP",          ms->smp.cpus },
2411         { "hotpluggable", ms->smp.max_cpus },
2412         { /* end of list */ }
2413     }, *nc = num_cpus;
2414     int soft_vcpus_limit, hard_vcpus_limit;
2415     KVMState *s;
2416     const KVMCapabilityInfo *missing_cap;
2417     int ret;
2418     int type;
2419     uint64_t dirty_log_manual_caps;
2420 
2421     qemu_mutex_init(&kml_slots_lock);
2422 
2423     s = KVM_STATE(ms->accelerator);
2424 
2425     /*
2426      * On systems where the kernel can support different base page
2427      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2428      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2429      * page size for the system though.
2430      */
2431     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2432 
2433     s->sigmask_len = 8;
2434     accel_blocker_init();
2435 
2436 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2437     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2438 #endif
2439     QLIST_INIT(&s->kvm_parked_vcpus);
2440     s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2441     if (s->fd == -1) {
2442         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2443         ret = -errno;
2444         goto err;
2445     }
2446 
2447     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2448     if (ret < KVM_API_VERSION) {
2449         if (ret >= 0) {
2450             ret = -EINVAL;
2451         }
2452         fprintf(stderr, "kvm version too old\n");
2453         goto err;
2454     }
2455 
2456     if (ret > KVM_API_VERSION) {
2457         ret = -EINVAL;
2458         fprintf(stderr, "kvm version not supported\n");
2459         goto err;
2460     }
2461 
2462     kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES);
2463     kvm_guest_memfd_supported =
2464         kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) &&
2465         kvm_check_extension(s, KVM_CAP_USER_MEMORY2) &&
2466         (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE);
2467 
2468     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2469     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2470 
2471     /* If unspecified, use the default value */
2472     if (!s->nr_slots) {
2473         s->nr_slots = 32;
2474     }
2475 
2476     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2477     if (s->nr_as <= 1) {
2478         s->nr_as = 1;
2479     }
2480     s->as = g_new0(struct KVMAs, s->nr_as);
2481 
2482     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2483         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2484                                                             "kvm-type",
2485                                                             &error_abort);
2486         type = mc->kvm_type(ms, kvm_type);
2487     } else if (mc->kvm_type) {
2488         type = mc->kvm_type(ms, NULL);
2489     } else {
2490         type = kvm_arch_get_default_type(ms);
2491     }
2492 
2493     if (type < 0) {
2494         ret = -EINVAL;
2495         goto err;
2496     }
2497 
2498     do {
2499         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2500     } while (ret == -EINTR);
2501 
2502     if (ret < 0) {
2503         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2504                 strerror(-ret));
2505 
2506 #ifdef TARGET_S390X
2507         if (ret == -EINVAL) {
2508             fprintf(stderr,
2509                     "Host kernel setup problem detected. Please verify:\n");
2510             fprintf(stderr, "- for kernels supporting the switch_amode or"
2511                     " user_mode parameters, whether\n");
2512             fprintf(stderr,
2513                     "  user space is running in primary address space\n");
2514             fprintf(stderr,
2515                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2516                     "whether it is enabled\n");
2517         }
2518 #elif defined(TARGET_PPC)
2519         if (ret == -EINVAL) {
2520             fprintf(stderr,
2521                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2522                     (type == 2) ? "pr" : "hv");
2523         }
2524 #endif
2525         goto err;
2526     }
2527 
2528     s->vmfd = ret;
2529 
2530     /* check the vcpu limits */
2531     soft_vcpus_limit = kvm_recommended_vcpus(s);
2532     hard_vcpus_limit = kvm_max_vcpus(s);
2533 
2534     while (nc->name) {
2535         if (nc->num > soft_vcpus_limit) {
2536             warn_report("Number of %s cpus requested (%d) exceeds "
2537                         "the recommended cpus supported by KVM (%d)",
2538                         nc->name, nc->num, soft_vcpus_limit);
2539 
2540             if (nc->num > hard_vcpus_limit) {
2541                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2542                         "the maximum cpus supported by KVM (%d)\n",
2543                         nc->name, nc->num, hard_vcpus_limit);
2544                 exit(1);
2545             }
2546         }
2547         nc++;
2548     }
2549 
2550     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2551     if (!missing_cap) {
2552         missing_cap =
2553             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2554     }
2555     if (missing_cap) {
2556         ret = -EINVAL;
2557         fprintf(stderr, "kvm does not support %s\n%s",
2558                 missing_cap->name, upgrade_note);
2559         goto err;
2560     }
2561 
2562     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2563     s->coalesced_pio = s->coalesced_mmio &&
2564                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2565 
2566     /*
2567      * Enable KVM dirty ring if supported, otherwise fall back to
2568      * dirty logging mode
2569      */
2570     ret = kvm_dirty_ring_init(s);
2571     if (ret < 0) {
2572         goto err;
2573     }
2574 
2575     /*
2576      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2577      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2578      * page is wr-protected initially, which is against how kvm dirty ring is
2579      * usage - kvm dirty ring requires all pages are wr-protected at the very
2580      * beginning.  Enabling this feature for dirty ring causes data corruption.
2581      *
2582      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2583      * we may expect a higher stall time when starting the migration.  In the
2584      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2585      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2586      * guest pages.
2587      */
2588     if (!s->kvm_dirty_ring_size) {
2589         dirty_log_manual_caps =
2590             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2591         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2592                                   KVM_DIRTY_LOG_INITIALLY_SET);
2593         s->manual_dirty_log_protect = dirty_log_manual_caps;
2594         if (dirty_log_manual_caps) {
2595             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2596                                     dirty_log_manual_caps);
2597             if (ret) {
2598                 warn_report("Trying to enable capability %"PRIu64" of "
2599                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2600                             "Falling back to the legacy mode. ",
2601                             dirty_log_manual_caps);
2602                 s->manual_dirty_log_protect = 0;
2603             }
2604         }
2605     }
2606 
2607 #ifdef KVM_CAP_VCPU_EVENTS
2608     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2609 #endif
2610     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2611 
2612     s->irq_set_ioctl = KVM_IRQ_LINE;
2613     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2614         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2615     }
2616 
2617     kvm_readonly_mem_allowed =
2618         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2619 
2620     kvm_resamplefds_allowed =
2621         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2622 
2623     kvm_vm_attributes_allowed =
2624         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2625 
2626 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2627     kvm_has_guest_debug =
2628         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2629 #endif
2630 
2631     kvm_sstep_flags = 0;
2632     if (kvm_has_guest_debug) {
2633         kvm_sstep_flags = SSTEP_ENABLE;
2634 
2635 #if defined TARGET_KVM_HAVE_GUEST_DEBUG
2636         int guest_debug_flags =
2637             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2638 
2639         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2640             kvm_sstep_flags |= SSTEP_NOIRQ;
2641         }
2642 #endif
2643     }
2644 
2645     kvm_state = s;
2646 
2647     ret = kvm_arch_init(ms, s);
2648     if (ret < 0) {
2649         goto err;
2650     }
2651 
2652     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2653         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2654     }
2655 
2656     qemu_register_reset(kvm_unpoison_all, NULL);
2657 
2658     if (s->kernel_irqchip_allowed) {
2659         kvm_irqchip_create(s);
2660     }
2661 
2662     s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2663     s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2664     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2665     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2666 
2667     kvm_memory_listener_register(s, &s->memory_listener,
2668                                  &address_space_memory, 0, "kvm-memory");
2669     memory_listener_register(&kvm_io_listener,
2670                              &address_space_io);
2671 
2672     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2673     if (!s->sync_mmu) {
2674         ret = ram_block_discard_disable(true);
2675         assert(!ret);
2676     }
2677 
2678     if (s->kvm_dirty_ring_size) {
2679         kvm_dirty_ring_reaper_init(s);
2680     }
2681 
2682     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2683         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2684                             query_stats_schemas_cb);
2685     }
2686 
2687     return 0;
2688 
2689 err:
2690     assert(ret < 0);
2691     if (s->vmfd >= 0) {
2692         close(s->vmfd);
2693     }
2694     if (s->fd != -1) {
2695         close(s->fd);
2696     }
2697     g_free(s->as);
2698     g_free(s->memory_listener.slots);
2699 
2700     return ret;
2701 }
2702 
2703 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2704 {
2705     s->sigmask_len = sigmask_len;
2706 }
2707 
2708 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2709                           int size, uint32_t count)
2710 {
2711     int i;
2712     uint8_t *ptr = data;
2713 
2714     for (i = 0; i < count; i++) {
2715         address_space_rw(&address_space_io, port, attrs,
2716                          ptr, size,
2717                          direction == KVM_EXIT_IO_OUT);
2718         ptr += size;
2719     }
2720 }
2721 
2722 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2723 {
2724     int i;
2725 
2726     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2727             run->internal.suberror);
2728 
2729     for (i = 0; i < run->internal.ndata; ++i) {
2730         fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2731                 i, (uint64_t)run->internal.data[i]);
2732     }
2733     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2734         fprintf(stderr, "emulation failure\n");
2735         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2736             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2737             return EXCP_INTERRUPT;
2738         }
2739     }
2740     /* FIXME: Should trigger a qmp message to let management know
2741      * something went wrong.
2742      */
2743     return -1;
2744 }
2745 
2746 void kvm_flush_coalesced_mmio_buffer(void)
2747 {
2748     KVMState *s = kvm_state;
2749 
2750     if (!s || s->coalesced_flush_in_progress) {
2751         return;
2752     }
2753 
2754     s->coalesced_flush_in_progress = true;
2755 
2756     if (s->coalesced_mmio_ring) {
2757         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2758         while (ring->first != ring->last) {
2759             struct kvm_coalesced_mmio *ent;
2760 
2761             ent = &ring->coalesced_mmio[ring->first];
2762 
2763             if (ent->pio == 1) {
2764                 address_space_write(&address_space_io, ent->phys_addr,
2765                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2766                                     ent->len);
2767             } else {
2768                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2769             }
2770             smp_wmb();
2771             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2772         }
2773     }
2774 
2775     s->coalesced_flush_in_progress = false;
2776 }
2777 
2778 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2779 {
2780     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2781         int ret = kvm_arch_get_registers(cpu);
2782         if (ret) {
2783             error_report("Failed to get registers: %s", strerror(-ret));
2784             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2785             vm_stop(RUN_STATE_INTERNAL_ERROR);
2786         }
2787 
2788         cpu->vcpu_dirty = true;
2789     }
2790 }
2791 
2792 void kvm_cpu_synchronize_state(CPUState *cpu)
2793 {
2794     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2795         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2796     }
2797 }
2798 
2799 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2800 {
2801     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2802     if (ret) {
2803         error_report("Failed to put registers after reset: %s", strerror(-ret));
2804         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2805         vm_stop(RUN_STATE_INTERNAL_ERROR);
2806     }
2807 
2808     cpu->vcpu_dirty = false;
2809 }
2810 
2811 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2812 {
2813     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2814 }
2815 
2816 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2817 {
2818     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2819     if (ret) {
2820         error_report("Failed to put registers after init: %s", strerror(-ret));
2821         exit(1);
2822     }
2823 
2824     cpu->vcpu_dirty = false;
2825 }
2826 
2827 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2828 {
2829     if (!kvm_state->guest_state_protected) {
2830         /*
2831          * This runs before the machine_init_done notifiers, and is the last
2832          * opportunity to synchronize the state of confidential guests.
2833          */
2834         run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2835     }
2836 }
2837 
2838 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2839 {
2840     cpu->vcpu_dirty = true;
2841 }
2842 
2843 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2844 {
2845     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2846 }
2847 
2848 #ifdef KVM_HAVE_MCE_INJECTION
2849 static __thread void *pending_sigbus_addr;
2850 static __thread int pending_sigbus_code;
2851 static __thread bool have_sigbus_pending;
2852 #endif
2853 
2854 static void kvm_cpu_kick(CPUState *cpu)
2855 {
2856     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2857 }
2858 
2859 static void kvm_cpu_kick_self(void)
2860 {
2861     if (kvm_immediate_exit) {
2862         kvm_cpu_kick(current_cpu);
2863     } else {
2864         qemu_cpu_kick_self();
2865     }
2866 }
2867 
2868 static void kvm_eat_signals(CPUState *cpu)
2869 {
2870     struct timespec ts = { 0, 0 };
2871     siginfo_t siginfo;
2872     sigset_t waitset;
2873     sigset_t chkset;
2874     int r;
2875 
2876     if (kvm_immediate_exit) {
2877         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2878         /* Write kvm_run->immediate_exit before the cpu->exit_request
2879          * write in kvm_cpu_exec.
2880          */
2881         smp_wmb();
2882         return;
2883     }
2884 
2885     sigemptyset(&waitset);
2886     sigaddset(&waitset, SIG_IPI);
2887 
2888     do {
2889         r = sigtimedwait(&waitset, &siginfo, &ts);
2890         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2891             perror("sigtimedwait");
2892             exit(1);
2893         }
2894 
2895         r = sigpending(&chkset);
2896         if (r == -1) {
2897             perror("sigpending");
2898             exit(1);
2899         }
2900     } while (sigismember(&chkset, SIG_IPI));
2901 }
2902 
2903 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private)
2904 {
2905     MemoryRegionSection section;
2906     ram_addr_t offset;
2907     MemoryRegion *mr;
2908     RAMBlock *rb;
2909     void *addr;
2910     int ret = -1;
2911 
2912     trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared");
2913 
2914     if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) ||
2915         !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) {
2916         return -1;
2917     }
2918 
2919     if (!size) {
2920         return -1;
2921     }
2922 
2923     section = memory_region_find(get_system_memory(), start, size);
2924     mr = section.mr;
2925     if (!mr) {
2926         /*
2927          * Ignore converting non-assigned region to shared.
2928          *
2929          * TDX requires vMMIO region to be shared to inject #VE to guest.
2930          * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region,
2931          * and vIO-APIC 0xFEC00000 4K page.
2932          * OVMF assigns 32bit PCI MMIO region to
2933          * [top of low memory: typically 2GB=0xC000000,  0xFC00000)
2934          */
2935         if (!to_private) {
2936             return 0;
2937         }
2938         return -1;
2939     }
2940 
2941     if (!memory_region_has_guest_memfd(mr)) {
2942         /*
2943          * Because vMMIO region must be shared, guest TD may convert vMMIO
2944          * region to shared explicitly.  Don't complain such case.  See
2945          * memory_region_type() for checking if the region is MMIO region.
2946          */
2947         if (!to_private &&
2948             !memory_region_is_ram(mr) &&
2949             !memory_region_is_ram_device(mr) &&
2950             !memory_region_is_rom(mr) &&
2951             !memory_region_is_romd(mr)) {
2952 		    ret = 0;
2953         } else {
2954             error_report("Convert non guest_memfd backed memory region "
2955                         "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s",
2956                         start, size, to_private ? "private" : "shared");
2957         }
2958         goto out_unref;
2959     }
2960 
2961     if (to_private) {
2962         ret = kvm_set_memory_attributes_private(start, size);
2963     } else {
2964         ret = kvm_set_memory_attributes_shared(start, size);
2965     }
2966     if (ret) {
2967         goto out_unref;
2968     }
2969 
2970     addr = memory_region_get_ram_ptr(mr) + section.offset_within_region;
2971     rb = qemu_ram_block_from_host(addr, false, &offset);
2972 
2973     if (to_private) {
2974         if (rb->page_size != qemu_real_host_page_size()) {
2975             /*
2976              * shared memory is backed by hugetlb, which is supposed to be
2977              * pre-allocated and doesn't need to be discarded
2978              */
2979             goto out_unref;
2980         }
2981         ret = ram_block_discard_range(rb, offset, size);
2982     } else {
2983         ret = ram_block_discard_guest_memfd_range(rb, offset, size);
2984     }
2985 
2986 out_unref:
2987     memory_region_unref(mr);
2988     return ret;
2989 }
2990 
2991 int kvm_cpu_exec(CPUState *cpu)
2992 {
2993     struct kvm_run *run = cpu->kvm_run;
2994     int ret, run_ret;
2995 
2996     trace_kvm_cpu_exec();
2997 
2998     if (kvm_arch_process_async_events(cpu)) {
2999         qatomic_set(&cpu->exit_request, 0);
3000         return EXCP_HLT;
3001     }
3002 
3003     bql_unlock();
3004     cpu_exec_start(cpu);
3005 
3006     do {
3007         MemTxAttrs attrs;
3008 
3009         if (cpu->vcpu_dirty) {
3010             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
3011             if (ret) {
3012                 error_report("Failed to put registers after init: %s",
3013                              strerror(-ret));
3014                 ret = -1;
3015                 break;
3016             }
3017 
3018             cpu->vcpu_dirty = false;
3019         }
3020 
3021         kvm_arch_pre_run(cpu, run);
3022         if (qatomic_read(&cpu->exit_request)) {
3023 	    trace_kvm_interrupt_exit_request();
3024             /*
3025              * KVM requires us to reenter the kernel after IO exits to complete
3026              * instruction emulation. This self-signal will ensure that we
3027              * leave ASAP again.
3028              */
3029             kvm_cpu_kick_self();
3030         }
3031 
3032         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
3033          * Matching barrier in kvm_eat_signals.
3034          */
3035         smp_rmb();
3036 
3037         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
3038 
3039         attrs = kvm_arch_post_run(cpu, run);
3040 
3041 #ifdef KVM_HAVE_MCE_INJECTION
3042         if (unlikely(have_sigbus_pending)) {
3043             bql_lock();
3044             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
3045                                     pending_sigbus_addr);
3046             have_sigbus_pending = false;
3047             bql_unlock();
3048         }
3049 #endif
3050 
3051         if (run_ret < 0) {
3052             if (run_ret == -EINTR || run_ret == -EAGAIN) {
3053                 trace_kvm_io_window_exit();
3054                 kvm_eat_signals(cpu);
3055                 ret = EXCP_INTERRUPT;
3056                 break;
3057             }
3058             if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) {
3059                 fprintf(stderr, "error: kvm run failed %s\n",
3060                         strerror(-run_ret));
3061 #ifdef TARGET_PPC
3062                 if (run_ret == -EBUSY) {
3063                     fprintf(stderr,
3064                             "This is probably because your SMT is enabled.\n"
3065                             "VCPU can only run on primary threads with all "
3066                             "secondary threads offline.\n");
3067                 }
3068 #endif
3069                 ret = -1;
3070                 break;
3071             }
3072         }
3073 
3074         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3075         switch (run->exit_reason) {
3076         case KVM_EXIT_IO:
3077             /* Called outside BQL */
3078             kvm_handle_io(run->io.port, attrs,
3079                           (uint8_t *)run + run->io.data_offset,
3080                           run->io.direction,
3081                           run->io.size,
3082                           run->io.count);
3083             ret = 0;
3084             break;
3085         case KVM_EXIT_MMIO:
3086             /* Called outside BQL */
3087             address_space_rw(&address_space_memory,
3088                              run->mmio.phys_addr, attrs,
3089                              run->mmio.data,
3090                              run->mmio.len,
3091                              run->mmio.is_write);
3092             ret = 0;
3093             break;
3094         case KVM_EXIT_IRQ_WINDOW_OPEN:
3095             ret = EXCP_INTERRUPT;
3096             break;
3097         case KVM_EXIT_SHUTDOWN:
3098             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3099             ret = EXCP_INTERRUPT;
3100             break;
3101         case KVM_EXIT_UNKNOWN:
3102             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3103                     (uint64_t)run->hw.hardware_exit_reason);
3104             ret = -1;
3105             break;
3106         case KVM_EXIT_INTERNAL_ERROR:
3107             ret = kvm_handle_internal_error(cpu, run);
3108             break;
3109         case KVM_EXIT_DIRTY_RING_FULL:
3110             /*
3111              * We shouldn't continue if the dirty ring of this vcpu is
3112              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
3113              */
3114             trace_kvm_dirty_ring_full(cpu->cpu_index);
3115             bql_lock();
3116             /*
3117              * We throttle vCPU by making it sleep once it exit from kernel
3118              * due to dirty ring full. In the dirtylimit scenario, reaping
3119              * all vCPUs after a single vCPU dirty ring get full result in
3120              * the miss of sleep, so just reap the ring-fulled vCPU.
3121              */
3122             if (dirtylimit_in_service()) {
3123                 kvm_dirty_ring_reap(kvm_state, cpu);
3124             } else {
3125                 kvm_dirty_ring_reap(kvm_state, NULL);
3126             }
3127             bql_unlock();
3128             dirtylimit_vcpu_execute(cpu);
3129             ret = 0;
3130             break;
3131         case KVM_EXIT_SYSTEM_EVENT:
3132             trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
3133             switch (run->system_event.type) {
3134             case KVM_SYSTEM_EVENT_SHUTDOWN:
3135                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3136                 ret = EXCP_INTERRUPT;
3137                 break;
3138             case KVM_SYSTEM_EVENT_RESET:
3139                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3140                 ret = EXCP_INTERRUPT;
3141                 break;
3142             case KVM_SYSTEM_EVENT_CRASH:
3143                 kvm_cpu_synchronize_state(cpu);
3144                 bql_lock();
3145                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3146                 bql_unlock();
3147                 ret = 0;
3148                 break;
3149             default:
3150                 ret = kvm_arch_handle_exit(cpu, run);
3151                 break;
3152             }
3153             break;
3154         case KVM_EXIT_MEMORY_FAULT:
3155             trace_kvm_memory_fault(run->memory_fault.gpa,
3156                                    run->memory_fault.size,
3157                                    run->memory_fault.flags);
3158             if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) {
3159                 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64,
3160                              (uint64_t)run->memory_fault.flags);
3161                 ret = -1;
3162                 break;
3163             }
3164             ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size,
3165                                      run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE);
3166             break;
3167         default:
3168             ret = kvm_arch_handle_exit(cpu, run);
3169             break;
3170         }
3171     } while (ret == 0);
3172 
3173     cpu_exec_end(cpu);
3174     bql_lock();
3175 
3176     if (ret < 0) {
3177         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3178         vm_stop(RUN_STATE_INTERNAL_ERROR);
3179     }
3180 
3181     qatomic_set(&cpu->exit_request, 0);
3182     return ret;
3183 }
3184 
3185 int kvm_ioctl(KVMState *s, int type, ...)
3186 {
3187     int ret;
3188     void *arg;
3189     va_list ap;
3190 
3191     va_start(ap, type);
3192     arg = va_arg(ap, void *);
3193     va_end(ap);
3194 
3195     trace_kvm_ioctl(type, arg);
3196     ret = ioctl(s->fd, type, arg);
3197     if (ret == -1) {
3198         ret = -errno;
3199     }
3200     return ret;
3201 }
3202 
3203 int kvm_vm_ioctl(KVMState *s, int type, ...)
3204 {
3205     int ret;
3206     void *arg;
3207     va_list ap;
3208 
3209     va_start(ap, type);
3210     arg = va_arg(ap, void *);
3211     va_end(ap);
3212 
3213     trace_kvm_vm_ioctl(type, arg);
3214     accel_ioctl_begin();
3215     ret = ioctl(s->vmfd, type, arg);
3216     accel_ioctl_end();
3217     if (ret == -1) {
3218         ret = -errno;
3219     }
3220     return ret;
3221 }
3222 
3223 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3224 {
3225     int ret;
3226     void *arg;
3227     va_list ap;
3228 
3229     va_start(ap, type);
3230     arg = va_arg(ap, void *);
3231     va_end(ap);
3232 
3233     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3234     accel_cpu_ioctl_begin(cpu);
3235     ret = ioctl(cpu->kvm_fd, type, arg);
3236     accel_cpu_ioctl_end(cpu);
3237     if (ret == -1) {
3238         ret = -errno;
3239     }
3240     return ret;
3241 }
3242 
3243 int kvm_device_ioctl(int fd, int type, ...)
3244 {
3245     int ret;
3246     void *arg;
3247     va_list ap;
3248 
3249     va_start(ap, type);
3250     arg = va_arg(ap, void *);
3251     va_end(ap);
3252 
3253     trace_kvm_device_ioctl(fd, type, arg);
3254     accel_ioctl_begin();
3255     ret = ioctl(fd, type, arg);
3256     accel_ioctl_end();
3257     if (ret == -1) {
3258         ret = -errno;
3259     }
3260     return ret;
3261 }
3262 
3263 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3264 {
3265     int ret;
3266     struct kvm_device_attr attribute = {
3267         .group = group,
3268         .attr = attr,
3269     };
3270 
3271     if (!kvm_vm_attributes_allowed) {
3272         return 0;
3273     }
3274 
3275     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3276     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3277     return ret ? 0 : 1;
3278 }
3279 
3280 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3281 {
3282     struct kvm_device_attr attribute = {
3283         .group = group,
3284         .attr = attr,
3285         .flags = 0,
3286     };
3287 
3288     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3289 }
3290 
3291 int kvm_device_access(int fd, int group, uint64_t attr,
3292                       void *val, bool write, Error **errp)
3293 {
3294     struct kvm_device_attr kvmattr;
3295     int err;
3296 
3297     kvmattr.flags = 0;
3298     kvmattr.group = group;
3299     kvmattr.attr = attr;
3300     kvmattr.addr = (uintptr_t)val;
3301 
3302     err = kvm_device_ioctl(fd,
3303                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3304                            &kvmattr);
3305     if (err < 0) {
3306         error_setg_errno(errp, -err,
3307                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3308                          "attr 0x%016" PRIx64,
3309                          write ? "SET" : "GET", group, attr);
3310     }
3311     return err;
3312 }
3313 
3314 bool kvm_has_sync_mmu(void)
3315 {
3316     return kvm_state->sync_mmu;
3317 }
3318 
3319 int kvm_has_vcpu_events(void)
3320 {
3321     return kvm_state->vcpu_events;
3322 }
3323 
3324 int kvm_max_nested_state_length(void)
3325 {
3326     return kvm_state->max_nested_state_len;
3327 }
3328 
3329 int kvm_has_gsi_routing(void)
3330 {
3331 #ifdef KVM_CAP_IRQ_ROUTING
3332     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3333 #else
3334     return false;
3335 #endif
3336 }
3337 
3338 bool kvm_arm_supports_user_irq(void)
3339 {
3340     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3341 }
3342 
3343 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
3344 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3345 {
3346     struct kvm_sw_breakpoint *bp;
3347 
3348     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3349         if (bp->pc == pc) {
3350             return bp;
3351         }
3352     }
3353     return NULL;
3354 }
3355 
3356 int kvm_sw_breakpoints_active(CPUState *cpu)
3357 {
3358     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3359 }
3360 
3361 struct kvm_set_guest_debug_data {
3362     struct kvm_guest_debug dbg;
3363     int err;
3364 };
3365 
3366 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3367 {
3368     struct kvm_set_guest_debug_data *dbg_data =
3369         (struct kvm_set_guest_debug_data *) data.host_ptr;
3370 
3371     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3372                                    &dbg_data->dbg);
3373 }
3374 
3375 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3376 {
3377     struct kvm_set_guest_debug_data data;
3378 
3379     data.dbg.control = reinject_trap;
3380 
3381     if (cpu->singlestep_enabled) {
3382         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3383 
3384         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3385             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3386         }
3387     }
3388     kvm_arch_update_guest_debug(cpu, &data.dbg);
3389 
3390     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3391                RUN_ON_CPU_HOST_PTR(&data));
3392     return data.err;
3393 }
3394 
3395 bool kvm_supports_guest_debug(void)
3396 {
3397     /* probed during kvm_init() */
3398     return kvm_has_guest_debug;
3399 }
3400 
3401 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3402 {
3403     struct kvm_sw_breakpoint *bp;
3404     int err;
3405 
3406     if (type == GDB_BREAKPOINT_SW) {
3407         bp = kvm_find_sw_breakpoint(cpu, addr);
3408         if (bp) {
3409             bp->use_count++;
3410             return 0;
3411         }
3412 
3413         bp = g_new(struct kvm_sw_breakpoint, 1);
3414         bp->pc = addr;
3415         bp->use_count = 1;
3416         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3417         if (err) {
3418             g_free(bp);
3419             return err;
3420         }
3421 
3422         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3423     } else {
3424         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3425         if (err) {
3426             return err;
3427         }
3428     }
3429 
3430     CPU_FOREACH(cpu) {
3431         err = kvm_update_guest_debug(cpu, 0);
3432         if (err) {
3433             return err;
3434         }
3435     }
3436     return 0;
3437 }
3438 
3439 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3440 {
3441     struct kvm_sw_breakpoint *bp;
3442     int err;
3443 
3444     if (type == GDB_BREAKPOINT_SW) {
3445         bp = kvm_find_sw_breakpoint(cpu, addr);
3446         if (!bp) {
3447             return -ENOENT;
3448         }
3449 
3450         if (bp->use_count > 1) {
3451             bp->use_count--;
3452             return 0;
3453         }
3454 
3455         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3456         if (err) {
3457             return err;
3458         }
3459 
3460         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3461         g_free(bp);
3462     } else {
3463         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3464         if (err) {
3465             return err;
3466         }
3467     }
3468 
3469     CPU_FOREACH(cpu) {
3470         err = kvm_update_guest_debug(cpu, 0);
3471         if (err) {
3472             return err;
3473         }
3474     }
3475     return 0;
3476 }
3477 
3478 void kvm_remove_all_breakpoints(CPUState *cpu)
3479 {
3480     struct kvm_sw_breakpoint *bp, *next;
3481     KVMState *s = cpu->kvm_state;
3482     CPUState *tmpcpu;
3483 
3484     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3485         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3486             /* Try harder to find a CPU that currently sees the breakpoint. */
3487             CPU_FOREACH(tmpcpu) {
3488                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3489                     break;
3490                 }
3491             }
3492         }
3493         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3494         g_free(bp);
3495     }
3496     kvm_arch_remove_all_hw_breakpoints();
3497 
3498     CPU_FOREACH(cpu) {
3499         kvm_update_guest_debug(cpu, 0);
3500     }
3501 }
3502 
3503 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */
3504 
3505 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3506 {
3507     KVMState *s = kvm_state;
3508     struct kvm_signal_mask *sigmask;
3509     int r;
3510 
3511     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3512 
3513     sigmask->len = s->sigmask_len;
3514     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3515     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3516     g_free(sigmask);
3517 
3518     return r;
3519 }
3520 
3521 static void kvm_ipi_signal(int sig)
3522 {
3523     if (current_cpu) {
3524         assert(kvm_immediate_exit);
3525         kvm_cpu_kick(current_cpu);
3526     }
3527 }
3528 
3529 void kvm_init_cpu_signals(CPUState *cpu)
3530 {
3531     int r;
3532     sigset_t set;
3533     struct sigaction sigact;
3534 
3535     memset(&sigact, 0, sizeof(sigact));
3536     sigact.sa_handler = kvm_ipi_signal;
3537     sigaction(SIG_IPI, &sigact, NULL);
3538 
3539     pthread_sigmask(SIG_BLOCK, NULL, &set);
3540 #if defined KVM_HAVE_MCE_INJECTION
3541     sigdelset(&set, SIGBUS);
3542     pthread_sigmask(SIG_SETMASK, &set, NULL);
3543 #endif
3544     sigdelset(&set, SIG_IPI);
3545     if (kvm_immediate_exit) {
3546         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3547     } else {
3548         r = kvm_set_signal_mask(cpu, &set);
3549     }
3550     if (r) {
3551         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3552         exit(1);
3553     }
3554 }
3555 
3556 /* Called asynchronously in VCPU thread.  */
3557 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3558 {
3559 #ifdef KVM_HAVE_MCE_INJECTION
3560     if (have_sigbus_pending) {
3561         return 1;
3562     }
3563     have_sigbus_pending = true;
3564     pending_sigbus_addr = addr;
3565     pending_sigbus_code = code;
3566     qatomic_set(&cpu->exit_request, 1);
3567     return 0;
3568 #else
3569     return 1;
3570 #endif
3571 }
3572 
3573 /* Called synchronously (via signalfd) in main thread.  */
3574 int kvm_on_sigbus(int code, void *addr)
3575 {
3576 #ifdef KVM_HAVE_MCE_INJECTION
3577     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3578      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3579      * we can only get action optional here.
3580      */
3581     assert(code != BUS_MCEERR_AR);
3582     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3583     return 0;
3584 #else
3585     return 1;
3586 #endif
3587 }
3588 
3589 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3590 {
3591     int ret;
3592     struct kvm_create_device create_dev;
3593 
3594     create_dev.type = type;
3595     create_dev.fd = -1;
3596     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3597 
3598     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3599         return -ENOTSUP;
3600     }
3601 
3602     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3603     if (ret) {
3604         return ret;
3605     }
3606 
3607     return test ? 0 : create_dev.fd;
3608 }
3609 
3610 bool kvm_device_supported(int vmfd, uint64_t type)
3611 {
3612     struct kvm_create_device create_dev = {
3613         .type = type,
3614         .fd = -1,
3615         .flags = KVM_CREATE_DEVICE_TEST,
3616     };
3617 
3618     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3619         return false;
3620     }
3621 
3622     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3623 }
3624 
3625 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3626 {
3627     struct kvm_one_reg reg;
3628     int r;
3629 
3630     reg.id = id;
3631     reg.addr = (uintptr_t) source;
3632     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3633     if (r) {
3634         trace_kvm_failed_reg_set(id, strerror(-r));
3635     }
3636     return r;
3637 }
3638 
3639 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3640 {
3641     struct kvm_one_reg reg;
3642     int r;
3643 
3644     reg.id = id;
3645     reg.addr = (uintptr_t) target;
3646     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3647     if (r) {
3648         trace_kvm_failed_reg_get(id, strerror(-r));
3649     }
3650     return r;
3651 }
3652 
3653 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3654                                  hwaddr start_addr, hwaddr size)
3655 {
3656     KVMState *kvm = KVM_STATE(ms->accelerator);
3657     int i;
3658 
3659     for (i = 0; i < kvm->nr_as; ++i) {
3660         if (kvm->as[i].as == as && kvm->as[i].ml) {
3661             size = MIN(kvm_max_slot_size, size);
3662             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3663                                                     start_addr, size);
3664         }
3665     }
3666 
3667     return false;
3668 }
3669 
3670 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3671                                    const char *name, void *opaque,
3672                                    Error **errp)
3673 {
3674     KVMState *s = KVM_STATE(obj);
3675     int64_t value = s->kvm_shadow_mem;
3676 
3677     visit_type_int(v, name, &value, errp);
3678 }
3679 
3680 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3681                                    const char *name, void *opaque,
3682                                    Error **errp)
3683 {
3684     KVMState *s = KVM_STATE(obj);
3685     int64_t value;
3686 
3687     if (s->fd != -1) {
3688         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3689         return;
3690     }
3691 
3692     if (!visit_type_int(v, name, &value, errp)) {
3693         return;
3694     }
3695 
3696     s->kvm_shadow_mem = value;
3697 }
3698 
3699 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3700                                    const char *name, void *opaque,
3701                                    Error **errp)
3702 {
3703     KVMState *s = KVM_STATE(obj);
3704     OnOffSplit mode;
3705 
3706     if (s->fd != -1) {
3707         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3708         return;
3709     }
3710 
3711     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3712         return;
3713     }
3714     switch (mode) {
3715     case ON_OFF_SPLIT_ON:
3716         s->kernel_irqchip_allowed = true;
3717         s->kernel_irqchip_required = true;
3718         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3719         break;
3720     case ON_OFF_SPLIT_OFF:
3721         s->kernel_irqchip_allowed = false;
3722         s->kernel_irqchip_required = false;
3723         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3724         break;
3725     case ON_OFF_SPLIT_SPLIT:
3726         s->kernel_irqchip_allowed = true;
3727         s->kernel_irqchip_required = true;
3728         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3729         break;
3730     default:
3731         /* The value was checked in visit_type_OnOffSplit() above. If
3732          * we get here, then something is wrong in QEMU.
3733          */
3734         abort();
3735     }
3736 }
3737 
3738 bool kvm_kernel_irqchip_allowed(void)
3739 {
3740     return kvm_state->kernel_irqchip_allowed;
3741 }
3742 
3743 bool kvm_kernel_irqchip_required(void)
3744 {
3745     return kvm_state->kernel_irqchip_required;
3746 }
3747 
3748 bool kvm_kernel_irqchip_split(void)
3749 {
3750     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3751 }
3752 
3753 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3754                                     const char *name, void *opaque,
3755                                     Error **errp)
3756 {
3757     KVMState *s = KVM_STATE(obj);
3758     uint32_t value = s->kvm_dirty_ring_size;
3759 
3760     visit_type_uint32(v, name, &value, errp);
3761 }
3762 
3763 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3764                                     const char *name, void *opaque,
3765                                     Error **errp)
3766 {
3767     KVMState *s = KVM_STATE(obj);
3768     uint32_t value;
3769 
3770     if (s->fd != -1) {
3771         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3772         return;
3773     }
3774 
3775     if (!visit_type_uint32(v, name, &value, errp)) {
3776         return;
3777     }
3778     if (value & (value - 1)) {
3779         error_setg(errp, "dirty-ring-size must be a power of two.");
3780         return;
3781     }
3782 
3783     s->kvm_dirty_ring_size = value;
3784 }
3785 
3786 static char *kvm_get_device(Object *obj,
3787                             Error **errp G_GNUC_UNUSED)
3788 {
3789     KVMState *s = KVM_STATE(obj);
3790 
3791     return g_strdup(s->device);
3792 }
3793 
3794 static void kvm_set_device(Object *obj,
3795                            const char *value,
3796                            Error **errp G_GNUC_UNUSED)
3797 {
3798     KVMState *s = KVM_STATE(obj);
3799 
3800     g_free(s->device);
3801     s->device = g_strdup(value);
3802 }
3803 
3804 static void kvm_accel_instance_init(Object *obj)
3805 {
3806     KVMState *s = KVM_STATE(obj);
3807 
3808     s->fd = -1;
3809     s->vmfd = -1;
3810     s->kvm_shadow_mem = -1;
3811     s->kernel_irqchip_allowed = true;
3812     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3813     /* KVM dirty ring is by default off */
3814     s->kvm_dirty_ring_size = 0;
3815     s->kvm_dirty_ring_with_bitmap = false;
3816     s->kvm_eager_split_size = 0;
3817     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3818     s->notify_window = 0;
3819     s->xen_version = 0;
3820     s->xen_gnttab_max_frames = 64;
3821     s->xen_evtchn_max_pirq = 256;
3822     s->device = NULL;
3823 }
3824 
3825 /**
3826  * kvm_gdbstub_sstep_flags():
3827  *
3828  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3829  * support is probed during kvm_init()
3830  */
3831 static int kvm_gdbstub_sstep_flags(void)
3832 {
3833     return kvm_sstep_flags;
3834 }
3835 
3836 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3837 {
3838     AccelClass *ac = ACCEL_CLASS(oc);
3839     ac->name = "KVM";
3840     ac->init_machine = kvm_init;
3841     ac->has_memory = kvm_accel_has_memory;
3842     ac->allowed = &kvm_allowed;
3843     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3844 
3845     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3846         NULL, kvm_set_kernel_irqchip,
3847         NULL, NULL);
3848     object_class_property_set_description(oc, "kernel-irqchip",
3849         "Configure KVM in-kernel irqchip");
3850 
3851     object_class_property_add(oc, "kvm-shadow-mem", "int",
3852         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3853         NULL, NULL);
3854     object_class_property_set_description(oc, "kvm-shadow-mem",
3855         "KVM shadow MMU size");
3856 
3857     object_class_property_add(oc, "dirty-ring-size", "uint32",
3858         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3859         NULL, NULL);
3860     object_class_property_set_description(oc, "dirty-ring-size",
3861         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3862 
3863     object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3864     object_class_property_set_description(oc, "device",
3865         "Path to the device node to use (default: /dev/kvm)");
3866 
3867     kvm_arch_accel_class_init(oc);
3868 }
3869 
3870 static const TypeInfo kvm_accel_type = {
3871     .name = TYPE_KVM_ACCEL,
3872     .parent = TYPE_ACCEL,
3873     .instance_init = kvm_accel_instance_init,
3874     .class_init = kvm_accel_class_init,
3875     .instance_size = sizeof(KVMState),
3876 };
3877 
3878 static void kvm_type_init(void)
3879 {
3880     type_register_static(&kvm_accel_type);
3881 }
3882 
3883 type_init(kvm_type_init);
3884 
3885 typedef struct StatsArgs {
3886     union StatsResultsType {
3887         StatsResultList **stats;
3888         StatsSchemaList **schema;
3889     } result;
3890     strList *names;
3891     Error **errp;
3892 } StatsArgs;
3893 
3894 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3895                                     uint64_t *stats_data,
3896                                     StatsList *stats_list,
3897                                     Error **errp)
3898 {
3899 
3900     Stats *stats;
3901     uint64List *val_list = NULL;
3902 
3903     /* Only add stats that we understand.  */
3904     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3905     case KVM_STATS_TYPE_CUMULATIVE:
3906     case KVM_STATS_TYPE_INSTANT:
3907     case KVM_STATS_TYPE_PEAK:
3908     case KVM_STATS_TYPE_LINEAR_HIST:
3909     case KVM_STATS_TYPE_LOG_HIST:
3910         break;
3911     default:
3912         return stats_list;
3913     }
3914 
3915     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3916     case KVM_STATS_UNIT_NONE:
3917     case KVM_STATS_UNIT_BYTES:
3918     case KVM_STATS_UNIT_CYCLES:
3919     case KVM_STATS_UNIT_SECONDS:
3920     case KVM_STATS_UNIT_BOOLEAN:
3921         break;
3922     default:
3923         return stats_list;
3924     }
3925 
3926     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3927     case KVM_STATS_BASE_POW10:
3928     case KVM_STATS_BASE_POW2:
3929         break;
3930     default:
3931         return stats_list;
3932     }
3933 
3934     /* Alloc and populate data list */
3935     stats = g_new0(Stats, 1);
3936     stats->name = g_strdup(pdesc->name);
3937     stats->value = g_new0(StatsValue, 1);;
3938 
3939     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3940         stats->value->u.boolean = *stats_data;
3941         stats->value->type = QTYPE_QBOOL;
3942     } else if (pdesc->size == 1) {
3943         stats->value->u.scalar = *stats_data;
3944         stats->value->type = QTYPE_QNUM;
3945     } else {
3946         int i;
3947         for (i = 0; i < pdesc->size; i++) {
3948             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3949         }
3950         stats->value->u.list = val_list;
3951         stats->value->type = QTYPE_QLIST;
3952     }
3953 
3954     QAPI_LIST_PREPEND(stats_list, stats);
3955     return stats_list;
3956 }
3957 
3958 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3959                                                  StatsSchemaValueList *list,
3960                                                  Error **errp)
3961 {
3962     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3963     schema_entry->value = g_new0(StatsSchemaValue, 1);
3964 
3965     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3966     case KVM_STATS_TYPE_CUMULATIVE:
3967         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3968         break;
3969     case KVM_STATS_TYPE_INSTANT:
3970         schema_entry->value->type = STATS_TYPE_INSTANT;
3971         break;
3972     case KVM_STATS_TYPE_PEAK:
3973         schema_entry->value->type = STATS_TYPE_PEAK;
3974         break;
3975     case KVM_STATS_TYPE_LINEAR_HIST:
3976         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3977         schema_entry->value->bucket_size = pdesc->bucket_size;
3978         schema_entry->value->has_bucket_size = true;
3979         break;
3980     case KVM_STATS_TYPE_LOG_HIST:
3981         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3982         break;
3983     default:
3984         goto exit;
3985     }
3986 
3987     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3988     case KVM_STATS_UNIT_NONE:
3989         break;
3990     case KVM_STATS_UNIT_BOOLEAN:
3991         schema_entry->value->has_unit = true;
3992         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3993         break;
3994     case KVM_STATS_UNIT_BYTES:
3995         schema_entry->value->has_unit = true;
3996         schema_entry->value->unit = STATS_UNIT_BYTES;
3997         break;
3998     case KVM_STATS_UNIT_CYCLES:
3999         schema_entry->value->has_unit = true;
4000         schema_entry->value->unit = STATS_UNIT_CYCLES;
4001         break;
4002     case KVM_STATS_UNIT_SECONDS:
4003         schema_entry->value->has_unit = true;
4004         schema_entry->value->unit = STATS_UNIT_SECONDS;
4005         break;
4006     default:
4007         goto exit;
4008     }
4009 
4010     schema_entry->value->exponent = pdesc->exponent;
4011     if (pdesc->exponent) {
4012         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
4013         case KVM_STATS_BASE_POW10:
4014             schema_entry->value->has_base = true;
4015             schema_entry->value->base = 10;
4016             break;
4017         case KVM_STATS_BASE_POW2:
4018             schema_entry->value->has_base = true;
4019             schema_entry->value->base = 2;
4020             break;
4021         default:
4022             goto exit;
4023         }
4024     }
4025 
4026     schema_entry->value->name = g_strdup(pdesc->name);
4027     schema_entry->next = list;
4028     return schema_entry;
4029 exit:
4030     g_free(schema_entry->value);
4031     g_free(schema_entry);
4032     return list;
4033 }
4034 
4035 /* Cached stats descriptors */
4036 typedef struct StatsDescriptors {
4037     const char *ident; /* cache key, currently the StatsTarget */
4038     struct kvm_stats_desc *kvm_stats_desc;
4039     struct kvm_stats_header kvm_stats_header;
4040     QTAILQ_ENTRY(StatsDescriptors) next;
4041 } StatsDescriptors;
4042 
4043 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
4044     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
4045 
4046 /*
4047  * Return the descriptors for 'target', that either have already been read
4048  * or are retrieved from 'stats_fd'.
4049  */
4050 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
4051                                                 Error **errp)
4052 {
4053     StatsDescriptors *descriptors;
4054     const char *ident;
4055     struct kvm_stats_desc *kvm_stats_desc;
4056     struct kvm_stats_header *kvm_stats_header;
4057     size_t size_desc;
4058     ssize_t ret;
4059 
4060     ident = StatsTarget_str(target);
4061     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4062         if (g_str_equal(descriptors->ident, ident)) {
4063             return descriptors;
4064         }
4065     }
4066 
4067     descriptors = g_new0(StatsDescriptors, 1);
4068 
4069     /* Read stats header */
4070     kvm_stats_header = &descriptors->kvm_stats_header;
4071     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4072     if (ret != sizeof(*kvm_stats_header)) {
4073         error_setg(errp, "KVM stats: failed to read stats header: "
4074                    "expected %zu actual %zu",
4075                    sizeof(*kvm_stats_header), ret);
4076         g_free(descriptors);
4077         return NULL;
4078     }
4079     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4080 
4081     /* Read stats descriptors */
4082     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4083     ret = pread(stats_fd, kvm_stats_desc,
4084                 size_desc * kvm_stats_header->num_desc,
4085                 kvm_stats_header->desc_offset);
4086 
4087     if (ret != size_desc * kvm_stats_header->num_desc) {
4088         error_setg(errp, "KVM stats: failed to read stats descriptors: "
4089                    "expected %zu actual %zu",
4090                    size_desc * kvm_stats_header->num_desc, ret);
4091         g_free(descriptors);
4092         g_free(kvm_stats_desc);
4093         return NULL;
4094     }
4095     descriptors->kvm_stats_desc = kvm_stats_desc;
4096     descriptors->ident = ident;
4097     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4098     return descriptors;
4099 }
4100 
4101 static void query_stats(StatsResultList **result, StatsTarget target,
4102                         strList *names, int stats_fd, CPUState *cpu,
4103                         Error **errp)
4104 {
4105     struct kvm_stats_desc *kvm_stats_desc;
4106     struct kvm_stats_header *kvm_stats_header;
4107     StatsDescriptors *descriptors;
4108     g_autofree uint64_t *stats_data = NULL;
4109     struct kvm_stats_desc *pdesc;
4110     StatsList *stats_list = NULL;
4111     size_t size_desc, size_data = 0;
4112     ssize_t ret;
4113     int i;
4114 
4115     descriptors = find_stats_descriptors(target, stats_fd, errp);
4116     if (!descriptors) {
4117         return;
4118     }
4119 
4120     kvm_stats_header = &descriptors->kvm_stats_header;
4121     kvm_stats_desc = descriptors->kvm_stats_desc;
4122     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4123 
4124     /* Tally the total data size; read schema data */
4125     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4126         pdesc = (void *)kvm_stats_desc + i * size_desc;
4127         size_data += pdesc->size * sizeof(*stats_data);
4128     }
4129 
4130     stats_data = g_malloc0(size_data);
4131     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4132 
4133     if (ret != size_data) {
4134         error_setg(errp, "KVM stats: failed to read data: "
4135                    "expected %zu actual %zu", size_data, ret);
4136         return;
4137     }
4138 
4139     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4140         uint64_t *stats;
4141         pdesc = (void *)kvm_stats_desc + i * size_desc;
4142 
4143         /* Add entry to the list */
4144         stats = (void *)stats_data + pdesc->offset;
4145         if (!apply_str_list_filter(pdesc->name, names)) {
4146             continue;
4147         }
4148         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4149     }
4150 
4151     if (!stats_list) {
4152         return;
4153     }
4154 
4155     switch (target) {
4156     case STATS_TARGET_VM:
4157         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4158         break;
4159     case STATS_TARGET_VCPU:
4160         add_stats_entry(result, STATS_PROVIDER_KVM,
4161                         cpu->parent_obj.canonical_path,
4162                         stats_list);
4163         break;
4164     default:
4165         g_assert_not_reached();
4166     }
4167 }
4168 
4169 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4170                                int stats_fd, Error **errp)
4171 {
4172     struct kvm_stats_desc *kvm_stats_desc;
4173     struct kvm_stats_header *kvm_stats_header;
4174     StatsDescriptors *descriptors;
4175     struct kvm_stats_desc *pdesc;
4176     StatsSchemaValueList *stats_list = NULL;
4177     size_t size_desc;
4178     int i;
4179 
4180     descriptors = find_stats_descriptors(target, stats_fd, errp);
4181     if (!descriptors) {
4182         return;
4183     }
4184 
4185     kvm_stats_header = &descriptors->kvm_stats_header;
4186     kvm_stats_desc = descriptors->kvm_stats_desc;
4187     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4188 
4189     /* Tally the total data size; read schema data */
4190     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4191         pdesc = (void *)kvm_stats_desc + i * size_desc;
4192         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4193     }
4194 
4195     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4196 }
4197 
4198 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4199 {
4200     int stats_fd = cpu->kvm_vcpu_stats_fd;
4201     Error *local_err = NULL;
4202 
4203     if (stats_fd == -1) {
4204         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4205         error_propagate(kvm_stats_args->errp, local_err);
4206         return;
4207     }
4208     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4209                 kvm_stats_args->names, stats_fd, cpu,
4210                 kvm_stats_args->errp);
4211 }
4212 
4213 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4214 {
4215     int stats_fd = cpu->kvm_vcpu_stats_fd;
4216     Error *local_err = NULL;
4217 
4218     if (stats_fd == -1) {
4219         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4220         error_propagate(kvm_stats_args->errp, local_err);
4221         return;
4222     }
4223     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4224                        kvm_stats_args->errp);
4225 }
4226 
4227 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4228                            strList *names, strList *targets, Error **errp)
4229 {
4230     KVMState *s = kvm_state;
4231     CPUState *cpu;
4232     int stats_fd;
4233 
4234     switch (target) {
4235     case STATS_TARGET_VM:
4236     {
4237         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4238         if (stats_fd == -1) {
4239             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4240             return;
4241         }
4242         query_stats(result, target, names, stats_fd, NULL, errp);
4243         close(stats_fd);
4244         break;
4245     }
4246     case STATS_TARGET_VCPU:
4247     {
4248         StatsArgs stats_args;
4249         stats_args.result.stats = result;
4250         stats_args.names = names;
4251         stats_args.errp = errp;
4252         CPU_FOREACH(cpu) {
4253             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4254                 continue;
4255             }
4256             query_stats_vcpu(cpu, &stats_args);
4257         }
4258         break;
4259     }
4260     default:
4261         break;
4262     }
4263 }
4264 
4265 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4266 {
4267     StatsArgs stats_args;
4268     KVMState *s = kvm_state;
4269     int stats_fd;
4270 
4271     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4272     if (stats_fd == -1) {
4273         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4274         return;
4275     }
4276     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4277     close(stats_fd);
4278 
4279     if (first_cpu) {
4280         stats_args.result.schema = result;
4281         stats_args.errp = errp;
4282         query_stats_schema_vcpu(first_cpu, &stats_args);
4283     }
4284 }
4285 
4286 void kvm_mark_guest_state_protected(void)
4287 {
4288     kvm_state->guest_state_protected = true;
4289 }
4290 
4291 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp)
4292 {
4293     int fd;
4294     struct kvm_create_guest_memfd guest_memfd = {
4295         .size = size,
4296         .flags = flags,
4297     };
4298 
4299     if (!kvm_guest_memfd_supported) {
4300         error_setg(errp, "KVM does not support guest_memfd");
4301         return -1;
4302     }
4303 
4304     fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
4305     if (fd < 0) {
4306         error_setg_errno(errp, errno, "Error creating KVM guest_memfd");
4307         return -1;
4308     }
4309 
4310     return fd;
4311 }
4312