1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu-common.h" 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/hw.h" 28 #include "hw/pci/msi.h" 29 #include "hw/pci/msix.h" 30 #include "hw/s390x/adapter.h" 31 #include "exec/gdbstub.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "sysemu/sev.h" 42 #include "sysemu/balloon.h" 43 44 #include "hw/boards.h" 45 46 /* This check must be after config-host.h is included */ 47 #ifdef CONFIG_EVENTFD 48 #include <sys/eventfd.h> 49 #endif 50 51 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 52 * need to use the real host PAGE_SIZE, as that's what KVM will use. 53 */ 54 #define PAGE_SIZE getpagesize() 55 56 //#define DEBUG_KVM 57 58 #ifdef DEBUG_KVM 59 #define DPRINTF(fmt, ...) \ 60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 61 #else 62 #define DPRINTF(fmt, ...) \ 63 do { } while (0) 64 #endif 65 66 #define KVM_MSI_HASHTAB_SIZE 256 67 68 struct KVMParkedVcpu { 69 unsigned long vcpu_id; 70 int kvm_fd; 71 QLIST_ENTRY(KVMParkedVcpu) node; 72 }; 73 74 struct KVMState 75 { 76 AccelState parent_obj; 77 78 int nr_slots; 79 int fd; 80 int vmfd; 81 int coalesced_mmio; 82 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 83 bool coalesced_flush_in_progress; 84 int vcpu_events; 85 int robust_singlestep; 86 int debugregs; 87 #ifdef KVM_CAP_SET_GUEST_DEBUG 88 struct kvm_sw_breakpoint_head kvm_sw_breakpoints; 89 #endif 90 int many_ioeventfds; 91 int intx_set_mask; 92 bool sync_mmu; 93 /* The man page (and posix) say ioctl numbers are signed int, but 94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 95 * unsigned, and treating them as signed here can break things */ 96 unsigned irq_set_ioctl; 97 unsigned int sigmask_len; 98 GHashTable *gsimap; 99 #ifdef KVM_CAP_IRQ_ROUTING 100 struct kvm_irq_routing *irq_routes; 101 int nr_allocated_irq_routes; 102 unsigned long *used_gsi_bitmap; 103 unsigned int gsi_count; 104 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 105 #endif 106 KVMMemoryListener memory_listener; 107 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 108 109 /* memory encryption */ 110 void *memcrypt_handle; 111 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 112 }; 113 114 KVMState *kvm_state; 115 bool kvm_kernel_irqchip; 116 bool kvm_split_irqchip; 117 bool kvm_async_interrupts_allowed; 118 bool kvm_halt_in_kernel_allowed; 119 bool kvm_eventfds_allowed; 120 bool kvm_irqfds_allowed; 121 bool kvm_resamplefds_allowed; 122 bool kvm_msi_via_irqfd_allowed; 123 bool kvm_gsi_routing_allowed; 124 bool kvm_gsi_direct_mapping; 125 bool kvm_allowed; 126 bool kvm_readonly_mem_allowed; 127 bool kvm_vm_attributes_allowed; 128 bool kvm_direct_msi_allowed; 129 bool kvm_ioeventfd_any_length_allowed; 130 bool kvm_msi_use_devid; 131 static bool kvm_immediate_exit; 132 133 static const KVMCapabilityInfo kvm_required_capabilites[] = { 134 KVM_CAP_INFO(USER_MEMORY), 135 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 136 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 137 KVM_CAP_LAST_INFO 138 }; 139 140 int kvm_get_max_memslots(void) 141 { 142 KVMState *s = KVM_STATE(current_machine->accelerator); 143 144 return s->nr_slots; 145 } 146 147 bool kvm_memcrypt_enabled(void) 148 { 149 if (kvm_state && kvm_state->memcrypt_handle) { 150 return true; 151 } 152 153 return false; 154 } 155 156 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 157 { 158 if (kvm_state->memcrypt_handle && 159 kvm_state->memcrypt_encrypt_data) { 160 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 161 ptr, len); 162 } 163 164 return 1; 165 } 166 167 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 168 { 169 KVMState *s = kvm_state; 170 int i; 171 172 for (i = 0; i < s->nr_slots; i++) { 173 if (kml->slots[i].memory_size == 0) { 174 return &kml->slots[i]; 175 } 176 } 177 178 return NULL; 179 } 180 181 bool kvm_has_free_slot(MachineState *ms) 182 { 183 KVMState *s = KVM_STATE(ms->accelerator); 184 185 return kvm_get_free_slot(&s->memory_listener); 186 } 187 188 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 189 { 190 KVMSlot *slot = kvm_get_free_slot(kml); 191 192 if (slot) { 193 return slot; 194 } 195 196 fprintf(stderr, "%s: no free slot available\n", __func__); 197 abort(); 198 } 199 200 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 201 hwaddr start_addr, 202 hwaddr size) 203 { 204 KVMState *s = kvm_state; 205 int i; 206 207 for (i = 0; i < s->nr_slots; i++) { 208 KVMSlot *mem = &kml->slots[i]; 209 210 if (start_addr == mem->start_addr && size == mem->memory_size) { 211 return mem; 212 } 213 } 214 215 return NULL; 216 } 217 218 /* 219 * Calculate and align the start address and the size of the section. 220 * Return the size. If the size is 0, the aligned section is empty. 221 */ 222 static hwaddr kvm_align_section(MemoryRegionSection *section, 223 hwaddr *start) 224 { 225 hwaddr size = int128_get64(section->size); 226 hwaddr delta, aligned; 227 228 /* kvm works in page size chunks, but the function may be called 229 with sub-page size and unaligned start address. Pad the start 230 address to next and truncate size to previous page boundary. */ 231 aligned = ROUND_UP(section->offset_within_address_space, 232 qemu_real_host_page_size); 233 delta = aligned - section->offset_within_address_space; 234 *start = aligned; 235 if (delta > size) { 236 return 0; 237 } 238 239 return (size - delta) & qemu_real_host_page_mask; 240 } 241 242 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 243 hwaddr *phys_addr) 244 { 245 KVMMemoryListener *kml = &s->memory_listener; 246 int i; 247 248 for (i = 0; i < s->nr_slots; i++) { 249 KVMSlot *mem = &kml->slots[i]; 250 251 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 252 *phys_addr = mem->start_addr + (ram - mem->ram); 253 return 1; 254 } 255 } 256 257 return 0; 258 } 259 260 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 261 { 262 KVMState *s = kvm_state; 263 struct kvm_userspace_memory_region mem; 264 int ret; 265 266 mem.slot = slot->slot | (kml->as_id << 16); 267 mem.guest_phys_addr = slot->start_addr; 268 mem.userspace_addr = (unsigned long)slot->ram; 269 mem.flags = slot->flags; 270 271 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 272 /* Set the slot size to 0 before setting the slot to the desired 273 * value. This is needed based on KVM commit 75d61fbc. */ 274 mem.memory_size = 0; 275 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 276 } 277 mem.memory_size = slot->memory_size; 278 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 279 slot->old_flags = mem.flags; 280 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 281 mem.memory_size, mem.userspace_addr, ret); 282 return ret; 283 } 284 285 int kvm_destroy_vcpu(CPUState *cpu) 286 { 287 KVMState *s = kvm_state; 288 long mmap_size; 289 struct KVMParkedVcpu *vcpu = NULL; 290 int ret = 0; 291 292 DPRINTF("kvm_destroy_vcpu\n"); 293 294 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 295 if (mmap_size < 0) { 296 ret = mmap_size; 297 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 298 goto err; 299 } 300 301 ret = munmap(cpu->kvm_run, mmap_size); 302 if (ret < 0) { 303 goto err; 304 } 305 306 vcpu = g_malloc0(sizeof(*vcpu)); 307 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 308 vcpu->kvm_fd = cpu->kvm_fd; 309 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 310 err: 311 return ret; 312 } 313 314 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 315 { 316 struct KVMParkedVcpu *cpu; 317 318 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 319 if (cpu->vcpu_id == vcpu_id) { 320 int kvm_fd; 321 322 QLIST_REMOVE(cpu, node); 323 kvm_fd = cpu->kvm_fd; 324 g_free(cpu); 325 return kvm_fd; 326 } 327 } 328 329 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 330 } 331 332 int kvm_init_vcpu(CPUState *cpu) 333 { 334 KVMState *s = kvm_state; 335 long mmap_size; 336 int ret; 337 338 DPRINTF("kvm_init_vcpu\n"); 339 340 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 341 if (ret < 0) { 342 DPRINTF("kvm_create_vcpu failed\n"); 343 goto err; 344 } 345 346 cpu->kvm_fd = ret; 347 cpu->kvm_state = s; 348 cpu->vcpu_dirty = true; 349 350 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 351 if (mmap_size < 0) { 352 ret = mmap_size; 353 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 354 goto err; 355 } 356 357 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 358 cpu->kvm_fd, 0); 359 if (cpu->kvm_run == MAP_FAILED) { 360 ret = -errno; 361 DPRINTF("mmap'ing vcpu state failed\n"); 362 goto err; 363 } 364 365 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 366 s->coalesced_mmio_ring = 367 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 368 } 369 370 ret = kvm_arch_init_vcpu(cpu); 371 err: 372 return ret; 373 } 374 375 /* 376 * dirty pages logging control 377 */ 378 379 static int kvm_mem_flags(MemoryRegion *mr) 380 { 381 bool readonly = mr->readonly || memory_region_is_romd(mr); 382 int flags = 0; 383 384 if (memory_region_get_dirty_log_mask(mr) != 0) { 385 flags |= KVM_MEM_LOG_DIRTY_PAGES; 386 } 387 if (readonly && kvm_readonly_mem_allowed) { 388 flags |= KVM_MEM_READONLY; 389 } 390 return flags; 391 } 392 393 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 394 MemoryRegion *mr) 395 { 396 mem->flags = kvm_mem_flags(mr); 397 398 /* If nothing changed effectively, no need to issue ioctl */ 399 if (mem->flags == mem->old_flags) { 400 return 0; 401 } 402 403 return kvm_set_user_memory_region(kml, mem, false); 404 } 405 406 static int kvm_section_update_flags(KVMMemoryListener *kml, 407 MemoryRegionSection *section) 408 { 409 hwaddr start_addr, size; 410 KVMSlot *mem; 411 412 size = kvm_align_section(section, &start_addr); 413 if (!size) { 414 return 0; 415 } 416 417 mem = kvm_lookup_matching_slot(kml, start_addr, size); 418 if (!mem) { 419 /* We don't have a slot if we want to trap every access. */ 420 return 0; 421 } 422 423 return kvm_slot_update_flags(kml, mem, section->mr); 424 } 425 426 static void kvm_log_start(MemoryListener *listener, 427 MemoryRegionSection *section, 428 int old, int new) 429 { 430 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 431 int r; 432 433 if (old != 0) { 434 return; 435 } 436 437 r = kvm_section_update_flags(kml, section); 438 if (r < 0) { 439 abort(); 440 } 441 } 442 443 static void kvm_log_stop(MemoryListener *listener, 444 MemoryRegionSection *section, 445 int old, int new) 446 { 447 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 448 int r; 449 450 if (new != 0) { 451 return; 452 } 453 454 r = kvm_section_update_flags(kml, section); 455 if (r < 0) { 456 abort(); 457 } 458 } 459 460 /* get kvm's dirty pages bitmap and update qemu's */ 461 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 462 unsigned long *bitmap) 463 { 464 ram_addr_t start = section->offset_within_region + 465 memory_region_get_ram_addr(section->mr); 466 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 467 468 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 469 return 0; 470 } 471 472 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 473 474 /** 475 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 476 * This function updates qemu's dirty bitmap using 477 * memory_region_set_dirty(). This means all bits are set 478 * to dirty. 479 * 480 * @start_add: start of logged region. 481 * @end_addr: end of logged region. 482 */ 483 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 484 MemoryRegionSection *section) 485 { 486 KVMState *s = kvm_state; 487 struct kvm_dirty_log d = {}; 488 KVMSlot *mem; 489 hwaddr start_addr, size; 490 491 size = kvm_align_section(section, &start_addr); 492 if (size) { 493 mem = kvm_lookup_matching_slot(kml, start_addr, size); 494 if (!mem) { 495 /* We don't have a slot if we want to trap every access. */ 496 return 0; 497 } 498 499 /* XXX bad kernel interface alert 500 * For dirty bitmap, kernel allocates array of size aligned to 501 * bits-per-long. But for case when the kernel is 64bits and 502 * the userspace is 32bits, userspace can't align to the same 503 * bits-per-long, since sizeof(long) is different between kernel 504 * and user space. This way, userspace will provide buffer which 505 * may be 4 bytes less than the kernel will use, resulting in 506 * userspace memory corruption (which is not detectable by valgrind 507 * too, in most cases). 508 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 509 * a hope that sizeof(long) won't become >8 any time soon. 510 */ 511 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 512 /*HOST_LONG_BITS*/ 64) / 8; 513 d.dirty_bitmap = g_malloc0(size); 514 515 d.slot = mem->slot | (kml->as_id << 16); 516 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 517 DPRINTF("ioctl failed %d\n", errno); 518 g_free(d.dirty_bitmap); 519 return -1; 520 } 521 522 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 523 g_free(d.dirty_bitmap); 524 } 525 526 return 0; 527 } 528 529 static void kvm_coalesce_mmio_region(MemoryListener *listener, 530 MemoryRegionSection *secion, 531 hwaddr start, hwaddr size) 532 { 533 KVMState *s = kvm_state; 534 535 if (s->coalesced_mmio) { 536 struct kvm_coalesced_mmio_zone zone; 537 538 zone.addr = start; 539 zone.size = size; 540 zone.pad = 0; 541 542 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 543 } 544 } 545 546 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 547 MemoryRegionSection *secion, 548 hwaddr start, hwaddr size) 549 { 550 KVMState *s = kvm_state; 551 552 if (s->coalesced_mmio) { 553 struct kvm_coalesced_mmio_zone zone; 554 555 zone.addr = start; 556 zone.size = size; 557 zone.pad = 0; 558 559 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 560 } 561 } 562 563 int kvm_check_extension(KVMState *s, unsigned int extension) 564 { 565 int ret; 566 567 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 568 if (ret < 0) { 569 ret = 0; 570 } 571 572 return ret; 573 } 574 575 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 576 { 577 int ret; 578 579 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 580 if (ret < 0) { 581 /* VM wide version not implemented, use global one instead */ 582 ret = kvm_check_extension(s, extension); 583 } 584 585 return ret; 586 } 587 588 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 589 { 590 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 591 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 592 * endianness, but the memory core hands them in target endianness. 593 * For example, PPC is always treated as big-endian even if running 594 * on KVM and on PPC64LE. Correct here. 595 */ 596 switch (size) { 597 case 2: 598 val = bswap16(val); 599 break; 600 case 4: 601 val = bswap32(val); 602 break; 603 } 604 #endif 605 return val; 606 } 607 608 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 609 bool assign, uint32_t size, bool datamatch) 610 { 611 int ret; 612 struct kvm_ioeventfd iofd = { 613 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 614 .addr = addr, 615 .len = size, 616 .flags = 0, 617 .fd = fd, 618 }; 619 620 if (!kvm_enabled()) { 621 return -ENOSYS; 622 } 623 624 if (datamatch) { 625 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 626 } 627 if (!assign) { 628 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 629 } 630 631 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 632 633 if (ret < 0) { 634 return -errno; 635 } 636 637 return 0; 638 } 639 640 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 641 bool assign, uint32_t size, bool datamatch) 642 { 643 struct kvm_ioeventfd kick = { 644 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 645 .addr = addr, 646 .flags = KVM_IOEVENTFD_FLAG_PIO, 647 .len = size, 648 .fd = fd, 649 }; 650 int r; 651 if (!kvm_enabled()) { 652 return -ENOSYS; 653 } 654 if (datamatch) { 655 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 656 } 657 if (!assign) { 658 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 659 } 660 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 661 if (r < 0) { 662 return r; 663 } 664 return 0; 665 } 666 667 668 static int kvm_check_many_ioeventfds(void) 669 { 670 /* Userspace can use ioeventfd for io notification. This requires a host 671 * that supports eventfd(2) and an I/O thread; since eventfd does not 672 * support SIGIO it cannot interrupt the vcpu. 673 * 674 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 675 * can avoid creating too many ioeventfds. 676 */ 677 #if defined(CONFIG_EVENTFD) 678 int ioeventfds[7]; 679 int i, ret = 0; 680 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 681 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 682 if (ioeventfds[i] < 0) { 683 break; 684 } 685 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 686 if (ret < 0) { 687 close(ioeventfds[i]); 688 break; 689 } 690 } 691 692 /* Decide whether many devices are supported or not */ 693 ret = i == ARRAY_SIZE(ioeventfds); 694 695 while (i-- > 0) { 696 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 697 close(ioeventfds[i]); 698 } 699 return ret; 700 #else 701 return 0; 702 #endif 703 } 704 705 static const KVMCapabilityInfo * 706 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 707 { 708 while (list->name) { 709 if (!kvm_check_extension(s, list->value)) { 710 return list; 711 } 712 list++; 713 } 714 return NULL; 715 } 716 717 static void kvm_set_phys_mem(KVMMemoryListener *kml, 718 MemoryRegionSection *section, bool add) 719 { 720 KVMSlot *mem; 721 int err; 722 MemoryRegion *mr = section->mr; 723 bool writeable = !mr->readonly && !mr->rom_device; 724 hwaddr start_addr, size; 725 void *ram; 726 727 if (!memory_region_is_ram(mr)) { 728 if (writeable || !kvm_readonly_mem_allowed) { 729 return; 730 } else if (!mr->romd_mode) { 731 /* If the memory device is not in romd_mode, then we actually want 732 * to remove the kvm memory slot so all accesses will trap. */ 733 add = false; 734 } 735 } 736 737 size = kvm_align_section(section, &start_addr); 738 if (!size) { 739 return; 740 } 741 742 /* use aligned delta to align the ram address */ 743 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 744 (start_addr - section->offset_within_address_space); 745 746 if (!add) { 747 mem = kvm_lookup_matching_slot(kml, start_addr, size); 748 if (!mem) { 749 return; 750 } 751 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 752 kvm_physical_sync_dirty_bitmap(kml, section); 753 } 754 755 /* unregister the slot */ 756 mem->memory_size = 0; 757 mem->flags = 0; 758 err = kvm_set_user_memory_region(kml, mem, false); 759 if (err) { 760 fprintf(stderr, "%s: error unregistering slot: %s\n", 761 __func__, strerror(-err)); 762 abort(); 763 } 764 return; 765 } 766 767 /* register the new slot */ 768 mem = kvm_alloc_slot(kml); 769 mem->memory_size = size; 770 mem->start_addr = start_addr; 771 mem->ram = ram; 772 mem->flags = kvm_mem_flags(mr); 773 774 err = kvm_set_user_memory_region(kml, mem, true); 775 if (err) { 776 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 777 strerror(-err)); 778 abort(); 779 } 780 } 781 782 static void kvm_region_add(MemoryListener *listener, 783 MemoryRegionSection *section) 784 { 785 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 786 787 memory_region_ref(section->mr); 788 kvm_set_phys_mem(kml, section, true); 789 } 790 791 static void kvm_region_del(MemoryListener *listener, 792 MemoryRegionSection *section) 793 { 794 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 795 796 kvm_set_phys_mem(kml, section, false); 797 memory_region_unref(section->mr); 798 } 799 800 static void kvm_log_sync(MemoryListener *listener, 801 MemoryRegionSection *section) 802 { 803 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 804 int r; 805 806 r = kvm_physical_sync_dirty_bitmap(kml, section); 807 if (r < 0) { 808 abort(); 809 } 810 } 811 812 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 813 MemoryRegionSection *section, 814 bool match_data, uint64_t data, 815 EventNotifier *e) 816 { 817 int fd = event_notifier_get_fd(e); 818 int r; 819 820 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 821 data, true, int128_get64(section->size), 822 match_data); 823 if (r < 0) { 824 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 825 __func__, strerror(-r)); 826 abort(); 827 } 828 } 829 830 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 831 MemoryRegionSection *section, 832 bool match_data, uint64_t data, 833 EventNotifier *e) 834 { 835 int fd = event_notifier_get_fd(e); 836 int r; 837 838 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 839 data, false, int128_get64(section->size), 840 match_data); 841 if (r < 0) { 842 abort(); 843 } 844 } 845 846 static void kvm_io_ioeventfd_add(MemoryListener *listener, 847 MemoryRegionSection *section, 848 bool match_data, uint64_t data, 849 EventNotifier *e) 850 { 851 int fd = event_notifier_get_fd(e); 852 int r; 853 854 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 855 data, true, int128_get64(section->size), 856 match_data); 857 if (r < 0) { 858 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 859 __func__, strerror(-r)); 860 abort(); 861 } 862 } 863 864 static void kvm_io_ioeventfd_del(MemoryListener *listener, 865 MemoryRegionSection *section, 866 bool match_data, uint64_t data, 867 EventNotifier *e) 868 869 { 870 int fd = event_notifier_get_fd(e); 871 int r; 872 873 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 874 data, false, int128_get64(section->size), 875 match_data); 876 if (r < 0) { 877 abort(); 878 } 879 } 880 881 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 882 AddressSpace *as, int as_id) 883 { 884 int i; 885 886 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 887 kml->as_id = as_id; 888 889 for (i = 0; i < s->nr_slots; i++) { 890 kml->slots[i].slot = i; 891 } 892 893 kml->listener.region_add = kvm_region_add; 894 kml->listener.region_del = kvm_region_del; 895 kml->listener.log_start = kvm_log_start; 896 kml->listener.log_stop = kvm_log_stop; 897 kml->listener.log_sync = kvm_log_sync; 898 kml->listener.priority = 10; 899 900 memory_listener_register(&kml->listener, as); 901 } 902 903 static MemoryListener kvm_io_listener = { 904 .eventfd_add = kvm_io_ioeventfd_add, 905 .eventfd_del = kvm_io_ioeventfd_del, 906 .priority = 10, 907 }; 908 909 int kvm_set_irq(KVMState *s, int irq, int level) 910 { 911 struct kvm_irq_level event; 912 int ret; 913 914 assert(kvm_async_interrupts_enabled()); 915 916 event.level = level; 917 event.irq = irq; 918 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 919 if (ret < 0) { 920 perror("kvm_set_irq"); 921 abort(); 922 } 923 924 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 925 } 926 927 #ifdef KVM_CAP_IRQ_ROUTING 928 typedef struct KVMMSIRoute { 929 struct kvm_irq_routing_entry kroute; 930 QTAILQ_ENTRY(KVMMSIRoute) entry; 931 } KVMMSIRoute; 932 933 static void set_gsi(KVMState *s, unsigned int gsi) 934 { 935 set_bit(gsi, s->used_gsi_bitmap); 936 } 937 938 static void clear_gsi(KVMState *s, unsigned int gsi) 939 { 940 clear_bit(gsi, s->used_gsi_bitmap); 941 } 942 943 void kvm_init_irq_routing(KVMState *s) 944 { 945 int gsi_count, i; 946 947 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 948 if (gsi_count > 0) { 949 /* Round up so we can search ints using ffs */ 950 s->used_gsi_bitmap = bitmap_new(gsi_count); 951 s->gsi_count = gsi_count; 952 } 953 954 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 955 s->nr_allocated_irq_routes = 0; 956 957 if (!kvm_direct_msi_allowed) { 958 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 959 QTAILQ_INIT(&s->msi_hashtab[i]); 960 } 961 } 962 963 kvm_arch_init_irq_routing(s); 964 } 965 966 void kvm_irqchip_commit_routes(KVMState *s) 967 { 968 int ret; 969 970 if (kvm_gsi_direct_mapping()) { 971 return; 972 } 973 974 if (!kvm_gsi_routing_enabled()) { 975 return; 976 } 977 978 s->irq_routes->flags = 0; 979 trace_kvm_irqchip_commit_routes(); 980 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 981 assert(ret == 0); 982 } 983 984 static void kvm_add_routing_entry(KVMState *s, 985 struct kvm_irq_routing_entry *entry) 986 { 987 struct kvm_irq_routing_entry *new; 988 int n, size; 989 990 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 991 n = s->nr_allocated_irq_routes * 2; 992 if (n < 64) { 993 n = 64; 994 } 995 size = sizeof(struct kvm_irq_routing); 996 size += n * sizeof(*new); 997 s->irq_routes = g_realloc(s->irq_routes, size); 998 s->nr_allocated_irq_routes = n; 999 } 1000 n = s->irq_routes->nr++; 1001 new = &s->irq_routes->entries[n]; 1002 1003 *new = *entry; 1004 1005 set_gsi(s, entry->gsi); 1006 } 1007 1008 static int kvm_update_routing_entry(KVMState *s, 1009 struct kvm_irq_routing_entry *new_entry) 1010 { 1011 struct kvm_irq_routing_entry *entry; 1012 int n; 1013 1014 for (n = 0; n < s->irq_routes->nr; n++) { 1015 entry = &s->irq_routes->entries[n]; 1016 if (entry->gsi != new_entry->gsi) { 1017 continue; 1018 } 1019 1020 if(!memcmp(entry, new_entry, sizeof *entry)) { 1021 return 0; 1022 } 1023 1024 *entry = *new_entry; 1025 1026 return 0; 1027 } 1028 1029 return -ESRCH; 1030 } 1031 1032 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1033 { 1034 struct kvm_irq_routing_entry e = {}; 1035 1036 assert(pin < s->gsi_count); 1037 1038 e.gsi = irq; 1039 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1040 e.flags = 0; 1041 e.u.irqchip.irqchip = irqchip; 1042 e.u.irqchip.pin = pin; 1043 kvm_add_routing_entry(s, &e); 1044 } 1045 1046 void kvm_irqchip_release_virq(KVMState *s, int virq) 1047 { 1048 struct kvm_irq_routing_entry *e; 1049 int i; 1050 1051 if (kvm_gsi_direct_mapping()) { 1052 return; 1053 } 1054 1055 for (i = 0; i < s->irq_routes->nr; i++) { 1056 e = &s->irq_routes->entries[i]; 1057 if (e->gsi == virq) { 1058 s->irq_routes->nr--; 1059 *e = s->irq_routes->entries[s->irq_routes->nr]; 1060 } 1061 } 1062 clear_gsi(s, virq); 1063 kvm_arch_release_virq_post(virq); 1064 trace_kvm_irqchip_release_virq(virq); 1065 } 1066 1067 static unsigned int kvm_hash_msi(uint32_t data) 1068 { 1069 /* This is optimized for IA32 MSI layout. However, no other arch shall 1070 * repeat the mistake of not providing a direct MSI injection API. */ 1071 return data & 0xff; 1072 } 1073 1074 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1075 { 1076 KVMMSIRoute *route, *next; 1077 unsigned int hash; 1078 1079 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1080 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1081 kvm_irqchip_release_virq(s, route->kroute.gsi); 1082 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1083 g_free(route); 1084 } 1085 } 1086 } 1087 1088 static int kvm_irqchip_get_virq(KVMState *s) 1089 { 1090 int next_virq; 1091 1092 /* 1093 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1094 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1095 * number can succeed even though a new route entry cannot be added. 1096 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1097 */ 1098 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1099 kvm_flush_dynamic_msi_routes(s); 1100 } 1101 1102 /* Return the lowest unused GSI in the bitmap */ 1103 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1104 if (next_virq >= s->gsi_count) { 1105 return -ENOSPC; 1106 } else { 1107 return next_virq; 1108 } 1109 } 1110 1111 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1112 { 1113 unsigned int hash = kvm_hash_msi(msg.data); 1114 KVMMSIRoute *route; 1115 1116 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1117 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1118 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1119 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1120 return route; 1121 } 1122 } 1123 return NULL; 1124 } 1125 1126 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1127 { 1128 struct kvm_msi msi; 1129 KVMMSIRoute *route; 1130 1131 if (kvm_direct_msi_allowed) { 1132 msi.address_lo = (uint32_t)msg.address; 1133 msi.address_hi = msg.address >> 32; 1134 msi.data = le32_to_cpu(msg.data); 1135 msi.flags = 0; 1136 memset(msi.pad, 0, sizeof(msi.pad)); 1137 1138 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1139 } 1140 1141 route = kvm_lookup_msi_route(s, msg); 1142 if (!route) { 1143 int virq; 1144 1145 virq = kvm_irqchip_get_virq(s); 1146 if (virq < 0) { 1147 return virq; 1148 } 1149 1150 route = g_malloc0(sizeof(KVMMSIRoute)); 1151 route->kroute.gsi = virq; 1152 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1153 route->kroute.flags = 0; 1154 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1155 route->kroute.u.msi.address_hi = msg.address >> 32; 1156 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1157 1158 kvm_add_routing_entry(s, &route->kroute); 1159 kvm_irqchip_commit_routes(s); 1160 1161 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1162 entry); 1163 } 1164 1165 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1166 1167 return kvm_set_irq(s, route->kroute.gsi, 1); 1168 } 1169 1170 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1171 { 1172 struct kvm_irq_routing_entry kroute = {}; 1173 int virq; 1174 MSIMessage msg = {0, 0}; 1175 1176 if (pci_available && dev) { 1177 msg = pci_get_msi_message(dev, vector); 1178 } 1179 1180 if (kvm_gsi_direct_mapping()) { 1181 return kvm_arch_msi_data_to_gsi(msg.data); 1182 } 1183 1184 if (!kvm_gsi_routing_enabled()) { 1185 return -ENOSYS; 1186 } 1187 1188 virq = kvm_irqchip_get_virq(s); 1189 if (virq < 0) { 1190 return virq; 1191 } 1192 1193 kroute.gsi = virq; 1194 kroute.type = KVM_IRQ_ROUTING_MSI; 1195 kroute.flags = 0; 1196 kroute.u.msi.address_lo = (uint32_t)msg.address; 1197 kroute.u.msi.address_hi = msg.address >> 32; 1198 kroute.u.msi.data = le32_to_cpu(msg.data); 1199 if (pci_available && kvm_msi_devid_required()) { 1200 kroute.flags = KVM_MSI_VALID_DEVID; 1201 kroute.u.msi.devid = pci_requester_id(dev); 1202 } 1203 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1204 kvm_irqchip_release_virq(s, virq); 1205 return -EINVAL; 1206 } 1207 1208 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1209 vector, virq); 1210 1211 kvm_add_routing_entry(s, &kroute); 1212 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1213 kvm_irqchip_commit_routes(s); 1214 1215 return virq; 1216 } 1217 1218 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1219 PCIDevice *dev) 1220 { 1221 struct kvm_irq_routing_entry kroute = {}; 1222 1223 if (kvm_gsi_direct_mapping()) { 1224 return 0; 1225 } 1226 1227 if (!kvm_irqchip_in_kernel()) { 1228 return -ENOSYS; 1229 } 1230 1231 kroute.gsi = virq; 1232 kroute.type = KVM_IRQ_ROUTING_MSI; 1233 kroute.flags = 0; 1234 kroute.u.msi.address_lo = (uint32_t)msg.address; 1235 kroute.u.msi.address_hi = msg.address >> 32; 1236 kroute.u.msi.data = le32_to_cpu(msg.data); 1237 if (pci_available && kvm_msi_devid_required()) { 1238 kroute.flags = KVM_MSI_VALID_DEVID; 1239 kroute.u.msi.devid = pci_requester_id(dev); 1240 } 1241 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1242 return -EINVAL; 1243 } 1244 1245 trace_kvm_irqchip_update_msi_route(virq); 1246 1247 return kvm_update_routing_entry(s, &kroute); 1248 } 1249 1250 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1251 bool assign) 1252 { 1253 struct kvm_irqfd irqfd = { 1254 .fd = fd, 1255 .gsi = virq, 1256 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1257 }; 1258 1259 if (rfd != -1) { 1260 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1261 irqfd.resamplefd = rfd; 1262 } 1263 1264 if (!kvm_irqfds_enabled()) { 1265 return -ENOSYS; 1266 } 1267 1268 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1269 } 1270 1271 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1272 { 1273 struct kvm_irq_routing_entry kroute = {}; 1274 int virq; 1275 1276 if (!kvm_gsi_routing_enabled()) { 1277 return -ENOSYS; 1278 } 1279 1280 virq = kvm_irqchip_get_virq(s); 1281 if (virq < 0) { 1282 return virq; 1283 } 1284 1285 kroute.gsi = virq; 1286 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1287 kroute.flags = 0; 1288 kroute.u.adapter.summary_addr = adapter->summary_addr; 1289 kroute.u.adapter.ind_addr = adapter->ind_addr; 1290 kroute.u.adapter.summary_offset = adapter->summary_offset; 1291 kroute.u.adapter.ind_offset = adapter->ind_offset; 1292 kroute.u.adapter.adapter_id = adapter->adapter_id; 1293 1294 kvm_add_routing_entry(s, &kroute); 1295 1296 return virq; 1297 } 1298 1299 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1300 { 1301 struct kvm_irq_routing_entry kroute = {}; 1302 int virq; 1303 1304 if (!kvm_gsi_routing_enabled()) { 1305 return -ENOSYS; 1306 } 1307 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1308 return -ENOSYS; 1309 } 1310 virq = kvm_irqchip_get_virq(s); 1311 if (virq < 0) { 1312 return virq; 1313 } 1314 1315 kroute.gsi = virq; 1316 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1317 kroute.flags = 0; 1318 kroute.u.hv_sint.vcpu = vcpu; 1319 kroute.u.hv_sint.sint = sint; 1320 1321 kvm_add_routing_entry(s, &kroute); 1322 kvm_irqchip_commit_routes(s); 1323 1324 return virq; 1325 } 1326 1327 #else /* !KVM_CAP_IRQ_ROUTING */ 1328 1329 void kvm_init_irq_routing(KVMState *s) 1330 { 1331 } 1332 1333 void kvm_irqchip_release_virq(KVMState *s, int virq) 1334 { 1335 } 1336 1337 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1338 { 1339 abort(); 1340 } 1341 1342 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1343 { 1344 return -ENOSYS; 1345 } 1346 1347 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1348 { 1349 return -ENOSYS; 1350 } 1351 1352 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1353 { 1354 return -ENOSYS; 1355 } 1356 1357 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1358 { 1359 abort(); 1360 } 1361 1362 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1363 { 1364 return -ENOSYS; 1365 } 1366 #endif /* !KVM_CAP_IRQ_ROUTING */ 1367 1368 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1369 EventNotifier *rn, int virq) 1370 { 1371 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1372 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1373 } 1374 1375 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1376 int virq) 1377 { 1378 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1379 false); 1380 } 1381 1382 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1383 EventNotifier *rn, qemu_irq irq) 1384 { 1385 gpointer key, gsi; 1386 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1387 1388 if (!found) { 1389 return -ENXIO; 1390 } 1391 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1392 } 1393 1394 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1395 qemu_irq irq) 1396 { 1397 gpointer key, gsi; 1398 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1399 1400 if (!found) { 1401 return -ENXIO; 1402 } 1403 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1404 } 1405 1406 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1407 { 1408 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1409 } 1410 1411 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1412 { 1413 int ret; 1414 1415 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1416 ; 1417 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1418 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1419 if (ret < 0) { 1420 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1421 exit(1); 1422 } 1423 } else { 1424 return; 1425 } 1426 1427 /* First probe and see if there's a arch-specific hook to create the 1428 * in-kernel irqchip for us */ 1429 ret = kvm_arch_irqchip_create(machine, s); 1430 if (ret == 0) { 1431 if (machine_kernel_irqchip_split(machine)) { 1432 perror("Split IRQ chip mode not supported."); 1433 exit(1); 1434 } else { 1435 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1436 } 1437 } 1438 if (ret < 0) { 1439 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1440 exit(1); 1441 } 1442 1443 kvm_kernel_irqchip = true; 1444 /* If we have an in-kernel IRQ chip then we must have asynchronous 1445 * interrupt delivery (though the reverse is not necessarily true) 1446 */ 1447 kvm_async_interrupts_allowed = true; 1448 kvm_halt_in_kernel_allowed = true; 1449 1450 kvm_init_irq_routing(s); 1451 1452 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1453 } 1454 1455 /* Find number of supported CPUs using the recommended 1456 * procedure from the kernel API documentation to cope with 1457 * older kernels that may be missing capabilities. 1458 */ 1459 static int kvm_recommended_vcpus(KVMState *s) 1460 { 1461 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1462 return (ret) ? ret : 4; 1463 } 1464 1465 static int kvm_max_vcpus(KVMState *s) 1466 { 1467 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1468 return (ret) ? ret : kvm_recommended_vcpus(s); 1469 } 1470 1471 static int kvm_max_vcpu_id(KVMState *s) 1472 { 1473 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1474 return (ret) ? ret : kvm_max_vcpus(s); 1475 } 1476 1477 bool kvm_vcpu_id_is_valid(int vcpu_id) 1478 { 1479 KVMState *s = KVM_STATE(current_machine->accelerator); 1480 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1481 } 1482 1483 static int kvm_init(MachineState *ms) 1484 { 1485 MachineClass *mc = MACHINE_GET_CLASS(ms); 1486 static const char upgrade_note[] = 1487 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1488 "(see http://sourceforge.net/projects/kvm).\n"; 1489 struct { 1490 const char *name; 1491 int num; 1492 } num_cpus[] = { 1493 { "SMP", smp_cpus }, 1494 { "hotpluggable", max_cpus }, 1495 { NULL, } 1496 }, *nc = num_cpus; 1497 int soft_vcpus_limit, hard_vcpus_limit; 1498 KVMState *s; 1499 const KVMCapabilityInfo *missing_cap; 1500 int ret; 1501 int type = 0; 1502 const char *kvm_type; 1503 1504 s = KVM_STATE(ms->accelerator); 1505 1506 /* 1507 * On systems where the kernel can support different base page 1508 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1509 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1510 * page size for the system though. 1511 */ 1512 assert(TARGET_PAGE_SIZE <= getpagesize()); 1513 1514 s->sigmask_len = 8; 1515 1516 #ifdef KVM_CAP_SET_GUEST_DEBUG 1517 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1518 #endif 1519 QLIST_INIT(&s->kvm_parked_vcpus); 1520 s->vmfd = -1; 1521 s->fd = qemu_open("/dev/kvm", O_RDWR); 1522 if (s->fd == -1) { 1523 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1524 ret = -errno; 1525 goto err; 1526 } 1527 1528 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1529 if (ret < KVM_API_VERSION) { 1530 if (ret >= 0) { 1531 ret = -EINVAL; 1532 } 1533 fprintf(stderr, "kvm version too old\n"); 1534 goto err; 1535 } 1536 1537 if (ret > KVM_API_VERSION) { 1538 ret = -EINVAL; 1539 fprintf(stderr, "kvm version not supported\n"); 1540 goto err; 1541 } 1542 1543 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1544 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1545 1546 /* If unspecified, use the default value */ 1547 if (!s->nr_slots) { 1548 s->nr_slots = 32; 1549 } 1550 1551 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1552 if (mc->kvm_type) { 1553 type = mc->kvm_type(kvm_type); 1554 } else if (kvm_type) { 1555 ret = -EINVAL; 1556 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1557 goto err; 1558 } 1559 1560 do { 1561 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1562 } while (ret == -EINTR); 1563 1564 if (ret < 0) { 1565 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1566 strerror(-ret)); 1567 1568 #ifdef TARGET_S390X 1569 if (ret == -EINVAL) { 1570 fprintf(stderr, 1571 "Host kernel setup problem detected. Please verify:\n"); 1572 fprintf(stderr, "- for kernels supporting the switch_amode or" 1573 " user_mode parameters, whether\n"); 1574 fprintf(stderr, 1575 " user space is running in primary address space\n"); 1576 fprintf(stderr, 1577 "- for kernels supporting the vm.allocate_pgste sysctl, " 1578 "whether it is enabled\n"); 1579 } 1580 #endif 1581 goto err; 1582 } 1583 1584 s->vmfd = ret; 1585 1586 /* check the vcpu limits */ 1587 soft_vcpus_limit = kvm_recommended_vcpus(s); 1588 hard_vcpus_limit = kvm_max_vcpus(s); 1589 1590 while (nc->name) { 1591 if (nc->num > soft_vcpus_limit) { 1592 warn_report("Number of %s cpus requested (%d) exceeds " 1593 "the recommended cpus supported by KVM (%d)", 1594 nc->name, nc->num, soft_vcpus_limit); 1595 1596 if (nc->num > hard_vcpus_limit) { 1597 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1598 "the maximum cpus supported by KVM (%d)\n", 1599 nc->name, nc->num, hard_vcpus_limit); 1600 exit(1); 1601 } 1602 } 1603 nc++; 1604 } 1605 1606 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1607 if (!missing_cap) { 1608 missing_cap = 1609 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1610 } 1611 if (missing_cap) { 1612 ret = -EINVAL; 1613 fprintf(stderr, "kvm does not support %s\n%s", 1614 missing_cap->name, upgrade_note); 1615 goto err; 1616 } 1617 1618 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1619 1620 #ifdef KVM_CAP_VCPU_EVENTS 1621 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1622 #endif 1623 1624 s->robust_singlestep = 1625 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1626 1627 #ifdef KVM_CAP_DEBUGREGS 1628 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1629 #endif 1630 1631 #ifdef KVM_CAP_IRQ_ROUTING 1632 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1633 #endif 1634 1635 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1636 1637 s->irq_set_ioctl = KVM_IRQ_LINE; 1638 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1639 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1640 } 1641 1642 kvm_readonly_mem_allowed = 1643 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1644 1645 kvm_eventfds_allowed = 1646 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1647 1648 kvm_irqfds_allowed = 1649 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1650 1651 kvm_resamplefds_allowed = 1652 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1653 1654 kvm_vm_attributes_allowed = 1655 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1656 1657 kvm_ioeventfd_any_length_allowed = 1658 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1659 1660 kvm_state = s; 1661 1662 /* 1663 * if memory encryption object is specified then initialize the memory 1664 * encryption context. 1665 */ 1666 if (ms->memory_encryption) { 1667 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 1668 if (!kvm_state->memcrypt_handle) { 1669 ret = -1; 1670 goto err; 1671 } 1672 1673 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 1674 } 1675 1676 ret = kvm_arch_init(ms, s); 1677 if (ret < 0) { 1678 goto err; 1679 } 1680 1681 if (machine_kernel_irqchip_allowed(ms)) { 1682 kvm_irqchip_create(ms, s); 1683 } 1684 1685 if (kvm_eventfds_allowed) { 1686 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1687 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1688 } 1689 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; 1690 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; 1691 1692 kvm_memory_listener_register(s, &s->memory_listener, 1693 &address_space_memory, 0); 1694 memory_listener_register(&kvm_io_listener, 1695 &address_space_io); 1696 1697 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1698 1699 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 1700 if (!s->sync_mmu) { 1701 qemu_balloon_inhibit(true); 1702 } 1703 1704 return 0; 1705 1706 err: 1707 assert(ret < 0); 1708 if (s->vmfd >= 0) { 1709 close(s->vmfd); 1710 } 1711 if (s->fd != -1) { 1712 close(s->fd); 1713 } 1714 g_free(s->memory_listener.slots); 1715 1716 return ret; 1717 } 1718 1719 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1720 { 1721 s->sigmask_len = sigmask_len; 1722 } 1723 1724 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1725 int size, uint32_t count) 1726 { 1727 int i; 1728 uint8_t *ptr = data; 1729 1730 for (i = 0; i < count; i++) { 1731 address_space_rw(&address_space_io, port, attrs, 1732 ptr, size, 1733 direction == KVM_EXIT_IO_OUT); 1734 ptr += size; 1735 } 1736 } 1737 1738 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1739 { 1740 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1741 run->internal.suberror); 1742 1743 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1744 int i; 1745 1746 for (i = 0; i < run->internal.ndata; ++i) { 1747 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1748 i, (uint64_t)run->internal.data[i]); 1749 } 1750 } 1751 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1752 fprintf(stderr, "emulation failure\n"); 1753 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1754 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 1755 return EXCP_INTERRUPT; 1756 } 1757 } 1758 /* FIXME: Should trigger a qmp message to let management know 1759 * something went wrong. 1760 */ 1761 return -1; 1762 } 1763 1764 void kvm_flush_coalesced_mmio_buffer(void) 1765 { 1766 KVMState *s = kvm_state; 1767 1768 if (s->coalesced_flush_in_progress) { 1769 return; 1770 } 1771 1772 s->coalesced_flush_in_progress = true; 1773 1774 if (s->coalesced_mmio_ring) { 1775 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1776 while (ring->first != ring->last) { 1777 struct kvm_coalesced_mmio *ent; 1778 1779 ent = &ring->coalesced_mmio[ring->first]; 1780 1781 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1782 smp_wmb(); 1783 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1784 } 1785 } 1786 1787 s->coalesced_flush_in_progress = false; 1788 } 1789 1790 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1791 { 1792 if (!cpu->vcpu_dirty) { 1793 kvm_arch_get_registers(cpu); 1794 cpu->vcpu_dirty = true; 1795 } 1796 } 1797 1798 void kvm_cpu_synchronize_state(CPUState *cpu) 1799 { 1800 if (!cpu->vcpu_dirty) { 1801 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1802 } 1803 } 1804 1805 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1806 { 1807 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1808 cpu->vcpu_dirty = false; 1809 } 1810 1811 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1812 { 1813 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1814 } 1815 1816 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1817 { 1818 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1819 cpu->vcpu_dirty = false; 1820 } 1821 1822 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1823 { 1824 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1825 } 1826 1827 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1828 { 1829 cpu->vcpu_dirty = true; 1830 } 1831 1832 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1833 { 1834 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1835 } 1836 1837 #ifdef KVM_HAVE_MCE_INJECTION 1838 static __thread void *pending_sigbus_addr; 1839 static __thread int pending_sigbus_code; 1840 static __thread bool have_sigbus_pending; 1841 #endif 1842 1843 static void kvm_cpu_kick(CPUState *cpu) 1844 { 1845 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1846 } 1847 1848 static void kvm_cpu_kick_self(void) 1849 { 1850 if (kvm_immediate_exit) { 1851 kvm_cpu_kick(current_cpu); 1852 } else { 1853 qemu_cpu_kick_self(); 1854 } 1855 } 1856 1857 static void kvm_eat_signals(CPUState *cpu) 1858 { 1859 struct timespec ts = { 0, 0 }; 1860 siginfo_t siginfo; 1861 sigset_t waitset; 1862 sigset_t chkset; 1863 int r; 1864 1865 if (kvm_immediate_exit) { 1866 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1867 /* Write kvm_run->immediate_exit before the cpu->exit_request 1868 * write in kvm_cpu_exec. 1869 */ 1870 smp_wmb(); 1871 return; 1872 } 1873 1874 sigemptyset(&waitset); 1875 sigaddset(&waitset, SIG_IPI); 1876 1877 do { 1878 r = sigtimedwait(&waitset, &siginfo, &ts); 1879 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1880 perror("sigtimedwait"); 1881 exit(1); 1882 } 1883 1884 r = sigpending(&chkset); 1885 if (r == -1) { 1886 perror("sigpending"); 1887 exit(1); 1888 } 1889 } while (sigismember(&chkset, SIG_IPI)); 1890 } 1891 1892 int kvm_cpu_exec(CPUState *cpu) 1893 { 1894 struct kvm_run *run = cpu->kvm_run; 1895 int ret, run_ret; 1896 1897 DPRINTF("kvm_cpu_exec()\n"); 1898 1899 if (kvm_arch_process_async_events(cpu)) { 1900 atomic_set(&cpu->exit_request, 0); 1901 return EXCP_HLT; 1902 } 1903 1904 qemu_mutex_unlock_iothread(); 1905 cpu_exec_start(cpu); 1906 1907 do { 1908 MemTxAttrs attrs; 1909 1910 if (cpu->vcpu_dirty) { 1911 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1912 cpu->vcpu_dirty = false; 1913 } 1914 1915 kvm_arch_pre_run(cpu, run); 1916 if (atomic_read(&cpu->exit_request)) { 1917 DPRINTF("interrupt exit requested\n"); 1918 /* 1919 * KVM requires us to reenter the kernel after IO exits to complete 1920 * instruction emulation. This self-signal will ensure that we 1921 * leave ASAP again. 1922 */ 1923 kvm_cpu_kick_self(); 1924 } 1925 1926 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1927 * Matching barrier in kvm_eat_signals. 1928 */ 1929 smp_rmb(); 1930 1931 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1932 1933 attrs = kvm_arch_post_run(cpu, run); 1934 1935 #ifdef KVM_HAVE_MCE_INJECTION 1936 if (unlikely(have_sigbus_pending)) { 1937 qemu_mutex_lock_iothread(); 1938 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1939 pending_sigbus_addr); 1940 have_sigbus_pending = false; 1941 qemu_mutex_unlock_iothread(); 1942 } 1943 #endif 1944 1945 if (run_ret < 0) { 1946 if (run_ret == -EINTR || run_ret == -EAGAIN) { 1947 DPRINTF("io window exit\n"); 1948 kvm_eat_signals(cpu); 1949 ret = EXCP_INTERRUPT; 1950 break; 1951 } 1952 fprintf(stderr, "error: kvm run failed %s\n", 1953 strerror(-run_ret)); 1954 #ifdef TARGET_PPC 1955 if (run_ret == -EBUSY) { 1956 fprintf(stderr, 1957 "This is probably because your SMT is enabled.\n" 1958 "VCPU can only run on primary threads with all " 1959 "secondary threads offline.\n"); 1960 } 1961 #endif 1962 ret = -1; 1963 break; 1964 } 1965 1966 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 1967 switch (run->exit_reason) { 1968 case KVM_EXIT_IO: 1969 DPRINTF("handle_io\n"); 1970 /* Called outside BQL */ 1971 kvm_handle_io(run->io.port, attrs, 1972 (uint8_t *)run + run->io.data_offset, 1973 run->io.direction, 1974 run->io.size, 1975 run->io.count); 1976 ret = 0; 1977 break; 1978 case KVM_EXIT_MMIO: 1979 DPRINTF("handle_mmio\n"); 1980 /* Called outside BQL */ 1981 address_space_rw(&address_space_memory, 1982 run->mmio.phys_addr, attrs, 1983 run->mmio.data, 1984 run->mmio.len, 1985 run->mmio.is_write); 1986 ret = 0; 1987 break; 1988 case KVM_EXIT_IRQ_WINDOW_OPEN: 1989 DPRINTF("irq_window_open\n"); 1990 ret = EXCP_INTERRUPT; 1991 break; 1992 case KVM_EXIT_SHUTDOWN: 1993 DPRINTF("shutdown\n"); 1994 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1995 ret = EXCP_INTERRUPT; 1996 break; 1997 case KVM_EXIT_UNKNOWN: 1998 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 1999 (uint64_t)run->hw.hardware_exit_reason); 2000 ret = -1; 2001 break; 2002 case KVM_EXIT_INTERNAL_ERROR: 2003 ret = kvm_handle_internal_error(cpu, run); 2004 break; 2005 case KVM_EXIT_SYSTEM_EVENT: 2006 switch (run->system_event.type) { 2007 case KVM_SYSTEM_EVENT_SHUTDOWN: 2008 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2009 ret = EXCP_INTERRUPT; 2010 break; 2011 case KVM_SYSTEM_EVENT_RESET: 2012 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2013 ret = EXCP_INTERRUPT; 2014 break; 2015 case KVM_SYSTEM_EVENT_CRASH: 2016 kvm_cpu_synchronize_state(cpu); 2017 qemu_mutex_lock_iothread(); 2018 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2019 qemu_mutex_unlock_iothread(); 2020 ret = 0; 2021 break; 2022 default: 2023 DPRINTF("kvm_arch_handle_exit\n"); 2024 ret = kvm_arch_handle_exit(cpu, run); 2025 break; 2026 } 2027 break; 2028 default: 2029 DPRINTF("kvm_arch_handle_exit\n"); 2030 ret = kvm_arch_handle_exit(cpu, run); 2031 break; 2032 } 2033 } while (ret == 0); 2034 2035 cpu_exec_end(cpu); 2036 qemu_mutex_lock_iothread(); 2037 2038 if (ret < 0) { 2039 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 2040 vm_stop(RUN_STATE_INTERNAL_ERROR); 2041 } 2042 2043 atomic_set(&cpu->exit_request, 0); 2044 return ret; 2045 } 2046 2047 int kvm_ioctl(KVMState *s, int type, ...) 2048 { 2049 int ret; 2050 void *arg; 2051 va_list ap; 2052 2053 va_start(ap, type); 2054 arg = va_arg(ap, void *); 2055 va_end(ap); 2056 2057 trace_kvm_ioctl(type, arg); 2058 ret = ioctl(s->fd, type, arg); 2059 if (ret == -1) { 2060 ret = -errno; 2061 } 2062 return ret; 2063 } 2064 2065 int kvm_vm_ioctl(KVMState *s, int type, ...) 2066 { 2067 int ret; 2068 void *arg; 2069 va_list ap; 2070 2071 va_start(ap, type); 2072 arg = va_arg(ap, void *); 2073 va_end(ap); 2074 2075 trace_kvm_vm_ioctl(type, arg); 2076 ret = ioctl(s->vmfd, type, arg); 2077 if (ret == -1) { 2078 ret = -errno; 2079 } 2080 return ret; 2081 } 2082 2083 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2084 { 2085 int ret; 2086 void *arg; 2087 va_list ap; 2088 2089 va_start(ap, type); 2090 arg = va_arg(ap, void *); 2091 va_end(ap); 2092 2093 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2094 ret = ioctl(cpu->kvm_fd, type, arg); 2095 if (ret == -1) { 2096 ret = -errno; 2097 } 2098 return ret; 2099 } 2100 2101 int kvm_device_ioctl(int fd, int type, ...) 2102 { 2103 int ret; 2104 void *arg; 2105 va_list ap; 2106 2107 va_start(ap, type); 2108 arg = va_arg(ap, void *); 2109 va_end(ap); 2110 2111 trace_kvm_device_ioctl(fd, type, arg); 2112 ret = ioctl(fd, type, arg); 2113 if (ret == -1) { 2114 ret = -errno; 2115 } 2116 return ret; 2117 } 2118 2119 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2120 { 2121 int ret; 2122 struct kvm_device_attr attribute = { 2123 .group = group, 2124 .attr = attr, 2125 }; 2126 2127 if (!kvm_vm_attributes_allowed) { 2128 return 0; 2129 } 2130 2131 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2132 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2133 return ret ? 0 : 1; 2134 } 2135 2136 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2137 { 2138 struct kvm_device_attr attribute = { 2139 .group = group, 2140 .attr = attr, 2141 .flags = 0, 2142 }; 2143 2144 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2145 } 2146 2147 int kvm_device_access(int fd, int group, uint64_t attr, 2148 void *val, bool write, Error **errp) 2149 { 2150 struct kvm_device_attr kvmattr; 2151 int err; 2152 2153 kvmattr.flags = 0; 2154 kvmattr.group = group; 2155 kvmattr.attr = attr; 2156 kvmattr.addr = (uintptr_t)val; 2157 2158 err = kvm_device_ioctl(fd, 2159 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2160 &kvmattr); 2161 if (err < 0) { 2162 error_setg_errno(errp, -err, 2163 "KVM_%s_DEVICE_ATTR failed: Group %d " 2164 "attr 0x%016" PRIx64, 2165 write ? "SET" : "GET", group, attr); 2166 } 2167 return err; 2168 } 2169 2170 bool kvm_has_sync_mmu(void) 2171 { 2172 return kvm_state->sync_mmu; 2173 } 2174 2175 int kvm_has_vcpu_events(void) 2176 { 2177 return kvm_state->vcpu_events; 2178 } 2179 2180 int kvm_has_robust_singlestep(void) 2181 { 2182 return kvm_state->robust_singlestep; 2183 } 2184 2185 int kvm_has_debugregs(void) 2186 { 2187 return kvm_state->debugregs; 2188 } 2189 2190 int kvm_has_many_ioeventfds(void) 2191 { 2192 if (!kvm_enabled()) { 2193 return 0; 2194 } 2195 return kvm_state->many_ioeventfds; 2196 } 2197 2198 int kvm_has_gsi_routing(void) 2199 { 2200 #ifdef KVM_CAP_IRQ_ROUTING 2201 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2202 #else 2203 return false; 2204 #endif 2205 } 2206 2207 int kvm_has_intx_set_mask(void) 2208 { 2209 return kvm_state->intx_set_mask; 2210 } 2211 2212 bool kvm_arm_supports_user_irq(void) 2213 { 2214 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2215 } 2216 2217 #ifdef KVM_CAP_SET_GUEST_DEBUG 2218 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2219 target_ulong pc) 2220 { 2221 struct kvm_sw_breakpoint *bp; 2222 2223 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2224 if (bp->pc == pc) { 2225 return bp; 2226 } 2227 } 2228 return NULL; 2229 } 2230 2231 int kvm_sw_breakpoints_active(CPUState *cpu) 2232 { 2233 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2234 } 2235 2236 struct kvm_set_guest_debug_data { 2237 struct kvm_guest_debug dbg; 2238 int err; 2239 }; 2240 2241 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2242 { 2243 struct kvm_set_guest_debug_data *dbg_data = 2244 (struct kvm_set_guest_debug_data *) data.host_ptr; 2245 2246 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2247 &dbg_data->dbg); 2248 } 2249 2250 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2251 { 2252 struct kvm_set_guest_debug_data data; 2253 2254 data.dbg.control = reinject_trap; 2255 2256 if (cpu->singlestep_enabled) { 2257 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2258 } 2259 kvm_arch_update_guest_debug(cpu, &data.dbg); 2260 2261 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2262 RUN_ON_CPU_HOST_PTR(&data)); 2263 return data.err; 2264 } 2265 2266 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2267 target_ulong len, int type) 2268 { 2269 struct kvm_sw_breakpoint *bp; 2270 int err; 2271 2272 if (type == GDB_BREAKPOINT_SW) { 2273 bp = kvm_find_sw_breakpoint(cpu, addr); 2274 if (bp) { 2275 bp->use_count++; 2276 return 0; 2277 } 2278 2279 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2280 bp->pc = addr; 2281 bp->use_count = 1; 2282 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2283 if (err) { 2284 g_free(bp); 2285 return err; 2286 } 2287 2288 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2289 } else { 2290 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2291 if (err) { 2292 return err; 2293 } 2294 } 2295 2296 CPU_FOREACH(cpu) { 2297 err = kvm_update_guest_debug(cpu, 0); 2298 if (err) { 2299 return err; 2300 } 2301 } 2302 return 0; 2303 } 2304 2305 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2306 target_ulong len, int type) 2307 { 2308 struct kvm_sw_breakpoint *bp; 2309 int err; 2310 2311 if (type == GDB_BREAKPOINT_SW) { 2312 bp = kvm_find_sw_breakpoint(cpu, addr); 2313 if (!bp) { 2314 return -ENOENT; 2315 } 2316 2317 if (bp->use_count > 1) { 2318 bp->use_count--; 2319 return 0; 2320 } 2321 2322 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2323 if (err) { 2324 return err; 2325 } 2326 2327 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2328 g_free(bp); 2329 } else { 2330 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2331 if (err) { 2332 return err; 2333 } 2334 } 2335 2336 CPU_FOREACH(cpu) { 2337 err = kvm_update_guest_debug(cpu, 0); 2338 if (err) { 2339 return err; 2340 } 2341 } 2342 return 0; 2343 } 2344 2345 void kvm_remove_all_breakpoints(CPUState *cpu) 2346 { 2347 struct kvm_sw_breakpoint *bp, *next; 2348 KVMState *s = cpu->kvm_state; 2349 CPUState *tmpcpu; 2350 2351 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2352 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2353 /* Try harder to find a CPU that currently sees the breakpoint. */ 2354 CPU_FOREACH(tmpcpu) { 2355 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2356 break; 2357 } 2358 } 2359 } 2360 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2361 g_free(bp); 2362 } 2363 kvm_arch_remove_all_hw_breakpoints(); 2364 2365 CPU_FOREACH(cpu) { 2366 kvm_update_guest_debug(cpu, 0); 2367 } 2368 } 2369 2370 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2371 2372 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2373 { 2374 return -EINVAL; 2375 } 2376 2377 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2378 target_ulong len, int type) 2379 { 2380 return -EINVAL; 2381 } 2382 2383 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2384 target_ulong len, int type) 2385 { 2386 return -EINVAL; 2387 } 2388 2389 void kvm_remove_all_breakpoints(CPUState *cpu) 2390 { 2391 } 2392 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2393 2394 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2395 { 2396 KVMState *s = kvm_state; 2397 struct kvm_signal_mask *sigmask; 2398 int r; 2399 2400 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2401 2402 sigmask->len = s->sigmask_len; 2403 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2404 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2405 g_free(sigmask); 2406 2407 return r; 2408 } 2409 2410 static void kvm_ipi_signal(int sig) 2411 { 2412 if (current_cpu) { 2413 assert(kvm_immediate_exit); 2414 kvm_cpu_kick(current_cpu); 2415 } 2416 } 2417 2418 void kvm_init_cpu_signals(CPUState *cpu) 2419 { 2420 int r; 2421 sigset_t set; 2422 struct sigaction sigact; 2423 2424 memset(&sigact, 0, sizeof(sigact)); 2425 sigact.sa_handler = kvm_ipi_signal; 2426 sigaction(SIG_IPI, &sigact, NULL); 2427 2428 pthread_sigmask(SIG_BLOCK, NULL, &set); 2429 #if defined KVM_HAVE_MCE_INJECTION 2430 sigdelset(&set, SIGBUS); 2431 pthread_sigmask(SIG_SETMASK, &set, NULL); 2432 #endif 2433 sigdelset(&set, SIG_IPI); 2434 if (kvm_immediate_exit) { 2435 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2436 } else { 2437 r = kvm_set_signal_mask(cpu, &set); 2438 } 2439 if (r) { 2440 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2441 exit(1); 2442 } 2443 } 2444 2445 /* Called asynchronously in VCPU thread. */ 2446 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2447 { 2448 #ifdef KVM_HAVE_MCE_INJECTION 2449 if (have_sigbus_pending) { 2450 return 1; 2451 } 2452 have_sigbus_pending = true; 2453 pending_sigbus_addr = addr; 2454 pending_sigbus_code = code; 2455 atomic_set(&cpu->exit_request, 1); 2456 return 0; 2457 #else 2458 return 1; 2459 #endif 2460 } 2461 2462 /* Called synchronously (via signalfd) in main thread. */ 2463 int kvm_on_sigbus(int code, void *addr) 2464 { 2465 #ifdef KVM_HAVE_MCE_INJECTION 2466 /* Action required MCE kills the process if SIGBUS is blocked. Because 2467 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2468 * we can only get action optional here. 2469 */ 2470 assert(code != BUS_MCEERR_AR); 2471 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2472 return 0; 2473 #else 2474 return 1; 2475 #endif 2476 } 2477 2478 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2479 { 2480 int ret; 2481 struct kvm_create_device create_dev; 2482 2483 create_dev.type = type; 2484 create_dev.fd = -1; 2485 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2486 2487 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2488 return -ENOTSUP; 2489 } 2490 2491 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2492 if (ret) { 2493 return ret; 2494 } 2495 2496 return test ? 0 : create_dev.fd; 2497 } 2498 2499 bool kvm_device_supported(int vmfd, uint64_t type) 2500 { 2501 struct kvm_create_device create_dev = { 2502 .type = type, 2503 .fd = -1, 2504 .flags = KVM_CREATE_DEVICE_TEST, 2505 }; 2506 2507 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2508 return false; 2509 } 2510 2511 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2512 } 2513 2514 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2515 { 2516 struct kvm_one_reg reg; 2517 int r; 2518 2519 reg.id = id; 2520 reg.addr = (uintptr_t) source; 2521 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2522 if (r) { 2523 trace_kvm_failed_reg_set(id, strerror(-r)); 2524 } 2525 return r; 2526 } 2527 2528 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2529 { 2530 struct kvm_one_reg reg; 2531 int r; 2532 2533 reg.id = id; 2534 reg.addr = (uintptr_t) target; 2535 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2536 if (r) { 2537 trace_kvm_failed_reg_get(id, strerror(-r)); 2538 } 2539 return r; 2540 } 2541 2542 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2543 { 2544 AccelClass *ac = ACCEL_CLASS(oc); 2545 ac->name = "KVM"; 2546 ac->init_machine = kvm_init; 2547 ac->allowed = &kvm_allowed; 2548 } 2549 2550 static const TypeInfo kvm_accel_type = { 2551 .name = TYPE_KVM_ACCEL, 2552 .parent = TYPE_ACCEL, 2553 .class_init = kvm_accel_class_init, 2554 .instance_size = sizeof(KVMState), 2555 }; 2556 2557 static void kvm_type_init(void) 2558 { 2559 type_register_static(&kvm_accel_type); 2560 } 2561 2562 type_init(kvm_type_init); 2563