1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/main-loop.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "qapi/visitor.h" 42 #include "qapi/qapi-types-common.h" 43 #include "qapi/qapi-visit-common.h" 44 #include "sysemu/reset.h" 45 #include "qemu/guest-random.h" 46 #include "sysemu/hw_accel.h" 47 #include "kvm-cpus.h" 48 #include "sysemu/dirtylimit.h" 49 50 #include "hw/boards.h" 51 #include "monitor/stats.h" 52 53 /* This check must be after config-host.h is included */ 54 #ifdef CONFIG_EVENTFD 55 #include <sys/eventfd.h> 56 #endif 57 58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 59 * need to use the real host PAGE_SIZE, as that's what KVM will use. 60 */ 61 #ifdef PAGE_SIZE 62 #undef PAGE_SIZE 63 #endif 64 #define PAGE_SIZE qemu_real_host_page_size() 65 66 #ifndef KVM_GUESTDBG_BLOCKIRQ 67 #define KVM_GUESTDBG_BLOCKIRQ 0 68 #endif 69 70 //#define DEBUG_KVM 71 72 #ifdef DEBUG_KVM 73 #define DPRINTF(fmt, ...) \ 74 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 75 #else 76 #define DPRINTF(fmt, ...) \ 77 do { } while (0) 78 #endif 79 80 struct KVMParkedVcpu { 81 unsigned long vcpu_id; 82 int kvm_fd; 83 QLIST_ENTRY(KVMParkedVcpu) node; 84 }; 85 86 KVMState *kvm_state; 87 bool kvm_kernel_irqchip; 88 bool kvm_split_irqchip; 89 bool kvm_async_interrupts_allowed; 90 bool kvm_halt_in_kernel_allowed; 91 bool kvm_eventfds_allowed; 92 bool kvm_irqfds_allowed; 93 bool kvm_resamplefds_allowed; 94 bool kvm_msi_via_irqfd_allowed; 95 bool kvm_gsi_routing_allowed; 96 bool kvm_gsi_direct_mapping; 97 bool kvm_allowed; 98 bool kvm_readonly_mem_allowed; 99 bool kvm_vm_attributes_allowed; 100 bool kvm_direct_msi_allowed; 101 bool kvm_ioeventfd_any_length_allowed; 102 bool kvm_msi_use_devid; 103 bool kvm_has_guest_debug; 104 static int kvm_sstep_flags; 105 static bool kvm_immediate_exit; 106 static hwaddr kvm_max_slot_size = ~0; 107 108 static const KVMCapabilityInfo kvm_required_capabilites[] = { 109 KVM_CAP_INFO(USER_MEMORY), 110 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 111 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 112 KVM_CAP_LAST_INFO 113 }; 114 115 static NotifierList kvm_irqchip_change_notifiers = 116 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 117 118 struct KVMResampleFd { 119 int gsi; 120 EventNotifier *resample_event; 121 QLIST_ENTRY(KVMResampleFd) node; 122 }; 123 typedef struct KVMResampleFd KVMResampleFd; 124 125 /* 126 * Only used with split irqchip where we need to do the resample fd 127 * kick for the kernel from userspace. 128 */ 129 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 130 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 131 132 static QemuMutex kml_slots_lock; 133 134 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 135 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 136 137 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 138 139 static inline void kvm_resample_fd_remove(int gsi) 140 { 141 KVMResampleFd *rfd; 142 143 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 144 if (rfd->gsi == gsi) { 145 QLIST_REMOVE(rfd, node); 146 g_free(rfd); 147 break; 148 } 149 } 150 } 151 152 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 153 { 154 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 155 156 rfd->gsi = gsi; 157 rfd->resample_event = event; 158 159 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 160 } 161 162 void kvm_resample_fd_notify(int gsi) 163 { 164 KVMResampleFd *rfd; 165 166 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 167 if (rfd->gsi == gsi) { 168 event_notifier_set(rfd->resample_event); 169 trace_kvm_resample_fd_notify(gsi); 170 return; 171 } 172 } 173 } 174 175 int kvm_get_max_memslots(void) 176 { 177 KVMState *s = KVM_STATE(current_accel()); 178 179 return s->nr_slots; 180 } 181 182 /* Called with KVMMemoryListener.slots_lock held */ 183 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 184 { 185 KVMState *s = kvm_state; 186 int i; 187 188 for (i = 0; i < s->nr_slots; i++) { 189 if (kml->slots[i].memory_size == 0) { 190 return &kml->slots[i]; 191 } 192 } 193 194 return NULL; 195 } 196 197 bool kvm_has_free_slot(MachineState *ms) 198 { 199 KVMState *s = KVM_STATE(ms->accelerator); 200 bool result; 201 KVMMemoryListener *kml = &s->memory_listener; 202 203 kvm_slots_lock(); 204 result = !!kvm_get_free_slot(kml); 205 kvm_slots_unlock(); 206 207 return result; 208 } 209 210 /* Called with KVMMemoryListener.slots_lock held */ 211 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 212 { 213 KVMSlot *slot = kvm_get_free_slot(kml); 214 215 if (slot) { 216 return slot; 217 } 218 219 fprintf(stderr, "%s: no free slot available\n", __func__); 220 abort(); 221 } 222 223 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 224 hwaddr start_addr, 225 hwaddr size) 226 { 227 KVMState *s = kvm_state; 228 int i; 229 230 for (i = 0; i < s->nr_slots; i++) { 231 KVMSlot *mem = &kml->slots[i]; 232 233 if (start_addr == mem->start_addr && size == mem->memory_size) { 234 return mem; 235 } 236 } 237 238 return NULL; 239 } 240 241 /* 242 * Calculate and align the start address and the size of the section. 243 * Return the size. If the size is 0, the aligned section is empty. 244 */ 245 static hwaddr kvm_align_section(MemoryRegionSection *section, 246 hwaddr *start) 247 { 248 hwaddr size = int128_get64(section->size); 249 hwaddr delta, aligned; 250 251 /* kvm works in page size chunks, but the function may be called 252 with sub-page size and unaligned start address. Pad the start 253 address to next and truncate size to previous page boundary. */ 254 aligned = ROUND_UP(section->offset_within_address_space, 255 qemu_real_host_page_size()); 256 delta = aligned - section->offset_within_address_space; 257 *start = aligned; 258 if (delta > size) { 259 return 0; 260 } 261 262 return (size - delta) & qemu_real_host_page_mask(); 263 } 264 265 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 266 hwaddr *phys_addr) 267 { 268 KVMMemoryListener *kml = &s->memory_listener; 269 int i, ret = 0; 270 271 kvm_slots_lock(); 272 for (i = 0; i < s->nr_slots; i++) { 273 KVMSlot *mem = &kml->slots[i]; 274 275 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 276 *phys_addr = mem->start_addr + (ram - mem->ram); 277 ret = 1; 278 break; 279 } 280 } 281 kvm_slots_unlock(); 282 283 return ret; 284 } 285 286 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 287 { 288 KVMState *s = kvm_state; 289 struct kvm_userspace_memory_region mem; 290 int ret; 291 292 mem.slot = slot->slot | (kml->as_id << 16); 293 mem.guest_phys_addr = slot->start_addr; 294 mem.userspace_addr = (unsigned long)slot->ram; 295 mem.flags = slot->flags; 296 297 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 298 /* Set the slot size to 0 before setting the slot to the desired 299 * value. This is needed based on KVM commit 75d61fbc. */ 300 mem.memory_size = 0; 301 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 302 if (ret < 0) { 303 goto err; 304 } 305 } 306 mem.memory_size = slot->memory_size; 307 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 308 slot->old_flags = mem.flags; 309 err: 310 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 311 mem.memory_size, mem.userspace_addr, ret); 312 if (ret < 0) { 313 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 314 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 315 __func__, mem.slot, slot->start_addr, 316 (uint64_t)mem.memory_size, strerror(errno)); 317 } 318 return ret; 319 } 320 321 static int do_kvm_destroy_vcpu(CPUState *cpu) 322 { 323 KVMState *s = kvm_state; 324 long mmap_size; 325 struct KVMParkedVcpu *vcpu = NULL; 326 int ret = 0; 327 328 DPRINTF("kvm_destroy_vcpu\n"); 329 330 ret = kvm_arch_destroy_vcpu(cpu); 331 if (ret < 0) { 332 goto err; 333 } 334 335 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 336 if (mmap_size < 0) { 337 ret = mmap_size; 338 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 339 goto err; 340 } 341 342 ret = munmap(cpu->kvm_run, mmap_size); 343 if (ret < 0) { 344 goto err; 345 } 346 347 if (cpu->kvm_dirty_gfns) { 348 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 349 if (ret < 0) { 350 goto err; 351 } 352 } 353 354 vcpu = g_malloc0(sizeof(*vcpu)); 355 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 356 vcpu->kvm_fd = cpu->kvm_fd; 357 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 358 err: 359 return ret; 360 } 361 362 void kvm_destroy_vcpu(CPUState *cpu) 363 { 364 if (do_kvm_destroy_vcpu(cpu) < 0) { 365 error_report("kvm_destroy_vcpu failed"); 366 exit(EXIT_FAILURE); 367 } 368 } 369 370 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 371 { 372 struct KVMParkedVcpu *cpu; 373 374 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 375 if (cpu->vcpu_id == vcpu_id) { 376 int kvm_fd; 377 378 QLIST_REMOVE(cpu, node); 379 kvm_fd = cpu->kvm_fd; 380 g_free(cpu); 381 return kvm_fd; 382 } 383 } 384 385 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 386 } 387 388 int kvm_init_vcpu(CPUState *cpu, Error **errp) 389 { 390 KVMState *s = kvm_state; 391 long mmap_size; 392 int ret; 393 394 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 395 396 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 397 if (ret < 0) { 398 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 399 kvm_arch_vcpu_id(cpu)); 400 goto err; 401 } 402 403 cpu->kvm_fd = ret; 404 cpu->kvm_state = s; 405 cpu->vcpu_dirty = true; 406 cpu->dirty_pages = 0; 407 cpu->throttle_us_per_full = 0; 408 409 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 410 if (mmap_size < 0) { 411 ret = mmap_size; 412 error_setg_errno(errp, -mmap_size, 413 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 414 goto err; 415 } 416 417 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 418 cpu->kvm_fd, 0); 419 if (cpu->kvm_run == MAP_FAILED) { 420 ret = -errno; 421 error_setg_errno(errp, ret, 422 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 423 kvm_arch_vcpu_id(cpu)); 424 goto err; 425 } 426 427 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 428 s->coalesced_mmio_ring = 429 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 430 } 431 432 if (s->kvm_dirty_ring_size) { 433 /* Use MAP_SHARED to share pages with the kernel */ 434 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 435 PROT_READ | PROT_WRITE, MAP_SHARED, 436 cpu->kvm_fd, 437 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 438 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 439 ret = -errno; 440 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 441 goto err; 442 } 443 } 444 445 ret = kvm_arch_init_vcpu(cpu); 446 if (ret < 0) { 447 error_setg_errno(errp, -ret, 448 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 449 kvm_arch_vcpu_id(cpu)); 450 } 451 err: 452 return ret; 453 } 454 455 /* 456 * dirty pages logging control 457 */ 458 459 static int kvm_mem_flags(MemoryRegion *mr) 460 { 461 bool readonly = mr->readonly || memory_region_is_romd(mr); 462 int flags = 0; 463 464 if (memory_region_get_dirty_log_mask(mr) != 0) { 465 flags |= KVM_MEM_LOG_DIRTY_PAGES; 466 } 467 if (readonly && kvm_readonly_mem_allowed) { 468 flags |= KVM_MEM_READONLY; 469 } 470 return flags; 471 } 472 473 /* Called with KVMMemoryListener.slots_lock held */ 474 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 475 MemoryRegion *mr) 476 { 477 mem->flags = kvm_mem_flags(mr); 478 479 /* If nothing changed effectively, no need to issue ioctl */ 480 if (mem->flags == mem->old_flags) { 481 return 0; 482 } 483 484 kvm_slot_init_dirty_bitmap(mem); 485 return kvm_set_user_memory_region(kml, mem, false); 486 } 487 488 static int kvm_section_update_flags(KVMMemoryListener *kml, 489 MemoryRegionSection *section) 490 { 491 hwaddr start_addr, size, slot_size; 492 KVMSlot *mem; 493 int ret = 0; 494 495 size = kvm_align_section(section, &start_addr); 496 if (!size) { 497 return 0; 498 } 499 500 kvm_slots_lock(); 501 502 while (size && !ret) { 503 slot_size = MIN(kvm_max_slot_size, size); 504 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 505 if (!mem) { 506 /* We don't have a slot if we want to trap every access. */ 507 goto out; 508 } 509 510 ret = kvm_slot_update_flags(kml, mem, section->mr); 511 start_addr += slot_size; 512 size -= slot_size; 513 } 514 515 out: 516 kvm_slots_unlock(); 517 return ret; 518 } 519 520 static void kvm_log_start(MemoryListener *listener, 521 MemoryRegionSection *section, 522 int old, int new) 523 { 524 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 525 int r; 526 527 if (old != 0) { 528 return; 529 } 530 531 r = kvm_section_update_flags(kml, section); 532 if (r < 0) { 533 abort(); 534 } 535 } 536 537 static void kvm_log_stop(MemoryListener *listener, 538 MemoryRegionSection *section, 539 int old, int new) 540 { 541 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 542 int r; 543 544 if (new != 0) { 545 return; 546 } 547 548 r = kvm_section_update_flags(kml, section); 549 if (r < 0) { 550 abort(); 551 } 552 } 553 554 /* get kvm's dirty pages bitmap and update qemu's */ 555 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 556 { 557 ram_addr_t start = slot->ram_start_offset; 558 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 559 560 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 561 } 562 563 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 564 { 565 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 566 } 567 568 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 569 570 /* Allocate the dirty bitmap for a slot */ 571 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 572 { 573 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 574 return; 575 } 576 577 /* 578 * XXX bad kernel interface alert 579 * For dirty bitmap, kernel allocates array of size aligned to 580 * bits-per-long. But for case when the kernel is 64bits and 581 * the userspace is 32bits, userspace can't align to the same 582 * bits-per-long, since sizeof(long) is different between kernel 583 * and user space. This way, userspace will provide buffer which 584 * may be 4 bytes less than the kernel will use, resulting in 585 * userspace memory corruption (which is not detectable by valgrind 586 * too, in most cases). 587 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 588 * a hope that sizeof(long) won't become >8 any time soon. 589 * 590 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 591 * And mem->memory_size is aligned to it (otherwise this mem can't 592 * be registered to KVM). 593 */ 594 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 595 /*HOST_LONG_BITS*/ 64) / 8; 596 mem->dirty_bmap = g_malloc0(bitmap_size); 597 mem->dirty_bmap_size = bitmap_size; 598 } 599 600 /* 601 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 602 * succeeded, false otherwise 603 */ 604 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 605 { 606 struct kvm_dirty_log d = {}; 607 int ret; 608 609 d.dirty_bitmap = slot->dirty_bmap; 610 d.slot = slot->slot | (slot->as_id << 16); 611 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 612 613 if (ret == -ENOENT) { 614 /* kernel does not have dirty bitmap in this slot */ 615 ret = 0; 616 } 617 if (ret) { 618 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 619 __func__, ret); 620 } 621 return ret == 0; 622 } 623 624 /* Should be with all slots_lock held for the address spaces. */ 625 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 626 uint32_t slot_id, uint64_t offset) 627 { 628 KVMMemoryListener *kml; 629 KVMSlot *mem; 630 631 if (as_id >= s->nr_as) { 632 return; 633 } 634 635 kml = s->as[as_id].ml; 636 mem = &kml->slots[slot_id]; 637 638 if (!mem->memory_size || offset >= 639 (mem->memory_size / qemu_real_host_page_size())) { 640 return; 641 } 642 643 set_bit(offset, mem->dirty_bmap); 644 } 645 646 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 647 { 648 /* 649 * Read the flags before the value. Pairs with barrier in 650 * KVM's kvm_dirty_ring_push() function. 651 */ 652 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 653 } 654 655 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 656 { 657 /* 658 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 659 * sees the full content of the ring: 660 * 661 * CPU0 CPU1 CPU2 662 * ------------------------------------------------------------------------------ 663 * fill gfn0 664 * store-rel flags for gfn0 665 * load-acq flags for gfn0 666 * store-rel RESET for gfn0 667 * ioctl(RESET_RINGS) 668 * load-acq flags for gfn0 669 * check if flags have RESET 670 * 671 * The synchronization goes from CPU2 to CPU0 to CPU1. 672 */ 673 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 674 } 675 676 /* 677 * Should be with all slots_lock held for the address spaces. It returns the 678 * dirty page we've collected on this dirty ring. 679 */ 680 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 681 { 682 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 683 uint32_t ring_size = s->kvm_dirty_ring_size; 684 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 685 686 assert(dirty_gfns && ring_size); 687 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 688 689 while (true) { 690 cur = &dirty_gfns[fetch % ring_size]; 691 if (!dirty_gfn_is_dirtied(cur)) { 692 break; 693 } 694 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 695 cur->offset); 696 dirty_gfn_set_collected(cur); 697 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 698 fetch++; 699 count++; 700 } 701 cpu->kvm_fetch_index = fetch; 702 cpu->dirty_pages += count; 703 704 return count; 705 } 706 707 /* Must be with slots_lock held */ 708 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 709 { 710 int ret; 711 uint64_t total = 0; 712 int64_t stamp; 713 714 stamp = get_clock(); 715 716 if (cpu) { 717 total = kvm_dirty_ring_reap_one(s, cpu); 718 } else { 719 CPU_FOREACH(cpu) { 720 total += kvm_dirty_ring_reap_one(s, cpu); 721 } 722 } 723 724 if (total) { 725 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 726 assert(ret == total); 727 } 728 729 stamp = get_clock() - stamp; 730 731 if (total) { 732 trace_kvm_dirty_ring_reap(total, stamp / 1000); 733 } 734 735 return total; 736 } 737 738 /* 739 * Currently for simplicity, we must hold BQL before calling this. We can 740 * consider to drop the BQL if we're clear with all the race conditions. 741 */ 742 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 743 { 744 uint64_t total; 745 746 /* 747 * We need to lock all kvm slots for all address spaces here, 748 * because: 749 * 750 * (1) We need to mark dirty for dirty bitmaps in multiple slots 751 * and for tons of pages, so it's better to take the lock here 752 * once rather than once per page. And more importantly, 753 * 754 * (2) We must _NOT_ publish dirty bits to the other threads 755 * (e.g., the migration thread) via the kvm memory slot dirty 756 * bitmaps before correctly re-protect those dirtied pages. 757 * Otherwise we can have potential risk of data corruption if 758 * the page data is read in the other thread before we do 759 * reset below. 760 */ 761 kvm_slots_lock(); 762 total = kvm_dirty_ring_reap_locked(s, cpu); 763 kvm_slots_unlock(); 764 765 return total; 766 } 767 768 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 769 { 770 /* No need to do anything */ 771 } 772 773 /* 774 * Kick all vcpus out in a synchronized way. When returned, we 775 * guarantee that every vcpu has been kicked and at least returned to 776 * userspace once. 777 */ 778 static void kvm_cpu_synchronize_kick_all(void) 779 { 780 CPUState *cpu; 781 782 CPU_FOREACH(cpu) { 783 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 784 } 785 } 786 787 /* 788 * Flush all the existing dirty pages to the KVM slot buffers. When 789 * this call returns, we guarantee that all the touched dirty pages 790 * before calling this function have been put into the per-kvmslot 791 * dirty bitmap. 792 * 793 * This function must be called with BQL held. 794 */ 795 static void kvm_dirty_ring_flush(void) 796 { 797 trace_kvm_dirty_ring_flush(0); 798 /* 799 * The function needs to be serialized. Since this function 800 * should always be with BQL held, serialization is guaranteed. 801 * However, let's be sure of it. 802 */ 803 assert(qemu_mutex_iothread_locked()); 804 /* 805 * First make sure to flush the hardware buffers by kicking all 806 * vcpus out in a synchronous way. 807 */ 808 kvm_cpu_synchronize_kick_all(); 809 kvm_dirty_ring_reap(kvm_state, NULL); 810 trace_kvm_dirty_ring_flush(1); 811 } 812 813 /** 814 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 815 * 816 * This function will first try to fetch dirty bitmap from the kernel, 817 * and then updates qemu's dirty bitmap. 818 * 819 * NOTE: caller must be with kml->slots_lock held. 820 * 821 * @kml: the KVM memory listener object 822 * @section: the memory section to sync the dirty bitmap with 823 */ 824 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 825 MemoryRegionSection *section) 826 { 827 KVMState *s = kvm_state; 828 KVMSlot *mem; 829 hwaddr start_addr, size; 830 hwaddr slot_size; 831 832 size = kvm_align_section(section, &start_addr); 833 while (size) { 834 slot_size = MIN(kvm_max_slot_size, size); 835 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 836 if (!mem) { 837 /* We don't have a slot if we want to trap every access. */ 838 return; 839 } 840 if (kvm_slot_get_dirty_log(s, mem)) { 841 kvm_slot_sync_dirty_pages(mem); 842 } 843 start_addr += slot_size; 844 size -= slot_size; 845 } 846 } 847 848 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 849 #define KVM_CLEAR_LOG_SHIFT 6 850 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 851 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 852 853 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 854 uint64_t size) 855 { 856 KVMState *s = kvm_state; 857 uint64_t end, bmap_start, start_delta, bmap_npages; 858 struct kvm_clear_dirty_log d; 859 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 860 int ret; 861 862 /* 863 * We need to extend either the start or the size or both to 864 * satisfy the KVM interface requirement. Firstly, do the start 865 * page alignment on 64 host pages 866 */ 867 bmap_start = start & KVM_CLEAR_LOG_MASK; 868 start_delta = start - bmap_start; 869 bmap_start /= psize; 870 871 /* 872 * The kernel interface has restriction on the size too, that either: 873 * 874 * (1) the size is 64 host pages aligned (just like the start), or 875 * (2) the size fills up until the end of the KVM memslot. 876 */ 877 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 878 << KVM_CLEAR_LOG_SHIFT; 879 end = mem->memory_size / psize; 880 if (bmap_npages > end - bmap_start) { 881 bmap_npages = end - bmap_start; 882 } 883 start_delta /= psize; 884 885 /* 886 * Prepare the bitmap to clear dirty bits. Here we must guarantee 887 * that we won't clear any unknown dirty bits otherwise we might 888 * accidentally clear some set bits which are not yet synced from 889 * the kernel into QEMU's bitmap, then we'll lose track of the 890 * guest modifications upon those pages (which can directly lead 891 * to guest data loss or panic after migration). 892 * 893 * Layout of the KVMSlot.dirty_bmap: 894 * 895 * |<-------- bmap_npages -----------..>| 896 * [1] 897 * start_delta size 898 * |----------------|-------------|------------------|------------| 899 * ^ ^ ^ ^ 900 * | | | | 901 * start bmap_start (start) end 902 * of memslot of memslot 903 * 904 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 905 */ 906 907 assert(bmap_start % BITS_PER_LONG == 0); 908 /* We should never do log_clear before log_sync */ 909 assert(mem->dirty_bmap); 910 if (start_delta || bmap_npages - size / psize) { 911 /* Slow path - we need to manipulate a temp bitmap */ 912 bmap_clear = bitmap_new(bmap_npages); 913 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 914 bmap_start, start_delta + size / psize); 915 /* 916 * We need to fill the holes at start because that was not 917 * specified by the caller and we extended the bitmap only for 918 * 64 pages alignment 919 */ 920 bitmap_clear(bmap_clear, 0, start_delta); 921 d.dirty_bitmap = bmap_clear; 922 } else { 923 /* 924 * Fast path - both start and size align well with BITS_PER_LONG 925 * (or the end of memory slot) 926 */ 927 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 928 } 929 930 d.first_page = bmap_start; 931 /* It should never overflow. If it happens, say something */ 932 assert(bmap_npages <= UINT32_MAX); 933 d.num_pages = bmap_npages; 934 d.slot = mem->slot | (as_id << 16); 935 936 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 937 if (ret < 0 && ret != -ENOENT) { 938 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 939 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 940 __func__, d.slot, (uint64_t)d.first_page, 941 (uint32_t)d.num_pages, ret); 942 } else { 943 ret = 0; 944 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 945 } 946 947 /* 948 * After we have updated the remote dirty bitmap, we update the 949 * cached bitmap as well for the memslot, then if another user 950 * clears the same region we know we shouldn't clear it again on 951 * the remote otherwise it's data loss as well. 952 */ 953 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 954 size / psize); 955 /* This handles the NULL case well */ 956 g_free(bmap_clear); 957 return ret; 958 } 959 960 961 /** 962 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 963 * 964 * NOTE: this will be a no-op if we haven't enabled manual dirty log 965 * protection in the host kernel because in that case this operation 966 * will be done within log_sync(). 967 * 968 * @kml: the kvm memory listener 969 * @section: the memory range to clear dirty bitmap 970 */ 971 static int kvm_physical_log_clear(KVMMemoryListener *kml, 972 MemoryRegionSection *section) 973 { 974 KVMState *s = kvm_state; 975 uint64_t start, size, offset, count; 976 KVMSlot *mem; 977 int ret = 0, i; 978 979 if (!s->manual_dirty_log_protect) { 980 /* No need to do explicit clear */ 981 return ret; 982 } 983 984 start = section->offset_within_address_space; 985 size = int128_get64(section->size); 986 987 if (!size) { 988 /* Nothing more we can do... */ 989 return ret; 990 } 991 992 kvm_slots_lock(); 993 994 for (i = 0; i < s->nr_slots; i++) { 995 mem = &kml->slots[i]; 996 /* Discard slots that are empty or do not overlap the section */ 997 if (!mem->memory_size || 998 mem->start_addr > start + size - 1 || 999 start > mem->start_addr + mem->memory_size - 1) { 1000 continue; 1001 } 1002 1003 if (start >= mem->start_addr) { 1004 /* The slot starts before section or is aligned to it. */ 1005 offset = start - mem->start_addr; 1006 count = MIN(mem->memory_size - offset, size); 1007 } else { 1008 /* The slot starts after section. */ 1009 offset = 0; 1010 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1011 } 1012 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1013 if (ret < 0) { 1014 break; 1015 } 1016 } 1017 1018 kvm_slots_unlock(); 1019 1020 return ret; 1021 } 1022 1023 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1024 MemoryRegionSection *secion, 1025 hwaddr start, hwaddr size) 1026 { 1027 KVMState *s = kvm_state; 1028 1029 if (s->coalesced_mmio) { 1030 struct kvm_coalesced_mmio_zone zone; 1031 1032 zone.addr = start; 1033 zone.size = size; 1034 zone.pad = 0; 1035 1036 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1037 } 1038 } 1039 1040 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1041 MemoryRegionSection *secion, 1042 hwaddr start, hwaddr size) 1043 { 1044 KVMState *s = kvm_state; 1045 1046 if (s->coalesced_mmio) { 1047 struct kvm_coalesced_mmio_zone zone; 1048 1049 zone.addr = start; 1050 zone.size = size; 1051 zone.pad = 0; 1052 1053 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1054 } 1055 } 1056 1057 static void kvm_coalesce_pio_add(MemoryListener *listener, 1058 MemoryRegionSection *section, 1059 hwaddr start, hwaddr size) 1060 { 1061 KVMState *s = kvm_state; 1062 1063 if (s->coalesced_pio) { 1064 struct kvm_coalesced_mmio_zone zone; 1065 1066 zone.addr = start; 1067 zone.size = size; 1068 zone.pio = 1; 1069 1070 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1071 } 1072 } 1073 1074 static void kvm_coalesce_pio_del(MemoryListener *listener, 1075 MemoryRegionSection *section, 1076 hwaddr start, hwaddr size) 1077 { 1078 KVMState *s = kvm_state; 1079 1080 if (s->coalesced_pio) { 1081 struct kvm_coalesced_mmio_zone zone; 1082 1083 zone.addr = start; 1084 zone.size = size; 1085 zone.pio = 1; 1086 1087 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1088 } 1089 } 1090 1091 static MemoryListener kvm_coalesced_pio_listener = { 1092 .name = "kvm-coalesced-pio", 1093 .coalesced_io_add = kvm_coalesce_pio_add, 1094 .coalesced_io_del = kvm_coalesce_pio_del, 1095 }; 1096 1097 int kvm_check_extension(KVMState *s, unsigned int extension) 1098 { 1099 int ret; 1100 1101 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1102 if (ret < 0) { 1103 ret = 0; 1104 } 1105 1106 return ret; 1107 } 1108 1109 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1110 { 1111 int ret; 1112 1113 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1114 if (ret < 0) { 1115 /* VM wide version not implemented, use global one instead */ 1116 ret = kvm_check_extension(s, extension); 1117 } 1118 1119 return ret; 1120 } 1121 1122 typedef struct HWPoisonPage { 1123 ram_addr_t ram_addr; 1124 QLIST_ENTRY(HWPoisonPage) list; 1125 } HWPoisonPage; 1126 1127 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1128 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1129 1130 static void kvm_unpoison_all(void *param) 1131 { 1132 HWPoisonPage *page, *next_page; 1133 1134 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1135 QLIST_REMOVE(page, list); 1136 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1137 g_free(page); 1138 } 1139 } 1140 1141 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1142 { 1143 HWPoisonPage *page; 1144 1145 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1146 if (page->ram_addr == ram_addr) { 1147 return; 1148 } 1149 } 1150 page = g_new(HWPoisonPage, 1); 1151 page->ram_addr = ram_addr; 1152 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1153 } 1154 1155 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1156 { 1157 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1158 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1159 * endianness, but the memory core hands them in target endianness. 1160 * For example, PPC is always treated as big-endian even if running 1161 * on KVM and on PPC64LE. Correct here. 1162 */ 1163 switch (size) { 1164 case 2: 1165 val = bswap16(val); 1166 break; 1167 case 4: 1168 val = bswap32(val); 1169 break; 1170 } 1171 #endif 1172 return val; 1173 } 1174 1175 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1176 bool assign, uint32_t size, bool datamatch) 1177 { 1178 int ret; 1179 struct kvm_ioeventfd iofd = { 1180 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1181 .addr = addr, 1182 .len = size, 1183 .flags = 0, 1184 .fd = fd, 1185 }; 1186 1187 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1188 datamatch); 1189 if (!kvm_enabled()) { 1190 return -ENOSYS; 1191 } 1192 1193 if (datamatch) { 1194 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1195 } 1196 if (!assign) { 1197 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1198 } 1199 1200 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1201 1202 if (ret < 0) { 1203 return -errno; 1204 } 1205 1206 return 0; 1207 } 1208 1209 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1210 bool assign, uint32_t size, bool datamatch) 1211 { 1212 struct kvm_ioeventfd kick = { 1213 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1214 .addr = addr, 1215 .flags = KVM_IOEVENTFD_FLAG_PIO, 1216 .len = size, 1217 .fd = fd, 1218 }; 1219 int r; 1220 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1221 if (!kvm_enabled()) { 1222 return -ENOSYS; 1223 } 1224 if (datamatch) { 1225 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1226 } 1227 if (!assign) { 1228 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1229 } 1230 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1231 if (r < 0) { 1232 return r; 1233 } 1234 return 0; 1235 } 1236 1237 1238 static int kvm_check_many_ioeventfds(void) 1239 { 1240 /* Userspace can use ioeventfd for io notification. This requires a host 1241 * that supports eventfd(2) and an I/O thread; since eventfd does not 1242 * support SIGIO it cannot interrupt the vcpu. 1243 * 1244 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1245 * can avoid creating too many ioeventfds. 1246 */ 1247 #if defined(CONFIG_EVENTFD) 1248 int ioeventfds[7]; 1249 int i, ret = 0; 1250 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1251 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1252 if (ioeventfds[i] < 0) { 1253 break; 1254 } 1255 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1256 if (ret < 0) { 1257 close(ioeventfds[i]); 1258 break; 1259 } 1260 } 1261 1262 /* Decide whether many devices are supported or not */ 1263 ret = i == ARRAY_SIZE(ioeventfds); 1264 1265 while (i-- > 0) { 1266 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1267 close(ioeventfds[i]); 1268 } 1269 return ret; 1270 #else 1271 return 0; 1272 #endif 1273 } 1274 1275 static const KVMCapabilityInfo * 1276 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1277 { 1278 while (list->name) { 1279 if (!kvm_check_extension(s, list->value)) { 1280 return list; 1281 } 1282 list++; 1283 } 1284 return NULL; 1285 } 1286 1287 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1288 { 1289 g_assert( 1290 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1291 ); 1292 kvm_max_slot_size = max_slot_size; 1293 } 1294 1295 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1296 MemoryRegionSection *section, bool add) 1297 { 1298 KVMSlot *mem; 1299 int err; 1300 MemoryRegion *mr = section->mr; 1301 bool writable = !mr->readonly && !mr->rom_device; 1302 hwaddr start_addr, size, slot_size, mr_offset; 1303 ram_addr_t ram_start_offset; 1304 void *ram; 1305 1306 if (!memory_region_is_ram(mr)) { 1307 if (writable || !kvm_readonly_mem_allowed) { 1308 return; 1309 } else if (!mr->romd_mode) { 1310 /* If the memory device is not in romd_mode, then we actually want 1311 * to remove the kvm memory slot so all accesses will trap. */ 1312 add = false; 1313 } 1314 } 1315 1316 size = kvm_align_section(section, &start_addr); 1317 if (!size) { 1318 return; 1319 } 1320 1321 /* The offset of the kvmslot within the memory region */ 1322 mr_offset = section->offset_within_region + start_addr - 1323 section->offset_within_address_space; 1324 1325 /* use aligned delta to align the ram address and offset */ 1326 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1327 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1328 1329 kvm_slots_lock(); 1330 1331 if (!add) { 1332 do { 1333 slot_size = MIN(kvm_max_slot_size, size); 1334 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1335 if (!mem) { 1336 goto out; 1337 } 1338 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1339 /* 1340 * NOTE: We should be aware of the fact that here we're only 1341 * doing a best effort to sync dirty bits. No matter whether 1342 * we're using dirty log or dirty ring, we ignored two facts: 1343 * 1344 * (1) dirty bits can reside in hardware buffers (PML) 1345 * 1346 * (2) after we collected dirty bits here, pages can be dirtied 1347 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1348 * remove the slot. 1349 * 1350 * Not easy. Let's cross the fingers until it's fixed. 1351 */ 1352 if (kvm_state->kvm_dirty_ring_size) { 1353 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1354 } else { 1355 kvm_slot_get_dirty_log(kvm_state, mem); 1356 } 1357 kvm_slot_sync_dirty_pages(mem); 1358 } 1359 1360 /* unregister the slot */ 1361 g_free(mem->dirty_bmap); 1362 mem->dirty_bmap = NULL; 1363 mem->memory_size = 0; 1364 mem->flags = 0; 1365 err = kvm_set_user_memory_region(kml, mem, false); 1366 if (err) { 1367 fprintf(stderr, "%s: error unregistering slot: %s\n", 1368 __func__, strerror(-err)); 1369 abort(); 1370 } 1371 start_addr += slot_size; 1372 size -= slot_size; 1373 } while (size); 1374 goto out; 1375 } 1376 1377 /* register the new slot */ 1378 do { 1379 slot_size = MIN(kvm_max_slot_size, size); 1380 mem = kvm_alloc_slot(kml); 1381 mem->as_id = kml->as_id; 1382 mem->memory_size = slot_size; 1383 mem->start_addr = start_addr; 1384 mem->ram_start_offset = ram_start_offset; 1385 mem->ram = ram; 1386 mem->flags = kvm_mem_flags(mr); 1387 kvm_slot_init_dirty_bitmap(mem); 1388 err = kvm_set_user_memory_region(kml, mem, true); 1389 if (err) { 1390 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1391 strerror(-err)); 1392 abort(); 1393 } 1394 start_addr += slot_size; 1395 ram_start_offset += slot_size; 1396 ram += slot_size; 1397 size -= slot_size; 1398 } while (size); 1399 1400 out: 1401 kvm_slots_unlock(); 1402 } 1403 1404 static void *kvm_dirty_ring_reaper_thread(void *data) 1405 { 1406 KVMState *s = data; 1407 struct KVMDirtyRingReaper *r = &s->reaper; 1408 1409 rcu_register_thread(); 1410 1411 trace_kvm_dirty_ring_reaper("init"); 1412 1413 while (true) { 1414 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1415 trace_kvm_dirty_ring_reaper("wait"); 1416 /* 1417 * TODO: provide a smarter timeout rather than a constant? 1418 */ 1419 sleep(1); 1420 1421 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1422 if (dirtylimit_in_service()) { 1423 continue; 1424 } 1425 1426 trace_kvm_dirty_ring_reaper("wakeup"); 1427 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1428 1429 qemu_mutex_lock_iothread(); 1430 kvm_dirty_ring_reap(s, NULL); 1431 qemu_mutex_unlock_iothread(); 1432 1433 r->reaper_iteration++; 1434 } 1435 1436 trace_kvm_dirty_ring_reaper("exit"); 1437 1438 rcu_unregister_thread(); 1439 1440 return NULL; 1441 } 1442 1443 static int kvm_dirty_ring_reaper_init(KVMState *s) 1444 { 1445 struct KVMDirtyRingReaper *r = &s->reaper; 1446 1447 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1448 kvm_dirty_ring_reaper_thread, 1449 s, QEMU_THREAD_JOINABLE); 1450 1451 return 0; 1452 } 1453 1454 static void kvm_region_add(MemoryListener *listener, 1455 MemoryRegionSection *section) 1456 { 1457 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1458 1459 memory_region_ref(section->mr); 1460 kvm_set_phys_mem(kml, section, true); 1461 } 1462 1463 static void kvm_region_del(MemoryListener *listener, 1464 MemoryRegionSection *section) 1465 { 1466 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1467 1468 kvm_set_phys_mem(kml, section, false); 1469 memory_region_unref(section->mr); 1470 } 1471 1472 static void kvm_log_sync(MemoryListener *listener, 1473 MemoryRegionSection *section) 1474 { 1475 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1476 1477 kvm_slots_lock(); 1478 kvm_physical_sync_dirty_bitmap(kml, section); 1479 kvm_slots_unlock(); 1480 } 1481 1482 static void kvm_log_sync_global(MemoryListener *l) 1483 { 1484 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1485 KVMState *s = kvm_state; 1486 KVMSlot *mem; 1487 int i; 1488 1489 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1490 kvm_dirty_ring_flush(); 1491 1492 /* 1493 * TODO: make this faster when nr_slots is big while there are 1494 * only a few used slots (small VMs). 1495 */ 1496 kvm_slots_lock(); 1497 for (i = 0; i < s->nr_slots; i++) { 1498 mem = &kml->slots[i]; 1499 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1500 kvm_slot_sync_dirty_pages(mem); 1501 /* 1502 * This is not needed by KVM_GET_DIRTY_LOG because the 1503 * ioctl will unconditionally overwrite the whole region. 1504 * However kvm dirty ring has no such side effect. 1505 */ 1506 kvm_slot_reset_dirty_pages(mem); 1507 } 1508 } 1509 kvm_slots_unlock(); 1510 } 1511 1512 static void kvm_log_clear(MemoryListener *listener, 1513 MemoryRegionSection *section) 1514 { 1515 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1516 int r; 1517 1518 r = kvm_physical_log_clear(kml, section); 1519 if (r < 0) { 1520 error_report_once("%s: kvm log clear failed: mr=%s " 1521 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1522 section->mr->name, section->offset_within_region, 1523 int128_get64(section->size)); 1524 abort(); 1525 } 1526 } 1527 1528 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1529 MemoryRegionSection *section, 1530 bool match_data, uint64_t data, 1531 EventNotifier *e) 1532 { 1533 int fd = event_notifier_get_fd(e); 1534 int r; 1535 1536 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1537 data, true, int128_get64(section->size), 1538 match_data); 1539 if (r < 0) { 1540 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1541 __func__, strerror(-r), -r); 1542 abort(); 1543 } 1544 } 1545 1546 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1547 MemoryRegionSection *section, 1548 bool match_data, uint64_t data, 1549 EventNotifier *e) 1550 { 1551 int fd = event_notifier_get_fd(e); 1552 int r; 1553 1554 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1555 data, false, int128_get64(section->size), 1556 match_data); 1557 if (r < 0) { 1558 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1559 __func__, strerror(-r), -r); 1560 abort(); 1561 } 1562 } 1563 1564 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1565 MemoryRegionSection *section, 1566 bool match_data, uint64_t data, 1567 EventNotifier *e) 1568 { 1569 int fd = event_notifier_get_fd(e); 1570 int r; 1571 1572 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1573 data, true, int128_get64(section->size), 1574 match_data); 1575 if (r < 0) { 1576 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1577 __func__, strerror(-r), -r); 1578 abort(); 1579 } 1580 } 1581 1582 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1583 MemoryRegionSection *section, 1584 bool match_data, uint64_t data, 1585 EventNotifier *e) 1586 1587 { 1588 int fd = event_notifier_get_fd(e); 1589 int r; 1590 1591 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1592 data, false, int128_get64(section->size), 1593 match_data); 1594 if (r < 0) { 1595 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1596 __func__, strerror(-r), -r); 1597 abort(); 1598 } 1599 } 1600 1601 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1602 AddressSpace *as, int as_id, const char *name) 1603 { 1604 int i; 1605 1606 kml->slots = g_new0(KVMSlot, s->nr_slots); 1607 kml->as_id = as_id; 1608 1609 for (i = 0; i < s->nr_slots; i++) { 1610 kml->slots[i].slot = i; 1611 } 1612 1613 kml->listener.region_add = kvm_region_add; 1614 kml->listener.region_del = kvm_region_del; 1615 kml->listener.log_start = kvm_log_start; 1616 kml->listener.log_stop = kvm_log_stop; 1617 kml->listener.priority = 10; 1618 kml->listener.name = name; 1619 1620 if (s->kvm_dirty_ring_size) { 1621 kml->listener.log_sync_global = kvm_log_sync_global; 1622 } else { 1623 kml->listener.log_sync = kvm_log_sync; 1624 kml->listener.log_clear = kvm_log_clear; 1625 } 1626 1627 memory_listener_register(&kml->listener, as); 1628 1629 for (i = 0; i < s->nr_as; ++i) { 1630 if (!s->as[i].as) { 1631 s->as[i].as = as; 1632 s->as[i].ml = kml; 1633 break; 1634 } 1635 } 1636 } 1637 1638 static MemoryListener kvm_io_listener = { 1639 .name = "kvm-io", 1640 .eventfd_add = kvm_io_ioeventfd_add, 1641 .eventfd_del = kvm_io_ioeventfd_del, 1642 .priority = 10, 1643 }; 1644 1645 int kvm_set_irq(KVMState *s, int irq, int level) 1646 { 1647 struct kvm_irq_level event; 1648 int ret; 1649 1650 assert(kvm_async_interrupts_enabled()); 1651 1652 event.level = level; 1653 event.irq = irq; 1654 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1655 if (ret < 0) { 1656 perror("kvm_set_irq"); 1657 abort(); 1658 } 1659 1660 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1661 } 1662 1663 #ifdef KVM_CAP_IRQ_ROUTING 1664 typedef struct KVMMSIRoute { 1665 struct kvm_irq_routing_entry kroute; 1666 QTAILQ_ENTRY(KVMMSIRoute) entry; 1667 } KVMMSIRoute; 1668 1669 static void set_gsi(KVMState *s, unsigned int gsi) 1670 { 1671 set_bit(gsi, s->used_gsi_bitmap); 1672 } 1673 1674 static void clear_gsi(KVMState *s, unsigned int gsi) 1675 { 1676 clear_bit(gsi, s->used_gsi_bitmap); 1677 } 1678 1679 void kvm_init_irq_routing(KVMState *s) 1680 { 1681 int gsi_count, i; 1682 1683 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1684 if (gsi_count > 0) { 1685 /* Round up so we can search ints using ffs */ 1686 s->used_gsi_bitmap = bitmap_new(gsi_count); 1687 s->gsi_count = gsi_count; 1688 } 1689 1690 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1691 s->nr_allocated_irq_routes = 0; 1692 1693 if (!kvm_direct_msi_allowed) { 1694 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1695 QTAILQ_INIT(&s->msi_hashtab[i]); 1696 } 1697 } 1698 1699 kvm_arch_init_irq_routing(s); 1700 } 1701 1702 void kvm_irqchip_commit_routes(KVMState *s) 1703 { 1704 int ret; 1705 1706 if (kvm_gsi_direct_mapping()) { 1707 return; 1708 } 1709 1710 if (!kvm_gsi_routing_enabled()) { 1711 return; 1712 } 1713 1714 s->irq_routes->flags = 0; 1715 trace_kvm_irqchip_commit_routes(); 1716 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1717 assert(ret == 0); 1718 } 1719 1720 static void kvm_add_routing_entry(KVMState *s, 1721 struct kvm_irq_routing_entry *entry) 1722 { 1723 struct kvm_irq_routing_entry *new; 1724 int n, size; 1725 1726 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1727 n = s->nr_allocated_irq_routes * 2; 1728 if (n < 64) { 1729 n = 64; 1730 } 1731 size = sizeof(struct kvm_irq_routing); 1732 size += n * sizeof(*new); 1733 s->irq_routes = g_realloc(s->irq_routes, size); 1734 s->nr_allocated_irq_routes = n; 1735 } 1736 n = s->irq_routes->nr++; 1737 new = &s->irq_routes->entries[n]; 1738 1739 *new = *entry; 1740 1741 set_gsi(s, entry->gsi); 1742 } 1743 1744 static int kvm_update_routing_entry(KVMState *s, 1745 struct kvm_irq_routing_entry *new_entry) 1746 { 1747 struct kvm_irq_routing_entry *entry; 1748 int n; 1749 1750 for (n = 0; n < s->irq_routes->nr; n++) { 1751 entry = &s->irq_routes->entries[n]; 1752 if (entry->gsi != new_entry->gsi) { 1753 continue; 1754 } 1755 1756 if(!memcmp(entry, new_entry, sizeof *entry)) { 1757 return 0; 1758 } 1759 1760 *entry = *new_entry; 1761 1762 return 0; 1763 } 1764 1765 return -ESRCH; 1766 } 1767 1768 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1769 { 1770 struct kvm_irq_routing_entry e = {}; 1771 1772 assert(pin < s->gsi_count); 1773 1774 e.gsi = irq; 1775 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1776 e.flags = 0; 1777 e.u.irqchip.irqchip = irqchip; 1778 e.u.irqchip.pin = pin; 1779 kvm_add_routing_entry(s, &e); 1780 } 1781 1782 void kvm_irqchip_release_virq(KVMState *s, int virq) 1783 { 1784 struct kvm_irq_routing_entry *e; 1785 int i; 1786 1787 if (kvm_gsi_direct_mapping()) { 1788 return; 1789 } 1790 1791 for (i = 0; i < s->irq_routes->nr; i++) { 1792 e = &s->irq_routes->entries[i]; 1793 if (e->gsi == virq) { 1794 s->irq_routes->nr--; 1795 *e = s->irq_routes->entries[s->irq_routes->nr]; 1796 } 1797 } 1798 clear_gsi(s, virq); 1799 kvm_arch_release_virq_post(virq); 1800 trace_kvm_irqchip_release_virq(virq); 1801 } 1802 1803 void kvm_irqchip_add_change_notifier(Notifier *n) 1804 { 1805 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1806 } 1807 1808 void kvm_irqchip_remove_change_notifier(Notifier *n) 1809 { 1810 notifier_remove(n); 1811 } 1812 1813 void kvm_irqchip_change_notify(void) 1814 { 1815 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1816 } 1817 1818 static unsigned int kvm_hash_msi(uint32_t data) 1819 { 1820 /* This is optimized for IA32 MSI layout. However, no other arch shall 1821 * repeat the mistake of not providing a direct MSI injection API. */ 1822 return data & 0xff; 1823 } 1824 1825 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1826 { 1827 KVMMSIRoute *route, *next; 1828 unsigned int hash; 1829 1830 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1831 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1832 kvm_irqchip_release_virq(s, route->kroute.gsi); 1833 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1834 g_free(route); 1835 } 1836 } 1837 } 1838 1839 static int kvm_irqchip_get_virq(KVMState *s) 1840 { 1841 int next_virq; 1842 1843 /* 1844 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1845 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1846 * number can succeed even though a new route entry cannot be added. 1847 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1848 */ 1849 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1850 kvm_flush_dynamic_msi_routes(s); 1851 } 1852 1853 /* Return the lowest unused GSI in the bitmap */ 1854 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1855 if (next_virq >= s->gsi_count) { 1856 return -ENOSPC; 1857 } else { 1858 return next_virq; 1859 } 1860 } 1861 1862 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1863 { 1864 unsigned int hash = kvm_hash_msi(msg.data); 1865 KVMMSIRoute *route; 1866 1867 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1868 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1869 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1870 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1871 return route; 1872 } 1873 } 1874 return NULL; 1875 } 1876 1877 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1878 { 1879 struct kvm_msi msi; 1880 KVMMSIRoute *route; 1881 1882 if (kvm_direct_msi_allowed) { 1883 msi.address_lo = (uint32_t)msg.address; 1884 msi.address_hi = msg.address >> 32; 1885 msi.data = le32_to_cpu(msg.data); 1886 msi.flags = 0; 1887 memset(msi.pad, 0, sizeof(msi.pad)); 1888 1889 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1890 } 1891 1892 route = kvm_lookup_msi_route(s, msg); 1893 if (!route) { 1894 int virq; 1895 1896 virq = kvm_irqchip_get_virq(s); 1897 if (virq < 0) { 1898 return virq; 1899 } 1900 1901 route = g_new0(KVMMSIRoute, 1); 1902 route->kroute.gsi = virq; 1903 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1904 route->kroute.flags = 0; 1905 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1906 route->kroute.u.msi.address_hi = msg.address >> 32; 1907 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1908 1909 kvm_add_routing_entry(s, &route->kroute); 1910 kvm_irqchip_commit_routes(s); 1911 1912 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1913 entry); 1914 } 1915 1916 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1917 1918 return kvm_set_irq(s, route->kroute.gsi, 1); 1919 } 1920 1921 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 1922 { 1923 struct kvm_irq_routing_entry kroute = {}; 1924 int virq; 1925 KVMState *s = c->s; 1926 MSIMessage msg = {0, 0}; 1927 1928 if (pci_available && dev) { 1929 msg = pci_get_msi_message(dev, vector); 1930 } 1931 1932 if (kvm_gsi_direct_mapping()) { 1933 return kvm_arch_msi_data_to_gsi(msg.data); 1934 } 1935 1936 if (!kvm_gsi_routing_enabled()) { 1937 return -ENOSYS; 1938 } 1939 1940 virq = kvm_irqchip_get_virq(s); 1941 if (virq < 0) { 1942 return virq; 1943 } 1944 1945 kroute.gsi = virq; 1946 kroute.type = KVM_IRQ_ROUTING_MSI; 1947 kroute.flags = 0; 1948 kroute.u.msi.address_lo = (uint32_t)msg.address; 1949 kroute.u.msi.address_hi = msg.address >> 32; 1950 kroute.u.msi.data = le32_to_cpu(msg.data); 1951 if (pci_available && kvm_msi_devid_required()) { 1952 kroute.flags = KVM_MSI_VALID_DEVID; 1953 kroute.u.msi.devid = pci_requester_id(dev); 1954 } 1955 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1956 kvm_irqchip_release_virq(s, virq); 1957 return -EINVAL; 1958 } 1959 1960 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1961 vector, virq); 1962 1963 kvm_add_routing_entry(s, &kroute); 1964 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1965 c->changes++; 1966 1967 return virq; 1968 } 1969 1970 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1971 PCIDevice *dev) 1972 { 1973 struct kvm_irq_routing_entry kroute = {}; 1974 1975 if (kvm_gsi_direct_mapping()) { 1976 return 0; 1977 } 1978 1979 if (!kvm_irqchip_in_kernel()) { 1980 return -ENOSYS; 1981 } 1982 1983 kroute.gsi = virq; 1984 kroute.type = KVM_IRQ_ROUTING_MSI; 1985 kroute.flags = 0; 1986 kroute.u.msi.address_lo = (uint32_t)msg.address; 1987 kroute.u.msi.address_hi = msg.address >> 32; 1988 kroute.u.msi.data = le32_to_cpu(msg.data); 1989 if (pci_available && kvm_msi_devid_required()) { 1990 kroute.flags = KVM_MSI_VALID_DEVID; 1991 kroute.u.msi.devid = pci_requester_id(dev); 1992 } 1993 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1994 return -EINVAL; 1995 } 1996 1997 trace_kvm_irqchip_update_msi_route(virq); 1998 1999 return kvm_update_routing_entry(s, &kroute); 2000 } 2001 2002 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2003 EventNotifier *resample, int virq, 2004 bool assign) 2005 { 2006 int fd = event_notifier_get_fd(event); 2007 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2008 2009 struct kvm_irqfd irqfd = { 2010 .fd = fd, 2011 .gsi = virq, 2012 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2013 }; 2014 2015 if (rfd != -1) { 2016 assert(assign); 2017 if (kvm_irqchip_is_split()) { 2018 /* 2019 * When the slow irqchip (e.g. IOAPIC) is in the 2020 * userspace, KVM kernel resamplefd will not work because 2021 * the EOI of the interrupt will be delivered to userspace 2022 * instead, so the KVM kernel resamplefd kick will be 2023 * skipped. The userspace here mimics what the kernel 2024 * provides with resamplefd, remember the resamplefd and 2025 * kick it when we receive EOI of this IRQ. 2026 * 2027 * This is hackery because IOAPIC is mostly bypassed 2028 * (except EOI broadcasts) when irqfd is used. However 2029 * this can bring much performance back for split irqchip 2030 * with INTx IRQs (for VFIO, this gives 93% perf of the 2031 * full fast path, which is 46% perf boost comparing to 2032 * the INTx slow path). 2033 */ 2034 kvm_resample_fd_insert(virq, resample); 2035 } else { 2036 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2037 irqfd.resamplefd = rfd; 2038 } 2039 } else if (!assign) { 2040 if (kvm_irqchip_is_split()) { 2041 kvm_resample_fd_remove(virq); 2042 } 2043 } 2044 2045 if (!kvm_irqfds_enabled()) { 2046 return -ENOSYS; 2047 } 2048 2049 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2050 } 2051 2052 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2053 { 2054 struct kvm_irq_routing_entry kroute = {}; 2055 int virq; 2056 2057 if (!kvm_gsi_routing_enabled()) { 2058 return -ENOSYS; 2059 } 2060 2061 virq = kvm_irqchip_get_virq(s); 2062 if (virq < 0) { 2063 return virq; 2064 } 2065 2066 kroute.gsi = virq; 2067 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2068 kroute.flags = 0; 2069 kroute.u.adapter.summary_addr = adapter->summary_addr; 2070 kroute.u.adapter.ind_addr = adapter->ind_addr; 2071 kroute.u.adapter.summary_offset = adapter->summary_offset; 2072 kroute.u.adapter.ind_offset = adapter->ind_offset; 2073 kroute.u.adapter.adapter_id = adapter->adapter_id; 2074 2075 kvm_add_routing_entry(s, &kroute); 2076 2077 return virq; 2078 } 2079 2080 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2081 { 2082 struct kvm_irq_routing_entry kroute = {}; 2083 int virq; 2084 2085 if (!kvm_gsi_routing_enabled()) { 2086 return -ENOSYS; 2087 } 2088 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2089 return -ENOSYS; 2090 } 2091 virq = kvm_irqchip_get_virq(s); 2092 if (virq < 0) { 2093 return virq; 2094 } 2095 2096 kroute.gsi = virq; 2097 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2098 kroute.flags = 0; 2099 kroute.u.hv_sint.vcpu = vcpu; 2100 kroute.u.hv_sint.sint = sint; 2101 2102 kvm_add_routing_entry(s, &kroute); 2103 kvm_irqchip_commit_routes(s); 2104 2105 return virq; 2106 } 2107 2108 #else /* !KVM_CAP_IRQ_ROUTING */ 2109 2110 void kvm_init_irq_routing(KVMState *s) 2111 { 2112 } 2113 2114 void kvm_irqchip_release_virq(KVMState *s, int virq) 2115 { 2116 } 2117 2118 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2119 { 2120 abort(); 2121 } 2122 2123 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2124 { 2125 return -ENOSYS; 2126 } 2127 2128 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2129 { 2130 return -ENOSYS; 2131 } 2132 2133 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2134 { 2135 return -ENOSYS; 2136 } 2137 2138 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2139 EventNotifier *resample, int virq, 2140 bool assign) 2141 { 2142 abort(); 2143 } 2144 2145 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2146 { 2147 return -ENOSYS; 2148 } 2149 #endif /* !KVM_CAP_IRQ_ROUTING */ 2150 2151 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2152 EventNotifier *rn, int virq) 2153 { 2154 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2155 } 2156 2157 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2158 int virq) 2159 { 2160 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2161 } 2162 2163 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2164 EventNotifier *rn, qemu_irq irq) 2165 { 2166 gpointer key, gsi; 2167 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2168 2169 if (!found) { 2170 return -ENXIO; 2171 } 2172 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2173 } 2174 2175 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2176 qemu_irq irq) 2177 { 2178 gpointer key, gsi; 2179 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2180 2181 if (!found) { 2182 return -ENXIO; 2183 } 2184 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2185 } 2186 2187 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2188 { 2189 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2190 } 2191 2192 static void kvm_irqchip_create(KVMState *s) 2193 { 2194 int ret; 2195 2196 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2197 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2198 ; 2199 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2200 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2201 if (ret < 0) { 2202 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2203 exit(1); 2204 } 2205 } else { 2206 return; 2207 } 2208 2209 /* First probe and see if there's a arch-specific hook to create the 2210 * in-kernel irqchip for us */ 2211 ret = kvm_arch_irqchip_create(s); 2212 if (ret == 0) { 2213 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2214 error_report("Split IRQ chip mode not supported."); 2215 exit(1); 2216 } else { 2217 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2218 } 2219 } 2220 if (ret < 0) { 2221 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2222 exit(1); 2223 } 2224 2225 kvm_kernel_irqchip = true; 2226 /* If we have an in-kernel IRQ chip then we must have asynchronous 2227 * interrupt delivery (though the reverse is not necessarily true) 2228 */ 2229 kvm_async_interrupts_allowed = true; 2230 kvm_halt_in_kernel_allowed = true; 2231 2232 kvm_init_irq_routing(s); 2233 2234 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2235 } 2236 2237 /* Find number of supported CPUs using the recommended 2238 * procedure from the kernel API documentation to cope with 2239 * older kernels that may be missing capabilities. 2240 */ 2241 static int kvm_recommended_vcpus(KVMState *s) 2242 { 2243 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2244 return (ret) ? ret : 4; 2245 } 2246 2247 static int kvm_max_vcpus(KVMState *s) 2248 { 2249 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2250 return (ret) ? ret : kvm_recommended_vcpus(s); 2251 } 2252 2253 static int kvm_max_vcpu_id(KVMState *s) 2254 { 2255 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2256 return (ret) ? ret : kvm_max_vcpus(s); 2257 } 2258 2259 bool kvm_vcpu_id_is_valid(int vcpu_id) 2260 { 2261 KVMState *s = KVM_STATE(current_accel()); 2262 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2263 } 2264 2265 bool kvm_dirty_ring_enabled(void) 2266 { 2267 return kvm_state->kvm_dirty_ring_size ? true : false; 2268 } 2269 2270 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2271 strList *names, strList *targets, Error **errp); 2272 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2273 2274 uint32_t kvm_dirty_ring_size(void) 2275 { 2276 return kvm_state->kvm_dirty_ring_size; 2277 } 2278 2279 static int kvm_init(MachineState *ms) 2280 { 2281 MachineClass *mc = MACHINE_GET_CLASS(ms); 2282 static const char upgrade_note[] = 2283 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2284 "(see http://sourceforge.net/projects/kvm).\n"; 2285 struct { 2286 const char *name; 2287 int num; 2288 } num_cpus[] = { 2289 { "SMP", ms->smp.cpus }, 2290 { "hotpluggable", ms->smp.max_cpus }, 2291 { NULL, } 2292 }, *nc = num_cpus; 2293 int soft_vcpus_limit, hard_vcpus_limit; 2294 KVMState *s; 2295 const KVMCapabilityInfo *missing_cap; 2296 int ret; 2297 int type = 0; 2298 uint64_t dirty_log_manual_caps; 2299 2300 qemu_mutex_init(&kml_slots_lock); 2301 2302 s = KVM_STATE(ms->accelerator); 2303 2304 /* 2305 * On systems where the kernel can support different base page 2306 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2307 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2308 * page size for the system though. 2309 */ 2310 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2311 2312 s->sigmask_len = 8; 2313 2314 #ifdef KVM_CAP_SET_GUEST_DEBUG 2315 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2316 #endif 2317 QLIST_INIT(&s->kvm_parked_vcpus); 2318 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2319 if (s->fd == -1) { 2320 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2321 ret = -errno; 2322 goto err; 2323 } 2324 2325 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2326 if (ret < KVM_API_VERSION) { 2327 if (ret >= 0) { 2328 ret = -EINVAL; 2329 } 2330 fprintf(stderr, "kvm version too old\n"); 2331 goto err; 2332 } 2333 2334 if (ret > KVM_API_VERSION) { 2335 ret = -EINVAL; 2336 fprintf(stderr, "kvm version not supported\n"); 2337 goto err; 2338 } 2339 2340 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2341 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2342 2343 /* If unspecified, use the default value */ 2344 if (!s->nr_slots) { 2345 s->nr_slots = 32; 2346 } 2347 2348 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2349 if (s->nr_as <= 1) { 2350 s->nr_as = 1; 2351 } 2352 s->as = g_new0(struct KVMAs, s->nr_as); 2353 2354 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2355 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2356 "kvm-type", 2357 &error_abort); 2358 type = mc->kvm_type(ms, kvm_type); 2359 } else if (mc->kvm_type) { 2360 type = mc->kvm_type(ms, NULL); 2361 } 2362 2363 do { 2364 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2365 } while (ret == -EINTR); 2366 2367 if (ret < 0) { 2368 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2369 strerror(-ret)); 2370 2371 #ifdef TARGET_S390X 2372 if (ret == -EINVAL) { 2373 fprintf(stderr, 2374 "Host kernel setup problem detected. Please verify:\n"); 2375 fprintf(stderr, "- for kernels supporting the switch_amode or" 2376 " user_mode parameters, whether\n"); 2377 fprintf(stderr, 2378 " user space is running in primary address space\n"); 2379 fprintf(stderr, 2380 "- for kernels supporting the vm.allocate_pgste sysctl, " 2381 "whether it is enabled\n"); 2382 } 2383 #elif defined(TARGET_PPC) 2384 if (ret == -EINVAL) { 2385 fprintf(stderr, 2386 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2387 (type == 2) ? "pr" : "hv"); 2388 } 2389 #endif 2390 goto err; 2391 } 2392 2393 s->vmfd = ret; 2394 2395 /* check the vcpu limits */ 2396 soft_vcpus_limit = kvm_recommended_vcpus(s); 2397 hard_vcpus_limit = kvm_max_vcpus(s); 2398 2399 while (nc->name) { 2400 if (nc->num > soft_vcpus_limit) { 2401 warn_report("Number of %s cpus requested (%d) exceeds " 2402 "the recommended cpus supported by KVM (%d)", 2403 nc->name, nc->num, soft_vcpus_limit); 2404 2405 if (nc->num > hard_vcpus_limit) { 2406 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2407 "the maximum cpus supported by KVM (%d)\n", 2408 nc->name, nc->num, hard_vcpus_limit); 2409 exit(1); 2410 } 2411 } 2412 nc++; 2413 } 2414 2415 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2416 if (!missing_cap) { 2417 missing_cap = 2418 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2419 } 2420 if (missing_cap) { 2421 ret = -EINVAL; 2422 fprintf(stderr, "kvm does not support %s\n%s", 2423 missing_cap->name, upgrade_note); 2424 goto err; 2425 } 2426 2427 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2428 s->coalesced_pio = s->coalesced_mmio && 2429 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2430 2431 /* 2432 * Enable KVM dirty ring if supported, otherwise fall back to 2433 * dirty logging mode 2434 */ 2435 if (s->kvm_dirty_ring_size > 0) { 2436 uint64_t ring_bytes; 2437 2438 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn); 2439 2440 /* Read the max supported pages */ 2441 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING); 2442 if (ret > 0) { 2443 if (ring_bytes > ret) { 2444 error_report("KVM dirty ring size %" PRIu32 " too big " 2445 "(maximum is %ld). Please use a smaller value.", 2446 s->kvm_dirty_ring_size, 2447 (long)ret / sizeof(struct kvm_dirty_gfn)); 2448 ret = -EINVAL; 2449 goto err; 2450 } 2451 2452 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes); 2453 if (ret) { 2454 error_report("Enabling of KVM dirty ring failed: %s. " 2455 "Suggested minimum value is 1024.", strerror(-ret)); 2456 goto err; 2457 } 2458 2459 s->kvm_dirty_ring_bytes = ring_bytes; 2460 } else { 2461 warn_report("KVM dirty ring not available, using bitmap method"); 2462 s->kvm_dirty_ring_size = 0; 2463 } 2464 } 2465 2466 /* 2467 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2468 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2469 * page is wr-protected initially, which is against how kvm dirty ring is 2470 * usage - kvm dirty ring requires all pages are wr-protected at the very 2471 * beginning. Enabling this feature for dirty ring causes data corruption. 2472 * 2473 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2474 * we may expect a higher stall time when starting the migration. In the 2475 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2476 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2477 * guest pages. 2478 */ 2479 if (!s->kvm_dirty_ring_size) { 2480 dirty_log_manual_caps = 2481 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2482 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2483 KVM_DIRTY_LOG_INITIALLY_SET); 2484 s->manual_dirty_log_protect = dirty_log_manual_caps; 2485 if (dirty_log_manual_caps) { 2486 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2487 dirty_log_manual_caps); 2488 if (ret) { 2489 warn_report("Trying to enable capability %"PRIu64" of " 2490 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2491 "Falling back to the legacy mode. ", 2492 dirty_log_manual_caps); 2493 s->manual_dirty_log_protect = 0; 2494 } 2495 } 2496 } 2497 2498 #ifdef KVM_CAP_VCPU_EVENTS 2499 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2500 #endif 2501 2502 s->robust_singlestep = 2503 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2504 2505 #ifdef KVM_CAP_DEBUGREGS 2506 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2507 #endif 2508 2509 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2510 2511 #ifdef KVM_CAP_IRQ_ROUTING 2512 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2513 #endif 2514 2515 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2516 2517 s->irq_set_ioctl = KVM_IRQ_LINE; 2518 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2519 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2520 } 2521 2522 kvm_readonly_mem_allowed = 2523 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2524 2525 kvm_eventfds_allowed = 2526 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2527 2528 kvm_irqfds_allowed = 2529 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2530 2531 kvm_resamplefds_allowed = 2532 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2533 2534 kvm_vm_attributes_allowed = 2535 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2536 2537 kvm_ioeventfd_any_length_allowed = 2538 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2539 2540 #ifdef KVM_CAP_SET_GUEST_DEBUG 2541 kvm_has_guest_debug = 2542 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2543 #endif 2544 2545 kvm_sstep_flags = 0; 2546 if (kvm_has_guest_debug) { 2547 kvm_sstep_flags = SSTEP_ENABLE; 2548 2549 #if defined KVM_CAP_SET_GUEST_DEBUG2 2550 int guest_debug_flags = 2551 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2552 2553 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2554 kvm_sstep_flags |= SSTEP_NOIRQ; 2555 } 2556 #endif 2557 } 2558 2559 kvm_state = s; 2560 2561 ret = kvm_arch_init(ms, s); 2562 if (ret < 0) { 2563 goto err; 2564 } 2565 2566 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2567 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2568 } 2569 2570 qemu_register_reset(kvm_unpoison_all, NULL); 2571 2572 if (s->kernel_irqchip_allowed) { 2573 kvm_irqchip_create(s); 2574 } 2575 2576 if (kvm_eventfds_allowed) { 2577 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2578 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2579 } 2580 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2581 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2582 2583 kvm_memory_listener_register(s, &s->memory_listener, 2584 &address_space_memory, 0, "kvm-memory"); 2585 if (kvm_eventfds_allowed) { 2586 memory_listener_register(&kvm_io_listener, 2587 &address_space_io); 2588 } 2589 memory_listener_register(&kvm_coalesced_pio_listener, 2590 &address_space_io); 2591 2592 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2593 2594 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2595 if (!s->sync_mmu) { 2596 ret = ram_block_discard_disable(true); 2597 assert(!ret); 2598 } 2599 2600 if (s->kvm_dirty_ring_size) { 2601 ret = kvm_dirty_ring_reaper_init(s); 2602 if (ret) { 2603 goto err; 2604 } 2605 } 2606 2607 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2608 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2609 query_stats_schemas_cb); 2610 } 2611 2612 return 0; 2613 2614 err: 2615 assert(ret < 0); 2616 if (s->vmfd >= 0) { 2617 close(s->vmfd); 2618 } 2619 if (s->fd != -1) { 2620 close(s->fd); 2621 } 2622 g_free(s->memory_listener.slots); 2623 2624 return ret; 2625 } 2626 2627 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2628 { 2629 s->sigmask_len = sigmask_len; 2630 } 2631 2632 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2633 int size, uint32_t count) 2634 { 2635 int i; 2636 uint8_t *ptr = data; 2637 2638 for (i = 0; i < count; i++) { 2639 address_space_rw(&address_space_io, port, attrs, 2640 ptr, size, 2641 direction == KVM_EXIT_IO_OUT); 2642 ptr += size; 2643 } 2644 } 2645 2646 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2647 { 2648 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2649 run->internal.suberror); 2650 2651 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2652 int i; 2653 2654 for (i = 0; i < run->internal.ndata; ++i) { 2655 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2656 i, (uint64_t)run->internal.data[i]); 2657 } 2658 } 2659 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2660 fprintf(stderr, "emulation failure\n"); 2661 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2662 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2663 return EXCP_INTERRUPT; 2664 } 2665 } 2666 /* FIXME: Should trigger a qmp message to let management know 2667 * something went wrong. 2668 */ 2669 return -1; 2670 } 2671 2672 void kvm_flush_coalesced_mmio_buffer(void) 2673 { 2674 KVMState *s = kvm_state; 2675 2676 if (s->coalesced_flush_in_progress) { 2677 return; 2678 } 2679 2680 s->coalesced_flush_in_progress = true; 2681 2682 if (s->coalesced_mmio_ring) { 2683 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2684 while (ring->first != ring->last) { 2685 struct kvm_coalesced_mmio *ent; 2686 2687 ent = &ring->coalesced_mmio[ring->first]; 2688 2689 if (ent->pio == 1) { 2690 address_space_write(&address_space_io, ent->phys_addr, 2691 MEMTXATTRS_UNSPECIFIED, ent->data, 2692 ent->len); 2693 } else { 2694 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2695 } 2696 smp_wmb(); 2697 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2698 } 2699 } 2700 2701 s->coalesced_flush_in_progress = false; 2702 } 2703 2704 bool kvm_cpu_check_are_resettable(void) 2705 { 2706 return kvm_arch_cpu_check_are_resettable(); 2707 } 2708 2709 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2710 { 2711 if (!cpu->vcpu_dirty) { 2712 kvm_arch_get_registers(cpu); 2713 cpu->vcpu_dirty = true; 2714 } 2715 } 2716 2717 void kvm_cpu_synchronize_state(CPUState *cpu) 2718 { 2719 if (!cpu->vcpu_dirty) { 2720 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2721 } 2722 } 2723 2724 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2725 { 2726 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2727 cpu->vcpu_dirty = false; 2728 } 2729 2730 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2731 { 2732 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2733 } 2734 2735 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2736 { 2737 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2738 cpu->vcpu_dirty = false; 2739 } 2740 2741 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2742 { 2743 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2744 } 2745 2746 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2747 { 2748 cpu->vcpu_dirty = true; 2749 } 2750 2751 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2752 { 2753 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2754 } 2755 2756 #ifdef KVM_HAVE_MCE_INJECTION 2757 static __thread void *pending_sigbus_addr; 2758 static __thread int pending_sigbus_code; 2759 static __thread bool have_sigbus_pending; 2760 #endif 2761 2762 static void kvm_cpu_kick(CPUState *cpu) 2763 { 2764 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2765 } 2766 2767 static void kvm_cpu_kick_self(void) 2768 { 2769 if (kvm_immediate_exit) { 2770 kvm_cpu_kick(current_cpu); 2771 } else { 2772 qemu_cpu_kick_self(); 2773 } 2774 } 2775 2776 static void kvm_eat_signals(CPUState *cpu) 2777 { 2778 struct timespec ts = { 0, 0 }; 2779 siginfo_t siginfo; 2780 sigset_t waitset; 2781 sigset_t chkset; 2782 int r; 2783 2784 if (kvm_immediate_exit) { 2785 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2786 /* Write kvm_run->immediate_exit before the cpu->exit_request 2787 * write in kvm_cpu_exec. 2788 */ 2789 smp_wmb(); 2790 return; 2791 } 2792 2793 sigemptyset(&waitset); 2794 sigaddset(&waitset, SIG_IPI); 2795 2796 do { 2797 r = sigtimedwait(&waitset, &siginfo, &ts); 2798 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2799 perror("sigtimedwait"); 2800 exit(1); 2801 } 2802 2803 r = sigpending(&chkset); 2804 if (r == -1) { 2805 perror("sigpending"); 2806 exit(1); 2807 } 2808 } while (sigismember(&chkset, SIG_IPI)); 2809 } 2810 2811 int kvm_cpu_exec(CPUState *cpu) 2812 { 2813 struct kvm_run *run = cpu->kvm_run; 2814 int ret, run_ret; 2815 2816 DPRINTF("kvm_cpu_exec()\n"); 2817 2818 if (kvm_arch_process_async_events(cpu)) { 2819 qatomic_set(&cpu->exit_request, 0); 2820 return EXCP_HLT; 2821 } 2822 2823 qemu_mutex_unlock_iothread(); 2824 cpu_exec_start(cpu); 2825 2826 do { 2827 MemTxAttrs attrs; 2828 2829 if (cpu->vcpu_dirty) { 2830 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2831 cpu->vcpu_dirty = false; 2832 } 2833 2834 kvm_arch_pre_run(cpu, run); 2835 if (qatomic_read(&cpu->exit_request)) { 2836 DPRINTF("interrupt exit requested\n"); 2837 /* 2838 * KVM requires us to reenter the kernel after IO exits to complete 2839 * instruction emulation. This self-signal will ensure that we 2840 * leave ASAP again. 2841 */ 2842 kvm_cpu_kick_self(); 2843 } 2844 2845 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2846 * Matching barrier in kvm_eat_signals. 2847 */ 2848 smp_rmb(); 2849 2850 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2851 2852 attrs = kvm_arch_post_run(cpu, run); 2853 2854 #ifdef KVM_HAVE_MCE_INJECTION 2855 if (unlikely(have_sigbus_pending)) { 2856 qemu_mutex_lock_iothread(); 2857 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2858 pending_sigbus_addr); 2859 have_sigbus_pending = false; 2860 qemu_mutex_unlock_iothread(); 2861 } 2862 #endif 2863 2864 if (run_ret < 0) { 2865 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2866 DPRINTF("io window exit\n"); 2867 kvm_eat_signals(cpu); 2868 ret = EXCP_INTERRUPT; 2869 break; 2870 } 2871 fprintf(stderr, "error: kvm run failed %s\n", 2872 strerror(-run_ret)); 2873 #ifdef TARGET_PPC 2874 if (run_ret == -EBUSY) { 2875 fprintf(stderr, 2876 "This is probably because your SMT is enabled.\n" 2877 "VCPU can only run on primary threads with all " 2878 "secondary threads offline.\n"); 2879 } 2880 #endif 2881 ret = -1; 2882 break; 2883 } 2884 2885 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2886 switch (run->exit_reason) { 2887 case KVM_EXIT_IO: 2888 DPRINTF("handle_io\n"); 2889 /* Called outside BQL */ 2890 kvm_handle_io(run->io.port, attrs, 2891 (uint8_t *)run + run->io.data_offset, 2892 run->io.direction, 2893 run->io.size, 2894 run->io.count); 2895 ret = 0; 2896 break; 2897 case KVM_EXIT_MMIO: 2898 DPRINTF("handle_mmio\n"); 2899 /* Called outside BQL */ 2900 address_space_rw(&address_space_memory, 2901 run->mmio.phys_addr, attrs, 2902 run->mmio.data, 2903 run->mmio.len, 2904 run->mmio.is_write); 2905 ret = 0; 2906 break; 2907 case KVM_EXIT_IRQ_WINDOW_OPEN: 2908 DPRINTF("irq_window_open\n"); 2909 ret = EXCP_INTERRUPT; 2910 break; 2911 case KVM_EXIT_SHUTDOWN: 2912 DPRINTF("shutdown\n"); 2913 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2914 ret = EXCP_INTERRUPT; 2915 break; 2916 case KVM_EXIT_UNKNOWN: 2917 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2918 (uint64_t)run->hw.hardware_exit_reason); 2919 ret = -1; 2920 break; 2921 case KVM_EXIT_INTERNAL_ERROR: 2922 ret = kvm_handle_internal_error(cpu, run); 2923 break; 2924 case KVM_EXIT_DIRTY_RING_FULL: 2925 /* 2926 * We shouldn't continue if the dirty ring of this vcpu is 2927 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2928 */ 2929 trace_kvm_dirty_ring_full(cpu->cpu_index); 2930 qemu_mutex_lock_iothread(); 2931 /* 2932 * We throttle vCPU by making it sleep once it exit from kernel 2933 * due to dirty ring full. In the dirtylimit scenario, reaping 2934 * all vCPUs after a single vCPU dirty ring get full result in 2935 * the miss of sleep, so just reap the ring-fulled vCPU. 2936 */ 2937 if (dirtylimit_in_service()) { 2938 kvm_dirty_ring_reap(kvm_state, cpu); 2939 } else { 2940 kvm_dirty_ring_reap(kvm_state, NULL); 2941 } 2942 qemu_mutex_unlock_iothread(); 2943 dirtylimit_vcpu_execute(cpu); 2944 ret = 0; 2945 break; 2946 case KVM_EXIT_SYSTEM_EVENT: 2947 switch (run->system_event.type) { 2948 case KVM_SYSTEM_EVENT_SHUTDOWN: 2949 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2950 ret = EXCP_INTERRUPT; 2951 break; 2952 case KVM_SYSTEM_EVENT_RESET: 2953 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2954 ret = EXCP_INTERRUPT; 2955 break; 2956 case KVM_SYSTEM_EVENT_CRASH: 2957 kvm_cpu_synchronize_state(cpu); 2958 qemu_mutex_lock_iothread(); 2959 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2960 qemu_mutex_unlock_iothread(); 2961 ret = 0; 2962 break; 2963 default: 2964 DPRINTF("kvm_arch_handle_exit\n"); 2965 ret = kvm_arch_handle_exit(cpu, run); 2966 break; 2967 } 2968 break; 2969 default: 2970 DPRINTF("kvm_arch_handle_exit\n"); 2971 ret = kvm_arch_handle_exit(cpu, run); 2972 break; 2973 } 2974 } while (ret == 0); 2975 2976 cpu_exec_end(cpu); 2977 qemu_mutex_lock_iothread(); 2978 2979 if (ret < 0) { 2980 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2981 vm_stop(RUN_STATE_INTERNAL_ERROR); 2982 } 2983 2984 qatomic_set(&cpu->exit_request, 0); 2985 return ret; 2986 } 2987 2988 int kvm_ioctl(KVMState *s, int type, ...) 2989 { 2990 int ret; 2991 void *arg; 2992 va_list ap; 2993 2994 va_start(ap, type); 2995 arg = va_arg(ap, void *); 2996 va_end(ap); 2997 2998 trace_kvm_ioctl(type, arg); 2999 ret = ioctl(s->fd, type, arg); 3000 if (ret == -1) { 3001 ret = -errno; 3002 } 3003 return ret; 3004 } 3005 3006 int kvm_vm_ioctl(KVMState *s, int type, ...) 3007 { 3008 int ret; 3009 void *arg; 3010 va_list ap; 3011 3012 va_start(ap, type); 3013 arg = va_arg(ap, void *); 3014 va_end(ap); 3015 3016 trace_kvm_vm_ioctl(type, arg); 3017 ret = ioctl(s->vmfd, type, arg); 3018 if (ret == -1) { 3019 ret = -errno; 3020 } 3021 return ret; 3022 } 3023 3024 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3025 { 3026 int ret; 3027 void *arg; 3028 va_list ap; 3029 3030 va_start(ap, type); 3031 arg = va_arg(ap, void *); 3032 va_end(ap); 3033 3034 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3035 ret = ioctl(cpu->kvm_fd, type, arg); 3036 if (ret == -1) { 3037 ret = -errno; 3038 } 3039 return ret; 3040 } 3041 3042 int kvm_device_ioctl(int fd, int type, ...) 3043 { 3044 int ret; 3045 void *arg; 3046 va_list ap; 3047 3048 va_start(ap, type); 3049 arg = va_arg(ap, void *); 3050 va_end(ap); 3051 3052 trace_kvm_device_ioctl(fd, type, arg); 3053 ret = ioctl(fd, type, arg); 3054 if (ret == -1) { 3055 ret = -errno; 3056 } 3057 return ret; 3058 } 3059 3060 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3061 { 3062 int ret; 3063 struct kvm_device_attr attribute = { 3064 .group = group, 3065 .attr = attr, 3066 }; 3067 3068 if (!kvm_vm_attributes_allowed) { 3069 return 0; 3070 } 3071 3072 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3073 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3074 return ret ? 0 : 1; 3075 } 3076 3077 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3078 { 3079 struct kvm_device_attr attribute = { 3080 .group = group, 3081 .attr = attr, 3082 .flags = 0, 3083 }; 3084 3085 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3086 } 3087 3088 int kvm_device_access(int fd, int group, uint64_t attr, 3089 void *val, bool write, Error **errp) 3090 { 3091 struct kvm_device_attr kvmattr; 3092 int err; 3093 3094 kvmattr.flags = 0; 3095 kvmattr.group = group; 3096 kvmattr.attr = attr; 3097 kvmattr.addr = (uintptr_t)val; 3098 3099 err = kvm_device_ioctl(fd, 3100 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3101 &kvmattr); 3102 if (err < 0) { 3103 error_setg_errno(errp, -err, 3104 "KVM_%s_DEVICE_ATTR failed: Group %d " 3105 "attr 0x%016" PRIx64, 3106 write ? "SET" : "GET", group, attr); 3107 } 3108 return err; 3109 } 3110 3111 bool kvm_has_sync_mmu(void) 3112 { 3113 return kvm_state->sync_mmu; 3114 } 3115 3116 int kvm_has_vcpu_events(void) 3117 { 3118 return kvm_state->vcpu_events; 3119 } 3120 3121 int kvm_has_robust_singlestep(void) 3122 { 3123 return kvm_state->robust_singlestep; 3124 } 3125 3126 int kvm_has_debugregs(void) 3127 { 3128 return kvm_state->debugregs; 3129 } 3130 3131 int kvm_max_nested_state_length(void) 3132 { 3133 return kvm_state->max_nested_state_len; 3134 } 3135 3136 int kvm_has_many_ioeventfds(void) 3137 { 3138 if (!kvm_enabled()) { 3139 return 0; 3140 } 3141 return kvm_state->many_ioeventfds; 3142 } 3143 3144 int kvm_has_gsi_routing(void) 3145 { 3146 #ifdef KVM_CAP_IRQ_ROUTING 3147 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3148 #else 3149 return false; 3150 #endif 3151 } 3152 3153 int kvm_has_intx_set_mask(void) 3154 { 3155 return kvm_state->intx_set_mask; 3156 } 3157 3158 bool kvm_arm_supports_user_irq(void) 3159 { 3160 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3161 } 3162 3163 #ifdef KVM_CAP_SET_GUEST_DEBUG 3164 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3165 target_ulong pc) 3166 { 3167 struct kvm_sw_breakpoint *bp; 3168 3169 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3170 if (bp->pc == pc) { 3171 return bp; 3172 } 3173 } 3174 return NULL; 3175 } 3176 3177 int kvm_sw_breakpoints_active(CPUState *cpu) 3178 { 3179 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3180 } 3181 3182 struct kvm_set_guest_debug_data { 3183 struct kvm_guest_debug dbg; 3184 int err; 3185 }; 3186 3187 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3188 { 3189 struct kvm_set_guest_debug_data *dbg_data = 3190 (struct kvm_set_guest_debug_data *) data.host_ptr; 3191 3192 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3193 &dbg_data->dbg); 3194 } 3195 3196 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3197 { 3198 struct kvm_set_guest_debug_data data; 3199 3200 data.dbg.control = reinject_trap; 3201 3202 if (cpu->singlestep_enabled) { 3203 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3204 3205 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3206 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3207 } 3208 } 3209 kvm_arch_update_guest_debug(cpu, &data.dbg); 3210 3211 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3212 RUN_ON_CPU_HOST_PTR(&data)); 3213 return data.err; 3214 } 3215 3216 bool kvm_supports_guest_debug(void) 3217 { 3218 /* probed during kvm_init() */ 3219 return kvm_has_guest_debug; 3220 } 3221 3222 int kvm_insert_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len) 3223 { 3224 struct kvm_sw_breakpoint *bp; 3225 int err; 3226 3227 if (type == GDB_BREAKPOINT_SW) { 3228 bp = kvm_find_sw_breakpoint(cpu, addr); 3229 if (bp) { 3230 bp->use_count++; 3231 return 0; 3232 } 3233 3234 bp = g_new(struct kvm_sw_breakpoint, 1); 3235 bp->pc = addr; 3236 bp->use_count = 1; 3237 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3238 if (err) { 3239 g_free(bp); 3240 return err; 3241 } 3242 3243 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3244 } else { 3245 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3246 if (err) { 3247 return err; 3248 } 3249 } 3250 3251 CPU_FOREACH(cpu) { 3252 err = kvm_update_guest_debug(cpu, 0); 3253 if (err) { 3254 return err; 3255 } 3256 } 3257 return 0; 3258 } 3259 3260 int kvm_remove_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len) 3261 { 3262 struct kvm_sw_breakpoint *bp; 3263 int err; 3264 3265 if (type == GDB_BREAKPOINT_SW) { 3266 bp = kvm_find_sw_breakpoint(cpu, addr); 3267 if (!bp) { 3268 return -ENOENT; 3269 } 3270 3271 if (bp->use_count > 1) { 3272 bp->use_count--; 3273 return 0; 3274 } 3275 3276 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3277 if (err) { 3278 return err; 3279 } 3280 3281 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3282 g_free(bp); 3283 } else { 3284 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3285 if (err) { 3286 return err; 3287 } 3288 } 3289 3290 CPU_FOREACH(cpu) { 3291 err = kvm_update_guest_debug(cpu, 0); 3292 if (err) { 3293 return err; 3294 } 3295 } 3296 return 0; 3297 } 3298 3299 void kvm_remove_all_breakpoints(CPUState *cpu) 3300 { 3301 struct kvm_sw_breakpoint *bp, *next; 3302 KVMState *s = cpu->kvm_state; 3303 CPUState *tmpcpu; 3304 3305 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3306 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3307 /* Try harder to find a CPU that currently sees the breakpoint. */ 3308 CPU_FOREACH(tmpcpu) { 3309 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3310 break; 3311 } 3312 } 3313 } 3314 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3315 g_free(bp); 3316 } 3317 kvm_arch_remove_all_hw_breakpoints(); 3318 3319 CPU_FOREACH(cpu) { 3320 kvm_update_guest_debug(cpu, 0); 3321 } 3322 } 3323 3324 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3325 3326 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3327 { 3328 KVMState *s = kvm_state; 3329 struct kvm_signal_mask *sigmask; 3330 int r; 3331 3332 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3333 3334 sigmask->len = s->sigmask_len; 3335 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3336 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3337 g_free(sigmask); 3338 3339 return r; 3340 } 3341 3342 static void kvm_ipi_signal(int sig) 3343 { 3344 if (current_cpu) { 3345 assert(kvm_immediate_exit); 3346 kvm_cpu_kick(current_cpu); 3347 } 3348 } 3349 3350 void kvm_init_cpu_signals(CPUState *cpu) 3351 { 3352 int r; 3353 sigset_t set; 3354 struct sigaction sigact; 3355 3356 memset(&sigact, 0, sizeof(sigact)); 3357 sigact.sa_handler = kvm_ipi_signal; 3358 sigaction(SIG_IPI, &sigact, NULL); 3359 3360 pthread_sigmask(SIG_BLOCK, NULL, &set); 3361 #if defined KVM_HAVE_MCE_INJECTION 3362 sigdelset(&set, SIGBUS); 3363 pthread_sigmask(SIG_SETMASK, &set, NULL); 3364 #endif 3365 sigdelset(&set, SIG_IPI); 3366 if (kvm_immediate_exit) { 3367 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3368 } else { 3369 r = kvm_set_signal_mask(cpu, &set); 3370 } 3371 if (r) { 3372 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3373 exit(1); 3374 } 3375 } 3376 3377 /* Called asynchronously in VCPU thread. */ 3378 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3379 { 3380 #ifdef KVM_HAVE_MCE_INJECTION 3381 if (have_sigbus_pending) { 3382 return 1; 3383 } 3384 have_sigbus_pending = true; 3385 pending_sigbus_addr = addr; 3386 pending_sigbus_code = code; 3387 qatomic_set(&cpu->exit_request, 1); 3388 return 0; 3389 #else 3390 return 1; 3391 #endif 3392 } 3393 3394 /* Called synchronously (via signalfd) in main thread. */ 3395 int kvm_on_sigbus(int code, void *addr) 3396 { 3397 #ifdef KVM_HAVE_MCE_INJECTION 3398 /* Action required MCE kills the process if SIGBUS is blocked. Because 3399 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3400 * we can only get action optional here. 3401 */ 3402 assert(code != BUS_MCEERR_AR); 3403 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3404 return 0; 3405 #else 3406 return 1; 3407 #endif 3408 } 3409 3410 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3411 { 3412 int ret; 3413 struct kvm_create_device create_dev; 3414 3415 create_dev.type = type; 3416 create_dev.fd = -1; 3417 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3418 3419 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3420 return -ENOTSUP; 3421 } 3422 3423 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3424 if (ret) { 3425 return ret; 3426 } 3427 3428 return test ? 0 : create_dev.fd; 3429 } 3430 3431 bool kvm_device_supported(int vmfd, uint64_t type) 3432 { 3433 struct kvm_create_device create_dev = { 3434 .type = type, 3435 .fd = -1, 3436 .flags = KVM_CREATE_DEVICE_TEST, 3437 }; 3438 3439 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3440 return false; 3441 } 3442 3443 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3444 } 3445 3446 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3447 { 3448 struct kvm_one_reg reg; 3449 int r; 3450 3451 reg.id = id; 3452 reg.addr = (uintptr_t) source; 3453 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3454 if (r) { 3455 trace_kvm_failed_reg_set(id, strerror(-r)); 3456 } 3457 return r; 3458 } 3459 3460 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3461 { 3462 struct kvm_one_reg reg; 3463 int r; 3464 3465 reg.id = id; 3466 reg.addr = (uintptr_t) target; 3467 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3468 if (r) { 3469 trace_kvm_failed_reg_get(id, strerror(-r)); 3470 } 3471 return r; 3472 } 3473 3474 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3475 hwaddr start_addr, hwaddr size) 3476 { 3477 KVMState *kvm = KVM_STATE(ms->accelerator); 3478 int i; 3479 3480 for (i = 0; i < kvm->nr_as; ++i) { 3481 if (kvm->as[i].as == as && kvm->as[i].ml) { 3482 size = MIN(kvm_max_slot_size, size); 3483 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3484 start_addr, size); 3485 } 3486 } 3487 3488 return false; 3489 } 3490 3491 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3492 const char *name, void *opaque, 3493 Error **errp) 3494 { 3495 KVMState *s = KVM_STATE(obj); 3496 int64_t value = s->kvm_shadow_mem; 3497 3498 visit_type_int(v, name, &value, errp); 3499 } 3500 3501 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3502 const char *name, void *opaque, 3503 Error **errp) 3504 { 3505 KVMState *s = KVM_STATE(obj); 3506 int64_t value; 3507 3508 if (s->fd != -1) { 3509 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3510 return; 3511 } 3512 3513 if (!visit_type_int(v, name, &value, errp)) { 3514 return; 3515 } 3516 3517 s->kvm_shadow_mem = value; 3518 } 3519 3520 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3521 const char *name, void *opaque, 3522 Error **errp) 3523 { 3524 KVMState *s = KVM_STATE(obj); 3525 OnOffSplit mode; 3526 3527 if (s->fd != -1) { 3528 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3529 return; 3530 } 3531 3532 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3533 return; 3534 } 3535 switch (mode) { 3536 case ON_OFF_SPLIT_ON: 3537 s->kernel_irqchip_allowed = true; 3538 s->kernel_irqchip_required = true; 3539 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3540 break; 3541 case ON_OFF_SPLIT_OFF: 3542 s->kernel_irqchip_allowed = false; 3543 s->kernel_irqchip_required = false; 3544 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3545 break; 3546 case ON_OFF_SPLIT_SPLIT: 3547 s->kernel_irqchip_allowed = true; 3548 s->kernel_irqchip_required = true; 3549 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3550 break; 3551 default: 3552 /* The value was checked in visit_type_OnOffSplit() above. If 3553 * we get here, then something is wrong in QEMU. 3554 */ 3555 abort(); 3556 } 3557 } 3558 3559 bool kvm_kernel_irqchip_allowed(void) 3560 { 3561 return kvm_state->kernel_irqchip_allowed; 3562 } 3563 3564 bool kvm_kernel_irqchip_required(void) 3565 { 3566 return kvm_state->kernel_irqchip_required; 3567 } 3568 3569 bool kvm_kernel_irqchip_split(void) 3570 { 3571 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3572 } 3573 3574 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3575 const char *name, void *opaque, 3576 Error **errp) 3577 { 3578 KVMState *s = KVM_STATE(obj); 3579 uint32_t value = s->kvm_dirty_ring_size; 3580 3581 visit_type_uint32(v, name, &value, errp); 3582 } 3583 3584 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3585 const char *name, void *opaque, 3586 Error **errp) 3587 { 3588 KVMState *s = KVM_STATE(obj); 3589 Error *error = NULL; 3590 uint32_t value; 3591 3592 if (s->fd != -1) { 3593 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3594 return; 3595 } 3596 3597 visit_type_uint32(v, name, &value, &error); 3598 if (error) { 3599 error_propagate(errp, error); 3600 return; 3601 } 3602 if (value & (value - 1)) { 3603 error_setg(errp, "dirty-ring-size must be a power of two."); 3604 return; 3605 } 3606 3607 s->kvm_dirty_ring_size = value; 3608 } 3609 3610 static void kvm_accel_instance_init(Object *obj) 3611 { 3612 KVMState *s = KVM_STATE(obj); 3613 3614 s->fd = -1; 3615 s->vmfd = -1; 3616 s->kvm_shadow_mem = -1; 3617 s->kernel_irqchip_allowed = true; 3618 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3619 /* KVM dirty ring is by default off */ 3620 s->kvm_dirty_ring_size = 0; 3621 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3622 s->notify_window = 0; 3623 } 3624 3625 /** 3626 * kvm_gdbstub_sstep_flags(): 3627 * 3628 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3629 * support is probed during kvm_init() 3630 */ 3631 static int kvm_gdbstub_sstep_flags(void) 3632 { 3633 return kvm_sstep_flags; 3634 } 3635 3636 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3637 { 3638 AccelClass *ac = ACCEL_CLASS(oc); 3639 ac->name = "KVM"; 3640 ac->init_machine = kvm_init; 3641 ac->has_memory = kvm_accel_has_memory; 3642 ac->allowed = &kvm_allowed; 3643 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3644 3645 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3646 NULL, kvm_set_kernel_irqchip, 3647 NULL, NULL); 3648 object_class_property_set_description(oc, "kernel-irqchip", 3649 "Configure KVM in-kernel irqchip"); 3650 3651 object_class_property_add(oc, "kvm-shadow-mem", "int", 3652 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3653 NULL, NULL); 3654 object_class_property_set_description(oc, "kvm-shadow-mem", 3655 "KVM shadow MMU size"); 3656 3657 object_class_property_add(oc, "dirty-ring-size", "uint32", 3658 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3659 NULL, NULL); 3660 object_class_property_set_description(oc, "dirty-ring-size", 3661 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3662 3663 kvm_arch_accel_class_init(oc); 3664 } 3665 3666 static const TypeInfo kvm_accel_type = { 3667 .name = TYPE_KVM_ACCEL, 3668 .parent = TYPE_ACCEL, 3669 .instance_init = kvm_accel_instance_init, 3670 .class_init = kvm_accel_class_init, 3671 .instance_size = sizeof(KVMState), 3672 }; 3673 3674 static void kvm_type_init(void) 3675 { 3676 type_register_static(&kvm_accel_type); 3677 } 3678 3679 type_init(kvm_type_init); 3680 3681 typedef struct StatsArgs { 3682 union StatsResultsType { 3683 StatsResultList **stats; 3684 StatsSchemaList **schema; 3685 } result; 3686 strList *names; 3687 Error **errp; 3688 } StatsArgs; 3689 3690 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3691 uint64_t *stats_data, 3692 StatsList *stats_list, 3693 Error **errp) 3694 { 3695 3696 Stats *stats; 3697 uint64List *val_list = NULL; 3698 3699 /* Only add stats that we understand. */ 3700 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3701 case KVM_STATS_TYPE_CUMULATIVE: 3702 case KVM_STATS_TYPE_INSTANT: 3703 case KVM_STATS_TYPE_PEAK: 3704 case KVM_STATS_TYPE_LINEAR_HIST: 3705 case KVM_STATS_TYPE_LOG_HIST: 3706 break; 3707 default: 3708 return stats_list; 3709 } 3710 3711 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3712 case KVM_STATS_UNIT_NONE: 3713 case KVM_STATS_UNIT_BYTES: 3714 case KVM_STATS_UNIT_CYCLES: 3715 case KVM_STATS_UNIT_SECONDS: 3716 case KVM_STATS_UNIT_BOOLEAN: 3717 break; 3718 default: 3719 return stats_list; 3720 } 3721 3722 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3723 case KVM_STATS_BASE_POW10: 3724 case KVM_STATS_BASE_POW2: 3725 break; 3726 default: 3727 return stats_list; 3728 } 3729 3730 /* Alloc and populate data list */ 3731 stats = g_new0(Stats, 1); 3732 stats->name = g_strdup(pdesc->name); 3733 stats->value = g_new0(StatsValue, 1);; 3734 3735 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3736 stats->value->u.boolean = *stats_data; 3737 stats->value->type = QTYPE_QBOOL; 3738 } else if (pdesc->size == 1) { 3739 stats->value->u.scalar = *stats_data; 3740 stats->value->type = QTYPE_QNUM; 3741 } else { 3742 int i; 3743 for (i = 0; i < pdesc->size; i++) { 3744 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3745 } 3746 stats->value->u.list = val_list; 3747 stats->value->type = QTYPE_QLIST; 3748 } 3749 3750 QAPI_LIST_PREPEND(stats_list, stats); 3751 return stats_list; 3752 } 3753 3754 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3755 StatsSchemaValueList *list, 3756 Error **errp) 3757 { 3758 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3759 schema_entry->value = g_new0(StatsSchemaValue, 1); 3760 3761 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3762 case KVM_STATS_TYPE_CUMULATIVE: 3763 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3764 break; 3765 case KVM_STATS_TYPE_INSTANT: 3766 schema_entry->value->type = STATS_TYPE_INSTANT; 3767 break; 3768 case KVM_STATS_TYPE_PEAK: 3769 schema_entry->value->type = STATS_TYPE_PEAK; 3770 break; 3771 case KVM_STATS_TYPE_LINEAR_HIST: 3772 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3773 schema_entry->value->bucket_size = pdesc->bucket_size; 3774 schema_entry->value->has_bucket_size = true; 3775 break; 3776 case KVM_STATS_TYPE_LOG_HIST: 3777 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3778 break; 3779 default: 3780 goto exit; 3781 } 3782 3783 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3784 case KVM_STATS_UNIT_NONE: 3785 break; 3786 case KVM_STATS_UNIT_BOOLEAN: 3787 schema_entry->value->has_unit = true; 3788 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3789 break; 3790 case KVM_STATS_UNIT_BYTES: 3791 schema_entry->value->has_unit = true; 3792 schema_entry->value->unit = STATS_UNIT_BYTES; 3793 break; 3794 case KVM_STATS_UNIT_CYCLES: 3795 schema_entry->value->has_unit = true; 3796 schema_entry->value->unit = STATS_UNIT_CYCLES; 3797 break; 3798 case KVM_STATS_UNIT_SECONDS: 3799 schema_entry->value->has_unit = true; 3800 schema_entry->value->unit = STATS_UNIT_SECONDS; 3801 break; 3802 default: 3803 goto exit; 3804 } 3805 3806 schema_entry->value->exponent = pdesc->exponent; 3807 if (pdesc->exponent) { 3808 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3809 case KVM_STATS_BASE_POW10: 3810 schema_entry->value->has_base = true; 3811 schema_entry->value->base = 10; 3812 break; 3813 case KVM_STATS_BASE_POW2: 3814 schema_entry->value->has_base = true; 3815 schema_entry->value->base = 2; 3816 break; 3817 default: 3818 goto exit; 3819 } 3820 } 3821 3822 schema_entry->value->name = g_strdup(pdesc->name); 3823 schema_entry->next = list; 3824 return schema_entry; 3825 exit: 3826 g_free(schema_entry->value); 3827 g_free(schema_entry); 3828 return list; 3829 } 3830 3831 /* Cached stats descriptors */ 3832 typedef struct StatsDescriptors { 3833 const char *ident; /* cache key, currently the StatsTarget */ 3834 struct kvm_stats_desc *kvm_stats_desc; 3835 struct kvm_stats_header kvm_stats_header; 3836 QTAILQ_ENTRY(StatsDescriptors) next; 3837 } StatsDescriptors; 3838 3839 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3840 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3841 3842 /* 3843 * Return the descriptors for 'target', that either have already been read 3844 * or are retrieved from 'stats_fd'. 3845 */ 3846 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3847 Error **errp) 3848 { 3849 StatsDescriptors *descriptors; 3850 const char *ident; 3851 struct kvm_stats_desc *kvm_stats_desc; 3852 struct kvm_stats_header *kvm_stats_header; 3853 size_t size_desc; 3854 ssize_t ret; 3855 3856 ident = StatsTarget_str(target); 3857 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3858 if (g_str_equal(descriptors->ident, ident)) { 3859 return descriptors; 3860 } 3861 } 3862 3863 descriptors = g_new0(StatsDescriptors, 1); 3864 3865 /* Read stats header */ 3866 kvm_stats_header = &descriptors->kvm_stats_header; 3867 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header)); 3868 if (ret != sizeof(*kvm_stats_header)) { 3869 error_setg(errp, "KVM stats: failed to read stats header: " 3870 "expected %zu actual %zu", 3871 sizeof(*kvm_stats_header), ret); 3872 g_free(descriptors); 3873 return NULL; 3874 } 3875 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3876 3877 /* Read stats descriptors */ 3878 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3879 ret = pread(stats_fd, kvm_stats_desc, 3880 size_desc * kvm_stats_header->num_desc, 3881 kvm_stats_header->desc_offset); 3882 3883 if (ret != size_desc * kvm_stats_header->num_desc) { 3884 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3885 "expected %zu actual %zu", 3886 size_desc * kvm_stats_header->num_desc, ret); 3887 g_free(descriptors); 3888 g_free(kvm_stats_desc); 3889 return NULL; 3890 } 3891 descriptors->kvm_stats_desc = kvm_stats_desc; 3892 descriptors->ident = ident; 3893 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3894 return descriptors; 3895 } 3896 3897 static void query_stats(StatsResultList **result, StatsTarget target, 3898 strList *names, int stats_fd, Error **errp) 3899 { 3900 struct kvm_stats_desc *kvm_stats_desc; 3901 struct kvm_stats_header *kvm_stats_header; 3902 StatsDescriptors *descriptors; 3903 g_autofree uint64_t *stats_data = NULL; 3904 struct kvm_stats_desc *pdesc; 3905 StatsList *stats_list = NULL; 3906 size_t size_desc, size_data = 0; 3907 ssize_t ret; 3908 int i; 3909 3910 descriptors = find_stats_descriptors(target, stats_fd, errp); 3911 if (!descriptors) { 3912 return; 3913 } 3914 3915 kvm_stats_header = &descriptors->kvm_stats_header; 3916 kvm_stats_desc = descriptors->kvm_stats_desc; 3917 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3918 3919 /* Tally the total data size; read schema data */ 3920 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3921 pdesc = (void *)kvm_stats_desc + i * size_desc; 3922 size_data += pdesc->size * sizeof(*stats_data); 3923 } 3924 3925 stats_data = g_malloc0(size_data); 3926 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 3927 3928 if (ret != size_data) { 3929 error_setg(errp, "KVM stats: failed to read data: " 3930 "expected %zu actual %zu", size_data, ret); 3931 return; 3932 } 3933 3934 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3935 uint64_t *stats; 3936 pdesc = (void *)kvm_stats_desc + i * size_desc; 3937 3938 /* Add entry to the list */ 3939 stats = (void *)stats_data + pdesc->offset; 3940 if (!apply_str_list_filter(pdesc->name, names)) { 3941 continue; 3942 } 3943 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 3944 } 3945 3946 if (!stats_list) { 3947 return; 3948 } 3949 3950 switch (target) { 3951 case STATS_TARGET_VM: 3952 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 3953 break; 3954 case STATS_TARGET_VCPU: 3955 add_stats_entry(result, STATS_PROVIDER_KVM, 3956 current_cpu->parent_obj.canonical_path, 3957 stats_list); 3958 break; 3959 default: 3960 g_assert_not_reached(); 3961 } 3962 } 3963 3964 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 3965 int stats_fd, Error **errp) 3966 { 3967 struct kvm_stats_desc *kvm_stats_desc; 3968 struct kvm_stats_header *kvm_stats_header; 3969 StatsDescriptors *descriptors; 3970 struct kvm_stats_desc *pdesc; 3971 StatsSchemaValueList *stats_list = NULL; 3972 size_t size_desc; 3973 int i; 3974 3975 descriptors = find_stats_descriptors(target, stats_fd, errp); 3976 if (!descriptors) { 3977 return; 3978 } 3979 3980 kvm_stats_header = &descriptors->kvm_stats_header; 3981 kvm_stats_desc = descriptors->kvm_stats_desc; 3982 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3983 3984 /* Tally the total data size; read schema data */ 3985 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3986 pdesc = (void *)kvm_stats_desc + i * size_desc; 3987 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 3988 } 3989 3990 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 3991 } 3992 3993 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data) 3994 { 3995 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 3996 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 3997 Error *local_err = NULL; 3998 3999 if (stats_fd == -1) { 4000 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4001 error_propagate(kvm_stats_args->errp, local_err); 4002 return; 4003 } 4004 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4005 kvm_stats_args->names, stats_fd, kvm_stats_args->errp); 4006 close(stats_fd); 4007 } 4008 4009 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data) 4010 { 4011 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4012 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4013 Error *local_err = NULL; 4014 4015 if (stats_fd == -1) { 4016 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4017 error_propagate(kvm_stats_args->errp, local_err); 4018 return; 4019 } 4020 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4021 kvm_stats_args->errp); 4022 close(stats_fd); 4023 } 4024 4025 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4026 strList *names, strList *targets, Error **errp) 4027 { 4028 KVMState *s = kvm_state; 4029 CPUState *cpu; 4030 int stats_fd; 4031 4032 switch (target) { 4033 case STATS_TARGET_VM: 4034 { 4035 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4036 if (stats_fd == -1) { 4037 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4038 return; 4039 } 4040 query_stats(result, target, names, stats_fd, errp); 4041 close(stats_fd); 4042 break; 4043 } 4044 case STATS_TARGET_VCPU: 4045 { 4046 StatsArgs stats_args; 4047 stats_args.result.stats = result; 4048 stats_args.names = names; 4049 stats_args.errp = errp; 4050 CPU_FOREACH(cpu) { 4051 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4052 continue; 4053 } 4054 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4055 } 4056 break; 4057 } 4058 default: 4059 break; 4060 } 4061 } 4062 4063 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4064 { 4065 StatsArgs stats_args; 4066 KVMState *s = kvm_state; 4067 int stats_fd; 4068 4069 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4070 if (stats_fd == -1) { 4071 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4072 return; 4073 } 4074 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4075 close(stats_fd); 4076 4077 if (first_cpu) { 4078 stats_args.result.schema = result; 4079 stats_args.errp = errp; 4080 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4081 } 4082 } 4083