xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 8e6fe6b8)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 
19 #include <linux/kvm.h>
20 
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/hw.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/cpus.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
38 #include "trace.h"
39 #include "hw/irq.h"
40 #include "sysemu/sev.h"
41 #include "sysemu/balloon.h"
42 
43 #include "hw/boards.h"
44 
45 /* This check must be after config-host.h is included */
46 #ifdef CONFIG_EVENTFD
47 #include <sys/eventfd.h>
48 #endif
49 
50 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
51  * need to use the real host PAGE_SIZE, as that's what KVM will use.
52  */
53 #define PAGE_SIZE getpagesize()
54 
55 //#define DEBUG_KVM
56 
57 #ifdef DEBUG_KVM
58 #define DPRINTF(fmt, ...) \
59     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
60 #else
61 #define DPRINTF(fmt, ...) \
62     do { } while (0)
63 #endif
64 
65 #define KVM_MSI_HASHTAB_SIZE    256
66 
67 struct KVMParkedVcpu {
68     unsigned long vcpu_id;
69     int kvm_fd;
70     QLIST_ENTRY(KVMParkedVcpu) node;
71 };
72 
73 struct KVMState
74 {
75     AccelState parent_obj;
76 
77     int nr_slots;
78     int fd;
79     int vmfd;
80     int coalesced_mmio;
81     int coalesced_pio;
82     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
83     bool coalesced_flush_in_progress;
84     int vcpu_events;
85     int robust_singlestep;
86     int debugregs;
87 #ifdef KVM_CAP_SET_GUEST_DEBUG
88     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
89 #endif
90     int many_ioeventfds;
91     int intx_set_mask;
92     bool sync_mmu;
93     /* The man page (and posix) say ioctl numbers are signed int, but
94      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
95      * unsigned, and treating them as signed here can break things */
96     unsigned irq_set_ioctl;
97     unsigned int sigmask_len;
98     GHashTable *gsimap;
99 #ifdef KVM_CAP_IRQ_ROUTING
100     struct kvm_irq_routing *irq_routes;
101     int nr_allocated_irq_routes;
102     unsigned long *used_gsi_bitmap;
103     unsigned int gsi_count;
104     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
105 #endif
106     KVMMemoryListener memory_listener;
107     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
108 
109     /* memory encryption */
110     void *memcrypt_handle;
111     int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
112 };
113 
114 KVMState *kvm_state;
115 bool kvm_kernel_irqchip;
116 bool kvm_split_irqchip;
117 bool kvm_async_interrupts_allowed;
118 bool kvm_halt_in_kernel_allowed;
119 bool kvm_eventfds_allowed;
120 bool kvm_irqfds_allowed;
121 bool kvm_resamplefds_allowed;
122 bool kvm_msi_via_irqfd_allowed;
123 bool kvm_gsi_routing_allowed;
124 bool kvm_gsi_direct_mapping;
125 bool kvm_allowed;
126 bool kvm_readonly_mem_allowed;
127 bool kvm_vm_attributes_allowed;
128 bool kvm_direct_msi_allowed;
129 bool kvm_ioeventfd_any_length_allowed;
130 bool kvm_msi_use_devid;
131 static bool kvm_immediate_exit;
132 
133 static const KVMCapabilityInfo kvm_required_capabilites[] = {
134     KVM_CAP_INFO(USER_MEMORY),
135     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
136     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
137     KVM_CAP_LAST_INFO
138 };
139 
140 int kvm_get_max_memslots(void)
141 {
142     KVMState *s = KVM_STATE(current_machine->accelerator);
143 
144     return s->nr_slots;
145 }
146 
147 bool kvm_memcrypt_enabled(void)
148 {
149     if (kvm_state && kvm_state->memcrypt_handle) {
150         return true;
151     }
152 
153     return false;
154 }
155 
156 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
157 {
158     if (kvm_state->memcrypt_handle &&
159         kvm_state->memcrypt_encrypt_data) {
160         return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
161                                               ptr, len);
162     }
163 
164     return 1;
165 }
166 
167 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
168 {
169     KVMState *s = kvm_state;
170     int i;
171 
172     for (i = 0; i < s->nr_slots; i++) {
173         if (kml->slots[i].memory_size == 0) {
174             return &kml->slots[i];
175         }
176     }
177 
178     return NULL;
179 }
180 
181 bool kvm_has_free_slot(MachineState *ms)
182 {
183     KVMState *s = KVM_STATE(ms->accelerator);
184 
185     return kvm_get_free_slot(&s->memory_listener);
186 }
187 
188 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
189 {
190     KVMSlot *slot = kvm_get_free_slot(kml);
191 
192     if (slot) {
193         return slot;
194     }
195 
196     fprintf(stderr, "%s: no free slot available\n", __func__);
197     abort();
198 }
199 
200 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
201                                          hwaddr start_addr,
202                                          hwaddr size)
203 {
204     KVMState *s = kvm_state;
205     int i;
206 
207     for (i = 0; i < s->nr_slots; i++) {
208         KVMSlot *mem = &kml->slots[i];
209 
210         if (start_addr == mem->start_addr && size == mem->memory_size) {
211             return mem;
212         }
213     }
214 
215     return NULL;
216 }
217 
218 /*
219  * Calculate and align the start address and the size of the section.
220  * Return the size. If the size is 0, the aligned section is empty.
221  */
222 static hwaddr kvm_align_section(MemoryRegionSection *section,
223                                 hwaddr *start)
224 {
225     hwaddr size = int128_get64(section->size);
226     hwaddr delta, aligned;
227 
228     /* kvm works in page size chunks, but the function may be called
229        with sub-page size and unaligned start address. Pad the start
230        address to next and truncate size to previous page boundary. */
231     aligned = ROUND_UP(section->offset_within_address_space,
232                        qemu_real_host_page_size);
233     delta = aligned - section->offset_within_address_space;
234     *start = aligned;
235     if (delta > size) {
236         return 0;
237     }
238 
239     return (size - delta) & qemu_real_host_page_mask;
240 }
241 
242 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
243                                        hwaddr *phys_addr)
244 {
245     KVMMemoryListener *kml = &s->memory_listener;
246     int i;
247 
248     for (i = 0; i < s->nr_slots; i++) {
249         KVMSlot *mem = &kml->slots[i];
250 
251         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
252             *phys_addr = mem->start_addr + (ram - mem->ram);
253             return 1;
254         }
255     }
256 
257     return 0;
258 }
259 
260 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
261 {
262     KVMState *s = kvm_state;
263     struct kvm_userspace_memory_region mem;
264     int ret;
265 
266     mem.slot = slot->slot | (kml->as_id << 16);
267     mem.guest_phys_addr = slot->start_addr;
268     mem.userspace_addr = (unsigned long)slot->ram;
269     mem.flags = slot->flags;
270 
271     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
272         /* Set the slot size to 0 before setting the slot to the desired
273          * value. This is needed based on KVM commit 75d61fbc. */
274         mem.memory_size = 0;
275         kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
276     }
277     mem.memory_size = slot->memory_size;
278     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
279     slot->old_flags = mem.flags;
280     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
281                               mem.memory_size, mem.userspace_addr, ret);
282     return ret;
283 }
284 
285 int kvm_destroy_vcpu(CPUState *cpu)
286 {
287     KVMState *s = kvm_state;
288     long mmap_size;
289     struct KVMParkedVcpu *vcpu = NULL;
290     int ret = 0;
291 
292     DPRINTF("kvm_destroy_vcpu\n");
293 
294     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
295     if (mmap_size < 0) {
296         ret = mmap_size;
297         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
298         goto err;
299     }
300 
301     ret = munmap(cpu->kvm_run, mmap_size);
302     if (ret < 0) {
303         goto err;
304     }
305 
306     vcpu = g_malloc0(sizeof(*vcpu));
307     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
308     vcpu->kvm_fd = cpu->kvm_fd;
309     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
310 err:
311     return ret;
312 }
313 
314 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
315 {
316     struct KVMParkedVcpu *cpu;
317 
318     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
319         if (cpu->vcpu_id == vcpu_id) {
320             int kvm_fd;
321 
322             QLIST_REMOVE(cpu, node);
323             kvm_fd = cpu->kvm_fd;
324             g_free(cpu);
325             return kvm_fd;
326         }
327     }
328 
329     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
330 }
331 
332 int kvm_init_vcpu(CPUState *cpu)
333 {
334     KVMState *s = kvm_state;
335     long mmap_size;
336     int ret;
337 
338     DPRINTF("kvm_init_vcpu\n");
339 
340     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
341     if (ret < 0) {
342         DPRINTF("kvm_create_vcpu failed\n");
343         goto err;
344     }
345 
346     cpu->kvm_fd = ret;
347     cpu->kvm_state = s;
348     cpu->vcpu_dirty = true;
349 
350     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
351     if (mmap_size < 0) {
352         ret = mmap_size;
353         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
354         goto err;
355     }
356 
357     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
358                         cpu->kvm_fd, 0);
359     if (cpu->kvm_run == MAP_FAILED) {
360         ret = -errno;
361         DPRINTF("mmap'ing vcpu state failed\n");
362         goto err;
363     }
364 
365     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
366         s->coalesced_mmio_ring =
367             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
368     }
369 
370     ret = kvm_arch_init_vcpu(cpu);
371 err:
372     return ret;
373 }
374 
375 /*
376  * dirty pages logging control
377  */
378 
379 static int kvm_mem_flags(MemoryRegion *mr)
380 {
381     bool readonly = mr->readonly || memory_region_is_romd(mr);
382     int flags = 0;
383 
384     if (memory_region_get_dirty_log_mask(mr) != 0) {
385         flags |= KVM_MEM_LOG_DIRTY_PAGES;
386     }
387     if (readonly && kvm_readonly_mem_allowed) {
388         flags |= KVM_MEM_READONLY;
389     }
390     return flags;
391 }
392 
393 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
394                                  MemoryRegion *mr)
395 {
396     mem->flags = kvm_mem_flags(mr);
397 
398     /* If nothing changed effectively, no need to issue ioctl */
399     if (mem->flags == mem->old_flags) {
400         return 0;
401     }
402 
403     return kvm_set_user_memory_region(kml, mem, false);
404 }
405 
406 static int kvm_section_update_flags(KVMMemoryListener *kml,
407                                     MemoryRegionSection *section)
408 {
409     hwaddr start_addr, size;
410     KVMSlot *mem;
411 
412     size = kvm_align_section(section, &start_addr);
413     if (!size) {
414         return 0;
415     }
416 
417     mem = kvm_lookup_matching_slot(kml, start_addr, size);
418     if (!mem) {
419         /* We don't have a slot if we want to trap every access. */
420         return 0;
421     }
422 
423     return kvm_slot_update_flags(kml, mem, section->mr);
424 }
425 
426 static void kvm_log_start(MemoryListener *listener,
427                           MemoryRegionSection *section,
428                           int old, int new)
429 {
430     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
431     int r;
432 
433     if (old != 0) {
434         return;
435     }
436 
437     r = kvm_section_update_flags(kml, section);
438     if (r < 0) {
439         abort();
440     }
441 }
442 
443 static void kvm_log_stop(MemoryListener *listener,
444                           MemoryRegionSection *section,
445                           int old, int new)
446 {
447     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
448     int r;
449 
450     if (new != 0) {
451         return;
452     }
453 
454     r = kvm_section_update_flags(kml, section);
455     if (r < 0) {
456         abort();
457     }
458 }
459 
460 /* get kvm's dirty pages bitmap and update qemu's */
461 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
462                                          unsigned long *bitmap)
463 {
464     ram_addr_t start = section->offset_within_region +
465                        memory_region_get_ram_addr(section->mr);
466     ram_addr_t pages = int128_get64(section->size) / getpagesize();
467 
468     cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
469     return 0;
470 }
471 
472 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
473 
474 /**
475  * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
476  * This function updates qemu's dirty bitmap using
477  * memory_region_set_dirty().  This means all bits are set
478  * to dirty.
479  *
480  * @start_add: start of logged region.
481  * @end_addr: end of logged region.
482  */
483 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
484                                           MemoryRegionSection *section)
485 {
486     KVMState *s = kvm_state;
487     struct kvm_dirty_log d = {};
488     KVMSlot *mem;
489     hwaddr start_addr, size;
490 
491     size = kvm_align_section(section, &start_addr);
492     if (size) {
493         mem = kvm_lookup_matching_slot(kml, start_addr, size);
494         if (!mem) {
495             /* We don't have a slot if we want to trap every access. */
496             return 0;
497         }
498 
499         /* XXX bad kernel interface alert
500          * For dirty bitmap, kernel allocates array of size aligned to
501          * bits-per-long.  But for case when the kernel is 64bits and
502          * the userspace is 32bits, userspace can't align to the same
503          * bits-per-long, since sizeof(long) is different between kernel
504          * and user space.  This way, userspace will provide buffer which
505          * may be 4 bytes less than the kernel will use, resulting in
506          * userspace memory corruption (which is not detectable by valgrind
507          * too, in most cases).
508          * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
509          * a hope that sizeof(long) won't become >8 any time soon.
510          */
511         size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
512                      /*HOST_LONG_BITS*/ 64) / 8;
513         d.dirty_bitmap = g_malloc0(size);
514 
515         d.slot = mem->slot | (kml->as_id << 16);
516         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
517             DPRINTF("ioctl failed %d\n", errno);
518             g_free(d.dirty_bitmap);
519             return -1;
520         }
521 
522         kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
523         g_free(d.dirty_bitmap);
524     }
525 
526     return 0;
527 }
528 
529 static void kvm_coalesce_mmio_region(MemoryListener *listener,
530                                      MemoryRegionSection *secion,
531                                      hwaddr start, hwaddr size)
532 {
533     KVMState *s = kvm_state;
534 
535     if (s->coalesced_mmio) {
536         struct kvm_coalesced_mmio_zone zone;
537 
538         zone.addr = start;
539         zone.size = size;
540         zone.pad = 0;
541 
542         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
543     }
544 }
545 
546 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
547                                        MemoryRegionSection *secion,
548                                        hwaddr start, hwaddr size)
549 {
550     KVMState *s = kvm_state;
551 
552     if (s->coalesced_mmio) {
553         struct kvm_coalesced_mmio_zone zone;
554 
555         zone.addr = start;
556         zone.size = size;
557         zone.pad = 0;
558 
559         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
560     }
561 }
562 
563 static void kvm_coalesce_pio_add(MemoryListener *listener,
564                                 MemoryRegionSection *section,
565                                 hwaddr start, hwaddr size)
566 {
567     KVMState *s = kvm_state;
568 
569     if (s->coalesced_pio) {
570         struct kvm_coalesced_mmio_zone zone;
571 
572         zone.addr = start;
573         zone.size = size;
574         zone.pio = 1;
575 
576         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
577     }
578 }
579 
580 static void kvm_coalesce_pio_del(MemoryListener *listener,
581                                 MemoryRegionSection *section,
582                                 hwaddr start, hwaddr size)
583 {
584     KVMState *s = kvm_state;
585 
586     if (s->coalesced_pio) {
587         struct kvm_coalesced_mmio_zone zone;
588 
589         zone.addr = start;
590         zone.size = size;
591         zone.pio = 1;
592 
593         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
594      }
595 }
596 
597 static MemoryListener kvm_coalesced_pio_listener = {
598     .coalesced_io_add = kvm_coalesce_pio_add,
599     .coalesced_io_del = kvm_coalesce_pio_del,
600 };
601 
602 int kvm_check_extension(KVMState *s, unsigned int extension)
603 {
604     int ret;
605 
606     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
607     if (ret < 0) {
608         ret = 0;
609     }
610 
611     return ret;
612 }
613 
614 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
615 {
616     int ret;
617 
618     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
619     if (ret < 0) {
620         /* VM wide version not implemented, use global one instead */
621         ret = kvm_check_extension(s, extension);
622     }
623 
624     return ret;
625 }
626 
627 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
628 {
629 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
630     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
631      * endianness, but the memory core hands them in target endianness.
632      * For example, PPC is always treated as big-endian even if running
633      * on KVM and on PPC64LE.  Correct here.
634      */
635     switch (size) {
636     case 2:
637         val = bswap16(val);
638         break;
639     case 4:
640         val = bswap32(val);
641         break;
642     }
643 #endif
644     return val;
645 }
646 
647 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
648                                   bool assign, uint32_t size, bool datamatch)
649 {
650     int ret;
651     struct kvm_ioeventfd iofd = {
652         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
653         .addr = addr,
654         .len = size,
655         .flags = 0,
656         .fd = fd,
657     };
658 
659     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
660                                  datamatch);
661     if (!kvm_enabled()) {
662         return -ENOSYS;
663     }
664 
665     if (datamatch) {
666         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
667     }
668     if (!assign) {
669         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
670     }
671 
672     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
673 
674     if (ret < 0) {
675         return -errno;
676     }
677 
678     return 0;
679 }
680 
681 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
682                                  bool assign, uint32_t size, bool datamatch)
683 {
684     struct kvm_ioeventfd kick = {
685         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
686         .addr = addr,
687         .flags = KVM_IOEVENTFD_FLAG_PIO,
688         .len = size,
689         .fd = fd,
690     };
691     int r;
692     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
693     if (!kvm_enabled()) {
694         return -ENOSYS;
695     }
696     if (datamatch) {
697         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
698     }
699     if (!assign) {
700         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
701     }
702     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
703     if (r < 0) {
704         return r;
705     }
706     return 0;
707 }
708 
709 
710 static int kvm_check_many_ioeventfds(void)
711 {
712     /* Userspace can use ioeventfd for io notification.  This requires a host
713      * that supports eventfd(2) and an I/O thread; since eventfd does not
714      * support SIGIO it cannot interrupt the vcpu.
715      *
716      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
717      * can avoid creating too many ioeventfds.
718      */
719 #if defined(CONFIG_EVENTFD)
720     int ioeventfds[7];
721     int i, ret = 0;
722     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
723         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
724         if (ioeventfds[i] < 0) {
725             break;
726         }
727         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
728         if (ret < 0) {
729             close(ioeventfds[i]);
730             break;
731         }
732     }
733 
734     /* Decide whether many devices are supported or not */
735     ret = i == ARRAY_SIZE(ioeventfds);
736 
737     while (i-- > 0) {
738         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
739         close(ioeventfds[i]);
740     }
741     return ret;
742 #else
743     return 0;
744 #endif
745 }
746 
747 static const KVMCapabilityInfo *
748 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
749 {
750     while (list->name) {
751         if (!kvm_check_extension(s, list->value)) {
752             return list;
753         }
754         list++;
755     }
756     return NULL;
757 }
758 
759 static void kvm_set_phys_mem(KVMMemoryListener *kml,
760                              MemoryRegionSection *section, bool add)
761 {
762     KVMSlot *mem;
763     int err;
764     MemoryRegion *mr = section->mr;
765     bool writeable = !mr->readonly && !mr->rom_device;
766     hwaddr start_addr, size;
767     void *ram;
768 
769     if (!memory_region_is_ram(mr)) {
770         if (writeable || !kvm_readonly_mem_allowed) {
771             return;
772         } else if (!mr->romd_mode) {
773             /* If the memory device is not in romd_mode, then we actually want
774              * to remove the kvm memory slot so all accesses will trap. */
775             add = false;
776         }
777     }
778 
779     size = kvm_align_section(section, &start_addr);
780     if (!size) {
781         return;
782     }
783 
784     /* use aligned delta to align the ram address */
785     ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
786           (start_addr - section->offset_within_address_space);
787 
788     if (!add) {
789         mem = kvm_lookup_matching_slot(kml, start_addr, size);
790         if (!mem) {
791             return;
792         }
793         if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
794             kvm_physical_sync_dirty_bitmap(kml, section);
795         }
796 
797         /* unregister the slot */
798         mem->memory_size = 0;
799         mem->flags = 0;
800         err = kvm_set_user_memory_region(kml, mem, false);
801         if (err) {
802             fprintf(stderr, "%s: error unregistering slot: %s\n",
803                     __func__, strerror(-err));
804             abort();
805         }
806         return;
807     }
808 
809     /* register the new slot */
810     mem = kvm_alloc_slot(kml);
811     mem->memory_size = size;
812     mem->start_addr = start_addr;
813     mem->ram = ram;
814     mem->flags = kvm_mem_flags(mr);
815 
816     err = kvm_set_user_memory_region(kml, mem, true);
817     if (err) {
818         fprintf(stderr, "%s: error registering slot: %s\n", __func__,
819                 strerror(-err));
820         abort();
821     }
822 }
823 
824 static void kvm_region_add(MemoryListener *listener,
825                            MemoryRegionSection *section)
826 {
827     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
828 
829     memory_region_ref(section->mr);
830     kvm_set_phys_mem(kml, section, true);
831 }
832 
833 static void kvm_region_del(MemoryListener *listener,
834                            MemoryRegionSection *section)
835 {
836     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
837 
838     kvm_set_phys_mem(kml, section, false);
839     memory_region_unref(section->mr);
840 }
841 
842 static void kvm_log_sync(MemoryListener *listener,
843                          MemoryRegionSection *section)
844 {
845     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
846     int r;
847 
848     r = kvm_physical_sync_dirty_bitmap(kml, section);
849     if (r < 0) {
850         abort();
851     }
852 }
853 
854 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
855                                   MemoryRegionSection *section,
856                                   bool match_data, uint64_t data,
857                                   EventNotifier *e)
858 {
859     int fd = event_notifier_get_fd(e);
860     int r;
861 
862     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
863                                data, true, int128_get64(section->size),
864                                match_data);
865     if (r < 0) {
866         fprintf(stderr, "%s: error adding ioeventfd: %s\n",
867                 __func__, strerror(-r));
868         abort();
869     }
870 }
871 
872 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
873                                   MemoryRegionSection *section,
874                                   bool match_data, uint64_t data,
875                                   EventNotifier *e)
876 {
877     int fd = event_notifier_get_fd(e);
878     int r;
879 
880     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
881                                data, false, int128_get64(section->size),
882                                match_data);
883     if (r < 0) {
884         abort();
885     }
886 }
887 
888 static void kvm_io_ioeventfd_add(MemoryListener *listener,
889                                  MemoryRegionSection *section,
890                                  bool match_data, uint64_t data,
891                                  EventNotifier *e)
892 {
893     int fd = event_notifier_get_fd(e);
894     int r;
895 
896     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
897                               data, true, int128_get64(section->size),
898                               match_data);
899     if (r < 0) {
900         fprintf(stderr, "%s: error adding ioeventfd: %s\n",
901                 __func__, strerror(-r));
902         abort();
903     }
904 }
905 
906 static void kvm_io_ioeventfd_del(MemoryListener *listener,
907                                  MemoryRegionSection *section,
908                                  bool match_data, uint64_t data,
909                                  EventNotifier *e)
910 
911 {
912     int fd = event_notifier_get_fd(e);
913     int r;
914 
915     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
916                               data, false, int128_get64(section->size),
917                               match_data);
918     if (r < 0) {
919         abort();
920     }
921 }
922 
923 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
924                                   AddressSpace *as, int as_id)
925 {
926     int i;
927 
928     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
929     kml->as_id = as_id;
930 
931     for (i = 0; i < s->nr_slots; i++) {
932         kml->slots[i].slot = i;
933     }
934 
935     kml->listener.region_add = kvm_region_add;
936     kml->listener.region_del = kvm_region_del;
937     kml->listener.log_start = kvm_log_start;
938     kml->listener.log_stop = kvm_log_stop;
939     kml->listener.log_sync = kvm_log_sync;
940     kml->listener.priority = 10;
941 
942     memory_listener_register(&kml->listener, as);
943 }
944 
945 static MemoryListener kvm_io_listener = {
946     .eventfd_add = kvm_io_ioeventfd_add,
947     .eventfd_del = kvm_io_ioeventfd_del,
948     .priority = 10,
949 };
950 
951 int kvm_set_irq(KVMState *s, int irq, int level)
952 {
953     struct kvm_irq_level event;
954     int ret;
955 
956     assert(kvm_async_interrupts_enabled());
957 
958     event.level = level;
959     event.irq = irq;
960     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
961     if (ret < 0) {
962         perror("kvm_set_irq");
963         abort();
964     }
965 
966     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
967 }
968 
969 #ifdef KVM_CAP_IRQ_ROUTING
970 typedef struct KVMMSIRoute {
971     struct kvm_irq_routing_entry kroute;
972     QTAILQ_ENTRY(KVMMSIRoute) entry;
973 } KVMMSIRoute;
974 
975 static void set_gsi(KVMState *s, unsigned int gsi)
976 {
977     set_bit(gsi, s->used_gsi_bitmap);
978 }
979 
980 static void clear_gsi(KVMState *s, unsigned int gsi)
981 {
982     clear_bit(gsi, s->used_gsi_bitmap);
983 }
984 
985 void kvm_init_irq_routing(KVMState *s)
986 {
987     int gsi_count, i;
988 
989     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
990     if (gsi_count > 0) {
991         /* Round up so we can search ints using ffs */
992         s->used_gsi_bitmap = bitmap_new(gsi_count);
993         s->gsi_count = gsi_count;
994     }
995 
996     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
997     s->nr_allocated_irq_routes = 0;
998 
999     if (!kvm_direct_msi_allowed) {
1000         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1001             QTAILQ_INIT(&s->msi_hashtab[i]);
1002         }
1003     }
1004 
1005     kvm_arch_init_irq_routing(s);
1006 }
1007 
1008 void kvm_irqchip_commit_routes(KVMState *s)
1009 {
1010     int ret;
1011 
1012     if (kvm_gsi_direct_mapping()) {
1013         return;
1014     }
1015 
1016     if (!kvm_gsi_routing_enabled()) {
1017         return;
1018     }
1019 
1020     s->irq_routes->flags = 0;
1021     trace_kvm_irqchip_commit_routes();
1022     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1023     assert(ret == 0);
1024 }
1025 
1026 static void kvm_add_routing_entry(KVMState *s,
1027                                   struct kvm_irq_routing_entry *entry)
1028 {
1029     struct kvm_irq_routing_entry *new;
1030     int n, size;
1031 
1032     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1033         n = s->nr_allocated_irq_routes * 2;
1034         if (n < 64) {
1035             n = 64;
1036         }
1037         size = sizeof(struct kvm_irq_routing);
1038         size += n * sizeof(*new);
1039         s->irq_routes = g_realloc(s->irq_routes, size);
1040         s->nr_allocated_irq_routes = n;
1041     }
1042     n = s->irq_routes->nr++;
1043     new = &s->irq_routes->entries[n];
1044 
1045     *new = *entry;
1046 
1047     set_gsi(s, entry->gsi);
1048 }
1049 
1050 static int kvm_update_routing_entry(KVMState *s,
1051                                     struct kvm_irq_routing_entry *new_entry)
1052 {
1053     struct kvm_irq_routing_entry *entry;
1054     int n;
1055 
1056     for (n = 0; n < s->irq_routes->nr; n++) {
1057         entry = &s->irq_routes->entries[n];
1058         if (entry->gsi != new_entry->gsi) {
1059             continue;
1060         }
1061 
1062         if(!memcmp(entry, new_entry, sizeof *entry)) {
1063             return 0;
1064         }
1065 
1066         *entry = *new_entry;
1067 
1068         return 0;
1069     }
1070 
1071     return -ESRCH;
1072 }
1073 
1074 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1075 {
1076     struct kvm_irq_routing_entry e = {};
1077 
1078     assert(pin < s->gsi_count);
1079 
1080     e.gsi = irq;
1081     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1082     e.flags = 0;
1083     e.u.irqchip.irqchip = irqchip;
1084     e.u.irqchip.pin = pin;
1085     kvm_add_routing_entry(s, &e);
1086 }
1087 
1088 void kvm_irqchip_release_virq(KVMState *s, int virq)
1089 {
1090     struct kvm_irq_routing_entry *e;
1091     int i;
1092 
1093     if (kvm_gsi_direct_mapping()) {
1094         return;
1095     }
1096 
1097     for (i = 0; i < s->irq_routes->nr; i++) {
1098         e = &s->irq_routes->entries[i];
1099         if (e->gsi == virq) {
1100             s->irq_routes->nr--;
1101             *e = s->irq_routes->entries[s->irq_routes->nr];
1102         }
1103     }
1104     clear_gsi(s, virq);
1105     kvm_arch_release_virq_post(virq);
1106     trace_kvm_irqchip_release_virq(virq);
1107 }
1108 
1109 static unsigned int kvm_hash_msi(uint32_t data)
1110 {
1111     /* This is optimized for IA32 MSI layout. However, no other arch shall
1112      * repeat the mistake of not providing a direct MSI injection API. */
1113     return data & 0xff;
1114 }
1115 
1116 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1117 {
1118     KVMMSIRoute *route, *next;
1119     unsigned int hash;
1120 
1121     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1122         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1123             kvm_irqchip_release_virq(s, route->kroute.gsi);
1124             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1125             g_free(route);
1126         }
1127     }
1128 }
1129 
1130 static int kvm_irqchip_get_virq(KVMState *s)
1131 {
1132     int next_virq;
1133 
1134     /*
1135      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1136      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1137      * number can succeed even though a new route entry cannot be added.
1138      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1139      */
1140     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1141         kvm_flush_dynamic_msi_routes(s);
1142     }
1143 
1144     /* Return the lowest unused GSI in the bitmap */
1145     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1146     if (next_virq >= s->gsi_count) {
1147         return -ENOSPC;
1148     } else {
1149         return next_virq;
1150     }
1151 }
1152 
1153 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1154 {
1155     unsigned int hash = kvm_hash_msi(msg.data);
1156     KVMMSIRoute *route;
1157 
1158     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1159         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1160             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1161             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1162             return route;
1163         }
1164     }
1165     return NULL;
1166 }
1167 
1168 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1169 {
1170     struct kvm_msi msi;
1171     KVMMSIRoute *route;
1172 
1173     if (kvm_direct_msi_allowed) {
1174         msi.address_lo = (uint32_t)msg.address;
1175         msi.address_hi = msg.address >> 32;
1176         msi.data = le32_to_cpu(msg.data);
1177         msi.flags = 0;
1178         memset(msi.pad, 0, sizeof(msi.pad));
1179 
1180         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1181     }
1182 
1183     route = kvm_lookup_msi_route(s, msg);
1184     if (!route) {
1185         int virq;
1186 
1187         virq = kvm_irqchip_get_virq(s);
1188         if (virq < 0) {
1189             return virq;
1190         }
1191 
1192         route = g_malloc0(sizeof(KVMMSIRoute));
1193         route->kroute.gsi = virq;
1194         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1195         route->kroute.flags = 0;
1196         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1197         route->kroute.u.msi.address_hi = msg.address >> 32;
1198         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1199 
1200         kvm_add_routing_entry(s, &route->kroute);
1201         kvm_irqchip_commit_routes(s);
1202 
1203         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1204                            entry);
1205     }
1206 
1207     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1208 
1209     return kvm_set_irq(s, route->kroute.gsi, 1);
1210 }
1211 
1212 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1213 {
1214     struct kvm_irq_routing_entry kroute = {};
1215     int virq;
1216     MSIMessage msg = {0, 0};
1217 
1218     if (pci_available && dev) {
1219         msg = pci_get_msi_message(dev, vector);
1220     }
1221 
1222     if (kvm_gsi_direct_mapping()) {
1223         return kvm_arch_msi_data_to_gsi(msg.data);
1224     }
1225 
1226     if (!kvm_gsi_routing_enabled()) {
1227         return -ENOSYS;
1228     }
1229 
1230     virq = kvm_irqchip_get_virq(s);
1231     if (virq < 0) {
1232         return virq;
1233     }
1234 
1235     kroute.gsi = virq;
1236     kroute.type = KVM_IRQ_ROUTING_MSI;
1237     kroute.flags = 0;
1238     kroute.u.msi.address_lo = (uint32_t)msg.address;
1239     kroute.u.msi.address_hi = msg.address >> 32;
1240     kroute.u.msi.data = le32_to_cpu(msg.data);
1241     if (pci_available && kvm_msi_devid_required()) {
1242         kroute.flags = KVM_MSI_VALID_DEVID;
1243         kroute.u.msi.devid = pci_requester_id(dev);
1244     }
1245     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1246         kvm_irqchip_release_virq(s, virq);
1247         return -EINVAL;
1248     }
1249 
1250     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1251                                     vector, virq);
1252 
1253     kvm_add_routing_entry(s, &kroute);
1254     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1255     kvm_irqchip_commit_routes(s);
1256 
1257     return virq;
1258 }
1259 
1260 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1261                                  PCIDevice *dev)
1262 {
1263     struct kvm_irq_routing_entry kroute = {};
1264 
1265     if (kvm_gsi_direct_mapping()) {
1266         return 0;
1267     }
1268 
1269     if (!kvm_irqchip_in_kernel()) {
1270         return -ENOSYS;
1271     }
1272 
1273     kroute.gsi = virq;
1274     kroute.type = KVM_IRQ_ROUTING_MSI;
1275     kroute.flags = 0;
1276     kroute.u.msi.address_lo = (uint32_t)msg.address;
1277     kroute.u.msi.address_hi = msg.address >> 32;
1278     kroute.u.msi.data = le32_to_cpu(msg.data);
1279     if (pci_available && kvm_msi_devid_required()) {
1280         kroute.flags = KVM_MSI_VALID_DEVID;
1281         kroute.u.msi.devid = pci_requester_id(dev);
1282     }
1283     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1284         return -EINVAL;
1285     }
1286 
1287     trace_kvm_irqchip_update_msi_route(virq);
1288 
1289     return kvm_update_routing_entry(s, &kroute);
1290 }
1291 
1292 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1293                                     bool assign)
1294 {
1295     struct kvm_irqfd irqfd = {
1296         .fd = fd,
1297         .gsi = virq,
1298         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1299     };
1300 
1301     if (rfd != -1) {
1302         irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1303         irqfd.resamplefd = rfd;
1304     }
1305 
1306     if (!kvm_irqfds_enabled()) {
1307         return -ENOSYS;
1308     }
1309 
1310     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1311 }
1312 
1313 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1314 {
1315     struct kvm_irq_routing_entry kroute = {};
1316     int virq;
1317 
1318     if (!kvm_gsi_routing_enabled()) {
1319         return -ENOSYS;
1320     }
1321 
1322     virq = kvm_irqchip_get_virq(s);
1323     if (virq < 0) {
1324         return virq;
1325     }
1326 
1327     kroute.gsi = virq;
1328     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1329     kroute.flags = 0;
1330     kroute.u.adapter.summary_addr = adapter->summary_addr;
1331     kroute.u.adapter.ind_addr = adapter->ind_addr;
1332     kroute.u.adapter.summary_offset = adapter->summary_offset;
1333     kroute.u.adapter.ind_offset = adapter->ind_offset;
1334     kroute.u.adapter.adapter_id = adapter->adapter_id;
1335 
1336     kvm_add_routing_entry(s, &kroute);
1337 
1338     return virq;
1339 }
1340 
1341 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1342 {
1343     struct kvm_irq_routing_entry kroute = {};
1344     int virq;
1345 
1346     if (!kvm_gsi_routing_enabled()) {
1347         return -ENOSYS;
1348     }
1349     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1350         return -ENOSYS;
1351     }
1352     virq = kvm_irqchip_get_virq(s);
1353     if (virq < 0) {
1354         return virq;
1355     }
1356 
1357     kroute.gsi = virq;
1358     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1359     kroute.flags = 0;
1360     kroute.u.hv_sint.vcpu = vcpu;
1361     kroute.u.hv_sint.sint = sint;
1362 
1363     kvm_add_routing_entry(s, &kroute);
1364     kvm_irqchip_commit_routes(s);
1365 
1366     return virq;
1367 }
1368 
1369 #else /* !KVM_CAP_IRQ_ROUTING */
1370 
1371 void kvm_init_irq_routing(KVMState *s)
1372 {
1373 }
1374 
1375 void kvm_irqchip_release_virq(KVMState *s, int virq)
1376 {
1377 }
1378 
1379 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1380 {
1381     abort();
1382 }
1383 
1384 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1385 {
1386     return -ENOSYS;
1387 }
1388 
1389 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1390 {
1391     return -ENOSYS;
1392 }
1393 
1394 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1395 {
1396     return -ENOSYS;
1397 }
1398 
1399 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1400 {
1401     abort();
1402 }
1403 
1404 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1405 {
1406     return -ENOSYS;
1407 }
1408 #endif /* !KVM_CAP_IRQ_ROUTING */
1409 
1410 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1411                                        EventNotifier *rn, int virq)
1412 {
1413     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1414            rn ? event_notifier_get_fd(rn) : -1, virq, true);
1415 }
1416 
1417 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1418                                           int virq)
1419 {
1420     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1421            false);
1422 }
1423 
1424 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1425                                    EventNotifier *rn, qemu_irq irq)
1426 {
1427     gpointer key, gsi;
1428     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1429 
1430     if (!found) {
1431         return -ENXIO;
1432     }
1433     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1434 }
1435 
1436 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1437                                       qemu_irq irq)
1438 {
1439     gpointer key, gsi;
1440     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1441 
1442     if (!found) {
1443         return -ENXIO;
1444     }
1445     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1446 }
1447 
1448 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1449 {
1450     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1451 }
1452 
1453 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1454 {
1455     int ret;
1456 
1457     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1458         ;
1459     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1460         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1461         if (ret < 0) {
1462             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1463             exit(1);
1464         }
1465     } else {
1466         return;
1467     }
1468 
1469     /* First probe and see if there's a arch-specific hook to create the
1470      * in-kernel irqchip for us */
1471     ret = kvm_arch_irqchip_create(machine, s);
1472     if (ret == 0) {
1473         if (machine_kernel_irqchip_split(machine)) {
1474             perror("Split IRQ chip mode not supported.");
1475             exit(1);
1476         } else {
1477             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1478         }
1479     }
1480     if (ret < 0) {
1481         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1482         exit(1);
1483     }
1484 
1485     kvm_kernel_irqchip = true;
1486     /* If we have an in-kernel IRQ chip then we must have asynchronous
1487      * interrupt delivery (though the reverse is not necessarily true)
1488      */
1489     kvm_async_interrupts_allowed = true;
1490     kvm_halt_in_kernel_allowed = true;
1491 
1492     kvm_init_irq_routing(s);
1493 
1494     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1495 }
1496 
1497 /* Find number of supported CPUs using the recommended
1498  * procedure from the kernel API documentation to cope with
1499  * older kernels that may be missing capabilities.
1500  */
1501 static int kvm_recommended_vcpus(KVMState *s)
1502 {
1503     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1504     return (ret) ? ret : 4;
1505 }
1506 
1507 static int kvm_max_vcpus(KVMState *s)
1508 {
1509     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1510     return (ret) ? ret : kvm_recommended_vcpus(s);
1511 }
1512 
1513 static int kvm_max_vcpu_id(KVMState *s)
1514 {
1515     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1516     return (ret) ? ret : kvm_max_vcpus(s);
1517 }
1518 
1519 bool kvm_vcpu_id_is_valid(int vcpu_id)
1520 {
1521     KVMState *s = KVM_STATE(current_machine->accelerator);
1522     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1523 }
1524 
1525 static int kvm_init(MachineState *ms)
1526 {
1527     MachineClass *mc = MACHINE_GET_CLASS(ms);
1528     static const char upgrade_note[] =
1529         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1530         "(see http://sourceforge.net/projects/kvm).\n";
1531     struct {
1532         const char *name;
1533         int num;
1534     } num_cpus[] = {
1535         { "SMP",          smp_cpus },
1536         { "hotpluggable", max_cpus },
1537         { NULL, }
1538     }, *nc = num_cpus;
1539     int soft_vcpus_limit, hard_vcpus_limit;
1540     KVMState *s;
1541     const KVMCapabilityInfo *missing_cap;
1542     int ret;
1543     int type = 0;
1544     const char *kvm_type;
1545 
1546     s = KVM_STATE(ms->accelerator);
1547 
1548     /*
1549      * On systems where the kernel can support different base page
1550      * sizes, host page size may be different from TARGET_PAGE_SIZE,
1551      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1552      * page size for the system though.
1553      */
1554     assert(TARGET_PAGE_SIZE <= getpagesize());
1555 
1556     s->sigmask_len = 8;
1557 
1558 #ifdef KVM_CAP_SET_GUEST_DEBUG
1559     QTAILQ_INIT(&s->kvm_sw_breakpoints);
1560 #endif
1561     QLIST_INIT(&s->kvm_parked_vcpus);
1562     s->vmfd = -1;
1563     s->fd = qemu_open("/dev/kvm", O_RDWR);
1564     if (s->fd == -1) {
1565         fprintf(stderr, "Could not access KVM kernel module: %m\n");
1566         ret = -errno;
1567         goto err;
1568     }
1569 
1570     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1571     if (ret < KVM_API_VERSION) {
1572         if (ret >= 0) {
1573             ret = -EINVAL;
1574         }
1575         fprintf(stderr, "kvm version too old\n");
1576         goto err;
1577     }
1578 
1579     if (ret > KVM_API_VERSION) {
1580         ret = -EINVAL;
1581         fprintf(stderr, "kvm version not supported\n");
1582         goto err;
1583     }
1584 
1585     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1586     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1587 
1588     /* If unspecified, use the default value */
1589     if (!s->nr_slots) {
1590         s->nr_slots = 32;
1591     }
1592 
1593     kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1594     if (mc->kvm_type) {
1595         type = mc->kvm_type(ms, kvm_type);
1596     } else if (kvm_type) {
1597         ret = -EINVAL;
1598         fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1599         goto err;
1600     }
1601 
1602     do {
1603         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1604     } while (ret == -EINTR);
1605 
1606     if (ret < 0) {
1607         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1608                 strerror(-ret));
1609 
1610 #ifdef TARGET_S390X
1611         if (ret == -EINVAL) {
1612             fprintf(stderr,
1613                     "Host kernel setup problem detected. Please verify:\n");
1614             fprintf(stderr, "- for kernels supporting the switch_amode or"
1615                     " user_mode parameters, whether\n");
1616             fprintf(stderr,
1617                     "  user space is running in primary address space\n");
1618             fprintf(stderr,
1619                     "- for kernels supporting the vm.allocate_pgste sysctl, "
1620                     "whether it is enabled\n");
1621         }
1622 #endif
1623         goto err;
1624     }
1625 
1626     s->vmfd = ret;
1627 
1628     /* check the vcpu limits */
1629     soft_vcpus_limit = kvm_recommended_vcpus(s);
1630     hard_vcpus_limit = kvm_max_vcpus(s);
1631 
1632     while (nc->name) {
1633         if (nc->num > soft_vcpus_limit) {
1634             warn_report("Number of %s cpus requested (%d) exceeds "
1635                         "the recommended cpus supported by KVM (%d)",
1636                         nc->name, nc->num, soft_vcpus_limit);
1637 
1638             if (nc->num > hard_vcpus_limit) {
1639                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1640                         "the maximum cpus supported by KVM (%d)\n",
1641                         nc->name, nc->num, hard_vcpus_limit);
1642                 exit(1);
1643             }
1644         }
1645         nc++;
1646     }
1647 
1648     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1649     if (!missing_cap) {
1650         missing_cap =
1651             kvm_check_extension_list(s, kvm_arch_required_capabilities);
1652     }
1653     if (missing_cap) {
1654         ret = -EINVAL;
1655         fprintf(stderr, "kvm does not support %s\n%s",
1656                 missing_cap->name, upgrade_note);
1657         goto err;
1658     }
1659 
1660     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1661     s->coalesced_pio = s->coalesced_mmio &&
1662                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1663 
1664 #ifdef KVM_CAP_VCPU_EVENTS
1665     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1666 #endif
1667 
1668     s->robust_singlestep =
1669         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1670 
1671 #ifdef KVM_CAP_DEBUGREGS
1672     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1673 #endif
1674 
1675 #ifdef KVM_CAP_IRQ_ROUTING
1676     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1677 #endif
1678 
1679     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1680 
1681     s->irq_set_ioctl = KVM_IRQ_LINE;
1682     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1683         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1684     }
1685 
1686     kvm_readonly_mem_allowed =
1687         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1688 
1689     kvm_eventfds_allowed =
1690         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1691 
1692     kvm_irqfds_allowed =
1693         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1694 
1695     kvm_resamplefds_allowed =
1696         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1697 
1698     kvm_vm_attributes_allowed =
1699         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1700 
1701     kvm_ioeventfd_any_length_allowed =
1702         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1703 
1704     kvm_state = s;
1705 
1706     /*
1707      * if memory encryption object is specified then initialize the memory
1708      * encryption context.
1709      */
1710     if (ms->memory_encryption) {
1711         kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
1712         if (!kvm_state->memcrypt_handle) {
1713             ret = -1;
1714             goto err;
1715         }
1716 
1717         kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
1718     }
1719 
1720     ret = kvm_arch_init(ms, s);
1721     if (ret < 0) {
1722         goto err;
1723     }
1724 
1725     if (machine_kernel_irqchip_allowed(ms)) {
1726         kvm_irqchip_create(ms, s);
1727     }
1728 
1729     if (kvm_eventfds_allowed) {
1730         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1731         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1732     }
1733     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
1734     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
1735 
1736     kvm_memory_listener_register(s, &s->memory_listener,
1737                                  &address_space_memory, 0);
1738     memory_listener_register(&kvm_io_listener,
1739                              &address_space_io);
1740     memory_listener_register(&kvm_coalesced_pio_listener,
1741                              &address_space_io);
1742 
1743     s->many_ioeventfds = kvm_check_many_ioeventfds();
1744 
1745     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1746     if (!s->sync_mmu) {
1747         qemu_balloon_inhibit(true);
1748     }
1749 
1750     return 0;
1751 
1752 err:
1753     assert(ret < 0);
1754     if (s->vmfd >= 0) {
1755         close(s->vmfd);
1756     }
1757     if (s->fd != -1) {
1758         close(s->fd);
1759     }
1760     g_free(s->memory_listener.slots);
1761 
1762     return ret;
1763 }
1764 
1765 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1766 {
1767     s->sigmask_len = sigmask_len;
1768 }
1769 
1770 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1771                           int size, uint32_t count)
1772 {
1773     int i;
1774     uint8_t *ptr = data;
1775 
1776     for (i = 0; i < count; i++) {
1777         address_space_rw(&address_space_io, port, attrs,
1778                          ptr, size,
1779                          direction == KVM_EXIT_IO_OUT);
1780         ptr += size;
1781     }
1782 }
1783 
1784 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1785 {
1786     fprintf(stderr, "KVM internal error. Suberror: %d\n",
1787             run->internal.suberror);
1788 
1789     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1790         int i;
1791 
1792         for (i = 0; i < run->internal.ndata; ++i) {
1793             fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1794                     i, (uint64_t)run->internal.data[i]);
1795         }
1796     }
1797     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1798         fprintf(stderr, "emulation failure\n");
1799         if (!kvm_arch_stop_on_emulation_error(cpu)) {
1800             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
1801             return EXCP_INTERRUPT;
1802         }
1803     }
1804     /* FIXME: Should trigger a qmp message to let management know
1805      * something went wrong.
1806      */
1807     return -1;
1808 }
1809 
1810 void kvm_flush_coalesced_mmio_buffer(void)
1811 {
1812     KVMState *s = kvm_state;
1813 
1814     if (s->coalesced_flush_in_progress) {
1815         return;
1816     }
1817 
1818     s->coalesced_flush_in_progress = true;
1819 
1820     if (s->coalesced_mmio_ring) {
1821         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1822         while (ring->first != ring->last) {
1823             struct kvm_coalesced_mmio *ent;
1824 
1825             ent = &ring->coalesced_mmio[ring->first];
1826 
1827             if (ent->pio == 1) {
1828                 address_space_rw(&address_space_io, ent->phys_addr,
1829                                  MEMTXATTRS_UNSPECIFIED, ent->data,
1830                                  ent->len, true);
1831             } else {
1832                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1833             }
1834             smp_wmb();
1835             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1836         }
1837     }
1838 
1839     s->coalesced_flush_in_progress = false;
1840 }
1841 
1842 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1843 {
1844     if (!cpu->vcpu_dirty) {
1845         kvm_arch_get_registers(cpu);
1846         cpu->vcpu_dirty = true;
1847     }
1848 }
1849 
1850 void kvm_cpu_synchronize_state(CPUState *cpu)
1851 {
1852     if (!cpu->vcpu_dirty) {
1853         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1854     }
1855 }
1856 
1857 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1858 {
1859     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1860     cpu->vcpu_dirty = false;
1861 }
1862 
1863 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1864 {
1865     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1866 }
1867 
1868 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1869 {
1870     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1871     cpu->vcpu_dirty = false;
1872 }
1873 
1874 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1875 {
1876     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1877 }
1878 
1879 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1880 {
1881     cpu->vcpu_dirty = true;
1882 }
1883 
1884 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1885 {
1886     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1887 }
1888 
1889 #ifdef KVM_HAVE_MCE_INJECTION
1890 static __thread void *pending_sigbus_addr;
1891 static __thread int pending_sigbus_code;
1892 static __thread bool have_sigbus_pending;
1893 #endif
1894 
1895 static void kvm_cpu_kick(CPUState *cpu)
1896 {
1897     atomic_set(&cpu->kvm_run->immediate_exit, 1);
1898 }
1899 
1900 static void kvm_cpu_kick_self(void)
1901 {
1902     if (kvm_immediate_exit) {
1903         kvm_cpu_kick(current_cpu);
1904     } else {
1905         qemu_cpu_kick_self();
1906     }
1907 }
1908 
1909 static void kvm_eat_signals(CPUState *cpu)
1910 {
1911     struct timespec ts = { 0, 0 };
1912     siginfo_t siginfo;
1913     sigset_t waitset;
1914     sigset_t chkset;
1915     int r;
1916 
1917     if (kvm_immediate_exit) {
1918         atomic_set(&cpu->kvm_run->immediate_exit, 0);
1919         /* Write kvm_run->immediate_exit before the cpu->exit_request
1920          * write in kvm_cpu_exec.
1921          */
1922         smp_wmb();
1923         return;
1924     }
1925 
1926     sigemptyset(&waitset);
1927     sigaddset(&waitset, SIG_IPI);
1928 
1929     do {
1930         r = sigtimedwait(&waitset, &siginfo, &ts);
1931         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1932             perror("sigtimedwait");
1933             exit(1);
1934         }
1935 
1936         r = sigpending(&chkset);
1937         if (r == -1) {
1938             perror("sigpending");
1939             exit(1);
1940         }
1941     } while (sigismember(&chkset, SIG_IPI));
1942 }
1943 
1944 int kvm_cpu_exec(CPUState *cpu)
1945 {
1946     struct kvm_run *run = cpu->kvm_run;
1947     int ret, run_ret;
1948 
1949     DPRINTF("kvm_cpu_exec()\n");
1950 
1951     if (kvm_arch_process_async_events(cpu)) {
1952         atomic_set(&cpu->exit_request, 0);
1953         return EXCP_HLT;
1954     }
1955 
1956     qemu_mutex_unlock_iothread();
1957     cpu_exec_start(cpu);
1958 
1959     do {
1960         MemTxAttrs attrs;
1961 
1962         if (cpu->vcpu_dirty) {
1963             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1964             cpu->vcpu_dirty = false;
1965         }
1966 
1967         kvm_arch_pre_run(cpu, run);
1968         if (atomic_read(&cpu->exit_request)) {
1969             DPRINTF("interrupt exit requested\n");
1970             /*
1971              * KVM requires us to reenter the kernel after IO exits to complete
1972              * instruction emulation. This self-signal will ensure that we
1973              * leave ASAP again.
1974              */
1975             kvm_cpu_kick_self();
1976         }
1977 
1978         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1979          * Matching barrier in kvm_eat_signals.
1980          */
1981         smp_rmb();
1982 
1983         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1984 
1985         attrs = kvm_arch_post_run(cpu, run);
1986 
1987 #ifdef KVM_HAVE_MCE_INJECTION
1988         if (unlikely(have_sigbus_pending)) {
1989             qemu_mutex_lock_iothread();
1990             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1991                                     pending_sigbus_addr);
1992             have_sigbus_pending = false;
1993             qemu_mutex_unlock_iothread();
1994         }
1995 #endif
1996 
1997         if (run_ret < 0) {
1998             if (run_ret == -EINTR || run_ret == -EAGAIN) {
1999                 DPRINTF("io window exit\n");
2000                 kvm_eat_signals(cpu);
2001                 ret = EXCP_INTERRUPT;
2002                 break;
2003             }
2004             fprintf(stderr, "error: kvm run failed %s\n",
2005                     strerror(-run_ret));
2006 #ifdef TARGET_PPC
2007             if (run_ret == -EBUSY) {
2008                 fprintf(stderr,
2009                         "This is probably because your SMT is enabled.\n"
2010                         "VCPU can only run on primary threads with all "
2011                         "secondary threads offline.\n");
2012             }
2013 #endif
2014             ret = -1;
2015             break;
2016         }
2017 
2018         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2019         switch (run->exit_reason) {
2020         case KVM_EXIT_IO:
2021             DPRINTF("handle_io\n");
2022             /* Called outside BQL */
2023             kvm_handle_io(run->io.port, attrs,
2024                           (uint8_t *)run + run->io.data_offset,
2025                           run->io.direction,
2026                           run->io.size,
2027                           run->io.count);
2028             ret = 0;
2029             break;
2030         case KVM_EXIT_MMIO:
2031             DPRINTF("handle_mmio\n");
2032             /* Called outside BQL */
2033             address_space_rw(&address_space_memory,
2034                              run->mmio.phys_addr, attrs,
2035                              run->mmio.data,
2036                              run->mmio.len,
2037                              run->mmio.is_write);
2038             ret = 0;
2039             break;
2040         case KVM_EXIT_IRQ_WINDOW_OPEN:
2041             DPRINTF("irq_window_open\n");
2042             ret = EXCP_INTERRUPT;
2043             break;
2044         case KVM_EXIT_SHUTDOWN:
2045             DPRINTF("shutdown\n");
2046             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2047             ret = EXCP_INTERRUPT;
2048             break;
2049         case KVM_EXIT_UNKNOWN:
2050             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2051                     (uint64_t)run->hw.hardware_exit_reason);
2052             ret = -1;
2053             break;
2054         case KVM_EXIT_INTERNAL_ERROR:
2055             ret = kvm_handle_internal_error(cpu, run);
2056             break;
2057         case KVM_EXIT_SYSTEM_EVENT:
2058             switch (run->system_event.type) {
2059             case KVM_SYSTEM_EVENT_SHUTDOWN:
2060                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2061                 ret = EXCP_INTERRUPT;
2062                 break;
2063             case KVM_SYSTEM_EVENT_RESET:
2064                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2065                 ret = EXCP_INTERRUPT;
2066                 break;
2067             case KVM_SYSTEM_EVENT_CRASH:
2068                 kvm_cpu_synchronize_state(cpu);
2069                 qemu_mutex_lock_iothread();
2070                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2071                 qemu_mutex_unlock_iothread();
2072                 ret = 0;
2073                 break;
2074             default:
2075                 DPRINTF("kvm_arch_handle_exit\n");
2076                 ret = kvm_arch_handle_exit(cpu, run);
2077                 break;
2078             }
2079             break;
2080         default:
2081             DPRINTF("kvm_arch_handle_exit\n");
2082             ret = kvm_arch_handle_exit(cpu, run);
2083             break;
2084         }
2085     } while (ret == 0);
2086 
2087     cpu_exec_end(cpu);
2088     qemu_mutex_lock_iothread();
2089 
2090     if (ret < 0) {
2091         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2092         vm_stop(RUN_STATE_INTERNAL_ERROR);
2093     }
2094 
2095     atomic_set(&cpu->exit_request, 0);
2096     return ret;
2097 }
2098 
2099 int kvm_ioctl(KVMState *s, int type, ...)
2100 {
2101     int ret;
2102     void *arg;
2103     va_list ap;
2104 
2105     va_start(ap, type);
2106     arg = va_arg(ap, void *);
2107     va_end(ap);
2108 
2109     trace_kvm_ioctl(type, arg);
2110     ret = ioctl(s->fd, type, arg);
2111     if (ret == -1) {
2112         ret = -errno;
2113     }
2114     return ret;
2115 }
2116 
2117 int kvm_vm_ioctl(KVMState *s, int type, ...)
2118 {
2119     int ret;
2120     void *arg;
2121     va_list ap;
2122 
2123     va_start(ap, type);
2124     arg = va_arg(ap, void *);
2125     va_end(ap);
2126 
2127     trace_kvm_vm_ioctl(type, arg);
2128     ret = ioctl(s->vmfd, type, arg);
2129     if (ret == -1) {
2130         ret = -errno;
2131     }
2132     return ret;
2133 }
2134 
2135 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2136 {
2137     int ret;
2138     void *arg;
2139     va_list ap;
2140 
2141     va_start(ap, type);
2142     arg = va_arg(ap, void *);
2143     va_end(ap);
2144 
2145     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2146     ret = ioctl(cpu->kvm_fd, type, arg);
2147     if (ret == -1) {
2148         ret = -errno;
2149     }
2150     return ret;
2151 }
2152 
2153 int kvm_device_ioctl(int fd, int type, ...)
2154 {
2155     int ret;
2156     void *arg;
2157     va_list ap;
2158 
2159     va_start(ap, type);
2160     arg = va_arg(ap, void *);
2161     va_end(ap);
2162 
2163     trace_kvm_device_ioctl(fd, type, arg);
2164     ret = ioctl(fd, type, arg);
2165     if (ret == -1) {
2166         ret = -errno;
2167     }
2168     return ret;
2169 }
2170 
2171 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2172 {
2173     int ret;
2174     struct kvm_device_attr attribute = {
2175         .group = group,
2176         .attr = attr,
2177     };
2178 
2179     if (!kvm_vm_attributes_allowed) {
2180         return 0;
2181     }
2182 
2183     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2184     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2185     return ret ? 0 : 1;
2186 }
2187 
2188 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2189 {
2190     struct kvm_device_attr attribute = {
2191         .group = group,
2192         .attr = attr,
2193         .flags = 0,
2194     };
2195 
2196     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2197 }
2198 
2199 int kvm_device_access(int fd, int group, uint64_t attr,
2200                       void *val, bool write, Error **errp)
2201 {
2202     struct kvm_device_attr kvmattr;
2203     int err;
2204 
2205     kvmattr.flags = 0;
2206     kvmattr.group = group;
2207     kvmattr.attr = attr;
2208     kvmattr.addr = (uintptr_t)val;
2209 
2210     err = kvm_device_ioctl(fd,
2211                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2212                            &kvmattr);
2213     if (err < 0) {
2214         error_setg_errno(errp, -err,
2215                          "KVM_%s_DEVICE_ATTR failed: Group %d "
2216                          "attr 0x%016" PRIx64,
2217                          write ? "SET" : "GET", group, attr);
2218     }
2219     return err;
2220 }
2221 
2222 bool kvm_has_sync_mmu(void)
2223 {
2224     return kvm_state->sync_mmu;
2225 }
2226 
2227 int kvm_has_vcpu_events(void)
2228 {
2229     return kvm_state->vcpu_events;
2230 }
2231 
2232 int kvm_has_robust_singlestep(void)
2233 {
2234     return kvm_state->robust_singlestep;
2235 }
2236 
2237 int kvm_has_debugregs(void)
2238 {
2239     return kvm_state->debugregs;
2240 }
2241 
2242 int kvm_has_many_ioeventfds(void)
2243 {
2244     if (!kvm_enabled()) {
2245         return 0;
2246     }
2247     return kvm_state->many_ioeventfds;
2248 }
2249 
2250 int kvm_has_gsi_routing(void)
2251 {
2252 #ifdef KVM_CAP_IRQ_ROUTING
2253     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2254 #else
2255     return false;
2256 #endif
2257 }
2258 
2259 int kvm_has_intx_set_mask(void)
2260 {
2261     return kvm_state->intx_set_mask;
2262 }
2263 
2264 bool kvm_arm_supports_user_irq(void)
2265 {
2266     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2267 }
2268 
2269 #ifdef KVM_CAP_SET_GUEST_DEBUG
2270 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2271                                                  target_ulong pc)
2272 {
2273     struct kvm_sw_breakpoint *bp;
2274 
2275     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2276         if (bp->pc == pc) {
2277             return bp;
2278         }
2279     }
2280     return NULL;
2281 }
2282 
2283 int kvm_sw_breakpoints_active(CPUState *cpu)
2284 {
2285     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2286 }
2287 
2288 struct kvm_set_guest_debug_data {
2289     struct kvm_guest_debug dbg;
2290     int err;
2291 };
2292 
2293 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2294 {
2295     struct kvm_set_guest_debug_data *dbg_data =
2296         (struct kvm_set_guest_debug_data *) data.host_ptr;
2297 
2298     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2299                                    &dbg_data->dbg);
2300 }
2301 
2302 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2303 {
2304     struct kvm_set_guest_debug_data data;
2305 
2306     data.dbg.control = reinject_trap;
2307 
2308     if (cpu->singlestep_enabled) {
2309         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2310     }
2311     kvm_arch_update_guest_debug(cpu, &data.dbg);
2312 
2313     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2314                RUN_ON_CPU_HOST_PTR(&data));
2315     return data.err;
2316 }
2317 
2318 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2319                           target_ulong len, int type)
2320 {
2321     struct kvm_sw_breakpoint *bp;
2322     int err;
2323 
2324     if (type == GDB_BREAKPOINT_SW) {
2325         bp = kvm_find_sw_breakpoint(cpu, addr);
2326         if (bp) {
2327             bp->use_count++;
2328             return 0;
2329         }
2330 
2331         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2332         bp->pc = addr;
2333         bp->use_count = 1;
2334         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2335         if (err) {
2336             g_free(bp);
2337             return err;
2338         }
2339 
2340         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2341     } else {
2342         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2343         if (err) {
2344             return err;
2345         }
2346     }
2347 
2348     CPU_FOREACH(cpu) {
2349         err = kvm_update_guest_debug(cpu, 0);
2350         if (err) {
2351             return err;
2352         }
2353     }
2354     return 0;
2355 }
2356 
2357 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2358                           target_ulong len, int type)
2359 {
2360     struct kvm_sw_breakpoint *bp;
2361     int err;
2362 
2363     if (type == GDB_BREAKPOINT_SW) {
2364         bp = kvm_find_sw_breakpoint(cpu, addr);
2365         if (!bp) {
2366             return -ENOENT;
2367         }
2368 
2369         if (bp->use_count > 1) {
2370             bp->use_count--;
2371             return 0;
2372         }
2373 
2374         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2375         if (err) {
2376             return err;
2377         }
2378 
2379         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2380         g_free(bp);
2381     } else {
2382         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2383         if (err) {
2384             return err;
2385         }
2386     }
2387 
2388     CPU_FOREACH(cpu) {
2389         err = kvm_update_guest_debug(cpu, 0);
2390         if (err) {
2391             return err;
2392         }
2393     }
2394     return 0;
2395 }
2396 
2397 void kvm_remove_all_breakpoints(CPUState *cpu)
2398 {
2399     struct kvm_sw_breakpoint *bp, *next;
2400     KVMState *s = cpu->kvm_state;
2401     CPUState *tmpcpu;
2402 
2403     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2404         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2405             /* Try harder to find a CPU that currently sees the breakpoint. */
2406             CPU_FOREACH(tmpcpu) {
2407                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2408                     break;
2409                 }
2410             }
2411         }
2412         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2413         g_free(bp);
2414     }
2415     kvm_arch_remove_all_hw_breakpoints();
2416 
2417     CPU_FOREACH(cpu) {
2418         kvm_update_guest_debug(cpu, 0);
2419     }
2420 }
2421 
2422 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2423 
2424 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2425 {
2426     return -EINVAL;
2427 }
2428 
2429 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2430                           target_ulong len, int type)
2431 {
2432     return -EINVAL;
2433 }
2434 
2435 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2436                           target_ulong len, int type)
2437 {
2438     return -EINVAL;
2439 }
2440 
2441 void kvm_remove_all_breakpoints(CPUState *cpu)
2442 {
2443 }
2444 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2445 
2446 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2447 {
2448     KVMState *s = kvm_state;
2449     struct kvm_signal_mask *sigmask;
2450     int r;
2451 
2452     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2453 
2454     sigmask->len = s->sigmask_len;
2455     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2456     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2457     g_free(sigmask);
2458 
2459     return r;
2460 }
2461 
2462 static void kvm_ipi_signal(int sig)
2463 {
2464     if (current_cpu) {
2465         assert(kvm_immediate_exit);
2466         kvm_cpu_kick(current_cpu);
2467     }
2468 }
2469 
2470 void kvm_init_cpu_signals(CPUState *cpu)
2471 {
2472     int r;
2473     sigset_t set;
2474     struct sigaction sigact;
2475 
2476     memset(&sigact, 0, sizeof(sigact));
2477     sigact.sa_handler = kvm_ipi_signal;
2478     sigaction(SIG_IPI, &sigact, NULL);
2479 
2480     pthread_sigmask(SIG_BLOCK, NULL, &set);
2481 #if defined KVM_HAVE_MCE_INJECTION
2482     sigdelset(&set, SIGBUS);
2483     pthread_sigmask(SIG_SETMASK, &set, NULL);
2484 #endif
2485     sigdelset(&set, SIG_IPI);
2486     if (kvm_immediate_exit) {
2487         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2488     } else {
2489         r = kvm_set_signal_mask(cpu, &set);
2490     }
2491     if (r) {
2492         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2493         exit(1);
2494     }
2495 }
2496 
2497 /* Called asynchronously in VCPU thread.  */
2498 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2499 {
2500 #ifdef KVM_HAVE_MCE_INJECTION
2501     if (have_sigbus_pending) {
2502         return 1;
2503     }
2504     have_sigbus_pending = true;
2505     pending_sigbus_addr = addr;
2506     pending_sigbus_code = code;
2507     atomic_set(&cpu->exit_request, 1);
2508     return 0;
2509 #else
2510     return 1;
2511 #endif
2512 }
2513 
2514 /* Called synchronously (via signalfd) in main thread.  */
2515 int kvm_on_sigbus(int code, void *addr)
2516 {
2517 #ifdef KVM_HAVE_MCE_INJECTION
2518     /* Action required MCE kills the process if SIGBUS is blocked.  Because
2519      * that's what happens in the I/O thread, where we handle MCE via signalfd,
2520      * we can only get action optional here.
2521      */
2522     assert(code != BUS_MCEERR_AR);
2523     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2524     return 0;
2525 #else
2526     return 1;
2527 #endif
2528 }
2529 
2530 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2531 {
2532     int ret;
2533     struct kvm_create_device create_dev;
2534 
2535     create_dev.type = type;
2536     create_dev.fd = -1;
2537     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2538 
2539     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2540         return -ENOTSUP;
2541     }
2542 
2543     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2544     if (ret) {
2545         return ret;
2546     }
2547 
2548     return test ? 0 : create_dev.fd;
2549 }
2550 
2551 bool kvm_device_supported(int vmfd, uint64_t type)
2552 {
2553     struct kvm_create_device create_dev = {
2554         .type = type,
2555         .fd = -1,
2556         .flags = KVM_CREATE_DEVICE_TEST,
2557     };
2558 
2559     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2560         return false;
2561     }
2562 
2563     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2564 }
2565 
2566 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2567 {
2568     struct kvm_one_reg reg;
2569     int r;
2570 
2571     reg.id = id;
2572     reg.addr = (uintptr_t) source;
2573     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2574     if (r) {
2575         trace_kvm_failed_reg_set(id, strerror(-r));
2576     }
2577     return r;
2578 }
2579 
2580 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2581 {
2582     struct kvm_one_reg reg;
2583     int r;
2584 
2585     reg.id = id;
2586     reg.addr = (uintptr_t) target;
2587     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2588     if (r) {
2589         trace_kvm_failed_reg_get(id, strerror(-r));
2590     }
2591     return r;
2592 }
2593 
2594 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2595 {
2596     AccelClass *ac = ACCEL_CLASS(oc);
2597     ac->name = "KVM";
2598     ac->init_machine = kvm_init;
2599     ac->allowed = &kvm_allowed;
2600 }
2601 
2602 static const TypeInfo kvm_accel_type = {
2603     .name = TYPE_KVM_ACCEL,
2604     .parent = TYPE_ACCEL,
2605     .class_init = kvm_accel_class_init,
2606     .instance_size = sizeof(KVMState),
2607 };
2608 
2609 static void kvm_type_init(void)
2610 {
2611     type_register_static(&kvm_accel_type);
2612 }
2613 
2614 type_init(kvm_type_init);
2615