1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu-common.h" 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/hw.h" 28 #include "hw/pci/msi.h" 29 #include "hw/pci/msix.h" 30 #include "hw/s390x/adapter.h" 31 #include "exec/gdbstub.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 42 #include "hw/boards.h" 43 44 /* This check must be after config-host.h is included */ 45 #ifdef CONFIG_EVENTFD 46 #include <sys/eventfd.h> 47 #endif 48 49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 50 * need to use the real host PAGE_SIZE, as that's what KVM will use. 51 */ 52 #define PAGE_SIZE getpagesize() 53 54 //#define DEBUG_KVM 55 56 #ifdef DEBUG_KVM 57 #define DPRINTF(fmt, ...) \ 58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 59 #else 60 #define DPRINTF(fmt, ...) \ 61 do { } while (0) 62 #endif 63 64 #define KVM_MSI_HASHTAB_SIZE 256 65 66 struct KVMParkedVcpu { 67 unsigned long vcpu_id; 68 int kvm_fd; 69 QLIST_ENTRY(KVMParkedVcpu) node; 70 }; 71 72 struct KVMState 73 { 74 AccelState parent_obj; 75 76 int nr_slots; 77 int fd; 78 int vmfd; 79 int coalesced_mmio; 80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 81 bool coalesced_flush_in_progress; 82 int vcpu_events; 83 int robust_singlestep; 84 int debugregs; 85 #ifdef KVM_CAP_SET_GUEST_DEBUG 86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints; 87 #endif 88 int many_ioeventfds; 89 int intx_set_mask; 90 /* The man page (and posix) say ioctl numbers are signed int, but 91 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 92 * unsigned, and treating them as signed here can break things */ 93 unsigned irq_set_ioctl; 94 unsigned int sigmask_len; 95 GHashTable *gsimap; 96 #ifdef KVM_CAP_IRQ_ROUTING 97 struct kvm_irq_routing *irq_routes; 98 int nr_allocated_irq_routes; 99 unsigned long *used_gsi_bitmap; 100 unsigned int gsi_count; 101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 102 #endif 103 KVMMemoryListener memory_listener; 104 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 105 }; 106 107 KVMState *kvm_state; 108 bool kvm_kernel_irqchip; 109 bool kvm_split_irqchip; 110 bool kvm_async_interrupts_allowed; 111 bool kvm_halt_in_kernel_allowed; 112 bool kvm_eventfds_allowed; 113 bool kvm_irqfds_allowed; 114 bool kvm_resamplefds_allowed; 115 bool kvm_msi_via_irqfd_allowed; 116 bool kvm_gsi_routing_allowed; 117 bool kvm_gsi_direct_mapping; 118 bool kvm_allowed; 119 bool kvm_readonly_mem_allowed; 120 bool kvm_vm_attributes_allowed; 121 bool kvm_direct_msi_allowed; 122 bool kvm_ioeventfd_any_length_allowed; 123 bool kvm_msi_use_devid; 124 static bool kvm_immediate_exit; 125 126 static const KVMCapabilityInfo kvm_required_capabilites[] = { 127 KVM_CAP_INFO(USER_MEMORY), 128 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 129 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 130 KVM_CAP_LAST_INFO 131 }; 132 133 int kvm_get_max_memslots(void) 134 { 135 KVMState *s = KVM_STATE(current_machine->accelerator); 136 137 return s->nr_slots; 138 } 139 140 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 141 { 142 KVMState *s = kvm_state; 143 int i; 144 145 for (i = 0; i < s->nr_slots; i++) { 146 if (kml->slots[i].memory_size == 0) { 147 return &kml->slots[i]; 148 } 149 } 150 151 return NULL; 152 } 153 154 bool kvm_has_free_slot(MachineState *ms) 155 { 156 KVMState *s = KVM_STATE(ms->accelerator); 157 158 return kvm_get_free_slot(&s->memory_listener); 159 } 160 161 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 162 { 163 KVMSlot *slot = kvm_get_free_slot(kml); 164 165 if (slot) { 166 return slot; 167 } 168 169 fprintf(stderr, "%s: no free slot available\n", __func__); 170 abort(); 171 } 172 173 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 174 hwaddr start_addr, 175 hwaddr end_addr) 176 { 177 KVMState *s = kvm_state; 178 int i; 179 180 for (i = 0; i < s->nr_slots; i++) { 181 KVMSlot *mem = &kml->slots[i]; 182 183 if (start_addr == mem->start_addr && 184 end_addr == mem->start_addr + mem->memory_size) { 185 return mem; 186 } 187 } 188 189 return NULL; 190 } 191 192 /* 193 * Find overlapping slot with lowest start address 194 */ 195 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml, 196 hwaddr start_addr, 197 hwaddr end_addr) 198 { 199 KVMState *s = kvm_state; 200 KVMSlot *found = NULL; 201 int i; 202 203 for (i = 0; i < s->nr_slots; i++) { 204 KVMSlot *mem = &kml->slots[i]; 205 206 if (mem->memory_size == 0 || 207 (found && found->start_addr < mem->start_addr)) { 208 continue; 209 } 210 211 if (end_addr > mem->start_addr && 212 start_addr < mem->start_addr + mem->memory_size) { 213 found = mem; 214 } 215 } 216 217 return found; 218 } 219 220 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 221 hwaddr *phys_addr) 222 { 223 KVMMemoryListener *kml = &s->memory_listener; 224 int i; 225 226 for (i = 0; i < s->nr_slots; i++) { 227 KVMSlot *mem = &kml->slots[i]; 228 229 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 230 *phys_addr = mem->start_addr + (ram - mem->ram); 231 return 1; 232 } 233 } 234 235 return 0; 236 } 237 238 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) 239 { 240 KVMState *s = kvm_state; 241 struct kvm_userspace_memory_region mem; 242 243 mem.slot = slot->slot | (kml->as_id << 16); 244 mem.guest_phys_addr = slot->start_addr; 245 mem.userspace_addr = (unsigned long)slot->ram; 246 mem.flags = slot->flags; 247 248 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { 249 /* Set the slot size to 0 before setting the slot to the desired 250 * value. This is needed based on KVM commit 75d61fbc. */ 251 mem.memory_size = 0; 252 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 253 } 254 mem.memory_size = slot->memory_size; 255 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 256 } 257 258 int kvm_destroy_vcpu(CPUState *cpu) 259 { 260 KVMState *s = kvm_state; 261 long mmap_size; 262 struct KVMParkedVcpu *vcpu = NULL; 263 int ret = 0; 264 265 DPRINTF("kvm_destroy_vcpu\n"); 266 267 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 268 if (mmap_size < 0) { 269 ret = mmap_size; 270 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 271 goto err; 272 } 273 274 ret = munmap(cpu->kvm_run, mmap_size); 275 if (ret < 0) { 276 goto err; 277 } 278 279 vcpu = g_malloc0(sizeof(*vcpu)); 280 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 281 vcpu->kvm_fd = cpu->kvm_fd; 282 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 283 err: 284 return ret; 285 } 286 287 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 288 { 289 struct KVMParkedVcpu *cpu; 290 291 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 292 if (cpu->vcpu_id == vcpu_id) { 293 int kvm_fd; 294 295 QLIST_REMOVE(cpu, node); 296 kvm_fd = cpu->kvm_fd; 297 g_free(cpu); 298 return kvm_fd; 299 } 300 } 301 302 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 303 } 304 305 int kvm_init_vcpu(CPUState *cpu) 306 { 307 KVMState *s = kvm_state; 308 long mmap_size; 309 int ret; 310 311 DPRINTF("kvm_init_vcpu\n"); 312 313 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 314 if (ret < 0) { 315 DPRINTF("kvm_create_vcpu failed\n"); 316 goto err; 317 } 318 319 cpu->kvm_fd = ret; 320 cpu->kvm_state = s; 321 cpu->vcpu_dirty = true; 322 323 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 324 if (mmap_size < 0) { 325 ret = mmap_size; 326 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 327 goto err; 328 } 329 330 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 331 cpu->kvm_fd, 0); 332 if (cpu->kvm_run == MAP_FAILED) { 333 ret = -errno; 334 DPRINTF("mmap'ing vcpu state failed\n"); 335 goto err; 336 } 337 338 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 339 s->coalesced_mmio_ring = 340 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 341 } 342 343 ret = kvm_arch_init_vcpu(cpu); 344 err: 345 return ret; 346 } 347 348 /* 349 * dirty pages logging control 350 */ 351 352 static int kvm_mem_flags(MemoryRegion *mr) 353 { 354 bool readonly = mr->readonly || memory_region_is_romd(mr); 355 int flags = 0; 356 357 if (memory_region_get_dirty_log_mask(mr) != 0) { 358 flags |= KVM_MEM_LOG_DIRTY_PAGES; 359 } 360 if (readonly && kvm_readonly_mem_allowed) { 361 flags |= KVM_MEM_READONLY; 362 } 363 return flags; 364 } 365 366 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 367 MemoryRegion *mr) 368 { 369 int old_flags; 370 371 old_flags = mem->flags; 372 mem->flags = kvm_mem_flags(mr); 373 374 /* If nothing changed effectively, no need to issue ioctl */ 375 if (mem->flags == old_flags) { 376 return 0; 377 } 378 379 return kvm_set_user_memory_region(kml, mem); 380 } 381 382 static int kvm_section_update_flags(KVMMemoryListener *kml, 383 MemoryRegionSection *section) 384 { 385 hwaddr phys_addr = section->offset_within_address_space; 386 ram_addr_t size = int128_get64(section->size); 387 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size); 388 389 if (mem == NULL) { 390 return 0; 391 } else { 392 return kvm_slot_update_flags(kml, mem, section->mr); 393 } 394 } 395 396 static void kvm_log_start(MemoryListener *listener, 397 MemoryRegionSection *section, 398 int old, int new) 399 { 400 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 401 int r; 402 403 if (old != 0) { 404 return; 405 } 406 407 r = kvm_section_update_flags(kml, section); 408 if (r < 0) { 409 abort(); 410 } 411 } 412 413 static void kvm_log_stop(MemoryListener *listener, 414 MemoryRegionSection *section, 415 int old, int new) 416 { 417 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 418 int r; 419 420 if (new != 0) { 421 return; 422 } 423 424 r = kvm_section_update_flags(kml, section); 425 if (r < 0) { 426 abort(); 427 } 428 } 429 430 /* get kvm's dirty pages bitmap and update qemu's */ 431 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 432 unsigned long *bitmap) 433 { 434 ram_addr_t start = section->offset_within_region + 435 memory_region_get_ram_addr(section->mr); 436 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 437 438 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 439 return 0; 440 } 441 442 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 443 444 /** 445 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 446 * This function updates qemu's dirty bitmap using 447 * memory_region_set_dirty(). This means all bits are set 448 * to dirty. 449 * 450 * @start_add: start of logged region. 451 * @end_addr: end of logged region. 452 */ 453 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 454 MemoryRegionSection *section) 455 { 456 KVMState *s = kvm_state; 457 unsigned long size, allocated_size = 0; 458 struct kvm_dirty_log d = {}; 459 KVMSlot *mem; 460 int ret = 0; 461 hwaddr start_addr = section->offset_within_address_space; 462 hwaddr end_addr = start_addr + int128_get64(section->size); 463 464 d.dirty_bitmap = NULL; 465 while (start_addr < end_addr) { 466 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr); 467 if (mem == NULL) { 468 break; 469 } 470 471 /* XXX bad kernel interface alert 472 * For dirty bitmap, kernel allocates array of size aligned to 473 * bits-per-long. But for case when the kernel is 64bits and 474 * the userspace is 32bits, userspace can't align to the same 475 * bits-per-long, since sizeof(long) is different between kernel 476 * and user space. This way, userspace will provide buffer which 477 * may be 4 bytes less than the kernel will use, resulting in 478 * userspace memory corruption (which is not detectable by valgrind 479 * too, in most cases). 480 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 481 * a hope that sizeof(long) won't become >8 any time soon. 482 */ 483 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 484 /*HOST_LONG_BITS*/ 64) / 8; 485 if (!d.dirty_bitmap) { 486 d.dirty_bitmap = g_malloc(size); 487 } else if (size > allocated_size) { 488 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); 489 } 490 allocated_size = size; 491 memset(d.dirty_bitmap, 0, allocated_size); 492 493 d.slot = mem->slot | (kml->as_id << 16); 494 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 495 DPRINTF("ioctl failed %d\n", errno); 496 ret = -1; 497 break; 498 } 499 500 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 501 start_addr = mem->start_addr + mem->memory_size; 502 } 503 g_free(d.dirty_bitmap); 504 505 return ret; 506 } 507 508 static void kvm_coalesce_mmio_region(MemoryListener *listener, 509 MemoryRegionSection *secion, 510 hwaddr start, hwaddr size) 511 { 512 KVMState *s = kvm_state; 513 514 if (s->coalesced_mmio) { 515 struct kvm_coalesced_mmio_zone zone; 516 517 zone.addr = start; 518 zone.size = size; 519 zone.pad = 0; 520 521 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 522 } 523 } 524 525 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 526 MemoryRegionSection *secion, 527 hwaddr start, hwaddr size) 528 { 529 KVMState *s = kvm_state; 530 531 if (s->coalesced_mmio) { 532 struct kvm_coalesced_mmio_zone zone; 533 534 zone.addr = start; 535 zone.size = size; 536 zone.pad = 0; 537 538 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 539 } 540 } 541 542 int kvm_check_extension(KVMState *s, unsigned int extension) 543 { 544 int ret; 545 546 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 547 if (ret < 0) { 548 ret = 0; 549 } 550 551 return ret; 552 } 553 554 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 555 { 556 int ret; 557 558 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 559 if (ret < 0) { 560 /* VM wide version not implemented, use global one instead */ 561 ret = kvm_check_extension(s, extension); 562 } 563 564 return ret; 565 } 566 567 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 568 { 569 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 570 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 571 * endianness, but the memory core hands them in target endianness. 572 * For example, PPC is always treated as big-endian even if running 573 * on KVM and on PPC64LE. Correct here. 574 */ 575 switch (size) { 576 case 2: 577 val = bswap16(val); 578 break; 579 case 4: 580 val = bswap32(val); 581 break; 582 } 583 #endif 584 return val; 585 } 586 587 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 588 bool assign, uint32_t size, bool datamatch) 589 { 590 int ret; 591 struct kvm_ioeventfd iofd = { 592 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 593 .addr = addr, 594 .len = size, 595 .flags = 0, 596 .fd = fd, 597 }; 598 599 if (!kvm_enabled()) { 600 return -ENOSYS; 601 } 602 603 if (datamatch) { 604 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 605 } 606 if (!assign) { 607 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 608 } 609 610 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 611 612 if (ret < 0) { 613 return -errno; 614 } 615 616 return 0; 617 } 618 619 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 620 bool assign, uint32_t size, bool datamatch) 621 { 622 struct kvm_ioeventfd kick = { 623 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 624 .addr = addr, 625 .flags = KVM_IOEVENTFD_FLAG_PIO, 626 .len = size, 627 .fd = fd, 628 }; 629 int r; 630 if (!kvm_enabled()) { 631 return -ENOSYS; 632 } 633 if (datamatch) { 634 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 635 } 636 if (!assign) { 637 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 638 } 639 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 640 if (r < 0) { 641 return r; 642 } 643 return 0; 644 } 645 646 647 static int kvm_check_many_ioeventfds(void) 648 { 649 /* Userspace can use ioeventfd for io notification. This requires a host 650 * that supports eventfd(2) and an I/O thread; since eventfd does not 651 * support SIGIO it cannot interrupt the vcpu. 652 * 653 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 654 * can avoid creating too many ioeventfds. 655 */ 656 #if defined(CONFIG_EVENTFD) 657 int ioeventfds[7]; 658 int i, ret = 0; 659 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 660 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 661 if (ioeventfds[i] < 0) { 662 break; 663 } 664 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 665 if (ret < 0) { 666 close(ioeventfds[i]); 667 break; 668 } 669 } 670 671 /* Decide whether many devices are supported or not */ 672 ret = i == ARRAY_SIZE(ioeventfds); 673 674 while (i-- > 0) { 675 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 676 close(ioeventfds[i]); 677 } 678 return ret; 679 #else 680 return 0; 681 #endif 682 } 683 684 static const KVMCapabilityInfo * 685 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 686 { 687 while (list->name) { 688 if (!kvm_check_extension(s, list->value)) { 689 return list; 690 } 691 list++; 692 } 693 return NULL; 694 } 695 696 static void kvm_set_phys_mem(KVMMemoryListener *kml, 697 MemoryRegionSection *section, bool add) 698 { 699 KVMSlot *mem, old; 700 int err; 701 MemoryRegion *mr = section->mr; 702 bool writeable = !mr->readonly && !mr->rom_device; 703 hwaddr start_addr = section->offset_within_address_space; 704 ram_addr_t size = int128_get64(section->size); 705 void *ram = NULL; 706 unsigned delta; 707 708 /* kvm works in page size chunks, but the function may be called 709 with sub-page size and unaligned start address. Pad the start 710 address to next and truncate size to previous page boundary. */ 711 delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask); 712 delta &= ~qemu_real_host_page_mask; 713 if (delta > size) { 714 return; 715 } 716 start_addr += delta; 717 size -= delta; 718 size &= qemu_real_host_page_mask; 719 if (!size || (start_addr & ~qemu_real_host_page_mask)) { 720 return; 721 } 722 723 if (!memory_region_is_ram(mr)) { 724 if (writeable || !kvm_readonly_mem_allowed) { 725 return; 726 } else if (!mr->romd_mode) { 727 /* If the memory device is not in romd_mode, then we actually want 728 * to remove the kvm memory slot so all accesses will trap. */ 729 add = false; 730 } 731 } 732 733 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; 734 735 while (1) { 736 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size); 737 if (!mem) { 738 break; 739 } 740 741 if (add && start_addr >= mem->start_addr && 742 (start_addr + size <= mem->start_addr + mem->memory_size) && 743 (ram - start_addr == mem->ram - mem->start_addr)) { 744 /* The new slot fits into the existing one and comes with 745 * identical parameters - update flags and done. */ 746 kvm_slot_update_flags(kml, mem, mr); 747 return; 748 } 749 750 old = *mem; 751 752 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 753 kvm_physical_sync_dirty_bitmap(kml, section); 754 } 755 756 /* unregister the overlapping slot */ 757 mem->memory_size = 0; 758 err = kvm_set_user_memory_region(kml, mem); 759 if (err) { 760 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", 761 __func__, strerror(-err)); 762 abort(); 763 } 764 765 /* register prefix slot */ 766 if (old.start_addr < start_addr) { 767 mem = kvm_alloc_slot(kml); 768 mem->memory_size = start_addr - old.start_addr; 769 mem->start_addr = old.start_addr; 770 mem->ram = old.ram; 771 mem->flags = kvm_mem_flags(mr); 772 773 err = kvm_set_user_memory_region(kml, mem); 774 if (err) { 775 fprintf(stderr, "%s: error registering prefix slot: %s\n", 776 __func__, strerror(-err)); 777 #ifdef TARGET_PPC 778 fprintf(stderr, "%s: This is probably because your kernel's " \ 779 "PAGE_SIZE is too big. Please try to use 4k " \ 780 "PAGE_SIZE!\n", __func__); 781 #endif 782 abort(); 783 } 784 } 785 786 /* register suffix slot */ 787 if (old.start_addr + old.memory_size > start_addr + size) { 788 ram_addr_t size_delta; 789 790 mem = kvm_alloc_slot(kml); 791 mem->start_addr = start_addr + size; 792 size_delta = mem->start_addr - old.start_addr; 793 mem->memory_size = old.memory_size - size_delta; 794 mem->ram = old.ram + size_delta; 795 mem->flags = kvm_mem_flags(mr); 796 797 err = kvm_set_user_memory_region(kml, mem); 798 if (err) { 799 fprintf(stderr, "%s: error registering suffix slot: %s\n", 800 __func__, strerror(-err)); 801 abort(); 802 } 803 } 804 } 805 806 if (!add) { 807 return; 808 } 809 mem = kvm_alloc_slot(kml); 810 mem->memory_size = size; 811 mem->start_addr = start_addr; 812 mem->ram = ram; 813 mem->flags = kvm_mem_flags(mr); 814 815 err = kvm_set_user_memory_region(kml, mem); 816 if (err) { 817 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 818 strerror(-err)); 819 abort(); 820 } 821 } 822 823 static void kvm_region_add(MemoryListener *listener, 824 MemoryRegionSection *section) 825 { 826 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 827 828 memory_region_ref(section->mr); 829 kvm_set_phys_mem(kml, section, true); 830 } 831 832 static void kvm_region_del(MemoryListener *listener, 833 MemoryRegionSection *section) 834 { 835 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 836 837 kvm_set_phys_mem(kml, section, false); 838 memory_region_unref(section->mr); 839 } 840 841 static void kvm_log_sync(MemoryListener *listener, 842 MemoryRegionSection *section) 843 { 844 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 845 int r; 846 847 r = kvm_physical_sync_dirty_bitmap(kml, section); 848 if (r < 0) { 849 abort(); 850 } 851 } 852 853 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 854 MemoryRegionSection *section, 855 bool match_data, uint64_t data, 856 EventNotifier *e) 857 { 858 int fd = event_notifier_get_fd(e); 859 int r; 860 861 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 862 data, true, int128_get64(section->size), 863 match_data); 864 if (r < 0) { 865 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 866 __func__, strerror(-r)); 867 abort(); 868 } 869 } 870 871 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 872 MemoryRegionSection *section, 873 bool match_data, uint64_t data, 874 EventNotifier *e) 875 { 876 int fd = event_notifier_get_fd(e); 877 int r; 878 879 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 880 data, false, int128_get64(section->size), 881 match_data); 882 if (r < 0) { 883 abort(); 884 } 885 } 886 887 static void kvm_io_ioeventfd_add(MemoryListener *listener, 888 MemoryRegionSection *section, 889 bool match_data, uint64_t data, 890 EventNotifier *e) 891 { 892 int fd = event_notifier_get_fd(e); 893 int r; 894 895 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 896 data, true, int128_get64(section->size), 897 match_data); 898 if (r < 0) { 899 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 900 __func__, strerror(-r)); 901 abort(); 902 } 903 } 904 905 static void kvm_io_ioeventfd_del(MemoryListener *listener, 906 MemoryRegionSection *section, 907 bool match_data, uint64_t data, 908 EventNotifier *e) 909 910 { 911 int fd = event_notifier_get_fd(e); 912 int r; 913 914 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 915 data, false, int128_get64(section->size), 916 match_data); 917 if (r < 0) { 918 abort(); 919 } 920 } 921 922 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 923 AddressSpace *as, int as_id) 924 { 925 int i; 926 927 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 928 kml->as_id = as_id; 929 930 for (i = 0; i < s->nr_slots; i++) { 931 kml->slots[i].slot = i; 932 } 933 934 kml->listener.region_add = kvm_region_add; 935 kml->listener.region_del = kvm_region_del; 936 kml->listener.log_start = kvm_log_start; 937 kml->listener.log_stop = kvm_log_stop; 938 kml->listener.log_sync = kvm_log_sync; 939 kml->listener.priority = 10; 940 941 memory_listener_register(&kml->listener, as); 942 } 943 944 static MemoryListener kvm_io_listener = { 945 .eventfd_add = kvm_io_ioeventfd_add, 946 .eventfd_del = kvm_io_ioeventfd_del, 947 .priority = 10, 948 }; 949 950 int kvm_set_irq(KVMState *s, int irq, int level) 951 { 952 struct kvm_irq_level event; 953 int ret; 954 955 assert(kvm_async_interrupts_enabled()); 956 957 event.level = level; 958 event.irq = irq; 959 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 960 if (ret < 0) { 961 perror("kvm_set_irq"); 962 abort(); 963 } 964 965 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 966 } 967 968 #ifdef KVM_CAP_IRQ_ROUTING 969 typedef struct KVMMSIRoute { 970 struct kvm_irq_routing_entry kroute; 971 QTAILQ_ENTRY(KVMMSIRoute) entry; 972 } KVMMSIRoute; 973 974 static void set_gsi(KVMState *s, unsigned int gsi) 975 { 976 set_bit(gsi, s->used_gsi_bitmap); 977 } 978 979 static void clear_gsi(KVMState *s, unsigned int gsi) 980 { 981 clear_bit(gsi, s->used_gsi_bitmap); 982 } 983 984 void kvm_init_irq_routing(KVMState *s) 985 { 986 int gsi_count, i; 987 988 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 989 if (gsi_count > 0) { 990 /* Round up so we can search ints using ffs */ 991 s->used_gsi_bitmap = bitmap_new(gsi_count); 992 s->gsi_count = gsi_count; 993 } 994 995 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 996 s->nr_allocated_irq_routes = 0; 997 998 if (!kvm_direct_msi_allowed) { 999 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1000 QTAILQ_INIT(&s->msi_hashtab[i]); 1001 } 1002 } 1003 1004 kvm_arch_init_irq_routing(s); 1005 } 1006 1007 void kvm_irqchip_commit_routes(KVMState *s) 1008 { 1009 int ret; 1010 1011 if (kvm_gsi_direct_mapping()) { 1012 return; 1013 } 1014 1015 if (!kvm_gsi_routing_enabled()) { 1016 return; 1017 } 1018 1019 s->irq_routes->flags = 0; 1020 trace_kvm_irqchip_commit_routes(); 1021 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1022 assert(ret == 0); 1023 } 1024 1025 static void kvm_add_routing_entry(KVMState *s, 1026 struct kvm_irq_routing_entry *entry) 1027 { 1028 struct kvm_irq_routing_entry *new; 1029 int n, size; 1030 1031 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1032 n = s->nr_allocated_irq_routes * 2; 1033 if (n < 64) { 1034 n = 64; 1035 } 1036 size = sizeof(struct kvm_irq_routing); 1037 size += n * sizeof(*new); 1038 s->irq_routes = g_realloc(s->irq_routes, size); 1039 s->nr_allocated_irq_routes = n; 1040 } 1041 n = s->irq_routes->nr++; 1042 new = &s->irq_routes->entries[n]; 1043 1044 *new = *entry; 1045 1046 set_gsi(s, entry->gsi); 1047 } 1048 1049 static int kvm_update_routing_entry(KVMState *s, 1050 struct kvm_irq_routing_entry *new_entry) 1051 { 1052 struct kvm_irq_routing_entry *entry; 1053 int n; 1054 1055 for (n = 0; n < s->irq_routes->nr; n++) { 1056 entry = &s->irq_routes->entries[n]; 1057 if (entry->gsi != new_entry->gsi) { 1058 continue; 1059 } 1060 1061 if(!memcmp(entry, new_entry, sizeof *entry)) { 1062 return 0; 1063 } 1064 1065 *entry = *new_entry; 1066 1067 return 0; 1068 } 1069 1070 return -ESRCH; 1071 } 1072 1073 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1074 { 1075 struct kvm_irq_routing_entry e = {}; 1076 1077 assert(pin < s->gsi_count); 1078 1079 e.gsi = irq; 1080 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1081 e.flags = 0; 1082 e.u.irqchip.irqchip = irqchip; 1083 e.u.irqchip.pin = pin; 1084 kvm_add_routing_entry(s, &e); 1085 } 1086 1087 void kvm_irqchip_release_virq(KVMState *s, int virq) 1088 { 1089 struct kvm_irq_routing_entry *e; 1090 int i; 1091 1092 if (kvm_gsi_direct_mapping()) { 1093 return; 1094 } 1095 1096 for (i = 0; i < s->irq_routes->nr; i++) { 1097 e = &s->irq_routes->entries[i]; 1098 if (e->gsi == virq) { 1099 s->irq_routes->nr--; 1100 *e = s->irq_routes->entries[s->irq_routes->nr]; 1101 } 1102 } 1103 clear_gsi(s, virq); 1104 kvm_arch_release_virq_post(virq); 1105 trace_kvm_irqchip_release_virq(virq); 1106 } 1107 1108 static unsigned int kvm_hash_msi(uint32_t data) 1109 { 1110 /* This is optimized for IA32 MSI layout. However, no other arch shall 1111 * repeat the mistake of not providing a direct MSI injection API. */ 1112 return data & 0xff; 1113 } 1114 1115 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1116 { 1117 KVMMSIRoute *route, *next; 1118 unsigned int hash; 1119 1120 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1121 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1122 kvm_irqchip_release_virq(s, route->kroute.gsi); 1123 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1124 g_free(route); 1125 } 1126 } 1127 } 1128 1129 static int kvm_irqchip_get_virq(KVMState *s) 1130 { 1131 int next_virq; 1132 1133 /* 1134 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1135 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1136 * number can succeed even though a new route entry cannot be added. 1137 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1138 */ 1139 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1140 kvm_flush_dynamic_msi_routes(s); 1141 } 1142 1143 /* Return the lowest unused GSI in the bitmap */ 1144 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1145 if (next_virq >= s->gsi_count) { 1146 return -ENOSPC; 1147 } else { 1148 return next_virq; 1149 } 1150 } 1151 1152 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1153 { 1154 unsigned int hash = kvm_hash_msi(msg.data); 1155 KVMMSIRoute *route; 1156 1157 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1158 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1159 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1160 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1161 return route; 1162 } 1163 } 1164 return NULL; 1165 } 1166 1167 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1168 { 1169 struct kvm_msi msi; 1170 KVMMSIRoute *route; 1171 1172 if (kvm_direct_msi_allowed) { 1173 msi.address_lo = (uint32_t)msg.address; 1174 msi.address_hi = msg.address >> 32; 1175 msi.data = le32_to_cpu(msg.data); 1176 msi.flags = 0; 1177 memset(msi.pad, 0, sizeof(msi.pad)); 1178 1179 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1180 } 1181 1182 route = kvm_lookup_msi_route(s, msg); 1183 if (!route) { 1184 int virq; 1185 1186 virq = kvm_irqchip_get_virq(s); 1187 if (virq < 0) { 1188 return virq; 1189 } 1190 1191 route = g_malloc0(sizeof(KVMMSIRoute)); 1192 route->kroute.gsi = virq; 1193 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1194 route->kroute.flags = 0; 1195 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1196 route->kroute.u.msi.address_hi = msg.address >> 32; 1197 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1198 1199 kvm_add_routing_entry(s, &route->kroute); 1200 kvm_irqchip_commit_routes(s); 1201 1202 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1203 entry); 1204 } 1205 1206 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1207 1208 return kvm_set_irq(s, route->kroute.gsi, 1); 1209 } 1210 1211 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1212 { 1213 struct kvm_irq_routing_entry kroute = {}; 1214 int virq; 1215 MSIMessage msg = {0, 0}; 1216 1217 if (pci_available && dev) { 1218 msg = pci_get_msi_message(dev, vector); 1219 } 1220 1221 if (kvm_gsi_direct_mapping()) { 1222 return kvm_arch_msi_data_to_gsi(msg.data); 1223 } 1224 1225 if (!kvm_gsi_routing_enabled()) { 1226 return -ENOSYS; 1227 } 1228 1229 virq = kvm_irqchip_get_virq(s); 1230 if (virq < 0) { 1231 return virq; 1232 } 1233 1234 kroute.gsi = virq; 1235 kroute.type = KVM_IRQ_ROUTING_MSI; 1236 kroute.flags = 0; 1237 kroute.u.msi.address_lo = (uint32_t)msg.address; 1238 kroute.u.msi.address_hi = msg.address >> 32; 1239 kroute.u.msi.data = le32_to_cpu(msg.data); 1240 if (pci_available && kvm_msi_devid_required()) { 1241 kroute.flags = KVM_MSI_VALID_DEVID; 1242 kroute.u.msi.devid = pci_requester_id(dev); 1243 } 1244 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1245 kvm_irqchip_release_virq(s, virq); 1246 return -EINVAL; 1247 } 1248 1249 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1250 vector, virq); 1251 1252 kvm_add_routing_entry(s, &kroute); 1253 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1254 kvm_irqchip_commit_routes(s); 1255 1256 return virq; 1257 } 1258 1259 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1260 PCIDevice *dev) 1261 { 1262 struct kvm_irq_routing_entry kroute = {}; 1263 1264 if (kvm_gsi_direct_mapping()) { 1265 return 0; 1266 } 1267 1268 if (!kvm_irqchip_in_kernel()) { 1269 return -ENOSYS; 1270 } 1271 1272 kroute.gsi = virq; 1273 kroute.type = KVM_IRQ_ROUTING_MSI; 1274 kroute.flags = 0; 1275 kroute.u.msi.address_lo = (uint32_t)msg.address; 1276 kroute.u.msi.address_hi = msg.address >> 32; 1277 kroute.u.msi.data = le32_to_cpu(msg.data); 1278 if (pci_available && kvm_msi_devid_required()) { 1279 kroute.flags = KVM_MSI_VALID_DEVID; 1280 kroute.u.msi.devid = pci_requester_id(dev); 1281 } 1282 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1283 return -EINVAL; 1284 } 1285 1286 trace_kvm_irqchip_update_msi_route(virq); 1287 1288 return kvm_update_routing_entry(s, &kroute); 1289 } 1290 1291 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1292 bool assign) 1293 { 1294 struct kvm_irqfd irqfd = { 1295 .fd = fd, 1296 .gsi = virq, 1297 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1298 }; 1299 1300 if (rfd != -1) { 1301 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1302 irqfd.resamplefd = rfd; 1303 } 1304 1305 if (!kvm_irqfds_enabled()) { 1306 return -ENOSYS; 1307 } 1308 1309 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1310 } 1311 1312 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1313 { 1314 struct kvm_irq_routing_entry kroute = {}; 1315 int virq; 1316 1317 if (!kvm_gsi_routing_enabled()) { 1318 return -ENOSYS; 1319 } 1320 1321 virq = kvm_irqchip_get_virq(s); 1322 if (virq < 0) { 1323 return virq; 1324 } 1325 1326 kroute.gsi = virq; 1327 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1328 kroute.flags = 0; 1329 kroute.u.adapter.summary_addr = adapter->summary_addr; 1330 kroute.u.adapter.ind_addr = adapter->ind_addr; 1331 kroute.u.adapter.summary_offset = adapter->summary_offset; 1332 kroute.u.adapter.ind_offset = adapter->ind_offset; 1333 kroute.u.adapter.adapter_id = adapter->adapter_id; 1334 1335 kvm_add_routing_entry(s, &kroute); 1336 1337 return virq; 1338 } 1339 1340 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1341 { 1342 struct kvm_irq_routing_entry kroute = {}; 1343 int virq; 1344 1345 if (!kvm_gsi_routing_enabled()) { 1346 return -ENOSYS; 1347 } 1348 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1349 return -ENOSYS; 1350 } 1351 virq = kvm_irqchip_get_virq(s); 1352 if (virq < 0) { 1353 return virq; 1354 } 1355 1356 kroute.gsi = virq; 1357 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1358 kroute.flags = 0; 1359 kroute.u.hv_sint.vcpu = vcpu; 1360 kroute.u.hv_sint.sint = sint; 1361 1362 kvm_add_routing_entry(s, &kroute); 1363 kvm_irqchip_commit_routes(s); 1364 1365 return virq; 1366 } 1367 1368 #else /* !KVM_CAP_IRQ_ROUTING */ 1369 1370 void kvm_init_irq_routing(KVMState *s) 1371 { 1372 } 1373 1374 void kvm_irqchip_release_virq(KVMState *s, int virq) 1375 { 1376 } 1377 1378 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1379 { 1380 abort(); 1381 } 1382 1383 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1384 { 1385 return -ENOSYS; 1386 } 1387 1388 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1389 { 1390 return -ENOSYS; 1391 } 1392 1393 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1394 { 1395 return -ENOSYS; 1396 } 1397 1398 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1399 { 1400 abort(); 1401 } 1402 1403 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1404 { 1405 return -ENOSYS; 1406 } 1407 #endif /* !KVM_CAP_IRQ_ROUTING */ 1408 1409 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1410 EventNotifier *rn, int virq) 1411 { 1412 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1413 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1414 } 1415 1416 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1417 int virq) 1418 { 1419 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1420 false); 1421 } 1422 1423 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1424 EventNotifier *rn, qemu_irq irq) 1425 { 1426 gpointer key, gsi; 1427 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1428 1429 if (!found) { 1430 return -ENXIO; 1431 } 1432 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1433 } 1434 1435 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1436 qemu_irq irq) 1437 { 1438 gpointer key, gsi; 1439 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1440 1441 if (!found) { 1442 return -ENXIO; 1443 } 1444 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1445 } 1446 1447 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1448 { 1449 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1450 } 1451 1452 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1453 { 1454 int ret; 1455 1456 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1457 ; 1458 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1459 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1460 if (ret < 0) { 1461 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1462 exit(1); 1463 } 1464 } else { 1465 return; 1466 } 1467 1468 /* First probe and see if there's a arch-specific hook to create the 1469 * in-kernel irqchip for us */ 1470 ret = kvm_arch_irqchip_create(machine, s); 1471 if (ret == 0) { 1472 if (machine_kernel_irqchip_split(machine)) { 1473 perror("Split IRQ chip mode not supported."); 1474 exit(1); 1475 } else { 1476 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1477 } 1478 } 1479 if (ret < 0) { 1480 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1481 exit(1); 1482 } 1483 1484 kvm_kernel_irqchip = true; 1485 /* If we have an in-kernel IRQ chip then we must have asynchronous 1486 * interrupt delivery (though the reverse is not necessarily true) 1487 */ 1488 kvm_async_interrupts_allowed = true; 1489 kvm_halt_in_kernel_allowed = true; 1490 1491 kvm_init_irq_routing(s); 1492 1493 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1494 } 1495 1496 /* Find number of supported CPUs using the recommended 1497 * procedure from the kernel API documentation to cope with 1498 * older kernels that may be missing capabilities. 1499 */ 1500 static int kvm_recommended_vcpus(KVMState *s) 1501 { 1502 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); 1503 return (ret) ? ret : 4; 1504 } 1505 1506 static int kvm_max_vcpus(KVMState *s) 1507 { 1508 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1509 return (ret) ? ret : kvm_recommended_vcpus(s); 1510 } 1511 1512 static int kvm_max_vcpu_id(KVMState *s) 1513 { 1514 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1515 return (ret) ? ret : kvm_max_vcpus(s); 1516 } 1517 1518 bool kvm_vcpu_id_is_valid(int vcpu_id) 1519 { 1520 KVMState *s = KVM_STATE(current_machine->accelerator); 1521 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1522 } 1523 1524 static int kvm_init(MachineState *ms) 1525 { 1526 MachineClass *mc = MACHINE_GET_CLASS(ms); 1527 static const char upgrade_note[] = 1528 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1529 "(see http://sourceforge.net/projects/kvm).\n"; 1530 struct { 1531 const char *name; 1532 int num; 1533 } num_cpus[] = { 1534 { "SMP", smp_cpus }, 1535 { "hotpluggable", max_cpus }, 1536 { NULL, } 1537 }, *nc = num_cpus; 1538 int soft_vcpus_limit, hard_vcpus_limit; 1539 KVMState *s; 1540 const KVMCapabilityInfo *missing_cap; 1541 int ret; 1542 int type = 0; 1543 const char *kvm_type; 1544 1545 s = KVM_STATE(ms->accelerator); 1546 1547 /* 1548 * On systems where the kernel can support different base page 1549 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1550 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1551 * page size for the system though. 1552 */ 1553 assert(TARGET_PAGE_SIZE <= getpagesize()); 1554 1555 s->sigmask_len = 8; 1556 1557 #ifdef KVM_CAP_SET_GUEST_DEBUG 1558 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1559 #endif 1560 QLIST_INIT(&s->kvm_parked_vcpus); 1561 s->vmfd = -1; 1562 s->fd = qemu_open("/dev/kvm", O_RDWR); 1563 if (s->fd == -1) { 1564 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1565 ret = -errno; 1566 goto err; 1567 } 1568 1569 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1570 if (ret < KVM_API_VERSION) { 1571 if (ret >= 0) { 1572 ret = -EINVAL; 1573 } 1574 fprintf(stderr, "kvm version too old\n"); 1575 goto err; 1576 } 1577 1578 if (ret > KVM_API_VERSION) { 1579 ret = -EINVAL; 1580 fprintf(stderr, "kvm version not supported\n"); 1581 goto err; 1582 } 1583 1584 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1585 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1586 1587 /* If unspecified, use the default value */ 1588 if (!s->nr_slots) { 1589 s->nr_slots = 32; 1590 } 1591 1592 /* check the vcpu limits */ 1593 soft_vcpus_limit = kvm_recommended_vcpus(s); 1594 hard_vcpus_limit = kvm_max_vcpus(s); 1595 1596 while (nc->name) { 1597 if (nc->num > soft_vcpus_limit) { 1598 fprintf(stderr, 1599 "Warning: Number of %s cpus requested (%d) exceeds " 1600 "the recommended cpus supported by KVM (%d)\n", 1601 nc->name, nc->num, soft_vcpus_limit); 1602 1603 if (nc->num > hard_vcpus_limit) { 1604 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1605 "the maximum cpus supported by KVM (%d)\n", 1606 nc->name, nc->num, hard_vcpus_limit); 1607 exit(1); 1608 } 1609 } 1610 nc++; 1611 } 1612 1613 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1614 if (mc->kvm_type) { 1615 type = mc->kvm_type(kvm_type); 1616 } else if (kvm_type) { 1617 ret = -EINVAL; 1618 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1619 goto err; 1620 } 1621 1622 do { 1623 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1624 } while (ret == -EINTR); 1625 1626 if (ret < 0) { 1627 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1628 strerror(-ret)); 1629 1630 #ifdef TARGET_S390X 1631 if (ret == -EINVAL) { 1632 fprintf(stderr, 1633 "Host kernel setup problem detected. Please verify:\n"); 1634 fprintf(stderr, "- for kernels supporting the switch_amode or" 1635 " user_mode parameters, whether\n"); 1636 fprintf(stderr, 1637 " user space is running in primary address space\n"); 1638 fprintf(stderr, 1639 "- for kernels supporting the vm.allocate_pgste sysctl, " 1640 "whether it is enabled\n"); 1641 } 1642 #endif 1643 goto err; 1644 } 1645 1646 s->vmfd = ret; 1647 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1648 if (!missing_cap) { 1649 missing_cap = 1650 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1651 } 1652 if (missing_cap) { 1653 ret = -EINVAL; 1654 fprintf(stderr, "kvm does not support %s\n%s", 1655 missing_cap->name, upgrade_note); 1656 goto err; 1657 } 1658 1659 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1660 1661 #ifdef KVM_CAP_VCPU_EVENTS 1662 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1663 #endif 1664 1665 s->robust_singlestep = 1666 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1667 1668 #ifdef KVM_CAP_DEBUGREGS 1669 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1670 #endif 1671 1672 #ifdef KVM_CAP_IRQ_ROUTING 1673 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1674 #endif 1675 1676 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1677 1678 s->irq_set_ioctl = KVM_IRQ_LINE; 1679 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1680 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1681 } 1682 1683 #ifdef KVM_CAP_READONLY_MEM 1684 kvm_readonly_mem_allowed = 1685 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1686 #endif 1687 1688 kvm_eventfds_allowed = 1689 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1690 1691 kvm_irqfds_allowed = 1692 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1693 1694 kvm_resamplefds_allowed = 1695 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1696 1697 kvm_vm_attributes_allowed = 1698 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1699 1700 kvm_ioeventfd_any_length_allowed = 1701 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1702 1703 kvm_state = s; 1704 1705 ret = kvm_arch_init(ms, s); 1706 if (ret < 0) { 1707 goto err; 1708 } 1709 1710 if (machine_kernel_irqchip_allowed(ms)) { 1711 kvm_irqchip_create(ms, s); 1712 } 1713 1714 if (kvm_eventfds_allowed) { 1715 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1716 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1717 } 1718 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; 1719 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; 1720 1721 kvm_memory_listener_register(s, &s->memory_listener, 1722 &address_space_memory, 0); 1723 memory_listener_register(&kvm_io_listener, 1724 &address_space_io); 1725 1726 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1727 1728 return 0; 1729 1730 err: 1731 assert(ret < 0); 1732 if (s->vmfd >= 0) { 1733 close(s->vmfd); 1734 } 1735 if (s->fd != -1) { 1736 close(s->fd); 1737 } 1738 g_free(s->memory_listener.slots); 1739 1740 return ret; 1741 } 1742 1743 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1744 { 1745 s->sigmask_len = sigmask_len; 1746 } 1747 1748 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1749 int size, uint32_t count) 1750 { 1751 int i; 1752 uint8_t *ptr = data; 1753 1754 for (i = 0; i < count; i++) { 1755 address_space_rw(&address_space_io, port, attrs, 1756 ptr, size, 1757 direction == KVM_EXIT_IO_OUT); 1758 ptr += size; 1759 } 1760 } 1761 1762 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1763 { 1764 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1765 run->internal.suberror); 1766 1767 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1768 int i; 1769 1770 for (i = 0; i < run->internal.ndata; ++i) { 1771 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1772 i, (uint64_t)run->internal.data[i]); 1773 } 1774 } 1775 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1776 fprintf(stderr, "emulation failure\n"); 1777 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1778 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 1779 return EXCP_INTERRUPT; 1780 } 1781 } 1782 /* FIXME: Should trigger a qmp message to let management know 1783 * something went wrong. 1784 */ 1785 return -1; 1786 } 1787 1788 void kvm_flush_coalesced_mmio_buffer(void) 1789 { 1790 KVMState *s = kvm_state; 1791 1792 if (s->coalesced_flush_in_progress) { 1793 return; 1794 } 1795 1796 s->coalesced_flush_in_progress = true; 1797 1798 if (s->coalesced_mmio_ring) { 1799 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1800 while (ring->first != ring->last) { 1801 struct kvm_coalesced_mmio *ent; 1802 1803 ent = &ring->coalesced_mmio[ring->first]; 1804 1805 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1806 smp_wmb(); 1807 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1808 } 1809 } 1810 1811 s->coalesced_flush_in_progress = false; 1812 } 1813 1814 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1815 { 1816 if (!cpu->vcpu_dirty) { 1817 kvm_arch_get_registers(cpu); 1818 cpu->vcpu_dirty = true; 1819 } 1820 } 1821 1822 void kvm_cpu_synchronize_state(CPUState *cpu) 1823 { 1824 if (!cpu->vcpu_dirty) { 1825 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1826 } 1827 } 1828 1829 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1830 { 1831 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1832 cpu->vcpu_dirty = false; 1833 } 1834 1835 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1836 { 1837 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1838 } 1839 1840 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1841 { 1842 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1843 cpu->vcpu_dirty = false; 1844 } 1845 1846 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1847 { 1848 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1849 } 1850 1851 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1852 { 1853 cpu->vcpu_dirty = true; 1854 } 1855 1856 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1857 { 1858 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1859 } 1860 1861 #ifdef KVM_HAVE_MCE_INJECTION 1862 static __thread void *pending_sigbus_addr; 1863 static __thread int pending_sigbus_code; 1864 static __thread bool have_sigbus_pending; 1865 #endif 1866 1867 static void kvm_cpu_kick(CPUState *cpu) 1868 { 1869 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1870 } 1871 1872 static void kvm_cpu_kick_self(void) 1873 { 1874 if (kvm_immediate_exit) { 1875 kvm_cpu_kick(current_cpu); 1876 } else { 1877 qemu_cpu_kick_self(); 1878 } 1879 } 1880 1881 static void kvm_eat_signals(CPUState *cpu) 1882 { 1883 struct timespec ts = { 0, 0 }; 1884 siginfo_t siginfo; 1885 sigset_t waitset; 1886 sigset_t chkset; 1887 int r; 1888 1889 if (kvm_immediate_exit) { 1890 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1891 /* Write kvm_run->immediate_exit before the cpu->exit_request 1892 * write in kvm_cpu_exec. 1893 */ 1894 smp_wmb(); 1895 return; 1896 } 1897 1898 sigemptyset(&waitset); 1899 sigaddset(&waitset, SIG_IPI); 1900 1901 do { 1902 r = sigtimedwait(&waitset, &siginfo, &ts); 1903 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1904 perror("sigtimedwait"); 1905 exit(1); 1906 } 1907 1908 r = sigpending(&chkset); 1909 if (r == -1) { 1910 perror("sigpending"); 1911 exit(1); 1912 } 1913 } while (sigismember(&chkset, SIG_IPI)); 1914 } 1915 1916 int kvm_cpu_exec(CPUState *cpu) 1917 { 1918 struct kvm_run *run = cpu->kvm_run; 1919 int ret, run_ret; 1920 1921 DPRINTF("kvm_cpu_exec()\n"); 1922 1923 if (kvm_arch_process_async_events(cpu)) { 1924 atomic_set(&cpu->exit_request, 0); 1925 return EXCP_HLT; 1926 } 1927 1928 qemu_mutex_unlock_iothread(); 1929 cpu_exec_start(cpu); 1930 1931 do { 1932 MemTxAttrs attrs; 1933 1934 if (cpu->vcpu_dirty) { 1935 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1936 cpu->vcpu_dirty = false; 1937 } 1938 1939 kvm_arch_pre_run(cpu, run); 1940 if (atomic_read(&cpu->exit_request)) { 1941 DPRINTF("interrupt exit requested\n"); 1942 /* 1943 * KVM requires us to reenter the kernel after IO exits to complete 1944 * instruction emulation. This self-signal will ensure that we 1945 * leave ASAP again. 1946 */ 1947 kvm_cpu_kick_self(); 1948 } 1949 1950 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1951 * Matching barrier in kvm_eat_signals. 1952 */ 1953 smp_rmb(); 1954 1955 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1956 1957 attrs = kvm_arch_post_run(cpu, run); 1958 1959 #ifdef KVM_HAVE_MCE_INJECTION 1960 if (unlikely(have_sigbus_pending)) { 1961 qemu_mutex_lock_iothread(); 1962 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1963 pending_sigbus_addr); 1964 have_sigbus_pending = false; 1965 qemu_mutex_unlock_iothread(); 1966 } 1967 #endif 1968 1969 if (run_ret < 0) { 1970 if (run_ret == -EINTR || run_ret == -EAGAIN) { 1971 DPRINTF("io window exit\n"); 1972 kvm_eat_signals(cpu); 1973 ret = EXCP_INTERRUPT; 1974 break; 1975 } 1976 fprintf(stderr, "error: kvm run failed %s\n", 1977 strerror(-run_ret)); 1978 #ifdef TARGET_PPC 1979 if (run_ret == -EBUSY) { 1980 fprintf(stderr, 1981 "This is probably because your SMT is enabled.\n" 1982 "VCPU can only run on primary threads with all " 1983 "secondary threads offline.\n"); 1984 } 1985 #endif 1986 ret = -1; 1987 break; 1988 } 1989 1990 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 1991 switch (run->exit_reason) { 1992 case KVM_EXIT_IO: 1993 DPRINTF("handle_io\n"); 1994 /* Called outside BQL */ 1995 kvm_handle_io(run->io.port, attrs, 1996 (uint8_t *)run + run->io.data_offset, 1997 run->io.direction, 1998 run->io.size, 1999 run->io.count); 2000 ret = 0; 2001 break; 2002 case KVM_EXIT_MMIO: 2003 DPRINTF("handle_mmio\n"); 2004 /* Called outside BQL */ 2005 address_space_rw(&address_space_memory, 2006 run->mmio.phys_addr, attrs, 2007 run->mmio.data, 2008 run->mmio.len, 2009 run->mmio.is_write); 2010 ret = 0; 2011 break; 2012 case KVM_EXIT_IRQ_WINDOW_OPEN: 2013 DPRINTF("irq_window_open\n"); 2014 ret = EXCP_INTERRUPT; 2015 break; 2016 case KVM_EXIT_SHUTDOWN: 2017 DPRINTF("shutdown\n"); 2018 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2019 ret = EXCP_INTERRUPT; 2020 break; 2021 case KVM_EXIT_UNKNOWN: 2022 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2023 (uint64_t)run->hw.hardware_exit_reason); 2024 ret = -1; 2025 break; 2026 case KVM_EXIT_INTERNAL_ERROR: 2027 ret = kvm_handle_internal_error(cpu, run); 2028 break; 2029 case KVM_EXIT_SYSTEM_EVENT: 2030 switch (run->system_event.type) { 2031 case KVM_SYSTEM_EVENT_SHUTDOWN: 2032 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2033 ret = EXCP_INTERRUPT; 2034 break; 2035 case KVM_SYSTEM_EVENT_RESET: 2036 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2037 ret = EXCP_INTERRUPT; 2038 break; 2039 case KVM_SYSTEM_EVENT_CRASH: 2040 kvm_cpu_synchronize_state(cpu); 2041 qemu_mutex_lock_iothread(); 2042 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2043 qemu_mutex_unlock_iothread(); 2044 ret = 0; 2045 break; 2046 default: 2047 DPRINTF("kvm_arch_handle_exit\n"); 2048 ret = kvm_arch_handle_exit(cpu, run); 2049 break; 2050 } 2051 break; 2052 default: 2053 DPRINTF("kvm_arch_handle_exit\n"); 2054 ret = kvm_arch_handle_exit(cpu, run); 2055 break; 2056 } 2057 } while (ret == 0); 2058 2059 cpu_exec_end(cpu); 2060 qemu_mutex_lock_iothread(); 2061 2062 if (ret < 0) { 2063 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 2064 vm_stop(RUN_STATE_INTERNAL_ERROR); 2065 } 2066 2067 atomic_set(&cpu->exit_request, 0); 2068 return ret; 2069 } 2070 2071 int kvm_ioctl(KVMState *s, int type, ...) 2072 { 2073 int ret; 2074 void *arg; 2075 va_list ap; 2076 2077 va_start(ap, type); 2078 arg = va_arg(ap, void *); 2079 va_end(ap); 2080 2081 trace_kvm_ioctl(type, arg); 2082 ret = ioctl(s->fd, type, arg); 2083 if (ret == -1) { 2084 ret = -errno; 2085 } 2086 return ret; 2087 } 2088 2089 int kvm_vm_ioctl(KVMState *s, int type, ...) 2090 { 2091 int ret; 2092 void *arg; 2093 va_list ap; 2094 2095 va_start(ap, type); 2096 arg = va_arg(ap, void *); 2097 va_end(ap); 2098 2099 trace_kvm_vm_ioctl(type, arg); 2100 ret = ioctl(s->vmfd, type, arg); 2101 if (ret == -1) { 2102 ret = -errno; 2103 } 2104 return ret; 2105 } 2106 2107 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2108 { 2109 int ret; 2110 void *arg; 2111 va_list ap; 2112 2113 va_start(ap, type); 2114 arg = va_arg(ap, void *); 2115 va_end(ap); 2116 2117 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2118 ret = ioctl(cpu->kvm_fd, type, arg); 2119 if (ret == -1) { 2120 ret = -errno; 2121 } 2122 return ret; 2123 } 2124 2125 int kvm_device_ioctl(int fd, int type, ...) 2126 { 2127 int ret; 2128 void *arg; 2129 va_list ap; 2130 2131 va_start(ap, type); 2132 arg = va_arg(ap, void *); 2133 va_end(ap); 2134 2135 trace_kvm_device_ioctl(fd, type, arg); 2136 ret = ioctl(fd, type, arg); 2137 if (ret == -1) { 2138 ret = -errno; 2139 } 2140 return ret; 2141 } 2142 2143 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2144 { 2145 int ret; 2146 struct kvm_device_attr attribute = { 2147 .group = group, 2148 .attr = attr, 2149 }; 2150 2151 if (!kvm_vm_attributes_allowed) { 2152 return 0; 2153 } 2154 2155 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2156 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2157 return ret ? 0 : 1; 2158 } 2159 2160 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2161 { 2162 struct kvm_device_attr attribute = { 2163 .group = group, 2164 .attr = attr, 2165 .flags = 0, 2166 }; 2167 2168 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2169 } 2170 2171 int kvm_device_access(int fd, int group, uint64_t attr, 2172 void *val, bool write, Error **errp) 2173 { 2174 struct kvm_device_attr kvmattr; 2175 int err; 2176 2177 kvmattr.flags = 0; 2178 kvmattr.group = group; 2179 kvmattr.attr = attr; 2180 kvmattr.addr = (uintptr_t)val; 2181 2182 err = kvm_device_ioctl(fd, 2183 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2184 &kvmattr); 2185 if (err < 0) { 2186 error_setg_errno(errp, -err, 2187 "KVM_%s_DEVICE_ATTR failed: Group %d " 2188 "attr 0x%016" PRIx64, 2189 write ? "SET" : "GET", group, attr); 2190 } 2191 return err; 2192 } 2193 2194 /* Return 1 on success, 0 on failure */ 2195 int kvm_has_sync_mmu(void) 2196 { 2197 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2198 } 2199 2200 int kvm_has_vcpu_events(void) 2201 { 2202 return kvm_state->vcpu_events; 2203 } 2204 2205 int kvm_has_robust_singlestep(void) 2206 { 2207 return kvm_state->robust_singlestep; 2208 } 2209 2210 int kvm_has_debugregs(void) 2211 { 2212 return kvm_state->debugregs; 2213 } 2214 2215 int kvm_has_many_ioeventfds(void) 2216 { 2217 if (!kvm_enabled()) { 2218 return 0; 2219 } 2220 return kvm_state->many_ioeventfds; 2221 } 2222 2223 int kvm_has_gsi_routing(void) 2224 { 2225 #ifdef KVM_CAP_IRQ_ROUTING 2226 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2227 #else 2228 return false; 2229 #endif 2230 } 2231 2232 int kvm_has_intx_set_mask(void) 2233 { 2234 return kvm_state->intx_set_mask; 2235 } 2236 2237 bool kvm_arm_supports_user_irq(void) 2238 { 2239 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2240 } 2241 2242 #ifdef KVM_CAP_SET_GUEST_DEBUG 2243 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2244 target_ulong pc) 2245 { 2246 struct kvm_sw_breakpoint *bp; 2247 2248 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2249 if (bp->pc == pc) { 2250 return bp; 2251 } 2252 } 2253 return NULL; 2254 } 2255 2256 int kvm_sw_breakpoints_active(CPUState *cpu) 2257 { 2258 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2259 } 2260 2261 struct kvm_set_guest_debug_data { 2262 struct kvm_guest_debug dbg; 2263 int err; 2264 }; 2265 2266 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2267 { 2268 struct kvm_set_guest_debug_data *dbg_data = 2269 (struct kvm_set_guest_debug_data *) data.host_ptr; 2270 2271 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2272 &dbg_data->dbg); 2273 } 2274 2275 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2276 { 2277 struct kvm_set_guest_debug_data data; 2278 2279 data.dbg.control = reinject_trap; 2280 2281 if (cpu->singlestep_enabled) { 2282 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2283 } 2284 kvm_arch_update_guest_debug(cpu, &data.dbg); 2285 2286 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2287 RUN_ON_CPU_HOST_PTR(&data)); 2288 return data.err; 2289 } 2290 2291 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2292 target_ulong len, int type) 2293 { 2294 struct kvm_sw_breakpoint *bp; 2295 int err; 2296 2297 if (type == GDB_BREAKPOINT_SW) { 2298 bp = kvm_find_sw_breakpoint(cpu, addr); 2299 if (bp) { 2300 bp->use_count++; 2301 return 0; 2302 } 2303 2304 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2305 bp->pc = addr; 2306 bp->use_count = 1; 2307 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2308 if (err) { 2309 g_free(bp); 2310 return err; 2311 } 2312 2313 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2314 } else { 2315 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2316 if (err) { 2317 return err; 2318 } 2319 } 2320 2321 CPU_FOREACH(cpu) { 2322 err = kvm_update_guest_debug(cpu, 0); 2323 if (err) { 2324 return err; 2325 } 2326 } 2327 return 0; 2328 } 2329 2330 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2331 target_ulong len, int type) 2332 { 2333 struct kvm_sw_breakpoint *bp; 2334 int err; 2335 2336 if (type == GDB_BREAKPOINT_SW) { 2337 bp = kvm_find_sw_breakpoint(cpu, addr); 2338 if (!bp) { 2339 return -ENOENT; 2340 } 2341 2342 if (bp->use_count > 1) { 2343 bp->use_count--; 2344 return 0; 2345 } 2346 2347 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2348 if (err) { 2349 return err; 2350 } 2351 2352 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2353 g_free(bp); 2354 } else { 2355 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2356 if (err) { 2357 return err; 2358 } 2359 } 2360 2361 CPU_FOREACH(cpu) { 2362 err = kvm_update_guest_debug(cpu, 0); 2363 if (err) { 2364 return err; 2365 } 2366 } 2367 return 0; 2368 } 2369 2370 void kvm_remove_all_breakpoints(CPUState *cpu) 2371 { 2372 struct kvm_sw_breakpoint *bp, *next; 2373 KVMState *s = cpu->kvm_state; 2374 CPUState *tmpcpu; 2375 2376 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2377 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2378 /* Try harder to find a CPU that currently sees the breakpoint. */ 2379 CPU_FOREACH(tmpcpu) { 2380 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2381 break; 2382 } 2383 } 2384 } 2385 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2386 g_free(bp); 2387 } 2388 kvm_arch_remove_all_hw_breakpoints(); 2389 2390 CPU_FOREACH(cpu) { 2391 kvm_update_guest_debug(cpu, 0); 2392 } 2393 } 2394 2395 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2396 2397 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2398 { 2399 return -EINVAL; 2400 } 2401 2402 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2403 target_ulong len, int type) 2404 { 2405 return -EINVAL; 2406 } 2407 2408 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2409 target_ulong len, int type) 2410 { 2411 return -EINVAL; 2412 } 2413 2414 void kvm_remove_all_breakpoints(CPUState *cpu) 2415 { 2416 } 2417 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2418 2419 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2420 { 2421 KVMState *s = kvm_state; 2422 struct kvm_signal_mask *sigmask; 2423 int r; 2424 2425 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2426 2427 sigmask->len = s->sigmask_len; 2428 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2429 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2430 g_free(sigmask); 2431 2432 return r; 2433 } 2434 2435 static void kvm_ipi_signal(int sig) 2436 { 2437 if (current_cpu) { 2438 assert(kvm_immediate_exit); 2439 kvm_cpu_kick(current_cpu); 2440 } 2441 } 2442 2443 void kvm_init_cpu_signals(CPUState *cpu) 2444 { 2445 int r; 2446 sigset_t set; 2447 struct sigaction sigact; 2448 2449 memset(&sigact, 0, sizeof(sigact)); 2450 sigact.sa_handler = kvm_ipi_signal; 2451 sigaction(SIG_IPI, &sigact, NULL); 2452 2453 pthread_sigmask(SIG_BLOCK, NULL, &set); 2454 #if defined KVM_HAVE_MCE_INJECTION 2455 sigdelset(&set, SIGBUS); 2456 pthread_sigmask(SIG_SETMASK, &set, NULL); 2457 #endif 2458 sigdelset(&set, SIG_IPI); 2459 if (kvm_immediate_exit) { 2460 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2461 } else { 2462 r = kvm_set_signal_mask(cpu, &set); 2463 } 2464 if (r) { 2465 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2466 exit(1); 2467 } 2468 } 2469 2470 /* Called asynchronously in VCPU thread. */ 2471 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2472 { 2473 #ifdef KVM_HAVE_MCE_INJECTION 2474 if (have_sigbus_pending) { 2475 return 1; 2476 } 2477 have_sigbus_pending = true; 2478 pending_sigbus_addr = addr; 2479 pending_sigbus_code = code; 2480 atomic_set(&cpu->exit_request, 1); 2481 return 0; 2482 #else 2483 return 1; 2484 #endif 2485 } 2486 2487 /* Called synchronously (via signalfd) in main thread. */ 2488 int kvm_on_sigbus(int code, void *addr) 2489 { 2490 #ifdef KVM_HAVE_MCE_INJECTION 2491 /* Action required MCE kills the process if SIGBUS is blocked. Because 2492 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2493 * we can only get action optional here. 2494 */ 2495 assert(code != BUS_MCEERR_AR); 2496 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2497 return 0; 2498 #else 2499 return 1; 2500 #endif 2501 } 2502 2503 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2504 { 2505 int ret; 2506 struct kvm_create_device create_dev; 2507 2508 create_dev.type = type; 2509 create_dev.fd = -1; 2510 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2511 2512 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2513 return -ENOTSUP; 2514 } 2515 2516 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2517 if (ret) { 2518 return ret; 2519 } 2520 2521 return test ? 0 : create_dev.fd; 2522 } 2523 2524 bool kvm_device_supported(int vmfd, uint64_t type) 2525 { 2526 struct kvm_create_device create_dev = { 2527 .type = type, 2528 .fd = -1, 2529 .flags = KVM_CREATE_DEVICE_TEST, 2530 }; 2531 2532 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2533 return false; 2534 } 2535 2536 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2537 } 2538 2539 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2540 { 2541 struct kvm_one_reg reg; 2542 int r; 2543 2544 reg.id = id; 2545 reg.addr = (uintptr_t) source; 2546 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2547 if (r) { 2548 trace_kvm_failed_reg_set(id, strerror(-r)); 2549 } 2550 return r; 2551 } 2552 2553 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2554 { 2555 struct kvm_one_reg reg; 2556 int r; 2557 2558 reg.id = id; 2559 reg.addr = (uintptr_t) target; 2560 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2561 if (r) { 2562 trace_kvm_failed_reg_get(id, strerror(-r)); 2563 } 2564 return r; 2565 } 2566 2567 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2568 { 2569 AccelClass *ac = ACCEL_CLASS(oc); 2570 ac->name = "KVM"; 2571 ac->init_machine = kvm_init; 2572 ac->allowed = &kvm_allowed; 2573 } 2574 2575 static const TypeInfo kvm_accel_type = { 2576 .name = TYPE_KVM_ACCEL, 2577 .parent = TYPE_ACCEL, 2578 .class_init = kvm_accel_class_init, 2579 .instance_size = sizeof(KVMState), 2580 }; 2581 2582 static void kvm_type_init(void) 2583 { 2584 type_register_static(&kvm_accel_type); 2585 } 2586 2587 type_init(kvm_type_init); 2588