1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 //#define DEBUG_KVM 73 74 #ifdef DEBUG_KVM 75 #define DPRINTF(fmt, ...) \ 76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 77 #else 78 #define DPRINTF(fmt, ...) \ 79 do { } while (0) 80 #endif 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_eventfds_allowed; 94 bool kvm_irqfds_allowed; 95 bool kvm_resamplefds_allowed; 96 bool kvm_msi_via_irqfd_allowed; 97 bool kvm_gsi_routing_allowed; 98 bool kvm_gsi_direct_mapping; 99 bool kvm_allowed; 100 bool kvm_readonly_mem_allowed; 101 bool kvm_vm_attributes_allowed; 102 bool kvm_direct_msi_allowed; 103 bool kvm_ioeventfd_any_length_allowed; 104 bool kvm_msi_use_devid; 105 bool kvm_has_guest_debug; 106 static int kvm_sstep_flags; 107 static bool kvm_immediate_exit; 108 static hwaddr kvm_max_slot_size = ~0; 109 110 static const KVMCapabilityInfo kvm_required_capabilites[] = { 111 KVM_CAP_INFO(USER_MEMORY), 112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 114 KVM_CAP_LAST_INFO 115 }; 116 117 static NotifierList kvm_irqchip_change_notifiers = 118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 119 120 struct KVMResampleFd { 121 int gsi; 122 EventNotifier *resample_event; 123 QLIST_ENTRY(KVMResampleFd) node; 124 }; 125 typedef struct KVMResampleFd KVMResampleFd; 126 127 /* 128 * Only used with split irqchip where we need to do the resample fd 129 * kick for the kernel from userspace. 130 */ 131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 133 134 static QemuMutex kml_slots_lock; 135 136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 138 139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 140 141 static inline void kvm_resample_fd_remove(int gsi) 142 { 143 KVMResampleFd *rfd; 144 145 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 146 if (rfd->gsi == gsi) { 147 QLIST_REMOVE(rfd, node); 148 g_free(rfd); 149 break; 150 } 151 } 152 } 153 154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 155 { 156 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 157 158 rfd->gsi = gsi; 159 rfd->resample_event = event; 160 161 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 162 } 163 164 void kvm_resample_fd_notify(int gsi) 165 { 166 KVMResampleFd *rfd; 167 168 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 169 if (rfd->gsi == gsi) { 170 event_notifier_set(rfd->resample_event); 171 trace_kvm_resample_fd_notify(gsi); 172 return; 173 } 174 } 175 } 176 177 int kvm_get_max_memslots(void) 178 { 179 KVMState *s = KVM_STATE(current_accel()); 180 181 return s->nr_slots; 182 } 183 184 /* Called with KVMMemoryListener.slots_lock held */ 185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 186 { 187 KVMState *s = kvm_state; 188 int i; 189 190 for (i = 0; i < s->nr_slots; i++) { 191 if (kml->slots[i].memory_size == 0) { 192 return &kml->slots[i]; 193 } 194 } 195 196 return NULL; 197 } 198 199 bool kvm_has_free_slot(MachineState *ms) 200 { 201 KVMState *s = KVM_STATE(ms->accelerator); 202 bool result; 203 KVMMemoryListener *kml = &s->memory_listener; 204 205 kvm_slots_lock(); 206 result = !!kvm_get_free_slot(kml); 207 kvm_slots_unlock(); 208 209 return result; 210 } 211 212 /* Called with KVMMemoryListener.slots_lock held */ 213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 214 { 215 KVMSlot *slot = kvm_get_free_slot(kml); 216 217 if (slot) { 218 return slot; 219 } 220 221 fprintf(stderr, "%s: no free slot available\n", __func__); 222 abort(); 223 } 224 225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 226 hwaddr start_addr, 227 hwaddr size) 228 { 229 KVMState *s = kvm_state; 230 int i; 231 232 for (i = 0; i < s->nr_slots; i++) { 233 KVMSlot *mem = &kml->slots[i]; 234 235 if (start_addr == mem->start_addr && size == mem->memory_size) { 236 return mem; 237 } 238 } 239 240 return NULL; 241 } 242 243 /* 244 * Calculate and align the start address and the size of the section. 245 * Return the size. If the size is 0, the aligned section is empty. 246 */ 247 static hwaddr kvm_align_section(MemoryRegionSection *section, 248 hwaddr *start) 249 { 250 hwaddr size = int128_get64(section->size); 251 hwaddr delta, aligned; 252 253 /* kvm works in page size chunks, but the function may be called 254 with sub-page size and unaligned start address. Pad the start 255 address to next and truncate size to previous page boundary. */ 256 aligned = ROUND_UP(section->offset_within_address_space, 257 qemu_real_host_page_size()); 258 delta = aligned - section->offset_within_address_space; 259 *start = aligned; 260 if (delta > size) { 261 return 0; 262 } 263 264 return (size - delta) & qemu_real_host_page_mask(); 265 } 266 267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 268 hwaddr *phys_addr) 269 { 270 KVMMemoryListener *kml = &s->memory_listener; 271 int i, ret = 0; 272 273 kvm_slots_lock(); 274 for (i = 0; i < s->nr_slots; i++) { 275 KVMSlot *mem = &kml->slots[i]; 276 277 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 278 *phys_addr = mem->start_addr + (ram - mem->ram); 279 ret = 1; 280 break; 281 } 282 } 283 kvm_slots_unlock(); 284 285 return ret; 286 } 287 288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 289 { 290 KVMState *s = kvm_state; 291 struct kvm_userspace_memory_region mem; 292 int ret; 293 294 mem.slot = slot->slot | (kml->as_id << 16); 295 mem.guest_phys_addr = slot->start_addr; 296 mem.userspace_addr = (unsigned long)slot->ram; 297 mem.flags = slot->flags; 298 299 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 300 /* Set the slot size to 0 before setting the slot to the desired 301 * value. This is needed based on KVM commit 75d61fbc. */ 302 mem.memory_size = 0; 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 304 if (ret < 0) { 305 goto err; 306 } 307 } 308 mem.memory_size = slot->memory_size; 309 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 310 slot->old_flags = mem.flags; 311 err: 312 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 313 mem.memory_size, mem.userspace_addr, ret); 314 if (ret < 0) { 315 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 316 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 317 __func__, mem.slot, slot->start_addr, 318 (uint64_t)mem.memory_size, strerror(errno)); 319 } 320 return ret; 321 } 322 323 static int do_kvm_destroy_vcpu(CPUState *cpu) 324 { 325 KVMState *s = kvm_state; 326 long mmap_size; 327 struct KVMParkedVcpu *vcpu = NULL; 328 int ret = 0; 329 330 DPRINTF("kvm_destroy_vcpu\n"); 331 332 ret = kvm_arch_destroy_vcpu(cpu); 333 if (ret < 0) { 334 goto err; 335 } 336 337 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 338 if (mmap_size < 0) { 339 ret = mmap_size; 340 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 341 goto err; 342 } 343 344 ret = munmap(cpu->kvm_run, mmap_size); 345 if (ret < 0) { 346 goto err; 347 } 348 349 if (cpu->kvm_dirty_gfns) { 350 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 351 if (ret < 0) { 352 goto err; 353 } 354 } 355 356 vcpu = g_malloc0(sizeof(*vcpu)); 357 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 358 vcpu->kvm_fd = cpu->kvm_fd; 359 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 360 err: 361 return ret; 362 } 363 364 void kvm_destroy_vcpu(CPUState *cpu) 365 { 366 if (do_kvm_destroy_vcpu(cpu) < 0) { 367 error_report("kvm_destroy_vcpu failed"); 368 exit(EXIT_FAILURE); 369 } 370 } 371 372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 373 { 374 struct KVMParkedVcpu *cpu; 375 376 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 377 if (cpu->vcpu_id == vcpu_id) { 378 int kvm_fd; 379 380 QLIST_REMOVE(cpu, node); 381 kvm_fd = cpu->kvm_fd; 382 g_free(cpu); 383 return kvm_fd; 384 } 385 } 386 387 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 388 } 389 390 int kvm_init_vcpu(CPUState *cpu, Error **errp) 391 { 392 KVMState *s = kvm_state; 393 long mmap_size; 394 int ret; 395 396 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 397 398 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 399 if (ret < 0) { 400 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 401 kvm_arch_vcpu_id(cpu)); 402 goto err; 403 } 404 405 cpu->kvm_fd = ret; 406 cpu->kvm_state = s; 407 cpu->vcpu_dirty = true; 408 cpu->dirty_pages = 0; 409 cpu->throttle_us_per_full = 0; 410 411 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 412 if (mmap_size < 0) { 413 ret = mmap_size; 414 error_setg_errno(errp, -mmap_size, 415 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 416 goto err; 417 } 418 419 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 420 cpu->kvm_fd, 0); 421 if (cpu->kvm_run == MAP_FAILED) { 422 ret = -errno; 423 error_setg_errno(errp, ret, 424 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 425 kvm_arch_vcpu_id(cpu)); 426 goto err; 427 } 428 429 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 430 s->coalesced_mmio_ring = 431 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 432 } 433 434 if (s->kvm_dirty_ring_size) { 435 /* Use MAP_SHARED to share pages with the kernel */ 436 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 437 PROT_READ | PROT_WRITE, MAP_SHARED, 438 cpu->kvm_fd, 439 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 440 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 441 ret = -errno; 442 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 443 goto err; 444 } 445 } 446 447 ret = kvm_arch_init_vcpu(cpu); 448 if (ret < 0) { 449 error_setg_errno(errp, -ret, 450 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 451 kvm_arch_vcpu_id(cpu)); 452 } 453 err: 454 return ret; 455 } 456 457 /* 458 * dirty pages logging control 459 */ 460 461 static int kvm_mem_flags(MemoryRegion *mr) 462 { 463 bool readonly = mr->readonly || memory_region_is_romd(mr); 464 int flags = 0; 465 466 if (memory_region_get_dirty_log_mask(mr) != 0) { 467 flags |= KVM_MEM_LOG_DIRTY_PAGES; 468 } 469 if (readonly && kvm_readonly_mem_allowed) { 470 flags |= KVM_MEM_READONLY; 471 } 472 return flags; 473 } 474 475 /* Called with KVMMemoryListener.slots_lock held */ 476 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 477 MemoryRegion *mr) 478 { 479 mem->flags = kvm_mem_flags(mr); 480 481 /* If nothing changed effectively, no need to issue ioctl */ 482 if (mem->flags == mem->old_flags) { 483 return 0; 484 } 485 486 kvm_slot_init_dirty_bitmap(mem); 487 return kvm_set_user_memory_region(kml, mem, false); 488 } 489 490 static int kvm_section_update_flags(KVMMemoryListener *kml, 491 MemoryRegionSection *section) 492 { 493 hwaddr start_addr, size, slot_size; 494 KVMSlot *mem; 495 int ret = 0; 496 497 size = kvm_align_section(section, &start_addr); 498 if (!size) { 499 return 0; 500 } 501 502 kvm_slots_lock(); 503 504 while (size && !ret) { 505 slot_size = MIN(kvm_max_slot_size, size); 506 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 507 if (!mem) { 508 /* We don't have a slot if we want to trap every access. */ 509 goto out; 510 } 511 512 ret = kvm_slot_update_flags(kml, mem, section->mr); 513 start_addr += slot_size; 514 size -= slot_size; 515 } 516 517 out: 518 kvm_slots_unlock(); 519 return ret; 520 } 521 522 static void kvm_log_start(MemoryListener *listener, 523 MemoryRegionSection *section, 524 int old, int new) 525 { 526 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 527 int r; 528 529 if (old != 0) { 530 return; 531 } 532 533 r = kvm_section_update_flags(kml, section); 534 if (r < 0) { 535 abort(); 536 } 537 } 538 539 static void kvm_log_stop(MemoryListener *listener, 540 MemoryRegionSection *section, 541 int old, int new) 542 { 543 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 544 int r; 545 546 if (new != 0) { 547 return; 548 } 549 550 r = kvm_section_update_flags(kml, section); 551 if (r < 0) { 552 abort(); 553 } 554 } 555 556 /* get kvm's dirty pages bitmap and update qemu's */ 557 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 558 { 559 ram_addr_t start = slot->ram_start_offset; 560 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 561 562 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 563 } 564 565 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 566 { 567 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 568 } 569 570 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 571 572 /* Allocate the dirty bitmap for a slot */ 573 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 574 { 575 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 576 return; 577 } 578 579 /* 580 * XXX bad kernel interface alert 581 * For dirty bitmap, kernel allocates array of size aligned to 582 * bits-per-long. But for case when the kernel is 64bits and 583 * the userspace is 32bits, userspace can't align to the same 584 * bits-per-long, since sizeof(long) is different between kernel 585 * and user space. This way, userspace will provide buffer which 586 * may be 4 bytes less than the kernel will use, resulting in 587 * userspace memory corruption (which is not detectable by valgrind 588 * too, in most cases). 589 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 590 * a hope that sizeof(long) won't become >8 any time soon. 591 * 592 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 593 * And mem->memory_size is aligned to it (otherwise this mem can't 594 * be registered to KVM). 595 */ 596 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 597 /*HOST_LONG_BITS*/ 64) / 8; 598 mem->dirty_bmap = g_malloc0(bitmap_size); 599 mem->dirty_bmap_size = bitmap_size; 600 } 601 602 /* 603 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 604 * succeeded, false otherwise 605 */ 606 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 607 { 608 struct kvm_dirty_log d = {}; 609 int ret; 610 611 d.dirty_bitmap = slot->dirty_bmap; 612 d.slot = slot->slot | (slot->as_id << 16); 613 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 614 615 if (ret == -ENOENT) { 616 /* kernel does not have dirty bitmap in this slot */ 617 ret = 0; 618 } 619 if (ret) { 620 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 621 __func__, ret); 622 } 623 return ret == 0; 624 } 625 626 /* Should be with all slots_lock held for the address spaces. */ 627 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 628 uint32_t slot_id, uint64_t offset) 629 { 630 KVMMemoryListener *kml; 631 KVMSlot *mem; 632 633 if (as_id >= s->nr_as) { 634 return; 635 } 636 637 kml = s->as[as_id].ml; 638 mem = &kml->slots[slot_id]; 639 640 if (!mem->memory_size || offset >= 641 (mem->memory_size / qemu_real_host_page_size())) { 642 return; 643 } 644 645 set_bit(offset, mem->dirty_bmap); 646 } 647 648 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 649 { 650 /* 651 * Read the flags before the value. Pairs with barrier in 652 * KVM's kvm_dirty_ring_push() function. 653 */ 654 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 655 } 656 657 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 658 { 659 /* 660 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 661 * sees the full content of the ring: 662 * 663 * CPU0 CPU1 CPU2 664 * ------------------------------------------------------------------------------ 665 * fill gfn0 666 * store-rel flags for gfn0 667 * load-acq flags for gfn0 668 * store-rel RESET for gfn0 669 * ioctl(RESET_RINGS) 670 * load-acq flags for gfn0 671 * check if flags have RESET 672 * 673 * The synchronization goes from CPU2 to CPU0 to CPU1. 674 */ 675 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 676 } 677 678 /* 679 * Should be with all slots_lock held for the address spaces. It returns the 680 * dirty page we've collected on this dirty ring. 681 */ 682 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 683 { 684 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 685 uint32_t ring_size = s->kvm_dirty_ring_size; 686 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 687 688 /* 689 * It's possible that we race with vcpu creation code where the vcpu is 690 * put onto the vcpus list but not yet initialized the dirty ring 691 * structures. If so, skip it. 692 */ 693 if (!cpu->created) { 694 return 0; 695 } 696 697 assert(dirty_gfns && ring_size); 698 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 699 700 while (true) { 701 cur = &dirty_gfns[fetch % ring_size]; 702 if (!dirty_gfn_is_dirtied(cur)) { 703 break; 704 } 705 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 706 cur->offset); 707 dirty_gfn_set_collected(cur); 708 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 709 fetch++; 710 count++; 711 } 712 cpu->kvm_fetch_index = fetch; 713 cpu->dirty_pages += count; 714 715 return count; 716 } 717 718 /* Must be with slots_lock held */ 719 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 720 { 721 int ret; 722 uint64_t total = 0; 723 int64_t stamp; 724 725 stamp = get_clock(); 726 727 if (cpu) { 728 total = kvm_dirty_ring_reap_one(s, cpu); 729 } else { 730 CPU_FOREACH(cpu) { 731 total += kvm_dirty_ring_reap_one(s, cpu); 732 } 733 } 734 735 if (total) { 736 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 737 assert(ret == total); 738 } 739 740 stamp = get_clock() - stamp; 741 742 if (total) { 743 trace_kvm_dirty_ring_reap(total, stamp / 1000); 744 } 745 746 return total; 747 } 748 749 /* 750 * Currently for simplicity, we must hold BQL before calling this. We can 751 * consider to drop the BQL if we're clear with all the race conditions. 752 */ 753 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 754 { 755 uint64_t total; 756 757 /* 758 * We need to lock all kvm slots for all address spaces here, 759 * because: 760 * 761 * (1) We need to mark dirty for dirty bitmaps in multiple slots 762 * and for tons of pages, so it's better to take the lock here 763 * once rather than once per page. And more importantly, 764 * 765 * (2) We must _NOT_ publish dirty bits to the other threads 766 * (e.g., the migration thread) via the kvm memory slot dirty 767 * bitmaps before correctly re-protect those dirtied pages. 768 * Otherwise we can have potential risk of data corruption if 769 * the page data is read in the other thread before we do 770 * reset below. 771 */ 772 kvm_slots_lock(); 773 total = kvm_dirty_ring_reap_locked(s, cpu); 774 kvm_slots_unlock(); 775 776 return total; 777 } 778 779 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 780 { 781 /* No need to do anything */ 782 } 783 784 /* 785 * Kick all vcpus out in a synchronized way. When returned, we 786 * guarantee that every vcpu has been kicked and at least returned to 787 * userspace once. 788 */ 789 static void kvm_cpu_synchronize_kick_all(void) 790 { 791 CPUState *cpu; 792 793 CPU_FOREACH(cpu) { 794 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 795 } 796 } 797 798 /* 799 * Flush all the existing dirty pages to the KVM slot buffers. When 800 * this call returns, we guarantee that all the touched dirty pages 801 * before calling this function have been put into the per-kvmslot 802 * dirty bitmap. 803 * 804 * This function must be called with BQL held. 805 */ 806 static void kvm_dirty_ring_flush(void) 807 { 808 trace_kvm_dirty_ring_flush(0); 809 /* 810 * The function needs to be serialized. Since this function 811 * should always be with BQL held, serialization is guaranteed. 812 * However, let's be sure of it. 813 */ 814 assert(qemu_mutex_iothread_locked()); 815 /* 816 * First make sure to flush the hardware buffers by kicking all 817 * vcpus out in a synchronous way. 818 */ 819 kvm_cpu_synchronize_kick_all(); 820 kvm_dirty_ring_reap(kvm_state, NULL); 821 trace_kvm_dirty_ring_flush(1); 822 } 823 824 /** 825 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 826 * 827 * This function will first try to fetch dirty bitmap from the kernel, 828 * and then updates qemu's dirty bitmap. 829 * 830 * NOTE: caller must be with kml->slots_lock held. 831 * 832 * @kml: the KVM memory listener object 833 * @section: the memory section to sync the dirty bitmap with 834 */ 835 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 836 MemoryRegionSection *section) 837 { 838 KVMState *s = kvm_state; 839 KVMSlot *mem; 840 hwaddr start_addr, size; 841 hwaddr slot_size; 842 843 size = kvm_align_section(section, &start_addr); 844 while (size) { 845 slot_size = MIN(kvm_max_slot_size, size); 846 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 847 if (!mem) { 848 /* We don't have a slot if we want to trap every access. */ 849 return; 850 } 851 if (kvm_slot_get_dirty_log(s, mem)) { 852 kvm_slot_sync_dirty_pages(mem); 853 } 854 start_addr += slot_size; 855 size -= slot_size; 856 } 857 } 858 859 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 860 #define KVM_CLEAR_LOG_SHIFT 6 861 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 862 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 863 864 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 865 uint64_t size) 866 { 867 KVMState *s = kvm_state; 868 uint64_t end, bmap_start, start_delta, bmap_npages; 869 struct kvm_clear_dirty_log d; 870 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 871 int ret; 872 873 /* 874 * We need to extend either the start or the size or both to 875 * satisfy the KVM interface requirement. Firstly, do the start 876 * page alignment on 64 host pages 877 */ 878 bmap_start = start & KVM_CLEAR_LOG_MASK; 879 start_delta = start - bmap_start; 880 bmap_start /= psize; 881 882 /* 883 * The kernel interface has restriction on the size too, that either: 884 * 885 * (1) the size is 64 host pages aligned (just like the start), or 886 * (2) the size fills up until the end of the KVM memslot. 887 */ 888 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 889 << KVM_CLEAR_LOG_SHIFT; 890 end = mem->memory_size / psize; 891 if (bmap_npages > end - bmap_start) { 892 bmap_npages = end - bmap_start; 893 } 894 start_delta /= psize; 895 896 /* 897 * Prepare the bitmap to clear dirty bits. Here we must guarantee 898 * that we won't clear any unknown dirty bits otherwise we might 899 * accidentally clear some set bits which are not yet synced from 900 * the kernel into QEMU's bitmap, then we'll lose track of the 901 * guest modifications upon those pages (which can directly lead 902 * to guest data loss or panic after migration). 903 * 904 * Layout of the KVMSlot.dirty_bmap: 905 * 906 * |<-------- bmap_npages -----------..>| 907 * [1] 908 * start_delta size 909 * |----------------|-------------|------------------|------------| 910 * ^ ^ ^ ^ 911 * | | | | 912 * start bmap_start (start) end 913 * of memslot of memslot 914 * 915 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 916 */ 917 918 assert(bmap_start % BITS_PER_LONG == 0); 919 /* We should never do log_clear before log_sync */ 920 assert(mem->dirty_bmap); 921 if (start_delta || bmap_npages - size / psize) { 922 /* Slow path - we need to manipulate a temp bitmap */ 923 bmap_clear = bitmap_new(bmap_npages); 924 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 925 bmap_start, start_delta + size / psize); 926 /* 927 * We need to fill the holes at start because that was not 928 * specified by the caller and we extended the bitmap only for 929 * 64 pages alignment 930 */ 931 bitmap_clear(bmap_clear, 0, start_delta); 932 d.dirty_bitmap = bmap_clear; 933 } else { 934 /* 935 * Fast path - both start and size align well with BITS_PER_LONG 936 * (or the end of memory slot) 937 */ 938 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 939 } 940 941 d.first_page = bmap_start; 942 /* It should never overflow. If it happens, say something */ 943 assert(bmap_npages <= UINT32_MAX); 944 d.num_pages = bmap_npages; 945 d.slot = mem->slot | (as_id << 16); 946 947 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 948 if (ret < 0 && ret != -ENOENT) { 949 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 950 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 951 __func__, d.slot, (uint64_t)d.first_page, 952 (uint32_t)d.num_pages, ret); 953 } else { 954 ret = 0; 955 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 956 } 957 958 /* 959 * After we have updated the remote dirty bitmap, we update the 960 * cached bitmap as well for the memslot, then if another user 961 * clears the same region we know we shouldn't clear it again on 962 * the remote otherwise it's data loss as well. 963 */ 964 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 965 size / psize); 966 /* This handles the NULL case well */ 967 g_free(bmap_clear); 968 return ret; 969 } 970 971 972 /** 973 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 974 * 975 * NOTE: this will be a no-op if we haven't enabled manual dirty log 976 * protection in the host kernel because in that case this operation 977 * will be done within log_sync(). 978 * 979 * @kml: the kvm memory listener 980 * @section: the memory range to clear dirty bitmap 981 */ 982 static int kvm_physical_log_clear(KVMMemoryListener *kml, 983 MemoryRegionSection *section) 984 { 985 KVMState *s = kvm_state; 986 uint64_t start, size, offset, count; 987 KVMSlot *mem; 988 int ret = 0, i; 989 990 if (!s->manual_dirty_log_protect) { 991 /* No need to do explicit clear */ 992 return ret; 993 } 994 995 start = section->offset_within_address_space; 996 size = int128_get64(section->size); 997 998 if (!size) { 999 /* Nothing more we can do... */ 1000 return ret; 1001 } 1002 1003 kvm_slots_lock(); 1004 1005 for (i = 0; i < s->nr_slots; i++) { 1006 mem = &kml->slots[i]; 1007 /* Discard slots that are empty or do not overlap the section */ 1008 if (!mem->memory_size || 1009 mem->start_addr > start + size - 1 || 1010 start > mem->start_addr + mem->memory_size - 1) { 1011 continue; 1012 } 1013 1014 if (start >= mem->start_addr) { 1015 /* The slot starts before section or is aligned to it. */ 1016 offset = start - mem->start_addr; 1017 count = MIN(mem->memory_size - offset, size); 1018 } else { 1019 /* The slot starts after section. */ 1020 offset = 0; 1021 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1022 } 1023 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1024 if (ret < 0) { 1025 break; 1026 } 1027 } 1028 1029 kvm_slots_unlock(); 1030 1031 return ret; 1032 } 1033 1034 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1035 MemoryRegionSection *secion, 1036 hwaddr start, hwaddr size) 1037 { 1038 KVMState *s = kvm_state; 1039 1040 if (s->coalesced_mmio) { 1041 struct kvm_coalesced_mmio_zone zone; 1042 1043 zone.addr = start; 1044 zone.size = size; 1045 zone.pad = 0; 1046 1047 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1048 } 1049 } 1050 1051 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1052 MemoryRegionSection *secion, 1053 hwaddr start, hwaddr size) 1054 { 1055 KVMState *s = kvm_state; 1056 1057 if (s->coalesced_mmio) { 1058 struct kvm_coalesced_mmio_zone zone; 1059 1060 zone.addr = start; 1061 zone.size = size; 1062 zone.pad = 0; 1063 1064 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1065 } 1066 } 1067 1068 static void kvm_coalesce_pio_add(MemoryListener *listener, 1069 MemoryRegionSection *section, 1070 hwaddr start, hwaddr size) 1071 { 1072 KVMState *s = kvm_state; 1073 1074 if (s->coalesced_pio) { 1075 struct kvm_coalesced_mmio_zone zone; 1076 1077 zone.addr = start; 1078 zone.size = size; 1079 zone.pio = 1; 1080 1081 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1082 } 1083 } 1084 1085 static void kvm_coalesce_pio_del(MemoryListener *listener, 1086 MemoryRegionSection *section, 1087 hwaddr start, hwaddr size) 1088 { 1089 KVMState *s = kvm_state; 1090 1091 if (s->coalesced_pio) { 1092 struct kvm_coalesced_mmio_zone zone; 1093 1094 zone.addr = start; 1095 zone.size = size; 1096 zone.pio = 1; 1097 1098 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1099 } 1100 } 1101 1102 static MemoryListener kvm_coalesced_pio_listener = { 1103 .name = "kvm-coalesced-pio", 1104 .coalesced_io_add = kvm_coalesce_pio_add, 1105 .coalesced_io_del = kvm_coalesce_pio_del, 1106 }; 1107 1108 int kvm_check_extension(KVMState *s, unsigned int extension) 1109 { 1110 int ret; 1111 1112 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1113 if (ret < 0) { 1114 ret = 0; 1115 } 1116 1117 return ret; 1118 } 1119 1120 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1121 { 1122 int ret; 1123 1124 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1125 if (ret < 0) { 1126 /* VM wide version not implemented, use global one instead */ 1127 ret = kvm_check_extension(s, extension); 1128 } 1129 1130 return ret; 1131 } 1132 1133 typedef struct HWPoisonPage { 1134 ram_addr_t ram_addr; 1135 QLIST_ENTRY(HWPoisonPage) list; 1136 } HWPoisonPage; 1137 1138 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1139 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1140 1141 static void kvm_unpoison_all(void *param) 1142 { 1143 HWPoisonPage *page, *next_page; 1144 1145 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1146 QLIST_REMOVE(page, list); 1147 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1148 g_free(page); 1149 } 1150 } 1151 1152 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1153 { 1154 HWPoisonPage *page; 1155 1156 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1157 if (page->ram_addr == ram_addr) { 1158 return; 1159 } 1160 } 1161 page = g_new(HWPoisonPage, 1); 1162 page->ram_addr = ram_addr; 1163 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1164 } 1165 1166 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1167 { 1168 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1169 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1170 * endianness, but the memory core hands them in target endianness. 1171 * For example, PPC is always treated as big-endian even if running 1172 * on KVM and on PPC64LE. Correct here. 1173 */ 1174 switch (size) { 1175 case 2: 1176 val = bswap16(val); 1177 break; 1178 case 4: 1179 val = bswap32(val); 1180 break; 1181 } 1182 #endif 1183 return val; 1184 } 1185 1186 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1187 bool assign, uint32_t size, bool datamatch) 1188 { 1189 int ret; 1190 struct kvm_ioeventfd iofd = { 1191 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1192 .addr = addr, 1193 .len = size, 1194 .flags = 0, 1195 .fd = fd, 1196 }; 1197 1198 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1199 datamatch); 1200 if (!kvm_enabled()) { 1201 return -ENOSYS; 1202 } 1203 1204 if (datamatch) { 1205 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1206 } 1207 if (!assign) { 1208 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1209 } 1210 1211 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1212 1213 if (ret < 0) { 1214 return -errno; 1215 } 1216 1217 return 0; 1218 } 1219 1220 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1221 bool assign, uint32_t size, bool datamatch) 1222 { 1223 struct kvm_ioeventfd kick = { 1224 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1225 .addr = addr, 1226 .flags = KVM_IOEVENTFD_FLAG_PIO, 1227 .len = size, 1228 .fd = fd, 1229 }; 1230 int r; 1231 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1232 if (!kvm_enabled()) { 1233 return -ENOSYS; 1234 } 1235 if (datamatch) { 1236 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1237 } 1238 if (!assign) { 1239 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1240 } 1241 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1242 if (r < 0) { 1243 return r; 1244 } 1245 return 0; 1246 } 1247 1248 1249 static int kvm_check_many_ioeventfds(void) 1250 { 1251 /* Userspace can use ioeventfd for io notification. This requires a host 1252 * that supports eventfd(2) and an I/O thread; since eventfd does not 1253 * support SIGIO it cannot interrupt the vcpu. 1254 * 1255 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1256 * can avoid creating too many ioeventfds. 1257 */ 1258 #if defined(CONFIG_EVENTFD) 1259 int ioeventfds[7]; 1260 int i, ret = 0; 1261 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1262 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1263 if (ioeventfds[i] < 0) { 1264 break; 1265 } 1266 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1267 if (ret < 0) { 1268 close(ioeventfds[i]); 1269 break; 1270 } 1271 } 1272 1273 /* Decide whether many devices are supported or not */ 1274 ret = i == ARRAY_SIZE(ioeventfds); 1275 1276 while (i-- > 0) { 1277 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1278 close(ioeventfds[i]); 1279 } 1280 return ret; 1281 #else 1282 return 0; 1283 #endif 1284 } 1285 1286 static const KVMCapabilityInfo * 1287 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1288 { 1289 while (list->name) { 1290 if (!kvm_check_extension(s, list->value)) { 1291 return list; 1292 } 1293 list++; 1294 } 1295 return NULL; 1296 } 1297 1298 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1299 { 1300 g_assert( 1301 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1302 ); 1303 kvm_max_slot_size = max_slot_size; 1304 } 1305 1306 /* Called with KVMMemoryListener.slots_lock held */ 1307 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1308 MemoryRegionSection *section, bool add) 1309 { 1310 KVMSlot *mem; 1311 int err; 1312 MemoryRegion *mr = section->mr; 1313 bool writable = !mr->readonly && !mr->rom_device; 1314 hwaddr start_addr, size, slot_size, mr_offset; 1315 ram_addr_t ram_start_offset; 1316 void *ram; 1317 1318 if (!memory_region_is_ram(mr)) { 1319 if (writable || !kvm_readonly_mem_allowed) { 1320 return; 1321 } else if (!mr->romd_mode) { 1322 /* If the memory device is not in romd_mode, then we actually want 1323 * to remove the kvm memory slot so all accesses will trap. */ 1324 add = false; 1325 } 1326 } 1327 1328 size = kvm_align_section(section, &start_addr); 1329 if (!size) { 1330 return; 1331 } 1332 1333 /* The offset of the kvmslot within the memory region */ 1334 mr_offset = section->offset_within_region + start_addr - 1335 section->offset_within_address_space; 1336 1337 /* use aligned delta to align the ram address and offset */ 1338 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1339 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1340 1341 if (!add) { 1342 do { 1343 slot_size = MIN(kvm_max_slot_size, size); 1344 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1345 if (!mem) { 1346 return; 1347 } 1348 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1349 /* 1350 * NOTE: We should be aware of the fact that here we're only 1351 * doing a best effort to sync dirty bits. No matter whether 1352 * we're using dirty log or dirty ring, we ignored two facts: 1353 * 1354 * (1) dirty bits can reside in hardware buffers (PML) 1355 * 1356 * (2) after we collected dirty bits here, pages can be dirtied 1357 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1358 * remove the slot. 1359 * 1360 * Not easy. Let's cross the fingers until it's fixed. 1361 */ 1362 if (kvm_state->kvm_dirty_ring_size) { 1363 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1364 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1365 kvm_slot_sync_dirty_pages(mem); 1366 kvm_slot_get_dirty_log(kvm_state, mem); 1367 } 1368 } else { 1369 kvm_slot_get_dirty_log(kvm_state, mem); 1370 } 1371 kvm_slot_sync_dirty_pages(mem); 1372 } 1373 1374 /* unregister the slot */ 1375 g_free(mem->dirty_bmap); 1376 mem->dirty_bmap = NULL; 1377 mem->memory_size = 0; 1378 mem->flags = 0; 1379 err = kvm_set_user_memory_region(kml, mem, false); 1380 if (err) { 1381 fprintf(stderr, "%s: error unregistering slot: %s\n", 1382 __func__, strerror(-err)); 1383 abort(); 1384 } 1385 start_addr += slot_size; 1386 size -= slot_size; 1387 } while (size); 1388 return; 1389 } 1390 1391 /* register the new slot */ 1392 do { 1393 slot_size = MIN(kvm_max_slot_size, size); 1394 mem = kvm_alloc_slot(kml); 1395 mem->as_id = kml->as_id; 1396 mem->memory_size = slot_size; 1397 mem->start_addr = start_addr; 1398 mem->ram_start_offset = ram_start_offset; 1399 mem->ram = ram; 1400 mem->flags = kvm_mem_flags(mr); 1401 kvm_slot_init_dirty_bitmap(mem); 1402 err = kvm_set_user_memory_region(kml, mem, true); 1403 if (err) { 1404 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1405 strerror(-err)); 1406 abort(); 1407 } 1408 start_addr += slot_size; 1409 ram_start_offset += slot_size; 1410 ram += slot_size; 1411 size -= slot_size; 1412 } while (size); 1413 } 1414 1415 static void *kvm_dirty_ring_reaper_thread(void *data) 1416 { 1417 KVMState *s = data; 1418 struct KVMDirtyRingReaper *r = &s->reaper; 1419 1420 rcu_register_thread(); 1421 1422 trace_kvm_dirty_ring_reaper("init"); 1423 1424 while (true) { 1425 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1426 trace_kvm_dirty_ring_reaper("wait"); 1427 /* 1428 * TODO: provide a smarter timeout rather than a constant? 1429 */ 1430 sleep(1); 1431 1432 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1433 if (dirtylimit_in_service()) { 1434 continue; 1435 } 1436 1437 trace_kvm_dirty_ring_reaper("wakeup"); 1438 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1439 1440 qemu_mutex_lock_iothread(); 1441 kvm_dirty_ring_reap(s, NULL); 1442 qemu_mutex_unlock_iothread(); 1443 1444 r->reaper_iteration++; 1445 } 1446 1447 trace_kvm_dirty_ring_reaper("exit"); 1448 1449 rcu_unregister_thread(); 1450 1451 return NULL; 1452 } 1453 1454 static int kvm_dirty_ring_reaper_init(KVMState *s) 1455 { 1456 struct KVMDirtyRingReaper *r = &s->reaper; 1457 1458 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1459 kvm_dirty_ring_reaper_thread, 1460 s, QEMU_THREAD_JOINABLE); 1461 1462 return 0; 1463 } 1464 1465 static int kvm_dirty_ring_init(KVMState *s) 1466 { 1467 uint32_t ring_size = s->kvm_dirty_ring_size; 1468 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1469 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1470 int ret; 1471 1472 s->kvm_dirty_ring_size = 0; 1473 s->kvm_dirty_ring_bytes = 0; 1474 1475 /* Bail if the dirty ring size isn't specified */ 1476 if (!ring_size) { 1477 return 0; 1478 } 1479 1480 /* 1481 * Read the max supported pages. Fall back to dirty logging mode 1482 * if the dirty ring isn't supported. 1483 */ 1484 ret = kvm_vm_check_extension(s, capability); 1485 if (ret <= 0) { 1486 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1487 ret = kvm_vm_check_extension(s, capability); 1488 } 1489 1490 if (ret <= 0) { 1491 warn_report("KVM dirty ring not available, using bitmap method"); 1492 return 0; 1493 } 1494 1495 if (ring_bytes > ret) { 1496 error_report("KVM dirty ring size %" PRIu32 " too big " 1497 "(maximum is %ld). Please use a smaller value.", 1498 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1499 return -EINVAL; 1500 } 1501 1502 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1503 if (ret) { 1504 error_report("Enabling of KVM dirty ring failed: %s. " 1505 "Suggested minimum value is 1024.", strerror(-ret)); 1506 return -EIO; 1507 } 1508 1509 /* Enable the backup bitmap if it is supported */ 1510 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1511 if (ret > 0) { 1512 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1513 if (ret) { 1514 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1515 "%s. ", strerror(-ret)); 1516 return -EIO; 1517 } 1518 1519 s->kvm_dirty_ring_with_bitmap = true; 1520 } 1521 1522 s->kvm_dirty_ring_size = ring_size; 1523 s->kvm_dirty_ring_bytes = ring_bytes; 1524 1525 return 0; 1526 } 1527 1528 static void kvm_region_add(MemoryListener *listener, 1529 MemoryRegionSection *section) 1530 { 1531 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1532 KVMMemoryUpdate *update; 1533 1534 update = g_new0(KVMMemoryUpdate, 1); 1535 update->section = *section; 1536 1537 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1538 } 1539 1540 static void kvm_region_del(MemoryListener *listener, 1541 MemoryRegionSection *section) 1542 { 1543 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1544 KVMMemoryUpdate *update; 1545 1546 update = g_new0(KVMMemoryUpdate, 1); 1547 update->section = *section; 1548 1549 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1550 } 1551 1552 static void kvm_region_commit(MemoryListener *listener) 1553 { 1554 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1555 listener); 1556 KVMMemoryUpdate *u1, *u2; 1557 bool need_inhibit = false; 1558 1559 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1560 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1561 return; 1562 } 1563 1564 /* 1565 * We have to be careful when regions to add overlap with ranges to remove. 1566 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1567 * is currently active. 1568 * 1569 * The lists are order by addresses, so it's easy to find overlaps. 1570 */ 1571 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1572 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1573 while (u1 && u2) { 1574 Range r1, r2; 1575 1576 range_init_nofail(&r1, u1->section.offset_within_address_space, 1577 int128_get64(u1->section.size)); 1578 range_init_nofail(&r2, u2->section.offset_within_address_space, 1579 int128_get64(u2->section.size)); 1580 1581 if (range_overlaps_range(&r1, &r2)) { 1582 need_inhibit = true; 1583 break; 1584 } 1585 if (range_lob(&r1) < range_lob(&r2)) { 1586 u1 = QSIMPLEQ_NEXT(u1, next); 1587 } else { 1588 u2 = QSIMPLEQ_NEXT(u2, next); 1589 } 1590 } 1591 1592 kvm_slots_lock(); 1593 if (need_inhibit) { 1594 accel_ioctl_inhibit_begin(); 1595 } 1596 1597 /* Remove all memslots before adding the new ones. */ 1598 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1599 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1600 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1601 1602 kvm_set_phys_mem(kml, &u1->section, false); 1603 memory_region_unref(u1->section.mr); 1604 1605 g_free(u1); 1606 } 1607 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1608 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1609 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1610 1611 memory_region_ref(u1->section.mr); 1612 kvm_set_phys_mem(kml, &u1->section, true); 1613 1614 g_free(u1); 1615 } 1616 1617 if (need_inhibit) { 1618 accel_ioctl_inhibit_end(); 1619 } 1620 kvm_slots_unlock(); 1621 } 1622 1623 static void kvm_log_sync(MemoryListener *listener, 1624 MemoryRegionSection *section) 1625 { 1626 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1627 1628 kvm_slots_lock(); 1629 kvm_physical_sync_dirty_bitmap(kml, section); 1630 kvm_slots_unlock(); 1631 } 1632 1633 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1634 { 1635 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1636 KVMState *s = kvm_state; 1637 KVMSlot *mem; 1638 int i; 1639 1640 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1641 kvm_dirty_ring_flush(); 1642 1643 /* 1644 * TODO: make this faster when nr_slots is big while there are 1645 * only a few used slots (small VMs). 1646 */ 1647 kvm_slots_lock(); 1648 for (i = 0; i < s->nr_slots; i++) { 1649 mem = &kml->slots[i]; 1650 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1651 kvm_slot_sync_dirty_pages(mem); 1652 1653 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1654 kvm_slot_get_dirty_log(s, mem)) { 1655 kvm_slot_sync_dirty_pages(mem); 1656 } 1657 1658 /* 1659 * This is not needed by KVM_GET_DIRTY_LOG because the 1660 * ioctl will unconditionally overwrite the whole region. 1661 * However kvm dirty ring has no such side effect. 1662 */ 1663 kvm_slot_reset_dirty_pages(mem); 1664 } 1665 } 1666 kvm_slots_unlock(); 1667 } 1668 1669 static void kvm_log_clear(MemoryListener *listener, 1670 MemoryRegionSection *section) 1671 { 1672 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1673 int r; 1674 1675 r = kvm_physical_log_clear(kml, section); 1676 if (r < 0) { 1677 error_report_once("%s: kvm log clear failed: mr=%s " 1678 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1679 section->mr->name, section->offset_within_region, 1680 int128_get64(section->size)); 1681 abort(); 1682 } 1683 } 1684 1685 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1686 MemoryRegionSection *section, 1687 bool match_data, uint64_t data, 1688 EventNotifier *e) 1689 { 1690 int fd = event_notifier_get_fd(e); 1691 int r; 1692 1693 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1694 data, true, int128_get64(section->size), 1695 match_data); 1696 if (r < 0) { 1697 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1698 __func__, strerror(-r), -r); 1699 abort(); 1700 } 1701 } 1702 1703 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1704 MemoryRegionSection *section, 1705 bool match_data, uint64_t data, 1706 EventNotifier *e) 1707 { 1708 int fd = event_notifier_get_fd(e); 1709 int r; 1710 1711 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1712 data, false, int128_get64(section->size), 1713 match_data); 1714 if (r < 0) { 1715 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1716 __func__, strerror(-r), -r); 1717 abort(); 1718 } 1719 } 1720 1721 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1722 MemoryRegionSection *section, 1723 bool match_data, uint64_t data, 1724 EventNotifier *e) 1725 { 1726 int fd = event_notifier_get_fd(e); 1727 int r; 1728 1729 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1730 data, true, int128_get64(section->size), 1731 match_data); 1732 if (r < 0) { 1733 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1734 __func__, strerror(-r), -r); 1735 abort(); 1736 } 1737 } 1738 1739 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1740 MemoryRegionSection *section, 1741 bool match_data, uint64_t data, 1742 EventNotifier *e) 1743 1744 { 1745 int fd = event_notifier_get_fd(e); 1746 int r; 1747 1748 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1749 data, false, int128_get64(section->size), 1750 match_data); 1751 if (r < 0) { 1752 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1753 __func__, strerror(-r), -r); 1754 abort(); 1755 } 1756 } 1757 1758 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1759 AddressSpace *as, int as_id, const char *name) 1760 { 1761 int i; 1762 1763 kml->slots = g_new0(KVMSlot, s->nr_slots); 1764 kml->as_id = as_id; 1765 1766 for (i = 0; i < s->nr_slots; i++) { 1767 kml->slots[i].slot = i; 1768 } 1769 1770 QSIMPLEQ_INIT(&kml->transaction_add); 1771 QSIMPLEQ_INIT(&kml->transaction_del); 1772 1773 kml->listener.region_add = kvm_region_add; 1774 kml->listener.region_del = kvm_region_del; 1775 kml->listener.commit = kvm_region_commit; 1776 kml->listener.log_start = kvm_log_start; 1777 kml->listener.log_stop = kvm_log_stop; 1778 kml->listener.priority = 10; 1779 kml->listener.name = name; 1780 1781 if (s->kvm_dirty_ring_size) { 1782 kml->listener.log_sync_global = kvm_log_sync_global; 1783 } else { 1784 kml->listener.log_sync = kvm_log_sync; 1785 kml->listener.log_clear = kvm_log_clear; 1786 } 1787 1788 memory_listener_register(&kml->listener, as); 1789 1790 for (i = 0; i < s->nr_as; ++i) { 1791 if (!s->as[i].as) { 1792 s->as[i].as = as; 1793 s->as[i].ml = kml; 1794 break; 1795 } 1796 } 1797 } 1798 1799 static MemoryListener kvm_io_listener = { 1800 .name = "kvm-io", 1801 .eventfd_add = kvm_io_ioeventfd_add, 1802 .eventfd_del = kvm_io_ioeventfd_del, 1803 .priority = 10, 1804 }; 1805 1806 int kvm_set_irq(KVMState *s, int irq, int level) 1807 { 1808 struct kvm_irq_level event; 1809 int ret; 1810 1811 assert(kvm_async_interrupts_enabled()); 1812 1813 event.level = level; 1814 event.irq = irq; 1815 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1816 if (ret < 0) { 1817 perror("kvm_set_irq"); 1818 abort(); 1819 } 1820 1821 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1822 } 1823 1824 #ifdef KVM_CAP_IRQ_ROUTING 1825 typedef struct KVMMSIRoute { 1826 struct kvm_irq_routing_entry kroute; 1827 QTAILQ_ENTRY(KVMMSIRoute) entry; 1828 } KVMMSIRoute; 1829 1830 static void set_gsi(KVMState *s, unsigned int gsi) 1831 { 1832 set_bit(gsi, s->used_gsi_bitmap); 1833 } 1834 1835 static void clear_gsi(KVMState *s, unsigned int gsi) 1836 { 1837 clear_bit(gsi, s->used_gsi_bitmap); 1838 } 1839 1840 void kvm_init_irq_routing(KVMState *s) 1841 { 1842 int gsi_count, i; 1843 1844 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1845 if (gsi_count > 0) { 1846 /* Round up so we can search ints using ffs */ 1847 s->used_gsi_bitmap = bitmap_new(gsi_count); 1848 s->gsi_count = gsi_count; 1849 } 1850 1851 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1852 s->nr_allocated_irq_routes = 0; 1853 1854 if (!kvm_direct_msi_allowed) { 1855 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1856 QTAILQ_INIT(&s->msi_hashtab[i]); 1857 } 1858 } 1859 1860 kvm_arch_init_irq_routing(s); 1861 } 1862 1863 void kvm_irqchip_commit_routes(KVMState *s) 1864 { 1865 int ret; 1866 1867 if (kvm_gsi_direct_mapping()) { 1868 return; 1869 } 1870 1871 if (!kvm_gsi_routing_enabled()) { 1872 return; 1873 } 1874 1875 s->irq_routes->flags = 0; 1876 trace_kvm_irqchip_commit_routes(); 1877 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1878 assert(ret == 0); 1879 } 1880 1881 static void kvm_add_routing_entry(KVMState *s, 1882 struct kvm_irq_routing_entry *entry) 1883 { 1884 struct kvm_irq_routing_entry *new; 1885 int n, size; 1886 1887 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1888 n = s->nr_allocated_irq_routes * 2; 1889 if (n < 64) { 1890 n = 64; 1891 } 1892 size = sizeof(struct kvm_irq_routing); 1893 size += n * sizeof(*new); 1894 s->irq_routes = g_realloc(s->irq_routes, size); 1895 s->nr_allocated_irq_routes = n; 1896 } 1897 n = s->irq_routes->nr++; 1898 new = &s->irq_routes->entries[n]; 1899 1900 *new = *entry; 1901 1902 set_gsi(s, entry->gsi); 1903 } 1904 1905 static int kvm_update_routing_entry(KVMState *s, 1906 struct kvm_irq_routing_entry *new_entry) 1907 { 1908 struct kvm_irq_routing_entry *entry; 1909 int n; 1910 1911 for (n = 0; n < s->irq_routes->nr; n++) { 1912 entry = &s->irq_routes->entries[n]; 1913 if (entry->gsi != new_entry->gsi) { 1914 continue; 1915 } 1916 1917 if(!memcmp(entry, new_entry, sizeof *entry)) { 1918 return 0; 1919 } 1920 1921 *entry = *new_entry; 1922 1923 return 0; 1924 } 1925 1926 return -ESRCH; 1927 } 1928 1929 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1930 { 1931 struct kvm_irq_routing_entry e = {}; 1932 1933 assert(pin < s->gsi_count); 1934 1935 e.gsi = irq; 1936 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1937 e.flags = 0; 1938 e.u.irqchip.irqchip = irqchip; 1939 e.u.irqchip.pin = pin; 1940 kvm_add_routing_entry(s, &e); 1941 } 1942 1943 void kvm_irqchip_release_virq(KVMState *s, int virq) 1944 { 1945 struct kvm_irq_routing_entry *e; 1946 int i; 1947 1948 if (kvm_gsi_direct_mapping()) { 1949 return; 1950 } 1951 1952 for (i = 0; i < s->irq_routes->nr; i++) { 1953 e = &s->irq_routes->entries[i]; 1954 if (e->gsi == virq) { 1955 s->irq_routes->nr--; 1956 *e = s->irq_routes->entries[s->irq_routes->nr]; 1957 } 1958 } 1959 clear_gsi(s, virq); 1960 kvm_arch_release_virq_post(virq); 1961 trace_kvm_irqchip_release_virq(virq); 1962 } 1963 1964 void kvm_irqchip_add_change_notifier(Notifier *n) 1965 { 1966 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1967 } 1968 1969 void kvm_irqchip_remove_change_notifier(Notifier *n) 1970 { 1971 notifier_remove(n); 1972 } 1973 1974 void kvm_irqchip_change_notify(void) 1975 { 1976 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1977 } 1978 1979 static unsigned int kvm_hash_msi(uint32_t data) 1980 { 1981 /* This is optimized for IA32 MSI layout. However, no other arch shall 1982 * repeat the mistake of not providing a direct MSI injection API. */ 1983 return data & 0xff; 1984 } 1985 1986 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1987 { 1988 KVMMSIRoute *route, *next; 1989 unsigned int hash; 1990 1991 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1992 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1993 kvm_irqchip_release_virq(s, route->kroute.gsi); 1994 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1995 g_free(route); 1996 } 1997 } 1998 } 1999 2000 static int kvm_irqchip_get_virq(KVMState *s) 2001 { 2002 int next_virq; 2003 2004 /* 2005 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 2006 * GSI numbers are more than the number of IRQ route. Allocating a GSI 2007 * number can succeed even though a new route entry cannot be added. 2008 * When this happens, flush dynamic MSI entries to free IRQ route entries. 2009 */ 2010 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 2011 kvm_flush_dynamic_msi_routes(s); 2012 } 2013 2014 /* Return the lowest unused GSI in the bitmap */ 2015 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2016 if (next_virq >= s->gsi_count) { 2017 return -ENOSPC; 2018 } else { 2019 return next_virq; 2020 } 2021 } 2022 2023 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 2024 { 2025 unsigned int hash = kvm_hash_msi(msg.data); 2026 KVMMSIRoute *route; 2027 2028 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 2029 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 2030 route->kroute.u.msi.address_hi == (msg.address >> 32) && 2031 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 2032 return route; 2033 } 2034 } 2035 return NULL; 2036 } 2037 2038 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2039 { 2040 struct kvm_msi msi; 2041 KVMMSIRoute *route; 2042 2043 if (kvm_direct_msi_allowed) { 2044 msi.address_lo = (uint32_t)msg.address; 2045 msi.address_hi = msg.address >> 32; 2046 msi.data = le32_to_cpu(msg.data); 2047 msi.flags = 0; 2048 memset(msi.pad, 0, sizeof(msi.pad)); 2049 2050 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2051 } 2052 2053 route = kvm_lookup_msi_route(s, msg); 2054 if (!route) { 2055 int virq; 2056 2057 virq = kvm_irqchip_get_virq(s); 2058 if (virq < 0) { 2059 return virq; 2060 } 2061 2062 route = g_new0(KVMMSIRoute, 1); 2063 route->kroute.gsi = virq; 2064 route->kroute.type = KVM_IRQ_ROUTING_MSI; 2065 route->kroute.flags = 0; 2066 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 2067 route->kroute.u.msi.address_hi = msg.address >> 32; 2068 route->kroute.u.msi.data = le32_to_cpu(msg.data); 2069 2070 kvm_add_routing_entry(s, &route->kroute); 2071 kvm_irqchip_commit_routes(s); 2072 2073 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 2074 entry); 2075 } 2076 2077 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 2078 2079 return kvm_set_irq(s, route->kroute.gsi, 1); 2080 } 2081 2082 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2083 { 2084 struct kvm_irq_routing_entry kroute = {}; 2085 int virq; 2086 KVMState *s = c->s; 2087 MSIMessage msg = {0, 0}; 2088 2089 if (pci_available && dev) { 2090 msg = pci_get_msi_message(dev, vector); 2091 } 2092 2093 if (kvm_gsi_direct_mapping()) { 2094 return kvm_arch_msi_data_to_gsi(msg.data); 2095 } 2096 2097 if (!kvm_gsi_routing_enabled()) { 2098 return -ENOSYS; 2099 } 2100 2101 virq = kvm_irqchip_get_virq(s); 2102 if (virq < 0) { 2103 return virq; 2104 } 2105 2106 kroute.gsi = virq; 2107 kroute.type = KVM_IRQ_ROUTING_MSI; 2108 kroute.flags = 0; 2109 kroute.u.msi.address_lo = (uint32_t)msg.address; 2110 kroute.u.msi.address_hi = msg.address >> 32; 2111 kroute.u.msi.data = le32_to_cpu(msg.data); 2112 if (pci_available && kvm_msi_devid_required()) { 2113 kroute.flags = KVM_MSI_VALID_DEVID; 2114 kroute.u.msi.devid = pci_requester_id(dev); 2115 } 2116 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2117 kvm_irqchip_release_virq(s, virq); 2118 return -EINVAL; 2119 } 2120 2121 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2122 vector, virq); 2123 2124 kvm_add_routing_entry(s, &kroute); 2125 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2126 c->changes++; 2127 2128 return virq; 2129 } 2130 2131 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2132 PCIDevice *dev) 2133 { 2134 struct kvm_irq_routing_entry kroute = {}; 2135 2136 if (kvm_gsi_direct_mapping()) { 2137 return 0; 2138 } 2139 2140 if (!kvm_irqchip_in_kernel()) { 2141 return -ENOSYS; 2142 } 2143 2144 kroute.gsi = virq; 2145 kroute.type = KVM_IRQ_ROUTING_MSI; 2146 kroute.flags = 0; 2147 kroute.u.msi.address_lo = (uint32_t)msg.address; 2148 kroute.u.msi.address_hi = msg.address >> 32; 2149 kroute.u.msi.data = le32_to_cpu(msg.data); 2150 if (pci_available && kvm_msi_devid_required()) { 2151 kroute.flags = KVM_MSI_VALID_DEVID; 2152 kroute.u.msi.devid = pci_requester_id(dev); 2153 } 2154 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2155 return -EINVAL; 2156 } 2157 2158 trace_kvm_irqchip_update_msi_route(virq); 2159 2160 return kvm_update_routing_entry(s, &kroute); 2161 } 2162 2163 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2164 EventNotifier *resample, int virq, 2165 bool assign) 2166 { 2167 int fd = event_notifier_get_fd(event); 2168 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2169 2170 struct kvm_irqfd irqfd = { 2171 .fd = fd, 2172 .gsi = virq, 2173 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2174 }; 2175 2176 if (rfd != -1) { 2177 assert(assign); 2178 if (kvm_irqchip_is_split()) { 2179 /* 2180 * When the slow irqchip (e.g. IOAPIC) is in the 2181 * userspace, KVM kernel resamplefd will not work because 2182 * the EOI of the interrupt will be delivered to userspace 2183 * instead, so the KVM kernel resamplefd kick will be 2184 * skipped. The userspace here mimics what the kernel 2185 * provides with resamplefd, remember the resamplefd and 2186 * kick it when we receive EOI of this IRQ. 2187 * 2188 * This is hackery because IOAPIC is mostly bypassed 2189 * (except EOI broadcasts) when irqfd is used. However 2190 * this can bring much performance back for split irqchip 2191 * with INTx IRQs (for VFIO, this gives 93% perf of the 2192 * full fast path, which is 46% perf boost comparing to 2193 * the INTx slow path). 2194 */ 2195 kvm_resample_fd_insert(virq, resample); 2196 } else { 2197 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2198 irqfd.resamplefd = rfd; 2199 } 2200 } else if (!assign) { 2201 if (kvm_irqchip_is_split()) { 2202 kvm_resample_fd_remove(virq); 2203 } 2204 } 2205 2206 if (!kvm_irqfds_enabled()) { 2207 return -ENOSYS; 2208 } 2209 2210 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2211 } 2212 2213 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2214 { 2215 struct kvm_irq_routing_entry kroute = {}; 2216 int virq; 2217 2218 if (!kvm_gsi_routing_enabled()) { 2219 return -ENOSYS; 2220 } 2221 2222 virq = kvm_irqchip_get_virq(s); 2223 if (virq < 0) { 2224 return virq; 2225 } 2226 2227 kroute.gsi = virq; 2228 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2229 kroute.flags = 0; 2230 kroute.u.adapter.summary_addr = adapter->summary_addr; 2231 kroute.u.adapter.ind_addr = adapter->ind_addr; 2232 kroute.u.adapter.summary_offset = adapter->summary_offset; 2233 kroute.u.adapter.ind_offset = adapter->ind_offset; 2234 kroute.u.adapter.adapter_id = adapter->adapter_id; 2235 2236 kvm_add_routing_entry(s, &kroute); 2237 2238 return virq; 2239 } 2240 2241 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2242 { 2243 struct kvm_irq_routing_entry kroute = {}; 2244 int virq; 2245 2246 if (!kvm_gsi_routing_enabled()) { 2247 return -ENOSYS; 2248 } 2249 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2250 return -ENOSYS; 2251 } 2252 virq = kvm_irqchip_get_virq(s); 2253 if (virq < 0) { 2254 return virq; 2255 } 2256 2257 kroute.gsi = virq; 2258 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2259 kroute.flags = 0; 2260 kroute.u.hv_sint.vcpu = vcpu; 2261 kroute.u.hv_sint.sint = sint; 2262 2263 kvm_add_routing_entry(s, &kroute); 2264 kvm_irqchip_commit_routes(s); 2265 2266 return virq; 2267 } 2268 2269 #else /* !KVM_CAP_IRQ_ROUTING */ 2270 2271 void kvm_init_irq_routing(KVMState *s) 2272 { 2273 } 2274 2275 void kvm_irqchip_release_virq(KVMState *s, int virq) 2276 { 2277 } 2278 2279 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2280 { 2281 abort(); 2282 } 2283 2284 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2285 { 2286 return -ENOSYS; 2287 } 2288 2289 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2290 { 2291 return -ENOSYS; 2292 } 2293 2294 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2295 { 2296 return -ENOSYS; 2297 } 2298 2299 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2300 EventNotifier *resample, int virq, 2301 bool assign) 2302 { 2303 abort(); 2304 } 2305 2306 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2307 { 2308 return -ENOSYS; 2309 } 2310 #endif /* !KVM_CAP_IRQ_ROUTING */ 2311 2312 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2313 EventNotifier *rn, int virq) 2314 { 2315 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2316 } 2317 2318 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2319 int virq) 2320 { 2321 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2322 } 2323 2324 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2325 EventNotifier *rn, qemu_irq irq) 2326 { 2327 gpointer key, gsi; 2328 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2329 2330 if (!found) { 2331 return -ENXIO; 2332 } 2333 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2334 } 2335 2336 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2337 qemu_irq irq) 2338 { 2339 gpointer key, gsi; 2340 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2341 2342 if (!found) { 2343 return -ENXIO; 2344 } 2345 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2346 } 2347 2348 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2349 { 2350 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2351 } 2352 2353 static void kvm_irqchip_create(KVMState *s) 2354 { 2355 int ret; 2356 2357 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2358 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2359 ; 2360 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2361 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2362 if (ret < 0) { 2363 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2364 exit(1); 2365 } 2366 } else { 2367 return; 2368 } 2369 2370 /* First probe and see if there's a arch-specific hook to create the 2371 * in-kernel irqchip for us */ 2372 ret = kvm_arch_irqchip_create(s); 2373 if (ret == 0) { 2374 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2375 error_report("Split IRQ chip mode not supported."); 2376 exit(1); 2377 } else { 2378 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2379 } 2380 } 2381 if (ret < 0) { 2382 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2383 exit(1); 2384 } 2385 2386 kvm_kernel_irqchip = true; 2387 /* If we have an in-kernel IRQ chip then we must have asynchronous 2388 * interrupt delivery (though the reverse is not necessarily true) 2389 */ 2390 kvm_async_interrupts_allowed = true; 2391 kvm_halt_in_kernel_allowed = true; 2392 2393 kvm_init_irq_routing(s); 2394 2395 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2396 } 2397 2398 /* Find number of supported CPUs using the recommended 2399 * procedure from the kernel API documentation to cope with 2400 * older kernels that may be missing capabilities. 2401 */ 2402 static int kvm_recommended_vcpus(KVMState *s) 2403 { 2404 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2405 return (ret) ? ret : 4; 2406 } 2407 2408 static int kvm_max_vcpus(KVMState *s) 2409 { 2410 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2411 return (ret) ? ret : kvm_recommended_vcpus(s); 2412 } 2413 2414 static int kvm_max_vcpu_id(KVMState *s) 2415 { 2416 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2417 return (ret) ? ret : kvm_max_vcpus(s); 2418 } 2419 2420 bool kvm_vcpu_id_is_valid(int vcpu_id) 2421 { 2422 KVMState *s = KVM_STATE(current_accel()); 2423 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2424 } 2425 2426 bool kvm_dirty_ring_enabled(void) 2427 { 2428 return kvm_state->kvm_dirty_ring_size ? true : false; 2429 } 2430 2431 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2432 strList *names, strList *targets, Error **errp); 2433 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2434 2435 uint32_t kvm_dirty_ring_size(void) 2436 { 2437 return kvm_state->kvm_dirty_ring_size; 2438 } 2439 2440 static int kvm_init(MachineState *ms) 2441 { 2442 MachineClass *mc = MACHINE_GET_CLASS(ms); 2443 static const char upgrade_note[] = 2444 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2445 "(see http://sourceforge.net/projects/kvm).\n"; 2446 const struct { 2447 const char *name; 2448 int num; 2449 } num_cpus[] = { 2450 { "SMP", ms->smp.cpus }, 2451 { "hotpluggable", ms->smp.max_cpus }, 2452 { /* end of list */ } 2453 }, *nc = num_cpus; 2454 int soft_vcpus_limit, hard_vcpus_limit; 2455 KVMState *s; 2456 const KVMCapabilityInfo *missing_cap; 2457 int ret; 2458 int type = 0; 2459 uint64_t dirty_log_manual_caps; 2460 2461 qemu_mutex_init(&kml_slots_lock); 2462 2463 s = KVM_STATE(ms->accelerator); 2464 2465 /* 2466 * On systems where the kernel can support different base page 2467 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2468 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2469 * page size for the system though. 2470 */ 2471 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2472 2473 s->sigmask_len = 8; 2474 accel_blocker_init(); 2475 2476 #ifdef KVM_CAP_SET_GUEST_DEBUG 2477 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2478 #endif 2479 QLIST_INIT(&s->kvm_parked_vcpus); 2480 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2481 if (s->fd == -1) { 2482 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2483 ret = -errno; 2484 goto err; 2485 } 2486 2487 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2488 if (ret < KVM_API_VERSION) { 2489 if (ret >= 0) { 2490 ret = -EINVAL; 2491 } 2492 fprintf(stderr, "kvm version too old\n"); 2493 goto err; 2494 } 2495 2496 if (ret > KVM_API_VERSION) { 2497 ret = -EINVAL; 2498 fprintf(stderr, "kvm version not supported\n"); 2499 goto err; 2500 } 2501 2502 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2503 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2504 2505 /* If unspecified, use the default value */ 2506 if (!s->nr_slots) { 2507 s->nr_slots = 32; 2508 } 2509 2510 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2511 if (s->nr_as <= 1) { 2512 s->nr_as = 1; 2513 } 2514 s->as = g_new0(struct KVMAs, s->nr_as); 2515 2516 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2517 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2518 "kvm-type", 2519 &error_abort); 2520 type = mc->kvm_type(ms, kvm_type); 2521 } else if (mc->kvm_type) { 2522 type = mc->kvm_type(ms, NULL); 2523 } 2524 2525 do { 2526 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2527 } while (ret == -EINTR); 2528 2529 if (ret < 0) { 2530 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2531 strerror(-ret)); 2532 2533 #ifdef TARGET_S390X 2534 if (ret == -EINVAL) { 2535 fprintf(stderr, 2536 "Host kernel setup problem detected. Please verify:\n"); 2537 fprintf(stderr, "- for kernels supporting the switch_amode or" 2538 " user_mode parameters, whether\n"); 2539 fprintf(stderr, 2540 " user space is running in primary address space\n"); 2541 fprintf(stderr, 2542 "- for kernels supporting the vm.allocate_pgste sysctl, " 2543 "whether it is enabled\n"); 2544 } 2545 #elif defined(TARGET_PPC) 2546 if (ret == -EINVAL) { 2547 fprintf(stderr, 2548 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2549 (type == 2) ? "pr" : "hv"); 2550 } 2551 #endif 2552 goto err; 2553 } 2554 2555 s->vmfd = ret; 2556 2557 /* check the vcpu limits */ 2558 soft_vcpus_limit = kvm_recommended_vcpus(s); 2559 hard_vcpus_limit = kvm_max_vcpus(s); 2560 2561 while (nc->name) { 2562 if (nc->num > soft_vcpus_limit) { 2563 warn_report("Number of %s cpus requested (%d) exceeds " 2564 "the recommended cpus supported by KVM (%d)", 2565 nc->name, nc->num, soft_vcpus_limit); 2566 2567 if (nc->num > hard_vcpus_limit) { 2568 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2569 "the maximum cpus supported by KVM (%d)\n", 2570 nc->name, nc->num, hard_vcpus_limit); 2571 exit(1); 2572 } 2573 } 2574 nc++; 2575 } 2576 2577 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2578 if (!missing_cap) { 2579 missing_cap = 2580 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2581 } 2582 if (missing_cap) { 2583 ret = -EINVAL; 2584 fprintf(stderr, "kvm does not support %s\n%s", 2585 missing_cap->name, upgrade_note); 2586 goto err; 2587 } 2588 2589 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2590 s->coalesced_pio = s->coalesced_mmio && 2591 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2592 2593 /* 2594 * Enable KVM dirty ring if supported, otherwise fall back to 2595 * dirty logging mode 2596 */ 2597 ret = kvm_dirty_ring_init(s); 2598 if (ret < 0) { 2599 goto err; 2600 } 2601 2602 /* 2603 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2604 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2605 * page is wr-protected initially, which is against how kvm dirty ring is 2606 * usage - kvm dirty ring requires all pages are wr-protected at the very 2607 * beginning. Enabling this feature for dirty ring causes data corruption. 2608 * 2609 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2610 * we may expect a higher stall time when starting the migration. In the 2611 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2612 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2613 * guest pages. 2614 */ 2615 if (!s->kvm_dirty_ring_size) { 2616 dirty_log_manual_caps = 2617 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2618 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2619 KVM_DIRTY_LOG_INITIALLY_SET); 2620 s->manual_dirty_log_protect = dirty_log_manual_caps; 2621 if (dirty_log_manual_caps) { 2622 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2623 dirty_log_manual_caps); 2624 if (ret) { 2625 warn_report("Trying to enable capability %"PRIu64" of " 2626 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2627 "Falling back to the legacy mode. ", 2628 dirty_log_manual_caps); 2629 s->manual_dirty_log_protect = 0; 2630 } 2631 } 2632 } 2633 2634 #ifdef KVM_CAP_VCPU_EVENTS 2635 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2636 #endif 2637 2638 s->robust_singlestep = 2639 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2640 2641 #ifdef KVM_CAP_DEBUGREGS 2642 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2643 #endif 2644 2645 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2646 2647 #ifdef KVM_CAP_IRQ_ROUTING 2648 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2649 #endif 2650 2651 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2652 2653 s->irq_set_ioctl = KVM_IRQ_LINE; 2654 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2655 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2656 } 2657 2658 kvm_readonly_mem_allowed = 2659 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2660 2661 kvm_eventfds_allowed = 2662 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2663 2664 kvm_irqfds_allowed = 2665 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2666 2667 kvm_resamplefds_allowed = 2668 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2669 2670 kvm_vm_attributes_allowed = 2671 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2672 2673 kvm_ioeventfd_any_length_allowed = 2674 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2675 2676 #ifdef KVM_CAP_SET_GUEST_DEBUG 2677 kvm_has_guest_debug = 2678 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2679 #endif 2680 2681 kvm_sstep_flags = 0; 2682 if (kvm_has_guest_debug) { 2683 kvm_sstep_flags = SSTEP_ENABLE; 2684 2685 #if defined KVM_CAP_SET_GUEST_DEBUG2 2686 int guest_debug_flags = 2687 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2688 2689 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2690 kvm_sstep_flags |= SSTEP_NOIRQ; 2691 } 2692 #endif 2693 } 2694 2695 kvm_state = s; 2696 2697 ret = kvm_arch_init(ms, s); 2698 if (ret < 0) { 2699 goto err; 2700 } 2701 2702 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2703 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2704 } 2705 2706 qemu_register_reset(kvm_unpoison_all, NULL); 2707 2708 if (s->kernel_irqchip_allowed) { 2709 kvm_irqchip_create(s); 2710 } 2711 2712 if (kvm_eventfds_allowed) { 2713 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2714 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2715 } 2716 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2717 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2718 2719 kvm_memory_listener_register(s, &s->memory_listener, 2720 &address_space_memory, 0, "kvm-memory"); 2721 if (kvm_eventfds_allowed) { 2722 memory_listener_register(&kvm_io_listener, 2723 &address_space_io); 2724 } 2725 memory_listener_register(&kvm_coalesced_pio_listener, 2726 &address_space_io); 2727 2728 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2729 2730 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2731 if (!s->sync_mmu) { 2732 ret = ram_block_discard_disable(true); 2733 assert(!ret); 2734 } 2735 2736 if (s->kvm_dirty_ring_size) { 2737 ret = kvm_dirty_ring_reaper_init(s); 2738 if (ret) { 2739 goto err; 2740 } 2741 } 2742 2743 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2744 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2745 query_stats_schemas_cb); 2746 } 2747 2748 return 0; 2749 2750 err: 2751 assert(ret < 0); 2752 if (s->vmfd >= 0) { 2753 close(s->vmfd); 2754 } 2755 if (s->fd != -1) { 2756 close(s->fd); 2757 } 2758 g_free(s->memory_listener.slots); 2759 2760 return ret; 2761 } 2762 2763 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2764 { 2765 s->sigmask_len = sigmask_len; 2766 } 2767 2768 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2769 int size, uint32_t count) 2770 { 2771 int i; 2772 uint8_t *ptr = data; 2773 2774 for (i = 0; i < count; i++) { 2775 address_space_rw(&address_space_io, port, attrs, 2776 ptr, size, 2777 direction == KVM_EXIT_IO_OUT); 2778 ptr += size; 2779 } 2780 } 2781 2782 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2783 { 2784 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2785 run->internal.suberror); 2786 2787 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2788 int i; 2789 2790 for (i = 0; i < run->internal.ndata; ++i) { 2791 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2792 i, (uint64_t)run->internal.data[i]); 2793 } 2794 } 2795 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2796 fprintf(stderr, "emulation failure\n"); 2797 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2798 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2799 return EXCP_INTERRUPT; 2800 } 2801 } 2802 /* FIXME: Should trigger a qmp message to let management know 2803 * something went wrong. 2804 */ 2805 return -1; 2806 } 2807 2808 void kvm_flush_coalesced_mmio_buffer(void) 2809 { 2810 KVMState *s = kvm_state; 2811 2812 if (s->coalesced_flush_in_progress) { 2813 return; 2814 } 2815 2816 s->coalesced_flush_in_progress = true; 2817 2818 if (s->coalesced_mmio_ring) { 2819 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2820 while (ring->first != ring->last) { 2821 struct kvm_coalesced_mmio *ent; 2822 2823 ent = &ring->coalesced_mmio[ring->first]; 2824 2825 if (ent->pio == 1) { 2826 address_space_write(&address_space_io, ent->phys_addr, 2827 MEMTXATTRS_UNSPECIFIED, ent->data, 2828 ent->len); 2829 } else { 2830 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2831 } 2832 smp_wmb(); 2833 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2834 } 2835 } 2836 2837 s->coalesced_flush_in_progress = false; 2838 } 2839 2840 bool kvm_cpu_check_are_resettable(void) 2841 { 2842 return kvm_arch_cpu_check_are_resettable(); 2843 } 2844 2845 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2846 { 2847 if (!cpu->vcpu_dirty) { 2848 kvm_arch_get_registers(cpu); 2849 cpu->vcpu_dirty = true; 2850 } 2851 } 2852 2853 void kvm_cpu_synchronize_state(CPUState *cpu) 2854 { 2855 if (!cpu->vcpu_dirty) { 2856 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2857 } 2858 } 2859 2860 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2861 { 2862 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2863 cpu->vcpu_dirty = false; 2864 } 2865 2866 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2867 { 2868 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2869 } 2870 2871 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2872 { 2873 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2874 cpu->vcpu_dirty = false; 2875 } 2876 2877 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2878 { 2879 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2880 } 2881 2882 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2883 { 2884 cpu->vcpu_dirty = true; 2885 } 2886 2887 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2888 { 2889 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2890 } 2891 2892 #ifdef KVM_HAVE_MCE_INJECTION 2893 static __thread void *pending_sigbus_addr; 2894 static __thread int pending_sigbus_code; 2895 static __thread bool have_sigbus_pending; 2896 #endif 2897 2898 static void kvm_cpu_kick(CPUState *cpu) 2899 { 2900 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2901 } 2902 2903 static void kvm_cpu_kick_self(void) 2904 { 2905 if (kvm_immediate_exit) { 2906 kvm_cpu_kick(current_cpu); 2907 } else { 2908 qemu_cpu_kick_self(); 2909 } 2910 } 2911 2912 static void kvm_eat_signals(CPUState *cpu) 2913 { 2914 struct timespec ts = { 0, 0 }; 2915 siginfo_t siginfo; 2916 sigset_t waitset; 2917 sigset_t chkset; 2918 int r; 2919 2920 if (kvm_immediate_exit) { 2921 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2922 /* Write kvm_run->immediate_exit before the cpu->exit_request 2923 * write in kvm_cpu_exec. 2924 */ 2925 smp_wmb(); 2926 return; 2927 } 2928 2929 sigemptyset(&waitset); 2930 sigaddset(&waitset, SIG_IPI); 2931 2932 do { 2933 r = sigtimedwait(&waitset, &siginfo, &ts); 2934 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2935 perror("sigtimedwait"); 2936 exit(1); 2937 } 2938 2939 r = sigpending(&chkset); 2940 if (r == -1) { 2941 perror("sigpending"); 2942 exit(1); 2943 } 2944 } while (sigismember(&chkset, SIG_IPI)); 2945 } 2946 2947 int kvm_cpu_exec(CPUState *cpu) 2948 { 2949 struct kvm_run *run = cpu->kvm_run; 2950 int ret, run_ret; 2951 2952 DPRINTF("kvm_cpu_exec()\n"); 2953 2954 if (kvm_arch_process_async_events(cpu)) { 2955 qatomic_set(&cpu->exit_request, 0); 2956 return EXCP_HLT; 2957 } 2958 2959 qemu_mutex_unlock_iothread(); 2960 cpu_exec_start(cpu); 2961 2962 do { 2963 MemTxAttrs attrs; 2964 2965 if (cpu->vcpu_dirty) { 2966 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2967 cpu->vcpu_dirty = false; 2968 } 2969 2970 kvm_arch_pre_run(cpu, run); 2971 if (qatomic_read(&cpu->exit_request)) { 2972 DPRINTF("interrupt exit requested\n"); 2973 /* 2974 * KVM requires us to reenter the kernel after IO exits to complete 2975 * instruction emulation. This self-signal will ensure that we 2976 * leave ASAP again. 2977 */ 2978 kvm_cpu_kick_self(); 2979 } 2980 2981 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2982 * Matching barrier in kvm_eat_signals. 2983 */ 2984 smp_rmb(); 2985 2986 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2987 2988 attrs = kvm_arch_post_run(cpu, run); 2989 2990 #ifdef KVM_HAVE_MCE_INJECTION 2991 if (unlikely(have_sigbus_pending)) { 2992 qemu_mutex_lock_iothread(); 2993 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2994 pending_sigbus_addr); 2995 have_sigbus_pending = false; 2996 qemu_mutex_unlock_iothread(); 2997 } 2998 #endif 2999 3000 if (run_ret < 0) { 3001 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3002 DPRINTF("io window exit\n"); 3003 kvm_eat_signals(cpu); 3004 ret = EXCP_INTERRUPT; 3005 break; 3006 } 3007 fprintf(stderr, "error: kvm run failed %s\n", 3008 strerror(-run_ret)); 3009 #ifdef TARGET_PPC 3010 if (run_ret == -EBUSY) { 3011 fprintf(stderr, 3012 "This is probably because your SMT is enabled.\n" 3013 "VCPU can only run on primary threads with all " 3014 "secondary threads offline.\n"); 3015 } 3016 #endif 3017 ret = -1; 3018 break; 3019 } 3020 3021 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3022 switch (run->exit_reason) { 3023 case KVM_EXIT_IO: 3024 DPRINTF("handle_io\n"); 3025 /* Called outside BQL */ 3026 kvm_handle_io(run->io.port, attrs, 3027 (uint8_t *)run + run->io.data_offset, 3028 run->io.direction, 3029 run->io.size, 3030 run->io.count); 3031 ret = 0; 3032 break; 3033 case KVM_EXIT_MMIO: 3034 DPRINTF("handle_mmio\n"); 3035 /* Called outside BQL */ 3036 address_space_rw(&address_space_memory, 3037 run->mmio.phys_addr, attrs, 3038 run->mmio.data, 3039 run->mmio.len, 3040 run->mmio.is_write); 3041 ret = 0; 3042 break; 3043 case KVM_EXIT_IRQ_WINDOW_OPEN: 3044 DPRINTF("irq_window_open\n"); 3045 ret = EXCP_INTERRUPT; 3046 break; 3047 case KVM_EXIT_SHUTDOWN: 3048 DPRINTF("shutdown\n"); 3049 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3050 ret = EXCP_INTERRUPT; 3051 break; 3052 case KVM_EXIT_UNKNOWN: 3053 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3054 (uint64_t)run->hw.hardware_exit_reason); 3055 ret = -1; 3056 break; 3057 case KVM_EXIT_INTERNAL_ERROR: 3058 ret = kvm_handle_internal_error(cpu, run); 3059 break; 3060 case KVM_EXIT_DIRTY_RING_FULL: 3061 /* 3062 * We shouldn't continue if the dirty ring of this vcpu is 3063 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3064 */ 3065 trace_kvm_dirty_ring_full(cpu->cpu_index); 3066 qemu_mutex_lock_iothread(); 3067 /* 3068 * We throttle vCPU by making it sleep once it exit from kernel 3069 * due to dirty ring full. In the dirtylimit scenario, reaping 3070 * all vCPUs after a single vCPU dirty ring get full result in 3071 * the miss of sleep, so just reap the ring-fulled vCPU. 3072 */ 3073 if (dirtylimit_in_service()) { 3074 kvm_dirty_ring_reap(kvm_state, cpu); 3075 } else { 3076 kvm_dirty_ring_reap(kvm_state, NULL); 3077 } 3078 qemu_mutex_unlock_iothread(); 3079 dirtylimit_vcpu_execute(cpu); 3080 ret = 0; 3081 break; 3082 case KVM_EXIT_SYSTEM_EVENT: 3083 switch (run->system_event.type) { 3084 case KVM_SYSTEM_EVENT_SHUTDOWN: 3085 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3086 ret = EXCP_INTERRUPT; 3087 break; 3088 case KVM_SYSTEM_EVENT_RESET: 3089 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3090 ret = EXCP_INTERRUPT; 3091 break; 3092 case KVM_SYSTEM_EVENT_CRASH: 3093 kvm_cpu_synchronize_state(cpu); 3094 qemu_mutex_lock_iothread(); 3095 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3096 qemu_mutex_unlock_iothread(); 3097 ret = 0; 3098 break; 3099 default: 3100 DPRINTF("kvm_arch_handle_exit\n"); 3101 ret = kvm_arch_handle_exit(cpu, run); 3102 break; 3103 } 3104 break; 3105 default: 3106 DPRINTF("kvm_arch_handle_exit\n"); 3107 ret = kvm_arch_handle_exit(cpu, run); 3108 break; 3109 } 3110 } while (ret == 0); 3111 3112 cpu_exec_end(cpu); 3113 qemu_mutex_lock_iothread(); 3114 3115 if (ret < 0) { 3116 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3117 vm_stop(RUN_STATE_INTERNAL_ERROR); 3118 } 3119 3120 qatomic_set(&cpu->exit_request, 0); 3121 return ret; 3122 } 3123 3124 int kvm_ioctl(KVMState *s, int type, ...) 3125 { 3126 int ret; 3127 void *arg; 3128 va_list ap; 3129 3130 va_start(ap, type); 3131 arg = va_arg(ap, void *); 3132 va_end(ap); 3133 3134 trace_kvm_ioctl(type, arg); 3135 ret = ioctl(s->fd, type, arg); 3136 if (ret == -1) { 3137 ret = -errno; 3138 } 3139 return ret; 3140 } 3141 3142 int kvm_vm_ioctl(KVMState *s, int type, ...) 3143 { 3144 int ret; 3145 void *arg; 3146 va_list ap; 3147 3148 va_start(ap, type); 3149 arg = va_arg(ap, void *); 3150 va_end(ap); 3151 3152 trace_kvm_vm_ioctl(type, arg); 3153 accel_ioctl_begin(); 3154 ret = ioctl(s->vmfd, type, arg); 3155 accel_ioctl_end(); 3156 if (ret == -1) { 3157 ret = -errno; 3158 } 3159 return ret; 3160 } 3161 3162 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3163 { 3164 int ret; 3165 void *arg; 3166 va_list ap; 3167 3168 va_start(ap, type); 3169 arg = va_arg(ap, void *); 3170 va_end(ap); 3171 3172 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3173 accel_cpu_ioctl_begin(cpu); 3174 ret = ioctl(cpu->kvm_fd, type, arg); 3175 accel_cpu_ioctl_end(cpu); 3176 if (ret == -1) { 3177 ret = -errno; 3178 } 3179 return ret; 3180 } 3181 3182 int kvm_device_ioctl(int fd, int type, ...) 3183 { 3184 int ret; 3185 void *arg; 3186 va_list ap; 3187 3188 va_start(ap, type); 3189 arg = va_arg(ap, void *); 3190 va_end(ap); 3191 3192 trace_kvm_device_ioctl(fd, type, arg); 3193 accel_ioctl_begin(); 3194 ret = ioctl(fd, type, arg); 3195 accel_ioctl_end(); 3196 if (ret == -1) { 3197 ret = -errno; 3198 } 3199 return ret; 3200 } 3201 3202 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3203 { 3204 int ret; 3205 struct kvm_device_attr attribute = { 3206 .group = group, 3207 .attr = attr, 3208 }; 3209 3210 if (!kvm_vm_attributes_allowed) { 3211 return 0; 3212 } 3213 3214 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3215 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3216 return ret ? 0 : 1; 3217 } 3218 3219 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3220 { 3221 struct kvm_device_attr attribute = { 3222 .group = group, 3223 .attr = attr, 3224 .flags = 0, 3225 }; 3226 3227 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3228 } 3229 3230 int kvm_device_access(int fd, int group, uint64_t attr, 3231 void *val, bool write, Error **errp) 3232 { 3233 struct kvm_device_attr kvmattr; 3234 int err; 3235 3236 kvmattr.flags = 0; 3237 kvmattr.group = group; 3238 kvmattr.attr = attr; 3239 kvmattr.addr = (uintptr_t)val; 3240 3241 err = kvm_device_ioctl(fd, 3242 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3243 &kvmattr); 3244 if (err < 0) { 3245 error_setg_errno(errp, -err, 3246 "KVM_%s_DEVICE_ATTR failed: Group %d " 3247 "attr 0x%016" PRIx64, 3248 write ? "SET" : "GET", group, attr); 3249 } 3250 return err; 3251 } 3252 3253 bool kvm_has_sync_mmu(void) 3254 { 3255 return kvm_state->sync_mmu; 3256 } 3257 3258 int kvm_has_vcpu_events(void) 3259 { 3260 return kvm_state->vcpu_events; 3261 } 3262 3263 int kvm_has_robust_singlestep(void) 3264 { 3265 return kvm_state->robust_singlestep; 3266 } 3267 3268 int kvm_has_debugregs(void) 3269 { 3270 return kvm_state->debugregs; 3271 } 3272 3273 int kvm_max_nested_state_length(void) 3274 { 3275 return kvm_state->max_nested_state_len; 3276 } 3277 3278 int kvm_has_many_ioeventfds(void) 3279 { 3280 if (!kvm_enabled()) { 3281 return 0; 3282 } 3283 return kvm_state->many_ioeventfds; 3284 } 3285 3286 int kvm_has_gsi_routing(void) 3287 { 3288 #ifdef KVM_CAP_IRQ_ROUTING 3289 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3290 #else 3291 return false; 3292 #endif 3293 } 3294 3295 int kvm_has_intx_set_mask(void) 3296 { 3297 return kvm_state->intx_set_mask; 3298 } 3299 3300 bool kvm_arm_supports_user_irq(void) 3301 { 3302 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3303 } 3304 3305 #ifdef KVM_CAP_SET_GUEST_DEBUG 3306 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3307 target_ulong pc) 3308 { 3309 struct kvm_sw_breakpoint *bp; 3310 3311 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3312 if (bp->pc == pc) { 3313 return bp; 3314 } 3315 } 3316 return NULL; 3317 } 3318 3319 int kvm_sw_breakpoints_active(CPUState *cpu) 3320 { 3321 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3322 } 3323 3324 struct kvm_set_guest_debug_data { 3325 struct kvm_guest_debug dbg; 3326 int err; 3327 }; 3328 3329 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3330 { 3331 struct kvm_set_guest_debug_data *dbg_data = 3332 (struct kvm_set_guest_debug_data *) data.host_ptr; 3333 3334 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3335 &dbg_data->dbg); 3336 } 3337 3338 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3339 { 3340 struct kvm_set_guest_debug_data data; 3341 3342 data.dbg.control = reinject_trap; 3343 3344 if (cpu->singlestep_enabled) { 3345 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3346 3347 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3348 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3349 } 3350 } 3351 kvm_arch_update_guest_debug(cpu, &data.dbg); 3352 3353 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3354 RUN_ON_CPU_HOST_PTR(&data)); 3355 return data.err; 3356 } 3357 3358 bool kvm_supports_guest_debug(void) 3359 { 3360 /* probed during kvm_init() */ 3361 return kvm_has_guest_debug; 3362 } 3363 3364 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3365 { 3366 struct kvm_sw_breakpoint *bp; 3367 int err; 3368 3369 if (type == GDB_BREAKPOINT_SW) { 3370 bp = kvm_find_sw_breakpoint(cpu, addr); 3371 if (bp) { 3372 bp->use_count++; 3373 return 0; 3374 } 3375 3376 bp = g_new(struct kvm_sw_breakpoint, 1); 3377 bp->pc = addr; 3378 bp->use_count = 1; 3379 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3380 if (err) { 3381 g_free(bp); 3382 return err; 3383 } 3384 3385 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3386 } else { 3387 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3388 if (err) { 3389 return err; 3390 } 3391 } 3392 3393 CPU_FOREACH(cpu) { 3394 err = kvm_update_guest_debug(cpu, 0); 3395 if (err) { 3396 return err; 3397 } 3398 } 3399 return 0; 3400 } 3401 3402 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3403 { 3404 struct kvm_sw_breakpoint *bp; 3405 int err; 3406 3407 if (type == GDB_BREAKPOINT_SW) { 3408 bp = kvm_find_sw_breakpoint(cpu, addr); 3409 if (!bp) { 3410 return -ENOENT; 3411 } 3412 3413 if (bp->use_count > 1) { 3414 bp->use_count--; 3415 return 0; 3416 } 3417 3418 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3419 if (err) { 3420 return err; 3421 } 3422 3423 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3424 g_free(bp); 3425 } else { 3426 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3427 if (err) { 3428 return err; 3429 } 3430 } 3431 3432 CPU_FOREACH(cpu) { 3433 err = kvm_update_guest_debug(cpu, 0); 3434 if (err) { 3435 return err; 3436 } 3437 } 3438 return 0; 3439 } 3440 3441 void kvm_remove_all_breakpoints(CPUState *cpu) 3442 { 3443 struct kvm_sw_breakpoint *bp, *next; 3444 KVMState *s = cpu->kvm_state; 3445 CPUState *tmpcpu; 3446 3447 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3448 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3449 /* Try harder to find a CPU that currently sees the breakpoint. */ 3450 CPU_FOREACH(tmpcpu) { 3451 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3452 break; 3453 } 3454 } 3455 } 3456 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3457 g_free(bp); 3458 } 3459 kvm_arch_remove_all_hw_breakpoints(); 3460 3461 CPU_FOREACH(cpu) { 3462 kvm_update_guest_debug(cpu, 0); 3463 } 3464 } 3465 3466 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3467 3468 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3469 { 3470 KVMState *s = kvm_state; 3471 struct kvm_signal_mask *sigmask; 3472 int r; 3473 3474 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3475 3476 sigmask->len = s->sigmask_len; 3477 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3478 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3479 g_free(sigmask); 3480 3481 return r; 3482 } 3483 3484 static void kvm_ipi_signal(int sig) 3485 { 3486 if (current_cpu) { 3487 assert(kvm_immediate_exit); 3488 kvm_cpu_kick(current_cpu); 3489 } 3490 } 3491 3492 void kvm_init_cpu_signals(CPUState *cpu) 3493 { 3494 int r; 3495 sigset_t set; 3496 struct sigaction sigact; 3497 3498 memset(&sigact, 0, sizeof(sigact)); 3499 sigact.sa_handler = kvm_ipi_signal; 3500 sigaction(SIG_IPI, &sigact, NULL); 3501 3502 pthread_sigmask(SIG_BLOCK, NULL, &set); 3503 #if defined KVM_HAVE_MCE_INJECTION 3504 sigdelset(&set, SIGBUS); 3505 pthread_sigmask(SIG_SETMASK, &set, NULL); 3506 #endif 3507 sigdelset(&set, SIG_IPI); 3508 if (kvm_immediate_exit) { 3509 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3510 } else { 3511 r = kvm_set_signal_mask(cpu, &set); 3512 } 3513 if (r) { 3514 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3515 exit(1); 3516 } 3517 } 3518 3519 /* Called asynchronously in VCPU thread. */ 3520 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3521 { 3522 #ifdef KVM_HAVE_MCE_INJECTION 3523 if (have_sigbus_pending) { 3524 return 1; 3525 } 3526 have_sigbus_pending = true; 3527 pending_sigbus_addr = addr; 3528 pending_sigbus_code = code; 3529 qatomic_set(&cpu->exit_request, 1); 3530 return 0; 3531 #else 3532 return 1; 3533 #endif 3534 } 3535 3536 /* Called synchronously (via signalfd) in main thread. */ 3537 int kvm_on_sigbus(int code, void *addr) 3538 { 3539 #ifdef KVM_HAVE_MCE_INJECTION 3540 /* Action required MCE kills the process if SIGBUS is blocked. Because 3541 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3542 * we can only get action optional here. 3543 */ 3544 assert(code != BUS_MCEERR_AR); 3545 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3546 return 0; 3547 #else 3548 return 1; 3549 #endif 3550 } 3551 3552 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3553 { 3554 int ret; 3555 struct kvm_create_device create_dev; 3556 3557 create_dev.type = type; 3558 create_dev.fd = -1; 3559 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3560 3561 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3562 return -ENOTSUP; 3563 } 3564 3565 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3566 if (ret) { 3567 return ret; 3568 } 3569 3570 return test ? 0 : create_dev.fd; 3571 } 3572 3573 bool kvm_device_supported(int vmfd, uint64_t type) 3574 { 3575 struct kvm_create_device create_dev = { 3576 .type = type, 3577 .fd = -1, 3578 .flags = KVM_CREATE_DEVICE_TEST, 3579 }; 3580 3581 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3582 return false; 3583 } 3584 3585 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3586 } 3587 3588 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3589 { 3590 struct kvm_one_reg reg; 3591 int r; 3592 3593 reg.id = id; 3594 reg.addr = (uintptr_t) source; 3595 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3596 if (r) { 3597 trace_kvm_failed_reg_set(id, strerror(-r)); 3598 } 3599 return r; 3600 } 3601 3602 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3603 { 3604 struct kvm_one_reg reg; 3605 int r; 3606 3607 reg.id = id; 3608 reg.addr = (uintptr_t) target; 3609 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3610 if (r) { 3611 trace_kvm_failed_reg_get(id, strerror(-r)); 3612 } 3613 return r; 3614 } 3615 3616 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3617 hwaddr start_addr, hwaddr size) 3618 { 3619 KVMState *kvm = KVM_STATE(ms->accelerator); 3620 int i; 3621 3622 for (i = 0; i < kvm->nr_as; ++i) { 3623 if (kvm->as[i].as == as && kvm->as[i].ml) { 3624 size = MIN(kvm_max_slot_size, size); 3625 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3626 start_addr, size); 3627 } 3628 } 3629 3630 return false; 3631 } 3632 3633 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3634 const char *name, void *opaque, 3635 Error **errp) 3636 { 3637 KVMState *s = KVM_STATE(obj); 3638 int64_t value = s->kvm_shadow_mem; 3639 3640 visit_type_int(v, name, &value, errp); 3641 } 3642 3643 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3644 const char *name, void *opaque, 3645 Error **errp) 3646 { 3647 KVMState *s = KVM_STATE(obj); 3648 int64_t value; 3649 3650 if (s->fd != -1) { 3651 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3652 return; 3653 } 3654 3655 if (!visit_type_int(v, name, &value, errp)) { 3656 return; 3657 } 3658 3659 s->kvm_shadow_mem = value; 3660 } 3661 3662 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3663 const char *name, void *opaque, 3664 Error **errp) 3665 { 3666 KVMState *s = KVM_STATE(obj); 3667 OnOffSplit mode; 3668 3669 if (s->fd != -1) { 3670 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3671 return; 3672 } 3673 3674 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3675 return; 3676 } 3677 switch (mode) { 3678 case ON_OFF_SPLIT_ON: 3679 s->kernel_irqchip_allowed = true; 3680 s->kernel_irqchip_required = true; 3681 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3682 break; 3683 case ON_OFF_SPLIT_OFF: 3684 s->kernel_irqchip_allowed = false; 3685 s->kernel_irqchip_required = false; 3686 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3687 break; 3688 case ON_OFF_SPLIT_SPLIT: 3689 s->kernel_irqchip_allowed = true; 3690 s->kernel_irqchip_required = true; 3691 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3692 break; 3693 default: 3694 /* The value was checked in visit_type_OnOffSplit() above. If 3695 * we get here, then something is wrong in QEMU. 3696 */ 3697 abort(); 3698 } 3699 } 3700 3701 bool kvm_kernel_irqchip_allowed(void) 3702 { 3703 return kvm_state->kernel_irqchip_allowed; 3704 } 3705 3706 bool kvm_kernel_irqchip_required(void) 3707 { 3708 return kvm_state->kernel_irqchip_required; 3709 } 3710 3711 bool kvm_kernel_irqchip_split(void) 3712 { 3713 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3714 } 3715 3716 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3717 const char *name, void *opaque, 3718 Error **errp) 3719 { 3720 KVMState *s = KVM_STATE(obj); 3721 uint32_t value = s->kvm_dirty_ring_size; 3722 3723 visit_type_uint32(v, name, &value, errp); 3724 } 3725 3726 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3727 const char *name, void *opaque, 3728 Error **errp) 3729 { 3730 KVMState *s = KVM_STATE(obj); 3731 uint32_t value; 3732 3733 if (s->fd != -1) { 3734 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3735 return; 3736 } 3737 3738 if (!visit_type_uint32(v, name, &value, errp)) { 3739 return; 3740 } 3741 if (value & (value - 1)) { 3742 error_setg(errp, "dirty-ring-size must be a power of two."); 3743 return; 3744 } 3745 3746 s->kvm_dirty_ring_size = value; 3747 } 3748 3749 static void kvm_accel_instance_init(Object *obj) 3750 { 3751 KVMState *s = KVM_STATE(obj); 3752 3753 s->fd = -1; 3754 s->vmfd = -1; 3755 s->kvm_shadow_mem = -1; 3756 s->kernel_irqchip_allowed = true; 3757 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3758 /* KVM dirty ring is by default off */ 3759 s->kvm_dirty_ring_size = 0; 3760 s->kvm_dirty_ring_with_bitmap = false; 3761 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3762 s->notify_window = 0; 3763 s->xen_version = 0; 3764 s->xen_gnttab_max_frames = 64; 3765 s->xen_evtchn_max_pirq = 256; 3766 } 3767 3768 /** 3769 * kvm_gdbstub_sstep_flags(): 3770 * 3771 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3772 * support is probed during kvm_init() 3773 */ 3774 static int kvm_gdbstub_sstep_flags(void) 3775 { 3776 return kvm_sstep_flags; 3777 } 3778 3779 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3780 { 3781 AccelClass *ac = ACCEL_CLASS(oc); 3782 ac->name = "KVM"; 3783 ac->init_machine = kvm_init; 3784 ac->has_memory = kvm_accel_has_memory; 3785 ac->allowed = &kvm_allowed; 3786 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3787 3788 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3789 NULL, kvm_set_kernel_irqchip, 3790 NULL, NULL); 3791 object_class_property_set_description(oc, "kernel-irqchip", 3792 "Configure KVM in-kernel irqchip"); 3793 3794 object_class_property_add(oc, "kvm-shadow-mem", "int", 3795 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3796 NULL, NULL); 3797 object_class_property_set_description(oc, "kvm-shadow-mem", 3798 "KVM shadow MMU size"); 3799 3800 object_class_property_add(oc, "dirty-ring-size", "uint32", 3801 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3802 NULL, NULL); 3803 object_class_property_set_description(oc, "dirty-ring-size", 3804 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3805 3806 kvm_arch_accel_class_init(oc); 3807 } 3808 3809 static const TypeInfo kvm_accel_type = { 3810 .name = TYPE_KVM_ACCEL, 3811 .parent = TYPE_ACCEL, 3812 .instance_init = kvm_accel_instance_init, 3813 .class_init = kvm_accel_class_init, 3814 .instance_size = sizeof(KVMState), 3815 }; 3816 3817 static void kvm_type_init(void) 3818 { 3819 type_register_static(&kvm_accel_type); 3820 } 3821 3822 type_init(kvm_type_init); 3823 3824 typedef struct StatsArgs { 3825 union StatsResultsType { 3826 StatsResultList **stats; 3827 StatsSchemaList **schema; 3828 } result; 3829 strList *names; 3830 Error **errp; 3831 } StatsArgs; 3832 3833 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3834 uint64_t *stats_data, 3835 StatsList *stats_list, 3836 Error **errp) 3837 { 3838 3839 Stats *stats; 3840 uint64List *val_list = NULL; 3841 3842 /* Only add stats that we understand. */ 3843 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3844 case KVM_STATS_TYPE_CUMULATIVE: 3845 case KVM_STATS_TYPE_INSTANT: 3846 case KVM_STATS_TYPE_PEAK: 3847 case KVM_STATS_TYPE_LINEAR_HIST: 3848 case KVM_STATS_TYPE_LOG_HIST: 3849 break; 3850 default: 3851 return stats_list; 3852 } 3853 3854 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3855 case KVM_STATS_UNIT_NONE: 3856 case KVM_STATS_UNIT_BYTES: 3857 case KVM_STATS_UNIT_CYCLES: 3858 case KVM_STATS_UNIT_SECONDS: 3859 case KVM_STATS_UNIT_BOOLEAN: 3860 break; 3861 default: 3862 return stats_list; 3863 } 3864 3865 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3866 case KVM_STATS_BASE_POW10: 3867 case KVM_STATS_BASE_POW2: 3868 break; 3869 default: 3870 return stats_list; 3871 } 3872 3873 /* Alloc and populate data list */ 3874 stats = g_new0(Stats, 1); 3875 stats->name = g_strdup(pdesc->name); 3876 stats->value = g_new0(StatsValue, 1);; 3877 3878 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3879 stats->value->u.boolean = *stats_data; 3880 stats->value->type = QTYPE_QBOOL; 3881 } else if (pdesc->size == 1) { 3882 stats->value->u.scalar = *stats_data; 3883 stats->value->type = QTYPE_QNUM; 3884 } else { 3885 int i; 3886 for (i = 0; i < pdesc->size; i++) { 3887 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3888 } 3889 stats->value->u.list = val_list; 3890 stats->value->type = QTYPE_QLIST; 3891 } 3892 3893 QAPI_LIST_PREPEND(stats_list, stats); 3894 return stats_list; 3895 } 3896 3897 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3898 StatsSchemaValueList *list, 3899 Error **errp) 3900 { 3901 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3902 schema_entry->value = g_new0(StatsSchemaValue, 1); 3903 3904 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3905 case KVM_STATS_TYPE_CUMULATIVE: 3906 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3907 break; 3908 case KVM_STATS_TYPE_INSTANT: 3909 schema_entry->value->type = STATS_TYPE_INSTANT; 3910 break; 3911 case KVM_STATS_TYPE_PEAK: 3912 schema_entry->value->type = STATS_TYPE_PEAK; 3913 break; 3914 case KVM_STATS_TYPE_LINEAR_HIST: 3915 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3916 schema_entry->value->bucket_size = pdesc->bucket_size; 3917 schema_entry->value->has_bucket_size = true; 3918 break; 3919 case KVM_STATS_TYPE_LOG_HIST: 3920 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3921 break; 3922 default: 3923 goto exit; 3924 } 3925 3926 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3927 case KVM_STATS_UNIT_NONE: 3928 break; 3929 case KVM_STATS_UNIT_BOOLEAN: 3930 schema_entry->value->has_unit = true; 3931 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3932 break; 3933 case KVM_STATS_UNIT_BYTES: 3934 schema_entry->value->has_unit = true; 3935 schema_entry->value->unit = STATS_UNIT_BYTES; 3936 break; 3937 case KVM_STATS_UNIT_CYCLES: 3938 schema_entry->value->has_unit = true; 3939 schema_entry->value->unit = STATS_UNIT_CYCLES; 3940 break; 3941 case KVM_STATS_UNIT_SECONDS: 3942 schema_entry->value->has_unit = true; 3943 schema_entry->value->unit = STATS_UNIT_SECONDS; 3944 break; 3945 default: 3946 goto exit; 3947 } 3948 3949 schema_entry->value->exponent = pdesc->exponent; 3950 if (pdesc->exponent) { 3951 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3952 case KVM_STATS_BASE_POW10: 3953 schema_entry->value->has_base = true; 3954 schema_entry->value->base = 10; 3955 break; 3956 case KVM_STATS_BASE_POW2: 3957 schema_entry->value->has_base = true; 3958 schema_entry->value->base = 2; 3959 break; 3960 default: 3961 goto exit; 3962 } 3963 } 3964 3965 schema_entry->value->name = g_strdup(pdesc->name); 3966 schema_entry->next = list; 3967 return schema_entry; 3968 exit: 3969 g_free(schema_entry->value); 3970 g_free(schema_entry); 3971 return list; 3972 } 3973 3974 /* Cached stats descriptors */ 3975 typedef struct StatsDescriptors { 3976 const char *ident; /* cache key, currently the StatsTarget */ 3977 struct kvm_stats_desc *kvm_stats_desc; 3978 struct kvm_stats_header kvm_stats_header; 3979 QTAILQ_ENTRY(StatsDescriptors) next; 3980 } StatsDescriptors; 3981 3982 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3983 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3984 3985 /* 3986 * Return the descriptors for 'target', that either have already been read 3987 * or are retrieved from 'stats_fd'. 3988 */ 3989 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3990 Error **errp) 3991 { 3992 StatsDescriptors *descriptors; 3993 const char *ident; 3994 struct kvm_stats_desc *kvm_stats_desc; 3995 struct kvm_stats_header *kvm_stats_header; 3996 size_t size_desc; 3997 ssize_t ret; 3998 3999 ident = StatsTarget_str(target); 4000 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4001 if (g_str_equal(descriptors->ident, ident)) { 4002 return descriptors; 4003 } 4004 } 4005 4006 descriptors = g_new0(StatsDescriptors, 1); 4007 4008 /* Read stats header */ 4009 kvm_stats_header = &descriptors->kvm_stats_header; 4010 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header)); 4011 if (ret != sizeof(*kvm_stats_header)) { 4012 error_setg(errp, "KVM stats: failed to read stats header: " 4013 "expected %zu actual %zu", 4014 sizeof(*kvm_stats_header), ret); 4015 g_free(descriptors); 4016 return NULL; 4017 } 4018 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4019 4020 /* Read stats descriptors */ 4021 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4022 ret = pread(stats_fd, kvm_stats_desc, 4023 size_desc * kvm_stats_header->num_desc, 4024 kvm_stats_header->desc_offset); 4025 4026 if (ret != size_desc * kvm_stats_header->num_desc) { 4027 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4028 "expected %zu actual %zu", 4029 size_desc * kvm_stats_header->num_desc, ret); 4030 g_free(descriptors); 4031 g_free(kvm_stats_desc); 4032 return NULL; 4033 } 4034 descriptors->kvm_stats_desc = kvm_stats_desc; 4035 descriptors->ident = ident; 4036 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4037 return descriptors; 4038 } 4039 4040 static void query_stats(StatsResultList **result, StatsTarget target, 4041 strList *names, int stats_fd, Error **errp) 4042 { 4043 struct kvm_stats_desc *kvm_stats_desc; 4044 struct kvm_stats_header *kvm_stats_header; 4045 StatsDescriptors *descriptors; 4046 g_autofree uint64_t *stats_data = NULL; 4047 struct kvm_stats_desc *pdesc; 4048 StatsList *stats_list = NULL; 4049 size_t size_desc, size_data = 0; 4050 ssize_t ret; 4051 int i; 4052 4053 descriptors = find_stats_descriptors(target, stats_fd, errp); 4054 if (!descriptors) { 4055 return; 4056 } 4057 4058 kvm_stats_header = &descriptors->kvm_stats_header; 4059 kvm_stats_desc = descriptors->kvm_stats_desc; 4060 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4061 4062 /* Tally the total data size; read schema data */ 4063 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4064 pdesc = (void *)kvm_stats_desc + i * size_desc; 4065 size_data += pdesc->size * sizeof(*stats_data); 4066 } 4067 4068 stats_data = g_malloc0(size_data); 4069 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4070 4071 if (ret != size_data) { 4072 error_setg(errp, "KVM stats: failed to read data: " 4073 "expected %zu actual %zu", size_data, ret); 4074 return; 4075 } 4076 4077 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4078 uint64_t *stats; 4079 pdesc = (void *)kvm_stats_desc + i * size_desc; 4080 4081 /* Add entry to the list */ 4082 stats = (void *)stats_data + pdesc->offset; 4083 if (!apply_str_list_filter(pdesc->name, names)) { 4084 continue; 4085 } 4086 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4087 } 4088 4089 if (!stats_list) { 4090 return; 4091 } 4092 4093 switch (target) { 4094 case STATS_TARGET_VM: 4095 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4096 break; 4097 case STATS_TARGET_VCPU: 4098 add_stats_entry(result, STATS_PROVIDER_KVM, 4099 current_cpu->parent_obj.canonical_path, 4100 stats_list); 4101 break; 4102 default: 4103 g_assert_not_reached(); 4104 } 4105 } 4106 4107 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4108 int stats_fd, Error **errp) 4109 { 4110 struct kvm_stats_desc *kvm_stats_desc; 4111 struct kvm_stats_header *kvm_stats_header; 4112 StatsDescriptors *descriptors; 4113 struct kvm_stats_desc *pdesc; 4114 StatsSchemaValueList *stats_list = NULL; 4115 size_t size_desc; 4116 int i; 4117 4118 descriptors = find_stats_descriptors(target, stats_fd, errp); 4119 if (!descriptors) { 4120 return; 4121 } 4122 4123 kvm_stats_header = &descriptors->kvm_stats_header; 4124 kvm_stats_desc = descriptors->kvm_stats_desc; 4125 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4126 4127 /* Tally the total data size; read schema data */ 4128 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4129 pdesc = (void *)kvm_stats_desc + i * size_desc; 4130 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4131 } 4132 4133 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4134 } 4135 4136 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data) 4137 { 4138 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4139 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4140 Error *local_err = NULL; 4141 4142 if (stats_fd == -1) { 4143 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4144 error_propagate(kvm_stats_args->errp, local_err); 4145 return; 4146 } 4147 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4148 kvm_stats_args->names, stats_fd, kvm_stats_args->errp); 4149 close(stats_fd); 4150 } 4151 4152 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data) 4153 { 4154 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4155 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4156 Error *local_err = NULL; 4157 4158 if (stats_fd == -1) { 4159 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4160 error_propagate(kvm_stats_args->errp, local_err); 4161 return; 4162 } 4163 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4164 kvm_stats_args->errp); 4165 close(stats_fd); 4166 } 4167 4168 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4169 strList *names, strList *targets, Error **errp) 4170 { 4171 KVMState *s = kvm_state; 4172 CPUState *cpu; 4173 int stats_fd; 4174 4175 switch (target) { 4176 case STATS_TARGET_VM: 4177 { 4178 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4179 if (stats_fd == -1) { 4180 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4181 return; 4182 } 4183 query_stats(result, target, names, stats_fd, errp); 4184 close(stats_fd); 4185 break; 4186 } 4187 case STATS_TARGET_VCPU: 4188 { 4189 StatsArgs stats_args; 4190 stats_args.result.stats = result; 4191 stats_args.names = names; 4192 stats_args.errp = errp; 4193 CPU_FOREACH(cpu) { 4194 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4195 continue; 4196 } 4197 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4198 } 4199 break; 4200 } 4201 default: 4202 break; 4203 } 4204 } 4205 4206 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4207 { 4208 StatsArgs stats_args; 4209 KVMState *s = kvm_state; 4210 int stats_fd; 4211 4212 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4213 if (stats_fd == -1) { 4214 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4215 return; 4216 } 4217 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4218 close(stats_fd); 4219 4220 if (first_cpu) { 4221 stats_args.result.schema = result; 4222 stats_args.errp = errp; 4223 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4224 } 4225 } 4226