1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "sysemu/balloon.h" 44 #include "qapi/visitor.h" 45 #include "qapi/qapi-types-common.h" 46 #include "qapi/qapi-visit-common.h" 47 48 #include "hw/boards.h" 49 50 /* This check must be after config-host.h is included */ 51 #ifdef CONFIG_EVENTFD 52 #include <sys/eventfd.h> 53 #endif 54 55 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 56 * need to use the real host PAGE_SIZE, as that's what KVM will use. 57 */ 58 #define PAGE_SIZE qemu_real_host_page_size 59 60 //#define DEBUG_KVM 61 62 #ifdef DEBUG_KVM 63 #define DPRINTF(fmt, ...) \ 64 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 65 #else 66 #define DPRINTF(fmt, ...) \ 67 do { } while (0) 68 #endif 69 70 #define KVM_MSI_HASHTAB_SIZE 256 71 72 struct KVMParkedVcpu { 73 unsigned long vcpu_id; 74 int kvm_fd; 75 QLIST_ENTRY(KVMParkedVcpu) node; 76 }; 77 78 struct KVMState 79 { 80 AccelState parent_obj; 81 82 int nr_slots; 83 int fd; 84 int vmfd; 85 int coalesced_mmio; 86 int coalesced_pio; 87 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 88 bool coalesced_flush_in_progress; 89 int vcpu_events; 90 int robust_singlestep; 91 int debugregs; 92 #ifdef KVM_CAP_SET_GUEST_DEBUG 93 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 94 #endif 95 int max_nested_state_len; 96 int many_ioeventfds; 97 int intx_set_mask; 98 int kvm_shadow_mem; 99 bool kernel_irqchip_allowed; 100 bool kernel_irqchip_required; 101 OnOffAuto kernel_irqchip_split; 102 bool sync_mmu; 103 bool manual_dirty_log_protect; 104 /* The man page (and posix) say ioctl numbers are signed int, but 105 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 106 * unsigned, and treating them as signed here can break things */ 107 unsigned irq_set_ioctl; 108 unsigned int sigmask_len; 109 GHashTable *gsimap; 110 #ifdef KVM_CAP_IRQ_ROUTING 111 struct kvm_irq_routing *irq_routes; 112 int nr_allocated_irq_routes; 113 unsigned long *used_gsi_bitmap; 114 unsigned int gsi_count; 115 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 116 #endif 117 KVMMemoryListener memory_listener; 118 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 119 120 /* memory encryption */ 121 void *memcrypt_handle; 122 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 123 124 /* For "info mtree -f" to tell if an MR is registered in KVM */ 125 int nr_as; 126 struct KVMAs { 127 KVMMemoryListener *ml; 128 AddressSpace *as; 129 } *as; 130 }; 131 132 KVMState *kvm_state; 133 bool kvm_kernel_irqchip; 134 bool kvm_split_irqchip; 135 bool kvm_async_interrupts_allowed; 136 bool kvm_halt_in_kernel_allowed; 137 bool kvm_eventfds_allowed; 138 bool kvm_irqfds_allowed; 139 bool kvm_resamplefds_allowed; 140 bool kvm_msi_via_irqfd_allowed; 141 bool kvm_gsi_routing_allowed; 142 bool kvm_gsi_direct_mapping; 143 bool kvm_allowed; 144 bool kvm_readonly_mem_allowed; 145 bool kvm_vm_attributes_allowed; 146 bool kvm_direct_msi_allowed; 147 bool kvm_ioeventfd_any_length_allowed; 148 bool kvm_msi_use_devid; 149 static bool kvm_immediate_exit; 150 static hwaddr kvm_max_slot_size = ~0; 151 152 static const KVMCapabilityInfo kvm_required_capabilites[] = { 153 KVM_CAP_INFO(USER_MEMORY), 154 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 155 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 156 KVM_CAP_LAST_INFO 157 }; 158 159 static NotifierList kvm_irqchip_change_notifiers = 160 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 161 162 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 163 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 164 165 int kvm_get_max_memslots(void) 166 { 167 KVMState *s = KVM_STATE(current_accel()); 168 169 return s->nr_slots; 170 } 171 172 bool kvm_memcrypt_enabled(void) 173 { 174 if (kvm_state && kvm_state->memcrypt_handle) { 175 return true; 176 } 177 178 return false; 179 } 180 181 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 182 { 183 if (kvm_state->memcrypt_handle && 184 kvm_state->memcrypt_encrypt_data) { 185 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 186 ptr, len); 187 } 188 189 return 1; 190 } 191 192 /* Called with KVMMemoryListener.slots_lock held */ 193 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 194 { 195 KVMState *s = kvm_state; 196 int i; 197 198 for (i = 0; i < s->nr_slots; i++) { 199 if (kml->slots[i].memory_size == 0) { 200 return &kml->slots[i]; 201 } 202 } 203 204 return NULL; 205 } 206 207 bool kvm_has_free_slot(MachineState *ms) 208 { 209 KVMState *s = KVM_STATE(ms->accelerator); 210 bool result; 211 KVMMemoryListener *kml = &s->memory_listener; 212 213 kvm_slots_lock(kml); 214 result = !!kvm_get_free_slot(kml); 215 kvm_slots_unlock(kml); 216 217 return result; 218 } 219 220 /* Called with KVMMemoryListener.slots_lock held */ 221 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 222 { 223 KVMSlot *slot = kvm_get_free_slot(kml); 224 225 if (slot) { 226 return slot; 227 } 228 229 fprintf(stderr, "%s: no free slot available\n", __func__); 230 abort(); 231 } 232 233 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 234 hwaddr start_addr, 235 hwaddr size) 236 { 237 KVMState *s = kvm_state; 238 int i; 239 240 for (i = 0; i < s->nr_slots; i++) { 241 KVMSlot *mem = &kml->slots[i]; 242 243 if (start_addr == mem->start_addr && size == mem->memory_size) { 244 return mem; 245 } 246 } 247 248 return NULL; 249 } 250 251 /* 252 * Calculate and align the start address and the size of the section. 253 * Return the size. If the size is 0, the aligned section is empty. 254 */ 255 static hwaddr kvm_align_section(MemoryRegionSection *section, 256 hwaddr *start) 257 { 258 hwaddr size = int128_get64(section->size); 259 hwaddr delta, aligned; 260 261 /* kvm works in page size chunks, but the function may be called 262 with sub-page size and unaligned start address. Pad the start 263 address to next and truncate size to previous page boundary. */ 264 aligned = ROUND_UP(section->offset_within_address_space, 265 qemu_real_host_page_size); 266 delta = aligned - section->offset_within_address_space; 267 *start = aligned; 268 if (delta > size) { 269 return 0; 270 } 271 272 return (size - delta) & qemu_real_host_page_mask; 273 } 274 275 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 276 hwaddr *phys_addr) 277 { 278 KVMMemoryListener *kml = &s->memory_listener; 279 int i, ret = 0; 280 281 kvm_slots_lock(kml); 282 for (i = 0; i < s->nr_slots; i++) { 283 KVMSlot *mem = &kml->slots[i]; 284 285 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 286 *phys_addr = mem->start_addr + (ram - mem->ram); 287 ret = 1; 288 break; 289 } 290 } 291 kvm_slots_unlock(kml); 292 293 return ret; 294 } 295 296 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 297 { 298 KVMState *s = kvm_state; 299 struct kvm_userspace_memory_region mem; 300 int ret; 301 302 mem.slot = slot->slot | (kml->as_id << 16); 303 mem.guest_phys_addr = slot->start_addr; 304 mem.userspace_addr = (unsigned long)slot->ram; 305 mem.flags = slot->flags; 306 307 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 308 /* Set the slot size to 0 before setting the slot to the desired 309 * value. This is needed based on KVM commit 75d61fbc. */ 310 mem.memory_size = 0; 311 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 312 if (ret < 0) { 313 goto err; 314 } 315 } 316 mem.memory_size = slot->memory_size; 317 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 318 slot->old_flags = mem.flags; 319 err: 320 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 321 mem.memory_size, mem.userspace_addr, ret); 322 if (ret < 0) { 323 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 324 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 325 __func__, mem.slot, slot->start_addr, 326 (uint64_t)mem.memory_size, strerror(errno)); 327 } 328 return ret; 329 } 330 331 int kvm_destroy_vcpu(CPUState *cpu) 332 { 333 KVMState *s = kvm_state; 334 long mmap_size; 335 struct KVMParkedVcpu *vcpu = NULL; 336 int ret = 0; 337 338 DPRINTF("kvm_destroy_vcpu\n"); 339 340 ret = kvm_arch_destroy_vcpu(cpu); 341 if (ret < 0) { 342 goto err; 343 } 344 345 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 346 if (mmap_size < 0) { 347 ret = mmap_size; 348 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 349 goto err; 350 } 351 352 ret = munmap(cpu->kvm_run, mmap_size); 353 if (ret < 0) { 354 goto err; 355 } 356 357 vcpu = g_malloc0(sizeof(*vcpu)); 358 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 359 vcpu->kvm_fd = cpu->kvm_fd; 360 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 361 err: 362 return ret; 363 } 364 365 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 366 { 367 struct KVMParkedVcpu *cpu; 368 369 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 370 if (cpu->vcpu_id == vcpu_id) { 371 int kvm_fd; 372 373 QLIST_REMOVE(cpu, node); 374 kvm_fd = cpu->kvm_fd; 375 g_free(cpu); 376 return kvm_fd; 377 } 378 } 379 380 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 381 } 382 383 int kvm_init_vcpu(CPUState *cpu) 384 { 385 KVMState *s = kvm_state; 386 long mmap_size; 387 int ret; 388 389 DPRINTF("kvm_init_vcpu\n"); 390 391 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 392 if (ret < 0) { 393 DPRINTF("kvm_create_vcpu failed\n"); 394 goto err; 395 } 396 397 cpu->kvm_fd = ret; 398 cpu->kvm_state = s; 399 cpu->vcpu_dirty = true; 400 401 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 402 if (mmap_size < 0) { 403 ret = mmap_size; 404 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 405 goto err; 406 } 407 408 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 409 cpu->kvm_fd, 0); 410 if (cpu->kvm_run == MAP_FAILED) { 411 ret = -errno; 412 DPRINTF("mmap'ing vcpu state failed\n"); 413 goto err; 414 } 415 416 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 417 s->coalesced_mmio_ring = 418 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 419 } 420 421 ret = kvm_arch_init_vcpu(cpu); 422 err: 423 return ret; 424 } 425 426 /* 427 * dirty pages logging control 428 */ 429 430 static int kvm_mem_flags(MemoryRegion *mr) 431 { 432 bool readonly = mr->readonly || memory_region_is_romd(mr); 433 int flags = 0; 434 435 if (memory_region_get_dirty_log_mask(mr) != 0) { 436 flags |= KVM_MEM_LOG_DIRTY_PAGES; 437 } 438 if (readonly && kvm_readonly_mem_allowed) { 439 flags |= KVM_MEM_READONLY; 440 } 441 return flags; 442 } 443 444 /* Called with KVMMemoryListener.slots_lock held */ 445 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 446 MemoryRegion *mr) 447 { 448 mem->flags = kvm_mem_flags(mr); 449 450 /* If nothing changed effectively, no need to issue ioctl */ 451 if (mem->flags == mem->old_flags) { 452 return 0; 453 } 454 455 return kvm_set_user_memory_region(kml, mem, false); 456 } 457 458 static int kvm_section_update_flags(KVMMemoryListener *kml, 459 MemoryRegionSection *section) 460 { 461 hwaddr start_addr, size, slot_size; 462 KVMSlot *mem; 463 int ret = 0; 464 465 size = kvm_align_section(section, &start_addr); 466 if (!size) { 467 return 0; 468 } 469 470 kvm_slots_lock(kml); 471 472 while (size && !ret) { 473 slot_size = MIN(kvm_max_slot_size, size); 474 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 475 if (!mem) { 476 /* We don't have a slot if we want to trap every access. */ 477 goto out; 478 } 479 480 ret = kvm_slot_update_flags(kml, mem, section->mr); 481 start_addr += slot_size; 482 size -= slot_size; 483 } 484 485 out: 486 kvm_slots_unlock(kml); 487 return ret; 488 } 489 490 static void kvm_log_start(MemoryListener *listener, 491 MemoryRegionSection *section, 492 int old, int new) 493 { 494 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 495 int r; 496 497 if (old != 0) { 498 return; 499 } 500 501 r = kvm_section_update_flags(kml, section); 502 if (r < 0) { 503 abort(); 504 } 505 } 506 507 static void kvm_log_stop(MemoryListener *listener, 508 MemoryRegionSection *section, 509 int old, int new) 510 { 511 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 512 int r; 513 514 if (new != 0) { 515 return; 516 } 517 518 r = kvm_section_update_flags(kml, section); 519 if (r < 0) { 520 abort(); 521 } 522 } 523 524 /* get kvm's dirty pages bitmap and update qemu's */ 525 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 526 unsigned long *bitmap) 527 { 528 ram_addr_t start = section->offset_within_region + 529 memory_region_get_ram_addr(section->mr); 530 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 531 532 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 533 return 0; 534 } 535 536 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 537 538 /* Allocate the dirty bitmap for a slot */ 539 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 540 { 541 /* 542 * XXX bad kernel interface alert 543 * For dirty bitmap, kernel allocates array of size aligned to 544 * bits-per-long. But for case when the kernel is 64bits and 545 * the userspace is 32bits, userspace can't align to the same 546 * bits-per-long, since sizeof(long) is different between kernel 547 * and user space. This way, userspace will provide buffer which 548 * may be 4 bytes less than the kernel will use, resulting in 549 * userspace memory corruption (which is not detectable by valgrind 550 * too, in most cases). 551 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 552 * a hope that sizeof(long) won't become >8 any time soon. 553 */ 554 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 555 /*HOST_LONG_BITS*/ 64) / 8; 556 mem->dirty_bmap = g_malloc0(bitmap_size); 557 } 558 559 /** 560 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 561 * 562 * This function will first try to fetch dirty bitmap from the kernel, 563 * and then updates qemu's dirty bitmap. 564 * 565 * NOTE: caller must be with kml->slots_lock held. 566 * 567 * @kml: the KVM memory listener object 568 * @section: the memory section to sync the dirty bitmap with 569 */ 570 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 571 MemoryRegionSection *section) 572 { 573 KVMState *s = kvm_state; 574 struct kvm_dirty_log d = {}; 575 KVMSlot *mem; 576 hwaddr start_addr, size; 577 hwaddr slot_size, slot_offset = 0; 578 int ret = 0; 579 580 size = kvm_align_section(section, &start_addr); 581 while (size) { 582 MemoryRegionSection subsection = *section; 583 584 slot_size = MIN(kvm_max_slot_size, size); 585 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 586 if (!mem) { 587 /* We don't have a slot if we want to trap every access. */ 588 goto out; 589 } 590 591 if (!mem->dirty_bmap) { 592 /* Allocate on the first log_sync, once and for all */ 593 kvm_memslot_init_dirty_bitmap(mem); 594 } 595 596 d.dirty_bitmap = mem->dirty_bmap; 597 d.slot = mem->slot | (kml->as_id << 16); 598 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 599 DPRINTF("ioctl failed %d\n", errno); 600 ret = -1; 601 goto out; 602 } 603 604 subsection.offset_within_region += slot_offset; 605 subsection.size = int128_make64(slot_size); 606 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 607 608 slot_offset += slot_size; 609 start_addr += slot_size; 610 size -= slot_size; 611 } 612 out: 613 return ret; 614 } 615 616 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 617 #define KVM_CLEAR_LOG_SHIFT 6 618 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 619 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 620 621 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 622 uint64_t size) 623 { 624 KVMState *s = kvm_state; 625 uint64_t end, bmap_start, start_delta, bmap_npages; 626 struct kvm_clear_dirty_log d; 627 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 628 int ret; 629 630 /* 631 * We need to extend either the start or the size or both to 632 * satisfy the KVM interface requirement. Firstly, do the start 633 * page alignment on 64 host pages 634 */ 635 bmap_start = start & KVM_CLEAR_LOG_MASK; 636 start_delta = start - bmap_start; 637 bmap_start /= psize; 638 639 /* 640 * The kernel interface has restriction on the size too, that either: 641 * 642 * (1) the size is 64 host pages aligned (just like the start), or 643 * (2) the size fills up until the end of the KVM memslot. 644 */ 645 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 646 << KVM_CLEAR_LOG_SHIFT; 647 end = mem->memory_size / psize; 648 if (bmap_npages > end - bmap_start) { 649 bmap_npages = end - bmap_start; 650 } 651 start_delta /= psize; 652 653 /* 654 * Prepare the bitmap to clear dirty bits. Here we must guarantee 655 * that we won't clear any unknown dirty bits otherwise we might 656 * accidentally clear some set bits which are not yet synced from 657 * the kernel into QEMU's bitmap, then we'll lose track of the 658 * guest modifications upon those pages (which can directly lead 659 * to guest data loss or panic after migration). 660 * 661 * Layout of the KVMSlot.dirty_bmap: 662 * 663 * |<-------- bmap_npages -----------..>| 664 * [1] 665 * start_delta size 666 * |----------------|-------------|------------------|------------| 667 * ^ ^ ^ ^ 668 * | | | | 669 * start bmap_start (start) end 670 * of memslot of memslot 671 * 672 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 673 */ 674 675 assert(bmap_start % BITS_PER_LONG == 0); 676 /* We should never do log_clear before log_sync */ 677 assert(mem->dirty_bmap); 678 if (start_delta) { 679 /* Slow path - we need to manipulate a temp bitmap */ 680 bmap_clear = bitmap_new(bmap_npages); 681 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 682 bmap_start, start_delta + size / psize); 683 /* 684 * We need to fill the holes at start because that was not 685 * specified by the caller and we extended the bitmap only for 686 * 64 pages alignment 687 */ 688 bitmap_clear(bmap_clear, 0, start_delta); 689 d.dirty_bitmap = bmap_clear; 690 } else { 691 /* Fast path - start address aligns well with BITS_PER_LONG */ 692 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 693 } 694 695 d.first_page = bmap_start; 696 /* It should never overflow. If it happens, say something */ 697 assert(bmap_npages <= UINT32_MAX); 698 d.num_pages = bmap_npages; 699 d.slot = mem->slot | (as_id << 16); 700 701 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 702 ret = -errno; 703 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 704 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 705 __func__, d.slot, (uint64_t)d.first_page, 706 (uint32_t)d.num_pages, ret); 707 } else { 708 ret = 0; 709 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 710 } 711 712 /* 713 * After we have updated the remote dirty bitmap, we update the 714 * cached bitmap as well for the memslot, then if another user 715 * clears the same region we know we shouldn't clear it again on 716 * the remote otherwise it's data loss as well. 717 */ 718 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 719 size / psize); 720 /* This handles the NULL case well */ 721 g_free(bmap_clear); 722 return ret; 723 } 724 725 726 /** 727 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 728 * 729 * NOTE: this will be a no-op if we haven't enabled manual dirty log 730 * protection in the host kernel because in that case this operation 731 * will be done within log_sync(). 732 * 733 * @kml: the kvm memory listener 734 * @section: the memory range to clear dirty bitmap 735 */ 736 static int kvm_physical_log_clear(KVMMemoryListener *kml, 737 MemoryRegionSection *section) 738 { 739 KVMState *s = kvm_state; 740 uint64_t start, size, offset, count; 741 KVMSlot *mem; 742 int ret = 0, i; 743 744 if (!s->manual_dirty_log_protect) { 745 /* No need to do explicit clear */ 746 return ret; 747 } 748 749 start = section->offset_within_address_space; 750 size = int128_get64(section->size); 751 752 if (!size) { 753 /* Nothing more we can do... */ 754 return ret; 755 } 756 757 kvm_slots_lock(kml); 758 759 for (i = 0; i < s->nr_slots; i++) { 760 mem = &kml->slots[i]; 761 /* Discard slots that are empty or do not overlap the section */ 762 if (!mem->memory_size || 763 mem->start_addr > start + size - 1 || 764 start > mem->start_addr + mem->memory_size - 1) { 765 continue; 766 } 767 768 if (start >= mem->start_addr) { 769 /* The slot starts before section or is aligned to it. */ 770 offset = start - mem->start_addr; 771 count = MIN(mem->memory_size - offset, size); 772 } else { 773 /* The slot starts after section. */ 774 offset = 0; 775 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 776 } 777 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 778 if (ret < 0) { 779 break; 780 } 781 } 782 783 kvm_slots_unlock(kml); 784 785 return ret; 786 } 787 788 static void kvm_coalesce_mmio_region(MemoryListener *listener, 789 MemoryRegionSection *secion, 790 hwaddr start, hwaddr size) 791 { 792 KVMState *s = kvm_state; 793 794 if (s->coalesced_mmio) { 795 struct kvm_coalesced_mmio_zone zone; 796 797 zone.addr = start; 798 zone.size = size; 799 zone.pad = 0; 800 801 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 802 } 803 } 804 805 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 806 MemoryRegionSection *secion, 807 hwaddr start, hwaddr size) 808 { 809 KVMState *s = kvm_state; 810 811 if (s->coalesced_mmio) { 812 struct kvm_coalesced_mmio_zone zone; 813 814 zone.addr = start; 815 zone.size = size; 816 zone.pad = 0; 817 818 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 819 } 820 } 821 822 static void kvm_coalesce_pio_add(MemoryListener *listener, 823 MemoryRegionSection *section, 824 hwaddr start, hwaddr size) 825 { 826 KVMState *s = kvm_state; 827 828 if (s->coalesced_pio) { 829 struct kvm_coalesced_mmio_zone zone; 830 831 zone.addr = start; 832 zone.size = size; 833 zone.pio = 1; 834 835 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 836 } 837 } 838 839 static void kvm_coalesce_pio_del(MemoryListener *listener, 840 MemoryRegionSection *section, 841 hwaddr start, hwaddr size) 842 { 843 KVMState *s = kvm_state; 844 845 if (s->coalesced_pio) { 846 struct kvm_coalesced_mmio_zone zone; 847 848 zone.addr = start; 849 zone.size = size; 850 zone.pio = 1; 851 852 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 853 } 854 } 855 856 static MemoryListener kvm_coalesced_pio_listener = { 857 .coalesced_io_add = kvm_coalesce_pio_add, 858 .coalesced_io_del = kvm_coalesce_pio_del, 859 }; 860 861 int kvm_check_extension(KVMState *s, unsigned int extension) 862 { 863 int ret; 864 865 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 866 if (ret < 0) { 867 ret = 0; 868 } 869 870 return ret; 871 } 872 873 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 874 { 875 int ret; 876 877 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 878 if (ret < 0) { 879 /* VM wide version not implemented, use global one instead */ 880 ret = kvm_check_extension(s, extension); 881 } 882 883 return ret; 884 } 885 886 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 887 { 888 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 889 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 890 * endianness, but the memory core hands them in target endianness. 891 * For example, PPC is always treated as big-endian even if running 892 * on KVM and on PPC64LE. Correct here. 893 */ 894 switch (size) { 895 case 2: 896 val = bswap16(val); 897 break; 898 case 4: 899 val = bswap32(val); 900 break; 901 } 902 #endif 903 return val; 904 } 905 906 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 907 bool assign, uint32_t size, bool datamatch) 908 { 909 int ret; 910 struct kvm_ioeventfd iofd = { 911 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 912 .addr = addr, 913 .len = size, 914 .flags = 0, 915 .fd = fd, 916 }; 917 918 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 919 datamatch); 920 if (!kvm_enabled()) { 921 return -ENOSYS; 922 } 923 924 if (datamatch) { 925 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 926 } 927 if (!assign) { 928 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 929 } 930 931 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 932 933 if (ret < 0) { 934 return -errno; 935 } 936 937 return 0; 938 } 939 940 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 941 bool assign, uint32_t size, bool datamatch) 942 { 943 struct kvm_ioeventfd kick = { 944 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 945 .addr = addr, 946 .flags = KVM_IOEVENTFD_FLAG_PIO, 947 .len = size, 948 .fd = fd, 949 }; 950 int r; 951 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 952 if (!kvm_enabled()) { 953 return -ENOSYS; 954 } 955 if (datamatch) { 956 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 957 } 958 if (!assign) { 959 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 960 } 961 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 962 if (r < 0) { 963 return r; 964 } 965 return 0; 966 } 967 968 969 static int kvm_check_many_ioeventfds(void) 970 { 971 /* Userspace can use ioeventfd for io notification. This requires a host 972 * that supports eventfd(2) and an I/O thread; since eventfd does not 973 * support SIGIO it cannot interrupt the vcpu. 974 * 975 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 976 * can avoid creating too many ioeventfds. 977 */ 978 #if defined(CONFIG_EVENTFD) 979 int ioeventfds[7]; 980 int i, ret = 0; 981 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 982 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 983 if (ioeventfds[i] < 0) { 984 break; 985 } 986 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 987 if (ret < 0) { 988 close(ioeventfds[i]); 989 break; 990 } 991 } 992 993 /* Decide whether many devices are supported or not */ 994 ret = i == ARRAY_SIZE(ioeventfds); 995 996 while (i-- > 0) { 997 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 998 close(ioeventfds[i]); 999 } 1000 return ret; 1001 #else 1002 return 0; 1003 #endif 1004 } 1005 1006 static const KVMCapabilityInfo * 1007 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1008 { 1009 while (list->name) { 1010 if (!kvm_check_extension(s, list->value)) { 1011 return list; 1012 } 1013 list++; 1014 } 1015 return NULL; 1016 } 1017 1018 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1019 { 1020 g_assert( 1021 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1022 ); 1023 kvm_max_slot_size = max_slot_size; 1024 } 1025 1026 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1027 MemoryRegionSection *section, bool add) 1028 { 1029 KVMSlot *mem; 1030 int err; 1031 MemoryRegion *mr = section->mr; 1032 bool writeable = !mr->readonly && !mr->rom_device; 1033 hwaddr start_addr, size, slot_size; 1034 void *ram; 1035 1036 if (!memory_region_is_ram(mr)) { 1037 if (writeable || !kvm_readonly_mem_allowed) { 1038 return; 1039 } else if (!mr->romd_mode) { 1040 /* If the memory device is not in romd_mode, then we actually want 1041 * to remove the kvm memory slot so all accesses will trap. */ 1042 add = false; 1043 } 1044 } 1045 1046 size = kvm_align_section(section, &start_addr); 1047 if (!size) { 1048 return; 1049 } 1050 1051 /* use aligned delta to align the ram address */ 1052 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1053 (start_addr - section->offset_within_address_space); 1054 1055 kvm_slots_lock(kml); 1056 1057 if (!add) { 1058 do { 1059 slot_size = MIN(kvm_max_slot_size, size); 1060 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1061 if (!mem) { 1062 goto out; 1063 } 1064 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1065 kvm_physical_sync_dirty_bitmap(kml, section); 1066 } 1067 1068 /* unregister the slot */ 1069 g_free(mem->dirty_bmap); 1070 mem->dirty_bmap = NULL; 1071 mem->memory_size = 0; 1072 mem->flags = 0; 1073 err = kvm_set_user_memory_region(kml, mem, false); 1074 if (err) { 1075 fprintf(stderr, "%s: error unregistering slot: %s\n", 1076 __func__, strerror(-err)); 1077 abort(); 1078 } 1079 start_addr += slot_size; 1080 size -= slot_size; 1081 } while (size); 1082 goto out; 1083 } 1084 1085 /* register the new slot */ 1086 do { 1087 slot_size = MIN(kvm_max_slot_size, size); 1088 mem = kvm_alloc_slot(kml); 1089 mem->memory_size = slot_size; 1090 mem->start_addr = start_addr; 1091 mem->ram = ram; 1092 mem->flags = kvm_mem_flags(mr); 1093 1094 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1095 /* 1096 * Reallocate the bmap; it means it doesn't disappear in 1097 * middle of a migrate. 1098 */ 1099 kvm_memslot_init_dirty_bitmap(mem); 1100 } 1101 err = kvm_set_user_memory_region(kml, mem, true); 1102 if (err) { 1103 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1104 strerror(-err)); 1105 abort(); 1106 } 1107 start_addr += slot_size; 1108 ram += slot_size; 1109 size -= slot_size; 1110 } while (size); 1111 1112 out: 1113 kvm_slots_unlock(kml); 1114 } 1115 1116 static void kvm_region_add(MemoryListener *listener, 1117 MemoryRegionSection *section) 1118 { 1119 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1120 1121 memory_region_ref(section->mr); 1122 kvm_set_phys_mem(kml, section, true); 1123 } 1124 1125 static void kvm_region_del(MemoryListener *listener, 1126 MemoryRegionSection *section) 1127 { 1128 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1129 1130 kvm_set_phys_mem(kml, section, false); 1131 memory_region_unref(section->mr); 1132 } 1133 1134 static void kvm_log_sync(MemoryListener *listener, 1135 MemoryRegionSection *section) 1136 { 1137 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1138 int r; 1139 1140 kvm_slots_lock(kml); 1141 r = kvm_physical_sync_dirty_bitmap(kml, section); 1142 kvm_slots_unlock(kml); 1143 if (r < 0) { 1144 abort(); 1145 } 1146 } 1147 1148 static void kvm_log_clear(MemoryListener *listener, 1149 MemoryRegionSection *section) 1150 { 1151 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1152 int r; 1153 1154 r = kvm_physical_log_clear(kml, section); 1155 if (r < 0) { 1156 error_report_once("%s: kvm log clear failed: mr=%s " 1157 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1158 section->mr->name, section->offset_within_region, 1159 int128_get64(section->size)); 1160 abort(); 1161 } 1162 } 1163 1164 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1165 MemoryRegionSection *section, 1166 bool match_data, uint64_t data, 1167 EventNotifier *e) 1168 { 1169 int fd = event_notifier_get_fd(e); 1170 int r; 1171 1172 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1173 data, true, int128_get64(section->size), 1174 match_data); 1175 if (r < 0) { 1176 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1177 __func__, strerror(-r), -r); 1178 abort(); 1179 } 1180 } 1181 1182 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1183 MemoryRegionSection *section, 1184 bool match_data, uint64_t data, 1185 EventNotifier *e) 1186 { 1187 int fd = event_notifier_get_fd(e); 1188 int r; 1189 1190 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1191 data, false, int128_get64(section->size), 1192 match_data); 1193 if (r < 0) { 1194 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1195 __func__, strerror(-r), -r); 1196 abort(); 1197 } 1198 } 1199 1200 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1201 MemoryRegionSection *section, 1202 bool match_data, uint64_t data, 1203 EventNotifier *e) 1204 { 1205 int fd = event_notifier_get_fd(e); 1206 int r; 1207 1208 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1209 data, true, int128_get64(section->size), 1210 match_data); 1211 if (r < 0) { 1212 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1213 __func__, strerror(-r), -r); 1214 abort(); 1215 } 1216 } 1217 1218 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1219 MemoryRegionSection *section, 1220 bool match_data, uint64_t data, 1221 EventNotifier *e) 1222 1223 { 1224 int fd = event_notifier_get_fd(e); 1225 int r; 1226 1227 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1228 data, false, int128_get64(section->size), 1229 match_data); 1230 if (r < 0) { 1231 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1232 __func__, strerror(-r), -r); 1233 abort(); 1234 } 1235 } 1236 1237 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1238 AddressSpace *as, int as_id) 1239 { 1240 int i; 1241 1242 qemu_mutex_init(&kml->slots_lock); 1243 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1244 kml->as_id = as_id; 1245 1246 for (i = 0; i < s->nr_slots; i++) { 1247 kml->slots[i].slot = i; 1248 } 1249 1250 kml->listener.region_add = kvm_region_add; 1251 kml->listener.region_del = kvm_region_del; 1252 kml->listener.log_start = kvm_log_start; 1253 kml->listener.log_stop = kvm_log_stop; 1254 kml->listener.log_sync = kvm_log_sync; 1255 kml->listener.log_clear = kvm_log_clear; 1256 kml->listener.priority = 10; 1257 1258 memory_listener_register(&kml->listener, as); 1259 1260 for (i = 0; i < s->nr_as; ++i) { 1261 if (!s->as[i].as) { 1262 s->as[i].as = as; 1263 s->as[i].ml = kml; 1264 break; 1265 } 1266 } 1267 } 1268 1269 static MemoryListener kvm_io_listener = { 1270 .eventfd_add = kvm_io_ioeventfd_add, 1271 .eventfd_del = kvm_io_ioeventfd_del, 1272 .priority = 10, 1273 }; 1274 1275 int kvm_set_irq(KVMState *s, int irq, int level) 1276 { 1277 struct kvm_irq_level event; 1278 int ret; 1279 1280 assert(kvm_async_interrupts_enabled()); 1281 1282 event.level = level; 1283 event.irq = irq; 1284 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1285 if (ret < 0) { 1286 perror("kvm_set_irq"); 1287 abort(); 1288 } 1289 1290 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1291 } 1292 1293 #ifdef KVM_CAP_IRQ_ROUTING 1294 typedef struct KVMMSIRoute { 1295 struct kvm_irq_routing_entry kroute; 1296 QTAILQ_ENTRY(KVMMSIRoute) entry; 1297 } KVMMSIRoute; 1298 1299 static void set_gsi(KVMState *s, unsigned int gsi) 1300 { 1301 set_bit(gsi, s->used_gsi_bitmap); 1302 } 1303 1304 static void clear_gsi(KVMState *s, unsigned int gsi) 1305 { 1306 clear_bit(gsi, s->used_gsi_bitmap); 1307 } 1308 1309 void kvm_init_irq_routing(KVMState *s) 1310 { 1311 int gsi_count, i; 1312 1313 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1314 if (gsi_count > 0) { 1315 /* Round up so we can search ints using ffs */ 1316 s->used_gsi_bitmap = bitmap_new(gsi_count); 1317 s->gsi_count = gsi_count; 1318 } 1319 1320 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1321 s->nr_allocated_irq_routes = 0; 1322 1323 if (!kvm_direct_msi_allowed) { 1324 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1325 QTAILQ_INIT(&s->msi_hashtab[i]); 1326 } 1327 } 1328 1329 kvm_arch_init_irq_routing(s); 1330 } 1331 1332 void kvm_irqchip_commit_routes(KVMState *s) 1333 { 1334 int ret; 1335 1336 if (kvm_gsi_direct_mapping()) { 1337 return; 1338 } 1339 1340 if (!kvm_gsi_routing_enabled()) { 1341 return; 1342 } 1343 1344 s->irq_routes->flags = 0; 1345 trace_kvm_irqchip_commit_routes(); 1346 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1347 assert(ret == 0); 1348 } 1349 1350 static void kvm_add_routing_entry(KVMState *s, 1351 struct kvm_irq_routing_entry *entry) 1352 { 1353 struct kvm_irq_routing_entry *new; 1354 int n, size; 1355 1356 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1357 n = s->nr_allocated_irq_routes * 2; 1358 if (n < 64) { 1359 n = 64; 1360 } 1361 size = sizeof(struct kvm_irq_routing); 1362 size += n * sizeof(*new); 1363 s->irq_routes = g_realloc(s->irq_routes, size); 1364 s->nr_allocated_irq_routes = n; 1365 } 1366 n = s->irq_routes->nr++; 1367 new = &s->irq_routes->entries[n]; 1368 1369 *new = *entry; 1370 1371 set_gsi(s, entry->gsi); 1372 } 1373 1374 static int kvm_update_routing_entry(KVMState *s, 1375 struct kvm_irq_routing_entry *new_entry) 1376 { 1377 struct kvm_irq_routing_entry *entry; 1378 int n; 1379 1380 for (n = 0; n < s->irq_routes->nr; n++) { 1381 entry = &s->irq_routes->entries[n]; 1382 if (entry->gsi != new_entry->gsi) { 1383 continue; 1384 } 1385 1386 if(!memcmp(entry, new_entry, sizeof *entry)) { 1387 return 0; 1388 } 1389 1390 *entry = *new_entry; 1391 1392 return 0; 1393 } 1394 1395 return -ESRCH; 1396 } 1397 1398 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1399 { 1400 struct kvm_irq_routing_entry e = {}; 1401 1402 assert(pin < s->gsi_count); 1403 1404 e.gsi = irq; 1405 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1406 e.flags = 0; 1407 e.u.irqchip.irqchip = irqchip; 1408 e.u.irqchip.pin = pin; 1409 kvm_add_routing_entry(s, &e); 1410 } 1411 1412 void kvm_irqchip_release_virq(KVMState *s, int virq) 1413 { 1414 struct kvm_irq_routing_entry *e; 1415 int i; 1416 1417 if (kvm_gsi_direct_mapping()) { 1418 return; 1419 } 1420 1421 for (i = 0; i < s->irq_routes->nr; i++) { 1422 e = &s->irq_routes->entries[i]; 1423 if (e->gsi == virq) { 1424 s->irq_routes->nr--; 1425 *e = s->irq_routes->entries[s->irq_routes->nr]; 1426 } 1427 } 1428 clear_gsi(s, virq); 1429 kvm_arch_release_virq_post(virq); 1430 trace_kvm_irqchip_release_virq(virq); 1431 } 1432 1433 void kvm_irqchip_add_change_notifier(Notifier *n) 1434 { 1435 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1436 } 1437 1438 void kvm_irqchip_remove_change_notifier(Notifier *n) 1439 { 1440 notifier_remove(n); 1441 } 1442 1443 void kvm_irqchip_change_notify(void) 1444 { 1445 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1446 } 1447 1448 static unsigned int kvm_hash_msi(uint32_t data) 1449 { 1450 /* This is optimized for IA32 MSI layout. However, no other arch shall 1451 * repeat the mistake of not providing a direct MSI injection API. */ 1452 return data & 0xff; 1453 } 1454 1455 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1456 { 1457 KVMMSIRoute *route, *next; 1458 unsigned int hash; 1459 1460 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1461 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1462 kvm_irqchip_release_virq(s, route->kroute.gsi); 1463 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1464 g_free(route); 1465 } 1466 } 1467 } 1468 1469 static int kvm_irqchip_get_virq(KVMState *s) 1470 { 1471 int next_virq; 1472 1473 /* 1474 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1475 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1476 * number can succeed even though a new route entry cannot be added. 1477 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1478 */ 1479 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1480 kvm_flush_dynamic_msi_routes(s); 1481 } 1482 1483 /* Return the lowest unused GSI in the bitmap */ 1484 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1485 if (next_virq >= s->gsi_count) { 1486 return -ENOSPC; 1487 } else { 1488 return next_virq; 1489 } 1490 } 1491 1492 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1493 { 1494 unsigned int hash = kvm_hash_msi(msg.data); 1495 KVMMSIRoute *route; 1496 1497 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1498 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1499 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1500 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1501 return route; 1502 } 1503 } 1504 return NULL; 1505 } 1506 1507 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1508 { 1509 struct kvm_msi msi; 1510 KVMMSIRoute *route; 1511 1512 if (kvm_direct_msi_allowed) { 1513 msi.address_lo = (uint32_t)msg.address; 1514 msi.address_hi = msg.address >> 32; 1515 msi.data = le32_to_cpu(msg.data); 1516 msi.flags = 0; 1517 memset(msi.pad, 0, sizeof(msi.pad)); 1518 1519 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1520 } 1521 1522 route = kvm_lookup_msi_route(s, msg); 1523 if (!route) { 1524 int virq; 1525 1526 virq = kvm_irqchip_get_virq(s); 1527 if (virq < 0) { 1528 return virq; 1529 } 1530 1531 route = g_malloc0(sizeof(KVMMSIRoute)); 1532 route->kroute.gsi = virq; 1533 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1534 route->kroute.flags = 0; 1535 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1536 route->kroute.u.msi.address_hi = msg.address >> 32; 1537 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1538 1539 kvm_add_routing_entry(s, &route->kroute); 1540 kvm_irqchip_commit_routes(s); 1541 1542 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1543 entry); 1544 } 1545 1546 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1547 1548 return kvm_set_irq(s, route->kroute.gsi, 1); 1549 } 1550 1551 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1552 { 1553 struct kvm_irq_routing_entry kroute = {}; 1554 int virq; 1555 MSIMessage msg = {0, 0}; 1556 1557 if (pci_available && dev) { 1558 msg = pci_get_msi_message(dev, vector); 1559 } 1560 1561 if (kvm_gsi_direct_mapping()) { 1562 return kvm_arch_msi_data_to_gsi(msg.data); 1563 } 1564 1565 if (!kvm_gsi_routing_enabled()) { 1566 return -ENOSYS; 1567 } 1568 1569 virq = kvm_irqchip_get_virq(s); 1570 if (virq < 0) { 1571 return virq; 1572 } 1573 1574 kroute.gsi = virq; 1575 kroute.type = KVM_IRQ_ROUTING_MSI; 1576 kroute.flags = 0; 1577 kroute.u.msi.address_lo = (uint32_t)msg.address; 1578 kroute.u.msi.address_hi = msg.address >> 32; 1579 kroute.u.msi.data = le32_to_cpu(msg.data); 1580 if (pci_available && kvm_msi_devid_required()) { 1581 kroute.flags = KVM_MSI_VALID_DEVID; 1582 kroute.u.msi.devid = pci_requester_id(dev); 1583 } 1584 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1585 kvm_irqchip_release_virq(s, virq); 1586 return -EINVAL; 1587 } 1588 1589 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1590 vector, virq); 1591 1592 kvm_add_routing_entry(s, &kroute); 1593 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1594 kvm_irqchip_commit_routes(s); 1595 1596 return virq; 1597 } 1598 1599 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1600 PCIDevice *dev) 1601 { 1602 struct kvm_irq_routing_entry kroute = {}; 1603 1604 if (kvm_gsi_direct_mapping()) { 1605 return 0; 1606 } 1607 1608 if (!kvm_irqchip_in_kernel()) { 1609 return -ENOSYS; 1610 } 1611 1612 kroute.gsi = virq; 1613 kroute.type = KVM_IRQ_ROUTING_MSI; 1614 kroute.flags = 0; 1615 kroute.u.msi.address_lo = (uint32_t)msg.address; 1616 kroute.u.msi.address_hi = msg.address >> 32; 1617 kroute.u.msi.data = le32_to_cpu(msg.data); 1618 if (pci_available && kvm_msi_devid_required()) { 1619 kroute.flags = KVM_MSI_VALID_DEVID; 1620 kroute.u.msi.devid = pci_requester_id(dev); 1621 } 1622 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1623 return -EINVAL; 1624 } 1625 1626 trace_kvm_irqchip_update_msi_route(virq); 1627 1628 return kvm_update_routing_entry(s, &kroute); 1629 } 1630 1631 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1632 bool assign) 1633 { 1634 struct kvm_irqfd irqfd = { 1635 .fd = fd, 1636 .gsi = virq, 1637 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1638 }; 1639 1640 if (rfd != -1) { 1641 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1642 irqfd.resamplefd = rfd; 1643 } 1644 1645 if (!kvm_irqfds_enabled()) { 1646 return -ENOSYS; 1647 } 1648 1649 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1650 } 1651 1652 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1653 { 1654 struct kvm_irq_routing_entry kroute = {}; 1655 int virq; 1656 1657 if (!kvm_gsi_routing_enabled()) { 1658 return -ENOSYS; 1659 } 1660 1661 virq = kvm_irqchip_get_virq(s); 1662 if (virq < 0) { 1663 return virq; 1664 } 1665 1666 kroute.gsi = virq; 1667 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1668 kroute.flags = 0; 1669 kroute.u.adapter.summary_addr = adapter->summary_addr; 1670 kroute.u.adapter.ind_addr = adapter->ind_addr; 1671 kroute.u.adapter.summary_offset = adapter->summary_offset; 1672 kroute.u.adapter.ind_offset = adapter->ind_offset; 1673 kroute.u.adapter.adapter_id = adapter->adapter_id; 1674 1675 kvm_add_routing_entry(s, &kroute); 1676 1677 return virq; 1678 } 1679 1680 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1681 { 1682 struct kvm_irq_routing_entry kroute = {}; 1683 int virq; 1684 1685 if (!kvm_gsi_routing_enabled()) { 1686 return -ENOSYS; 1687 } 1688 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1689 return -ENOSYS; 1690 } 1691 virq = kvm_irqchip_get_virq(s); 1692 if (virq < 0) { 1693 return virq; 1694 } 1695 1696 kroute.gsi = virq; 1697 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1698 kroute.flags = 0; 1699 kroute.u.hv_sint.vcpu = vcpu; 1700 kroute.u.hv_sint.sint = sint; 1701 1702 kvm_add_routing_entry(s, &kroute); 1703 kvm_irqchip_commit_routes(s); 1704 1705 return virq; 1706 } 1707 1708 #else /* !KVM_CAP_IRQ_ROUTING */ 1709 1710 void kvm_init_irq_routing(KVMState *s) 1711 { 1712 } 1713 1714 void kvm_irqchip_release_virq(KVMState *s, int virq) 1715 { 1716 } 1717 1718 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1719 { 1720 abort(); 1721 } 1722 1723 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1724 { 1725 return -ENOSYS; 1726 } 1727 1728 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1729 { 1730 return -ENOSYS; 1731 } 1732 1733 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1734 { 1735 return -ENOSYS; 1736 } 1737 1738 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1739 { 1740 abort(); 1741 } 1742 1743 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1744 { 1745 return -ENOSYS; 1746 } 1747 #endif /* !KVM_CAP_IRQ_ROUTING */ 1748 1749 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1750 EventNotifier *rn, int virq) 1751 { 1752 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1753 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1754 } 1755 1756 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1757 int virq) 1758 { 1759 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1760 false); 1761 } 1762 1763 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1764 EventNotifier *rn, qemu_irq irq) 1765 { 1766 gpointer key, gsi; 1767 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1768 1769 if (!found) { 1770 return -ENXIO; 1771 } 1772 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1773 } 1774 1775 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1776 qemu_irq irq) 1777 { 1778 gpointer key, gsi; 1779 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1780 1781 if (!found) { 1782 return -ENXIO; 1783 } 1784 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1785 } 1786 1787 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1788 { 1789 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1790 } 1791 1792 static void kvm_irqchip_create(KVMState *s) 1793 { 1794 int ret; 1795 1796 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1797 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1798 ; 1799 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1800 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1801 if (ret < 0) { 1802 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1803 exit(1); 1804 } 1805 } else { 1806 return; 1807 } 1808 1809 /* First probe and see if there's a arch-specific hook to create the 1810 * in-kernel irqchip for us */ 1811 ret = kvm_arch_irqchip_create(s); 1812 if (ret == 0) { 1813 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1814 perror("Split IRQ chip mode not supported."); 1815 exit(1); 1816 } else { 1817 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1818 } 1819 } 1820 if (ret < 0) { 1821 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1822 exit(1); 1823 } 1824 1825 kvm_kernel_irqchip = true; 1826 /* If we have an in-kernel IRQ chip then we must have asynchronous 1827 * interrupt delivery (though the reverse is not necessarily true) 1828 */ 1829 kvm_async_interrupts_allowed = true; 1830 kvm_halt_in_kernel_allowed = true; 1831 1832 kvm_init_irq_routing(s); 1833 1834 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1835 } 1836 1837 /* Find number of supported CPUs using the recommended 1838 * procedure from the kernel API documentation to cope with 1839 * older kernels that may be missing capabilities. 1840 */ 1841 static int kvm_recommended_vcpus(KVMState *s) 1842 { 1843 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1844 return (ret) ? ret : 4; 1845 } 1846 1847 static int kvm_max_vcpus(KVMState *s) 1848 { 1849 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1850 return (ret) ? ret : kvm_recommended_vcpus(s); 1851 } 1852 1853 static int kvm_max_vcpu_id(KVMState *s) 1854 { 1855 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1856 return (ret) ? ret : kvm_max_vcpus(s); 1857 } 1858 1859 bool kvm_vcpu_id_is_valid(int vcpu_id) 1860 { 1861 KVMState *s = KVM_STATE(current_accel()); 1862 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1863 } 1864 1865 static int kvm_init(MachineState *ms) 1866 { 1867 MachineClass *mc = MACHINE_GET_CLASS(ms); 1868 static const char upgrade_note[] = 1869 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1870 "(see http://sourceforge.net/projects/kvm).\n"; 1871 struct { 1872 const char *name; 1873 int num; 1874 } num_cpus[] = { 1875 { "SMP", ms->smp.cpus }, 1876 { "hotpluggable", ms->smp.max_cpus }, 1877 { NULL, } 1878 }, *nc = num_cpus; 1879 int soft_vcpus_limit, hard_vcpus_limit; 1880 KVMState *s; 1881 const KVMCapabilityInfo *missing_cap; 1882 int ret; 1883 int type = 0; 1884 const char *kvm_type; 1885 1886 s = KVM_STATE(ms->accelerator); 1887 1888 /* 1889 * On systems where the kernel can support different base page 1890 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1891 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1892 * page size for the system though. 1893 */ 1894 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 1895 1896 s->sigmask_len = 8; 1897 1898 #ifdef KVM_CAP_SET_GUEST_DEBUG 1899 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1900 #endif 1901 QLIST_INIT(&s->kvm_parked_vcpus); 1902 s->vmfd = -1; 1903 s->fd = qemu_open("/dev/kvm", O_RDWR); 1904 if (s->fd == -1) { 1905 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1906 ret = -errno; 1907 goto err; 1908 } 1909 1910 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1911 if (ret < KVM_API_VERSION) { 1912 if (ret >= 0) { 1913 ret = -EINVAL; 1914 } 1915 fprintf(stderr, "kvm version too old\n"); 1916 goto err; 1917 } 1918 1919 if (ret > KVM_API_VERSION) { 1920 ret = -EINVAL; 1921 fprintf(stderr, "kvm version not supported\n"); 1922 goto err; 1923 } 1924 1925 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1926 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1927 1928 /* If unspecified, use the default value */ 1929 if (!s->nr_slots) { 1930 s->nr_slots = 32; 1931 } 1932 1933 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 1934 if (s->nr_as <= 1) { 1935 s->nr_as = 1; 1936 } 1937 s->as = g_new0(struct KVMAs, s->nr_as); 1938 1939 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1940 if (mc->kvm_type) { 1941 type = mc->kvm_type(ms, kvm_type); 1942 } else if (kvm_type) { 1943 ret = -EINVAL; 1944 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1945 goto err; 1946 } 1947 1948 do { 1949 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1950 } while (ret == -EINTR); 1951 1952 if (ret < 0) { 1953 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1954 strerror(-ret)); 1955 1956 #ifdef TARGET_S390X 1957 if (ret == -EINVAL) { 1958 fprintf(stderr, 1959 "Host kernel setup problem detected. Please verify:\n"); 1960 fprintf(stderr, "- for kernels supporting the switch_amode or" 1961 " user_mode parameters, whether\n"); 1962 fprintf(stderr, 1963 " user space is running in primary address space\n"); 1964 fprintf(stderr, 1965 "- for kernels supporting the vm.allocate_pgste sysctl, " 1966 "whether it is enabled\n"); 1967 } 1968 #endif 1969 goto err; 1970 } 1971 1972 s->vmfd = ret; 1973 1974 /* check the vcpu limits */ 1975 soft_vcpus_limit = kvm_recommended_vcpus(s); 1976 hard_vcpus_limit = kvm_max_vcpus(s); 1977 1978 while (nc->name) { 1979 if (nc->num > soft_vcpus_limit) { 1980 warn_report("Number of %s cpus requested (%d) exceeds " 1981 "the recommended cpus supported by KVM (%d)", 1982 nc->name, nc->num, soft_vcpus_limit); 1983 1984 if (nc->num > hard_vcpus_limit) { 1985 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1986 "the maximum cpus supported by KVM (%d)\n", 1987 nc->name, nc->num, hard_vcpus_limit); 1988 exit(1); 1989 } 1990 } 1991 nc++; 1992 } 1993 1994 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1995 if (!missing_cap) { 1996 missing_cap = 1997 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1998 } 1999 if (missing_cap) { 2000 ret = -EINVAL; 2001 fprintf(stderr, "kvm does not support %s\n%s", 2002 missing_cap->name, upgrade_note); 2003 goto err; 2004 } 2005 2006 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2007 s->coalesced_pio = s->coalesced_mmio && 2008 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2009 2010 s->manual_dirty_log_protect = 2011 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2012 if (s->manual_dirty_log_protect) { 2013 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); 2014 if (ret) { 2015 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " 2016 "but failed. Falling back to the legacy mode. "); 2017 s->manual_dirty_log_protect = false; 2018 } 2019 } 2020 2021 #ifdef KVM_CAP_VCPU_EVENTS 2022 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2023 #endif 2024 2025 s->robust_singlestep = 2026 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2027 2028 #ifdef KVM_CAP_DEBUGREGS 2029 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2030 #endif 2031 2032 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2033 2034 #ifdef KVM_CAP_IRQ_ROUTING 2035 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2036 #endif 2037 2038 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2039 2040 s->irq_set_ioctl = KVM_IRQ_LINE; 2041 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2042 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2043 } 2044 2045 kvm_readonly_mem_allowed = 2046 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2047 2048 kvm_eventfds_allowed = 2049 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2050 2051 kvm_irqfds_allowed = 2052 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2053 2054 kvm_resamplefds_allowed = 2055 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2056 2057 kvm_vm_attributes_allowed = 2058 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2059 2060 kvm_ioeventfd_any_length_allowed = 2061 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2062 2063 kvm_state = s; 2064 2065 /* 2066 * if memory encryption object is specified then initialize the memory 2067 * encryption context. 2068 */ 2069 if (ms->memory_encryption) { 2070 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 2071 if (!kvm_state->memcrypt_handle) { 2072 ret = -1; 2073 goto err; 2074 } 2075 2076 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 2077 } 2078 2079 ret = kvm_arch_init(ms, s); 2080 if (ret < 0) { 2081 goto err; 2082 } 2083 2084 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2085 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2086 } 2087 2088 if (s->kernel_irqchip_allowed) { 2089 kvm_irqchip_create(s); 2090 } 2091 2092 if (kvm_eventfds_allowed) { 2093 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2094 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2095 } 2096 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2097 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2098 2099 kvm_memory_listener_register(s, &s->memory_listener, 2100 &address_space_memory, 0); 2101 memory_listener_register(&kvm_io_listener, 2102 &address_space_io); 2103 memory_listener_register(&kvm_coalesced_pio_listener, 2104 &address_space_io); 2105 2106 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2107 2108 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2109 if (!s->sync_mmu) { 2110 qemu_balloon_inhibit(true); 2111 } 2112 2113 return 0; 2114 2115 err: 2116 assert(ret < 0); 2117 if (s->vmfd >= 0) { 2118 close(s->vmfd); 2119 } 2120 if (s->fd != -1) { 2121 close(s->fd); 2122 } 2123 g_free(s->memory_listener.slots); 2124 2125 return ret; 2126 } 2127 2128 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2129 { 2130 s->sigmask_len = sigmask_len; 2131 } 2132 2133 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2134 int size, uint32_t count) 2135 { 2136 int i; 2137 uint8_t *ptr = data; 2138 2139 for (i = 0; i < count; i++) { 2140 address_space_rw(&address_space_io, port, attrs, 2141 ptr, size, 2142 direction == KVM_EXIT_IO_OUT); 2143 ptr += size; 2144 } 2145 } 2146 2147 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2148 { 2149 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2150 run->internal.suberror); 2151 2152 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2153 int i; 2154 2155 for (i = 0; i < run->internal.ndata; ++i) { 2156 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2157 i, (uint64_t)run->internal.data[i]); 2158 } 2159 } 2160 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2161 fprintf(stderr, "emulation failure\n"); 2162 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2163 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2164 return EXCP_INTERRUPT; 2165 } 2166 } 2167 /* FIXME: Should trigger a qmp message to let management know 2168 * something went wrong. 2169 */ 2170 return -1; 2171 } 2172 2173 void kvm_flush_coalesced_mmio_buffer(void) 2174 { 2175 KVMState *s = kvm_state; 2176 2177 if (s->coalesced_flush_in_progress) { 2178 return; 2179 } 2180 2181 s->coalesced_flush_in_progress = true; 2182 2183 if (s->coalesced_mmio_ring) { 2184 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2185 while (ring->first != ring->last) { 2186 struct kvm_coalesced_mmio *ent; 2187 2188 ent = &ring->coalesced_mmio[ring->first]; 2189 2190 if (ent->pio == 1) { 2191 address_space_rw(&address_space_io, ent->phys_addr, 2192 MEMTXATTRS_UNSPECIFIED, ent->data, 2193 ent->len, true); 2194 } else { 2195 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2196 } 2197 smp_wmb(); 2198 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2199 } 2200 } 2201 2202 s->coalesced_flush_in_progress = false; 2203 } 2204 2205 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2206 { 2207 if (!cpu->vcpu_dirty) { 2208 kvm_arch_get_registers(cpu); 2209 cpu->vcpu_dirty = true; 2210 } 2211 } 2212 2213 void kvm_cpu_synchronize_state(CPUState *cpu) 2214 { 2215 if (!cpu->vcpu_dirty) { 2216 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2217 } 2218 } 2219 2220 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2221 { 2222 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2223 cpu->vcpu_dirty = false; 2224 } 2225 2226 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2227 { 2228 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2229 } 2230 2231 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2232 { 2233 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2234 cpu->vcpu_dirty = false; 2235 } 2236 2237 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2238 { 2239 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2240 } 2241 2242 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2243 { 2244 cpu->vcpu_dirty = true; 2245 } 2246 2247 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2248 { 2249 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2250 } 2251 2252 #ifdef KVM_HAVE_MCE_INJECTION 2253 static __thread void *pending_sigbus_addr; 2254 static __thread int pending_sigbus_code; 2255 static __thread bool have_sigbus_pending; 2256 #endif 2257 2258 static void kvm_cpu_kick(CPUState *cpu) 2259 { 2260 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2261 } 2262 2263 static void kvm_cpu_kick_self(void) 2264 { 2265 if (kvm_immediate_exit) { 2266 kvm_cpu_kick(current_cpu); 2267 } else { 2268 qemu_cpu_kick_self(); 2269 } 2270 } 2271 2272 static void kvm_eat_signals(CPUState *cpu) 2273 { 2274 struct timespec ts = { 0, 0 }; 2275 siginfo_t siginfo; 2276 sigset_t waitset; 2277 sigset_t chkset; 2278 int r; 2279 2280 if (kvm_immediate_exit) { 2281 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2282 /* Write kvm_run->immediate_exit before the cpu->exit_request 2283 * write in kvm_cpu_exec. 2284 */ 2285 smp_wmb(); 2286 return; 2287 } 2288 2289 sigemptyset(&waitset); 2290 sigaddset(&waitset, SIG_IPI); 2291 2292 do { 2293 r = sigtimedwait(&waitset, &siginfo, &ts); 2294 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2295 perror("sigtimedwait"); 2296 exit(1); 2297 } 2298 2299 r = sigpending(&chkset); 2300 if (r == -1) { 2301 perror("sigpending"); 2302 exit(1); 2303 } 2304 } while (sigismember(&chkset, SIG_IPI)); 2305 } 2306 2307 int kvm_cpu_exec(CPUState *cpu) 2308 { 2309 struct kvm_run *run = cpu->kvm_run; 2310 int ret, run_ret; 2311 2312 DPRINTF("kvm_cpu_exec()\n"); 2313 2314 if (kvm_arch_process_async_events(cpu)) { 2315 atomic_set(&cpu->exit_request, 0); 2316 return EXCP_HLT; 2317 } 2318 2319 qemu_mutex_unlock_iothread(); 2320 cpu_exec_start(cpu); 2321 2322 do { 2323 MemTxAttrs attrs; 2324 2325 if (cpu->vcpu_dirty) { 2326 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2327 cpu->vcpu_dirty = false; 2328 } 2329 2330 kvm_arch_pre_run(cpu, run); 2331 if (atomic_read(&cpu->exit_request)) { 2332 DPRINTF("interrupt exit requested\n"); 2333 /* 2334 * KVM requires us to reenter the kernel after IO exits to complete 2335 * instruction emulation. This self-signal will ensure that we 2336 * leave ASAP again. 2337 */ 2338 kvm_cpu_kick_self(); 2339 } 2340 2341 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2342 * Matching barrier in kvm_eat_signals. 2343 */ 2344 smp_rmb(); 2345 2346 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2347 2348 attrs = kvm_arch_post_run(cpu, run); 2349 2350 #ifdef KVM_HAVE_MCE_INJECTION 2351 if (unlikely(have_sigbus_pending)) { 2352 qemu_mutex_lock_iothread(); 2353 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2354 pending_sigbus_addr); 2355 have_sigbus_pending = false; 2356 qemu_mutex_unlock_iothread(); 2357 } 2358 #endif 2359 2360 if (run_ret < 0) { 2361 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2362 DPRINTF("io window exit\n"); 2363 kvm_eat_signals(cpu); 2364 ret = EXCP_INTERRUPT; 2365 break; 2366 } 2367 fprintf(stderr, "error: kvm run failed %s\n", 2368 strerror(-run_ret)); 2369 #ifdef TARGET_PPC 2370 if (run_ret == -EBUSY) { 2371 fprintf(stderr, 2372 "This is probably because your SMT is enabled.\n" 2373 "VCPU can only run on primary threads with all " 2374 "secondary threads offline.\n"); 2375 } 2376 #endif 2377 ret = -1; 2378 break; 2379 } 2380 2381 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2382 switch (run->exit_reason) { 2383 case KVM_EXIT_IO: 2384 DPRINTF("handle_io\n"); 2385 /* Called outside BQL */ 2386 kvm_handle_io(run->io.port, attrs, 2387 (uint8_t *)run + run->io.data_offset, 2388 run->io.direction, 2389 run->io.size, 2390 run->io.count); 2391 ret = 0; 2392 break; 2393 case KVM_EXIT_MMIO: 2394 DPRINTF("handle_mmio\n"); 2395 /* Called outside BQL */ 2396 address_space_rw(&address_space_memory, 2397 run->mmio.phys_addr, attrs, 2398 run->mmio.data, 2399 run->mmio.len, 2400 run->mmio.is_write); 2401 ret = 0; 2402 break; 2403 case KVM_EXIT_IRQ_WINDOW_OPEN: 2404 DPRINTF("irq_window_open\n"); 2405 ret = EXCP_INTERRUPT; 2406 break; 2407 case KVM_EXIT_SHUTDOWN: 2408 DPRINTF("shutdown\n"); 2409 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2410 ret = EXCP_INTERRUPT; 2411 break; 2412 case KVM_EXIT_UNKNOWN: 2413 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2414 (uint64_t)run->hw.hardware_exit_reason); 2415 ret = -1; 2416 break; 2417 case KVM_EXIT_INTERNAL_ERROR: 2418 ret = kvm_handle_internal_error(cpu, run); 2419 break; 2420 case KVM_EXIT_SYSTEM_EVENT: 2421 switch (run->system_event.type) { 2422 case KVM_SYSTEM_EVENT_SHUTDOWN: 2423 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2424 ret = EXCP_INTERRUPT; 2425 break; 2426 case KVM_SYSTEM_EVENT_RESET: 2427 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2428 ret = EXCP_INTERRUPT; 2429 break; 2430 case KVM_SYSTEM_EVENT_CRASH: 2431 kvm_cpu_synchronize_state(cpu); 2432 qemu_mutex_lock_iothread(); 2433 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2434 qemu_mutex_unlock_iothread(); 2435 ret = 0; 2436 break; 2437 default: 2438 DPRINTF("kvm_arch_handle_exit\n"); 2439 ret = kvm_arch_handle_exit(cpu, run); 2440 break; 2441 } 2442 break; 2443 default: 2444 DPRINTF("kvm_arch_handle_exit\n"); 2445 ret = kvm_arch_handle_exit(cpu, run); 2446 break; 2447 } 2448 } while (ret == 0); 2449 2450 cpu_exec_end(cpu); 2451 qemu_mutex_lock_iothread(); 2452 2453 if (ret < 0) { 2454 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2455 vm_stop(RUN_STATE_INTERNAL_ERROR); 2456 } 2457 2458 atomic_set(&cpu->exit_request, 0); 2459 return ret; 2460 } 2461 2462 int kvm_ioctl(KVMState *s, int type, ...) 2463 { 2464 int ret; 2465 void *arg; 2466 va_list ap; 2467 2468 va_start(ap, type); 2469 arg = va_arg(ap, void *); 2470 va_end(ap); 2471 2472 trace_kvm_ioctl(type, arg); 2473 ret = ioctl(s->fd, type, arg); 2474 if (ret == -1) { 2475 ret = -errno; 2476 } 2477 return ret; 2478 } 2479 2480 int kvm_vm_ioctl(KVMState *s, int type, ...) 2481 { 2482 int ret; 2483 void *arg; 2484 va_list ap; 2485 2486 va_start(ap, type); 2487 arg = va_arg(ap, void *); 2488 va_end(ap); 2489 2490 trace_kvm_vm_ioctl(type, arg); 2491 ret = ioctl(s->vmfd, type, arg); 2492 if (ret == -1) { 2493 ret = -errno; 2494 } 2495 return ret; 2496 } 2497 2498 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2499 { 2500 int ret; 2501 void *arg; 2502 va_list ap; 2503 2504 va_start(ap, type); 2505 arg = va_arg(ap, void *); 2506 va_end(ap); 2507 2508 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2509 ret = ioctl(cpu->kvm_fd, type, arg); 2510 if (ret == -1) { 2511 ret = -errno; 2512 } 2513 return ret; 2514 } 2515 2516 int kvm_device_ioctl(int fd, int type, ...) 2517 { 2518 int ret; 2519 void *arg; 2520 va_list ap; 2521 2522 va_start(ap, type); 2523 arg = va_arg(ap, void *); 2524 va_end(ap); 2525 2526 trace_kvm_device_ioctl(fd, type, arg); 2527 ret = ioctl(fd, type, arg); 2528 if (ret == -1) { 2529 ret = -errno; 2530 } 2531 return ret; 2532 } 2533 2534 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2535 { 2536 int ret; 2537 struct kvm_device_attr attribute = { 2538 .group = group, 2539 .attr = attr, 2540 }; 2541 2542 if (!kvm_vm_attributes_allowed) { 2543 return 0; 2544 } 2545 2546 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2547 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2548 return ret ? 0 : 1; 2549 } 2550 2551 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2552 { 2553 struct kvm_device_attr attribute = { 2554 .group = group, 2555 .attr = attr, 2556 .flags = 0, 2557 }; 2558 2559 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2560 } 2561 2562 int kvm_device_access(int fd, int group, uint64_t attr, 2563 void *val, bool write, Error **errp) 2564 { 2565 struct kvm_device_attr kvmattr; 2566 int err; 2567 2568 kvmattr.flags = 0; 2569 kvmattr.group = group; 2570 kvmattr.attr = attr; 2571 kvmattr.addr = (uintptr_t)val; 2572 2573 err = kvm_device_ioctl(fd, 2574 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2575 &kvmattr); 2576 if (err < 0) { 2577 error_setg_errno(errp, -err, 2578 "KVM_%s_DEVICE_ATTR failed: Group %d " 2579 "attr 0x%016" PRIx64, 2580 write ? "SET" : "GET", group, attr); 2581 } 2582 return err; 2583 } 2584 2585 bool kvm_has_sync_mmu(void) 2586 { 2587 return kvm_state->sync_mmu; 2588 } 2589 2590 int kvm_has_vcpu_events(void) 2591 { 2592 return kvm_state->vcpu_events; 2593 } 2594 2595 int kvm_has_robust_singlestep(void) 2596 { 2597 return kvm_state->robust_singlestep; 2598 } 2599 2600 int kvm_has_debugregs(void) 2601 { 2602 return kvm_state->debugregs; 2603 } 2604 2605 int kvm_max_nested_state_length(void) 2606 { 2607 return kvm_state->max_nested_state_len; 2608 } 2609 2610 int kvm_has_many_ioeventfds(void) 2611 { 2612 if (!kvm_enabled()) { 2613 return 0; 2614 } 2615 return kvm_state->many_ioeventfds; 2616 } 2617 2618 int kvm_has_gsi_routing(void) 2619 { 2620 #ifdef KVM_CAP_IRQ_ROUTING 2621 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2622 #else 2623 return false; 2624 #endif 2625 } 2626 2627 int kvm_has_intx_set_mask(void) 2628 { 2629 return kvm_state->intx_set_mask; 2630 } 2631 2632 bool kvm_arm_supports_user_irq(void) 2633 { 2634 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2635 } 2636 2637 #ifdef KVM_CAP_SET_GUEST_DEBUG 2638 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2639 target_ulong pc) 2640 { 2641 struct kvm_sw_breakpoint *bp; 2642 2643 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2644 if (bp->pc == pc) { 2645 return bp; 2646 } 2647 } 2648 return NULL; 2649 } 2650 2651 int kvm_sw_breakpoints_active(CPUState *cpu) 2652 { 2653 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2654 } 2655 2656 struct kvm_set_guest_debug_data { 2657 struct kvm_guest_debug dbg; 2658 int err; 2659 }; 2660 2661 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2662 { 2663 struct kvm_set_guest_debug_data *dbg_data = 2664 (struct kvm_set_guest_debug_data *) data.host_ptr; 2665 2666 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2667 &dbg_data->dbg); 2668 } 2669 2670 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2671 { 2672 struct kvm_set_guest_debug_data data; 2673 2674 data.dbg.control = reinject_trap; 2675 2676 if (cpu->singlestep_enabled) { 2677 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2678 } 2679 kvm_arch_update_guest_debug(cpu, &data.dbg); 2680 2681 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2682 RUN_ON_CPU_HOST_PTR(&data)); 2683 return data.err; 2684 } 2685 2686 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2687 target_ulong len, int type) 2688 { 2689 struct kvm_sw_breakpoint *bp; 2690 int err; 2691 2692 if (type == GDB_BREAKPOINT_SW) { 2693 bp = kvm_find_sw_breakpoint(cpu, addr); 2694 if (bp) { 2695 bp->use_count++; 2696 return 0; 2697 } 2698 2699 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2700 bp->pc = addr; 2701 bp->use_count = 1; 2702 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2703 if (err) { 2704 g_free(bp); 2705 return err; 2706 } 2707 2708 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2709 } else { 2710 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2711 if (err) { 2712 return err; 2713 } 2714 } 2715 2716 CPU_FOREACH(cpu) { 2717 err = kvm_update_guest_debug(cpu, 0); 2718 if (err) { 2719 return err; 2720 } 2721 } 2722 return 0; 2723 } 2724 2725 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2726 target_ulong len, int type) 2727 { 2728 struct kvm_sw_breakpoint *bp; 2729 int err; 2730 2731 if (type == GDB_BREAKPOINT_SW) { 2732 bp = kvm_find_sw_breakpoint(cpu, addr); 2733 if (!bp) { 2734 return -ENOENT; 2735 } 2736 2737 if (bp->use_count > 1) { 2738 bp->use_count--; 2739 return 0; 2740 } 2741 2742 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2743 if (err) { 2744 return err; 2745 } 2746 2747 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2748 g_free(bp); 2749 } else { 2750 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2751 if (err) { 2752 return err; 2753 } 2754 } 2755 2756 CPU_FOREACH(cpu) { 2757 err = kvm_update_guest_debug(cpu, 0); 2758 if (err) { 2759 return err; 2760 } 2761 } 2762 return 0; 2763 } 2764 2765 void kvm_remove_all_breakpoints(CPUState *cpu) 2766 { 2767 struct kvm_sw_breakpoint *bp, *next; 2768 KVMState *s = cpu->kvm_state; 2769 CPUState *tmpcpu; 2770 2771 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2772 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2773 /* Try harder to find a CPU that currently sees the breakpoint. */ 2774 CPU_FOREACH(tmpcpu) { 2775 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2776 break; 2777 } 2778 } 2779 } 2780 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2781 g_free(bp); 2782 } 2783 kvm_arch_remove_all_hw_breakpoints(); 2784 2785 CPU_FOREACH(cpu) { 2786 kvm_update_guest_debug(cpu, 0); 2787 } 2788 } 2789 2790 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2791 2792 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2793 { 2794 return -EINVAL; 2795 } 2796 2797 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2798 target_ulong len, int type) 2799 { 2800 return -EINVAL; 2801 } 2802 2803 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2804 target_ulong len, int type) 2805 { 2806 return -EINVAL; 2807 } 2808 2809 void kvm_remove_all_breakpoints(CPUState *cpu) 2810 { 2811 } 2812 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2813 2814 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2815 { 2816 KVMState *s = kvm_state; 2817 struct kvm_signal_mask *sigmask; 2818 int r; 2819 2820 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2821 2822 sigmask->len = s->sigmask_len; 2823 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2824 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2825 g_free(sigmask); 2826 2827 return r; 2828 } 2829 2830 static void kvm_ipi_signal(int sig) 2831 { 2832 if (current_cpu) { 2833 assert(kvm_immediate_exit); 2834 kvm_cpu_kick(current_cpu); 2835 } 2836 } 2837 2838 void kvm_init_cpu_signals(CPUState *cpu) 2839 { 2840 int r; 2841 sigset_t set; 2842 struct sigaction sigact; 2843 2844 memset(&sigact, 0, sizeof(sigact)); 2845 sigact.sa_handler = kvm_ipi_signal; 2846 sigaction(SIG_IPI, &sigact, NULL); 2847 2848 pthread_sigmask(SIG_BLOCK, NULL, &set); 2849 #if defined KVM_HAVE_MCE_INJECTION 2850 sigdelset(&set, SIGBUS); 2851 pthread_sigmask(SIG_SETMASK, &set, NULL); 2852 #endif 2853 sigdelset(&set, SIG_IPI); 2854 if (kvm_immediate_exit) { 2855 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2856 } else { 2857 r = kvm_set_signal_mask(cpu, &set); 2858 } 2859 if (r) { 2860 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2861 exit(1); 2862 } 2863 } 2864 2865 /* Called asynchronously in VCPU thread. */ 2866 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2867 { 2868 #ifdef KVM_HAVE_MCE_INJECTION 2869 if (have_sigbus_pending) { 2870 return 1; 2871 } 2872 have_sigbus_pending = true; 2873 pending_sigbus_addr = addr; 2874 pending_sigbus_code = code; 2875 atomic_set(&cpu->exit_request, 1); 2876 return 0; 2877 #else 2878 return 1; 2879 #endif 2880 } 2881 2882 /* Called synchronously (via signalfd) in main thread. */ 2883 int kvm_on_sigbus(int code, void *addr) 2884 { 2885 #ifdef KVM_HAVE_MCE_INJECTION 2886 /* Action required MCE kills the process if SIGBUS is blocked. Because 2887 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2888 * we can only get action optional here. 2889 */ 2890 assert(code != BUS_MCEERR_AR); 2891 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2892 return 0; 2893 #else 2894 return 1; 2895 #endif 2896 } 2897 2898 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2899 { 2900 int ret; 2901 struct kvm_create_device create_dev; 2902 2903 create_dev.type = type; 2904 create_dev.fd = -1; 2905 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2906 2907 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2908 return -ENOTSUP; 2909 } 2910 2911 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2912 if (ret) { 2913 return ret; 2914 } 2915 2916 return test ? 0 : create_dev.fd; 2917 } 2918 2919 bool kvm_device_supported(int vmfd, uint64_t type) 2920 { 2921 struct kvm_create_device create_dev = { 2922 .type = type, 2923 .fd = -1, 2924 .flags = KVM_CREATE_DEVICE_TEST, 2925 }; 2926 2927 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2928 return false; 2929 } 2930 2931 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2932 } 2933 2934 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2935 { 2936 struct kvm_one_reg reg; 2937 int r; 2938 2939 reg.id = id; 2940 reg.addr = (uintptr_t) source; 2941 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2942 if (r) { 2943 trace_kvm_failed_reg_set(id, strerror(-r)); 2944 } 2945 return r; 2946 } 2947 2948 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2949 { 2950 struct kvm_one_reg reg; 2951 int r; 2952 2953 reg.id = id; 2954 reg.addr = (uintptr_t) target; 2955 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2956 if (r) { 2957 trace_kvm_failed_reg_get(id, strerror(-r)); 2958 } 2959 return r; 2960 } 2961 2962 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 2963 hwaddr start_addr, hwaddr size) 2964 { 2965 KVMState *kvm = KVM_STATE(ms->accelerator); 2966 int i; 2967 2968 for (i = 0; i < kvm->nr_as; ++i) { 2969 if (kvm->as[i].as == as && kvm->as[i].ml) { 2970 size = MIN(kvm_max_slot_size, size); 2971 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 2972 start_addr, size); 2973 } 2974 } 2975 2976 return false; 2977 } 2978 2979 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 2980 const char *name, void *opaque, 2981 Error **errp) 2982 { 2983 KVMState *s = KVM_STATE(obj); 2984 int64_t value = s->kvm_shadow_mem; 2985 2986 visit_type_int(v, name, &value, errp); 2987 } 2988 2989 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 2990 const char *name, void *opaque, 2991 Error **errp) 2992 { 2993 KVMState *s = KVM_STATE(obj); 2994 Error *error = NULL; 2995 int64_t value; 2996 2997 visit_type_int(v, name, &value, &error); 2998 if (error) { 2999 error_propagate(errp, error); 3000 return; 3001 } 3002 3003 s->kvm_shadow_mem = value; 3004 } 3005 3006 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3007 const char *name, void *opaque, 3008 Error **errp) 3009 { 3010 Error *err = NULL; 3011 KVMState *s = KVM_STATE(obj); 3012 OnOffSplit mode; 3013 3014 visit_type_OnOffSplit(v, name, &mode, &err); 3015 if (err) { 3016 error_propagate(errp, err); 3017 return; 3018 } else { 3019 switch (mode) { 3020 case ON_OFF_SPLIT_ON: 3021 s->kernel_irqchip_allowed = true; 3022 s->kernel_irqchip_required = true; 3023 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3024 break; 3025 case ON_OFF_SPLIT_OFF: 3026 s->kernel_irqchip_allowed = false; 3027 s->kernel_irqchip_required = false; 3028 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3029 break; 3030 case ON_OFF_SPLIT_SPLIT: 3031 s->kernel_irqchip_allowed = true; 3032 s->kernel_irqchip_required = true; 3033 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3034 break; 3035 default: 3036 /* The value was checked in visit_type_OnOffSplit() above. If 3037 * we get here, then something is wrong in QEMU. 3038 */ 3039 abort(); 3040 } 3041 } 3042 } 3043 3044 bool kvm_kernel_irqchip_allowed(void) 3045 { 3046 return kvm_state->kernel_irqchip_allowed; 3047 } 3048 3049 bool kvm_kernel_irqchip_required(void) 3050 { 3051 return kvm_state->kernel_irqchip_required; 3052 } 3053 3054 bool kvm_kernel_irqchip_split(void) 3055 { 3056 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3057 } 3058 3059 static void kvm_accel_instance_init(Object *obj) 3060 { 3061 KVMState *s = KVM_STATE(obj); 3062 3063 s->kvm_shadow_mem = -1; 3064 s->kernel_irqchip_allowed = true; 3065 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3066 } 3067 3068 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3069 { 3070 AccelClass *ac = ACCEL_CLASS(oc); 3071 ac->name = "KVM"; 3072 ac->init_machine = kvm_init; 3073 ac->has_memory = kvm_accel_has_memory; 3074 ac->allowed = &kvm_allowed; 3075 3076 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3077 NULL, kvm_set_kernel_irqchip, 3078 NULL, NULL, &error_abort); 3079 object_class_property_set_description(oc, "kernel-irqchip", 3080 "Configure KVM in-kernel irqchip", &error_abort); 3081 3082 object_class_property_add(oc, "kvm-shadow-mem", "int", 3083 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3084 NULL, NULL, &error_abort); 3085 object_class_property_set_description(oc, "kvm-shadow-mem", 3086 "KVM shadow MMU size", &error_abort); 3087 } 3088 3089 static const TypeInfo kvm_accel_type = { 3090 .name = TYPE_KVM_ACCEL, 3091 .parent = TYPE_ACCEL, 3092 .instance_init = kvm_accel_instance_init, 3093 .class_init = kvm_accel_class_init, 3094 .instance_size = sizeof(KVMState), 3095 }; 3096 3097 static void kvm_type_init(void) 3098 { 3099 type_register_static(&kvm_accel_type); 3100 } 3101 3102 type_init(kvm_type_init); 3103