1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/tswap.h" 37 #include "system/memory.h" 38 #include "system/ram_addr.h" 39 #include "qemu/event_notifier.h" 40 #include "qemu/main-loop.h" 41 #include "trace.h" 42 #include "hw/irq.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "system/reset.h" 47 #include "qemu/guest-random.h" 48 #include "system/hw_accel.h" 49 #include "kvm-cpus.h" 50 #include "system/dirtylimit.h" 51 #include "qemu/range.h" 52 53 #include "hw/boards.h" 54 #include "system/stats.h" 55 56 /* This check must be after config-host.h is included */ 57 #ifdef CONFIG_EVENTFD 58 #include <sys/eventfd.h> 59 #endif 60 61 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) 62 # define KVM_HAVE_MCE_INJECTION 1 63 #endif 64 65 66 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 67 * need to use the real host PAGE_SIZE, as that's what KVM will use. 68 */ 69 #ifdef PAGE_SIZE 70 #undef PAGE_SIZE 71 #endif 72 #define PAGE_SIZE qemu_real_host_page_size() 73 74 #ifndef KVM_GUESTDBG_BLOCKIRQ 75 #define KVM_GUESTDBG_BLOCKIRQ 0 76 #endif 77 78 /* Default num of memslots to be allocated when VM starts */ 79 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 80 /* Default max allowed memslots if kernel reported nothing */ 81 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 82 83 struct KVMParkedVcpu { 84 unsigned long vcpu_id; 85 int kvm_fd; 86 QLIST_ENTRY(KVMParkedVcpu) node; 87 }; 88 89 KVMState *kvm_state; 90 bool kvm_kernel_irqchip; 91 bool kvm_split_irqchip; 92 bool kvm_async_interrupts_allowed; 93 bool kvm_halt_in_kernel_allowed; 94 bool kvm_resamplefds_allowed; 95 bool kvm_msi_via_irqfd_allowed; 96 bool kvm_gsi_routing_allowed; 97 bool kvm_gsi_direct_mapping; 98 bool kvm_allowed; 99 bool kvm_readonly_mem_allowed; 100 bool kvm_vm_attributes_allowed; 101 bool kvm_msi_use_devid; 102 static bool kvm_has_guest_debug; 103 static int kvm_sstep_flags; 104 static bool kvm_immediate_exit; 105 static uint64_t kvm_supported_memory_attributes; 106 static bool kvm_guest_memfd_supported; 107 static hwaddr kvm_max_slot_size = ~0; 108 109 static const KVMCapabilityInfo kvm_required_capabilites[] = { 110 KVM_CAP_INFO(USER_MEMORY), 111 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 112 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 113 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 114 KVM_CAP_INFO(IOEVENTFD), 115 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 116 KVM_CAP_LAST_INFO 117 }; 118 119 static NotifierList kvm_irqchip_change_notifiers = 120 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 121 122 struct KVMResampleFd { 123 int gsi; 124 EventNotifier *resample_event; 125 QLIST_ENTRY(KVMResampleFd) node; 126 }; 127 typedef struct KVMResampleFd KVMResampleFd; 128 129 /* 130 * Only used with split irqchip where we need to do the resample fd 131 * kick for the kernel from userspace. 132 */ 133 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 134 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 135 136 static QemuMutex kml_slots_lock; 137 138 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 139 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 140 141 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 142 143 static inline void kvm_resample_fd_remove(int gsi) 144 { 145 KVMResampleFd *rfd; 146 147 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 148 if (rfd->gsi == gsi) { 149 QLIST_REMOVE(rfd, node); 150 g_free(rfd); 151 break; 152 } 153 } 154 } 155 156 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 157 { 158 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 159 160 rfd->gsi = gsi; 161 rfd->resample_event = event; 162 163 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 164 } 165 166 void kvm_resample_fd_notify(int gsi) 167 { 168 KVMResampleFd *rfd; 169 170 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 171 if (rfd->gsi == gsi) { 172 event_notifier_set(rfd->resample_event); 173 trace_kvm_resample_fd_notify(gsi); 174 return; 175 } 176 } 177 } 178 179 /** 180 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 181 * 182 * @kml: The KVMMemoryListener* to grow the slots[] array 183 * @nr_slots_new: The new size of slots[] array 184 * 185 * Returns: True if the array grows larger, false otherwise. 186 */ 187 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 188 { 189 unsigned int i, cur = kml->nr_slots_allocated; 190 KVMSlot *slots; 191 192 if (nr_slots_new > kvm_state->nr_slots_max) { 193 nr_slots_new = kvm_state->nr_slots_max; 194 } 195 196 if (cur >= nr_slots_new) { 197 /* Big enough, no need to grow, or we reached max */ 198 return false; 199 } 200 201 if (cur == 0) { 202 slots = g_new0(KVMSlot, nr_slots_new); 203 } else { 204 assert(kml->slots); 205 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 206 /* 207 * g_renew() doesn't initialize extended buffers, however kvm 208 * memslots require fields to be zero-initialized. E.g. pointers, 209 * memory_size field, etc. 210 */ 211 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 212 } 213 214 for (i = cur; i < nr_slots_new; i++) { 215 slots[i].slot = i; 216 } 217 218 kml->slots = slots; 219 kml->nr_slots_allocated = nr_slots_new; 220 trace_kvm_slots_grow(cur, nr_slots_new); 221 222 return true; 223 } 224 225 static bool kvm_slots_double(KVMMemoryListener *kml) 226 { 227 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 228 } 229 230 unsigned int kvm_get_max_memslots(void) 231 { 232 KVMState *s = KVM_STATE(current_accel()); 233 234 return s->nr_slots_max; 235 } 236 237 unsigned int kvm_get_free_memslots(void) 238 { 239 unsigned int used_slots = 0; 240 KVMState *s = kvm_state; 241 int i; 242 243 kvm_slots_lock(); 244 for (i = 0; i < s->nr_as; i++) { 245 if (!s->as[i].ml) { 246 continue; 247 } 248 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 249 } 250 kvm_slots_unlock(); 251 252 return s->nr_slots_max - used_slots; 253 } 254 255 /* Called with KVMMemoryListener.slots_lock held */ 256 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 257 { 258 unsigned int n; 259 int i; 260 261 for (i = 0; i < kml->nr_slots_allocated; i++) { 262 if (kml->slots[i].memory_size == 0) { 263 return &kml->slots[i]; 264 } 265 } 266 267 /* 268 * If no free slots, try to grow first by doubling. Cache the old size 269 * here to avoid another round of search: if the grow succeeded, it 270 * means slots[] now must have the existing "n" slots occupied, 271 * followed by one or more free slots starting from slots[n]. 272 */ 273 n = kml->nr_slots_allocated; 274 if (kvm_slots_double(kml)) { 275 return &kml->slots[n]; 276 } 277 278 return NULL; 279 } 280 281 /* Called with KVMMemoryListener.slots_lock held */ 282 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 283 { 284 KVMSlot *slot = kvm_get_free_slot(kml); 285 286 if (slot) { 287 return slot; 288 } 289 290 fprintf(stderr, "%s: no free slot available\n", __func__); 291 abort(); 292 } 293 294 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 295 hwaddr start_addr, 296 hwaddr size) 297 { 298 int i; 299 300 for (i = 0; i < kml->nr_slots_allocated; i++) { 301 KVMSlot *mem = &kml->slots[i]; 302 303 if (start_addr == mem->start_addr && size == mem->memory_size) { 304 return mem; 305 } 306 } 307 308 return NULL; 309 } 310 311 /* 312 * Calculate and align the start address and the size of the section. 313 * Return the size. If the size is 0, the aligned section is empty. 314 */ 315 static hwaddr kvm_align_section(MemoryRegionSection *section, 316 hwaddr *start) 317 { 318 hwaddr size = int128_get64(section->size); 319 hwaddr delta, aligned; 320 321 /* kvm works in page size chunks, but the function may be called 322 with sub-page size and unaligned start address. Pad the start 323 address to next and truncate size to previous page boundary. */ 324 aligned = ROUND_UP(section->offset_within_address_space, 325 qemu_real_host_page_size()); 326 delta = aligned - section->offset_within_address_space; 327 *start = aligned; 328 if (delta > size) { 329 return 0; 330 } 331 332 return (size - delta) & qemu_real_host_page_mask(); 333 } 334 335 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 336 hwaddr *phys_addr) 337 { 338 KVMMemoryListener *kml = &s->memory_listener; 339 int i, ret = 0; 340 341 kvm_slots_lock(); 342 for (i = 0; i < kml->nr_slots_allocated; i++) { 343 KVMSlot *mem = &kml->slots[i]; 344 345 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 346 *phys_addr = mem->start_addr + (ram - mem->ram); 347 ret = 1; 348 break; 349 } 350 } 351 kvm_slots_unlock(); 352 353 return ret; 354 } 355 356 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 357 { 358 KVMState *s = kvm_state; 359 struct kvm_userspace_memory_region2 mem; 360 int ret; 361 362 mem.slot = slot->slot | (kml->as_id << 16); 363 mem.guest_phys_addr = slot->start_addr; 364 mem.userspace_addr = (unsigned long)slot->ram; 365 mem.flags = slot->flags; 366 mem.guest_memfd = slot->guest_memfd; 367 mem.guest_memfd_offset = slot->guest_memfd_offset; 368 369 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 370 /* Set the slot size to 0 before setting the slot to the desired 371 * value. This is needed based on KVM commit 75d61fbc. */ 372 mem.memory_size = 0; 373 374 if (kvm_guest_memfd_supported) { 375 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 376 } else { 377 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 378 } 379 if (ret < 0) { 380 goto err; 381 } 382 } 383 mem.memory_size = slot->memory_size; 384 if (kvm_guest_memfd_supported) { 385 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 386 } else { 387 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 388 } 389 slot->old_flags = mem.flags; 390 err: 391 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 392 mem.guest_phys_addr, mem.memory_size, 393 mem.userspace_addr, mem.guest_memfd, 394 mem.guest_memfd_offset, ret); 395 if (ret < 0) { 396 if (kvm_guest_memfd_supported) { 397 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 398 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 399 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 400 " guest_memfd_offset=0x%" PRIx64 ": %s", 401 __func__, mem.slot, slot->start_addr, 402 (uint64_t)mem.memory_size, mem.flags, 403 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 404 strerror(errno)); 405 } else { 406 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 407 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 408 __func__, mem.slot, slot->start_addr, 409 (uint64_t)mem.memory_size, strerror(errno)); 410 } 411 } 412 return ret; 413 } 414 415 void kvm_park_vcpu(CPUState *cpu) 416 { 417 struct KVMParkedVcpu *vcpu; 418 419 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 420 421 vcpu = g_malloc0(sizeof(*vcpu)); 422 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 423 vcpu->kvm_fd = cpu->kvm_fd; 424 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 425 } 426 427 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 428 { 429 struct KVMParkedVcpu *cpu; 430 int kvm_fd = -ENOENT; 431 432 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 433 if (cpu->vcpu_id == vcpu_id) { 434 QLIST_REMOVE(cpu, node); 435 kvm_fd = cpu->kvm_fd; 436 g_free(cpu); 437 break; 438 } 439 } 440 441 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 442 443 return kvm_fd; 444 } 445 446 static void kvm_reset_parked_vcpus(KVMState *s) 447 { 448 struct KVMParkedVcpu *cpu; 449 450 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 451 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 452 } 453 } 454 455 int kvm_create_vcpu(CPUState *cpu) 456 { 457 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 458 KVMState *s = kvm_state; 459 int kvm_fd; 460 461 /* check if the KVM vCPU already exist but is parked */ 462 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 463 if (kvm_fd < 0) { 464 /* vCPU not parked: create a new KVM vCPU */ 465 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 466 if (kvm_fd < 0) { 467 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 468 return kvm_fd; 469 } 470 } 471 472 cpu->kvm_fd = kvm_fd; 473 cpu->kvm_state = s; 474 cpu->vcpu_dirty = true; 475 cpu->dirty_pages = 0; 476 cpu->throttle_us_per_full = 0; 477 478 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 479 480 return 0; 481 } 482 483 int kvm_create_and_park_vcpu(CPUState *cpu) 484 { 485 int ret = 0; 486 487 ret = kvm_create_vcpu(cpu); 488 if (!ret) { 489 kvm_park_vcpu(cpu); 490 } 491 492 return ret; 493 } 494 495 static int do_kvm_destroy_vcpu(CPUState *cpu) 496 { 497 KVMState *s = kvm_state; 498 int mmap_size; 499 int ret = 0; 500 501 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 502 503 ret = kvm_arch_destroy_vcpu(cpu); 504 if (ret < 0) { 505 goto err; 506 } 507 508 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 509 if (mmap_size < 0) { 510 ret = mmap_size; 511 trace_kvm_failed_get_vcpu_mmap_size(); 512 goto err; 513 } 514 515 ret = munmap(cpu->kvm_run, mmap_size); 516 if (ret < 0) { 517 goto err; 518 } 519 520 if (cpu->kvm_dirty_gfns) { 521 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 522 if (ret < 0) { 523 goto err; 524 } 525 } 526 527 kvm_park_vcpu(cpu); 528 err: 529 return ret; 530 } 531 532 void kvm_destroy_vcpu(CPUState *cpu) 533 { 534 if (do_kvm_destroy_vcpu(cpu) < 0) { 535 error_report("kvm_destroy_vcpu failed"); 536 exit(EXIT_FAILURE); 537 } 538 } 539 540 int kvm_init_vcpu(CPUState *cpu, Error **errp) 541 { 542 KVMState *s = kvm_state; 543 int mmap_size; 544 int ret; 545 546 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 547 548 ret = kvm_arch_pre_create_vcpu(cpu, errp); 549 if (ret < 0) { 550 goto err; 551 } 552 553 ret = kvm_create_vcpu(cpu); 554 if (ret < 0) { 555 error_setg_errno(errp, -ret, 556 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 557 kvm_arch_vcpu_id(cpu)); 558 goto err; 559 } 560 561 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 562 if (mmap_size < 0) { 563 ret = mmap_size; 564 error_setg_errno(errp, -mmap_size, 565 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 566 goto err; 567 } 568 569 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 570 cpu->kvm_fd, 0); 571 if (cpu->kvm_run == MAP_FAILED) { 572 ret = -errno; 573 error_setg_errno(errp, ret, 574 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 575 kvm_arch_vcpu_id(cpu)); 576 goto err; 577 } 578 579 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 580 s->coalesced_mmio_ring = 581 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 582 } 583 584 if (s->kvm_dirty_ring_size) { 585 /* Use MAP_SHARED to share pages with the kernel */ 586 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 587 PROT_READ | PROT_WRITE, MAP_SHARED, 588 cpu->kvm_fd, 589 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 590 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 591 ret = -errno; 592 goto err; 593 } 594 } 595 596 ret = kvm_arch_init_vcpu(cpu); 597 if (ret < 0) { 598 error_setg_errno(errp, -ret, 599 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 600 kvm_arch_vcpu_id(cpu)); 601 } 602 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 603 604 err: 605 return ret; 606 } 607 608 /* 609 * dirty pages logging control 610 */ 611 612 static int kvm_mem_flags(MemoryRegion *mr) 613 { 614 bool readonly = mr->readonly || memory_region_is_romd(mr); 615 int flags = 0; 616 617 if (memory_region_get_dirty_log_mask(mr) != 0) { 618 flags |= KVM_MEM_LOG_DIRTY_PAGES; 619 } 620 if (readonly && kvm_readonly_mem_allowed) { 621 flags |= KVM_MEM_READONLY; 622 } 623 if (memory_region_has_guest_memfd(mr)) { 624 assert(kvm_guest_memfd_supported); 625 flags |= KVM_MEM_GUEST_MEMFD; 626 } 627 return flags; 628 } 629 630 /* Called with KVMMemoryListener.slots_lock held */ 631 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 632 MemoryRegion *mr) 633 { 634 mem->flags = kvm_mem_flags(mr); 635 636 /* If nothing changed effectively, no need to issue ioctl */ 637 if (mem->flags == mem->old_flags) { 638 return 0; 639 } 640 641 kvm_slot_init_dirty_bitmap(mem); 642 return kvm_set_user_memory_region(kml, mem, false); 643 } 644 645 static int kvm_section_update_flags(KVMMemoryListener *kml, 646 MemoryRegionSection *section) 647 { 648 hwaddr start_addr, size, slot_size; 649 KVMSlot *mem; 650 int ret = 0; 651 652 size = kvm_align_section(section, &start_addr); 653 if (!size) { 654 return 0; 655 } 656 657 kvm_slots_lock(); 658 659 while (size && !ret) { 660 slot_size = MIN(kvm_max_slot_size, size); 661 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 662 if (!mem) { 663 /* We don't have a slot if we want to trap every access. */ 664 goto out; 665 } 666 667 ret = kvm_slot_update_flags(kml, mem, section->mr); 668 start_addr += slot_size; 669 size -= slot_size; 670 } 671 672 out: 673 kvm_slots_unlock(); 674 return ret; 675 } 676 677 static void kvm_log_start(MemoryListener *listener, 678 MemoryRegionSection *section, 679 int old, int new) 680 { 681 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 682 int r; 683 684 if (old != 0) { 685 return; 686 } 687 688 r = kvm_section_update_flags(kml, section); 689 if (r < 0) { 690 abort(); 691 } 692 } 693 694 static void kvm_log_stop(MemoryListener *listener, 695 MemoryRegionSection *section, 696 int old, int new) 697 { 698 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 699 int r; 700 701 if (new != 0) { 702 return; 703 } 704 705 r = kvm_section_update_flags(kml, section); 706 if (r < 0) { 707 abort(); 708 } 709 } 710 711 /* get kvm's dirty pages bitmap and update qemu's */ 712 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 713 { 714 ram_addr_t start = slot->ram_start_offset; 715 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 716 717 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 718 } 719 720 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 721 { 722 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 723 } 724 725 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 726 727 /* Allocate the dirty bitmap for a slot */ 728 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 729 { 730 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 731 return; 732 } 733 734 /* 735 * XXX bad kernel interface alert 736 * For dirty bitmap, kernel allocates array of size aligned to 737 * bits-per-long. But for case when the kernel is 64bits and 738 * the userspace is 32bits, userspace can't align to the same 739 * bits-per-long, since sizeof(long) is different between kernel 740 * and user space. This way, userspace will provide buffer which 741 * may be 4 bytes less than the kernel will use, resulting in 742 * userspace memory corruption (which is not detectable by valgrind 743 * too, in most cases). 744 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 745 * a hope that sizeof(long) won't become >8 any time soon. 746 * 747 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 748 * And mem->memory_size is aligned to it (otherwise this mem can't 749 * be registered to KVM). 750 */ 751 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 752 /*HOST_LONG_BITS*/ 64) / 8; 753 mem->dirty_bmap = g_malloc0(bitmap_size); 754 mem->dirty_bmap_size = bitmap_size; 755 } 756 757 /* 758 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 759 * succeeded, false otherwise 760 */ 761 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 762 { 763 struct kvm_dirty_log d = {}; 764 int ret; 765 766 d.dirty_bitmap = slot->dirty_bmap; 767 d.slot = slot->slot | (slot->as_id << 16); 768 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 769 770 if (ret == -ENOENT) { 771 /* kernel does not have dirty bitmap in this slot */ 772 ret = 0; 773 } 774 if (ret) { 775 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 776 __func__, ret); 777 } 778 return ret == 0; 779 } 780 781 /* Should be with all slots_lock held for the address spaces. */ 782 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 783 uint32_t slot_id, uint64_t offset) 784 { 785 KVMMemoryListener *kml; 786 KVMSlot *mem; 787 788 if (as_id >= s->nr_as) { 789 return; 790 } 791 792 kml = s->as[as_id].ml; 793 mem = &kml->slots[slot_id]; 794 795 if (!mem->memory_size || offset >= 796 (mem->memory_size / qemu_real_host_page_size())) { 797 return; 798 } 799 800 set_bit(offset, mem->dirty_bmap); 801 } 802 803 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 804 { 805 /* 806 * Read the flags before the value. Pairs with barrier in 807 * KVM's kvm_dirty_ring_push() function. 808 */ 809 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 810 } 811 812 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 813 { 814 /* 815 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 816 * sees the full content of the ring: 817 * 818 * CPU0 CPU1 CPU2 819 * ------------------------------------------------------------------------------ 820 * fill gfn0 821 * store-rel flags for gfn0 822 * load-acq flags for gfn0 823 * store-rel RESET for gfn0 824 * ioctl(RESET_RINGS) 825 * load-acq flags for gfn0 826 * check if flags have RESET 827 * 828 * The synchronization goes from CPU2 to CPU0 to CPU1. 829 */ 830 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 831 } 832 833 /* 834 * Should be with all slots_lock held for the address spaces. It returns the 835 * dirty page we've collected on this dirty ring. 836 */ 837 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 838 { 839 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 840 uint32_t ring_size = s->kvm_dirty_ring_size; 841 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 842 843 /* 844 * It's possible that we race with vcpu creation code where the vcpu is 845 * put onto the vcpus list but not yet initialized the dirty ring 846 * structures. If so, skip it. 847 */ 848 if (!cpu->created) { 849 return 0; 850 } 851 852 assert(dirty_gfns && ring_size); 853 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 854 855 while (true) { 856 cur = &dirty_gfns[fetch % ring_size]; 857 if (!dirty_gfn_is_dirtied(cur)) { 858 break; 859 } 860 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 861 cur->offset); 862 dirty_gfn_set_collected(cur); 863 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 864 fetch++; 865 count++; 866 } 867 cpu->kvm_fetch_index = fetch; 868 cpu->dirty_pages += count; 869 870 return count; 871 } 872 873 /* Must be with slots_lock held */ 874 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 875 { 876 int ret; 877 uint64_t total = 0; 878 int64_t stamp; 879 880 stamp = get_clock(); 881 882 if (cpu) { 883 total = kvm_dirty_ring_reap_one(s, cpu); 884 } else { 885 CPU_FOREACH(cpu) { 886 total += kvm_dirty_ring_reap_one(s, cpu); 887 } 888 } 889 890 if (total) { 891 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 892 assert(ret == total); 893 } 894 895 stamp = get_clock() - stamp; 896 897 if (total) { 898 trace_kvm_dirty_ring_reap(total, stamp / 1000); 899 } 900 901 return total; 902 } 903 904 /* 905 * Currently for simplicity, we must hold BQL before calling this. We can 906 * consider to drop the BQL if we're clear with all the race conditions. 907 */ 908 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 909 { 910 uint64_t total; 911 912 /* 913 * We need to lock all kvm slots for all address spaces here, 914 * because: 915 * 916 * (1) We need to mark dirty for dirty bitmaps in multiple slots 917 * and for tons of pages, so it's better to take the lock here 918 * once rather than once per page. And more importantly, 919 * 920 * (2) We must _NOT_ publish dirty bits to the other threads 921 * (e.g., the migration thread) via the kvm memory slot dirty 922 * bitmaps before correctly re-protect those dirtied pages. 923 * Otherwise we can have potential risk of data corruption if 924 * the page data is read in the other thread before we do 925 * reset below. 926 */ 927 kvm_slots_lock(); 928 total = kvm_dirty_ring_reap_locked(s, cpu); 929 kvm_slots_unlock(); 930 931 return total; 932 } 933 934 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 935 { 936 /* No need to do anything */ 937 } 938 939 /* 940 * Kick all vcpus out in a synchronized way. When returned, we 941 * guarantee that every vcpu has been kicked and at least returned to 942 * userspace once. 943 */ 944 static void kvm_cpu_synchronize_kick_all(void) 945 { 946 CPUState *cpu; 947 948 CPU_FOREACH(cpu) { 949 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 950 } 951 } 952 953 /* 954 * Flush all the existing dirty pages to the KVM slot buffers. When 955 * this call returns, we guarantee that all the touched dirty pages 956 * before calling this function have been put into the per-kvmslot 957 * dirty bitmap. 958 * 959 * This function must be called with BQL held. 960 */ 961 static void kvm_dirty_ring_flush(void) 962 { 963 trace_kvm_dirty_ring_flush(0); 964 /* 965 * The function needs to be serialized. Since this function 966 * should always be with BQL held, serialization is guaranteed. 967 * However, let's be sure of it. 968 */ 969 assert(bql_locked()); 970 /* 971 * First make sure to flush the hardware buffers by kicking all 972 * vcpus out in a synchronous way. 973 */ 974 kvm_cpu_synchronize_kick_all(); 975 kvm_dirty_ring_reap(kvm_state, NULL); 976 trace_kvm_dirty_ring_flush(1); 977 } 978 979 /** 980 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 981 * 982 * This function will first try to fetch dirty bitmap from the kernel, 983 * and then updates qemu's dirty bitmap. 984 * 985 * NOTE: caller must be with kml->slots_lock held. 986 * 987 * @kml: the KVM memory listener object 988 * @section: the memory section to sync the dirty bitmap with 989 */ 990 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 991 MemoryRegionSection *section) 992 { 993 KVMState *s = kvm_state; 994 KVMSlot *mem; 995 hwaddr start_addr, size; 996 hwaddr slot_size; 997 998 size = kvm_align_section(section, &start_addr); 999 while (size) { 1000 slot_size = MIN(kvm_max_slot_size, size); 1001 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1002 if (!mem) { 1003 /* We don't have a slot if we want to trap every access. */ 1004 return; 1005 } 1006 if (kvm_slot_get_dirty_log(s, mem)) { 1007 kvm_slot_sync_dirty_pages(mem); 1008 } 1009 start_addr += slot_size; 1010 size -= slot_size; 1011 } 1012 } 1013 1014 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1015 #define KVM_CLEAR_LOG_SHIFT 6 1016 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1017 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1018 1019 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1020 uint64_t size) 1021 { 1022 KVMState *s = kvm_state; 1023 uint64_t end, bmap_start, start_delta, bmap_npages; 1024 struct kvm_clear_dirty_log d; 1025 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1026 int ret; 1027 1028 /* 1029 * We need to extend either the start or the size or both to 1030 * satisfy the KVM interface requirement. Firstly, do the start 1031 * page alignment on 64 host pages 1032 */ 1033 bmap_start = start & KVM_CLEAR_LOG_MASK; 1034 start_delta = start - bmap_start; 1035 bmap_start /= psize; 1036 1037 /* 1038 * The kernel interface has restriction on the size too, that either: 1039 * 1040 * (1) the size is 64 host pages aligned (just like the start), or 1041 * (2) the size fills up until the end of the KVM memslot. 1042 */ 1043 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1044 << KVM_CLEAR_LOG_SHIFT; 1045 end = mem->memory_size / psize; 1046 if (bmap_npages > end - bmap_start) { 1047 bmap_npages = end - bmap_start; 1048 } 1049 start_delta /= psize; 1050 1051 /* 1052 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1053 * that we won't clear any unknown dirty bits otherwise we might 1054 * accidentally clear some set bits which are not yet synced from 1055 * the kernel into QEMU's bitmap, then we'll lose track of the 1056 * guest modifications upon those pages (which can directly lead 1057 * to guest data loss or panic after migration). 1058 * 1059 * Layout of the KVMSlot.dirty_bmap: 1060 * 1061 * |<-------- bmap_npages -----------..>| 1062 * [1] 1063 * start_delta size 1064 * |----------------|-------------|------------------|------------| 1065 * ^ ^ ^ ^ 1066 * | | | | 1067 * start bmap_start (start) end 1068 * of memslot of memslot 1069 * 1070 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1071 */ 1072 1073 assert(bmap_start % BITS_PER_LONG == 0); 1074 /* We should never do log_clear before log_sync */ 1075 assert(mem->dirty_bmap); 1076 if (start_delta || bmap_npages - size / psize) { 1077 /* Slow path - we need to manipulate a temp bitmap */ 1078 bmap_clear = bitmap_new(bmap_npages); 1079 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1080 bmap_start, start_delta + size / psize); 1081 /* 1082 * We need to fill the holes at start because that was not 1083 * specified by the caller and we extended the bitmap only for 1084 * 64 pages alignment 1085 */ 1086 bitmap_clear(bmap_clear, 0, start_delta); 1087 d.dirty_bitmap = bmap_clear; 1088 } else { 1089 /* 1090 * Fast path - both start and size align well with BITS_PER_LONG 1091 * (or the end of memory slot) 1092 */ 1093 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1094 } 1095 1096 d.first_page = bmap_start; 1097 /* It should never overflow. If it happens, say something */ 1098 assert(bmap_npages <= UINT32_MAX); 1099 d.num_pages = bmap_npages; 1100 d.slot = mem->slot | (as_id << 16); 1101 1102 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1103 if (ret < 0 && ret != -ENOENT) { 1104 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1105 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1106 __func__, d.slot, (uint64_t)d.first_page, 1107 (uint32_t)d.num_pages, ret); 1108 } else { 1109 ret = 0; 1110 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1111 } 1112 1113 /* 1114 * After we have updated the remote dirty bitmap, we update the 1115 * cached bitmap as well for the memslot, then if another user 1116 * clears the same region we know we shouldn't clear it again on 1117 * the remote otherwise it's data loss as well. 1118 */ 1119 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1120 size / psize); 1121 /* This handles the NULL case well */ 1122 g_free(bmap_clear); 1123 return ret; 1124 } 1125 1126 1127 /** 1128 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1129 * 1130 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1131 * protection in the host kernel because in that case this operation 1132 * will be done within log_sync(). 1133 * 1134 * @kml: the kvm memory listener 1135 * @section: the memory range to clear dirty bitmap 1136 */ 1137 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1138 MemoryRegionSection *section) 1139 { 1140 KVMState *s = kvm_state; 1141 uint64_t start, size, offset, count; 1142 KVMSlot *mem; 1143 int ret = 0, i; 1144 1145 if (!s->manual_dirty_log_protect) { 1146 /* No need to do explicit clear */ 1147 return ret; 1148 } 1149 1150 start = section->offset_within_address_space; 1151 size = int128_get64(section->size); 1152 1153 if (!size) { 1154 /* Nothing more we can do... */ 1155 return ret; 1156 } 1157 1158 kvm_slots_lock(); 1159 1160 for (i = 0; i < kml->nr_slots_allocated; i++) { 1161 mem = &kml->slots[i]; 1162 /* Discard slots that are empty or do not overlap the section */ 1163 if (!mem->memory_size || 1164 mem->start_addr > start + size - 1 || 1165 start > mem->start_addr + mem->memory_size - 1) { 1166 continue; 1167 } 1168 1169 if (start >= mem->start_addr) { 1170 /* The slot starts before section or is aligned to it. */ 1171 offset = start - mem->start_addr; 1172 count = MIN(mem->memory_size - offset, size); 1173 } else { 1174 /* The slot starts after section. */ 1175 offset = 0; 1176 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1177 } 1178 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1179 if (ret < 0) { 1180 break; 1181 } 1182 } 1183 1184 kvm_slots_unlock(); 1185 1186 return ret; 1187 } 1188 1189 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1190 MemoryRegionSection *secion, 1191 hwaddr start, hwaddr size) 1192 { 1193 KVMState *s = kvm_state; 1194 1195 if (s->coalesced_mmio) { 1196 struct kvm_coalesced_mmio_zone zone; 1197 1198 zone.addr = start; 1199 zone.size = size; 1200 zone.pad = 0; 1201 1202 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1203 } 1204 } 1205 1206 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1207 MemoryRegionSection *secion, 1208 hwaddr start, hwaddr size) 1209 { 1210 KVMState *s = kvm_state; 1211 1212 if (s->coalesced_mmio) { 1213 struct kvm_coalesced_mmio_zone zone; 1214 1215 zone.addr = start; 1216 zone.size = size; 1217 zone.pad = 0; 1218 1219 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1220 } 1221 } 1222 1223 static void kvm_coalesce_pio_add(MemoryListener *listener, 1224 MemoryRegionSection *section, 1225 hwaddr start, hwaddr size) 1226 { 1227 KVMState *s = kvm_state; 1228 1229 if (s->coalesced_pio) { 1230 struct kvm_coalesced_mmio_zone zone; 1231 1232 zone.addr = start; 1233 zone.size = size; 1234 zone.pio = 1; 1235 1236 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1237 } 1238 } 1239 1240 static void kvm_coalesce_pio_del(MemoryListener *listener, 1241 MemoryRegionSection *section, 1242 hwaddr start, hwaddr size) 1243 { 1244 KVMState *s = kvm_state; 1245 1246 if (s->coalesced_pio) { 1247 struct kvm_coalesced_mmio_zone zone; 1248 1249 zone.addr = start; 1250 zone.size = size; 1251 zone.pio = 1; 1252 1253 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1254 } 1255 } 1256 1257 int kvm_check_extension(KVMState *s, unsigned int extension) 1258 { 1259 int ret; 1260 1261 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1262 if (ret < 0) { 1263 ret = 0; 1264 } 1265 1266 return ret; 1267 } 1268 1269 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1270 { 1271 int ret; 1272 1273 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1274 if (ret < 0) { 1275 /* VM wide version not implemented, use global one instead */ 1276 ret = kvm_check_extension(s, extension); 1277 } 1278 1279 return ret; 1280 } 1281 1282 /* 1283 * We track the poisoned pages to be able to: 1284 * - replace them on VM reset 1285 * - block a migration for a VM with a poisoned page 1286 */ 1287 typedef struct HWPoisonPage { 1288 ram_addr_t ram_addr; 1289 QLIST_ENTRY(HWPoisonPage) list; 1290 } HWPoisonPage; 1291 1292 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1293 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1294 1295 static void kvm_unpoison_all(void *param) 1296 { 1297 HWPoisonPage *page, *next_page; 1298 1299 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1300 QLIST_REMOVE(page, list); 1301 qemu_ram_remap(page->ram_addr); 1302 g_free(page); 1303 } 1304 } 1305 1306 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1307 { 1308 HWPoisonPage *page; 1309 1310 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1311 if (page->ram_addr == ram_addr) { 1312 return; 1313 } 1314 } 1315 page = g_new(HWPoisonPage, 1); 1316 page->ram_addr = ram_addr; 1317 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1318 } 1319 1320 bool kvm_hwpoisoned_mem(void) 1321 { 1322 return !QLIST_EMPTY(&hwpoison_page_list); 1323 } 1324 1325 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1326 { 1327 if (target_needs_bswap()) { 1328 /* 1329 * The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1330 * endianness, but the memory core hands them in target endianness. 1331 * For example, PPC is always treated as big-endian even if running 1332 * on KVM and on PPC64LE. Correct here, swapping back. 1333 */ 1334 switch (size) { 1335 case 2: 1336 val = bswap16(val); 1337 break; 1338 case 4: 1339 val = bswap32(val); 1340 break; 1341 } 1342 } 1343 return val; 1344 } 1345 1346 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1347 bool assign, uint32_t size, bool datamatch) 1348 { 1349 int ret; 1350 struct kvm_ioeventfd iofd = { 1351 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1352 .addr = addr, 1353 .len = size, 1354 .flags = 0, 1355 .fd = fd, 1356 }; 1357 1358 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1359 datamatch); 1360 if (!kvm_enabled()) { 1361 return -ENOSYS; 1362 } 1363 1364 if (datamatch) { 1365 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1366 } 1367 if (!assign) { 1368 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1369 } 1370 1371 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1372 1373 if (ret < 0) { 1374 return -errno; 1375 } 1376 1377 return 0; 1378 } 1379 1380 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1381 bool assign, uint32_t size, bool datamatch) 1382 { 1383 struct kvm_ioeventfd kick = { 1384 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1385 .addr = addr, 1386 .flags = KVM_IOEVENTFD_FLAG_PIO, 1387 .len = size, 1388 .fd = fd, 1389 }; 1390 int r; 1391 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1392 if (!kvm_enabled()) { 1393 return -ENOSYS; 1394 } 1395 if (datamatch) { 1396 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1397 } 1398 if (!assign) { 1399 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1400 } 1401 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1402 if (r < 0) { 1403 return r; 1404 } 1405 return 0; 1406 } 1407 1408 1409 static const KVMCapabilityInfo * 1410 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1411 { 1412 while (list->name) { 1413 if (!kvm_check_extension(s, list->value)) { 1414 return list; 1415 } 1416 list++; 1417 } 1418 return NULL; 1419 } 1420 1421 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1422 { 1423 g_assert( 1424 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1425 ); 1426 kvm_max_slot_size = max_slot_size; 1427 } 1428 1429 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1430 { 1431 struct kvm_memory_attributes attrs; 1432 int r; 1433 1434 assert((attr & kvm_supported_memory_attributes) == attr); 1435 attrs.attributes = attr; 1436 attrs.address = start; 1437 attrs.size = size; 1438 attrs.flags = 0; 1439 1440 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1441 if (r) { 1442 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1443 "with attr 0x%" PRIx64 " error '%s'", 1444 start, size, attr, strerror(errno)); 1445 } 1446 return r; 1447 } 1448 1449 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1450 { 1451 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1452 } 1453 1454 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1455 { 1456 return kvm_set_memory_attributes(start, size, 0); 1457 } 1458 1459 /* Called with KVMMemoryListener.slots_lock held */ 1460 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1461 MemoryRegionSection *section, bool add) 1462 { 1463 KVMSlot *mem; 1464 int err; 1465 MemoryRegion *mr = section->mr; 1466 bool writable = !mr->readonly && !mr->rom_device; 1467 hwaddr start_addr, size, slot_size, mr_offset; 1468 ram_addr_t ram_start_offset; 1469 void *ram; 1470 1471 if (!memory_region_is_ram(mr)) { 1472 if (writable || !kvm_readonly_mem_allowed) { 1473 return; 1474 } else if (!mr->romd_mode) { 1475 /* If the memory device is not in romd_mode, then we actually want 1476 * to remove the kvm memory slot so all accesses will trap. */ 1477 add = false; 1478 } 1479 } 1480 1481 size = kvm_align_section(section, &start_addr); 1482 if (!size) { 1483 return; 1484 } 1485 1486 /* The offset of the kvmslot within the memory region */ 1487 mr_offset = section->offset_within_region + start_addr - 1488 section->offset_within_address_space; 1489 1490 /* use aligned delta to align the ram address and offset */ 1491 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1492 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1493 1494 if (!add) { 1495 do { 1496 slot_size = MIN(kvm_max_slot_size, size); 1497 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1498 if (!mem) { 1499 return; 1500 } 1501 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1502 /* 1503 * NOTE: We should be aware of the fact that here we're only 1504 * doing a best effort to sync dirty bits. No matter whether 1505 * we're using dirty log or dirty ring, we ignored two facts: 1506 * 1507 * (1) dirty bits can reside in hardware buffers (PML) 1508 * 1509 * (2) after we collected dirty bits here, pages can be dirtied 1510 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1511 * remove the slot. 1512 * 1513 * Not easy. Let's cross the fingers until it's fixed. 1514 */ 1515 if (kvm_state->kvm_dirty_ring_size) { 1516 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1517 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1518 kvm_slot_sync_dirty_pages(mem); 1519 kvm_slot_get_dirty_log(kvm_state, mem); 1520 } 1521 } else { 1522 kvm_slot_get_dirty_log(kvm_state, mem); 1523 } 1524 kvm_slot_sync_dirty_pages(mem); 1525 } 1526 1527 /* unregister the slot */ 1528 g_free(mem->dirty_bmap); 1529 mem->dirty_bmap = NULL; 1530 mem->memory_size = 0; 1531 mem->flags = 0; 1532 err = kvm_set_user_memory_region(kml, mem, false); 1533 if (err) { 1534 fprintf(stderr, "%s: error unregistering slot: %s\n", 1535 __func__, strerror(-err)); 1536 abort(); 1537 } 1538 start_addr += slot_size; 1539 size -= slot_size; 1540 kml->nr_slots_used--; 1541 } while (size); 1542 return; 1543 } 1544 1545 /* register the new slot */ 1546 do { 1547 slot_size = MIN(kvm_max_slot_size, size); 1548 mem = kvm_alloc_slot(kml); 1549 mem->as_id = kml->as_id; 1550 mem->memory_size = slot_size; 1551 mem->start_addr = start_addr; 1552 mem->ram_start_offset = ram_start_offset; 1553 mem->ram = ram; 1554 mem->flags = kvm_mem_flags(mr); 1555 mem->guest_memfd = mr->ram_block->guest_memfd; 1556 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1557 1558 kvm_slot_init_dirty_bitmap(mem); 1559 err = kvm_set_user_memory_region(kml, mem, true); 1560 if (err) { 1561 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1562 strerror(-err)); 1563 abort(); 1564 } 1565 1566 if (memory_region_has_guest_memfd(mr)) { 1567 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1568 if (err) { 1569 error_report("%s: failed to set memory attribute private: %s", 1570 __func__, strerror(-err)); 1571 exit(1); 1572 } 1573 } 1574 1575 start_addr += slot_size; 1576 ram_start_offset += slot_size; 1577 ram += slot_size; 1578 size -= slot_size; 1579 kml->nr_slots_used++; 1580 } while (size); 1581 } 1582 1583 static void *kvm_dirty_ring_reaper_thread(void *data) 1584 { 1585 KVMState *s = data; 1586 struct KVMDirtyRingReaper *r = &s->reaper; 1587 1588 rcu_register_thread(); 1589 1590 trace_kvm_dirty_ring_reaper("init"); 1591 1592 while (true) { 1593 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1594 trace_kvm_dirty_ring_reaper("wait"); 1595 /* 1596 * TODO: provide a smarter timeout rather than a constant? 1597 */ 1598 sleep(1); 1599 1600 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1601 if (dirtylimit_in_service()) { 1602 continue; 1603 } 1604 1605 trace_kvm_dirty_ring_reaper("wakeup"); 1606 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1607 1608 bql_lock(); 1609 kvm_dirty_ring_reap(s, NULL); 1610 bql_unlock(); 1611 1612 r->reaper_iteration++; 1613 } 1614 1615 g_assert_not_reached(); 1616 } 1617 1618 static void kvm_dirty_ring_reaper_init(KVMState *s) 1619 { 1620 struct KVMDirtyRingReaper *r = &s->reaper; 1621 1622 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1623 kvm_dirty_ring_reaper_thread, 1624 s, QEMU_THREAD_JOINABLE); 1625 } 1626 1627 static int kvm_dirty_ring_init(KVMState *s) 1628 { 1629 uint32_t ring_size = s->kvm_dirty_ring_size; 1630 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1631 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1632 int ret; 1633 1634 s->kvm_dirty_ring_size = 0; 1635 s->kvm_dirty_ring_bytes = 0; 1636 1637 /* Bail if the dirty ring size isn't specified */ 1638 if (!ring_size) { 1639 return 0; 1640 } 1641 1642 /* 1643 * Read the max supported pages. Fall back to dirty logging mode 1644 * if the dirty ring isn't supported. 1645 */ 1646 ret = kvm_vm_check_extension(s, capability); 1647 if (ret <= 0) { 1648 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1649 ret = kvm_vm_check_extension(s, capability); 1650 } 1651 1652 if (ret <= 0) { 1653 warn_report("KVM dirty ring not available, using bitmap method"); 1654 return 0; 1655 } 1656 1657 if (ring_bytes > ret) { 1658 error_report("KVM dirty ring size %" PRIu32 " too big " 1659 "(maximum is %ld). Please use a smaller value.", 1660 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1661 return -EINVAL; 1662 } 1663 1664 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1665 if (ret) { 1666 error_report("Enabling of KVM dirty ring failed: %s. " 1667 "Suggested minimum value is 1024.", strerror(-ret)); 1668 return -EIO; 1669 } 1670 1671 /* Enable the backup bitmap if it is supported */ 1672 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1673 if (ret > 0) { 1674 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1675 if (ret) { 1676 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1677 "%s. ", strerror(-ret)); 1678 return -EIO; 1679 } 1680 1681 s->kvm_dirty_ring_with_bitmap = true; 1682 } 1683 1684 s->kvm_dirty_ring_size = ring_size; 1685 s->kvm_dirty_ring_bytes = ring_bytes; 1686 1687 return 0; 1688 } 1689 1690 static void kvm_region_add(MemoryListener *listener, 1691 MemoryRegionSection *section) 1692 { 1693 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1694 KVMMemoryUpdate *update; 1695 1696 update = g_new0(KVMMemoryUpdate, 1); 1697 update->section = *section; 1698 1699 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1700 } 1701 1702 static void kvm_region_del(MemoryListener *listener, 1703 MemoryRegionSection *section) 1704 { 1705 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1706 KVMMemoryUpdate *update; 1707 1708 update = g_new0(KVMMemoryUpdate, 1); 1709 update->section = *section; 1710 1711 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1712 } 1713 1714 static void kvm_region_commit(MemoryListener *listener) 1715 { 1716 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1717 listener); 1718 KVMMemoryUpdate *u1, *u2; 1719 bool need_inhibit = false; 1720 1721 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1722 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1723 return; 1724 } 1725 1726 /* 1727 * We have to be careful when regions to add overlap with ranges to remove. 1728 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1729 * is currently active. 1730 * 1731 * The lists are order by addresses, so it's easy to find overlaps. 1732 */ 1733 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1734 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1735 while (u1 && u2) { 1736 Range r1, r2; 1737 1738 range_init_nofail(&r1, u1->section.offset_within_address_space, 1739 int128_get64(u1->section.size)); 1740 range_init_nofail(&r2, u2->section.offset_within_address_space, 1741 int128_get64(u2->section.size)); 1742 1743 if (range_overlaps_range(&r1, &r2)) { 1744 need_inhibit = true; 1745 break; 1746 } 1747 if (range_lob(&r1) < range_lob(&r2)) { 1748 u1 = QSIMPLEQ_NEXT(u1, next); 1749 } else { 1750 u2 = QSIMPLEQ_NEXT(u2, next); 1751 } 1752 } 1753 1754 kvm_slots_lock(); 1755 if (need_inhibit) { 1756 accel_ioctl_inhibit_begin(); 1757 } 1758 1759 /* Remove all memslots before adding the new ones. */ 1760 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1761 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1762 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1763 1764 kvm_set_phys_mem(kml, &u1->section, false); 1765 memory_region_unref(u1->section.mr); 1766 1767 g_free(u1); 1768 } 1769 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1770 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1771 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1772 1773 memory_region_ref(u1->section.mr); 1774 kvm_set_phys_mem(kml, &u1->section, true); 1775 1776 g_free(u1); 1777 } 1778 1779 if (need_inhibit) { 1780 accel_ioctl_inhibit_end(); 1781 } 1782 kvm_slots_unlock(); 1783 } 1784 1785 static void kvm_log_sync(MemoryListener *listener, 1786 MemoryRegionSection *section) 1787 { 1788 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1789 1790 kvm_slots_lock(); 1791 kvm_physical_sync_dirty_bitmap(kml, section); 1792 kvm_slots_unlock(); 1793 } 1794 1795 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1796 { 1797 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1798 KVMState *s = kvm_state; 1799 KVMSlot *mem; 1800 int i; 1801 1802 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1803 kvm_dirty_ring_flush(); 1804 1805 kvm_slots_lock(); 1806 for (i = 0; i < kml->nr_slots_allocated; i++) { 1807 mem = &kml->slots[i]; 1808 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1809 kvm_slot_sync_dirty_pages(mem); 1810 1811 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1812 kvm_slot_get_dirty_log(s, mem)) { 1813 kvm_slot_sync_dirty_pages(mem); 1814 } 1815 1816 /* 1817 * This is not needed by KVM_GET_DIRTY_LOG because the 1818 * ioctl will unconditionally overwrite the whole region. 1819 * However kvm dirty ring has no such side effect. 1820 */ 1821 kvm_slot_reset_dirty_pages(mem); 1822 } 1823 } 1824 kvm_slots_unlock(); 1825 } 1826 1827 static void kvm_log_clear(MemoryListener *listener, 1828 MemoryRegionSection *section) 1829 { 1830 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1831 int r; 1832 1833 r = kvm_physical_log_clear(kml, section); 1834 if (r < 0) { 1835 error_report_once("%s: kvm log clear failed: mr=%s " 1836 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1837 section->mr->name, section->offset_within_region, 1838 int128_get64(section->size)); 1839 abort(); 1840 } 1841 } 1842 1843 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1844 MemoryRegionSection *section, 1845 bool match_data, uint64_t data, 1846 EventNotifier *e) 1847 { 1848 int fd = event_notifier_get_fd(e); 1849 int r; 1850 1851 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1852 data, true, int128_get64(section->size), 1853 match_data); 1854 if (r < 0) { 1855 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1856 __func__, strerror(-r), -r); 1857 abort(); 1858 } 1859 } 1860 1861 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1862 MemoryRegionSection *section, 1863 bool match_data, uint64_t data, 1864 EventNotifier *e) 1865 { 1866 int fd = event_notifier_get_fd(e); 1867 int r; 1868 1869 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1870 data, false, int128_get64(section->size), 1871 match_data); 1872 if (r < 0) { 1873 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1874 __func__, strerror(-r), -r); 1875 abort(); 1876 } 1877 } 1878 1879 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1880 MemoryRegionSection *section, 1881 bool match_data, uint64_t data, 1882 EventNotifier *e) 1883 { 1884 int fd = event_notifier_get_fd(e); 1885 int r; 1886 1887 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1888 data, true, int128_get64(section->size), 1889 match_data); 1890 if (r < 0) { 1891 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1892 __func__, strerror(-r), -r); 1893 abort(); 1894 } 1895 } 1896 1897 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1898 MemoryRegionSection *section, 1899 bool match_data, uint64_t data, 1900 EventNotifier *e) 1901 1902 { 1903 int fd = event_notifier_get_fd(e); 1904 int r; 1905 1906 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1907 data, false, int128_get64(section->size), 1908 match_data); 1909 if (r < 0) { 1910 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1911 __func__, strerror(-r), -r); 1912 abort(); 1913 } 1914 } 1915 1916 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1917 AddressSpace *as, int as_id, const char *name) 1918 { 1919 int i; 1920 1921 kml->as_id = as_id; 1922 1923 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1924 1925 QSIMPLEQ_INIT(&kml->transaction_add); 1926 QSIMPLEQ_INIT(&kml->transaction_del); 1927 1928 kml->listener.region_add = kvm_region_add; 1929 kml->listener.region_del = kvm_region_del; 1930 kml->listener.commit = kvm_region_commit; 1931 kml->listener.log_start = kvm_log_start; 1932 kml->listener.log_stop = kvm_log_stop; 1933 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1934 kml->listener.name = name; 1935 1936 if (s->kvm_dirty_ring_size) { 1937 kml->listener.log_sync_global = kvm_log_sync_global; 1938 } else { 1939 kml->listener.log_sync = kvm_log_sync; 1940 kml->listener.log_clear = kvm_log_clear; 1941 } 1942 1943 memory_listener_register(&kml->listener, as); 1944 1945 for (i = 0; i < s->nr_as; ++i) { 1946 if (!s->as[i].as) { 1947 s->as[i].as = as; 1948 s->as[i].ml = kml; 1949 break; 1950 } 1951 } 1952 } 1953 1954 static MemoryListener kvm_io_listener = { 1955 .name = "kvm-io", 1956 .coalesced_io_add = kvm_coalesce_pio_add, 1957 .coalesced_io_del = kvm_coalesce_pio_del, 1958 .eventfd_add = kvm_io_ioeventfd_add, 1959 .eventfd_del = kvm_io_ioeventfd_del, 1960 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1961 }; 1962 1963 int kvm_set_irq(KVMState *s, int irq, int level) 1964 { 1965 struct kvm_irq_level event; 1966 int ret; 1967 1968 assert(kvm_async_interrupts_enabled()); 1969 1970 event.level = level; 1971 event.irq = irq; 1972 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1973 if (ret < 0) { 1974 perror("kvm_set_irq"); 1975 abort(); 1976 } 1977 1978 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1979 } 1980 1981 #ifdef KVM_CAP_IRQ_ROUTING 1982 typedef struct KVMMSIRoute { 1983 struct kvm_irq_routing_entry kroute; 1984 QTAILQ_ENTRY(KVMMSIRoute) entry; 1985 } KVMMSIRoute; 1986 1987 static void set_gsi(KVMState *s, unsigned int gsi) 1988 { 1989 set_bit(gsi, s->used_gsi_bitmap); 1990 } 1991 1992 static void clear_gsi(KVMState *s, unsigned int gsi) 1993 { 1994 clear_bit(gsi, s->used_gsi_bitmap); 1995 } 1996 1997 void kvm_init_irq_routing(KVMState *s) 1998 { 1999 int gsi_count; 2000 2001 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 2002 if (gsi_count > 0) { 2003 /* Round up so we can search ints using ffs */ 2004 s->used_gsi_bitmap = bitmap_new(gsi_count); 2005 s->gsi_count = gsi_count; 2006 } 2007 2008 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 2009 s->nr_allocated_irq_routes = 0; 2010 2011 kvm_arch_init_irq_routing(s); 2012 } 2013 2014 void kvm_irqchip_commit_routes(KVMState *s) 2015 { 2016 int ret; 2017 2018 if (kvm_gsi_direct_mapping()) { 2019 return; 2020 } 2021 2022 if (!kvm_gsi_routing_enabled()) { 2023 return; 2024 } 2025 2026 s->irq_routes->flags = 0; 2027 trace_kvm_irqchip_commit_routes(); 2028 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2029 assert(ret == 0); 2030 } 2031 2032 void kvm_add_routing_entry(KVMState *s, 2033 struct kvm_irq_routing_entry *entry) 2034 { 2035 struct kvm_irq_routing_entry *new; 2036 int n, size; 2037 2038 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2039 n = s->nr_allocated_irq_routes * 2; 2040 if (n < 64) { 2041 n = 64; 2042 } 2043 size = sizeof(struct kvm_irq_routing); 2044 size += n * sizeof(*new); 2045 s->irq_routes = g_realloc(s->irq_routes, size); 2046 s->nr_allocated_irq_routes = n; 2047 } 2048 n = s->irq_routes->nr++; 2049 new = &s->irq_routes->entries[n]; 2050 2051 *new = *entry; 2052 2053 set_gsi(s, entry->gsi); 2054 } 2055 2056 static int kvm_update_routing_entry(KVMState *s, 2057 struct kvm_irq_routing_entry *new_entry) 2058 { 2059 struct kvm_irq_routing_entry *entry; 2060 int n; 2061 2062 for (n = 0; n < s->irq_routes->nr; n++) { 2063 entry = &s->irq_routes->entries[n]; 2064 if (entry->gsi != new_entry->gsi) { 2065 continue; 2066 } 2067 2068 if(!memcmp(entry, new_entry, sizeof *entry)) { 2069 return 0; 2070 } 2071 2072 *entry = *new_entry; 2073 2074 return 0; 2075 } 2076 2077 return -ESRCH; 2078 } 2079 2080 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2081 { 2082 struct kvm_irq_routing_entry e = {}; 2083 2084 assert(pin < s->gsi_count); 2085 2086 e.gsi = irq; 2087 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2088 e.flags = 0; 2089 e.u.irqchip.irqchip = irqchip; 2090 e.u.irqchip.pin = pin; 2091 kvm_add_routing_entry(s, &e); 2092 } 2093 2094 void kvm_irqchip_release_virq(KVMState *s, int virq) 2095 { 2096 struct kvm_irq_routing_entry *e; 2097 int i; 2098 2099 if (kvm_gsi_direct_mapping()) { 2100 return; 2101 } 2102 2103 for (i = 0; i < s->irq_routes->nr; i++) { 2104 e = &s->irq_routes->entries[i]; 2105 if (e->gsi == virq) { 2106 s->irq_routes->nr--; 2107 *e = s->irq_routes->entries[s->irq_routes->nr]; 2108 } 2109 } 2110 clear_gsi(s, virq); 2111 kvm_arch_release_virq_post(virq); 2112 trace_kvm_irqchip_release_virq(virq); 2113 } 2114 2115 void kvm_irqchip_add_change_notifier(Notifier *n) 2116 { 2117 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2118 } 2119 2120 void kvm_irqchip_remove_change_notifier(Notifier *n) 2121 { 2122 notifier_remove(n); 2123 } 2124 2125 void kvm_irqchip_change_notify(void) 2126 { 2127 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2128 } 2129 2130 int kvm_irqchip_get_virq(KVMState *s) 2131 { 2132 int next_virq; 2133 2134 /* Return the lowest unused GSI in the bitmap */ 2135 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2136 if (next_virq >= s->gsi_count) { 2137 return -ENOSPC; 2138 } else { 2139 return next_virq; 2140 } 2141 } 2142 2143 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2144 { 2145 struct kvm_msi msi; 2146 2147 msi.address_lo = (uint32_t)msg.address; 2148 msi.address_hi = msg.address >> 32; 2149 msi.data = le32_to_cpu(msg.data); 2150 msi.flags = 0; 2151 memset(msi.pad, 0, sizeof(msi.pad)); 2152 2153 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2154 } 2155 2156 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2157 { 2158 struct kvm_irq_routing_entry kroute = {}; 2159 int virq; 2160 KVMState *s = c->s; 2161 MSIMessage msg = {0, 0}; 2162 2163 if (pci_available && dev) { 2164 msg = pci_get_msi_message(dev, vector); 2165 } 2166 2167 if (kvm_gsi_direct_mapping()) { 2168 return kvm_arch_msi_data_to_gsi(msg.data); 2169 } 2170 2171 if (!kvm_gsi_routing_enabled()) { 2172 return -ENOSYS; 2173 } 2174 2175 virq = kvm_irqchip_get_virq(s); 2176 if (virq < 0) { 2177 return virq; 2178 } 2179 2180 kroute.gsi = virq; 2181 kroute.type = KVM_IRQ_ROUTING_MSI; 2182 kroute.flags = 0; 2183 kroute.u.msi.address_lo = (uint32_t)msg.address; 2184 kroute.u.msi.address_hi = msg.address >> 32; 2185 kroute.u.msi.data = le32_to_cpu(msg.data); 2186 if (pci_available && kvm_msi_devid_required()) { 2187 kroute.flags = KVM_MSI_VALID_DEVID; 2188 kroute.u.msi.devid = pci_requester_id(dev); 2189 } 2190 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2191 kvm_irqchip_release_virq(s, virq); 2192 return -EINVAL; 2193 } 2194 2195 if (s->irq_routes->nr < s->gsi_count) { 2196 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2197 vector, virq); 2198 2199 kvm_add_routing_entry(s, &kroute); 2200 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2201 c->changes++; 2202 } else { 2203 kvm_irqchip_release_virq(s, virq); 2204 return -ENOSPC; 2205 } 2206 2207 return virq; 2208 } 2209 2210 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2211 PCIDevice *dev) 2212 { 2213 struct kvm_irq_routing_entry kroute = {}; 2214 2215 if (kvm_gsi_direct_mapping()) { 2216 return 0; 2217 } 2218 2219 if (!kvm_irqchip_in_kernel()) { 2220 return -ENOSYS; 2221 } 2222 2223 kroute.gsi = virq; 2224 kroute.type = KVM_IRQ_ROUTING_MSI; 2225 kroute.flags = 0; 2226 kroute.u.msi.address_lo = (uint32_t)msg.address; 2227 kroute.u.msi.address_hi = msg.address >> 32; 2228 kroute.u.msi.data = le32_to_cpu(msg.data); 2229 if (pci_available && kvm_msi_devid_required()) { 2230 kroute.flags = KVM_MSI_VALID_DEVID; 2231 kroute.u.msi.devid = pci_requester_id(dev); 2232 } 2233 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2234 return -EINVAL; 2235 } 2236 2237 trace_kvm_irqchip_update_msi_route(virq); 2238 2239 return kvm_update_routing_entry(s, &kroute); 2240 } 2241 2242 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2243 EventNotifier *resample, int virq, 2244 bool assign) 2245 { 2246 int fd = event_notifier_get_fd(event); 2247 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2248 2249 struct kvm_irqfd irqfd = { 2250 .fd = fd, 2251 .gsi = virq, 2252 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2253 }; 2254 2255 if (rfd != -1) { 2256 assert(assign); 2257 if (kvm_irqchip_is_split()) { 2258 /* 2259 * When the slow irqchip (e.g. IOAPIC) is in the 2260 * userspace, KVM kernel resamplefd will not work because 2261 * the EOI of the interrupt will be delivered to userspace 2262 * instead, so the KVM kernel resamplefd kick will be 2263 * skipped. The userspace here mimics what the kernel 2264 * provides with resamplefd, remember the resamplefd and 2265 * kick it when we receive EOI of this IRQ. 2266 * 2267 * This is hackery because IOAPIC is mostly bypassed 2268 * (except EOI broadcasts) when irqfd is used. However 2269 * this can bring much performance back for split irqchip 2270 * with INTx IRQs (for VFIO, this gives 93% perf of the 2271 * full fast path, which is 46% perf boost comparing to 2272 * the INTx slow path). 2273 */ 2274 kvm_resample_fd_insert(virq, resample); 2275 } else { 2276 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2277 irqfd.resamplefd = rfd; 2278 } 2279 } else if (!assign) { 2280 if (kvm_irqchip_is_split()) { 2281 kvm_resample_fd_remove(virq); 2282 } 2283 } 2284 2285 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2286 } 2287 2288 #else /* !KVM_CAP_IRQ_ROUTING */ 2289 2290 void kvm_init_irq_routing(KVMState *s) 2291 { 2292 } 2293 2294 void kvm_irqchip_release_virq(KVMState *s, int virq) 2295 { 2296 } 2297 2298 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2299 { 2300 abort(); 2301 } 2302 2303 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2304 { 2305 return -ENOSYS; 2306 } 2307 2308 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2309 { 2310 return -ENOSYS; 2311 } 2312 2313 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2314 { 2315 return -ENOSYS; 2316 } 2317 2318 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2319 EventNotifier *resample, int virq, 2320 bool assign) 2321 { 2322 abort(); 2323 } 2324 2325 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2326 { 2327 return -ENOSYS; 2328 } 2329 #endif /* !KVM_CAP_IRQ_ROUTING */ 2330 2331 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2332 EventNotifier *rn, int virq) 2333 { 2334 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2335 } 2336 2337 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2338 int virq) 2339 { 2340 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2341 } 2342 2343 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2344 EventNotifier *rn, qemu_irq irq) 2345 { 2346 gpointer key, gsi; 2347 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2348 2349 if (!found) { 2350 return -ENXIO; 2351 } 2352 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2353 } 2354 2355 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2356 qemu_irq irq) 2357 { 2358 gpointer key, gsi; 2359 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2360 2361 if (!found) { 2362 return -ENXIO; 2363 } 2364 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2365 } 2366 2367 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2368 { 2369 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2370 } 2371 2372 static void kvm_irqchip_create(KVMState *s) 2373 { 2374 int ret; 2375 2376 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2377 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2378 ; 2379 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2380 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2381 if (ret < 0) { 2382 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2383 exit(1); 2384 } 2385 } else { 2386 return; 2387 } 2388 2389 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2390 fprintf(stderr, "kvm: irqfd not implemented\n"); 2391 exit(1); 2392 } 2393 2394 /* First probe and see if there's a arch-specific hook to create the 2395 * in-kernel irqchip for us */ 2396 ret = kvm_arch_irqchip_create(s); 2397 if (ret == 0) { 2398 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2399 error_report("Split IRQ chip mode not supported."); 2400 exit(1); 2401 } else { 2402 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2403 } 2404 } 2405 if (ret < 0) { 2406 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2407 exit(1); 2408 } 2409 2410 kvm_kernel_irqchip = true; 2411 /* If we have an in-kernel IRQ chip then we must have asynchronous 2412 * interrupt delivery (though the reverse is not necessarily true) 2413 */ 2414 kvm_async_interrupts_allowed = true; 2415 kvm_halt_in_kernel_allowed = true; 2416 2417 kvm_init_irq_routing(s); 2418 2419 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2420 } 2421 2422 /* Find number of supported CPUs using the recommended 2423 * procedure from the kernel API documentation to cope with 2424 * older kernels that may be missing capabilities. 2425 */ 2426 static int kvm_recommended_vcpus(KVMState *s) 2427 { 2428 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2429 return (ret) ? ret : 4; 2430 } 2431 2432 static int kvm_max_vcpus(KVMState *s) 2433 { 2434 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2435 return (ret) ? ret : kvm_recommended_vcpus(s); 2436 } 2437 2438 static int kvm_max_vcpu_id(KVMState *s) 2439 { 2440 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2441 return (ret) ? ret : kvm_max_vcpus(s); 2442 } 2443 2444 bool kvm_vcpu_id_is_valid(int vcpu_id) 2445 { 2446 KVMState *s = KVM_STATE(current_accel()); 2447 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2448 } 2449 2450 bool kvm_dirty_ring_enabled(void) 2451 { 2452 return kvm_state && kvm_state->kvm_dirty_ring_size; 2453 } 2454 2455 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2456 strList *names, strList *targets, Error **errp); 2457 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2458 2459 uint32_t kvm_dirty_ring_size(void) 2460 { 2461 return kvm_state->kvm_dirty_ring_size; 2462 } 2463 2464 static int do_kvm_create_vm(MachineState *ms, int type) 2465 { 2466 KVMState *s; 2467 int ret; 2468 2469 s = KVM_STATE(ms->accelerator); 2470 2471 do { 2472 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2473 } while (ret == -EINTR); 2474 2475 if (ret < 0) { 2476 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2477 2478 #ifdef TARGET_S390X 2479 if (ret == -EINVAL) { 2480 error_printf("Host kernel setup problem detected." 2481 " Please verify:\n"); 2482 error_printf("- for kernels supporting the" 2483 " switch_amode or user_mode parameters, whether"); 2484 error_printf(" user space is running in primary address space\n"); 2485 error_printf("- for kernels supporting the vm.allocate_pgste" 2486 " sysctl, whether it is enabled\n"); 2487 } 2488 #elif defined(TARGET_PPC) 2489 if (ret == -EINVAL) { 2490 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2491 (type == 2) ? "pr" : "hv"); 2492 } 2493 #endif 2494 } 2495 2496 return ret; 2497 } 2498 2499 static int find_kvm_machine_type(MachineState *ms) 2500 { 2501 MachineClass *mc = MACHINE_GET_CLASS(ms); 2502 int type; 2503 2504 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2505 g_autofree char *kvm_type; 2506 kvm_type = object_property_get_str(OBJECT(current_machine), 2507 "kvm-type", 2508 &error_abort); 2509 type = mc->kvm_type(ms, kvm_type); 2510 } else if (mc->kvm_type) { 2511 type = mc->kvm_type(ms, NULL); 2512 } else { 2513 type = kvm_arch_get_default_type(ms); 2514 } 2515 return type; 2516 } 2517 2518 static int kvm_setup_dirty_ring(KVMState *s) 2519 { 2520 uint64_t dirty_log_manual_caps; 2521 int ret; 2522 2523 /* 2524 * Enable KVM dirty ring if supported, otherwise fall back to 2525 * dirty logging mode 2526 */ 2527 ret = kvm_dirty_ring_init(s); 2528 if (ret < 0) { 2529 return ret; 2530 } 2531 2532 /* 2533 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2534 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2535 * page is wr-protected initially, which is against how kvm dirty ring is 2536 * usage - kvm dirty ring requires all pages are wr-protected at the very 2537 * beginning. Enabling this feature for dirty ring causes data corruption. 2538 * 2539 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2540 * we may expect a higher stall time when starting the migration. In the 2541 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2542 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2543 * guest pages. 2544 */ 2545 if (!s->kvm_dirty_ring_size) { 2546 dirty_log_manual_caps = 2547 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2548 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2549 KVM_DIRTY_LOG_INITIALLY_SET); 2550 s->manual_dirty_log_protect = dirty_log_manual_caps; 2551 if (dirty_log_manual_caps) { 2552 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2553 dirty_log_manual_caps); 2554 if (ret) { 2555 warn_report("Trying to enable capability %"PRIu64" of " 2556 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2557 "Falling back to the legacy mode. ", 2558 dirty_log_manual_caps); 2559 s->manual_dirty_log_protect = 0; 2560 } 2561 } 2562 } 2563 2564 return 0; 2565 } 2566 2567 static int kvm_init(MachineState *ms) 2568 { 2569 MachineClass *mc = MACHINE_GET_CLASS(ms); 2570 static const char upgrade_note[] = 2571 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2572 "(see http://sourceforge.net/projects/kvm).\n"; 2573 const struct { 2574 const char *name; 2575 int num; 2576 } num_cpus[] = { 2577 { "SMP", ms->smp.cpus }, 2578 { "hotpluggable", ms->smp.max_cpus }, 2579 { /* end of list */ } 2580 }, *nc = num_cpus; 2581 int soft_vcpus_limit, hard_vcpus_limit; 2582 KVMState *s; 2583 const KVMCapabilityInfo *missing_cap; 2584 int ret; 2585 int type; 2586 2587 qemu_mutex_init(&kml_slots_lock); 2588 2589 s = KVM_STATE(ms->accelerator); 2590 2591 /* 2592 * On systems where the kernel can support different base page 2593 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2594 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2595 * page size for the system though. 2596 */ 2597 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2598 2599 s->sigmask_len = 8; 2600 accel_blocker_init(); 2601 2602 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2603 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2604 #endif 2605 QLIST_INIT(&s->kvm_parked_vcpus); 2606 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2607 if (s->fd == -1) { 2608 error_report("Could not access KVM kernel module: %m"); 2609 ret = -errno; 2610 goto err; 2611 } 2612 2613 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2614 if (ret < KVM_API_VERSION) { 2615 if (ret >= 0) { 2616 ret = -EINVAL; 2617 } 2618 error_report("kvm version too old"); 2619 goto err; 2620 } 2621 2622 if (ret > KVM_API_VERSION) { 2623 ret = -EINVAL; 2624 error_report("kvm version not supported"); 2625 goto err; 2626 } 2627 2628 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2629 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2630 2631 /* If unspecified, use the default value */ 2632 if (!s->nr_slots_max) { 2633 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2634 } 2635 2636 type = find_kvm_machine_type(ms); 2637 if (type < 0) { 2638 ret = -EINVAL; 2639 goto err; 2640 } 2641 2642 ret = do_kvm_create_vm(ms, type); 2643 if (ret < 0) { 2644 goto err; 2645 } 2646 2647 s->vmfd = ret; 2648 2649 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2650 if (s->nr_as <= 1) { 2651 s->nr_as = 1; 2652 } 2653 s->as = g_new0(struct KVMAs, s->nr_as); 2654 2655 /* check the vcpu limits */ 2656 soft_vcpus_limit = kvm_recommended_vcpus(s); 2657 hard_vcpus_limit = kvm_max_vcpus(s); 2658 2659 while (nc->name) { 2660 if (nc->num > soft_vcpus_limit) { 2661 warn_report("Number of %s cpus requested (%d) exceeds " 2662 "the recommended cpus supported by KVM (%d)", 2663 nc->name, nc->num, soft_vcpus_limit); 2664 2665 if (nc->num > hard_vcpus_limit) { 2666 error_report("Number of %s cpus requested (%d) exceeds " 2667 "the maximum cpus supported by KVM (%d)", 2668 nc->name, nc->num, hard_vcpus_limit); 2669 exit(1); 2670 } 2671 } 2672 nc++; 2673 } 2674 2675 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2676 if (!missing_cap) { 2677 missing_cap = 2678 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2679 } 2680 if (missing_cap) { 2681 ret = -EINVAL; 2682 error_report("kvm does not support %s", missing_cap->name); 2683 error_printf("%s", upgrade_note); 2684 goto err; 2685 } 2686 2687 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2688 s->coalesced_pio = s->coalesced_mmio && 2689 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2690 2691 ret = kvm_setup_dirty_ring(s); 2692 if (ret < 0) { 2693 goto err; 2694 } 2695 2696 #ifdef KVM_CAP_VCPU_EVENTS 2697 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2698 #endif 2699 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2700 2701 s->irq_set_ioctl = KVM_IRQ_LINE; 2702 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2703 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2704 } 2705 2706 kvm_readonly_mem_allowed = 2707 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2708 2709 kvm_resamplefds_allowed = 2710 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2711 2712 kvm_vm_attributes_allowed = 2713 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2714 2715 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2716 kvm_has_guest_debug = 2717 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2718 #endif 2719 2720 kvm_sstep_flags = 0; 2721 if (kvm_has_guest_debug) { 2722 kvm_sstep_flags = SSTEP_ENABLE; 2723 2724 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2725 int guest_debug_flags = 2726 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2727 2728 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2729 kvm_sstep_flags |= SSTEP_NOIRQ; 2730 } 2731 #endif 2732 } 2733 2734 kvm_state = s; 2735 2736 ret = kvm_arch_init(ms, s); 2737 if (ret < 0) { 2738 goto err; 2739 } 2740 2741 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2742 kvm_guest_memfd_supported = 2743 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2744 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2745 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2746 2747 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2748 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2749 } 2750 2751 qemu_register_reset(kvm_unpoison_all, NULL); 2752 2753 if (s->kernel_irqchip_allowed) { 2754 kvm_irqchip_create(s); 2755 } 2756 2757 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2758 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2759 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2760 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2761 2762 kvm_memory_listener_register(s, &s->memory_listener, 2763 &address_space_memory, 0, "kvm-memory"); 2764 memory_listener_register(&kvm_io_listener, 2765 &address_space_io); 2766 2767 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2768 if (!s->sync_mmu) { 2769 ret = ram_block_discard_disable(true); 2770 assert(!ret); 2771 } 2772 2773 if (s->kvm_dirty_ring_size) { 2774 kvm_dirty_ring_reaper_init(s); 2775 } 2776 2777 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2778 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2779 query_stats_schemas_cb); 2780 } 2781 2782 return 0; 2783 2784 err: 2785 assert(ret < 0); 2786 if (s->vmfd >= 0) { 2787 close(s->vmfd); 2788 } 2789 if (s->fd != -1) { 2790 close(s->fd); 2791 } 2792 g_free(s->as); 2793 g_free(s->memory_listener.slots); 2794 2795 return ret; 2796 } 2797 2798 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2799 { 2800 s->sigmask_len = sigmask_len; 2801 } 2802 2803 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2804 int size, uint32_t count) 2805 { 2806 int i; 2807 uint8_t *ptr = data; 2808 2809 for (i = 0; i < count; i++) { 2810 address_space_rw(&address_space_io, port, attrs, 2811 ptr, size, 2812 direction == KVM_EXIT_IO_OUT); 2813 ptr += size; 2814 } 2815 } 2816 2817 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2818 { 2819 int i; 2820 2821 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2822 run->internal.suberror); 2823 2824 for (i = 0; i < run->internal.ndata; ++i) { 2825 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2826 i, (uint64_t)run->internal.data[i]); 2827 } 2828 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2829 fprintf(stderr, "emulation failure\n"); 2830 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2831 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2832 return EXCP_INTERRUPT; 2833 } 2834 } 2835 /* FIXME: Should trigger a qmp message to let management know 2836 * something went wrong. 2837 */ 2838 return -1; 2839 } 2840 2841 void kvm_flush_coalesced_mmio_buffer(void) 2842 { 2843 KVMState *s = kvm_state; 2844 2845 if (!s || s->coalesced_flush_in_progress) { 2846 return; 2847 } 2848 2849 s->coalesced_flush_in_progress = true; 2850 2851 if (s->coalesced_mmio_ring) { 2852 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2853 while (ring->first != ring->last) { 2854 struct kvm_coalesced_mmio *ent; 2855 2856 ent = &ring->coalesced_mmio[ring->first]; 2857 2858 if (ent->pio == 1) { 2859 address_space_write(&address_space_io, ent->phys_addr, 2860 MEMTXATTRS_UNSPECIFIED, ent->data, 2861 ent->len); 2862 } else { 2863 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2864 } 2865 smp_wmb(); 2866 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2867 } 2868 } 2869 2870 s->coalesced_flush_in_progress = false; 2871 } 2872 2873 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2874 { 2875 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2876 Error *err = NULL; 2877 int ret = kvm_arch_get_registers(cpu, &err); 2878 if (ret) { 2879 if (err) { 2880 error_reportf_err(err, "Failed to synchronize CPU state: "); 2881 } else { 2882 error_report("Failed to get registers: %s", strerror(-ret)); 2883 } 2884 2885 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2886 vm_stop(RUN_STATE_INTERNAL_ERROR); 2887 } 2888 2889 cpu->vcpu_dirty = true; 2890 } 2891 } 2892 2893 void kvm_cpu_synchronize_state(CPUState *cpu) 2894 { 2895 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2896 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2897 } 2898 } 2899 2900 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2901 { 2902 Error *err = NULL; 2903 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2904 if (ret) { 2905 if (err) { 2906 error_reportf_err(err, "Restoring resisters after reset: "); 2907 } else { 2908 error_report("Failed to put registers after reset: %s", 2909 strerror(-ret)); 2910 } 2911 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2912 vm_stop(RUN_STATE_INTERNAL_ERROR); 2913 } 2914 2915 cpu->vcpu_dirty = false; 2916 } 2917 2918 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2919 { 2920 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2921 2922 if (cpu == first_cpu) { 2923 kvm_reset_parked_vcpus(kvm_state); 2924 } 2925 } 2926 2927 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2928 { 2929 Error *err = NULL; 2930 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2931 if (ret) { 2932 if (err) { 2933 error_reportf_err(err, "Putting registers after init: "); 2934 } else { 2935 error_report("Failed to put registers after init: %s", 2936 strerror(-ret)); 2937 } 2938 exit(1); 2939 } 2940 2941 cpu->vcpu_dirty = false; 2942 } 2943 2944 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2945 { 2946 if (!kvm_state->guest_state_protected) { 2947 /* 2948 * This runs before the machine_init_done notifiers, and is the last 2949 * opportunity to synchronize the state of confidential guests. 2950 */ 2951 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2952 } 2953 } 2954 2955 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2956 { 2957 cpu->vcpu_dirty = true; 2958 } 2959 2960 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2961 { 2962 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2963 } 2964 2965 #ifdef KVM_HAVE_MCE_INJECTION 2966 static __thread void *pending_sigbus_addr; 2967 static __thread int pending_sigbus_code; 2968 static __thread bool have_sigbus_pending; 2969 #endif 2970 2971 static void kvm_cpu_kick(CPUState *cpu) 2972 { 2973 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2974 } 2975 2976 static void kvm_cpu_kick_self(void) 2977 { 2978 if (kvm_immediate_exit) { 2979 kvm_cpu_kick(current_cpu); 2980 } else { 2981 qemu_cpu_kick_self(); 2982 } 2983 } 2984 2985 static void kvm_eat_signals(CPUState *cpu) 2986 { 2987 struct timespec ts = { 0, 0 }; 2988 siginfo_t siginfo; 2989 sigset_t waitset; 2990 sigset_t chkset; 2991 int r; 2992 2993 if (kvm_immediate_exit) { 2994 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2995 /* Write kvm_run->immediate_exit before the cpu->exit_request 2996 * write in kvm_cpu_exec. 2997 */ 2998 smp_wmb(); 2999 return; 3000 } 3001 3002 sigemptyset(&waitset); 3003 sigaddset(&waitset, SIG_IPI); 3004 3005 do { 3006 r = sigtimedwait(&waitset, &siginfo, &ts); 3007 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 3008 perror("sigtimedwait"); 3009 exit(1); 3010 } 3011 3012 r = sigpending(&chkset); 3013 if (r == -1) { 3014 perror("sigpending"); 3015 exit(1); 3016 } 3017 } while (sigismember(&chkset, SIG_IPI)); 3018 } 3019 3020 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3021 { 3022 MemoryRegionSection section; 3023 ram_addr_t offset; 3024 MemoryRegion *mr; 3025 RAMBlock *rb; 3026 void *addr; 3027 int ret = -EINVAL; 3028 3029 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3030 3031 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3032 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3033 return ret; 3034 } 3035 3036 if (!size) { 3037 return ret; 3038 } 3039 3040 section = memory_region_find(get_system_memory(), start, size); 3041 mr = section.mr; 3042 if (!mr) { 3043 /* 3044 * Ignore converting non-assigned region to shared. 3045 * 3046 * TDX requires vMMIO region to be shared to inject #VE to guest. 3047 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3048 * and vIO-APIC 0xFEC00000 4K page. 3049 * OVMF assigns 32bit PCI MMIO region to 3050 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3051 */ 3052 if (!to_private) { 3053 return 0; 3054 } 3055 return ret; 3056 } 3057 3058 if (!memory_region_has_guest_memfd(mr)) { 3059 /* 3060 * Because vMMIO region must be shared, guest TD may convert vMMIO 3061 * region to shared explicitly. Don't complain such case. See 3062 * memory_region_type() for checking if the region is MMIO region. 3063 */ 3064 if (!to_private && 3065 !memory_region_is_ram(mr) && 3066 !memory_region_is_ram_device(mr) && 3067 !memory_region_is_rom(mr) && 3068 !memory_region_is_romd(mr)) { 3069 ret = 0; 3070 } else { 3071 error_report("Convert non guest_memfd backed memory region " 3072 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3073 start, size, to_private ? "private" : "shared"); 3074 } 3075 goto out_unref; 3076 } 3077 3078 if (to_private) { 3079 ret = kvm_set_memory_attributes_private(start, size); 3080 } else { 3081 ret = kvm_set_memory_attributes_shared(start, size); 3082 } 3083 if (ret) { 3084 goto out_unref; 3085 } 3086 3087 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3088 rb = qemu_ram_block_from_host(addr, false, &offset); 3089 3090 if (to_private) { 3091 if (rb->page_size != qemu_real_host_page_size()) { 3092 /* 3093 * shared memory is backed by hugetlb, which is supposed to be 3094 * pre-allocated and doesn't need to be discarded 3095 */ 3096 goto out_unref; 3097 } 3098 ret = ram_block_discard_range(rb, offset, size); 3099 } else { 3100 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3101 } 3102 3103 out_unref: 3104 memory_region_unref(mr); 3105 return ret; 3106 } 3107 3108 int kvm_cpu_exec(CPUState *cpu) 3109 { 3110 struct kvm_run *run = cpu->kvm_run; 3111 int ret, run_ret; 3112 3113 trace_kvm_cpu_exec(); 3114 3115 if (kvm_arch_process_async_events(cpu)) { 3116 qatomic_set(&cpu->exit_request, 0); 3117 return EXCP_HLT; 3118 } 3119 3120 bql_unlock(); 3121 cpu_exec_start(cpu); 3122 3123 do { 3124 MemTxAttrs attrs; 3125 3126 if (cpu->vcpu_dirty) { 3127 Error *err = NULL; 3128 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3129 if (ret) { 3130 if (err) { 3131 error_reportf_err(err, "Putting registers after init: "); 3132 } else { 3133 error_report("Failed to put registers after init: %s", 3134 strerror(-ret)); 3135 } 3136 ret = -1; 3137 break; 3138 } 3139 3140 cpu->vcpu_dirty = false; 3141 } 3142 3143 kvm_arch_pre_run(cpu, run); 3144 if (qatomic_read(&cpu->exit_request)) { 3145 trace_kvm_interrupt_exit_request(); 3146 /* 3147 * KVM requires us to reenter the kernel after IO exits to complete 3148 * instruction emulation. This self-signal will ensure that we 3149 * leave ASAP again. 3150 */ 3151 kvm_cpu_kick_self(); 3152 } 3153 3154 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3155 * Matching barrier in kvm_eat_signals. 3156 */ 3157 smp_rmb(); 3158 3159 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3160 3161 attrs = kvm_arch_post_run(cpu, run); 3162 3163 #ifdef KVM_HAVE_MCE_INJECTION 3164 if (unlikely(have_sigbus_pending)) { 3165 bql_lock(); 3166 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3167 pending_sigbus_addr); 3168 have_sigbus_pending = false; 3169 bql_unlock(); 3170 } 3171 #endif 3172 3173 if (run_ret < 0) { 3174 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3175 trace_kvm_io_window_exit(); 3176 kvm_eat_signals(cpu); 3177 ret = EXCP_INTERRUPT; 3178 break; 3179 } 3180 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3181 fprintf(stderr, "error: kvm run failed %s\n", 3182 strerror(-run_ret)); 3183 #ifdef TARGET_PPC 3184 if (run_ret == -EBUSY) { 3185 fprintf(stderr, 3186 "This is probably because your SMT is enabled.\n" 3187 "VCPU can only run on primary threads with all " 3188 "secondary threads offline.\n"); 3189 } 3190 #endif 3191 ret = -1; 3192 break; 3193 } 3194 } 3195 3196 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3197 switch (run->exit_reason) { 3198 case KVM_EXIT_IO: 3199 /* Called outside BQL */ 3200 kvm_handle_io(run->io.port, attrs, 3201 (uint8_t *)run + run->io.data_offset, 3202 run->io.direction, 3203 run->io.size, 3204 run->io.count); 3205 ret = 0; 3206 break; 3207 case KVM_EXIT_MMIO: 3208 /* Called outside BQL */ 3209 address_space_rw(&address_space_memory, 3210 run->mmio.phys_addr, attrs, 3211 run->mmio.data, 3212 run->mmio.len, 3213 run->mmio.is_write); 3214 ret = 0; 3215 break; 3216 case KVM_EXIT_IRQ_WINDOW_OPEN: 3217 ret = EXCP_INTERRUPT; 3218 break; 3219 case KVM_EXIT_SHUTDOWN: 3220 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3221 ret = EXCP_INTERRUPT; 3222 break; 3223 case KVM_EXIT_UNKNOWN: 3224 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3225 (uint64_t)run->hw.hardware_exit_reason); 3226 ret = -1; 3227 break; 3228 case KVM_EXIT_INTERNAL_ERROR: 3229 ret = kvm_handle_internal_error(cpu, run); 3230 break; 3231 case KVM_EXIT_DIRTY_RING_FULL: 3232 /* 3233 * We shouldn't continue if the dirty ring of this vcpu is 3234 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3235 */ 3236 trace_kvm_dirty_ring_full(cpu->cpu_index); 3237 bql_lock(); 3238 /* 3239 * We throttle vCPU by making it sleep once it exit from kernel 3240 * due to dirty ring full. In the dirtylimit scenario, reaping 3241 * all vCPUs after a single vCPU dirty ring get full result in 3242 * the miss of sleep, so just reap the ring-fulled vCPU. 3243 */ 3244 if (dirtylimit_in_service()) { 3245 kvm_dirty_ring_reap(kvm_state, cpu); 3246 } else { 3247 kvm_dirty_ring_reap(kvm_state, NULL); 3248 } 3249 bql_unlock(); 3250 dirtylimit_vcpu_execute(cpu); 3251 ret = 0; 3252 break; 3253 case KVM_EXIT_SYSTEM_EVENT: 3254 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3255 switch (run->system_event.type) { 3256 case KVM_SYSTEM_EVENT_SHUTDOWN: 3257 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3258 ret = EXCP_INTERRUPT; 3259 break; 3260 case KVM_SYSTEM_EVENT_RESET: 3261 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3262 ret = EXCP_INTERRUPT; 3263 break; 3264 case KVM_SYSTEM_EVENT_CRASH: 3265 kvm_cpu_synchronize_state(cpu); 3266 bql_lock(); 3267 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3268 bql_unlock(); 3269 ret = 0; 3270 break; 3271 default: 3272 ret = kvm_arch_handle_exit(cpu, run); 3273 break; 3274 } 3275 break; 3276 case KVM_EXIT_MEMORY_FAULT: 3277 trace_kvm_memory_fault(run->memory_fault.gpa, 3278 run->memory_fault.size, 3279 run->memory_fault.flags); 3280 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3281 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3282 (uint64_t)run->memory_fault.flags); 3283 ret = -1; 3284 break; 3285 } 3286 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3287 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3288 break; 3289 default: 3290 ret = kvm_arch_handle_exit(cpu, run); 3291 break; 3292 } 3293 } while (ret == 0); 3294 3295 cpu_exec_end(cpu); 3296 bql_lock(); 3297 3298 if (ret < 0) { 3299 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3300 vm_stop(RUN_STATE_INTERNAL_ERROR); 3301 } 3302 3303 qatomic_set(&cpu->exit_request, 0); 3304 return ret; 3305 } 3306 3307 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3308 { 3309 int ret; 3310 void *arg; 3311 va_list ap; 3312 3313 va_start(ap, type); 3314 arg = va_arg(ap, void *); 3315 va_end(ap); 3316 3317 trace_kvm_ioctl(type, arg); 3318 ret = ioctl(s->fd, type, arg); 3319 if (ret == -1) { 3320 ret = -errno; 3321 } 3322 return ret; 3323 } 3324 3325 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3326 { 3327 int ret; 3328 void *arg; 3329 va_list ap; 3330 3331 va_start(ap, type); 3332 arg = va_arg(ap, void *); 3333 va_end(ap); 3334 3335 trace_kvm_vm_ioctl(type, arg); 3336 accel_ioctl_begin(); 3337 ret = ioctl(s->vmfd, type, arg); 3338 accel_ioctl_end(); 3339 if (ret == -1) { 3340 ret = -errno; 3341 } 3342 return ret; 3343 } 3344 3345 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3346 { 3347 int ret; 3348 void *arg; 3349 va_list ap; 3350 3351 va_start(ap, type); 3352 arg = va_arg(ap, void *); 3353 va_end(ap); 3354 3355 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3356 accel_cpu_ioctl_begin(cpu); 3357 ret = ioctl(cpu->kvm_fd, type, arg); 3358 accel_cpu_ioctl_end(cpu); 3359 if (ret == -1) { 3360 ret = -errno; 3361 } 3362 return ret; 3363 } 3364 3365 int kvm_device_ioctl(int fd, unsigned long type, ...) 3366 { 3367 int ret; 3368 void *arg; 3369 va_list ap; 3370 3371 va_start(ap, type); 3372 arg = va_arg(ap, void *); 3373 va_end(ap); 3374 3375 trace_kvm_device_ioctl(fd, type, arg); 3376 accel_ioctl_begin(); 3377 ret = ioctl(fd, type, arg); 3378 accel_ioctl_end(); 3379 if (ret == -1) { 3380 ret = -errno; 3381 } 3382 return ret; 3383 } 3384 3385 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3386 { 3387 int ret; 3388 struct kvm_device_attr attribute = { 3389 .group = group, 3390 .attr = attr, 3391 }; 3392 3393 if (!kvm_vm_attributes_allowed) { 3394 return 0; 3395 } 3396 3397 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3398 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3399 return ret ? 0 : 1; 3400 } 3401 3402 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3403 { 3404 struct kvm_device_attr attribute = { 3405 .group = group, 3406 .attr = attr, 3407 .flags = 0, 3408 }; 3409 3410 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3411 } 3412 3413 int kvm_device_access(int fd, int group, uint64_t attr, 3414 void *val, bool write, Error **errp) 3415 { 3416 struct kvm_device_attr kvmattr; 3417 int err; 3418 3419 kvmattr.flags = 0; 3420 kvmattr.group = group; 3421 kvmattr.attr = attr; 3422 kvmattr.addr = (uintptr_t)val; 3423 3424 err = kvm_device_ioctl(fd, 3425 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3426 &kvmattr); 3427 if (err < 0) { 3428 error_setg_errno(errp, -err, 3429 "KVM_%s_DEVICE_ATTR failed: Group %d " 3430 "attr 0x%016" PRIx64, 3431 write ? "SET" : "GET", group, attr); 3432 } 3433 return err; 3434 } 3435 3436 bool kvm_has_sync_mmu(void) 3437 { 3438 return kvm_state->sync_mmu; 3439 } 3440 3441 int kvm_has_vcpu_events(void) 3442 { 3443 return kvm_state->vcpu_events; 3444 } 3445 3446 int kvm_max_nested_state_length(void) 3447 { 3448 return kvm_state->max_nested_state_len; 3449 } 3450 3451 int kvm_has_gsi_routing(void) 3452 { 3453 #ifdef KVM_CAP_IRQ_ROUTING 3454 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3455 #else 3456 return false; 3457 #endif 3458 } 3459 3460 bool kvm_arm_supports_user_irq(void) 3461 { 3462 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3463 } 3464 3465 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3466 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3467 { 3468 struct kvm_sw_breakpoint *bp; 3469 3470 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3471 if (bp->pc == pc) { 3472 return bp; 3473 } 3474 } 3475 return NULL; 3476 } 3477 3478 int kvm_sw_breakpoints_active(CPUState *cpu) 3479 { 3480 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3481 } 3482 3483 struct kvm_set_guest_debug_data { 3484 struct kvm_guest_debug dbg; 3485 int err; 3486 }; 3487 3488 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3489 { 3490 struct kvm_set_guest_debug_data *dbg_data = 3491 (struct kvm_set_guest_debug_data *) data.host_ptr; 3492 3493 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3494 &dbg_data->dbg); 3495 } 3496 3497 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3498 { 3499 struct kvm_set_guest_debug_data data; 3500 3501 data.dbg.control = reinject_trap; 3502 3503 if (cpu->singlestep_enabled) { 3504 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3505 3506 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3507 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3508 } 3509 } 3510 kvm_arch_update_guest_debug(cpu, &data.dbg); 3511 3512 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3513 RUN_ON_CPU_HOST_PTR(&data)); 3514 return data.err; 3515 } 3516 3517 bool kvm_supports_guest_debug(void) 3518 { 3519 /* probed during kvm_init() */ 3520 return kvm_has_guest_debug; 3521 } 3522 3523 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3524 { 3525 struct kvm_sw_breakpoint *bp; 3526 int err; 3527 3528 if (type == GDB_BREAKPOINT_SW) { 3529 bp = kvm_find_sw_breakpoint(cpu, addr); 3530 if (bp) { 3531 bp->use_count++; 3532 return 0; 3533 } 3534 3535 bp = g_new(struct kvm_sw_breakpoint, 1); 3536 bp->pc = addr; 3537 bp->use_count = 1; 3538 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3539 if (err) { 3540 g_free(bp); 3541 return err; 3542 } 3543 3544 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3545 } else { 3546 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3547 if (err) { 3548 return err; 3549 } 3550 } 3551 3552 CPU_FOREACH(cpu) { 3553 err = kvm_update_guest_debug(cpu, 0); 3554 if (err) { 3555 return err; 3556 } 3557 } 3558 return 0; 3559 } 3560 3561 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3562 { 3563 struct kvm_sw_breakpoint *bp; 3564 int err; 3565 3566 if (type == GDB_BREAKPOINT_SW) { 3567 bp = kvm_find_sw_breakpoint(cpu, addr); 3568 if (!bp) { 3569 return -ENOENT; 3570 } 3571 3572 if (bp->use_count > 1) { 3573 bp->use_count--; 3574 return 0; 3575 } 3576 3577 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3578 if (err) { 3579 return err; 3580 } 3581 3582 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3583 g_free(bp); 3584 } else { 3585 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3586 if (err) { 3587 return err; 3588 } 3589 } 3590 3591 CPU_FOREACH(cpu) { 3592 err = kvm_update_guest_debug(cpu, 0); 3593 if (err) { 3594 return err; 3595 } 3596 } 3597 return 0; 3598 } 3599 3600 void kvm_remove_all_breakpoints(CPUState *cpu) 3601 { 3602 struct kvm_sw_breakpoint *bp, *next; 3603 KVMState *s = cpu->kvm_state; 3604 CPUState *tmpcpu; 3605 3606 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3607 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3608 /* Try harder to find a CPU that currently sees the breakpoint. */ 3609 CPU_FOREACH(tmpcpu) { 3610 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3611 break; 3612 } 3613 } 3614 } 3615 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3616 g_free(bp); 3617 } 3618 kvm_arch_remove_all_hw_breakpoints(); 3619 3620 CPU_FOREACH(cpu) { 3621 kvm_update_guest_debug(cpu, 0); 3622 } 3623 } 3624 3625 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3626 3627 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3628 { 3629 KVMState *s = kvm_state; 3630 struct kvm_signal_mask *sigmask; 3631 int r; 3632 3633 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3634 3635 sigmask->len = s->sigmask_len; 3636 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3637 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3638 g_free(sigmask); 3639 3640 return r; 3641 } 3642 3643 static void kvm_ipi_signal(int sig) 3644 { 3645 if (current_cpu) { 3646 assert(kvm_immediate_exit); 3647 kvm_cpu_kick(current_cpu); 3648 } 3649 } 3650 3651 void kvm_init_cpu_signals(CPUState *cpu) 3652 { 3653 int r; 3654 sigset_t set; 3655 struct sigaction sigact; 3656 3657 memset(&sigact, 0, sizeof(sigact)); 3658 sigact.sa_handler = kvm_ipi_signal; 3659 sigaction(SIG_IPI, &sigact, NULL); 3660 3661 pthread_sigmask(SIG_BLOCK, NULL, &set); 3662 #if defined KVM_HAVE_MCE_INJECTION 3663 sigdelset(&set, SIGBUS); 3664 pthread_sigmask(SIG_SETMASK, &set, NULL); 3665 #endif 3666 sigdelset(&set, SIG_IPI); 3667 if (kvm_immediate_exit) { 3668 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3669 } else { 3670 r = kvm_set_signal_mask(cpu, &set); 3671 } 3672 if (r) { 3673 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3674 exit(1); 3675 } 3676 } 3677 3678 /* Called asynchronously in VCPU thread. */ 3679 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3680 { 3681 #ifdef KVM_HAVE_MCE_INJECTION 3682 if (have_sigbus_pending) { 3683 return 1; 3684 } 3685 have_sigbus_pending = true; 3686 pending_sigbus_addr = addr; 3687 pending_sigbus_code = code; 3688 qatomic_set(&cpu->exit_request, 1); 3689 return 0; 3690 #else 3691 return 1; 3692 #endif 3693 } 3694 3695 /* Called synchronously (via signalfd) in main thread. */ 3696 int kvm_on_sigbus(int code, void *addr) 3697 { 3698 #ifdef KVM_HAVE_MCE_INJECTION 3699 /* Action required MCE kills the process if SIGBUS is blocked. Because 3700 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3701 * we can only get action optional here. 3702 */ 3703 assert(code != BUS_MCEERR_AR); 3704 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3705 return 0; 3706 #else 3707 return 1; 3708 #endif 3709 } 3710 3711 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3712 { 3713 int ret; 3714 struct kvm_create_device create_dev; 3715 3716 create_dev.type = type; 3717 create_dev.fd = -1; 3718 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3719 3720 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3721 return -ENOTSUP; 3722 } 3723 3724 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3725 if (ret) { 3726 return ret; 3727 } 3728 3729 return test ? 0 : create_dev.fd; 3730 } 3731 3732 bool kvm_device_supported(int vmfd, uint64_t type) 3733 { 3734 struct kvm_create_device create_dev = { 3735 .type = type, 3736 .fd = -1, 3737 .flags = KVM_CREATE_DEVICE_TEST, 3738 }; 3739 3740 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3741 return false; 3742 } 3743 3744 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3745 } 3746 3747 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3748 { 3749 struct kvm_one_reg reg; 3750 int r; 3751 3752 reg.id = id; 3753 reg.addr = (uintptr_t) source; 3754 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3755 if (r) { 3756 trace_kvm_failed_reg_set(id, strerror(-r)); 3757 } 3758 return r; 3759 } 3760 3761 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3762 { 3763 struct kvm_one_reg reg; 3764 int r; 3765 3766 reg.id = id; 3767 reg.addr = (uintptr_t) target; 3768 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3769 if (r) { 3770 trace_kvm_failed_reg_get(id, strerror(-r)); 3771 } 3772 return r; 3773 } 3774 3775 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3776 hwaddr start_addr, hwaddr size) 3777 { 3778 KVMState *kvm = KVM_STATE(ms->accelerator); 3779 int i; 3780 3781 for (i = 0; i < kvm->nr_as; ++i) { 3782 if (kvm->as[i].as == as && kvm->as[i].ml) { 3783 size = MIN(kvm_max_slot_size, size); 3784 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3785 start_addr, size); 3786 } 3787 } 3788 3789 return false; 3790 } 3791 3792 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3793 const char *name, void *opaque, 3794 Error **errp) 3795 { 3796 KVMState *s = KVM_STATE(obj); 3797 int64_t value = s->kvm_shadow_mem; 3798 3799 visit_type_int(v, name, &value, errp); 3800 } 3801 3802 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3803 const char *name, void *opaque, 3804 Error **errp) 3805 { 3806 KVMState *s = KVM_STATE(obj); 3807 int64_t value; 3808 3809 if (s->fd != -1) { 3810 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3811 return; 3812 } 3813 3814 if (!visit_type_int(v, name, &value, errp)) { 3815 return; 3816 } 3817 3818 s->kvm_shadow_mem = value; 3819 } 3820 3821 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3822 const char *name, void *opaque, 3823 Error **errp) 3824 { 3825 KVMState *s = KVM_STATE(obj); 3826 OnOffSplit mode; 3827 3828 if (s->fd != -1) { 3829 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3830 return; 3831 } 3832 3833 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3834 return; 3835 } 3836 switch (mode) { 3837 case ON_OFF_SPLIT_ON: 3838 s->kernel_irqchip_allowed = true; 3839 s->kernel_irqchip_required = true; 3840 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3841 break; 3842 case ON_OFF_SPLIT_OFF: 3843 s->kernel_irqchip_allowed = false; 3844 s->kernel_irqchip_required = false; 3845 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3846 break; 3847 case ON_OFF_SPLIT_SPLIT: 3848 s->kernel_irqchip_allowed = true; 3849 s->kernel_irqchip_required = true; 3850 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3851 break; 3852 default: 3853 /* The value was checked in visit_type_OnOffSplit() above. If 3854 * we get here, then something is wrong in QEMU. 3855 */ 3856 abort(); 3857 } 3858 } 3859 3860 bool kvm_kernel_irqchip_allowed(void) 3861 { 3862 return kvm_state->kernel_irqchip_allowed; 3863 } 3864 3865 bool kvm_kernel_irqchip_required(void) 3866 { 3867 return kvm_state->kernel_irqchip_required; 3868 } 3869 3870 bool kvm_kernel_irqchip_split(void) 3871 { 3872 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3873 } 3874 3875 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3876 const char *name, void *opaque, 3877 Error **errp) 3878 { 3879 KVMState *s = KVM_STATE(obj); 3880 uint32_t value = s->kvm_dirty_ring_size; 3881 3882 visit_type_uint32(v, name, &value, errp); 3883 } 3884 3885 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3886 const char *name, void *opaque, 3887 Error **errp) 3888 { 3889 KVMState *s = KVM_STATE(obj); 3890 uint32_t value; 3891 3892 if (s->fd != -1) { 3893 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3894 return; 3895 } 3896 3897 if (!visit_type_uint32(v, name, &value, errp)) { 3898 return; 3899 } 3900 if (value & (value - 1)) { 3901 error_setg(errp, "dirty-ring-size must be a power of two."); 3902 return; 3903 } 3904 3905 s->kvm_dirty_ring_size = value; 3906 } 3907 3908 static char *kvm_get_device(Object *obj, 3909 Error **errp G_GNUC_UNUSED) 3910 { 3911 KVMState *s = KVM_STATE(obj); 3912 3913 return g_strdup(s->device); 3914 } 3915 3916 static void kvm_set_device(Object *obj, 3917 const char *value, 3918 Error **errp G_GNUC_UNUSED) 3919 { 3920 KVMState *s = KVM_STATE(obj); 3921 3922 g_free(s->device); 3923 s->device = g_strdup(value); 3924 } 3925 3926 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3927 { 3928 KVMState *s = KVM_STATE(obj); 3929 s->msr_energy.enable = value; 3930 } 3931 3932 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3933 const char *str, 3934 Error **errp) 3935 { 3936 KVMState *s = KVM_STATE(obj); 3937 g_free(s->msr_energy.socket_path); 3938 s->msr_energy.socket_path = g_strdup(str); 3939 } 3940 3941 static void kvm_accel_instance_init(Object *obj) 3942 { 3943 KVMState *s = KVM_STATE(obj); 3944 3945 s->fd = -1; 3946 s->vmfd = -1; 3947 s->kvm_shadow_mem = -1; 3948 s->kernel_irqchip_allowed = true; 3949 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3950 /* KVM dirty ring is by default off */ 3951 s->kvm_dirty_ring_size = 0; 3952 s->kvm_dirty_ring_with_bitmap = false; 3953 s->kvm_eager_split_size = 0; 3954 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3955 s->notify_window = 0; 3956 s->xen_version = 0; 3957 s->xen_gnttab_max_frames = 64; 3958 s->xen_evtchn_max_pirq = 256; 3959 s->device = NULL; 3960 s->msr_energy.enable = false; 3961 } 3962 3963 /** 3964 * kvm_gdbstub_sstep_flags(): 3965 * 3966 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3967 * support is probed during kvm_init() 3968 */ 3969 static int kvm_gdbstub_sstep_flags(void) 3970 { 3971 return kvm_sstep_flags; 3972 } 3973 3974 static void kvm_accel_class_init(ObjectClass *oc, const void *data) 3975 { 3976 AccelClass *ac = ACCEL_CLASS(oc); 3977 ac->name = "KVM"; 3978 ac->init_machine = kvm_init; 3979 ac->has_memory = kvm_accel_has_memory; 3980 ac->allowed = &kvm_allowed; 3981 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3982 3983 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3984 NULL, kvm_set_kernel_irqchip, 3985 NULL, NULL); 3986 object_class_property_set_description(oc, "kernel-irqchip", 3987 "Configure KVM in-kernel irqchip"); 3988 3989 object_class_property_add(oc, "kvm-shadow-mem", "int", 3990 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3991 NULL, NULL); 3992 object_class_property_set_description(oc, "kvm-shadow-mem", 3993 "KVM shadow MMU size"); 3994 3995 object_class_property_add(oc, "dirty-ring-size", "uint32", 3996 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3997 NULL, NULL); 3998 object_class_property_set_description(oc, "dirty-ring-size", 3999 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 4000 4001 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 4002 object_class_property_set_description(oc, "device", 4003 "Path to the device node to use (default: /dev/kvm)"); 4004 4005 object_class_property_add_bool(oc, "rapl", 4006 NULL, 4007 kvm_set_kvm_rapl); 4008 object_class_property_set_description(oc, "rapl", 4009 "Allow energy related MSRs for RAPL interface in Guest"); 4010 4011 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4012 kvm_set_kvm_rapl_socket_path); 4013 object_class_property_set_description(oc, "rapl-helper-socket", 4014 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4015 4016 kvm_arch_accel_class_init(oc); 4017 } 4018 4019 static const TypeInfo kvm_accel_type = { 4020 .name = TYPE_KVM_ACCEL, 4021 .parent = TYPE_ACCEL, 4022 .instance_init = kvm_accel_instance_init, 4023 .class_init = kvm_accel_class_init, 4024 .instance_size = sizeof(KVMState), 4025 }; 4026 4027 static void kvm_type_init(void) 4028 { 4029 type_register_static(&kvm_accel_type); 4030 } 4031 4032 type_init(kvm_type_init); 4033 4034 typedef struct StatsArgs { 4035 union StatsResultsType { 4036 StatsResultList **stats; 4037 StatsSchemaList **schema; 4038 } result; 4039 strList *names; 4040 Error **errp; 4041 } StatsArgs; 4042 4043 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4044 uint64_t *stats_data, 4045 StatsList *stats_list, 4046 Error **errp) 4047 { 4048 4049 Stats *stats; 4050 uint64List *val_list = NULL; 4051 4052 /* Only add stats that we understand. */ 4053 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4054 case KVM_STATS_TYPE_CUMULATIVE: 4055 case KVM_STATS_TYPE_INSTANT: 4056 case KVM_STATS_TYPE_PEAK: 4057 case KVM_STATS_TYPE_LINEAR_HIST: 4058 case KVM_STATS_TYPE_LOG_HIST: 4059 break; 4060 default: 4061 return stats_list; 4062 } 4063 4064 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4065 case KVM_STATS_UNIT_NONE: 4066 case KVM_STATS_UNIT_BYTES: 4067 case KVM_STATS_UNIT_CYCLES: 4068 case KVM_STATS_UNIT_SECONDS: 4069 case KVM_STATS_UNIT_BOOLEAN: 4070 break; 4071 default: 4072 return stats_list; 4073 } 4074 4075 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4076 case KVM_STATS_BASE_POW10: 4077 case KVM_STATS_BASE_POW2: 4078 break; 4079 default: 4080 return stats_list; 4081 } 4082 4083 /* Alloc and populate data list */ 4084 stats = g_new0(Stats, 1); 4085 stats->name = g_strdup(pdesc->name); 4086 stats->value = g_new0(StatsValue, 1); 4087 4088 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4089 stats->value->u.boolean = *stats_data; 4090 stats->value->type = QTYPE_QBOOL; 4091 } else if (pdesc->size == 1) { 4092 stats->value->u.scalar = *stats_data; 4093 stats->value->type = QTYPE_QNUM; 4094 } else { 4095 int i; 4096 for (i = 0; i < pdesc->size; i++) { 4097 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4098 } 4099 stats->value->u.list = val_list; 4100 stats->value->type = QTYPE_QLIST; 4101 } 4102 4103 QAPI_LIST_PREPEND(stats_list, stats); 4104 return stats_list; 4105 } 4106 4107 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4108 StatsSchemaValueList *list, 4109 Error **errp) 4110 { 4111 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4112 schema_entry->value = g_new0(StatsSchemaValue, 1); 4113 4114 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4115 case KVM_STATS_TYPE_CUMULATIVE: 4116 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4117 break; 4118 case KVM_STATS_TYPE_INSTANT: 4119 schema_entry->value->type = STATS_TYPE_INSTANT; 4120 break; 4121 case KVM_STATS_TYPE_PEAK: 4122 schema_entry->value->type = STATS_TYPE_PEAK; 4123 break; 4124 case KVM_STATS_TYPE_LINEAR_HIST: 4125 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4126 schema_entry->value->bucket_size = pdesc->bucket_size; 4127 schema_entry->value->has_bucket_size = true; 4128 break; 4129 case KVM_STATS_TYPE_LOG_HIST: 4130 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4131 break; 4132 default: 4133 goto exit; 4134 } 4135 4136 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4137 case KVM_STATS_UNIT_NONE: 4138 break; 4139 case KVM_STATS_UNIT_BOOLEAN: 4140 schema_entry->value->has_unit = true; 4141 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4142 break; 4143 case KVM_STATS_UNIT_BYTES: 4144 schema_entry->value->has_unit = true; 4145 schema_entry->value->unit = STATS_UNIT_BYTES; 4146 break; 4147 case KVM_STATS_UNIT_CYCLES: 4148 schema_entry->value->has_unit = true; 4149 schema_entry->value->unit = STATS_UNIT_CYCLES; 4150 break; 4151 case KVM_STATS_UNIT_SECONDS: 4152 schema_entry->value->has_unit = true; 4153 schema_entry->value->unit = STATS_UNIT_SECONDS; 4154 break; 4155 default: 4156 goto exit; 4157 } 4158 4159 schema_entry->value->exponent = pdesc->exponent; 4160 if (pdesc->exponent) { 4161 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4162 case KVM_STATS_BASE_POW10: 4163 schema_entry->value->has_base = true; 4164 schema_entry->value->base = 10; 4165 break; 4166 case KVM_STATS_BASE_POW2: 4167 schema_entry->value->has_base = true; 4168 schema_entry->value->base = 2; 4169 break; 4170 default: 4171 goto exit; 4172 } 4173 } 4174 4175 schema_entry->value->name = g_strdup(pdesc->name); 4176 schema_entry->next = list; 4177 return schema_entry; 4178 exit: 4179 g_free(schema_entry->value); 4180 g_free(schema_entry); 4181 return list; 4182 } 4183 4184 /* Cached stats descriptors */ 4185 typedef struct StatsDescriptors { 4186 const char *ident; /* cache key, currently the StatsTarget */ 4187 struct kvm_stats_desc *kvm_stats_desc; 4188 struct kvm_stats_header kvm_stats_header; 4189 QTAILQ_ENTRY(StatsDescriptors) next; 4190 } StatsDescriptors; 4191 4192 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4193 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4194 4195 /* 4196 * Return the descriptors for 'target', that either have already been read 4197 * or are retrieved from 'stats_fd'. 4198 */ 4199 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4200 Error **errp) 4201 { 4202 StatsDescriptors *descriptors; 4203 const char *ident; 4204 struct kvm_stats_desc *kvm_stats_desc; 4205 struct kvm_stats_header *kvm_stats_header; 4206 size_t size_desc; 4207 ssize_t ret; 4208 4209 ident = StatsTarget_str(target); 4210 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4211 if (g_str_equal(descriptors->ident, ident)) { 4212 return descriptors; 4213 } 4214 } 4215 4216 descriptors = g_new0(StatsDescriptors, 1); 4217 4218 /* Read stats header */ 4219 kvm_stats_header = &descriptors->kvm_stats_header; 4220 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4221 if (ret != sizeof(*kvm_stats_header)) { 4222 error_setg(errp, "KVM stats: failed to read stats header: " 4223 "expected %zu actual %zu", 4224 sizeof(*kvm_stats_header), ret); 4225 g_free(descriptors); 4226 return NULL; 4227 } 4228 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4229 4230 /* Read stats descriptors */ 4231 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4232 ret = pread(stats_fd, kvm_stats_desc, 4233 size_desc * kvm_stats_header->num_desc, 4234 kvm_stats_header->desc_offset); 4235 4236 if (ret != size_desc * kvm_stats_header->num_desc) { 4237 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4238 "expected %zu actual %zu", 4239 size_desc * kvm_stats_header->num_desc, ret); 4240 g_free(descriptors); 4241 g_free(kvm_stats_desc); 4242 return NULL; 4243 } 4244 descriptors->kvm_stats_desc = kvm_stats_desc; 4245 descriptors->ident = ident; 4246 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4247 return descriptors; 4248 } 4249 4250 static void query_stats(StatsResultList **result, StatsTarget target, 4251 strList *names, int stats_fd, CPUState *cpu, 4252 Error **errp) 4253 { 4254 struct kvm_stats_desc *kvm_stats_desc; 4255 struct kvm_stats_header *kvm_stats_header; 4256 StatsDescriptors *descriptors; 4257 g_autofree uint64_t *stats_data = NULL; 4258 struct kvm_stats_desc *pdesc; 4259 StatsList *stats_list = NULL; 4260 size_t size_desc, size_data = 0; 4261 ssize_t ret; 4262 int i; 4263 4264 descriptors = find_stats_descriptors(target, stats_fd, errp); 4265 if (!descriptors) { 4266 return; 4267 } 4268 4269 kvm_stats_header = &descriptors->kvm_stats_header; 4270 kvm_stats_desc = descriptors->kvm_stats_desc; 4271 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4272 4273 /* Tally the total data size; read schema data */ 4274 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4275 pdesc = (void *)kvm_stats_desc + i * size_desc; 4276 size_data += pdesc->size * sizeof(*stats_data); 4277 } 4278 4279 stats_data = g_malloc0(size_data); 4280 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4281 4282 if (ret != size_data) { 4283 error_setg(errp, "KVM stats: failed to read data: " 4284 "expected %zu actual %zu", size_data, ret); 4285 return; 4286 } 4287 4288 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4289 uint64_t *stats; 4290 pdesc = (void *)kvm_stats_desc + i * size_desc; 4291 4292 /* Add entry to the list */ 4293 stats = (void *)stats_data + pdesc->offset; 4294 if (!apply_str_list_filter(pdesc->name, names)) { 4295 continue; 4296 } 4297 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4298 } 4299 4300 if (!stats_list) { 4301 return; 4302 } 4303 4304 switch (target) { 4305 case STATS_TARGET_VM: 4306 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4307 break; 4308 case STATS_TARGET_VCPU: 4309 add_stats_entry(result, STATS_PROVIDER_KVM, 4310 cpu->parent_obj.canonical_path, 4311 stats_list); 4312 break; 4313 default: 4314 g_assert_not_reached(); 4315 } 4316 } 4317 4318 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4319 int stats_fd, Error **errp) 4320 { 4321 struct kvm_stats_desc *kvm_stats_desc; 4322 struct kvm_stats_header *kvm_stats_header; 4323 StatsDescriptors *descriptors; 4324 struct kvm_stats_desc *pdesc; 4325 StatsSchemaValueList *stats_list = NULL; 4326 size_t size_desc; 4327 int i; 4328 4329 descriptors = find_stats_descriptors(target, stats_fd, errp); 4330 if (!descriptors) { 4331 return; 4332 } 4333 4334 kvm_stats_header = &descriptors->kvm_stats_header; 4335 kvm_stats_desc = descriptors->kvm_stats_desc; 4336 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4337 4338 /* Tally the total data size; read schema data */ 4339 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4340 pdesc = (void *)kvm_stats_desc + i * size_desc; 4341 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4342 } 4343 4344 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4345 } 4346 4347 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4348 { 4349 int stats_fd = cpu->kvm_vcpu_stats_fd; 4350 Error *local_err = NULL; 4351 4352 if (stats_fd == -1) { 4353 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4354 error_propagate(kvm_stats_args->errp, local_err); 4355 return; 4356 } 4357 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4358 kvm_stats_args->names, stats_fd, cpu, 4359 kvm_stats_args->errp); 4360 } 4361 4362 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4363 { 4364 int stats_fd = cpu->kvm_vcpu_stats_fd; 4365 Error *local_err = NULL; 4366 4367 if (stats_fd == -1) { 4368 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4369 error_propagate(kvm_stats_args->errp, local_err); 4370 return; 4371 } 4372 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4373 kvm_stats_args->errp); 4374 } 4375 4376 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4377 strList *names, strList *targets, Error **errp) 4378 { 4379 KVMState *s = kvm_state; 4380 CPUState *cpu; 4381 int stats_fd; 4382 4383 switch (target) { 4384 case STATS_TARGET_VM: 4385 { 4386 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4387 if (stats_fd == -1) { 4388 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4389 return; 4390 } 4391 query_stats(result, target, names, stats_fd, NULL, errp); 4392 close(stats_fd); 4393 break; 4394 } 4395 case STATS_TARGET_VCPU: 4396 { 4397 StatsArgs stats_args; 4398 stats_args.result.stats = result; 4399 stats_args.names = names; 4400 stats_args.errp = errp; 4401 CPU_FOREACH(cpu) { 4402 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4403 continue; 4404 } 4405 query_stats_vcpu(cpu, &stats_args); 4406 } 4407 break; 4408 } 4409 default: 4410 break; 4411 } 4412 } 4413 4414 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4415 { 4416 StatsArgs stats_args; 4417 KVMState *s = kvm_state; 4418 int stats_fd; 4419 4420 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4421 if (stats_fd == -1) { 4422 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4423 return; 4424 } 4425 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4426 close(stats_fd); 4427 4428 if (first_cpu) { 4429 stats_args.result.schema = result; 4430 stats_args.errp = errp; 4431 query_stats_schema_vcpu(first_cpu, &stats_args); 4432 } 4433 } 4434 4435 void kvm_mark_guest_state_protected(void) 4436 { 4437 kvm_state->guest_state_protected = true; 4438 } 4439 4440 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4441 { 4442 int fd; 4443 struct kvm_create_guest_memfd guest_memfd = { 4444 .size = size, 4445 .flags = flags, 4446 }; 4447 4448 if (!kvm_guest_memfd_supported) { 4449 error_setg(errp, "KVM does not support guest_memfd"); 4450 return -1; 4451 } 4452 4453 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4454 if (fd < 0) { 4455 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4456 return -1; 4457 } 4458 4459 return fd; 4460 } 4461