1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu-common.h" 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/hw.h" 28 #include "hw/pci/msi.h" 29 #include "hw/pci/msix.h" 30 #include "hw/s390x/adapter.h" 31 #include "exec/gdbstub.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 42 #include "hw/boards.h" 43 44 /* This check must be after config-host.h is included */ 45 #ifdef CONFIG_EVENTFD 46 #include <sys/eventfd.h> 47 #endif 48 49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 50 * need to use the real host PAGE_SIZE, as that's what KVM will use. 51 */ 52 #define PAGE_SIZE getpagesize() 53 54 //#define DEBUG_KVM 55 56 #ifdef DEBUG_KVM 57 #define DPRINTF(fmt, ...) \ 58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 59 #else 60 #define DPRINTF(fmt, ...) \ 61 do { } while (0) 62 #endif 63 64 #define KVM_MSI_HASHTAB_SIZE 256 65 66 struct KVMParkedVcpu { 67 unsigned long vcpu_id; 68 int kvm_fd; 69 QLIST_ENTRY(KVMParkedVcpu) node; 70 }; 71 72 struct KVMState 73 { 74 AccelState parent_obj; 75 76 int nr_slots; 77 int fd; 78 int vmfd; 79 int coalesced_mmio; 80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 81 bool coalesced_flush_in_progress; 82 int vcpu_events; 83 int robust_singlestep; 84 int debugregs; 85 #ifdef KVM_CAP_SET_GUEST_DEBUG 86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints; 87 #endif 88 int many_ioeventfds; 89 int intx_set_mask; 90 /* The man page (and posix) say ioctl numbers are signed int, but 91 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 92 * unsigned, and treating them as signed here can break things */ 93 unsigned irq_set_ioctl; 94 unsigned int sigmask_len; 95 GHashTable *gsimap; 96 #ifdef KVM_CAP_IRQ_ROUTING 97 struct kvm_irq_routing *irq_routes; 98 int nr_allocated_irq_routes; 99 unsigned long *used_gsi_bitmap; 100 unsigned int gsi_count; 101 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 102 #endif 103 KVMMemoryListener memory_listener; 104 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 105 }; 106 107 KVMState *kvm_state; 108 bool kvm_kernel_irqchip; 109 bool kvm_split_irqchip; 110 bool kvm_async_interrupts_allowed; 111 bool kvm_halt_in_kernel_allowed; 112 bool kvm_eventfds_allowed; 113 bool kvm_irqfds_allowed; 114 bool kvm_resamplefds_allowed; 115 bool kvm_msi_via_irqfd_allowed; 116 bool kvm_gsi_routing_allowed; 117 bool kvm_gsi_direct_mapping; 118 bool kvm_allowed; 119 bool kvm_readonly_mem_allowed; 120 bool kvm_vm_attributes_allowed; 121 bool kvm_direct_msi_allowed; 122 bool kvm_ioeventfd_any_length_allowed; 123 bool kvm_msi_use_devid; 124 static bool kvm_immediate_exit; 125 126 static const KVMCapabilityInfo kvm_required_capabilites[] = { 127 KVM_CAP_INFO(USER_MEMORY), 128 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 129 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 130 KVM_CAP_LAST_INFO 131 }; 132 133 int kvm_get_max_memslots(void) 134 { 135 KVMState *s = KVM_STATE(current_machine->accelerator); 136 137 return s->nr_slots; 138 } 139 140 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 141 { 142 KVMState *s = kvm_state; 143 int i; 144 145 for (i = 0; i < s->nr_slots; i++) { 146 if (kml->slots[i].memory_size == 0) { 147 return &kml->slots[i]; 148 } 149 } 150 151 return NULL; 152 } 153 154 bool kvm_has_free_slot(MachineState *ms) 155 { 156 KVMState *s = KVM_STATE(ms->accelerator); 157 158 return kvm_get_free_slot(&s->memory_listener); 159 } 160 161 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 162 { 163 KVMSlot *slot = kvm_get_free_slot(kml); 164 165 if (slot) { 166 return slot; 167 } 168 169 fprintf(stderr, "%s: no free slot available\n", __func__); 170 abort(); 171 } 172 173 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 174 hwaddr start_addr, 175 hwaddr size) 176 { 177 KVMState *s = kvm_state; 178 int i; 179 180 for (i = 0; i < s->nr_slots; i++) { 181 KVMSlot *mem = &kml->slots[i]; 182 183 if (start_addr == mem->start_addr && size == mem->memory_size) { 184 return mem; 185 } 186 } 187 188 return NULL; 189 } 190 191 /* 192 * Calculate and align the start address and the size of the section. 193 * Return the size. If the size is 0, the aligned section is empty. 194 */ 195 static hwaddr kvm_align_section(MemoryRegionSection *section, 196 hwaddr *start) 197 { 198 hwaddr size = int128_get64(section->size); 199 hwaddr delta; 200 201 *start = section->offset_within_address_space; 202 203 /* kvm works in page size chunks, but the function may be called 204 with sub-page size and unaligned start address. Pad the start 205 address to next and truncate size to previous page boundary. */ 206 delta = qemu_real_host_page_size - (*start & ~qemu_real_host_page_mask); 207 delta &= ~qemu_real_host_page_mask; 208 *start += delta; 209 if (delta > size) { 210 return 0; 211 } 212 size -= delta; 213 size &= qemu_real_host_page_mask; 214 if (*start & ~qemu_real_host_page_mask) { 215 return 0; 216 } 217 218 return size; 219 } 220 221 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 222 hwaddr *phys_addr) 223 { 224 KVMMemoryListener *kml = &s->memory_listener; 225 int i; 226 227 for (i = 0; i < s->nr_slots; i++) { 228 KVMSlot *mem = &kml->slots[i]; 229 230 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 231 *phys_addr = mem->start_addr + (ram - mem->ram); 232 return 1; 233 } 234 } 235 236 return 0; 237 } 238 239 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) 240 { 241 KVMState *s = kvm_state; 242 struct kvm_userspace_memory_region mem; 243 244 mem.slot = slot->slot | (kml->as_id << 16); 245 mem.guest_phys_addr = slot->start_addr; 246 mem.userspace_addr = (unsigned long)slot->ram; 247 mem.flags = slot->flags; 248 249 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { 250 /* Set the slot size to 0 before setting the slot to the desired 251 * value. This is needed based on KVM commit 75d61fbc. */ 252 mem.memory_size = 0; 253 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 254 } 255 mem.memory_size = slot->memory_size; 256 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 257 } 258 259 int kvm_destroy_vcpu(CPUState *cpu) 260 { 261 KVMState *s = kvm_state; 262 long mmap_size; 263 struct KVMParkedVcpu *vcpu = NULL; 264 int ret = 0; 265 266 DPRINTF("kvm_destroy_vcpu\n"); 267 268 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 269 if (mmap_size < 0) { 270 ret = mmap_size; 271 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 272 goto err; 273 } 274 275 ret = munmap(cpu->kvm_run, mmap_size); 276 if (ret < 0) { 277 goto err; 278 } 279 280 vcpu = g_malloc0(sizeof(*vcpu)); 281 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 282 vcpu->kvm_fd = cpu->kvm_fd; 283 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 284 err: 285 return ret; 286 } 287 288 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 289 { 290 struct KVMParkedVcpu *cpu; 291 292 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 293 if (cpu->vcpu_id == vcpu_id) { 294 int kvm_fd; 295 296 QLIST_REMOVE(cpu, node); 297 kvm_fd = cpu->kvm_fd; 298 g_free(cpu); 299 return kvm_fd; 300 } 301 } 302 303 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 304 } 305 306 int kvm_init_vcpu(CPUState *cpu) 307 { 308 KVMState *s = kvm_state; 309 long mmap_size; 310 int ret; 311 312 DPRINTF("kvm_init_vcpu\n"); 313 314 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 315 if (ret < 0) { 316 DPRINTF("kvm_create_vcpu failed\n"); 317 goto err; 318 } 319 320 cpu->kvm_fd = ret; 321 cpu->kvm_state = s; 322 cpu->vcpu_dirty = true; 323 324 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 325 if (mmap_size < 0) { 326 ret = mmap_size; 327 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 328 goto err; 329 } 330 331 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 332 cpu->kvm_fd, 0); 333 if (cpu->kvm_run == MAP_FAILED) { 334 ret = -errno; 335 DPRINTF("mmap'ing vcpu state failed\n"); 336 goto err; 337 } 338 339 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 340 s->coalesced_mmio_ring = 341 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 342 } 343 344 ret = kvm_arch_init_vcpu(cpu); 345 err: 346 return ret; 347 } 348 349 /* 350 * dirty pages logging control 351 */ 352 353 static int kvm_mem_flags(MemoryRegion *mr) 354 { 355 bool readonly = mr->readonly || memory_region_is_romd(mr); 356 int flags = 0; 357 358 if (memory_region_get_dirty_log_mask(mr) != 0) { 359 flags |= KVM_MEM_LOG_DIRTY_PAGES; 360 } 361 if (readonly && kvm_readonly_mem_allowed) { 362 flags |= KVM_MEM_READONLY; 363 } 364 return flags; 365 } 366 367 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 368 MemoryRegion *mr) 369 { 370 int old_flags; 371 372 old_flags = mem->flags; 373 mem->flags = kvm_mem_flags(mr); 374 375 /* If nothing changed effectively, no need to issue ioctl */ 376 if (mem->flags == old_flags) { 377 return 0; 378 } 379 380 return kvm_set_user_memory_region(kml, mem); 381 } 382 383 static int kvm_section_update_flags(KVMMemoryListener *kml, 384 MemoryRegionSection *section) 385 { 386 hwaddr start_addr, size; 387 KVMSlot *mem; 388 389 size = kvm_align_section(section, &start_addr); 390 if (!size) { 391 return 0; 392 } 393 394 mem = kvm_lookup_matching_slot(kml, start_addr, size); 395 if (!mem) { 396 fprintf(stderr, "%s: error finding slot\n", __func__); 397 abort(); 398 } 399 400 return kvm_slot_update_flags(kml, mem, section->mr); 401 } 402 403 static void kvm_log_start(MemoryListener *listener, 404 MemoryRegionSection *section, 405 int old, int new) 406 { 407 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 408 int r; 409 410 if (old != 0) { 411 return; 412 } 413 414 r = kvm_section_update_flags(kml, section); 415 if (r < 0) { 416 abort(); 417 } 418 } 419 420 static void kvm_log_stop(MemoryListener *listener, 421 MemoryRegionSection *section, 422 int old, int new) 423 { 424 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 425 int r; 426 427 if (new != 0) { 428 return; 429 } 430 431 r = kvm_section_update_flags(kml, section); 432 if (r < 0) { 433 abort(); 434 } 435 } 436 437 /* get kvm's dirty pages bitmap and update qemu's */ 438 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 439 unsigned long *bitmap) 440 { 441 ram_addr_t start = section->offset_within_region + 442 memory_region_get_ram_addr(section->mr); 443 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 444 445 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 446 return 0; 447 } 448 449 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 450 451 /** 452 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space 453 * This function updates qemu's dirty bitmap using 454 * memory_region_set_dirty(). This means all bits are set 455 * to dirty. 456 * 457 * @start_add: start of logged region. 458 * @end_addr: end of logged region. 459 */ 460 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 461 MemoryRegionSection *section) 462 { 463 KVMState *s = kvm_state; 464 struct kvm_dirty_log d = {}; 465 KVMSlot *mem; 466 hwaddr start_addr, size; 467 468 size = kvm_align_section(section, &start_addr); 469 if (size) { 470 mem = kvm_lookup_matching_slot(kml, start_addr, size); 471 if (!mem) { 472 fprintf(stderr, "%s: error finding slot\n", __func__); 473 abort(); 474 } 475 476 /* XXX bad kernel interface alert 477 * For dirty bitmap, kernel allocates array of size aligned to 478 * bits-per-long. But for case when the kernel is 64bits and 479 * the userspace is 32bits, userspace can't align to the same 480 * bits-per-long, since sizeof(long) is different between kernel 481 * and user space. This way, userspace will provide buffer which 482 * may be 4 bytes less than the kernel will use, resulting in 483 * userspace memory corruption (which is not detectable by valgrind 484 * too, in most cases). 485 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 486 * a hope that sizeof(long) won't become >8 any time soon. 487 */ 488 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 489 /*HOST_LONG_BITS*/ 64) / 8; 490 d.dirty_bitmap = g_malloc0(size); 491 492 d.slot = mem->slot | (kml->as_id << 16); 493 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 494 DPRINTF("ioctl failed %d\n", errno); 495 g_free(d.dirty_bitmap); 496 return -1; 497 } 498 499 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 500 g_free(d.dirty_bitmap); 501 } 502 503 return 0; 504 } 505 506 static void kvm_coalesce_mmio_region(MemoryListener *listener, 507 MemoryRegionSection *secion, 508 hwaddr start, hwaddr size) 509 { 510 KVMState *s = kvm_state; 511 512 if (s->coalesced_mmio) { 513 struct kvm_coalesced_mmio_zone zone; 514 515 zone.addr = start; 516 zone.size = size; 517 zone.pad = 0; 518 519 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 520 } 521 } 522 523 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 524 MemoryRegionSection *secion, 525 hwaddr start, hwaddr size) 526 { 527 KVMState *s = kvm_state; 528 529 if (s->coalesced_mmio) { 530 struct kvm_coalesced_mmio_zone zone; 531 532 zone.addr = start; 533 zone.size = size; 534 zone.pad = 0; 535 536 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 537 } 538 } 539 540 int kvm_check_extension(KVMState *s, unsigned int extension) 541 { 542 int ret; 543 544 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 545 if (ret < 0) { 546 ret = 0; 547 } 548 549 return ret; 550 } 551 552 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 553 { 554 int ret; 555 556 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 557 if (ret < 0) { 558 /* VM wide version not implemented, use global one instead */ 559 ret = kvm_check_extension(s, extension); 560 } 561 562 return ret; 563 } 564 565 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 566 { 567 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 568 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 569 * endianness, but the memory core hands them in target endianness. 570 * For example, PPC is always treated as big-endian even if running 571 * on KVM and on PPC64LE. Correct here. 572 */ 573 switch (size) { 574 case 2: 575 val = bswap16(val); 576 break; 577 case 4: 578 val = bswap32(val); 579 break; 580 } 581 #endif 582 return val; 583 } 584 585 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 586 bool assign, uint32_t size, bool datamatch) 587 { 588 int ret; 589 struct kvm_ioeventfd iofd = { 590 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 591 .addr = addr, 592 .len = size, 593 .flags = 0, 594 .fd = fd, 595 }; 596 597 if (!kvm_enabled()) { 598 return -ENOSYS; 599 } 600 601 if (datamatch) { 602 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 603 } 604 if (!assign) { 605 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 606 } 607 608 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 609 610 if (ret < 0) { 611 return -errno; 612 } 613 614 return 0; 615 } 616 617 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 618 bool assign, uint32_t size, bool datamatch) 619 { 620 struct kvm_ioeventfd kick = { 621 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 622 .addr = addr, 623 .flags = KVM_IOEVENTFD_FLAG_PIO, 624 .len = size, 625 .fd = fd, 626 }; 627 int r; 628 if (!kvm_enabled()) { 629 return -ENOSYS; 630 } 631 if (datamatch) { 632 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 633 } 634 if (!assign) { 635 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 636 } 637 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 638 if (r < 0) { 639 return r; 640 } 641 return 0; 642 } 643 644 645 static int kvm_check_many_ioeventfds(void) 646 { 647 /* Userspace can use ioeventfd for io notification. This requires a host 648 * that supports eventfd(2) and an I/O thread; since eventfd does not 649 * support SIGIO it cannot interrupt the vcpu. 650 * 651 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 652 * can avoid creating too many ioeventfds. 653 */ 654 #if defined(CONFIG_EVENTFD) 655 int ioeventfds[7]; 656 int i, ret = 0; 657 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 658 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 659 if (ioeventfds[i] < 0) { 660 break; 661 } 662 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 663 if (ret < 0) { 664 close(ioeventfds[i]); 665 break; 666 } 667 } 668 669 /* Decide whether many devices are supported or not */ 670 ret = i == ARRAY_SIZE(ioeventfds); 671 672 while (i-- > 0) { 673 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 674 close(ioeventfds[i]); 675 } 676 return ret; 677 #else 678 return 0; 679 #endif 680 } 681 682 static const KVMCapabilityInfo * 683 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 684 { 685 while (list->name) { 686 if (!kvm_check_extension(s, list->value)) { 687 return list; 688 } 689 list++; 690 } 691 return NULL; 692 } 693 694 static void kvm_set_phys_mem(KVMMemoryListener *kml, 695 MemoryRegionSection *section, bool add) 696 { 697 KVMSlot *mem; 698 int err; 699 MemoryRegion *mr = section->mr; 700 bool writeable = !mr->readonly && !mr->rom_device; 701 hwaddr start_addr, size; 702 void *ram; 703 704 if (!memory_region_is_ram(mr)) { 705 if (writeable || !kvm_readonly_mem_allowed) { 706 return; 707 } else if (!mr->romd_mode) { 708 /* If the memory device is not in romd_mode, then we actually want 709 * to remove the kvm memory slot so all accesses will trap. */ 710 add = false; 711 } 712 } 713 714 size = kvm_align_section(section, &start_addr); 715 if (!size) { 716 return; 717 } 718 719 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 720 (section->offset_within_address_space - start_addr); 721 722 mem = kvm_lookup_matching_slot(kml, start_addr, size); 723 if (!add) { 724 if (!mem) { 725 g_assert(!memory_region_is_ram(mr) && !writeable && !mr->romd_mode); 726 return; 727 } 728 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 729 kvm_physical_sync_dirty_bitmap(kml, section); 730 } 731 732 /* unregister the slot */ 733 mem->memory_size = 0; 734 err = kvm_set_user_memory_region(kml, mem); 735 if (err) { 736 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", 737 __func__, strerror(-err)); 738 abort(); 739 } 740 return; 741 } 742 743 if (mem) { 744 /* update the slot */ 745 kvm_slot_update_flags(kml, mem, mr); 746 return; 747 } 748 749 /* register the new slot */ 750 mem = kvm_alloc_slot(kml); 751 mem->memory_size = size; 752 mem->start_addr = start_addr; 753 mem->ram = ram; 754 mem->flags = kvm_mem_flags(mr); 755 756 err = kvm_set_user_memory_region(kml, mem); 757 if (err) { 758 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 759 strerror(-err)); 760 abort(); 761 } 762 } 763 764 static void kvm_region_add(MemoryListener *listener, 765 MemoryRegionSection *section) 766 { 767 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 768 769 memory_region_ref(section->mr); 770 kvm_set_phys_mem(kml, section, true); 771 } 772 773 static void kvm_region_del(MemoryListener *listener, 774 MemoryRegionSection *section) 775 { 776 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 777 778 kvm_set_phys_mem(kml, section, false); 779 memory_region_unref(section->mr); 780 } 781 782 static void kvm_log_sync(MemoryListener *listener, 783 MemoryRegionSection *section) 784 { 785 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 786 int r; 787 788 r = kvm_physical_sync_dirty_bitmap(kml, section); 789 if (r < 0) { 790 abort(); 791 } 792 } 793 794 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 795 MemoryRegionSection *section, 796 bool match_data, uint64_t data, 797 EventNotifier *e) 798 { 799 int fd = event_notifier_get_fd(e); 800 int r; 801 802 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 803 data, true, int128_get64(section->size), 804 match_data); 805 if (r < 0) { 806 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 807 __func__, strerror(-r)); 808 abort(); 809 } 810 } 811 812 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 813 MemoryRegionSection *section, 814 bool match_data, uint64_t data, 815 EventNotifier *e) 816 { 817 int fd = event_notifier_get_fd(e); 818 int r; 819 820 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 821 data, false, int128_get64(section->size), 822 match_data); 823 if (r < 0) { 824 abort(); 825 } 826 } 827 828 static void kvm_io_ioeventfd_add(MemoryListener *listener, 829 MemoryRegionSection *section, 830 bool match_data, uint64_t data, 831 EventNotifier *e) 832 { 833 int fd = event_notifier_get_fd(e); 834 int r; 835 836 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 837 data, true, int128_get64(section->size), 838 match_data); 839 if (r < 0) { 840 fprintf(stderr, "%s: error adding ioeventfd: %s\n", 841 __func__, strerror(-r)); 842 abort(); 843 } 844 } 845 846 static void kvm_io_ioeventfd_del(MemoryListener *listener, 847 MemoryRegionSection *section, 848 bool match_data, uint64_t data, 849 EventNotifier *e) 850 851 { 852 int fd = event_notifier_get_fd(e); 853 int r; 854 855 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 856 data, false, int128_get64(section->size), 857 match_data); 858 if (r < 0) { 859 abort(); 860 } 861 } 862 863 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 864 AddressSpace *as, int as_id) 865 { 866 int i; 867 868 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 869 kml->as_id = as_id; 870 871 for (i = 0; i < s->nr_slots; i++) { 872 kml->slots[i].slot = i; 873 } 874 875 kml->listener.region_add = kvm_region_add; 876 kml->listener.region_del = kvm_region_del; 877 kml->listener.log_start = kvm_log_start; 878 kml->listener.log_stop = kvm_log_stop; 879 kml->listener.log_sync = kvm_log_sync; 880 kml->listener.priority = 10; 881 882 memory_listener_register(&kml->listener, as); 883 } 884 885 static MemoryListener kvm_io_listener = { 886 .eventfd_add = kvm_io_ioeventfd_add, 887 .eventfd_del = kvm_io_ioeventfd_del, 888 .priority = 10, 889 }; 890 891 int kvm_set_irq(KVMState *s, int irq, int level) 892 { 893 struct kvm_irq_level event; 894 int ret; 895 896 assert(kvm_async_interrupts_enabled()); 897 898 event.level = level; 899 event.irq = irq; 900 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 901 if (ret < 0) { 902 perror("kvm_set_irq"); 903 abort(); 904 } 905 906 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 907 } 908 909 #ifdef KVM_CAP_IRQ_ROUTING 910 typedef struct KVMMSIRoute { 911 struct kvm_irq_routing_entry kroute; 912 QTAILQ_ENTRY(KVMMSIRoute) entry; 913 } KVMMSIRoute; 914 915 static void set_gsi(KVMState *s, unsigned int gsi) 916 { 917 set_bit(gsi, s->used_gsi_bitmap); 918 } 919 920 static void clear_gsi(KVMState *s, unsigned int gsi) 921 { 922 clear_bit(gsi, s->used_gsi_bitmap); 923 } 924 925 void kvm_init_irq_routing(KVMState *s) 926 { 927 int gsi_count, i; 928 929 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 930 if (gsi_count > 0) { 931 /* Round up so we can search ints using ffs */ 932 s->used_gsi_bitmap = bitmap_new(gsi_count); 933 s->gsi_count = gsi_count; 934 } 935 936 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 937 s->nr_allocated_irq_routes = 0; 938 939 if (!kvm_direct_msi_allowed) { 940 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 941 QTAILQ_INIT(&s->msi_hashtab[i]); 942 } 943 } 944 945 kvm_arch_init_irq_routing(s); 946 } 947 948 void kvm_irqchip_commit_routes(KVMState *s) 949 { 950 int ret; 951 952 if (kvm_gsi_direct_mapping()) { 953 return; 954 } 955 956 if (!kvm_gsi_routing_enabled()) { 957 return; 958 } 959 960 s->irq_routes->flags = 0; 961 trace_kvm_irqchip_commit_routes(); 962 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 963 assert(ret == 0); 964 } 965 966 static void kvm_add_routing_entry(KVMState *s, 967 struct kvm_irq_routing_entry *entry) 968 { 969 struct kvm_irq_routing_entry *new; 970 int n, size; 971 972 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 973 n = s->nr_allocated_irq_routes * 2; 974 if (n < 64) { 975 n = 64; 976 } 977 size = sizeof(struct kvm_irq_routing); 978 size += n * sizeof(*new); 979 s->irq_routes = g_realloc(s->irq_routes, size); 980 s->nr_allocated_irq_routes = n; 981 } 982 n = s->irq_routes->nr++; 983 new = &s->irq_routes->entries[n]; 984 985 *new = *entry; 986 987 set_gsi(s, entry->gsi); 988 } 989 990 static int kvm_update_routing_entry(KVMState *s, 991 struct kvm_irq_routing_entry *new_entry) 992 { 993 struct kvm_irq_routing_entry *entry; 994 int n; 995 996 for (n = 0; n < s->irq_routes->nr; n++) { 997 entry = &s->irq_routes->entries[n]; 998 if (entry->gsi != new_entry->gsi) { 999 continue; 1000 } 1001 1002 if(!memcmp(entry, new_entry, sizeof *entry)) { 1003 return 0; 1004 } 1005 1006 *entry = *new_entry; 1007 1008 return 0; 1009 } 1010 1011 return -ESRCH; 1012 } 1013 1014 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1015 { 1016 struct kvm_irq_routing_entry e = {}; 1017 1018 assert(pin < s->gsi_count); 1019 1020 e.gsi = irq; 1021 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1022 e.flags = 0; 1023 e.u.irqchip.irqchip = irqchip; 1024 e.u.irqchip.pin = pin; 1025 kvm_add_routing_entry(s, &e); 1026 } 1027 1028 void kvm_irqchip_release_virq(KVMState *s, int virq) 1029 { 1030 struct kvm_irq_routing_entry *e; 1031 int i; 1032 1033 if (kvm_gsi_direct_mapping()) { 1034 return; 1035 } 1036 1037 for (i = 0; i < s->irq_routes->nr; i++) { 1038 e = &s->irq_routes->entries[i]; 1039 if (e->gsi == virq) { 1040 s->irq_routes->nr--; 1041 *e = s->irq_routes->entries[s->irq_routes->nr]; 1042 } 1043 } 1044 clear_gsi(s, virq); 1045 kvm_arch_release_virq_post(virq); 1046 trace_kvm_irqchip_release_virq(virq); 1047 } 1048 1049 static unsigned int kvm_hash_msi(uint32_t data) 1050 { 1051 /* This is optimized for IA32 MSI layout. However, no other arch shall 1052 * repeat the mistake of not providing a direct MSI injection API. */ 1053 return data & 0xff; 1054 } 1055 1056 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1057 { 1058 KVMMSIRoute *route, *next; 1059 unsigned int hash; 1060 1061 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1062 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1063 kvm_irqchip_release_virq(s, route->kroute.gsi); 1064 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1065 g_free(route); 1066 } 1067 } 1068 } 1069 1070 static int kvm_irqchip_get_virq(KVMState *s) 1071 { 1072 int next_virq; 1073 1074 /* 1075 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1076 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1077 * number can succeed even though a new route entry cannot be added. 1078 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1079 */ 1080 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1081 kvm_flush_dynamic_msi_routes(s); 1082 } 1083 1084 /* Return the lowest unused GSI in the bitmap */ 1085 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1086 if (next_virq >= s->gsi_count) { 1087 return -ENOSPC; 1088 } else { 1089 return next_virq; 1090 } 1091 } 1092 1093 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1094 { 1095 unsigned int hash = kvm_hash_msi(msg.data); 1096 KVMMSIRoute *route; 1097 1098 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1099 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1100 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1101 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1102 return route; 1103 } 1104 } 1105 return NULL; 1106 } 1107 1108 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1109 { 1110 struct kvm_msi msi; 1111 KVMMSIRoute *route; 1112 1113 if (kvm_direct_msi_allowed) { 1114 msi.address_lo = (uint32_t)msg.address; 1115 msi.address_hi = msg.address >> 32; 1116 msi.data = le32_to_cpu(msg.data); 1117 msi.flags = 0; 1118 memset(msi.pad, 0, sizeof(msi.pad)); 1119 1120 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1121 } 1122 1123 route = kvm_lookup_msi_route(s, msg); 1124 if (!route) { 1125 int virq; 1126 1127 virq = kvm_irqchip_get_virq(s); 1128 if (virq < 0) { 1129 return virq; 1130 } 1131 1132 route = g_malloc0(sizeof(KVMMSIRoute)); 1133 route->kroute.gsi = virq; 1134 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1135 route->kroute.flags = 0; 1136 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1137 route->kroute.u.msi.address_hi = msg.address >> 32; 1138 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1139 1140 kvm_add_routing_entry(s, &route->kroute); 1141 kvm_irqchip_commit_routes(s); 1142 1143 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1144 entry); 1145 } 1146 1147 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1148 1149 return kvm_set_irq(s, route->kroute.gsi, 1); 1150 } 1151 1152 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1153 { 1154 struct kvm_irq_routing_entry kroute = {}; 1155 int virq; 1156 MSIMessage msg = {0, 0}; 1157 1158 if (pci_available && dev) { 1159 msg = pci_get_msi_message(dev, vector); 1160 } 1161 1162 if (kvm_gsi_direct_mapping()) { 1163 return kvm_arch_msi_data_to_gsi(msg.data); 1164 } 1165 1166 if (!kvm_gsi_routing_enabled()) { 1167 return -ENOSYS; 1168 } 1169 1170 virq = kvm_irqchip_get_virq(s); 1171 if (virq < 0) { 1172 return virq; 1173 } 1174 1175 kroute.gsi = virq; 1176 kroute.type = KVM_IRQ_ROUTING_MSI; 1177 kroute.flags = 0; 1178 kroute.u.msi.address_lo = (uint32_t)msg.address; 1179 kroute.u.msi.address_hi = msg.address >> 32; 1180 kroute.u.msi.data = le32_to_cpu(msg.data); 1181 if (pci_available && kvm_msi_devid_required()) { 1182 kroute.flags = KVM_MSI_VALID_DEVID; 1183 kroute.u.msi.devid = pci_requester_id(dev); 1184 } 1185 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1186 kvm_irqchip_release_virq(s, virq); 1187 return -EINVAL; 1188 } 1189 1190 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1191 vector, virq); 1192 1193 kvm_add_routing_entry(s, &kroute); 1194 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1195 kvm_irqchip_commit_routes(s); 1196 1197 return virq; 1198 } 1199 1200 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1201 PCIDevice *dev) 1202 { 1203 struct kvm_irq_routing_entry kroute = {}; 1204 1205 if (kvm_gsi_direct_mapping()) { 1206 return 0; 1207 } 1208 1209 if (!kvm_irqchip_in_kernel()) { 1210 return -ENOSYS; 1211 } 1212 1213 kroute.gsi = virq; 1214 kroute.type = KVM_IRQ_ROUTING_MSI; 1215 kroute.flags = 0; 1216 kroute.u.msi.address_lo = (uint32_t)msg.address; 1217 kroute.u.msi.address_hi = msg.address >> 32; 1218 kroute.u.msi.data = le32_to_cpu(msg.data); 1219 if (pci_available && kvm_msi_devid_required()) { 1220 kroute.flags = KVM_MSI_VALID_DEVID; 1221 kroute.u.msi.devid = pci_requester_id(dev); 1222 } 1223 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1224 return -EINVAL; 1225 } 1226 1227 trace_kvm_irqchip_update_msi_route(virq); 1228 1229 return kvm_update_routing_entry(s, &kroute); 1230 } 1231 1232 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1233 bool assign) 1234 { 1235 struct kvm_irqfd irqfd = { 1236 .fd = fd, 1237 .gsi = virq, 1238 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1239 }; 1240 1241 if (rfd != -1) { 1242 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1243 irqfd.resamplefd = rfd; 1244 } 1245 1246 if (!kvm_irqfds_enabled()) { 1247 return -ENOSYS; 1248 } 1249 1250 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1251 } 1252 1253 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1254 { 1255 struct kvm_irq_routing_entry kroute = {}; 1256 int virq; 1257 1258 if (!kvm_gsi_routing_enabled()) { 1259 return -ENOSYS; 1260 } 1261 1262 virq = kvm_irqchip_get_virq(s); 1263 if (virq < 0) { 1264 return virq; 1265 } 1266 1267 kroute.gsi = virq; 1268 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1269 kroute.flags = 0; 1270 kroute.u.adapter.summary_addr = adapter->summary_addr; 1271 kroute.u.adapter.ind_addr = adapter->ind_addr; 1272 kroute.u.adapter.summary_offset = adapter->summary_offset; 1273 kroute.u.adapter.ind_offset = adapter->ind_offset; 1274 kroute.u.adapter.adapter_id = adapter->adapter_id; 1275 1276 kvm_add_routing_entry(s, &kroute); 1277 1278 return virq; 1279 } 1280 1281 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1282 { 1283 struct kvm_irq_routing_entry kroute = {}; 1284 int virq; 1285 1286 if (!kvm_gsi_routing_enabled()) { 1287 return -ENOSYS; 1288 } 1289 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1290 return -ENOSYS; 1291 } 1292 virq = kvm_irqchip_get_virq(s); 1293 if (virq < 0) { 1294 return virq; 1295 } 1296 1297 kroute.gsi = virq; 1298 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1299 kroute.flags = 0; 1300 kroute.u.hv_sint.vcpu = vcpu; 1301 kroute.u.hv_sint.sint = sint; 1302 1303 kvm_add_routing_entry(s, &kroute); 1304 kvm_irqchip_commit_routes(s); 1305 1306 return virq; 1307 } 1308 1309 #else /* !KVM_CAP_IRQ_ROUTING */ 1310 1311 void kvm_init_irq_routing(KVMState *s) 1312 { 1313 } 1314 1315 void kvm_irqchip_release_virq(KVMState *s, int virq) 1316 { 1317 } 1318 1319 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1320 { 1321 abort(); 1322 } 1323 1324 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1325 { 1326 return -ENOSYS; 1327 } 1328 1329 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1330 { 1331 return -ENOSYS; 1332 } 1333 1334 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1335 { 1336 return -ENOSYS; 1337 } 1338 1339 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1340 { 1341 abort(); 1342 } 1343 1344 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1345 { 1346 return -ENOSYS; 1347 } 1348 #endif /* !KVM_CAP_IRQ_ROUTING */ 1349 1350 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1351 EventNotifier *rn, int virq) 1352 { 1353 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1354 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1355 } 1356 1357 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1358 int virq) 1359 { 1360 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1361 false); 1362 } 1363 1364 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1365 EventNotifier *rn, qemu_irq irq) 1366 { 1367 gpointer key, gsi; 1368 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1369 1370 if (!found) { 1371 return -ENXIO; 1372 } 1373 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1374 } 1375 1376 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1377 qemu_irq irq) 1378 { 1379 gpointer key, gsi; 1380 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1381 1382 if (!found) { 1383 return -ENXIO; 1384 } 1385 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1386 } 1387 1388 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1389 { 1390 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1391 } 1392 1393 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1394 { 1395 int ret; 1396 1397 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1398 ; 1399 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1400 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1401 if (ret < 0) { 1402 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1403 exit(1); 1404 } 1405 } else { 1406 return; 1407 } 1408 1409 /* First probe and see if there's a arch-specific hook to create the 1410 * in-kernel irqchip for us */ 1411 ret = kvm_arch_irqchip_create(machine, s); 1412 if (ret == 0) { 1413 if (machine_kernel_irqchip_split(machine)) { 1414 perror("Split IRQ chip mode not supported."); 1415 exit(1); 1416 } else { 1417 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1418 } 1419 } 1420 if (ret < 0) { 1421 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1422 exit(1); 1423 } 1424 1425 kvm_kernel_irqchip = true; 1426 /* If we have an in-kernel IRQ chip then we must have asynchronous 1427 * interrupt delivery (though the reverse is not necessarily true) 1428 */ 1429 kvm_async_interrupts_allowed = true; 1430 kvm_halt_in_kernel_allowed = true; 1431 1432 kvm_init_irq_routing(s); 1433 1434 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1435 } 1436 1437 /* Find number of supported CPUs using the recommended 1438 * procedure from the kernel API documentation to cope with 1439 * older kernels that may be missing capabilities. 1440 */ 1441 static int kvm_recommended_vcpus(KVMState *s) 1442 { 1443 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); 1444 return (ret) ? ret : 4; 1445 } 1446 1447 static int kvm_max_vcpus(KVMState *s) 1448 { 1449 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1450 return (ret) ? ret : kvm_recommended_vcpus(s); 1451 } 1452 1453 static int kvm_max_vcpu_id(KVMState *s) 1454 { 1455 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1456 return (ret) ? ret : kvm_max_vcpus(s); 1457 } 1458 1459 bool kvm_vcpu_id_is_valid(int vcpu_id) 1460 { 1461 KVMState *s = KVM_STATE(current_machine->accelerator); 1462 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1463 } 1464 1465 static int kvm_init(MachineState *ms) 1466 { 1467 MachineClass *mc = MACHINE_GET_CLASS(ms); 1468 static const char upgrade_note[] = 1469 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1470 "(see http://sourceforge.net/projects/kvm).\n"; 1471 struct { 1472 const char *name; 1473 int num; 1474 } num_cpus[] = { 1475 { "SMP", smp_cpus }, 1476 { "hotpluggable", max_cpus }, 1477 { NULL, } 1478 }, *nc = num_cpus; 1479 int soft_vcpus_limit, hard_vcpus_limit; 1480 KVMState *s; 1481 const KVMCapabilityInfo *missing_cap; 1482 int ret; 1483 int type = 0; 1484 const char *kvm_type; 1485 1486 s = KVM_STATE(ms->accelerator); 1487 1488 /* 1489 * On systems where the kernel can support different base page 1490 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1491 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1492 * page size for the system though. 1493 */ 1494 assert(TARGET_PAGE_SIZE <= getpagesize()); 1495 1496 s->sigmask_len = 8; 1497 1498 #ifdef KVM_CAP_SET_GUEST_DEBUG 1499 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1500 #endif 1501 QLIST_INIT(&s->kvm_parked_vcpus); 1502 s->vmfd = -1; 1503 s->fd = qemu_open("/dev/kvm", O_RDWR); 1504 if (s->fd == -1) { 1505 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1506 ret = -errno; 1507 goto err; 1508 } 1509 1510 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1511 if (ret < KVM_API_VERSION) { 1512 if (ret >= 0) { 1513 ret = -EINVAL; 1514 } 1515 fprintf(stderr, "kvm version too old\n"); 1516 goto err; 1517 } 1518 1519 if (ret > KVM_API_VERSION) { 1520 ret = -EINVAL; 1521 fprintf(stderr, "kvm version not supported\n"); 1522 goto err; 1523 } 1524 1525 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1526 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1527 1528 /* If unspecified, use the default value */ 1529 if (!s->nr_slots) { 1530 s->nr_slots = 32; 1531 } 1532 1533 /* check the vcpu limits */ 1534 soft_vcpus_limit = kvm_recommended_vcpus(s); 1535 hard_vcpus_limit = kvm_max_vcpus(s); 1536 1537 while (nc->name) { 1538 if (nc->num > soft_vcpus_limit) { 1539 warn_report("Number of %s cpus requested (%d) exceeds " 1540 "the recommended cpus supported by KVM (%d)", 1541 nc->name, nc->num, soft_vcpus_limit); 1542 1543 if (nc->num > hard_vcpus_limit) { 1544 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1545 "the maximum cpus supported by KVM (%d)\n", 1546 nc->name, nc->num, hard_vcpus_limit); 1547 exit(1); 1548 } 1549 } 1550 nc++; 1551 } 1552 1553 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1554 if (mc->kvm_type) { 1555 type = mc->kvm_type(kvm_type); 1556 } else if (kvm_type) { 1557 ret = -EINVAL; 1558 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1559 goto err; 1560 } 1561 1562 do { 1563 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1564 } while (ret == -EINTR); 1565 1566 if (ret < 0) { 1567 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1568 strerror(-ret)); 1569 1570 #ifdef TARGET_S390X 1571 if (ret == -EINVAL) { 1572 fprintf(stderr, 1573 "Host kernel setup problem detected. Please verify:\n"); 1574 fprintf(stderr, "- for kernels supporting the switch_amode or" 1575 " user_mode parameters, whether\n"); 1576 fprintf(stderr, 1577 " user space is running in primary address space\n"); 1578 fprintf(stderr, 1579 "- for kernels supporting the vm.allocate_pgste sysctl, " 1580 "whether it is enabled\n"); 1581 } 1582 #endif 1583 goto err; 1584 } 1585 1586 s->vmfd = ret; 1587 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1588 if (!missing_cap) { 1589 missing_cap = 1590 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1591 } 1592 if (missing_cap) { 1593 ret = -EINVAL; 1594 fprintf(stderr, "kvm does not support %s\n%s", 1595 missing_cap->name, upgrade_note); 1596 goto err; 1597 } 1598 1599 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1600 1601 #ifdef KVM_CAP_VCPU_EVENTS 1602 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1603 #endif 1604 1605 s->robust_singlestep = 1606 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1607 1608 #ifdef KVM_CAP_DEBUGREGS 1609 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1610 #endif 1611 1612 #ifdef KVM_CAP_IRQ_ROUTING 1613 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1614 #endif 1615 1616 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1617 1618 s->irq_set_ioctl = KVM_IRQ_LINE; 1619 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1620 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1621 } 1622 1623 #ifdef KVM_CAP_READONLY_MEM 1624 kvm_readonly_mem_allowed = 1625 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1626 #endif 1627 1628 kvm_eventfds_allowed = 1629 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1630 1631 kvm_irqfds_allowed = 1632 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1633 1634 kvm_resamplefds_allowed = 1635 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1636 1637 kvm_vm_attributes_allowed = 1638 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1639 1640 kvm_ioeventfd_any_length_allowed = 1641 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1642 1643 kvm_state = s; 1644 1645 ret = kvm_arch_init(ms, s); 1646 if (ret < 0) { 1647 goto err; 1648 } 1649 1650 if (machine_kernel_irqchip_allowed(ms)) { 1651 kvm_irqchip_create(ms, s); 1652 } 1653 1654 if (kvm_eventfds_allowed) { 1655 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1656 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1657 } 1658 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; 1659 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; 1660 1661 kvm_memory_listener_register(s, &s->memory_listener, 1662 &address_space_memory, 0); 1663 memory_listener_register(&kvm_io_listener, 1664 &address_space_io); 1665 1666 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1667 1668 return 0; 1669 1670 err: 1671 assert(ret < 0); 1672 if (s->vmfd >= 0) { 1673 close(s->vmfd); 1674 } 1675 if (s->fd != -1) { 1676 close(s->fd); 1677 } 1678 g_free(s->memory_listener.slots); 1679 1680 return ret; 1681 } 1682 1683 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 1684 { 1685 s->sigmask_len = sigmask_len; 1686 } 1687 1688 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 1689 int size, uint32_t count) 1690 { 1691 int i; 1692 uint8_t *ptr = data; 1693 1694 for (i = 0; i < count; i++) { 1695 address_space_rw(&address_space_io, port, attrs, 1696 ptr, size, 1697 direction == KVM_EXIT_IO_OUT); 1698 ptr += size; 1699 } 1700 } 1701 1702 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 1703 { 1704 fprintf(stderr, "KVM internal error. Suberror: %d\n", 1705 run->internal.suberror); 1706 1707 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 1708 int i; 1709 1710 for (i = 0; i < run->internal.ndata; ++i) { 1711 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 1712 i, (uint64_t)run->internal.data[i]); 1713 } 1714 } 1715 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 1716 fprintf(stderr, "emulation failure\n"); 1717 if (!kvm_arch_stop_on_emulation_error(cpu)) { 1718 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 1719 return EXCP_INTERRUPT; 1720 } 1721 } 1722 /* FIXME: Should trigger a qmp message to let management know 1723 * something went wrong. 1724 */ 1725 return -1; 1726 } 1727 1728 void kvm_flush_coalesced_mmio_buffer(void) 1729 { 1730 KVMState *s = kvm_state; 1731 1732 if (s->coalesced_flush_in_progress) { 1733 return; 1734 } 1735 1736 s->coalesced_flush_in_progress = true; 1737 1738 if (s->coalesced_mmio_ring) { 1739 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 1740 while (ring->first != ring->last) { 1741 struct kvm_coalesced_mmio *ent; 1742 1743 ent = &ring->coalesced_mmio[ring->first]; 1744 1745 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 1746 smp_wmb(); 1747 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 1748 } 1749 } 1750 1751 s->coalesced_flush_in_progress = false; 1752 } 1753 1754 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 1755 { 1756 if (!cpu->vcpu_dirty) { 1757 kvm_arch_get_registers(cpu); 1758 cpu->vcpu_dirty = true; 1759 } 1760 } 1761 1762 void kvm_cpu_synchronize_state(CPUState *cpu) 1763 { 1764 if (!cpu->vcpu_dirty) { 1765 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 1766 } 1767 } 1768 1769 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 1770 { 1771 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 1772 cpu->vcpu_dirty = false; 1773 } 1774 1775 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 1776 { 1777 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 1778 } 1779 1780 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 1781 { 1782 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 1783 cpu->vcpu_dirty = false; 1784 } 1785 1786 void kvm_cpu_synchronize_post_init(CPUState *cpu) 1787 { 1788 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 1789 } 1790 1791 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 1792 { 1793 cpu->vcpu_dirty = true; 1794 } 1795 1796 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 1797 { 1798 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 1799 } 1800 1801 #ifdef KVM_HAVE_MCE_INJECTION 1802 static __thread void *pending_sigbus_addr; 1803 static __thread int pending_sigbus_code; 1804 static __thread bool have_sigbus_pending; 1805 #endif 1806 1807 static void kvm_cpu_kick(CPUState *cpu) 1808 { 1809 atomic_set(&cpu->kvm_run->immediate_exit, 1); 1810 } 1811 1812 static void kvm_cpu_kick_self(void) 1813 { 1814 if (kvm_immediate_exit) { 1815 kvm_cpu_kick(current_cpu); 1816 } else { 1817 qemu_cpu_kick_self(); 1818 } 1819 } 1820 1821 static void kvm_eat_signals(CPUState *cpu) 1822 { 1823 struct timespec ts = { 0, 0 }; 1824 siginfo_t siginfo; 1825 sigset_t waitset; 1826 sigset_t chkset; 1827 int r; 1828 1829 if (kvm_immediate_exit) { 1830 atomic_set(&cpu->kvm_run->immediate_exit, 0); 1831 /* Write kvm_run->immediate_exit before the cpu->exit_request 1832 * write in kvm_cpu_exec. 1833 */ 1834 smp_wmb(); 1835 return; 1836 } 1837 1838 sigemptyset(&waitset); 1839 sigaddset(&waitset, SIG_IPI); 1840 1841 do { 1842 r = sigtimedwait(&waitset, &siginfo, &ts); 1843 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 1844 perror("sigtimedwait"); 1845 exit(1); 1846 } 1847 1848 r = sigpending(&chkset); 1849 if (r == -1) { 1850 perror("sigpending"); 1851 exit(1); 1852 } 1853 } while (sigismember(&chkset, SIG_IPI)); 1854 } 1855 1856 int kvm_cpu_exec(CPUState *cpu) 1857 { 1858 struct kvm_run *run = cpu->kvm_run; 1859 int ret, run_ret; 1860 1861 DPRINTF("kvm_cpu_exec()\n"); 1862 1863 if (kvm_arch_process_async_events(cpu)) { 1864 atomic_set(&cpu->exit_request, 0); 1865 return EXCP_HLT; 1866 } 1867 1868 qemu_mutex_unlock_iothread(); 1869 cpu_exec_start(cpu); 1870 1871 do { 1872 MemTxAttrs attrs; 1873 1874 if (cpu->vcpu_dirty) { 1875 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 1876 cpu->vcpu_dirty = false; 1877 } 1878 1879 kvm_arch_pre_run(cpu, run); 1880 if (atomic_read(&cpu->exit_request)) { 1881 DPRINTF("interrupt exit requested\n"); 1882 /* 1883 * KVM requires us to reenter the kernel after IO exits to complete 1884 * instruction emulation. This self-signal will ensure that we 1885 * leave ASAP again. 1886 */ 1887 kvm_cpu_kick_self(); 1888 } 1889 1890 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 1891 * Matching barrier in kvm_eat_signals. 1892 */ 1893 smp_rmb(); 1894 1895 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 1896 1897 attrs = kvm_arch_post_run(cpu, run); 1898 1899 #ifdef KVM_HAVE_MCE_INJECTION 1900 if (unlikely(have_sigbus_pending)) { 1901 qemu_mutex_lock_iothread(); 1902 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 1903 pending_sigbus_addr); 1904 have_sigbus_pending = false; 1905 qemu_mutex_unlock_iothread(); 1906 } 1907 #endif 1908 1909 if (run_ret < 0) { 1910 if (run_ret == -EINTR || run_ret == -EAGAIN) { 1911 DPRINTF("io window exit\n"); 1912 kvm_eat_signals(cpu); 1913 ret = EXCP_INTERRUPT; 1914 break; 1915 } 1916 fprintf(stderr, "error: kvm run failed %s\n", 1917 strerror(-run_ret)); 1918 #ifdef TARGET_PPC 1919 if (run_ret == -EBUSY) { 1920 fprintf(stderr, 1921 "This is probably because your SMT is enabled.\n" 1922 "VCPU can only run on primary threads with all " 1923 "secondary threads offline.\n"); 1924 } 1925 #endif 1926 ret = -1; 1927 break; 1928 } 1929 1930 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 1931 switch (run->exit_reason) { 1932 case KVM_EXIT_IO: 1933 DPRINTF("handle_io\n"); 1934 /* Called outside BQL */ 1935 kvm_handle_io(run->io.port, attrs, 1936 (uint8_t *)run + run->io.data_offset, 1937 run->io.direction, 1938 run->io.size, 1939 run->io.count); 1940 ret = 0; 1941 break; 1942 case KVM_EXIT_MMIO: 1943 DPRINTF("handle_mmio\n"); 1944 /* Called outside BQL */ 1945 address_space_rw(&address_space_memory, 1946 run->mmio.phys_addr, attrs, 1947 run->mmio.data, 1948 run->mmio.len, 1949 run->mmio.is_write); 1950 ret = 0; 1951 break; 1952 case KVM_EXIT_IRQ_WINDOW_OPEN: 1953 DPRINTF("irq_window_open\n"); 1954 ret = EXCP_INTERRUPT; 1955 break; 1956 case KVM_EXIT_SHUTDOWN: 1957 DPRINTF("shutdown\n"); 1958 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1959 ret = EXCP_INTERRUPT; 1960 break; 1961 case KVM_EXIT_UNKNOWN: 1962 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 1963 (uint64_t)run->hw.hardware_exit_reason); 1964 ret = -1; 1965 break; 1966 case KVM_EXIT_INTERNAL_ERROR: 1967 ret = kvm_handle_internal_error(cpu, run); 1968 break; 1969 case KVM_EXIT_SYSTEM_EVENT: 1970 switch (run->system_event.type) { 1971 case KVM_SYSTEM_EVENT_SHUTDOWN: 1972 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 1973 ret = EXCP_INTERRUPT; 1974 break; 1975 case KVM_SYSTEM_EVENT_RESET: 1976 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1977 ret = EXCP_INTERRUPT; 1978 break; 1979 case KVM_SYSTEM_EVENT_CRASH: 1980 kvm_cpu_synchronize_state(cpu); 1981 qemu_mutex_lock_iothread(); 1982 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 1983 qemu_mutex_unlock_iothread(); 1984 ret = 0; 1985 break; 1986 default: 1987 DPRINTF("kvm_arch_handle_exit\n"); 1988 ret = kvm_arch_handle_exit(cpu, run); 1989 break; 1990 } 1991 break; 1992 default: 1993 DPRINTF("kvm_arch_handle_exit\n"); 1994 ret = kvm_arch_handle_exit(cpu, run); 1995 break; 1996 } 1997 } while (ret == 0); 1998 1999 cpu_exec_end(cpu); 2000 qemu_mutex_lock_iothread(); 2001 2002 if (ret < 0) { 2003 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); 2004 vm_stop(RUN_STATE_INTERNAL_ERROR); 2005 } 2006 2007 atomic_set(&cpu->exit_request, 0); 2008 return ret; 2009 } 2010 2011 int kvm_ioctl(KVMState *s, int type, ...) 2012 { 2013 int ret; 2014 void *arg; 2015 va_list ap; 2016 2017 va_start(ap, type); 2018 arg = va_arg(ap, void *); 2019 va_end(ap); 2020 2021 trace_kvm_ioctl(type, arg); 2022 ret = ioctl(s->fd, type, arg); 2023 if (ret == -1) { 2024 ret = -errno; 2025 } 2026 return ret; 2027 } 2028 2029 int kvm_vm_ioctl(KVMState *s, int type, ...) 2030 { 2031 int ret; 2032 void *arg; 2033 va_list ap; 2034 2035 va_start(ap, type); 2036 arg = va_arg(ap, void *); 2037 va_end(ap); 2038 2039 trace_kvm_vm_ioctl(type, arg); 2040 ret = ioctl(s->vmfd, type, arg); 2041 if (ret == -1) { 2042 ret = -errno; 2043 } 2044 return ret; 2045 } 2046 2047 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2048 { 2049 int ret; 2050 void *arg; 2051 va_list ap; 2052 2053 va_start(ap, type); 2054 arg = va_arg(ap, void *); 2055 va_end(ap); 2056 2057 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2058 ret = ioctl(cpu->kvm_fd, type, arg); 2059 if (ret == -1) { 2060 ret = -errno; 2061 } 2062 return ret; 2063 } 2064 2065 int kvm_device_ioctl(int fd, int type, ...) 2066 { 2067 int ret; 2068 void *arg; 2069 va_list ap; 2070 2071 va_start(ap, type); 2072 arg = va_arg(ap, void *); 2073 va_end(ap); 2074 2075 trace_kvm_device_ioctl(fd, type, arg); 2076 ret = ioctl(fd, type, arg); 2077 if (ret == -1) { 2078 ret = -errno; 2079 } 2080 return ret; 2081 } 2082 2083 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2084 { 2085 int ret; 2086 struct kvm_device_attr attribute = { 2087 .group = group, 2088 .attr = attr, 2089 }; 2090 2091 if (!kvm_vm_attributes_allowed) { 2092 return 0; 2093 } 2094 2095 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2096 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2097 return ret ? 0 : 1; 2098 } 2099 2100 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2101 { 2102 struct kvm_device_attr attribute = { 2103 .group = group, 2104 .attr = attr, 2105 .flags = 0, 2106 }; 2107 2108 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2109 } 2110 2111 int kvm_device_access(int fd, int group, uint64_t attr, 2112 void *val, bool write, Error **errp) 2113 { 2114 struct kvm_device_attr kvmattr; 2115 int err; 2116 2117 kvmattr.flags = 0; 2118 kvmattr.group = group; 2119 kvmattr.attr = attr; 2120 kvmattr.addr = (uintptr_t)val; 2121 2122 err = kvm_device_ioctl(fd, 2123 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2124 &kvmattr); 2125 if (err < 0) { 2126 error_setg_errno(errp, -err, 2127 "KVM_%s_DEVICE_ATTR failed: Group %d " 2128 "attr 0x%016" PRIx64, 2129 write ? "SET" : "GET", group, attr); 2130 } 2131 return err; 2132 } 2133 2134 /* Return 1 on success, 0 on failure */ 2135 int kvm_has_sync_mmu(void) 2136 { 2137 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2138 } 2139 2140 int kvm_has_vcpu_events(void) 2141 { 2142 return kvm_state->vcpu_events; 2143 } 2144 2145 int kvm_has_robust_singlestep(void) 2146 { 2147 return kvm_state->robust_singlestep; 2148 } 2149 2150 int kvm_has_debugregs(void) 2151 { 2152 return kvm_state->debugregs; 2153 } 2154 2155 int kvm_has_many_ioeventfds(void) 2156 { 2157 if (!kvm_enabled()) { 2158 return 0; 2159 } 2160 return kvm_state->many_ioeventfds; 2161 } 2162 2163 int kvm_has_gsi_routing(void) 2164 { 2165 #ifdef KVM_CAP_IRQ_ROUTING 2166 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2167 #else 2168 return false; 2169 #endif 2170 } 2171 2172 int kvm_has_intx_set_mask(void) 2173 { 2174 return kvm_state->intx_set_mask; 2175 } 2176 2177 bool kvm_arm_supports_user_irq(void) 2178 { 2179 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2180 } 2181 2182 #ifdef KVM_CAP_SET_GUEST_DEBUG 2183 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2184 target_ulong pc) 2185 { 2186 struct kvm_sw_breakpoint *bp; 2187 2188 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2189 if (bp->pc == pc) { 2190 return bp; 2191 } 2192 } 2193 return NULL; 2194 } 2195 2196 int kvm_sw_breakpoints_active(CPUState *cpu) 2197 { 2198 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2199 } 2200 2201 struct kvm_set_guest_debug_data { 2202 struct kvm_guest_debug dbg; 2203 int err; 2204 }; 2205 2206 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2207 { 2208 struct kvm_set_guest_debug_data *dbg_data = 2209 (struct kvm_set_guest_debug_data *) data.host_ptr; 2210 2211 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2212 &dbg_data->dbg); 2213 } 2214 2215 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2216 { 2217 struct kvm_set_guest_debug_data data; 2218 2219 data.dbg.control = reinject_trap; 2220 2221 if (cpu->singlestep_enabled) { 2222 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2223 } 2224 kvm_arch_update_guest_debug(cpu, &data.dbg); 2225 2226 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2227 RUN_ON_CPU_HOST_PTR(&data)); 2228 return data.err; 2229 } 2230 2231 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2232 target_ulong len, int type) 2233 { 2234 struct kvm_sw_breakpoint *bp; 2235 int err; 2236 2237 if (type == GDB_BREAKPOINT_SW) { 2238 bp = kvm_find_sw_breakpoint(cpu, addr); 2239 if (bp) { 2240 bp->use_count++; 2241 return 0; 2242 } 2243 2244 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2245 bp->pc = addr; 2246 bp->use_count = 1; 2247 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2248 if (err) { 2249 g_free(bp); 2250 return err; 2251 } 2252 2253 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2254 } else { 2255 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2256 if (err) { 2257 return err; 2258 } 2259 } 2260 2261 CPU_FOREACH(cpu) { 2262 err = kvm_update_guest_debug(cpu, 0); 2263 if (err) { 2264 return err; 2265 } 2266 } 2267 return 0; 2268 } 2269 2270 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2271 target_ulong len, int type) 2272 { 2273 struct kvm_sw_breakpoint *bp; 2274 int err; 2275 2276 if (type == GDB_BREAKPOINT_SW) { 2277 bp = kvm_find_sw_breakpoint(cpu, addr); 2278 if (!bp) { 2279 return -ENOENT; 2280 } 2281 2282 if (bp->use_count > 1) { 2283 bp->use_count--; 2284 return 0; 2285 } 2286 2287 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2288 if (err) { 2289 return err; 2290 } 2291 2292 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2293 g_free(bp); 2294 } else { 2295 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2296 if (err) { 2297 return err; 2298 } 2299 } 2300 2301 CPU_FOREACH(cpu) { 2302 err = kvm_update_guest_debug(cpu, 0); 2303 if (err) { 2304 return err; 2305 } 2306 } 2307 return 0; 2308 } 2309 2310 void kvm_remove_all_breakpoints(CPUState *cpu) 2311 { 2312 struct kvm_sw_breakpoint *bp, *next; 2313 KVMState *s = cpu->kvm_state; 2314 CPUState *tmpcpu; 2315 2316 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2317 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2318 /* Try harder to find a CPU that currently sees the breakpoint. */ 2319 CPU_FOREACH(tmpcpu) { 2320 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2321 break; 2322 } 2323 } 2324 } 2325 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2326 g_free(bp); 2327 } 2328 kvm_arch_remove_all_hw_breakpoints(); 2329 2330 CPU_FOREACH(cpu) { 2331 kvm_update_guest_debug(cpu, 0); 2332 } 2333 } 2334 2335 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2336 2337 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2338 { 2339 return -EINVAL; 2340 } 2341 2342 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2343 target_ulong len, int type) 2344 { 2345 return -EINVAL; 2346 } 2347 2348 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2349 target_ulong len, int type) 2350 { 2351 return -EINVAL; 2352 } 2353 2354 void kvm_remove_all_breakpoints(CPUState *cpu) 2355 { 2356 } 2357 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2358 2359 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2360 { 2361 KVMState *s = kvm_state; 2362 struct kvm_signal_mask *sigmask; 2363 int r; 2364 2365 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2366 2367 sigmask->len = s->sigmask_len; 2368 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2369 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2370 g_free(sigmask); 2371 2372 return r; 2373 } 2374 2375 static void kvm_ipi_signal(int sig) 2376 { 2377 if (current_cpu) { 2378 assert(kvm_immediate_exit); 2379 kvm_cpu_kick(current_cpu); 2380 } 2381 } 2382 2383 void kvm_init_cpu_signals(CPUState *cpu) 2384 { 2385 int r; 2386 sigset_t set; 2387 struct sigaction sigact; 2388 2389 memset(&sigact, 0, sizeof(sigact)); 2390 sigact.sa_handler = kvm_ipi_signal; 2391 sigaction(SIG_IPI, &sigact, NULL); 2392 2393 pthread_sigmask(SIG_BLOCK, NULL, &set); 2394 #if defined KVM_HAVE_MCE_INJECTION 2395 sigdelset(&set, SIGBUS); 2396 pthread_sigmask(SIG_SETMASK, &set, NULL); 2397 #endif 2398 sigdelset(&set, SIG_IPI); 2399 if (kvm_immediate_exit) { 2400 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2401 } else { 2402 r = kvm_set_signal_mask(cpu, &set); 2403 } 2404 if (r) { 2405 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2406 exit(1); 2407 } 2408 } 2409 2410 /* Called asynchronously in VCPU thread. */ 2411 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2412 { 2413 #ifdef KVM_HAVE_MCE_INJECTION 2414 if (have_sigbus_pending) { 2415 return 1; 2416 } 2417 have_sigbus_pending = true; 2418 pending_sigbus_addr = addr; 2419 pending_sigbus_code = code; 2420 atomic_set(&cpu->exit_request, 1); 2421 return 0; 2422 #else 2423 return 1; 2424 #endif 2425 } 2426 2427 /* Called synchronously (via signalfd) in main thread. */ 2428 int kvm_on_sigbus(int code, void *addr) 2429 { 2430 #ifdef KVM_HAVE_MCE_INJECTION 2431 /* Action required MCE kills the process if SIGBUS is blocked. Because 2432 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2433 * we can only get action optional here. 2434 */ 2435 assert(code != BUS_MCEERR_AR); 2436 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2437 return 0; 2438 #else 2439 return 1; 2440 #endif 2441 } 2442 2443 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2444 { 2445 int ret; 2446 struct kvm_create_device create_dev; 2447 2448 create_dev.type = type; 2449 create_dev.fd = -1; 2450 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2451 2452 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2453 return -ENOTSUP; 2454 } 2455 2456 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2457 if (ret) { 2458 return ret; 2459 } 2460 2461 return test ? 0 : create_dev.fd; 2462 } 2463 2464 bool kvm_device_supported(int vmfd, uint64_t type) 2465 { 2466 struct kvm_create_device create_dev = { 2467 .type = type, 2468 .fd = -1, 2469 .flags = KVM_CREATE_DEVICE_TEST, 2470 }; 2471 2472 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2473 return false; 2474 } 2475 2476 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2477 } 2478 2479 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2480 { 2481 struct kvm_one_reg reg; 2482 int r; 2483 2484 reg.id = id; 2485 reg.addr = (uintptr_t) source; 2486 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2487 if (r) { 2488 trace_kvm_failed_reg_set(id, strerror(-r)); 2489 } 2490 return r; 2491 } 2492 2493 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2494 { 2495 struct kvm_one_reg reg; 2496 int r; 2497 2498 reg.id = id; 2499 reg.addr = (uintptr_t) target; 2500 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2501 if (r) { 2502 trace_kvm_failed_reg_get(id, strerror(-r)); 2503 } 2504 return r; 2505 } 2506 2507 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2508 { 2509 AccelClass *ac = ACCEL_CLASS(oc); 2510 ac->name = "KVM"; 2511 ac->init_machine = kvm_init; 2512 ac->allowed = &kvm_allowed; 2513 } 2514 2515 static const TypeInfo kvm_accel_type = { 2516 .name = TYPE_KVM_ACCEL, 2517 .parent = TYPE_ACCEL, 2518 .class_init = kvm_accel_class_init, 2519 .instance_size = sizeof(KVMState), 2520 }; 2521 2522 static void kvm_type_init(void) 2523 { 2524 type_register_static(&kvm_accel_type); 2525 } 2526 2527 type_init(kvm_type_init); 2528