1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/hw.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/cpus.h" 33 #include "qemu/bswap.h" 34 #include "exec/memory.h" 35 #include "exec/ram_addr.h" 36 #include "exec/address-spaces.h" 37 #include "qemu/event_notifier.h" 38 #include "trace.h" 39 #include "hw/irq.h" 40 #include "sysemu/sev.h" 41 #include "sysemu/balloon.h" 42 43 #include "hw/boards.h" 44 45 /* This check must be after config-host.h is included */ 46 #ifdef CONFIG_EVENTFD 47 #include <sys/eventfd.h> 48 #endif 49 50 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 51 * need to use the real host PAGE_SIZE, as that's what KVM will use. 52 */ 53 #define PAGE_SIZE getpagesize() 54 55 //#define DEBUG_KVM 56 57 #ifdef DEBUG_KVM 58 #define DPRINTF(fmt, ...) \ 59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 60 #else 61 #define DPRINTF(fmt, ...) \ 62 do { } while (0) 63 #endif 64 65 #define KVM_MSI_HASHTAB_SIZE 256 66 67 struct KVMParkedVcpu { 68 unsigned long vcpu_id; 69 int kvm_fd; 70 QLIST_ENTRY(KVMParkedVcpu) node; 71 }; 72 73 struct KVMState 74 { 75 AccelState parent_obj; 76 77 int nr_slots; 78 int fd; 79 int vmfd; 80 int coalesced_mmio; 81 int coalesced_pio; 82 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 83 bool coalesced_flush_in_progress; 84 int vcpu_events; 85 int robust_singlestep; 86 int debugregs; 87 #ifdef KVM_CAP_SET_GUEST_DEBUG 88 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 89 #endif 90 int max_nested_state_len; 91 int many_ioeventfds; 92 int intx_set_mask; 93 bool sync_mmu; 94 bool manual_dirty_log_protect; 95 /* The man page (and posix) say ioctl numbers are signed int, but 96 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 97 * unsigned, and treating them as signed here can break things */ 98 unsigned irq_set_ioctl; 99 unsigned int sigmask_len; 100 GHashTable *gsimap; 101 #ifdef KVM_CAP_IRQ_ROUTING 102 struct kvm_irq_routing *irq_routes; 103 int nr_allocated_irq_routes; 104 unsigned long *used_gsi_bitmap; 105 unsigned int gsi_count; 106 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 107 #endif 108 KVMMemoryListener memory_listener; 109 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 110 111 /* memory encryption */ 112 void *memcrypt_handle; 113 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 114 115 /* For "info mtree -f" to tell if an MR is registered in KVM */ 116 int nr_as; 117 struct KVMAs { 118 KVMMemoryListener *ml; 119 AddressSpace *as; 120 } *as; 121 }; 122 123 KVMState *kvm_state; 124 bool kvm_kernel_irqchip; 125 bool kvm_split_irqchip; 126 bool kvm_async_interrupts_allowed; 127 bool kvm_halt_in_kernel_allowed; 128 bool kvm_eventfds_allowed; 129 bool kvm_irqfds_allowed; 130 bool kvm_resamplefds_allowed; 131 bool kvm_msi_via_irqfd_allowed; 132 bool kvm_gsi_routing_allowed; 133 bool kvm_gsi_direct_mapping; 134 bool kvm_allowed; 135 bool kvm_readonly_mem_allowed; 136 bool kvm_vm_attributes_allowed; 137 bool kvm_direct_msi_allowed; 138 bool kvm_ioeventfd_any_length_allowed; 139 bool kvm_msi_use_devid; 140 static bool kvm_immediate_exit; 141 142 static const KVMCapabilityInfo kvm_required_capabilites[] = { 143 KVM_CAP_INFO(USER_MEMORY), 144 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 145 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 146 KVM_CAP_LAST_INFO 147 }; 148 149 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 150 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 151 152 int kvm_get_max_memslots(void) 153 { 154 KVMState *s = KVM_STATE(current_machine->accelerator); 155 156 return s->nr_slots; 157 } 158 159 bool kvm_memcrypt_enabled(void) 160 { 161 if (kvm_state && kvm_state->memcrypt_handle) { 162 return true; 163 } 164 165 return false; 166 } 167 168 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 169 { 170 if (kvm_state->memcrypt_handle && 171 kvm_state->memcrypt_encrypt_data) { 172 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 173 ptr, len); 174 } 175 176 return 1; 177 } 178 179 /* Called with KVMMemoryListener.slots_lock held */ 180 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 181 { 182 KVMState *s = kvm_state; 183 int i; 184 185 for (i = 0; i < s->nr_slots; i++) { 186 if (kml->slots[i].memory_size == 0) { 187 return &kml->slots[i]; 188 } 189 } 190 191 return NULL; 192 } 193 194 bool kvm_has_free_slot(MachineState *ms) 195 { 196 KVMState *s = KVM_STATE(ms->accelerator); 197 bool result; 198 KVMMemoryListener *kml = &s->memory_listener; 199 200 kvm_slots_lock(kml); 201 result = !!kvm_get_free_slot(kml); 202 kvm_slots_unlock(kml); 203 204 return result; 205 } 206 207 /* Called with KVMMemoryListener.slots_lock held */ 208 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 209 { 210 KVMSlot *slot = kvm_get_free_slot(kml); 211 212 if (slot) { 213 return slot; 214 } 215 216 fprintf(stderr, "%s: no free slot available\n", __func__); 217 abort(); 218 } 219 220 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 221 hwaddr start_addr, 222 hwaddr size) 223 { 224 KVMState *s = kvm_state; 225 int i; 226 227 for (i = 0; i < s->nr_slots; i++) { 228 KVMSlot *mem = &kml->slots[i]; 229 230 if (start_addr == mem->start_addr && size == mem->memory_size) { 231 return mem; 232 } 233 } 234 235 return NULL; 236 } 237 238 /* 239 * Calculate and align the start address and the size of the section. 240 * Return the size. If the size is 0, the aligned section is empty. 241 */ 242 static hwaddr kvm_align_section(MemoryRegionSection *section, 243 hwaddr *start) 244 { 245 hwaddr size = int128_get64(section->size); 246 hwaddr delta, aligned; 247 248 /* kvm works in page size chunks, but the function may be called 249 with sub-page size and unaligned start address. Pad the start 250 address to next and truncate size to previous page boundary. */ 251 aligned = ROUND_UP(section->offset_within_address_space, 252 qemu_real_host_page_size); 253 delta = aligned - section->offset_within_address_space; 254 *start = aligned; 255 if (delta > size) { 256 return 0; 257 } 258 259 return (size - delta) & qemu_real_host_page_mask; 260 } 261 262 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 263 hwaddr *phys_addr) 264 { 265 KVMMemoryListener *kml = &s->memory_listener; 266 int i, ret = 0; 267 268 kvm_slots_lock(kml); 269 for (i = 0; i < s->nr_slots; i++) { 270 KVMSlot *mem = &kml->slots[i]; 271 272 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 273 *phys_addr = mem->start_addr + (ram - mem->ram); 274 ret = 1; 275 break; 276 } 277 } 278 kvm_slots_unlock(kml); 279 280 return ret; 281 } 282 283 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 284 { 285 KVMState *s = kvm_state; 286 struct kvm_userspace_memory_region mem; 287 int ret; 288 289 mem.slot = slot->slot | (kml->as_id << 16); 290 mem.guest_phys_addr = slot->start_addr; 291 mem.userspace_addr = (unsigned long)slot->ram; 292 mem.flags = slot->flags; 293 294 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 295 /* Set the slot size to 0 before setting the slot to the desired 296 * value. This is needed based on KVM commit 75d61fbc. */ 297 mem.memory_size = 0; 298 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 299 } 300 mem.memory_size = slot->memory_size; 301 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 302 slot->old_flags = mem.flags; 303 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 304 mem.memory_size, mem.userspace_addr, ret); 305 return ret; 306 } 307 308 int kvm_destroy_vcpu(CPUState *cpu) 309 { 310 KVMState *s = kvm_state; 311 long mmap_size; 312 struct KVMParkedVcpu *vcpu = NULL; 313 int ret = 0; 314 315 DPRINTF("kvm_destroy_vcpu\n"); 316 317 ret = kvm_arch_destroy_vcpu(cpu); 318 if (ret < 0) { 319 goto err; 320 } 321 322 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 323 if (mmap_size < 0) { 324 ret = mmap_size; 325 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 326 goto err; 327 } 328 329 ret = munmap(cpu->kvm_run, mmap_size); 330 if (ret < 0) { 331 goto err; 332 } 333 334 vcpu = g_malloc0(sizeof(*vcpu)); 335 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 336 vcpu->kvm_fd = cpu->kvm_fd; 337 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 338 err: 339 return ret; 340 } 341 342 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 343 { 344 struct KVMParkedVcpu *cpu; 345 346 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 347 if (cpu->vcpu_id == vcpu_id) { 348 int kvm_fd; 349 350 QLIST_REMOVE(cpu, node); 351 kvm_fd = cpu->kvm_fd; 352 g_free(cpu); 353 return kvm_fd; 354 } 355 } 356 357 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 358 } 359 360 int kvm_init_vcpu(CPUState *cpu) 361 { 362 KVMState *s = kvm_state; 363 long mmap_size; 364 int ret; 365 366 DPRINTF("kvm_init_vcpu\n"); 367 368 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 369 if (ret < 0) { 370 DPRINTF("kvm_create_vcpu failed\n"); 371 goto err; 372 } 373 374 cpu->kvm_fd = ret; 375 cpu->kvm_state = s; 376 cpu->vcpu_dirty = true; 377 378 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 379 if (mmap_size < 0) { 380 ret = mmap_size; 381 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 382 goto err; 383 } 384 385 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 386 cpu->kvm_fd, 0); 387 if (cpu->kvm_run == MAP_FAILED) { 388 ret = -errno; 389 DPRINTF("mmap'ing vcpu state failed\n"); 390 goto err; 391 } 392 393 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 394 s->coalesced_mmio_ring = 395 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 396 } 397 398 ret = kvm_arch_init_vcpu(cpu); 399 err: 400 return ret; 401 } 402 403 /* 404 * dirty pages logging control 405 */ 406 407 static int kvm_mem_flags(MemoryRegion *mr) 408 { 409 bool readonly = mr->readonly || memory_region_is_romd(mr); 410 int flags = 0; 411 412 if (memory_region_get_dirty_log_mask(mr) != 0) { 413 flags |= KVM_MEM_LOG_DIRTY_PAGES; 414 } 415 if (readonly && kvm_readonly_mem_allowed) { 416 flags |= KVM_MEM_READONLY; 417 } 418 return flags; 419 } 420 421 /* Called with KVMMemoryListener.slots_lock held */ 422 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 423 MemoryRegion *mr) 424 { 425 mem->flags = kvm_mem_flags(mr); 426 427 /* If nothing changed effectively, no need to issue ioctl */ 428 if (mem->flags == mem->old_flags) { 429 return 0; 430 } 431 432 return kvm_set_user_memory_region(kml, mem, false); 433 } 434 435 static int kvm_section_update_flags(KVMMemoryListener *kml, 436 MemoryRegionSection *section) 437 { 438 hwaddr start_addr, size; 439 KVMSlot *mem; 440 int ret = 0; 441 442 size = kvm_align_section(section, &start_addr); 443 if (!size) { 444 return 0; 445 } 446 447 kvm_slots_lock(kml); 448 449 mem = kvm_lookup_matching_slot(kml, start_addr, size); 450 if (!mem) { 451 /* We don't have a slot if we want to trap every access. */ 452 goto out; 453 } 454 455 ret = kvm_slot_update_flags(kml, mem, section->mr); 456 457 out: 458 kvm_slots_unlock(kml); 459 return ret; 460 } 461 462 static void kvm_log_start(MemoryListener *listener, 463 MemoryRegionSection *section, 464 int old, int new) 465 { 466 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 467 int r; 468 469 if (old != 0) { 470 return; 471 } 472 473 r = kvm_section_update_flags(kml, section); 474 if (r < 0) { 475 abort(); 476 } 477 } 478 479 static void kvm_log_stop(MemoryListener *listener, 480 MemoryRegionSection *section, 481 int old, int new) 482 { 483 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 484 int r; 485 486 if (new != 0) { 487 return; 488 } 489 490 r = kvm_section_update_flags(kml, section); 491 if (r < 0) { 492 abort(); 493 } 494 } 495 496 /* get kvm's dirty pages bitmap and update qemu's */ 497 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 498 unsigned long *bitmap) 499 { 500 ram_addr_t start = section->offset_within_region + 501 memory_region_get_ram_addr(section->mr); 502 ram_addr_t pages = int128_get64(section->size) / getpagesize(); 503 504 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 505 return 0; 506 } 507 508 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 509 510 /** 511 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 512 * 513 * This function will first try to fetch dirty bitmap from the kernel, 514 * and then updates qemu's dirty bitmap. 515 * 516 * NOTE: caller must be with kml->slots_lock held. 517 * 518 * @kml: the KVM memory listener object 519 * @section: the memory section to sync the dirty bitmap with 520 */ 521 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 522 MemoryRegionSection *section) 523 { 524 KVMState *s = kvm_state; 525 struct kvm_dirty_log d = {}; 526 KVMSlot *mem; 527 hwaddr start_addr, size; 528 int ret = 0; 529 530 size = kvm_align_section(section, &start_addr); 531 if (size) { 532 mem = kvm_lookup_matching_slot(kml, start_addr, size); 533 if (!mem) { 534 /* We don't have a slot if we want to trap every access. */ 535 goto out; 536 } 537 538 /* XXX bad kernel interface alert 539 * For dirty bitmap, kernel allocates array of size aligned to 540 * bits-per-long. But for case when the kernel is 64bits and 541 * the userspace is 32bits, userspace can't align to the same 542 * bits-per-long, since sizeof(long) is different between kernel 543 * and user space. This way, userspace will provide buffer which 544 * may be 4 bytes less than the kernel will use, resulting in 545 * userspace memory corruption (which is not detectable by valgrind 546 * too, in most cases). 547 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 548 * a hope that sizeof(long) won't become >8 any time soon. 549 */ 550 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 551 /*HOST_LONG_BITS*/ 64) / 8; 552 if (!mem->dirty_bmap) { 553 /* Allocate on the first log_sync, once and for all */ 554 mem->dirty_bmap = g_malloc0(size); 555 } 556 557 d.dirty_bitmap = mem->dirty_bmap; 558 d.slot = mem->slot | (kml->as_id << 16); 559 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 560 DPRINTF("ioctl failed %d\n", errno); 561 ret = -1; 562 goto out; 563 } 564 565 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); 566 } 567 out: 568 return ret; 569 } 570 571 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 572 #define KVM_CLEAR_LOG_SHIFT 6 573 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 574 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 575 576 /** 577 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 578 * 579 * NOTE: this will be a no-op if we haven't enabled manual dirty log 580 * protection in the host kernel because in that case this operation 581 * will be done within log_sync(). 582 * 583 * @kml: the kvm memory listener 584 * @section: the memory range to clear dirty bitmap 585 */ 586 static int kvm_physical_log_clear(KVMMemoryListener *kml, 587 MemoryRegionSection *section) 588 { 589 KVMState *s = kvm_state; 590 struct kvm_clear_dirty_log d; 591 uint64_t start, end, bmap_start, start_delta, bmap_npages, size; 592 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 593 KVMSlot *mem = NULL; 594 int ret, i; 595 596 if (!s->manual_dirty_log_protect) { 597 /* No need to do explicit clear */ 598 return 0; 599 } 600 601 start = section->offset_within_address_space; 602 size = int128_get64(section->size); 603 604 if (!size) { 605 /* Nothing more we can do... */ 606 return 0; 607 } 608 609 kvm_slots_lock(kml); 610 611 /* Find any possible slot that covers the section */ 612 for (i = 0; i < s->nr_slots; i++) { 613 mem = &kml->slots[i]; 614 if (mem->start_addr <= start && 615 start + size <= mem->start_addr + mem->memory_size) { 616 break; 617 } 618 } 619 620 /* 621 * We should always find one memslot until this point, otherwise 622 * there could be something wrong from the upper layer 623 */ 624 assert(mem && i != s->nr_slots); 625 626 /* 627 * We need to extend either the start or the size or both to 628 * satisfy the KVM interface requirement. Firstly, do the start 629 * page alignment on 64 host pages 630 */ 631 bmap_start = (start - mem->start_addr) & KVM_CLEAR_LOG_MASK; 632 start_delta = start - mem->start_addr - bmap_start; 633 bmap_start /= psize; 634 635 /* 636 * The kernel interface has restriction on the size too, that either: 637 * 638 * (1) the size is 64 host pages aligned (just like the start), or 639 * (2) the size fills up until the end of the KVM memslot. 640 */ 641 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 642 << KVM_CLEAR_LOG_SHIFT; 643 end = mem->memory_size / psize; 644 if (bmap_npages > end - bmap_start) { 645 bmap_npages = end - bmap_start; 646 } 647 start_delta /= psize; 648 649 /* 650 * Prepare the bitmap to clear dirty bits. Here we must guarantee 651 * that we won't clear any unknown dirty bits otherwise we might 652 * accidentally clear some set bits which are not yet synced from 653 * the kernel into QEMU's bitmap, then we'll lose track of the 654 * guest modifications upon those pages (which can directly lead 655 * to guest data loss or panic after migration). 656 * 657 * Layout of the KVMSlot.dirty_bmap: 658 * 659 * |<-------- bmap_npages -----------..>| 660 * [1] 661 * start_delta size 662 * |----------------|-------------|------------------|------------| 663 * ^ ^ ^ ^ 664 * | | | | 665 * start bmap_start (start) end 666 * of memslot of memslot 667 * 668 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 669 */ 670 671 assert(bmap_start % BITS_PER_LONG == 0); 672 /* We should never do log_clear before log_sync */ 673 assert(mem->dirty_bmap); 674 if (start_delta) { 675 /* Slow path - we need to manipulate a temp bitmap */ 676 bmap_clear = bitmap_new(bmap_npages); 677 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 678 bmap_start, start_delta + size / psize); 679 /* 680 * We need to fill the holes at start because that was not 681 * specified by the caller and we extended the bitmap only for 682 * 64 pages alignment 683 */ 684 bitmap_clear(bmap_clear, 0, start_delta); 685 d.dirty_bitmap = bmap_clear; 686 } else { 687 /* Fast path - start address aligns well with BITS_PER_LONG */ 688 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 689 } 690 691 d.first_page = bmap_start; 692 /* It should never overflow. If it happens, say something */ 693 assert(bmap_npages <= UINT32_MAX); 694 d.num_pages = bmap_npages; 695 d.slot = mem->slot | (kml->as_id << 16); 696 697 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 698 ret = -errno; 699 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 700 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 701 __func__, d.slot, (uint64_t)d.first_page, 702 (uint32_t)d.num_pages, ret); 703 } else { 704 ret = 0; 705 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 706 } 707 708 /* 709 * After we have updated the remote dirty bitmap, we update the 710 * cached bitmap as well for the memslot, then if another user 711 * clears the same region we know we shouldn't clear it again on 712 * the remote otherwise it's data loss as well. 713 */ 714 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 715 size / psize); 716 /* This handles the NULL case well */ 717 g_free(bmap_clear); 718 719 kvm_slots_unlock(kml); 720 721 return ret; 722 } 723 724 static void kvm_coalesce_mmio_region(MemoryListener *listener, 725 MemoryRegionSection *secion, 726 hwaddr start, hwaddr size) 727 { 728 KVMState *s = kvm_state; 729 730 if (s->coalesced_mmio) { 731 struct kvm_coalesced_mmio_zone zone; 732 733 zone.addr = start; 734 zone.size = size; 735 zone.pad = 0; 736 737 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 738 } 739 } 740 741 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 742 MemoryRegionSection *secion, 743 hwaddr start, hwaddr size) 744 { 745 KVMState *s = kvm_state; 746 747 if (s->coalesced_mmio) { 748 struct kvm_coalesced_mmio_zone zone; 749 750 zone.addr = start; 751 zone.size = size; 752 zone.pad = 0; 753 754 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 755 } 756 } 757 758 static void kvm_coalesce_pio_add(MemoryListener *listener, 759 MemoryRegionSection *section, 760 hwaddr start, hwaddr size) 761 { 762 KVMState *s = kvm_state; 763 764 if (s->coalesced_pio) { 765 struct kvm_coalesced_mmio_zone zone; 766 767 zone.addr = start; 768 zone.size = size; 769 zone.pio = 1; 770 771 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 772 } 773 } 774 775 static void kvm_coalesce_pio_del(MemoryListener *listener, 776 MemoryRegionSection *section, 777 hwaddr start, hwaddr size) 778 { 779 KVMState *s = kvm_state; 780 781 if (s->coalesced_pio) { 782 struct kvm_coalesced_mmio_zone zone; 783 784 zone.addr = start; 785 zone.size = size; 786 zone.pio = 1; 787 788 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 789 } 790 } 791 792 static MemoryListener kvm_coalesced_pio_listener = { 793 .coalesced_io_add = kvm_coalesce_pio_add, 794 .coalesced_io_del = kvm_coalesce_pio_del, 795 }; 796 797 int kvm_check_extension(KVMState *s, unsigned int extension) 798 { 799 int ret; 800 801 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 802 if (ret < 0) { 803 ret = 0; 804 } 805 806 return ret; 807 } 808 809 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 810 { 811 int ret; 812 813 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 814 if (ret < 0) { 815 /* VM wide version not implemented, use global one instead */ 816 ret = kvm_check_extension(s, extension); 817 } 818 819 return ret; 820 } 821 822 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 823 { 824 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 825 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 826 * endianness, but the memory core hands them in target endianness. 827 * For example, PPC is always treated as big-endian even if running 828 * on KVM and on PPC64LE. Correct here. 829 */ 830 switch (size) { 831 case 2: 832 val = bswap16(val); 833 break; 834 case 4: 835 val = bswap32(val); 836 break; 837 } 838 #endif 839 return val; 840 } 841 842 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 843 bool assign, uint32_t size, bool datamatch) 844 { 845 int ret; 846 struct kvm_ioeventfd iofd = { 847 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 848 .addr = addr, 849 .len = size, 850 .flags = 0, 851 .fd = fd, 852 }; 853 854 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 855 datamatch); 856 if (!kvm_enabled()) { 857 return -ENOSYS; 858 } 859 860 if (datamatch) { 861 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 862 } 863 if (!assign) { 864 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 865 } 866 867 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 868 869 if (ret < 0) { 870 return -errno; 871 } 872 873 return 0; 874 } 875 876 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 877 bool assign, uint32_t size, bool datamatch) 878 { 879 struct kvm_ioeventfd kick = { 880 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 881 .addr = addr, 882 .flags = KVM_IOEVENTFD_FLAG_PIO, 883 .len = size, 884 .fd = fd, 885 }; 886 int r; 887 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 888 if (!kvm_enabled()) { 889 return -ENOSYS; 890 } 891 if (datamatch) { 892 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 893 } 894 if (!assign) { 895 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 896 } 897 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 898 if (r < 0) { 899 return r; 900 } 901 return 0; 902 } 903 904 905 static int kvm_check_many_ioeventfds(void) 906 { 907 /* Userspace can use ioeventfd for io notification. This requires a host 908 * that supports eventfd(2) and an I/O thread; since eventfd does not 909 * support SIGIO it cannot interrupt the vcpu. 910 * 911 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 912 * can avoid creating too many ioeventfds. 913 */ 914 #if defined(CONFIG_EVENTFD) 915 int ioeventfds[7]; 916 int i, ret = 0; 917 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 918 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 919 if (ioeventfds[i] < 0) { 920 break; 921 } 922 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 923 if (ret < 0) { 924 close(ioeventfds[i]); 925 break; 926 } 927 } 928 929 /* Decide whether many devices are supported or not */ 930 ret = i == ARRAY_SIZE(ioeventfds); 931 932 while (i-- > 0) { 933 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 934 close(ioeventfds[i]); 935 } 936 return ret; 937 #else 938 return 0; 939 #endif 940 } 941 942 static const KVMCapabilityInfo * 943 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 944 { 945 while (list->name) { 946 if (!kvm_check_extension(s, list->value)) { 947 return list; 948 } 949 list++; 950 } 951 return NULL; 952 } 953 954 static void kvm_set_phys_mem(KVMMemoryListener *kml, 955 MemoryRegionSection *section, bool add) 956 { 957 KVMSlot *mem; 958 int err; 959 MemoryRegion *mr = section->mr; 960 bool writeable = !mr->readonly && !mr->rom_device; 961 hwaddr start_addr, size; 962 void *ram; 963 964 if (!memory_region_is_ram(mr)) { 965 if (writeable || !kvm_readonly_mem_allowed) { 966 return; 967 } else if (!mr->romd_mode) { 968 /* If the memory device is not in romd_mode, then we actually want 969 * to remove the kvm memory slot so all accesses will trap. */ 970 add = false; 971 } 972 } 973 974 size = kvm_align_section(section, &start_addr); 975 if (!size) { 976 return; 977 } 978 979 /* use aligned delta to align the ram address */ 980 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 981 (start_addr - section->offset_within_address_space); 982 983 kvm_slots_lock(kml); 984 985 if (!add) { 986 mem = kvm_lookup_matching_slot(kml, start_addr, size); 987 if (!mem) { 988 goto out; 989 } 990 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 991 kvm_physical_sync_dirty_bitmap(kml, section); 992 } 993 994 /* unregister the slot */ 995 g_free(mem->dirty_bmap); 996 mem->dirty_bmap = NULL; 997 mem->memory_size = 0; 998 mem->flags = 0; 999 err = kvm_set_user_memory_region(kml, mem, false); 1000 if (err) { 1001 fprintf(stderr, "%s: error unregistering slot: %s\n", 1002 __func__, strerror(-err)); 1003 abort(); 1004 } 1005 goto out; 1006 } 1007 1008 /* register the new slot */ 1009 mem = kvm_alloc_slot(kml); 1010 mem->memory_size = size; 1011 mem->start_addr = start_addr; 1012 mem->ram = ram; 1013 mem->flags = kvm_mem_flags(mr); 1014 1015 err = kvm_set_user_memory_region(kml, mem, true); 1016 if (err) { 1017 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1018 strerror(-err)); 1019 abort(); 1020 } 1021 1022 out: 1023 kvm_slots_unlock(kml); 1024 } 1025 1026 static void kvm_region_add(MemoryListener *listener, 1027 MemoryRegionSection *section) 1028 { 1029 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1030 1031 memory_region_ref(section->mr); 1032 kvm_set_phys_mem(kml, section, true); 1033 } 1034 1035 static void kvm_region_del(MemoryListener *listener, 1036 MemoryRegionSection *section) 1037 { 1038 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1039 1040 kvm_set_phys_mem(kml, section, false); 1041 memory_region_unref(section->mr); 1042 } 1043 1044 static void kvm_log_sync(MemoryListener *listener, 1045 MemoryRegionSection *section) 1046 { 1047 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1048 int r; 1049 1050 kvm_slots_lock(kml); 1051 r = kvm_physical_sync_dirty_bitmap(kml, section); 1052 kvm_slots_unlock(kml); 1053 if (r < 0) { 1054 abort(); 1055 } 1056 } 1057 1058 static void kvm_log_clear(MemoryListener *listener, 1059 MemoryRegionSection *section) 1060 { 1061 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1062 int r; 1063 1064 r = kvm_physical_log_clear(kml, section); 1065 if (r < 0) { 1066 error_report_once("%s: kvm log clear failed: mr=%s " 1067 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1068 section->mr->name, section->offset_within_region, 1069 int128_get64(section->size)); 1070 abort(); 1071 } 1072 } 1073 1074 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1075 MemoryRegionSection *section, 1076 bool match_data, uint64_t data, 1077 EventNotifier *e) 1078 { 1079 int fd = event_notifier_get_fd(e); 1080 int r; 1081 1082 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1083 data, true, int128_get64(section->size), 1084 match_data); 1085 if (r < 0) { 1086 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1087 __func__, strerror(-r), -r); 1088 abort(); 1089 } 1090 } 1091 1092 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1093 MemoryRegionSection *section, 1094 bool match_data, uint64_t data, 1095 EventNotifier *e) 1096 { 1097 int fd = event_notifier_get_fd(e); 1098 int r; 1099 1100 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1101 data, false, int128_get64(section->size), 1102 match_data); 1103 if (r < 0) { 1104 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1105 __func__, strerror(-r), -r); 1106 abort(); 1107 } 1108 } 1109 1110 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1111 MemoryRegionSection *section, 1112 bool match_data, uint64_t data, 1113 EventNotifier *e) 1114 { 1115 int fd = event_notifier_get_fd(e); 1116 int r; 1117 1118 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1119 data, true, int128_get64(section->size), 1120 match_data); 1121 if (r < 0) { 1122 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1123 __func__, strerror(-r), -r); 1124 abort(); 1125 } 1126 } 1127 1128 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1129 MemoryRegionSection *section, 1130 bool match_data, uint64_t data, 1131 EventNotifier *e) 1132 1133 { 1134 int fd = event_notifier_get_fd(e); 1135 int r; 1136 1137 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1138 data, false, int128_get64(section->size), 1139 match_data); 1140 if (r < 0) { 1141 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1142 __func__, strerror(-r), -r); 1143 abort(); 1144 } 1145 } 1146 1147 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1148 AddressSpace *as, int as_id) 1149 { 1150 int i; 1151 1152 qemu_mutex_init(&kml->slots_lock); 1153 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1154 kml->as_id = as_id; 1155 1156 for (i = 0; i < s->nr_slots; i++) { 1157 kml->slots[i].slot = i; 1158 } 1159 1160 kml->listener.region_add = kvm_region_add; 1161 kml->listener.region_del = kvm_region_del; 1162 kml->listener.log_start = kvm_log_start; 1163 kml->listener.log_stop = kvm_log_stop; 1164 kml->listener.log_sync = kvm_log_sync; 1165 kml->listener.log_clear = kvm_log_clear; 1166 kml->listener.priority = 10; 1167 1168 memory_listener_register(&kml->listener, as); 1169 1170 for (i = 0; i < s->nr_as; ++i) { 1171 if (!s->as[i].as) { 1172 s->as[i].as = as; 1173 s->as[i].ml = kml; 1174 break; 1175 } 1176 } 1177 } 1178 1179 static MemoryListener kvm_io_listener = { 1180 .eventfd_add = kvm_io_ioeventfd_add, 1181 .eventfd_del = kvm_io_ioeventfd_del, 1182 .priority = 10, 1183 }; 1184 1185 int kvm_set_irq(KVMState *s, int irq, int level) 1186 { 1187 struct kvm_irq_level event; 1188 int ret; 1189 1190 assert(kvm_async_interrupts_enabled()); 1191 1192 event.level = level; 1193 event.irq = irq; 1194 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1195 if (ret < 0) { 1196 perror("kvm_set_irq"); 1197 abort(); 1198 } 1199 1200 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1201 } 1202 1203 #ifdef KVM_CAP_IRQ_ROUTING 1204 typedef struct KVMMSIRoute { 1205 struct kvm_irq_routing_entry kroute; 1206 QTAILQ_ENTRY(KVMMSIRoute) entry; 1207 } KVMMSIRoute; 1208 1209 static void set_gsi(KVMState *s, unsigned int gsi) 1210 { 1211 set_bit(gsi, s->used_gsi_bitmap); 1212 } 1213 1214 static void clear_gsi(KVMState *s, unsigned int gsi) 1215 { 1216 clear_bit(gsi, s->used_gsi_bitmap); 1217 } 1218 1219 void kvm_init_irq_routing(KVMState *s) 1220 { 1221 int gsi_count, i; 1222 1223 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1224 if (gsi_count > 0) { 1225 /* Round up so we can search ints using ffs */ 1226 s->used_gsi_bitmap = bitmap_new(gsi_count); 1227 s->gsi_count = gsi_count; 1228 } 1229 1230 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1231 s->nr_allocated_irq_routes = 0; 1232 1233 if (!kvm_direct_msi_allowed) { 1234 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1235 QTAILQ_INIT(&s->msi_hashtab[i]); 1236 } 1237 } 1238 1239 kvm_arch_init_irq_routing(s); 1240 } 1241 1242 void kvm_irqchip_commit_routes(KVMState *s) 1243 { 1244 int ret; 1245 1246 if (kvm_gsi_direct_mapping()) { 1247 return; 1248 } 1249 1250 if (!kvm_gsi_routing_enabled()) { 1251 return; 1252 } 1253 1254 s->irq_routes->flags = 0; 1255 trace_kvm_irqchip_commit_routes(); 1256 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1257 assert(ret == 0); 1258 } 1259 1260 static void kvm_add_routing_entry(KVMState *s, 1261 struct kvm_irq_routing_entry *entry) 1262 { 1263 struct kvm_irq_routing_entry *new; 1264 int n, size; 1265 1266 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1267 n = s->nr_allocated_irq_routes * 2; 1268 if (n < 64) { 1269 n = 64; 1270 } 1271 size = sizeof(struct kvm_irq_routing); 1272 size += n * sizeof(*new); 1273 s->irq_routes = g_realloc(s->irq_routes, size); 1274 s->nr_allocated_irq_routes = n; 1275 } 1276 n = s->irq_routes->nr++; 1277 new = &s->irq_routes->entries[n]; 1278 1279 *new = *entry; 1280 1281 set_gsi(s, entry->gsi); 1282 } 1283 1284 static int kvm_update_routing_entry(KVMState *s, 1285 struct kvm_irq_routing_entry *new_entry) 1286 { 1287 struct kvm_irq_routing_entry *entry; 1288 int n; 1289 1290 for (n = 0; n < s->irq_routes->nr; n++) { 1291 entry = &s->irq_routes->entries[n]; 1292 if (entry->gsi != new_entry->gsi) { 1293 continue; 1294 } 1295 1296 if(!memcmp(entry, new_entry, sizeof *entry)) { 1297 return 0; 1298 } 1299 1300 *entry = *new_entry; 1301 1302 return 0; 1303 } 1304 1305 return -ESRCH; 1306 } 1307 1308 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1309 { 1310 struct kvm_irq_routing_entry e = {}; 1311 1312 assert(pin < s->gsi_count); 1313 1314 e.gsi = irq; 1315 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1316 e.flags = 0; 1317 e.u.irqchip.irqchip = irqchip; 1318 e.u.irqchip.pin = pin; 1319 kvm_add_routing_entry(s, &e); 1320 } 1321 1322 void kvm_irqchip_release_virq(KVMState *s, int virq) 1323 { 1324 struct kvm_irq_routing_entry *e; 1325 int i; 1326 1327 if (kvm_gsi_direct_mapping()) { 1328 return; 1329 } 1330 1331 for (i = 0; i < s->irq_routes->nr; i++) { 1332 e = &s->irq_routes->entries[i]; 1333 if (e->gsi == virq) { 1334 s->irq_routes->nr--; 1335 *e = s->irq_routes->entries[s->irq_routes->nr]; 1336 } 1337 } 1338 clear_gsi(s, virq); 1339 kvm_arch_release_virq_post(virq); 1340 trace_kvm_irqchip_release_virq(virq); 1341 } 1342 1343 static unsigned int kvm_hash_msi(uint32_t data) 1344 { 1345 /* This is optimized for IA32 MSI layout. However, no other arch shall 1346 * repeat the mistake of not providing a direct MSI injection API. */ 1347 return data & 0xff; 1348 } 1349 1350 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1351 { 1352 KVMMSIRoute *route, *next; 1353 unsigned int hash; 1354 1355 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1356 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1357 kvm_irqchip_release_virq(s, route->kroute.gsi); 1358 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1359 g_free(route); 1360 } 1361 } 1362 } 1363 1364 static int kvm_irqchip_get_virq(KVMState *s) 1365 { 1366 int next_virq; 1367 1368 /* 1369 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1370 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1371 * number can succeed even though a new route entry cannot be added. 1372 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1373 */ 1374 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1375 kvm_flush_dynamic_msi_routes(s); 1376 } 1377 1378 /* Return the lowest unused GSI in the bitmap */ 1379 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1380 if (next_virq >= s->gsi_count) { 1381 return -ENOSPC; 1382 } else { 1383 return next_virq; 1384 } 1385 } 1386 1387 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1388 { 1389 unsigned int hash = kvm_hash_msi(msg.data); 1390 KVMMSIRoute *route; 1391 1392 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1393 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1394 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1395 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1396 return route; 1397 } 1398 } 1399 return NULL; 1400 } 1401 1402 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1403 { 1404 struct kvm_msi msi; 1405 KVMMSIRoute *route; 1406 1407 if (kvm_direct_msi_allowed) { 1408 msi.address_lo = (uint32_t)msg.address; 1409 msi.address_hi = msg.address >> 32; 1410 msi.data = le32_to_cpu(msg.data); 1411 msi.flags = 0; 1412 memset(msi.pad, 0, sizeof(msi.pad)); 1413 1414 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1415 } 1416 1417 route = kvm_lookup_msi_route(s, msg); 1418 if (!route) { 1419 int virq; 1420 1421 virq = kvm_irqchip_get_virq(s); 1422 if (virq < 0) { 1423 return virq; 1424 } 1425 1426 route = g_malloc0(sizeof(KVMMSIRoute)); 1427 route->kroute.gsi = virq; 1428 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1429 route->kroute.flags = 0; 1430 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1431 route->kroute.u.msi.address_hi = msg.address >> 32; 1432 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1433 1434 kvm_add_routing_entry(s, &route->kroute); 1435 kvm_irqchip_commit_routes(s); 1436 1437 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1438 entry); 1439 } 1440 1441 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1442 1443 return kvm_set_irq(s, route->kroute.gsi, 1); 1444 } 1445 1446 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1447 { 1448 struct kvm_irq_routing_entry kroute = {}; 1449 int virq; 1450 MSIMessage msg = {0, 0}; 1451 1452 if (pci_available && dev) { 1453 msg = pci_get_msi_message(dev, vector); 1454 } 1455 1456 if (kvm_gsi_direct_mapping()) { 1457 return kvm_arch_msi_data_to_gsi(msg.data); 1458 } 1459 1460 if (!kvm_gsi_routing_enabled()) { 1461 return -ENOSYS; 1462 } 1463 1464 virq = kvm_irqchip_get_virq(s); 1465 if (virq < 0) { 1466 return virq; 1467 } 1468 1469 kroute.gsi = virq; 1470 kroute.type = KVM_IRQ_ROUTING_MSI; 1471 kroute.flags = 0; 1472 kroute.u.msi.address_lo = (uint32_t)msg.address; 1473 kroute.u.msi.address_hi = msg.address >> 32; 1474 kroute.u.msi.data = le32_to_cpu(msg.data); 1475 if (pci_available && kvm_msi_devid_required()) { 1476 kroute.flags = KVM_MSI_VALID_DEVID; 1477 kroute.u.msi.devid = pci_requester_id(dev); 1478 } 1479 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1480 kvm_irqchip_release_virq(s, virq); 1481 return -EINVAL; 1482 } 1483 1484 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1485 vector, virq); 1486 1487 kvm_add_routing_entry(s, &kroute); 1488 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1489 kvm_irqchip_commit_routes(s); 1490 1491 return virq; 1492 } 1493 1494 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1495 PCIDevice *dev) 1496 { 1497 struct kvm_irq_routing_entry kroute = {}; 1498 1499 if (kvm_gsi_direct_mapping()) { 1500 return 0; 1501 } 1502 1503 if (!kvm_irqchip_in_kernel()) { 1504 return -ENOSYS; 1505 } 1506 1507 kroute.gsi = virq; 1508 kroute.type = KVM_IRQ_ROUTING_MSI; 1509 kroute.flags = 0; 1510 kroute.u.msi.address_lo = (uint32_t)msg.address; 1511 kroute.u.msi.address_hi = msg.address >> 32; 1512 kroute.u.msi.data = le32_to_cpu(msg.data); 1513 if (pci_available && kvm_msi_devid_required()) { 1514 kroute.flags = KVM_MSI_VALID_DEVID; 1515 kroute.u.msi.devid = pci_requester_id(dev); 1516 } 1517 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1518 return -EINVAL; 1519 } 1520 1521 trace_kvm_irqchip_update_msi_route(virq); 1522 1523 return kvm_update_routing_entry(s, &kroute); 1524 } 1525 1526 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1527 bool assign) 1528 { 1529 struct kvm_irqfd irqfd = { 1530 .fd = fd, 1531 .gsi = virq, 1532 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1533 }; 1534 1535 if (rfd != -1) { 1536 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1537 irqfd.resamplefd = rfd; 1538 } 1539 1540 if (!kvm_irqfds_enabled()) { 1541 return -ENOSYS; 1542 } 1543 1544 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1545 } 1546 1547 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1548 { 1549 struct kvm_irq_routing_entry kroute = {}; 1550 int virq; 1551 1552 if (!kvm_gsi_routing_enabled()) { 1553 return -ENOSYS; 1554 } 1555 1556 virq = kvm_irqchip_get_virq(s); 1557 if (virq < 0) { 1558 return virq; 1559 } 1560 1561 kroute.gsi = virq; 1562 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1563 kroute.flags = 0; 1564 kroute.u.adapter.summary_addr = adapter->summary_addr; 1565 kroute.u.adapter.ind_addr = adapter->ind_addr; 1566 kroute.u.adapter.summary_offset = adapter->summary_offset; 1567 kroute.u.adapter.ind_offset = adapter->ind_offset; 1568 kroute.u.adapter.adapter_id = adapter->adapter_id; 1569 1570 kvm_add_routing_entry(s, &kroute); 1571 1572 return virq; 1573 } 1574 1575 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1576 { 1577 struct kvm_irq_routing_entry kroute = {}; 1578 int virq; 1579 1580 if (!kvm_gsi_routing_enabled()) { 1581 return -ENOSYS; 1582 } 1583 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1584 return -ENOSYS; 1585 } 1586 virq = kvm_irqchip_get_virq(s); 1587 if (virq < 0) { 1588 return virq; 1589 } 1590 1591 kroute.gsi = virq; 1592 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1593 kroute.flags = 0; 1594 kroute.u.hv_sint.vcpu = vcpu; 1595 kroute.u.hv_sint.sint = sint; 1596 1597 kvm_add_routing_entry(s, &kroute); 1598 kvm_irqchip_commit_routes(s); 1599 1600 return virq; 1601 } 1602 1603 #else /* !KVM_CAP_IRQ_ROUTING */ 1604 1605 void kvm_init_irq_routing(KVMState *s) 1606 { 1607 } 1608 1609 void kvm_irqchip_release_virq(KVMState *s, int virq) 1610 { 1611 } 1612 1613 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1614 { 1615 abort(); 1616 } 1617 1618 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1619 { 1620 return -ENOSYS; 1621 } 1622 1623 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1624 { 1625 return -ENOSYS; 1626 } 1627 1628 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1629 { 1630 return -ENOSYS; 1631 } 1632 1633 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1634 { 1635 abort(); 1636 } 1637 1638 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1639 { 1640 return -ENOSYS; 1641 } 1642 #endif /* !KVM_CAP_IRQ_ROUTING */ 1643 1644 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1645 EventNotifier *rn, int virq) 1646 { 1647 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1648 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1649 } 1650 1651 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1652 int virq) 1653 { 1654 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1655 false); 1656 } 1657 1658 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1659 EventNotifier *rn, qemu_irq irq) 1660 { 1661 gpointer key, gsi; 1662 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1663 1664 if (!found) { 1665 return -ENXIO; 1666 } 1667 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1668 } 1669 1670 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1671 qemu_irq irq) 1672 { 1673 gpointer key, gsi; 1674 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1675 1676 if (!found) { 1677 return -ENXIO; 1678 } 1679 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1680 } 1681 1682 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1683 { 1684 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1685 } 1686 1687 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1688 { 1689 int ret; 1690 1691 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1692 ; 1693 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1694 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1695 if (ret < 0) { 1696 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1697 exit(1); 1698 } 1699 } else { 1700 return; 1701 } 1702 1703 /* First probe and see if there's a arch-specific hook to create the 1704 * in-kernel irqchip for us */ 1705 ret = kvm_arch_irqchip_create(machine, s); 1706 if (ret == 0) { 1707 if (machine_kernel_irqchip_split(machine)) { 1708 perror("Split IRQ chip mode not supported."); 1709 exit(1); 1710 } else { 1711 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1712 } 1713 } 1714 if (ret < 0) { 1715 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1716 exit(1); 1717 } 1718 1719 kvm_kernel_irqchip = true; 1720 /* If we have an in-kernel IRQ chip then we must have asynchronous 1721 * interrupt delivery (though the reverse is not necessarily true) 1722 */ 1723 kvm_async_interrupts_allowed = true; 1724 kvm_halt_in_kernel_allowed = true; 1725 1726 kvm_init_irq_routing(s); 1727 1728 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1729 } 1730 1731 /* Find number of supported CPUs using the recommended 1732 * procedure from the kernel API documentation to cope with 1733 * older kernels that may be missing capabilities. 1734 */ 1735 static int kvm_recommended_vcpus(KVMState *s) 1736 { 1737 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1738 return (ret) ? ret : 4; 1739 } 1740 1741 static int kvm_max_vcpus(KVMState *s) 1742 { 1743 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1744 return (ret) ? ret : kvm_recommended_vcpus(s); 1745 } 1746 1747 static int kvm_max_vcpu_id(KVMState *s) 1748 { 1749 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1750 return (ret) ? ret : kvm_max_vcpus(s); 1751 } 1752 1753 bool kvm_vcpu_id_is_valid(int vcpu_id) 1754 { 1755 KVMState *s = KVM_STATE(current_machine->accelerator); 1756 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1757 } 1758 1759 static int kvm_init(MachineState *ms) 1760 { 1761 MachineClass *mc = MACHINE_GET_CLASS(ms); 1762 static const char upgrade_note[] = 1763 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1764 "(see http://sourceforge.net/projects/kvm).\n"; 1765 struct { 1766 const char *name; 1767 int num; 1768 } num_cpus[] = { 1769 { "SMP", ms->smp.cpus }, 1770 { "hotpluggable", ms->smp.max_cpus }, 1771 { NULL, } 1772 }, *nc = num_cpus; 1773 int soft_vcpus_limit, hard_vcpus_limit; 1774 KVMState *s; 1775 const KVMCapabilityInfo *missing_cap; 1776 int ret; 1777 int type = 0; 1778 const char *kvm_type; 1779 1780 s = KVM_STATE(ms->accelerator); 1781 1782 /* 1783 * On systems where the kernel can support different base page 1784 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1785 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1786 * page size for the system though. 1787 */ 1788 assert(TARGET_PAGE_SIZE <= getpagesize()); 1789 1790 s->sigmask_len = 8; 1791 1792 #ifdef KVM_CAP_SET_GUEST_DEBUG 1793 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1794 #endif 1795 QLIST_INIT(&s->kvm_parked_vcpus); 1796 s->vmfd = -1; 1797 s->fd = qemu_open("/dev/kvm", O_RDWR); 1798 if (s->fd == -1) { 1799 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1800 ret = -errno; 1801 goto err; 1802 } 1803 1804 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1805 if (ret < KVM_API_VERSION) { 1806 if (ret >= 0) { 1807 ret = -EINVAL; 1808 } 1809 fprintf(stderr, "kvm version too old\n"); 1810 goto err; 1811 } 1812 1813 if (ret > KVM_API_VERSION) { 1814 ret = -EINVAL; 1815 fprintf(stderr, "kvm version not supported\n"); 1816 goto err; 1817 } 1818 1819 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1820 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1821 1822 /* If unspecified, use the default value */ 1823 if (!s->nr_slots) { 1824 s->nr_slots = 32; 1825 } 1826 1827 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 1828 if (s->nr_as <= 1) { 1829 s->nr_as = 1; 1830 } 1831 s->as = g_new0(struct KVMAs, s->nr_as); 1832 1833 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1834 if (mc->kvm_type) { 1835 type = mc->kvm_type(ms, kvm_type); 1836 } else if (kvm_type) { 1837 ret = -EINVAL; 1838 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1839 goto err; 1840 } 1841 1842 do { 1843 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1844 } while (ret == -EINTR); 1845 1846 if (ret < 0) { 1847 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1848 strerror(-ret)); 1849 1850 #ifdef TARGET_S390X 1851 if (ret == -EINVAL) { 1852 fprintf(stderr, 1853 "Host kernel setup problem detected. Please verify:\n"); 1854 fprintf(stderr, "- for kernels supporting the switch_amode or" 1855 " user_mode parameters, whether\n"); 1856 fprintf(stderr, 1857 " user space is running in primary address space\n"); 1858 fprintf(stderr, 1859 "- for kernels supporting the vm.allocate_pgste sysctl, " 1860 "whether it is enabled\n"); 1861 } 1862 #endif 1863 goto err; 1864 } 1865 1866 s->vmfd = ret; 1867 1868 /* check the vcpu limits */ 1869 soft_vcpus_limit = kvm_recommended_vcpus(s); 1870 hard_vcpus_limit = kvm_max_vcpus(s); 1871 1872 while (nc->name) { 1873 if (nc->num > soft_vcpus_limit) { 1874 warn_report("Number of %s cpus requested (%d) exceeds " 1875 "the recommended cpus supported by KVM (%d)", 1876 nc->name, nc->num, soft_vcpus_limit); 1877 1878 if (nc->num > hard_vcpus_limit) { 1879 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1880 "the maximum cpus supported by KVM (%d)\n", 1881 nc->name, nc->num, hard_vcpus_limit); 1882 exit(1); 1883 } 1884 } 1885 nc++; 1886 } 1887 1888 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1889 if (!missing_cap) { 1890 missing_cap = 1891 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1892 } 1893 if (missing_cap) { 1894 ret = -EINVAL; 1895 fprintf(stderr, "kvm does not support %s\n%s", 1896 missing_cap->name, upgrade_note); 1897 goto err; 1898 } 1899 1900 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1901 s->coalesced_pio = s->coalesced_mmio && 1902 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1903 1904 s->manual_dirty_log_protect = 1905 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 1906 if (s->manual_dirty_log_protect) { 1907 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); 1908 if (ret) { 1909 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " 1910 "but failed. Falling back to the legacy mode. "); 1911 s->manual_dirty_log_protect = false; 1912 } 1913 } 1914 1915 #ifdef KVM_CAP_VCPU_EVENTS 1916 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 1917 #endif 1918 1919 s->robust_singlestep = 1920 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 1921 1922 #ifdef KVM_CAP_DEBUGREGS 1923 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 1924 #endif 1925 1926 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 1927 1928 #ifdef KVM_CAP_IRQ_ROUTING 1929 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 1930 #endif 1931 1932 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 1933 1934 s->irq_set_ioctl = KVM_IRQ_LINE; 1935 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 1936 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 1937 } 1938 1939 kvm_readonly_mem_allowed = 1940 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 1941 1942 kvm_eventfds_allowed = 1943 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 1944 1945 kvm_irqfds_allowed = 1946 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 1947 1948 kvm_resamplefds_allowed = 1949 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 1950 1951 kvm_vm_attributes_allowed = 1952 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 1953 1954 kvm_ioeventfd_any_length_allowed = 1955 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 1956 1957 kvm_state = s; 1958 1959 /* 1960 * if memory encryption object is specified then initialize the memory 1961 * encryption context. 1962 */ 1963 if (ms->memory_encryption) { 1964 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 1965 if (!kvm_state->memcrypt_handle) { 1966 ret = -1; 1967 goto err; 1968 } 1969 1970 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 1971 } 1972 1973 ret = kvm_arch_init(ms, s); 1974 if (ret < 0) { 1975 goto err; 1976 } 1977 1978 if (machine_kernel_irqchip_allowed(ms)) { 1979 kvm_irqchip_create(ms, s); 1980 } 1981 1982 if (kvm_eventfds_allowed) { 1983 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 1984 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 1985 } 1986 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 1987 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 1988 1989 kvm_memory_listener_register(s, &s->memory_listener, 1990 &address_space_memory, 0); 1991 memory_listener_register(&kvm_io_listener, 1992 &address_space_io); 1993 memory_listener_register(&kvm_coalesced_pio_listener, 1994 &address_space_io); 1995 1996 s->many_ioeventfds = kvm_check_many_ioeventfds(); 1997 1998 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 1999 if (!s->sync_mmu) { 2000 qemu_balloon_inhibit(true); 2001 } 2002 2003 return 0; 2004 2005 err: 2006 assert(ret < 0); 2007 if (s->vmfd >= 0) { 2008 close(s->vmfd); 2009 } 2010 if (s->fd != -1) { 2011 close(s->fd); 2012 } 2013 g_free(s->memory_listener.slots); 2014 2015 return ret; 2016 } 2017 2018 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2019 { 2020 s->sigmask_len = sigmask_len; 2021 } 2022 2023 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2024 int size, uint32_t count) 2025 { 2026 int i; 2027 uint8_t *ptr = data; 2028 2029 for (i = 0; i < count; i++) { 2030 address_space_rw(&address_space_io, port, attrs, 2031 ptr, size, 2032 direction == KVM_EXIT_IO_OUT); 2033 ptr += size; 2034 } 2035 } 2036 2037 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2038 { 2039 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2040 run->internal.suberror); 2041 2042 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2043 int i; 2044 2045 for (i = 0; i < run->internal.ndata; ++i) { 2046 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2047 i, (uint64_t)run->internal.data[i]); 2048 } 2049 } 2050 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2051 fprintf(stderr, "emulation failure\n"); 2052 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2053 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2054 return EXCP_INTERRUPT; 2055 } 2056 } 2057 /* FIXME: Should trigger a qmp message to let management know 2058 * something went wrong. 2059 */ 2060 return -1; 2061 } 2062 2063 void kvm_flush_coalesced_mmio_buffer(void) 2064 { 2065 KVMState *s = kvm_state; 2066 2067 if (s->coalesced_flush_in_progress) { 2068 return; 2069 } 2070 2071 s->coalesced_flush_in_progress = true; 2072 2073 if (s->coalesced_mmio_ring) { 2074 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2075 while (ring->first != ring->last) { 2076 struct kvm_coalesced_mmio *ent; 2077 2078 ent = &ring->coalesced_mmio[ring->first]; 2079 2080 if (ent->pio == 1) { 2081 address_space_rw(&address_space_io, ent->phys_addr, 2082 MEMTXATTRS_UNSPECIFIED, ent->data, 2083 ent->len, true); 2084 } else { 2085 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2086 } 2087 smp_wmb(); 2088 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2089 } 2090 } 2091 2092 s->coalesced_flush_in_progress = false; 2093 } 2094 2095 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2096 { 2097 if (!cpu->vcpu_dirty) { 2098 kvm_arch_get_registers(cpu); 2099 cpu->vcpu_dirty = true; 2100 } 2101 } 2102 2103 void kvm_cpu_synchronize_state(CPUState *cpu) 2104 { 2105 if (!cpu->vcpu_dirty) { 2106 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2107 } 2108 } 2109 2110 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2111 { 2112 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2113 cpu->vcpu_dirty = false; 2114 } 2115 2116 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2117 { 2118 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2119 } 2120 2121 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2122 { 2123 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2124 cpu->vcpu_dirty = false; 2125 } 2126 2127 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2128 { 2129 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2130 } 2131 2132 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2133 { 2134 cpu->vcpu_dirty = true; 2135 } 2136 2137 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2138 { 2139 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2140 } 2141 2142 #ifdef KVM_HAVE_MCE_INJECTION 2143 static __thread void *pending_sigbus_addr; 2144 static __thread int pending_sigbus_code; 2145 static __thread bool have_sigbus_pending; 2146 #endif 2147 2148 static void kvm_cpu_kick(CPUState *cpu) 2149 { 2150 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2151 } 2152 2153 static void kvm_cpu_kick_self(void) 2154 { 2155 if (kvm_immediate_exit) { 2156 kvm_cpu_kick(current_cpu); 2157 } else { 2158 qemu_cpu_kick_self(); 2159 } 2160 } 2161 2162 static void kvm_eat_signals(CPUState *cpu) 2163 { 2164 struct timespec ts = { 0, 0 }; 2165 siginfo_t siginfo; 2166 sigset_t waitset; 2167 sigset_t chkset; 2168 int r; 2169 2170 if (kvm_immediate_exit) { 2171 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2172 /* Write kvm_run->immediate_exit before the cpu->exit_request 2173 * write in kvm_cpu_exec. 2174 */ 2175 smp_wmb(); 2176 return; 2177 } 2178 2179 sigemptyset(&waitset); 2180 sigaddset(&waitset, SIG_IPI); 2181 2182 do { 2183 r = sigtimedwait(&waitset, &siginfo, &ts); 2184 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2185 perror("sigtimedwait"); 2186 exit(1); 2187 } 2188 2189 r = sigpending(&chkset); 2190 if (r == -1) { 2191 perror("sigpending"); 2192 exit(1); 2193 } 2194 } while (sigismember(&chkset, SIG_IPI)); 2195 } 2196 2197 int kvm_cpu_exec(CPUState *cpu) 2198 { 2199 struct kvm_run *run = cpu->kvm_run; 2200 int ret, run_ret; 2201 2202 DPRINTF("kvm_cpu_exec()\n"); 2203 2204 if (kvm_arch_process_async_events(cpu)) { 2205 atomic_set(&cpu->exit_request, 0); 2206 return EXCP_HLT; 2207 } 2208 2209 qemu_mutex_unlock_iothread(); 2210 cpu_exec_start(cpu); 2211 2212 do { 2213 MemTxAttrs attrs; 2214 2215 if (cpu->vcpu_dirty) { 2216 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2217 cpu->vcpu_dirty = false; 2218 } 2219 2220 kvm_arch_pre_run(cpu, run); 2221 if (atomic_read(&cpu->exit_request)) { 2222 DPRINTF("interrupt exit requested\n"); 2223 /* 2224 * KVM requires us to reenter the kernel after IO exits to complete 2225 * instruction emulation. This self-signal will ensure that we 2226 * leave ASAP again. 2227 */ 2228 kvm_cpu_kick_self(); 2229 } 2230 2231 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2232 * Matching barrier in kvm_eat_signals. 2233 */ 2234 smp_rmb(); 2235 2236 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2237 2238 attrs = kvm_arch_post_run(cpu, run); 2239 2240 #ifdef KVM_HAVE_MCE_INJECTION 2241 if (unlikely(have_sigbus_pending)) { 2242 qemu_mutex_lock_iothread(); 2243 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2244 pending_sigbus_addr); 2245 have_sigbus_pending = false; 2246 qemu_mutex_unlock_iothread(); 2247 } 2248 #endif 2249 2250 if (run_ret < 0) { 2251 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2252 DPRINTF("io window exit\n"); 2253 kvm_eat_signals(cpu); 2254 ret = EXCP_INTERRUPT; 2255 break; 2256 } 2257 fprintf(stderr, "error: kvm run failed %s\n", 2258 strerror(-run_ret)); 2259 #ifdef TARGET_PPC 2260 if (run_ret == -EBUSY) { 2261 fprintf(stderr, 2262 "This is probably because your SMT is enabled.\n" 2263 "VCPU can only run on primary threads with all " 2264 "secondary threads offline.\n"); 2265 } 2266 #endif 2267 ret = -1; 2268 break; 2269 } 2270 2271 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2272 switch (run->exit_reason) { 2273 case KVM_EXIT_IO: 2274 DPRINTF("handle_io\n"); 2275 /* Called outside BQL */ 2276 kvm_handle_io(run->io.port, attrs, 2277 (uint8_t *)run + run->io.data_offset, 2278 run->io.direction, 2279 run->io.size, 2280 run->io.count); 2281 ret = 0; 2282 break; 2283 case KVM_EXIT_MMIO: 2284 DPRINTF("handle_mmio\n"); 2285 /* Called outside BQL */ 2286 address_space_rw(&address_space_memory, 2287 run->mmio.phys_addr, attrs, 2288 run->mmio.data, 2289 run->mmio.len, 2290 run->mmio.is_write); 2291 ret = 0; 2292 break; 2293 case KVM_EXIT_IRQ_WINDOW_OPEN: 2294 DPRINTF("irq_window_open\n"); 2295 ret = EXCP_INTERRUPT; 2296 break; 2297 case KVM_EXIT_SHUTDOWN: 2298 DPRINTF("shutdown\n"); 2299 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2300 ret = EXCP_INTERRUPT; 2301 break; 2302 case KVM_EXIT_UNKNOWN: 2303 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2304 (uint64_t)run->hw.hardware_exit_reason); 2305 ret = -1; 2306 break; 2307 case KVM_EXIT_INTERNAL_ERROR: 2308 ret = kvm_handle_internal_error(cpu, run); 2309 break; 2310 case KVM_EXIT_SYSTEM_EVENT: 2311 switch (run->system_event.type) { 2312 case KVM_SYSTEM_EVENT_SHUTDOWN: 2313 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2314 ret = EXCP_INTERRUPT; 2315 break; 2316 case KVM_SYSTEM_EVENT_RESET: 2317 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2318 ret = EXCP_INTERRUPT; 2319 break; 2320 case KVM_SYSTEM_EVENT_CRASH: 2321 kvm_cpu_synchronize_state(cpu); 2322 qemu_mutex_lock_iothread(); 2323 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2324 qemu_mutex_unlock_iothread(); 2325 ret = 0; 2326 break; 2327 default: 2328 DPRINTF("kvm_arch_handle_exit\n"); 2329 ret = kvm_arch_handle_exit(cpu, run); 2330 break; 2331 } 2332 break; 2333 default: 2334 DPRINTF("kvm_arch_handle_exit\n"); 2335 ret = kvm_arch_handle_exit(cpu, run); 2336 break; 2337 } 2338 } while (ret == 0); 2339 2340 cpu_exec_end(cpu); 2341 qemu_mutex_lock_iothread(); 2342 2343 if (ret < 0) { 2344 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2345 vm_stop(RUN_STATE_INTERNAL_ERROR); 2346 } 2347 2348 atomic_set(&cpu->exit_request, 0); 2349 return ret; 2350 } 2351 2352 int kvm_ioctl(KVMState *s, int type, ...) 2353 { 2354 int ret; 2355 void *arg; 2356 va_list ap; 2357 2358 va_start(ap, type); 2359 arg = va_arg(ap, void *); 2360 va_end(ap); 2361 2362 trace_kvm_ioctl(type, arg); 2363 ret = ioctl(s->fd, type, arg); 2364 if (ret == -1) { 2365 ret = -errno; 2366 } 2367 return ret; 2368 } 2369 2370 int kvm_vm_ioctl(KVMState *s, int type, ...) 2371 { 2372 int ret; 2373 void *arg; 2374 va_list ap; 2375 2376 va_start(ap, type); 2377 arg = va_arg(ap, void *); 2378 va_end(ap); 2379 2380 trace_kvm_vm_ioctl(type, arg); 2381 ret = ioctl(s->vmfd, type, arg); 2382 if (ret == -1) { 2383 ret = -errno; 2384 } 2385 return ret; 2386 } 2387 2388 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2389 { 2390 int ret; 2391 void *arg; 2392 va_list ap; 2393 2394 va_start(ap, type); 2395 arg = va_arg(ap, void *); 2396 va_end(ap); 2397 2398 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2399 ret = ioctl(cpu->kvm_fd, type, arg); 2400 if (ret == -1) { 2401 ret = -errno; 2402 } 2403 return ret; 2404 } 2405 2406 int kvm_device_ioctl(int fd, int type, ...) 2407 { 2408 int ret; 2409 void *arg; 2410 va_list ap; 2411 2412 va_start(ap, type); 2413 arg = va_arg(ap, void *); 2414 va_end(ap); 2415 2416 trace_kvm_device_ioctl(fd, type, arg); 2417 ret = ioctl(fd, type, arg); 2418 if (ret == -1) { 2419 ret = -errno; 2420 } 2421 return ret; 2422 } 2423 2424 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2425 { 2426 int ret; 2427 struct kvm_device_attr attribute = { 2428 .group = group, 2429 .attr = attr, 2430 }; 2431 2432 if (!kvm_vm_attributes_allowed) { 2433 return 0; 2434 } 2435 2436 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2437 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2438 return ret ? 0 : 1; 2439 } 2440 2441 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2442 { 2443 struct kvm_device_attr attribute = { 2444 .group = group, 2445 .attr = attr, 2446 .flags = 0, 2447 }; 2448 2449 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2450 } 2451 2452 int kvm_device_access(int fd, int group, uint64_t attr, 2453 void *val, bool write, Error **errp) 2454 { 2455 struct kvm_device_attr kvmattr; 2456 int err; 2457 2458 kvmattr.flags = 0; 2459 kvmattr.group = group; 2460 kvmattr.attr = attr; 2461 kvmattr.addr = (uintptr_t)val; 2462 2463 err = kvm_device_ioctl(fd, 2464 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2465 &kvmattr); 2466 if (err < 0) { 2467 error_setg_errno(errp, -err, 2468 "KVM_%s_DEVICE_ATTR failed: Group %d " 2469 "attr 0x%016" PRIx64, 2470 write ? "SET" : "GET", group, attr); 2471 } 2472 return err; 2473 } 2474 2475 bool kvm_has_sync_mmu(void) 2476 { 2477 return kvm_state->sync_mmu; 2478 } 2479 2480 int kvm_has_vcpu_events(void) 2481 { 2482 return kvm_state->vcpu_events; 2483 } 2484 2485 int kvm_has_robust_singlestep(void) 2486 { 2487 return kvm_state->robust_singlestep; 2488 } 2489 2490 int kvm_has_debugregs(void) 2491 { 2492 return kvm_state->debugregs; 2493 } 2494 2495 int kvm_max_nested_state_length(void) 2496 { 2497 return kvm_state->max_nested_state_len; 2498 } 2499 2500 int kvm_has_many_ioeventfds(void) 2501 { 2502 if (!kvm_enabled()) { 2503 return 0; 2504 } 2505 return kvm_state->many_ioeventfds; 2506 } 2507 2508 int kvm_has_gsi_routing(void) 2509 { 2510 #ifdef KVM_CAP_IRQ_ROUTING 2511 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2512 #else 2513 return false; 2514 #endif 2515 } 2516 2517 int kvm_has_intx_set_mask(void) 2518 { 2519 return kvm_state->intx_set_mask; 2520 } 2521 2522 bool kvm_arm_supports_user_irq(void) 2523 { 2524 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2525 } 2526 2527 #ifdef KVM_CAP_SET_GUEST_DEBUG 2528 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2529 target_ulong pc) 2530 { 2531 struct kvm_sw_breakpoint *bp; 2532 2533 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2534 if (bp->pc == pc) { 2535 return bp; 2536 } 2537 } 2538 return NULL; 2539 } 2540 2541 int kvm_sw_breakpoints_active(CPUState *cpu) 2542 { 2543 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2544 } 2545 2546 struct kvm_set_guest_debug_data { 2547 struct kvm_guest_debug dbg; 2548 int err; 2549 }; 2550 2551 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2552 { 2553 struct kvm_set_guest_debug_data *dbg_data = 2554 (struct kvm_set_guest_debug_data *) data.host_ptr; 2555 2556 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2557 &dbg_data->dbg); 2558 } 2559 2560 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2561 { 2562 struct kvm_set_guest_debug_data data; 2563 2564 data.dbg.control = reinject_trap; 2565 2566 if (cpu->singlestep_enabled) { 2567 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2568 } 2569 kvm_arch_update_guest_debug(cpu, &data.dbg); 2570 2571 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2572 RUN_ON_CPU_HOST_PTR(&data)); 2573 return data.err; 2574 } 2575 2576 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2577 target_ulong len, int type) 2578 { 2579 struct kvm_sw_breakpoint *bp; 2580 int err; 2581 2582 if (type == GDB_BREAKPOINT_SW) { 2583 bp = kvm_find_sw_breakpoint(cpu, addr); 2584 if (bp) { 2585 bp->use_count++; 2586 return 0; 2587 } 2588 2589 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2590 bp->pc = addr; 2591 bp->use_count = 1; 2592 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2593 if (err) { 2594 g_free(bp); 2595 return err; 2596 } 2597 2598 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2599 } else { 2600 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2601 if (err) { 2602 return err; 2603 } 2604 } 2605 2606 CPU_FOREACH(cpu) { 2607 err = kvm_update_guest_debug(cpu, 0); 2608 if (err) { 2609 return err; 2610 } 2611 } 2612 return 0; 2613 } 2614 2615 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2616 target_ulong len, int type) 2617 { 2618 struct kvm_sw_breakpoint *bp; 2619 int err; 2620 2621 if (type == GDB_BREAKPOINT_SW) { 2622 bp = kvm_find_sw_breakpoint(cpu, addr); 2623 if (!bp) { 2624 return -ENOENT; 2625 } 2626 2627 if (bp->use_count > 1) { 2628 bp->use_count--; 2629 return 0; 2630 } 2631 2632 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2633 if (err) { 2634 return err; 2635 } 2636 2637 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2638 g_free(bp); 2639 } else { 2640 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2641 if (err) { 2642 return err; 2643 } 2644 } 2645 2646 CPU_FOREACH(cpu) { 2647 err = kvm_update_guest_debug(cpu, 0); 2648 if (err) { 2649 return err; 2650 } 2651 } 2652 return 0; 2653 } 2654 2655 void kvm_remove_all_breakpoints(CPUState *cpu) 2656 { 2657 struct kvm_sw_breakpoint *bp, *next; 2658 KVMState *s = cpu->kvm_state; 2659 CPUState *tmpcpu; 2660 2661 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2662 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2663 /* Try harder to find a CPU that currently sees the breakpoint. */ 2664 CPU_FOREACH(tmpcpu) { 2665 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2666 break; 2667 } 2668 } 2669 } 2670 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2671 g_free(bp); 2672 } 2673 kvm_arch_remove_all_hw_breakpoints(); 2674 2675 CPU_FOREACH(cpu) { 2676 kvm_update_guest_debug(cpu, 0); 2677 } 2678 } 2679 2680 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2681 2682 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2683 { 2684 return -EINVAL; 2685 } 2686 2687 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2688 target_ulong len, int type) 2689 { 2690 return -EINVAL; 2691 } 2692 2693 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2694 target_ulong len, int type) 2695 { 2696 return -EINVAL; 2697 } 2698 2699 void kvm_remove_all_breakpoints(CPUState *cpu) 2700 { 2701 } 2702 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2703 2704 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2705 { 2706 KVMState *s = kvm_state; 2707 struct kvm_signal_mask *sigmask; 2708 int r; 2709 2710 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2711 2712 sigmask->len = s->sigmask_len; 2713 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2714 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2715 g_free(sigmask); 2716 2717 return r; 2718 } 2719 2720 static void kvm_ipi_signal(int sig) 2721 { 2722 if (current_cpu) { 2723 assert(kvm_immediate_exit); 2724 kvm_cpu_kick(current_cpu); 2725 } 2726 } 2727 2728 void kvm_init_cpu_signals(CPUState *cpu) 2729 { 2730 int r; 2731 sigset_t set; 2732 struct sigaction sigact; 2733 2734 memset(&sigact, 0, sizeof(sigact)); 2735 sigact.sa_handler = kvm_ipi_signal; 2736 sigaction(SIG_IPI, &sigact, NULL); 2737 2738 pthread_sigmask(SIG_BLOCK, NULL, &set); 2739 #if defined KVM_HAVE_MCE_INJECTION 2740 sigdelset(&set, SIGBUS); 2741 pthread_sigmask(SIG_SETMASK, &set, NULL); 2742 #endif 2743 sigdelset(&set, SIG_IPI); 2744 if (kvm_immediate_exit) { 2745 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2746 } else { 2747 r = kvm_set_signal_mask(cpu, &set); 2748 } 2749 if (r) { 2750 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2751 exit(1); 2752 } 2753 } 2754 2755 /* Called asynchronously in VCPU thread. */ 2756 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2757 { 2758 #ifdef KVM_HAVE_MCE_INJECTION 2759 if (have_sigbus_pending) { 2760 return 1; 2761 } 2762 have_sigbus_pending = true; 2763 pending_sigbus_addr = addr; 2764 pending_sigbus_code = code; 2765 atomic_set(&cpu->exit_request, 1); 2766 return 0; 2767 #else 2768 return 1; 2769 #endif 2770 } 2771 2772 /* Called synchronously (via signalfd) in main thread. */ 2773 int kvm_on_sigbus(int code, void *addr) 2774 { 2775 #ifdef KVM_HAVE_MCE_INJECTION 2776 /* Action required MCE kills the process if SIGBUS is blocked. Because 2777 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2778 * we can only get action optional here. 2779 */ 2780 assert(code != BUS_MCEERR_AR); 2781 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2782 return 0; 2783 #else 2784 return 1; 2785 #endif 2786 } 2787 2788 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2789 { 2790 int ret; 2791 struct kvm_create_device create_dev; 2792 2793 create_dev.type = type; 2794 create_dev.fd = -1; 2795 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2796 2797 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2798 return -ENOTSUP; 2799 } 2800 2801 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2802 if (ret) { 2803 return ret; 2804 } 2805 2806 return test ? 0 : create_dev.fd; 2807 } 2808 2809 bool kvm_device_supported(int vmfd, uint64_t type) 2810 { 2811 struct kvm_create_device create_dev = { 2812 .type = type, 2813 .fd = -1, 2814 .flags = KVM_CREATE_DEVICE_TEST, 2815 }; 2816 2817 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2818 return false; 2819 } 2820 2821 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2822 } 2823 2824 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2825 { 2826 struct kvm_one_reg reg; 2827 int r; 2828 2829 reg.id = id; 2830 reg.addr = (uintptr_t) source; 2831 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2832 if (r) { 2833 trace_kvm_failed_reg_set(id, strerror(-r)); 2834 } 2835 return r; 2836 } 2837 2838 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2839 { 2840 struct kvm_one_reg reg; 2841 int r; 2842 2843 reg.id = id; 2844 reg.addr = (uintptr_t) target; 2845 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2846 if (r) { 2847 trace_kvm_failed_reg_get(id, strerror(-r)); 2848 } 2849 return r; 2850 } 2851 2852 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 2853 hwaddr start_addr, hwaddr size) 2854 { 2855 KVMState *kvm = KVM_STATE(ms->accelerator); 2856 int i; 2857 2858 for (i = 0; i < kvm->nr_as; ++i) { 2859 if (kvm->as[i].as == as && kvm->as[i].ml) { 2860 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 2861 start_addr, size); 2862 } 2863 } 2864 2865 return false; 2866 } 2867 2868 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2869 { 2870 AccelClass *ac = ACCEL_CLASS(oc); 2871 ac->name = "KVM"; 2872 ac->init_machine = kvm_init; 2873 ac->has_memory = kvm_accel_has_memory; 2874 ac->allowed = &kvm_allowed; 2875 } 2876 2877 static const TypeInfo kvm_accel_type = { 2878 .name = TYPE_KVM_ACCEL, 2879 .parent = TYPE_ACCEL, 2880 .class_init = kvm_accel_class_init, 2881 .instance_size = sizeof(KVMState), 2882 }; 2883 2884 static void kvm_type_init(void) 2885 { 2886 type_register_static(&kvm_accel_type); 2887 } 2888 2889 type_init(kvm_type_init); 2890