1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 //#define DEBUG_KVM 73 74 #ifdef DEBUG_KVM 75 #define DPRINTF(fmt, ...) \ 76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 77 #else 78 #define DPRINTF(fmt, ...) \ 79 do { } while (0) 80 #endif 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_eventfds_allowed; 94 bool kvm_irqfds_allowed; 95 bool kvm_resamplefds_allowed; 96 bool kvm_msi_via_irqfd_allowed; 97 bool kvm_gsi_routing_allowed; 98 bool kvm_gsi_direct_mapping; 99 bool kvm_allowed; 100 bool kvm_readonly_mem_allowed; 101 bool kvm_vm_attributes_allowed; 102 bool kvm_direct_msi_allowed; 103 bool kvm_ioeventfd_any_length_allowed; 104 bool kvm_msi_use_devid; 105 bool kvm_has_guest_debug; 106 static int kvm_sstep_flags; 107 static bool kvm_immediate_exit; 108 static hwaddr kvm_max_slot_size = ~0; 109 110 static const KVMCapabilityInfo kvm_required_capabilites[] = { 111 KVM_CAP_INFO(USER_MEMORY), 112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 114 KVM_CAP_LAST_INFO 115 }; 116 117 static NotifierList kvm_irqchip_change_notifiers = 118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 119 120 struct KVMResampleFd { 121 int gsi; 122 EventNotifier *resample_event; 123 QLIST_ENTRY(KVMResampleFd) node; 124 }; 125 typedef struct KVMResampleFd KVMResampleFd; 126 127 /* 128 * Only used with split irqchip where we need to do the resample fd 129 * kick for the kernel from userspace. 130 */ 131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 133 134 static QemuMutex kml_slots_lock; 135 136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 138 139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 140 141 static inline void kvm_resample_fd_remove(int gsi) 142 { 143 KVMResampleFd *rfd; 144 145 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 146 if (rfd->gsi == gsi) { 147 QLIST_REMOVE(rfd, node); 148 g_free(rfd); 149 break; 150 } 151 } 152 } 153 154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 155 { 156 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 157 158 rfd->gsi = gsi; 159 rfd->resample_event = event; 160 161 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 162 } 163 164 void kvm_resample_fd_notify(int gsi) 165 { 166 KVMResampleFd *rfd; 167 168 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 169 if (rfd->gsi == gsi) { 170 event_notifier_set(rfd->resample_event); 171 trace_kvm_resample_fd_notify(gsi); 172 return; 173 } 174 } 175 } 176 177 int kvm_get_max_memslots(void) 178 { 179 KVMState *s = KVM_STATE(current_accel()); 180 181 return s->nr_slots; 182 } 183 184 /* Called with KVMMemoryListener.slots_lock held */ 185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 186 { 187 KVMState *s = kvm_state; 188 int i; 189 190 for (i = 0; i < s->nr_slots; i++) { 191 if (kml->slots[i].memory_size == 0) { 192 return &kml->slots[i]; 193 } 194 } 195 196 return NULL; 197 } 198 199 bool kvm_has_free_slot(MachineState *ms) 200 { 201 KVMState *s = KVM_STATE(ms->accelerator); 202 bool result; 203 KVMMemoryListener *kml = &s->memory_listener; 204 205 kvm_slots_lock(); 206 result = !!kvm_get_free_slot(kml); 207 kvm_slots_unlock(); 208 209 return result; 210 } 211 212 /* Called with KVMMemoryListener.slots_lock held */ 213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 214 { 215 KVMSlot *slot = kvm_get_free_slot(kml); 216 217 if (slot) { 218 return slot; 219 } 220 221 fprintf(stderr, "%s: no free slot available\n", __func__); 222 abort(); 223 } 224 225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 226 hwaddr start_addr, 227 hwaddr size) 228 { 229 KVMState *s = kvm_state; 230 int i; 231 232 for (i = 0; i < s->nr_slots; i++) { 233 KVMSlot *mem = &kml->slots[i]; 234 235 if (start_addr == mem->start_addr && size == mem->memory_size) { 236 return mem; 237 } 238 } 239 240 return NULL; 241 } 242 243 /* 244 * Calculate and align the start address and the size of the section. 245 * Return the size. If the size is 0, the aligned section is empty. 246 */ 247 static hwaddr kvm_align_section(MemoryRegionSection *section, 248 hwaddr *start) 249 { 250 hwaddr size = int128_get64(section->size); 251 hwaddr delta, aligned; 252 253 /* kvm works in page size chunks, but the function may be called 254 with sub-page size and unaligned start address. Pad the start 255 address to next and truncate size to previous page boundary. */ 256 aligned = ROUND_UP(section->offset_within_address_space, 257 qemu_real_host_page_size()); 258 delta = aligned - section->offset_within_address_space; 259 *start = aligned; 260 if (delta > size) { 261 return 0; 262 } 263 264 return (size - delta) & qemu_real_host_page_mask(); 265 } 266 267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 268 hwaddr *phys_addr) 269 { 270 KVMMemoryListener *kml = &s->memory_listener; 271 int i, ret = 0; 272 273 kvm_slots_lock(); 274 for (i = 0; i < s->nr_slots; i++) { 275 KVMSlot *mem = &kml->slots[i]; 276 277 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 278 *phys_addr = mem->start_addr + (ram - mem->ram); 279 ret = 1; 280 break; 281 } 282 } 283 kvm_slots_unlock(); 284 285 return ret; 286 } 287 288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 289 { 290 KVMState *s = kvm_state; 291 struct kvm_userspace_memory_region mem; 292 int ret; 293 294 mem.slot = slot->slot | (kml->as_id << 16); 295 mem.guest_phys_addr = slot->start_addr; 296 mem.userspace_addr = (unsigned long)slot->ram; 297 mem.flags = slot->flags; 298 299 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 300 /* Set the slot size to 0 before setting the slot to the desired 301 * value. This is needed based on KVM commit 75d61fbc. */ 302 mem.memory_size = 0; 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 304 if (ret < 0) { 305 goto err; 306 } 307 } 308 mem.memory_size = slot->memory_size; 309 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 310 slot->old_flags = mem.flags; 311 err: 312 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 313 mem.memory_size, mem.userspace_addr, ret); 314 if (ret < 0) { 315 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 316 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 317 __func__, mem.slot, slot->start_addr, 318 (uint64_t)mem.memory_size, strerror(errno)); 319 } 320 return ret; 321 } 322 323 static int do_kvm_destroy_vcpu(CPUState *cpu) 324 { 325 KVMState *s = kvm_state; 326 long mmap_size; 327 struct KVMParkedVcpu *vcpu = NULL; 328 int ret = 0; 329 330 DPRINTF("kvm_destroy_vcpu\n"); 331 332 ret = kvm_arch_destroy_vcpu(cpu); 333 if (ret < 0) { 334 goto err; 335 } 336 337 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 338 if (mmap_size < 0) { 339 ret = mmap_size; 340 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 341 goto err; 342 } 343 344 ret = munmap(cpu->kvm_run, mmap_size); 345 if (ret < 0) { 346 goto err; 347 } 348 349 if (cpu->kvm_dirty_gfns) { 350 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 351 if (ret < 0) { 352 goto err; 353 } 354 } 355 356 vcpu = g_malloc0(sizeof(*vcpu)); 357 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 358 vcpu->kvm_fd = cpu->kvm_fd; 359 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 360 err: 361 return ret; 362 } 363 364 void kvm_destroy_vcpu(CPUState *cpu) 365 { 366 if (do_kvm_destroy_vcpu(cpu) < 0) { 367 error_report("kvm_destroy_vcpu failed"); 368 exit(EXIT_FAILURE); 369 } 370 } 371 372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 373 { 374 struct KVMParkedVcpu *cpu; 375 376 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 377 if (cpu->vcpu_id == vcpu_id) { 378 int kvm_fd; 379 380 QLIST_REMOVE(cpu, node); 381 kvm_fd = cpu->kvm_fd; 382 g_free(cpu); 383 return kvm_fd; 384 } 385 } 386 387 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 388 } 389 390 int kvm_init_vcpu(CPUState *cpu, Error **errp) 391 { 392 KVMState *s = kvm_state; 393 long mmap_size; 394 int ret; 395 396 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 397 398 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 399 if (ret < 0) { 400 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 401 kvm_arch_vcpu_id(cpu)); 402 goto err; 403 } 404 405 cpu->kvm_fd = ret; 406 cpu->kvm_state = s; 407 cpu->vcpu_dirty = true; 408 cpu->dirty_pages = 0; 409 cpu->throttle_us_per_full = 0; 410 411 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 412 if (mmap_size < 0) { 413 ret = mmap_size; 414 error_setg_errno(errp, -mmap_size, 415 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 416 goto err; 417 } 418 419 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 420 cpu->kvm_fd, 0); 421 if (cpu->kvm_run == MAP_FAILED) { 422 ret = -errno; 423 error_setg_errno(errp, ret, 424 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 425 kvm_arch_vcpu_id(cpu)); 426 goto err; 427 } 428 429 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 430 s->coalesced_mmio_ring = 431 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 432 } 433 434 if (s->kvm_dirty_ring_size) { 435 /* Use MAP_SHARED to share pages with the kernel */ 436 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 437 PROT_READ | PROT_WRITE, MAP_SHARED, 438 cpu->kvm_fd, 439 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 440 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 441 ret = -errno; 442 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 443 goto err; 444 } 445 } 446 447 ret = kvm_arch_init_vcpu(cpu); 448 if (ret < 0) { 449 error_setg_errno(errp, -ret, 450 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 451 kvm_arch_vcpu_id(cpu)); 452 } 453 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 454 455 err: 456 return ret; 457 } 458 459 /* 460 * dirty pages logging control 461 */ 462 463 static int kvm_mem_flags(MemoryRegion *mr) 464 { 465 bool readonly = mr->readonly || memory_region_is_romd(mr); 466 int flags = 0; 467 468 if (memory_region_get_dirty_log_mask(mr) != 0) { 469 flags |= KVM_MEM_LOG_DIRTY_PAGES; 470 } 471 if (readonly && kvm_readonly_mem_allowed) { 472 flags |= KVM_MEM_READONLY; 473 } 474 return flags; 475 } 476 477 /* Called with KVMMemoryListener.slots_lock held */ 478 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 479 MemoryRegion *mr) 480 { 481 mem->flags = kvm_mem_flags(mr); 482 483 /* If nothing changed effectively, no need to issue ioctl */ 484 if (mem->flags == mem->old_flags) { 485 return 0; 486 } 487 488 kvm_slot_init_dirty_bitmap(mem); 489 return kvm_set_user_memory_region(kml, mem, false); 490 } 491 492 static int kvm_section_update_flags(KVMMemoryListener *kml, 493 MemoryRegionSection *section) 494 { 495 hwaddr start_addr, size, slot_size; 496 KVMSlot *mem; 497 int ret = 0; 498 499 size = kvm_align_section(section, &start_addr); 500 if (!size) { 501 return 0; 502 } 503 504 kvm_slots_lock(); 505 506 while (size && !ret) { 507 slot_size = MIN(kvm_max_slot_size, size); 508 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 509 if (!mem) { 510 /* We don't have a slot if we want to trap every access. */ 511 goto out; 512 } 513 514 ret = kvm_slot_update_flags(kml, mem, section->mr); 515 start_addr += slot_size; 516 size -= slot_size; 517 } 518 519 out: 520 kvm_slots_unlock(); 521 return ret; 522 } 523 524 static void kvm_log_start(MemoryListener *listener, 525 MemoryRegionSection *section, 526 int old, int new) 527 { 528 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 529 int r; 530 531 if (old != 0) { 532 return; 533 } 534 535 r = kvm_section_update_flags(kml, section); 536 if (r < 0) { 537 abort(); 538 } 539 } 540 541 static void kvm_log_stop(MemoryListener *listener, 542 MemoryRegionSection *section, 543 int old, int new) 544 { 545 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 546 int r; 547 548 if (new != 0) { 549 return; 550 } 551 552 r = kvm_section_update_flags(kml, section); 553 if (r < 0) { 554 abort(); 555 } 556 } 557 558 /* get kvm's dirty pages bitmap and update qemu's */ 559 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 560 { 561 ram_addr_t start = slot->ram_start_offset; 562 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 563 564 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 565 } 566 567 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 568 { 569 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 570 } 571 572 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 573 574 /* Allocate the dirty bitmap for a slot */ 575 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 576 { 577 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 578 return; 579 } 580 581 /* 582 * XXX bad kernel interface alert 583 * For dirty bitmap, kernel allocates array of size aligned to 584 * bits-per-long. But for case when the kernel is 64bits and 585 * the userspace is 32bits, userspace can't align to the same 586 * bits-per-long, since sizeof(long) is different between kernel 587 * and user space. This way, userspace will provide buffer which 588 * may be 4 bytes less than the kernel will use, resulting in 589 * userspace memory corruption (which is not detectable by valgrind 590 * too, in most cases). 591 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 592 * a hope that sizeof(long) won't become >8 any time soon. 593 * 594 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 595 * And mem->memory_size is aligned to it (otherwise this mem can't 596 * be registered to KVM). 597 */ 598 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 599 /*HOST_LONG_BITS*/ 64) / 8; 600 mem->dirty_bmap = g_malloc0(bitmap_size); 601 mem->dirty_bmap_size = bitmap_size; 602 } 603 604 /* 605 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 606 * succeeded, false otherwise 607 */ 608 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 609 { 610 struct kvm_dirty_log d = {}; 611 int ret; 612 613 d.dirty_bitmap = slot->dirty_bmap; 614 d.slot = slot->slot | (slot->as_id << 16); 615 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 616 617 if (ret == -ENOENT) { 618 /* kernel does not have dirty bitmap in this slot */ 619 ret = 0; 620 } 621 if (ret) { 622 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 623 __func__, ret); 624 } 625 return ret == 0; 626 } 627 628 /* Should be with all slots_lock held for the address spaces. */ 629 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 630 uint32_t slot_id, uint64_t offset) 631 { 632 KVMMemoryListener *kml; 633 KVMSlot *mem; 634 635 if (as_id >= s->nr_as) { 636 return; 637 } 638 639 kml = s->as[as_id].ml; 640 mem = &kml->slots[slot_id]; 641 642 if (!mem->memory_size || offset >= 643 (mem->memory_size / qemu_real_host_page_size())) { 644 return; 645 } 646 647 set_bit(offset, mem->dirty_bmap); 648 } 649 650 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 651 { 652 /* 653 * Read the flags before the value. Pairs with barrier in 654 * KVM's kvm_dirty_ring_push() function. 655 */ 656 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 657 } 658 659 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 660 { 661 /* 662 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 663 * sees the full content of the ring: 664 * 665 * CPU0 CPU1 CPU2 666 * ------------------------------------------------------------------------------ 667 * fill gfn0 668 * store-rel flags for gfn0 669 * load-acq flags for gfn0 670 * store-rel RESET for gfn0 671 * ioctl(RESET_RINGS) 672 * load-acq flags for gfn0 673 * check if flags have RESET 674 * 675 * The synchronization goes from CPU2 to CPU0 to CPU1. 676 */ 677 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 678 } 679 680 /* 681 * Should be with all slots_lock held for the address spaces. It returns the 682 * dirty page we've collected on this dirty ring. 683 */ 684 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 685 { 686 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 687 uint32_t ring_size = s->kvm_dirty_ring_size; 688 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 689 690 /* 691 * It's possible that we race with vcpu creation code where the vcpu is 692 * put onto the vcpus list but not yet initialized the dirty ring 693 * structures. If so, skip it. 694 */ 695 if (!cpu->created) { 696 return 0; 697 } 698 699 assert(dirty_gfns && ring_size); 700 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 701 702 while (true) { 703 cur = &dirty_gfns[fetch % ring_size]; 704 if (!dirty_gfn_is_dirtied(cur)) { 705 break; 706 } 707 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 708 cur->offset); 709 dirty_gfn_set_collected(cur); 710 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 711 fetch++; 712 count++; 713 } 714 cpu->kvm_fetch_index = fetch; 715 cpu->dirty_pages += count; 716 717 return count; 718 } 719 720 /* Must be with slots_lock held */ 721 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 722 { 723 int ret; 724 uint64_t total = 0; 725 int64_t stamp; 726 727 stamp = get_clock(); 728 729 if (cpu) { 730 total = kvm_dirty_ring_reap_one(s, cpu); 731 } else { 732 CPU_FOREACH(cpu) { 733 total += kvm_dirty_ring_reap_one(s, cpu); 734 } 735 } 736 737 if (total) { 738 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 739 assert(ret == total); 740 } 741 742 stamp = get_clock() - stamp; 743 744 if (total) { 745 trace_kvm_dirty_ring_reap(total, stamp / 1000); 746 } 747 748 return total; 749 } 750 751 /* 752 * Currently for simplicity, we must hold BQL before calling this. We can 753 * consider to drop the BQL if we're clear with all the race conditions. 754 */ 755 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 756 { 757 uint64_t total; 758 759 /* 760 * We need to lock all kvm slots for all address spaces here, 761 * because: 762 * 763 * (1) We need to mark dirty for dirty bitmaps in multiple slots 764 * and for tons of pages, so it's better to take the lock here 765 * once rather than once per page. And more importantly, 766 * 767 * (2) We must _NOT_ publish dirty bits to the other threads 768 * (e.g., the migration thread) via the kvm memory slot dirty 769 * bitmaps before correctly re-protect those dirtied pages. 770 * Otherwise we can have potential risk of data corruption if 771 * the page data is read in the other thread before we do 772 * reset below. 773 */ 774 kvm_slots_lock(); 775 total = kvm_dirty_ring_reap_locked(s, cpu); 776 kvm_slots_unlock(); 777 778 return total; 779 } 780 781 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 782 { 783 /* No need to do anything */ 784 } 785 786 /* 787 * Kick all vcpus out in a synchronized way. When returned, we 788 * guarantee that every vcpu has been kicked and at least returned to 789 * userspace once. 790 */ 791 static void kvm_cpu_synchronize_kick_all(void) 792 { 793 CPUState *cpu; 794 795 CPU_FOREACH(cpu) { 796 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 797 } 798 } 799 800 /* 801 * Flush all the existing dirty pages to the KVM slot buffers. When 802 * this call returns, we guarantee that all the touched dirty pages 803 * before calling this function have been put into the per-kvmslot 804 * dirty bitmap. 805 * 806 * This function must be called with BQL held. 807 */ 808 static void kvm_dirty_ring_flush(void) 809 { 810 trace_kvm_dirty_ring_flush(0); 811 /* 812 * The function needs to be serialized. Since this function 813 * should always be with BQL held, serialization is guaranteed. 814 * However, let's be sure of it. 815 */ 816 assert(qemu_mutex_iothread_locked()); 817 /* 818 * First make sure to flush the hardware buffers by kicking all 819 * vcpus out in a synchronous way. 820 */ 821 kvm_cpu_synchronize_kick_all(); 822 kvm_dirty_ring_reap(kvm_state, NULL); 823 trace_kvm_dirty_ring_flush(1); 824 } 825 826 /** 827 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 828 * 829 * This function will first try to fetch dirty bitmap from the kernel, 830 * and then updates qemu's dirty bitmap. 831 * 832 * NOTE: caller must be with kml->slots_lock held. 833 * 834 * @kml: the KVM memory listener object 835 * @section: the memory section to sync the dirty bitmap with 836 */ 837 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 838 MemoryRegionSection *section) 839 { 840 KVMState *s = kvm_state; 841 KVMSlot *mem; 842 hwaddr start_addr, size; 843 hwaddr slot_size; 844 845 size = kvm_align_section(section, &start_addr); 846 while (size) { 847 slot_size = MIN(kvm_max_slot_size, size); 848 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 849 if (!mem) { 850 /* We don't have a slot if we want to trap every access. */ 851 return; 852 } 853 if (kvm_slot_get_dirty_log(s, mem)) { 854 kvm_slot_sync_dirty_pages(mem); 855 } 856 start_addr += slot_size; 857 size -= slot_size; 858 } 859 } 860 861 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 862 #define KVM_CLEAR_LOG_SHIFT 6 863 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 864 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 865 866 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 867 uint64_t size) 868 { 869 KVMState *s = kvm_state; 870 uint64_t end, bmap_start, start_delta, bmap_npages; 871 struct kvm_clear_dirty_log d; 872 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 873 int ret; 874 875 /* 876 * We need to extend either the start or the size or both to 877 * satisfy the KVM interface requirement. Firstly, do the start 878 * page alignment on 64 host pages 879 */ 880 bmap_start = start & KVM_CLEAR_LOG_MASK; 881 start_delta = start - bmap_start; 882 bmap_start /= psize; 883 884 /* 885 * The kernel interface has restriction on the size too, that either: 886 * 887 * (1) the size is 64 host pages aligned (just like the start), or 888 * (2) the size fills up until the end of the KVM memslot. 889 */ 890 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 891 << KVM_CLEAR_LOG_SHIFT; 892 end = mem->memory_size / psize; 893 if (bmap_npages > end - bmap_start) { 894 bmap_npages = end - bmap_start; 895 } 896 start_delta /= psize; 897 898 /* 899 * Prepare the bitmap to clear dirty bits. Here we must guarantee 900 * that we won't clear any unknown dirty bits otherwise we might 901 * accidentally clear some set bits which are not yet synced from 902 * the kernel into QEMU's bitmap, then we'll lose track of the 903 * guest modifications upon those pages (which can directly lead 904 * to guest data loss or panic after migration). 905 * 906 * Layout of the KVMSlot.dirty_bmap: 907 * 908 * |<-------- bmap_npages -----------..>| 909 * [1] 910 * start_delta size 911 * |----------------|-------------|------------------|------------| 912 * ^ ^ ^ ^ 913 * | | | | 914 * start bmap_start (start) end 915 * of memslot of memslot 916 * 917 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 918 */ 919 920 assert(bmap_start % BITS_PER_LONG == 0); 921 /* We should never do log_clear before log_sync */ 922 assert(mem->dirty_bmap); 923 if (start_delta || bmap_npages - size / psize) { 924 /* Slow path - we need to manipulate a temp bitmap */ 925 bmap_clear = bitmap_new(bmap_npages); 926 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 927 bmap_start, start_delta + size / psize); 928 /* 929 * We need to fill the holes at start because that was not 930 * specified by the caller and we extended the bitmap only for 931 * 64 pages alignment 932 */ 933 bitmap_clear(bmap_clear, 0, start_delta); 934 d.dirty_bitmap = bmap_clear; 935 } else { 936 /* 937 * Fast path - both start and size align well with BITS_PER_LONG 938 * (or the end of memory slot) 939 */ 940 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 941 } 942 943 d.first_page = bmap_start; 944 /* It should never overflow. If it happens, say something */ 945 assert(bmap_npages <= UINT32_MAX); 946 d.num_pages = bmap_npages; 947 d.slot = mem->slot | (as_id << 16); 948 949 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 950 if (ret < 0 && ret != -ENOENT) { 951 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 952 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 953 __func__, d.slot, (uint64_t)d.first_page, 954 (uint32_t)d.num_pages, ret); 955 } else { 956 ret = 0; 957 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 958 } 959 960 /* 961 * After we have updated the remote dirty bitmap, we update the 962 * cached bitmap as well for the memslot, then if another user 963 * clears the same region we know we shouldn't clear it again on 964 * the remote otherwise it's data loss as well. 965 */ 966 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 967 size / psize); 968 /* This handles the NULL case well */ 969 g_free(bmap_clear); 970 return ret; 971 } 972 973 974 /** 975 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 976 * 977 * NOTE: this will be a no-op if we haven't enabled manual dirty log 978 * protection in the host kernel because in that case this operation 979 * will be done within log_sync(). 980 * 981 * @kml: the kvm memory listener 982 * @section: the memory range to clear dirty bitmap 983 */ 984 static int kvm_physical_log_clear(KVMMemoryListener *kml, 985 MemoryRegionSection *section) 986 { 987 KVMState *s = kvm_state; 988 uint64_t start, size, offset, count; 989 KVMSlot *mem; 990 int ret = 0, i; 991 992 if (!s->manual_dirty_log_protect) { 993 /* No need to do explicit clear */ 994 return ret; 995 } 996 997 start = section->offset_within_address_space; 998 size = int128_get64(section->size); 999 1000 if (!size) { 1001 /* Nothing more we can do... */ 1002 return ret; 1003 } 1004 1005 kvm_slots_lock(); 1006 1007 for (i = 0; i < s->nr_slots; i++) { 1008 mem = &kml->slots[i]; 1009 /* Discard slots that are empty or do not overlap the section */ 1010 if (!mem->memory_size || 1011 mem->start_addr > start + size - 1 || 1012 start > mem->start_addr + mem->memory_size - 1) { 1013 continue; 1014 } 1015 1016 if (start >= mem->start_addr) { 1017 /* The slot starts before section or is aligned to it. */ 1018 offset = start - mem->start_addr; 1019 count = MIN(mem->memory_size - offset, size); 1020 } else { 1021 /* The slot starts after section. */ 1022 offset = 0; 1023 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1024 } 1025 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1026 if (ret < 0) { 1027 break; 1028 } 1029 } 1030 1031 kvm_slots_unlock(); 1032 1033 return ret; 1034 } 1035 1036 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1037 MemoryRegionSection *secion, 1038 hwaddr start, hwaddr size) 1039 { 1040 KVMState *s = kvm_state; 1041 1042 if (s->coalesced_mmio) { 1043 struct kvm_coalesced_mmio_zone zone; 1044 1045 zone.addr = start; 1046 zone.size = size; 1047 zone.pad = 0; 1048 1049 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1050 } 1051 } 1052 1053 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1054 MemoryRegionSection *secion, 1055 hwaddr start, hwaddr size) 1056 { 1057 KVMState *s = kvm_state; 1058 1059 if (s->coalesced_mmio) { 1060 struct kvm_coalesced_mmio_zone zone; 1061 1062 zone.addr = start; 1063 zone.size = size; 1064 zone.pad = 0; 1065 1066 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1067 } 1068 } 1069 1070 static void kvm_coalesce_pio_add(MemoryListener *listener, 1071 MemoryRegionSection *section, 1072 hwaddr start, hwaddr size) 1073 { 1074 KVMState *s = kvm_state; 1075 1076 if (s->coalesced_pio) { 1077 struct kvm_coalesced_mmio_zone zone; 1078 1079 zone.addr = start; 1080 zone.size = size; 1081 zone.pio = 1; 1082 1083 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1084 } 1085 } 1086 1087 static void kvm_coalesce_pio_del(MemoryListener *listener, 1088 MemoryRegionSection *section, 1089 hwaddr start, hwaddr size) 1090 { 1091 KVMState *s = kvm_state; 1092 1093 if (s->coalesced_pio) { 1094 struct kvm_coalesced_mmio_zone zone; 1095 1096 zone.addr = start; 1097 zone.size = size; 1098 zone.pio = 1; 1099 1100 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1101 } 1102 } 1103 1104 static MemoryListener kvm_coalesced_pio_listener = { 1105 .name = "kvm-coalesced-pio", 1106 .coalesced_io_add = kvm_coalesce_pio_add, 1107 .coalesced_io_del = kvm_coalesce_pio_del, 1108 .priority = MEMORY_LISTENER_PRIORITY_MIN, 1109 }; 1110 1111 int kvm_check_extension(KVMState *s, unsigned int extension) 1112 { 1113 int ret; 1114 1115 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1116 if (ret < 0) { 1117 ret = 0; 1118 } 1119 1120 return ret; 1121 } 1122 1123 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1124 { 1125 int ret; 1126 1127 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1128 if (ret < 0) { 1129 /* VM wide version not implemented, use global one instead */ 1130 ret = kvm_check_extension(s, extension); 1131 } 1132 1133 return ret; 1134 } 1135 1136 typedef struct HWPoisonPage { 1137 ram_addr_t ram_addr; 1138 QLIST_ENTRY(HWPoisonPage) list; 1139 } HWPoisonPage; 1140 1141 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1142 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1143 1144 static void kvm_unpoison_all(void *param) 1145 { 1146 HWPoisonPage *page, *next_page; 1147 1148 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1149 QLIST_REMOVE(page, list); 1150 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1151 g_free(page); 1152 } 1153 } 1154 1155 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1156 { 1157 HWPoisonPage *page; 1158 1159 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1160 if (page->ram_addr == ram_addr) { 1161 return; 1162 } 1163 } 1164 page = g_new(HWPoisonPage, 1); 1165 page->ram_addr = ram_addr; 1166 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1167 } 1168 1169 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1170 { 1171 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1172 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1173 * endianness, but the memory core hands them in target endianness. 1174 * For example, PPC is always treated as big-endian even if running 1175 * on KVM and on PPC64LE. Correct here. 1176 */ 1177 switch (size) { 1178 case 2: 1179 val = bswap16(val); 1180 break; 1181 case 4: 1182 val = bswap32(val); 1183 break; 1184 } 1185 #endif 1186 return val; 1187 } 1188 1189 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1190 bool assign, uint32_t size, bool datamatch) 1191 { 1192 int ret; 1193 struct kvm_ioeventfd iofd = { 1194 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1195 .addr = addr, 1196 .len = size, 1197 .flags = 0, 1198 .fd = fd, 1199 }; 1200 1201 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1202 datamatch); 1203 if (!kvm_enabled()) { 1204 return -ENOSYS; 1205 } 1206 1207 if (datamatch) { 1208 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1209 } 1210 if (!assign) { 1211 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1212 } 1213 1214 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1215 1216 if (ret < 0) { 1217 return -errno; 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1224 bool assign, uint32_t size, bool datamatch) 1225 { 1226 struct kvm_ioeventfd kick = { 1227 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1228 .addr = addr, 1229 .flags = KVM_IOEVENTFD_FLAG_PIO, 1230 .len = size, 1231 .fd = fd, 1232 }; 1233 int r; 1234 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1235 if (!kvm_enabled()) { 1236 return -ENOSYS; 1237 } 1238 if (datamatch) { 1239 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1240 } 1241 if (!assign) { 1242 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1243 } 1244 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1245 if (r < 0) { 1246 return r; 1247 } 1248 return 0; 1249 } 1250 1251 1252 static int kvm_check_many_ioeventfds(void) 1253 { 1254 /* Userspace can use ioeventfd for io notification. This requires a host 1255 * that supports eventfd(2) and an I/O thread; since eventfd does not 1256 * support SIGIO it cannot interrupt the vcpu. 1257 * 1258 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1259 * can avoid creating too many ioeventfds. 1260 */ 1261 #if defined(CONFIG_EVENTFD) 1262 int ioeventfds[7]; 1263 int i, ret = 0; 1264 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1265 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1266 if (ioeventfds[i] < 0) { 1267 break; 1268 } 1269 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1270 if (ret < 0) { 1271 close(ioeventfds[i]); 1272 break; 1273 } 1274 } 1275 1276 /* Decide whether many devices are supported or not */ 1277 ret = i == ARRAY_SIZE(ioeventfds); 1278 1279 while (i-- > 0) { 1280 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1281 close(ioeventfds[i]); 1282 } 1283 return ret; 1284 #else 1285 return 0; 1286 #endif 1287 } 1288 1289 static const KVMCapabilityInfo * 1290 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1291 { 1292 while (list->name) { 1293 if (!kvm_check_extension(s, list->value)) { 1294 return list; 1295 } 1296 list++; 1297 } 1298 return NULL; 1299 } 1300 1301 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1302 { 1303 g_assert( 1304 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1305 ); 1306 kvm_max_slot_size = max_slot_size; 1307 } 1308 1309 /* Called with KVMMemoryListener.slots_lock held */ 1310 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1311 MemoryRegionSection *section, bool add) 1312 { 1313 KVMSlot *mem; 1314 int err; 1315 MemoryRegion *mr = section->mr; 1316 bool writable = !mr->readonly && !mr->rom_device; 1317 hwaddr start_addr, size, slot_size, mr_offset; 1318 ram_addr_t ram_start_offset; 1319 void *ram; 1320 1321 if (!memory_region_is_ram(mr)) { 1322 if (writable || !kvm_readonly_mem_allowed) { 1323 return; 1324 } else if (!mr->romd_mode) { 1325 /* If the memory device is not in romd_mode, then we actually want 1326 * to remove the kvm memory slot so all accesses will trap. */ 1327 add = false; 1328 } 1329 } 1330 1331 size = kvm_align_section(section, &start_addr); 1332 if (!size) { 1333 return; 1334 } 1335 1336 /* The offset of the kvmslot within the memory region */ 1337 mr_offset = section->offset_within_region + start_addr - 1338 section->offset_within_address_space; 1339 1340 /* use aligned delta to align the ram address and offset */ 1341 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1342 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1343 1344 if (!add) { 1345 do { 1346 slot_size = MIN(kvm_max_slot_size, size); 1347 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1348 if (!mem) { 1349 return; 1350 } 1351 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1352 /* 1353 * NOTE: We should be aware of the fact that here we're only 1354 * doing a best effort to sync dirty bits. No matter whether 1355 * we're using dirty log or dirty ring, we ignored two facts: 1356 * 1357 * (1) dirty bits can reside in hardware buffers (PML) 1358 * 1359 * (2) after we collected dirty bits here, pages can be dirtied 1360 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1361 * remove the slot. 1362 * 1363 * Not easy. Let's cross the fingers until it's fixed. 1364 */ 1365 if (kvm_state->kvm_dirty_ring_size) { 1366 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1367 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1368 kvm_slot_sync_dirty_pages(mem); 1369 kvm_slot_get_dirty_log(kvm_state, mem); 1370 } 1371 } else { 1372 kvm_slot_get_dirty_log(kvm_state, mem); 1373 } 1374 kvm_slot_sync_dirty_pages(mem); 1375 } 1376 1377 /* unregister the slot */ 1378 g_free(mem->dirty_bmap); 1379 mem->dirty_bmap = NULL; 1380 mem->memory_size = 0; 1381 mem->flags = 0; 1382 err = kvm_set_user_memory_region(kml, mem, false); 1383 if (err) { 1384 fprintf(stderr, "%s: error unregistering slot: %s\n", 1385 __func__, strerror(-err)); 1386 abort(); 1387 } 1388 start_addr += slot_size; 1389 size -= slot_size; 1390 } while (size); 1391 return; 1392 } 1393 1394 /* register the new slot */ 1395 do { 1396 slot_size = MIN(kvm_max_slot_size, size); 1397 mem = kvm_alloc_slot(kml); 1398 mem->as_id = kml->as_id; 1399 mem->memory_size = slot_size; 1400 mem->start_addr = start_addr; 1401 mem->ram_start_offset = ram_start_offset; 1402 mem->ram = ram; 1403 mem->flags = kvm_mem_flags(mr); 1404 kvm_slot_init_dirty_bitmap(mem); 1405 err = kvm_set_user_memory_region(kml, mem, true); 1406 if (err) { 1407 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1408 strerror(-err)); 1409 abort(); 1410 } 1411 start_addr += slot_size; 1412 ram_start_offset += slot_size; 1413 ram += slot_size; 1414 size -= slot_size; 1415 } while (size); 1416 } 1417 1418 static void *kvm_dirty_ring_reaper_thread(void *data) 1419 { 1420 KVMState *s = data; 1421 struct KVMDirtyRingReaper *r = &s->reaper; 1422 1423 rcu_register_thread(); 1424 1425 trace_kvm_dirty_ring_reaper("init"); 1426 1427 while (true) { 1428 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1429 trace_kvm_dirty_ring_reaper("wait"); 1430 /* 1431 * TODO: provide a smarter timeout rather than a constant? 1432 */ 1433 sleep(1); 1434 1435 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1436 if (dirtylimit_in_service()) { 1437 continue; 1438 } 1439 1440 trace_kvm_dirty_ring_reaper("wakeup"); 1441 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1442 1443 qemu_mutex_lock_iothread(); 1444 kvm_dirty_ring_reap(s, NULL); 1445 qemu_mutex_unlock_iothread(); 1446 1447 r->reaper_iteration++; 1448 } 1449 1450 trace_kvm_dirty_ring_reaper("exit"); 1451 1452 rcu_unregister_thread(); 1453 1454 return NULL; 1455 } 1456 1457 static void kvm_dirty_ring_reaper_init(KVMState *s) 1458 { 1459 struct KVMDirtyRingReaper *r = &s->reaper; 1460 1461 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1462 kvm_dirty_ring_reaper_thread, 1463 s, QEMU_THREAD_JOINABLE); 1464 } 1465 1466 static int kvm_dirty_ring_init(KVMState *s) 1467 { 1468 uint32_t ring_size = s->kvm_dirty_ring_size; 1469 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1470 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1471 int ret; 1472 1473 s->kvm_dirty_ring_size = 0; 1474 s->kvm_dirty_ring_bytes = 0; 1475 1476 /* Bail if the dirty ring size isn't specified */ 1477 if (!ring_size) { 1478 return 0; 1479 } 1480 1481 /* 1482 * Read the max supported pages. Fall back to dirty logging mode 1483 * if the dirty ring isn't supported. 1484 */ 1485 ret = kvm_vm_check_extension(s, capability); 1486 if (ret <= 0) { 1487 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1488 ret = kvm_vm_check_extension(s, capability); 1489 } 1490 1491 if (ret <= 0) { 1492 warn_report("KVM dirty ring not available, using bitmap method"); 1493 return 0; 1494 } 1495 1496 if (ring_bytes > ret) { 1497 error_report("KVM dirty ring size %" PRIu32 " too big " 1498 "(maximum is %ld). Please use a smaller value.", 1499 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1500 return -EINVAL; 1501 } 1502 1503 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1504 if (ret) { 1505 error_report("Enabling of KVM dirty ring failed: %s. " 1506 "Suggested minimum value is 1024.", strerror(-ret)); 1507 return -EIO; 1508 } 1509 1510 /* Enable the backup bitmap if it is supported */ 1511 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1512 if (ret > 0) { 1513 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1514 if (ret) { 1515 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1516 "%s. ", strerror(-ret)); 1517 return -EIO; 1518 } 1519 1520 s->kvm_dirty_ring_with_bitmap = true; 1521 } 1522 1523 s->kvm_dirty_ring_size = ring_size; 1524 s->kvm_dirty_ring_bytes = ring_bytes; 1525 1526 return 0; 1527 } 1528 1529 static void kvm_region_add(MemoryListener *listener, 1530 MemoryRegionSection *section) 1531 { 1532 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1533 KVMMemoryUpdate *update; 1534 1535 update = g_new0(KVMMemoryUpdate, 1); 1536 update->section = *section; 1537 1538 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1539 } 1540 1541 static void kvm_region_del(MemoryListener *listener, 1542 MemoryRegionSection *section) 1543 { 1544 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1545 KVMMemoryUpdate *update; 1546 1547 update = g_new0(KVMMemoryUpdate, 1); 1548 update->section = *section; 1549 1550 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1551 } 1552 1553 static void kvm_region_commit(MemoryListener *listener) 1554 { 1555 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1556 listener); 1557 KVMMemoryUpdate *u1, *u2; 1558 bool need_inhibit = false; 1559 1560 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1561 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1562 return; 1563 } 1564 1565 /* 1566 * We have to be careful when regions to add overlap with ranges to remove. 1567 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1568 * is currently active. 1569 * 1570 * The lists are order by addresses, so it's easy to find overlaps. 1571 */ 1572 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1573 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1574 while (u1 && u2) { 1575 Range r1, r2; 1576 1577 range_init_nofail(&r1, u1->section.offset_within_address_space, 1578 int128_get64(u1->section.size)); 1579 range_init_nofail(&r2, u2->section.offset_within_address_space, 1580 int128_get64(u2->section.size)); 1581 1582 if (range_overlaps_range(&r1, &r2)) { 1583 need_inhibit = true; 1584 break; 1585 } 1586 if (range_lob(&r1) < range_lob(&r2)) { 1587 u1 = QSIMPLEQ_NEXT(u1, next); 1588 } else { 1589 u2 = QSIMPLEQ_NEXT(u2, next); 1590 } 1591 } 1592 1593 kvm_slots_lock(); 1594 if (need_inhibit) { 1595 accel_ioctl_inhibit_begin(); 1596 } 1597 1598 /* Remove all memslots before adding the new ones. */ 1599 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1600 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1601 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1602 1603 kvm_set_phys_mem(kml, &u1->section, false); 1604 memory_region_unref(u1->section.mr); 1605 1606 g_free(u1); 1607 } 1608 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1609 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1610 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1611 1612 memory_region_ref(u1->section.mr); 1613 kvm_set_phys_mem(kml, &u1->section, true); 1614 1615 g_free(u1); 1616 } 1617 1618 if (need_inhibit) { 1619 accel_ioctl_inhibit_end(); 1620 } 1621 kvm_slots_unlock(); 1622 } 1623 1624 static void kvm_log_sync(MemoryListener *listener, 1625 MemoryRegionSection *section) 1626 { 1627 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1628 1629 kvm_slots_lock(); 1630 kvm_physical_sync_dirty_bitmap(kml, section); 1631 kvm_slots_unlock(); 1632 } 1633 1634 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1635 { 1636 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1637 KVMState *s = kvm_state; 1638 KVMSlot *mem; 1639 int i; 1640 1641 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1642 kvm_dirty_ring_flush(); 1643 1644 /* 1645 * TODO: make this faster when nr_slots is big while there are 1646 * only a few used slots (small VMs). 1647 */ 1648 kvm_slots_lock(); 1649 for (i = 0; i < s->nr_slots; i++) { 1650 mem = &kml->slots[i]; 1651 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1652 kvm_slot_sync_dirty_pages(mem); 1653 1654 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1655 kvm_slot_get_dirty_log(s, mem)) { 1656 kvm_slot_sync_dirty_pages(mem); 1657 } 1658 1659 /* 1660 * This is not needed by KVM_GET_DIRTY_LOG because the 1661 * ioctl will unconditionally overwrite the whole region. 1662 * However kvm dirty ring has no such side effect. 1663 */ 1664 kvm_slot_reset_dirty_pages(mem); 1665 } 1666 } 1667 kvm_slots_unlock(); 1668 } 1669 1670 static void kvm_log_clear(MemoryListener *listener, 1671 MemoryRegionSection *section) 1672 { 1673 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1674 int r; 1675 1676 r = kvm_physical_log_clear(kml, section); 1677 if (r < 0) { 1678 error_report_once("%s: kvm log clear failed: mr=%s " 1679 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1680 section->mr->name, section->offset_within_region, 1681 int128_get64(section->size)); 1682 abort(); 1683 } 1684 } 1685 1686 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1687 MemoryRegionSection *section, 1688 bool match_data, uint64_t data, 1689 EventNotifier *e) 1690 { 1691 int fd = event_notifier_get_fd(e); 1692 int r; 1693 1694 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1695 data, true, int128_get64(section->size), 1696 match_data); 1697 if (r < 0) { 1698 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1699 __func__, strerror(-r), -r); 1700 abort(); 1701 } 1702 } 1703 1704 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1705 MemoryRegionSection *section, 1706 bool match_data, uint64_t data, 1707 EventNotifier *e) 1708 { 1709 int fd = event_notifier_get_fd(e); 1710 int r; 1711 1712 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1713 data, false, int128_get64(section->size), 1714 match_data); 1715 if (r < 0) { 1716 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1717 __func__, strerror(-r), -r); 1718 abort(); 1719 } 1720 } 1721 1722 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1723 MemoryRegionSection *section, 1724 bool match_data, uint64_t data, 1725 EventNotifier *e) 1726 { 1727 int fd = event_notifier_get_fd(e); 1728 int r; 1729 1730 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1731 data, true, int128_get64(section->size), 1732 match_data); 1733 if (r < 0) { 1734 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1735 __func__, strerror(-r), -r); 1736 abort(); 1737 } 1738 } 1739 1740 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1741 MemoryRegionSection *section, 1742 bool match_data, uint64_t data, 1743 EventNotifier *e) 1744 1745 { 1746 int fd = event_notifier_get_fd(e); 1747 int r; 1748 1749 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1750 data, false, int128_get64(section->size), 1751 match_data); 1752 if (r < 0) { 1753 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1754 __func__, strerror(-r), -r); 1755 abort(); 1756 } 1757 } 1758 1759 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1760 AddressSpace *as, int as_id, const char *name) 1761 { 1762 int i; 1763 1764 kml->slots = g_new0(KVMSlot, s->nr_slots); 1765 kml->as_id = as_id; 1766 1767 for (i = 0; i < s->nr_slots; i++) { 1768 kml->slots[i].slot = i; 1769 } 1770 1771 QSIMPLEQ_INIT(&kml->transaction_add); 1772 QSIMPLEQ_INIT(&kml->transaction_del); 1773 1774 kml->listener.region_add = kvm_region_add; 1775 kml->listener.region_del = kvm_region_del; 1776 kml->listener.commit = kvm_region_commit; 1777 kml->listener.log_start = kvm_log_start; 1778 kml->listener.log_stop = kvm_log_stop; 1779 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1780 kml->listener.name = name; 1781 1782 if (s->kvm_dirty_ring_size) { 1783 kml->listener.log_sync_global = kvm_log_sync_global; 1784 } else { 1785 kml->listener.log_sync = kvm_log_sync; 1786 kml->listener.log_clear = kvm_log_clear; 1787 } 1788 1789 memory_listener_register(&kml->listener, as); 1790 1791 for (i = 0; i < s->nr_as; ++i) { 1792 if (!s->as[i].as) { 1793 s->as[i].as = as; 1794 s->as[i].ml = kml; 1795 break; 1796 } 1797 } 1798 } 1799 1800 static MemoryListener kvm_io_listener = { 1801 .name = "kvm-io", 1802 .eventfd_add = kvm_io_ioeventfd_add, 1803 .eventfd_del = kvm_io_ioeventfd_del, 1804 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1805 }; 1806 1807 int kvm_set_irq(KVMState *s, int irq, int level) 1808 { 1809 struct kvm_irq_level event; 1810 int ret; 1811 1812 assert(kvm_async_interrupts_enabled()); 1813 1814 event.level = level; 1815 event.irq = irq; 1816 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1817 if (ret < 0) { 1818 perror("kvm_set_irq"); 1819 abort(); 1820 } 1821 1822 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1823 } 1824 1825 #ifdef KVM_CAP_IRQ_ROUTING 1826 typedef struct KVMMSIRoute { 1827 struct kvm_irq_routing_entry kroute; 1828 QTAILQ_ENTRY(KVMMSIRoute) entry; 1829 } KVMMSIRoute; 1830 1831 static void set_gsi(KVMState *s, unsigned int gsi) 1832 { 1833 set_bit(gsi, s->used_gsi_bitmap); 1834 } 1835 1836 static void clear_gsi(KVMState *s, unsigned int gsi) 1837 { 1838 clear_bit(gsi, s->used_gsi_bitmap); 1839 } 1840 1841 void kvm_init_irq_routing(KVMState *s) 1842 { 1843 int gsi_count, i; 1844 1845 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1846 if (gsi_count > 0) { 1847 /* Round up so we can search ints using ffs */ 1848 s->used_gsi_bitmap = bitmap_new(gsi_count); 1849 s->gsi_count = gsi_count; 1850 } 1851 1852 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1853 s->nr_allocated_irq_routes = 0; 1854 1855 if (!kvm_direct_msi_allowed) { 1856 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1857 QTAILQ_INIT(&s->msi_hashtab[i]); 1858 } 1859 } 1860 1861 kvm_arch_init_irq_routing(s); 1862 } 1863 1864 void kvm_irqchip_commit_routes(KVMState *s) 1865 { 1866 int ret; 1867 1868 if (kvm_gsi_direct_mapping()) { 1869 return; 1870 } 1871 1872 if (!kvm_gsi_routing_enabled()) { 1873 return; 1874 } 1875 1876 s->irq_routes->flags = 0; 1877 trace_kvm_irqchip_commit_routes(); 1878 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1879 assert(ret == 0); 1880 } 1881 1882 static void kvm_add_routing_entry(KVMState *s, 1883 struct kvm_irq_routing_entry *entry) 1884 { 1885 struct kvm_irq_routing_entry *new; 1886 int n, size; 1887 1888 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1889 n = s->nr_allocated_irq_routes * 2; 1890 if (n < 64) { 1891 n = 64; 1892 } 1893 size = sizeof(struct kvm_irq_routing); 1894 size += n * sizeof(*new); 1895 s->irq_routes = g_realloc(s->irq_routes, size); 1896 s->nr_allocated_irq_routes = n; 1897 } 1898 n = s->irq_routes->nr++; 1899 new = &s->irq_routes->entries[n]; 1900 1901 *new = *entry; 1902 1903 set_gsi(s, entry->gsi); 1904 } 1905 1906 static int kvm_update_routing_entry(KVMState *s, 1907 struct kvm_irq_routing_entry *new_entry) 1908 { 1909 struct kvm_irq_routing_entry *entry; 1910 int n; 1911 1912 for (n = 0; n < s->irq_routes->nr; n++) { 1913 entry = &s->irq_routes->entries[n]; 1914 if (entry->gsi != new_entry->gsi) { 1915 continue; 1916 } 1917 1918 if(!memcmp(entry, new_entry, sizeof *entry)) { 1919 return 0; 1920 } 1921 1922 *entry = *new_entry; 1923 1924 return 0; 1925 } 1926 1927 return -ESRCH; 1928 } 1929 1930 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1931 { 1932 struct kvm_irq_routing_entry e = {}; 1933 1934 assert(pin < s->gsi_count); 1935 1936 e.gsi = irq; 1937 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1938 e.flags = 0; 1939 e.u.irqchip.irqchip = irqchip; 1940 e.u.irqchip.pin = pin; 1941 kvm_add_routing_entry(s, &e); 1942 } 1943 1944 void kvm_irqchip_release_virq(KVMState *s, int virq) 1945 { 1946 struct kvm_irq_routing_entry *e; 1947 int i; 1948 1949 if (kvm_gsi_direct_mapping()) { 1950 return; 1951 } 1952 1953 for (i = 0; i < s->irq_routes->nr; i++) { 1954 e = &s->irq_routes->entries[i]; 1955 if (e->gsi == virq) { 1956 s->irq_routes->nr--; 1957 *e = s->irq_routes->entries[s->irq_routes->nr]; 1958 } 1959 } 1960 clear_gsi(s, virq); 1961 kvm_arch_release_virq_post(virq); 1962 trace_kvm_irqchip_release_virq(virq); 1963 } 1964 1965 void kvm_irqchip_add_change_notifier(Notifier *n) 1966 { 1967 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1968 } 1969 1970 void kvm_irqchip_remove_change_notifier(Notifier *n) 1971 { 1972 notifier_remove(n); 1973 } 1974 1975 void kvm_irqchip_change_notify(void) 1976 { 1977 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1978 } 1979 1980 static unsigned int kvm_hash_msi(uint32_t data) 1981 { 1982 /* This is optimized for IA32 MSI layout. However, no other arch shall 1983 * repeat the mistake of not providing a direct MSI injection API. */ 1984 return data & 0xff; 1985 } 1986 1987 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1988 { 1989 KVMMSIRoute *route, *next; 1990 unsigned int hash; 1991 1992 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1993 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1994 kvm_irqchip_release_virq(s, route->kroute.gsi); 1995 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1996 g_free(route); 1997 } 1998 } 1999 } 2000 2001 static int kvm_irqchip_get_virq(KVMState *s) 2002 { 2003 int next_virq; 2004 2005 /* 2006 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 2007 * GSI numbers are more than the number of IRQ route. Allocating a GSI 2008 * number can succeed even though a new route entry cannot be added. 2009 * When this happens, flush dynamic MSI entries to free IRQ route entries. 2010 */ 2011 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 2012 kvm_flush_dynamic_msi_routes(s); 2013 } 2014 2015 /* Return the lowest unused GSI in the bitmap */ 2016 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2017 if (next_virq >= s->gsi_count) { 2018 return -ENOSPC; 2019 } else { 2020 return next_virq; 2021 } 2022 } 2023 2024 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 2025 { 2026 unsigned int hash = kvm_hash_msi(msg.data); 2027 KVMMSIRoute *route; 2028 2029 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 2030 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 2031 route->kroute.u.msi.address_hi == (msg.address >> 32) && 2032 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 2033 return route; 2034 } 2035 } 2036 return NULL; 2037 } 2038 2039 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2040 { 2041 struct kvm_msi msi; 2042 KVMMSIRoute *route; 2043 2044 if (kvm_direct_msi_allowed) { 2045 msi.address_lo = (uint32_t)msg.address; 2046 msi.address_hi = msg.address >> 32; 2047 msi.data = le32_to_cpu(msg.data); 2048 msi.flags = 0; 2049 memset(msi.pad, 0, sizeof(msi.pad)); 2050 2051 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2052 } 2053 2054 route = kvm_lookup_msi_route(s, msg); 2055 if (!route) { 2056 int virq; 2057 2058 virq = kvm_irqchip_get_virq(s); 2059 if (virq < 0) { 2060 return virq; 2061 } 2062 2063 route = g_new0(KVMMSIRoute, 1); 2064 route->kroute.gsi = virq; 2065 route->kroute.type = KVM_IRQ_ROUTING_MSI; 2066 route->kroute.flags = 0; 2067 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 2068 route->kroute.u.msi.address_hi = msg.address >> 32; 2069 route->kroute.u.msi.data = le32_to_cpu(msg.data); 2070 2071 kvm_add_routing_entry(s, &route->kroute); 2072 kvm_irqchip_commit_routes(s); 2073 2074 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 2075 entry); 2076 } 2077 2078 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 2079 2080 return kvm_set_irq(s, route->kroute.gsi, 1); 2081 } 2082 2083 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2084 { 2085 struct kvm_irq_routing_entry kroute = {}; 2086 int virq; 2087 KVMState *s = c->s; 2088 MSIMessage msg = {0, 0}; 2089 2090 if (pci_available && dev) { 2091 msg = pci_get_msi_message(dev, vector); 2092 } 2093 2094 if (kvm_gsi_direct_mapping()) { 2095 return kvm_arch_msi_data_to_gsi(msg.data); 2096 } 2097 2098 if (!kvm_gsi_routing_enabled()) { 2099 return -ENOSYS; 2100 } 2101 2102 virq = kvm_irqchip_get_virq(s); 2103 if (virq < 0) { 2104 return virq; 2105 } 2106 2107 kroute.gsi = virq; 2108 kroute.type = KVM_IRQ_ROUTING_MSI; 2109 kroute.flags = 0; 2110 kroute.u.msi.address_lo = (uint32_t)msg.address; 2111 kroute.u.msi.address_hi = msg.address >> 32; 2112 kroute.u.msi.data = le32_to_cpu(msg.data); 2113 if (pci_available && kvm_msi_devid_required()) { 2114 kroute.flags = KVM_MSI_VALID_DEVID; 2115 kroute.u.msi.devid = pci_requester_id(dev); 2116 } 2117 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2118 kvm_irqchip_release_virq(s, virq); 2119 return -EINVAL; 2120 } 2121 2122 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2123 vector, virq); 2124 2125 kvm_add_routing_entry(s, &kroute); 2126 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2127 c->changes++; 2128 2129 return virq; 2130 } 2131 2132 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2133 PCIDevice *dev) 2134 { 2135 struct kvm_irq_routing_entry kroute = {}; 2136 2137 if (kvm_gsi_direct_mapping()) { 2138 return 0; 2139 } 2140 2141 if (!kvm_irqchip_in_kernel()) { 2142 return -ENOSYS; 2143 } 2144 2145 kroute.gsi = virq; 2146 kroute.type = KVM_IRQ_ROUTING_MSI; 2147 kroute.flags = 0; 2148 kroute.u.msi.address_lo = (uint32_t)msg.address; 2149 kroute.u.msi.address_hi = msg.address >> 32; 2150 kroute.u.msi.data = le32_to_cpu(msg.data); 2151 if (pci_available && kvm_msi_devid_required()) { 2152 kroute.flags = KVM_MSI_VALID_DEVID; 2153 kroute.u.msi.devid = pci_requester_id(dev); 2154 } 2155 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2156 return -EINVAL; 2157 } 2158 2159 trace_kvm_irqchip_update_msi_route(virq); 2160 2161 return kvm_update_routing_entry(s, &kroute); 2162 } 2163 2164 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2165 EventNotifier *resample, int virq, 2166 bool assign) 2167 { 2168 int fd = event_notifier_get_fd(event); 2169 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2170 2171 struct kvm_irqfd irqfd = { 2172 .fd = fd, 2173 .gsi = virq, 2174 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2175 }; 2176 2177 if (rfd != -1) { 2178 assert(assign); 2179 if (kvm_irqchip_is_split()) { 2180 /* 2181 * When the slow irqchip (e.g. IOAPIC) is in the 2182 * userspace, KVM kernel resamplefd will not work because 2183 * the EOI of the interrupt will be delivered to userspace 2184 * instead, so the KVM kernel resamplefd kick will be 2185 * skipped. The userspace here mimics what the kernel 2186 * provides with resamplefd, remember the resamplefd and 2187 * kick it when we receive EOI of this IRQ. 2188 * 2189 * This is hackery because IOAPIC is mostly bypassed 2190 * (except EOI broadcasts) when irqfd is used. However 2191 * this can bring much performance back for split irqchip 2192 * with INTx IRQs (for VFIO, this gives 93% perf of the 2193 * full fast path, which is 46% perf boost comparing to 2194 * the INTx slow path). 2195 */ 2196 kvm_resample_fd_insert(virq, resample); 2197 } else { 2198 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2199 irqfd.resamplefd = rfd; 2200 } 2201 } else if (!assign) { 2202 if (kvm_irqchip_is_split()) { 2203 kvm_resample_fd_remove(virq); 2204 } 2205 } 2206 2207 if (!kvm_irqfds_enabled()) { 2208 return -ENOSYS; 2209 } 2210 2211 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2212 } 2213 2214 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2215 { 2216 struct kvm_irq_routing_entry kroute = {}; 2217 int virq; 2218 2219 if (!kvm_gsi_routing_enabled()) { 2220 return -ENOSYS; 2221 } 2222 2223 virq = kvm_irqchip_get_virq(s); 2224 if (virq < 0) { 2225 return virq; 2226 } 2227 2228 kroute.gsi = virq; 2229 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2230 kroute.flags = 0; 2231 kroute.u.adapter.summary_addr = adapter->summary_addr; 2232 kroute.u.adapter.ind_addr = adapter->ind_addr; 2233 kroute.u.adapter.summary_offset = adapter->summary_offset; 2234 kroute.u.adapter.ind_offset = adapter->ind_offset; 2235 kroute.u.adapter.adapter_id = adapter->adapter_id; 2236 2237 kvm_add_routing_entry(s, &kroute); 2238 2239 return virq; 2240 } 2241 2242 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2243 { 2244 struct kvm_irq_routing_entry kroute = {}; 2245 int virq; 2246 2247 if (!kvm_gsi_routing_enabled()) { 2248 return -ENOSYS; 2249 } 2250 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2251 return -ENOSYS; 2252 } 2253 virq = kvm_irqchip_get_virq(s); 2254 if (virq < 0) { 2255 return virq; 2256 } 2257 2258 kroute.gsi = virq; 2259 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2260 kroute.flags = 0; 2261 kroute.u.hv_sint.vcpu = vcpu; 2262 kroute.u.hv_sint.sint = sint; 2263 2264 kvm_add_routing_entry(s, &kroute); 2265 kvm_irqchip_commit_routes(s); 2266 2267 return virq; 2268 } 2269 2270 #else /* !KVM_CAP_IRQ_ROUTING */ 2271 2272 void kvm_init_irq_routing(KVMState *s) 2273 { 2274 } 2275 2276 void kvm_irqchip_release_virq(KVMState *s, int virq) 2277 { 2278 } 2279 2280 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2281 { 2282 abort(); 2283 } 2284 2285 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2286 { 2287 return -ENOSYS; 2288 } 2289 2290 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2291 { 2292 return -ENOSYS; 2293 } 2294 2295 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2296 { 2297 return -ENOSYS; 2298 } 2299 2300 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2301 EventNotifier *resample, int virq, 2302 bool assign) 2303 { 2304 abort(); 2305 } 2306 2307 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2308 { 2309 return -ENOSYS; 2310 } 2311 #endif /* !KVM_CAP_IRQ_ROUTING */ 2312 2313 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2314 EventNotifier *rn, int virq) 2315 { 2316 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2317 } 2318 2319 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2320 int virq) 2321 { 2322 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2323 } 2324 2325 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2326 EventNotifier *rn, qemu_irq irq) 2327 { 2328 gpointer key, gsi; 2329 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2330 2331 if (!found) { 2332 return -ENXIO; 2333 } 2334 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2335 } 2336 2337 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2338 qemu_irq irq) 2339 { 2340 gpointer key, gsi; 2341 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2342 2343 if (!found) { 2344 return -ENXIO; 2345 } 2346 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2347 } 2348 2349 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2350 { 2351 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2352 } 2353 2354 static void kvm_irqchip_create(KVMState *s) 2355 { 2356 int ret; 2357 2358 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2359 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2360 ; 2361 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2362 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2363 if (ret < 0) { 2364 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2365 exit(1); 2366 } 2367 } else { 2368 return; 2369 } 2370 2371 /* First probe and see if there's a arch-specific hook to create the 2372 * in-kernel irqchip for us */ 2373 ret = kvm_arch_irqchip_create(s); 2374 if (ret == 0) { 2375 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2376 error_report("Split IRQ chip mode not supported."); 2377 exit(1); 2378 } else { 2379 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2380 } 2381 } 2382 if (ret < 0) { 2383 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2384 exit(1); 2385 } 2386 2387 kvm_kernel_irqchip = true; 2388 /* If we have an in-kernel IRQ chip then we must have asynchronous 2389 * interrupt delivery (though the reverse is not necessarily true) 2390 */ 2391 kvm_async_interrupts_allowed = true; 2392 kvm_halt_in_kernel_allowed = true; 2393 2394 kvm_init_irq_routing(s); 2395 2396 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2397 } 2398 2399 /* Find number of supported CPUs using the recommended 2400 * procedure from the kernel API documentation to cope with 2401 * older kernels that may be missing capabilities. 2402 */ 2403 static int kvm_recommended_vcpus(KVMState *s) 2404 { 2405 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2406 return (ret) ? ret : 4; 2407 } 2408 2409 static int kvm_max_vcpus(KVMState *s) 2410 { 2411 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2412 return (ret) ? ret : kvm_recommended_vcpus(s); 2413 } 2414 2415 static int kvm_max_vcpu_id(KVMState *s) 2416 { 2417 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2418 return (ret) ? ret : kvm_max_vcpus(s); 2419 } 2420 2421 bool kvm_vcpu_id_is_valid(int vcpu_id) 2422 { 2423 KVMState *s = KVM_STATE(current_accel()); 2424 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2425 } 2426 2427 bool kvm_dirty_ring_enabled(void) 2428 { 2429 return kvm_state->kvm_dirty_ring_size ? true : false; 2430 } 2431 2432 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2433 strList *names, strList *targets, Error **errp); 2434 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2435 2436 uint32_t kvm_dirty_ring_size(void) 2437 { 2438 return kvm_state->kvm_dirty_ring_size; 2439 } 2440 2441 static int kvm_init(MachineState *ms) 2442 { 2443 MachineClass *mc = MACHINE_GET_CLASS(ms); 2444 static const char upgrade_note[] = 2445 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2446 "(see http://sourceforge.net/projects/kvm).\n"; 2447 const struct { 2448 const char *name; 2449 int num; 2450 } num_cpus[] = { 2451 { "SMP", ms->smp.cpus }, 2452 { "hotpluggable", ms->smp.max_cpus }, 2453 { /* end of list */ } 2454 }, *nc = num_cpus; 2455 int soft_vcpus_limit, hard_vcpus_limit; 2456 KVMState *s; 2457 const KVMCapabilityInfo *missing_cap; 2458 int ret; 2459 int type; 2460 uint64_t dirty_log_manual_caps; 2461 2462 qemu_mutex_init(&kml_slots_lock); 2463 2464 s = KVM_STATE(ms->accelerator); 2465 2466 /* 2467 * On systems where the kernel can support different base page 2468 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2469 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2470 * page size for the system though. 2471 */ 2472 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2473 2474 s->sigmask_len = 8; 2475 accel_blocker_init(); 2476 2477 #ifdef KVM_CAP_SET_GUEST_DEBUG 2478 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2479 #endif 2480 QLIST_INIT(&s->kvm_parked_vcpus); 2481 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2482 if (s->fd == -1) { 2483 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2484 ret = -errno; 2485 goto err; 2486 } 2487 2488 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2489 if (ret < KVM_API_VERSION) { 2490 if (ret >= 0) { 2491 ret = -EINVAL; 2492 } 2493 fprintf(stderr, "kvm version too old\n"); 2494 goto err; 2495 } 2496 2497 if (ret > KVM_API_VERSION) { 2498 ret = -EINVAL; 2499 fprintf(stderr, "kvm version not supported\n"); 2500 goto err; 2501 } 2502 2503 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2504 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2505 2506 /* If unspecified, use the default value */ 2507 if (!s->nr_slots) { 2508 s->nr_slots = 32; 2509 } 2510 2511 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2512 if (s->nr_as <= 1) { 2513 s->nr_as = 1; 2514 } 2515 s->as = g_new0(struct KVMAs, s->nr_as); 2516 2517 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2518 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2519 "kvm-type", 2520 &error_abort); 2521 type = mc->kvm_type(ms, kvm_type); 2522 } else if (mc->kvm_type) { 2523 type = mc->kvm_type(ms, NULL); 2524 } else { 2525 type = kvm_arch_get_default_type(ms); 2526 } 2527 2528 if (type < 0) { 2529 ret = -EINVAL; 2530 goto err; 2531 } 2532 2533 do { 2534 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2535 } while (ret == -EINTR); 2536 2537 if (ret < 0) { 2538 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2539 strerror(-ret)); 2540 2541 #ifdef TARGET_S390X 2542 if (ret == -EINVAL) { 2543 fprintf(stderr, 2544 "Host kernel setup problem detected. Please verify:\n"); 2545 fprintf(stderr, "- for kernels supporting the switch_amode or" 2546 " user_mode parameters, whether\n"); 2547 fprintf(stderr, 2548 " user space is running in primary address space\n"); 2549 fprintf(stderr, 2550 "- for kernels supporting the vm.allocate_pgste sysctl, " 2551 "whether it is enabled\n"); 2552 } 2553 #elif defined(TARGET_PPC) 2554 if (ret == -EINVAL) { 2555 fprintf(stderr, 2556 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2557 (type == 2) ? "pr" : "hv"); 2558 } 2559 #endif 2560 goto err; 2561 } 2562 2563 s->vmfd = ret; 2564 2565 /* check the vcpu limits */ 2566 soft_vcpus_limit = kvm_recommended_vcpus(s); 2567 hard_vcpus_limit = kvm_max_vcpus(s); 2568 2569 while (nc->name) { 2570 if (nc->num > soft_vcpus_limit) { 2571 warn_report("Number of %s cpus requested (%d) exceeds " 2572 "the recommended cpus supported by KVM (%d)", 2573 nc->name, nc->num, soft_vcpus_limit); 2574 2575 if (nc->num > hard_vcpus_limit) { 2576 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2577 "the maximum cpus supported by KVM (%d)\n", 2578 nc->name, nc->num, hard_vcpus_limit); 2579 exit(1); 2580 } 2581 } 2582 nc++; 2583 } 2584 2585 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2586 if (!missing_cap) { 2587 missing_cap = 2588 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2589 } 2590 if (missing_cap) { 2591 ret = -EINVAL; 2592 fprintf(stderr, "kvm does not support %s\n%s", 2593 missing_cap->name, upgrade_note); 2594 goto err; 2595 } 2596 2597 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2598 s->coalesced_pio = s->coalesced_mmio && 2599 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2600 2601 /* 2602 * Enable KVM dirty ring if supported, otherwise fall back to 2603 * dirty logging mode 2604 */ 2605 ret = kvm_dirty_ring_init(s); 2606 if (ret < 0) { 2607 goto err; 2608 } 2609 2610 /* 2611 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2612 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2613 * page is wr-protected initially, which is against how kvm dirty ring is 2614 * usage - kvm dirty ring requires all pages are wr-protected at the very 2615 * beginning. Enabling this feature for dirty ring causes data corruption. 2616 * 2617 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2618 * we may expect a higher stall time when starting the migration. In the 2619 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2620 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2621 * guest pages. 2622 */ 2623 if (!s->kvm_dirty_ring_size) { 2624 dirty_log_manual_caps = 2625 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2626 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2627 KVM_DIRTY_LOG_INITIALLY_SET); 2628 s->manual_dirty_log_protect = dirty_log_manual_caps; 2629 if (dirty_log_manual_caps) { 2630 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2631 dirty_log_manual_caps); 2632 if (ret) { 2633 warn_report("Trying to enable capability %"PRIu64" of " 2634 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2635 "Falling back to the legacy mode. ", 2636 dirty_log_manual_caps); 2637 s->manual_dirty_log_protect = 0; 2638 } 2639 } 2640 } 2641 2642 #ifdef KVM_CAP_VCPU_EVENTS 2643 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2644 #endif 2645 2646 s->robust_singlestep = 2647 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2648 2649 #ifdef KVM_CAP_DEBUGREGS 2650 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2651 #endif 2652 2653 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2654 2655 #ifdef KVM_CAP_IRQ_ROUTING 2656 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2657 #endif 2658 2659 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2660 2661 s->irq_set_ioctl = KVM_IRQ_LINE; 2662 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2663 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2664 } 2665 2666 kvm_readonly_mem_allowed = 2667 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2668 2669 kvm_eventfds_allowed = 2670 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2671 2672 kvm_irqfds_allowed = 2673 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2674 2675 kvm_resamplefds_allowed = 2676 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2677 2678 kvm_vm_attributes_allowed = 2679 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2680 2681 kvm_ioeventfd_any_length_allowed = 2682 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2683 2684 #ifdef KVM_CAP_SET_GUEST_DEBUG 2685 kvm_has_guest_debug = 2686 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2687 #endif 2688 2689 kvm_sstep_flags = 0; 2690 if (kvm_has_guest_debug) { 2691 kvm_sstep_flags = SSTEP_ENABLE; 2692 2693 #if defined KVM_CAP_SET_GUEST_DEBUG2 2694 int guest_debug_flags = 2695 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2696 2697 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2698 kvm_sstep_flags |= SSTEP_NOIRQ; 2699 } 2700 #endif 2701 } 2702 2703 kvm_state = s; 2704 2705 ret = kvm_arch_init(ms, s); 2706 if (ret < 0) { 2707 goto err; 2708 } 2709 2710 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2711 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2712 } 2713 2714 qemu_register_reset(kvm_unpoison_all, NULL); 2715 2716 if (s->kernel_irqchip_allowed) { 2717 kvm_irqchip_create(s); 2718 } 2719 2720 if (kvm_eventfds_allowed) { 2721 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2722 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2723 } 2724 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2725 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2726 2727 kvm_memory_listener_register(s, &s->memory_listener, 2728 &address_space_memory, 0, "kvm-memory"); 2729 if (kvm_eventfds_allowed) { 2730 memory_listener_register(&kvm_io_listener, 2731 &address_space_io); 2732 } 2733 memory_listener_register(&kvm_coalesced_pio_listener, 2734 &address_space_io); 2735 2736 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2737 2738 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2739 if (!s->sync_mmu) { 2740 ret = ram_block_discard_disable(true); 2741 assert(!ret); 2742 } 2743 2744 if (s->kvm_dirty_ring_size) { 2745 kvm_dirty_ring_reaper_init(s); 2746 } 2747 2748 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2749 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2750 query_stats_schemas_cb); 2751 } 2752 2753 return 0; 2754 2755 err: 2756 assert(ret < 0); 2757 if (s->vmfd >= 0) { 2758 close(s->vmfd); 2759 } 2760 if (s->fd != -1) { 2761 close(s->fd); 2762 } 2763 g_free(s->as); 2764 g_free(s->memory_listener.slots); 2765 2766 return ret; 2767 } 2768 2769 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2770 { 2771 s->sigmask_len = sigmask_len; 2772 } 2773 2774 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2775 int size, uint32_t count) 2776 { 2777 int i; 2778 uint8_t *ptr = data; 2779 2780 for (i = 0; i < count; i++) { 2781 address_space_rw(&address_space_io, port, attrs, 2782 ptr, size, 2783 direction == KVM_EXIT_IO_OUT); 2784 ptr += size; 2785 } 2786 } 2787 2788 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2789 { 2790 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2791 run->internal.suberror); 2792 2793 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2794 int i; 2795 2796 for (i = 0; i < run->internal.ndata; ++i) { 2797 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2798 i, (uint64_t)run->internal.data[i]); 2799 } 2800 } 2801 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2802 fprintf(stderr, "emulation failure\n"); 2803 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2804 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2805 return EXCP_INTERRUPT; 2806 } 2807 } 2808 /* FIXME: Should trigger a qmp message to let management know 2809 * something went wrong. 2810 */ 2811 return -1; 2812 } 2813 2814 void kvm_flush_coalesced_mmio_buffer(void) 2815 { 2816 KVMState *s = kvm_state; 2817 2818 if (!s || s->coalesced_flush_in_progress) { 2819 return; 2820 } 2821 2822 s->coalesced_flush_in_progress = true; 2823 2824 if (s->coalesced_mmio_ring) { 2825 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2826 while (ring->first != ring->last) { 2827 struct kvm_coalesced_mmio *ent; 2828 2829 ent = &ring->coalesced_mmio[ring->first]; 2830 2831 if (ent->pio == 1) { 2832 address_space_write(&address_space_io, ent->phys_addr, 2833 MEMTXATTRS_UNSPECIFIED, ent->data, 2834 ent->len); 2835 } else { 2836 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2837 } 2838 smp_wmb(); 2839 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2840 } 2841 } 2842 2843 s->coalesced_flush_in_progress = false; 2844 } 2845 2846 bool kvm_cpu_check_are_resettable(void) 2847 { 2848 return kvm_arch_cpu_check_are_resettable(); 2849 } 2850 2851 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2852 { 2853 if (!cpu->vcpu_dirty) { 2854 kvm_arch_get_registers(cpu); 2855 cpu->vcpu_dirty = true; 2856 } 2857 } 2858 2859 void kvm_cpu_synchronize_state(CPUState *cpu) 2860 { 2861 if (!cpu->vcpu_dirty) { 2862 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2863 } 2864 } 2865 2866 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2867 { 2868 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2869 cpu->vcpu_dirty = false; 2870 } 2871 2872 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2873 { 2874 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2875 } 2876 2877 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2878 { 2879 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2880 cpu->vcpu_dirty = false; 2881 } 2882 2883 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2884 { 2885 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2886 } 2887 2888 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2889 { 2890 cpu->vcpu_dirty = true; 2891 } 2892 2893 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2894 { 2895 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2896 } 2897 2898 #ifdef KVM_HAVE_MCE_INJECTION 2899 static __thread void *pending_sigbus_addr; 2900 static __thread int pending_sigbus_code; 2901 static __thread bool have_sigbus_pending; 2902 #endif 2903 2904 static void kvm_cpu_kick(CPUState *cpu) 2905 { 2906 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2907 } 2908 2909 static void kvm_cpu_kick_self(void) 2910 { 2911 if (kvm_immediate_exit) { 2912 kvm_cpu_kick(current_cpu); 2913 } else { 2914 qemu_cpu_kick_self(); 2915 } 2916 } 2917 2918 static void kvm_eat_signals(CPUState *cpu) 2919 { 2920 struct timespec ts = { 0, 0 }; 2921 siginfo_t siginfo; 2922 sigset_t waitset; 2923 sigset_t chkset; 2924 int r; 2925 2926 if (kvm_immediate_exit) { 2927 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2928 /* Write kvm_run->immediate_exit before the cpu->exit_request 2929 * write in kvm_cpu_exec. 2930 */ 2931 smp_wmb(); 2932 return; 2933 } 2934 2935 sigemptyset(&waitset); 2936 sigaddset(&waitset, SIG_IPI); 2937 2938 do { 2939 r = sigtimedwait(&waitset, &siginfo, &ts); 2940 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2941 perror("sigtimedwait"); 2942 exit(1); 2943 } 2944 2945 r = sigpending(&chkset); 2946 if (r == -1) { 2947 perror("sigpending"); 2948 exit(1); 2949 } 2950 } while (sigismember(&chkset, SIG_IPI)); 2951 } 2952 2953 int kvm_cpu_exec(CPUState *cpu) 2954 { 2955 struct kvm_run *run = cpu->kvm_run; 2956 int ret, run_ret; 2957 2958 DPRINTF("kvm_cpu_exec()\n"); 2959 2960 if (kvm_arch_process_async_events(cpu)) { 2961 qatomic_set(&cpu->exit_request, 0); 2962 return EXCP_HLT; 2963 } 2964 2965 qemu_mutex_unlock_iothread(); 2966 cpu_exec_start(cpu); 2967 2968 do { 2969 MemTxAttrs attrs; 2970 2971 if (cpu->vcpu_dirty) { 2972 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2973 cpu->vcpu_dirty = false; 2974 } 2975 2976 kvm_arch_pre_run(cpu, run); 2977 if (qatomic_read(&cpu->exit_request)) { 2978 DPRINTF("interrupt exit requested\n"); 2979 /* 2980 * KVM requires us to reenter the kernel after IO exits to complete 2981 * instruction emulation. This self-signal will ensure that we 2982 * leave ASAP again. 2983 */ 2984 kvm_cpu_kick_self(); 2985 } 2986 2987 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2988 * Matching barrier in kvm_eat_signals. 2989 */ 2990 smp_rmb(); 2991 2992 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2993 2994 attrs = kvm_arch_post_run(cpu, run); 2995 2996 #ifdef KVM_HAVE_MCE_INJECTION 2997 if (unlikely(have_sigbus_pending)) { 2998 qemu_mutex_lock_iothread(); 2999 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3000 pending_sigbus_addr); 3001 have_sigbus_pending = false; 3002 qemu_mutex_unlock_iothread(); 3003 } 3004 #endif 3005 3006 if (run_ret < 0) { 3007 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3008 DPRINTF("io window exit\n"); 3009 kvm_eat_signals(cpu); 3010 ret = EXCP_INTERRUPT; 3011 break; 3012 } 3013 fprintf(stderr, "error: kvm run failed %s\n", 3014 strerror(-run_ret)); 3015 #ifdef TARGET_PPC 3016 if (run_ret == -EBUSY) { 3017 fprintf(stderr, 3018 "This is probably because your SMT is enabled.\n" 3019 "VCPU can only run on primary threads with all " 3020 "secondary threads offline.\n"); 3021 } 3022 #endif 3023 ret = -1; 3024 break; 3025 } 3026 3027 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3028 switch (run->exit_reason) { 3029 case KVM_EXIT_IO: 3030 DPRINTF("handle_io\n"); 3031 /* Called outside BQL */ 3032 kvm_handle_io(run->io.port, attrs, 3033 (uint8_t *)run + run->io.data_offset, 3034 run->io.direction, 3035 run->io.size, 3036 run->io.count); 3037 ret = 0; 3038 break; 3039 case KVM_EXIT_MMIO: 3040 DPRINTF("handle_mmio\n"); 3041 /* Called outside BQL */ 3042 address_space_rw(&address_space_memory, 3043 run->mmio.phys_addr, attrs, 3044 run->mmio.data, 3045 run->mmio.len, 3046 run->mmio.is_write); 3047 ret = 0; 3048 break; 3049 case KVM_EXIT_IRQ_WINDOW_OPEN: 3050 DPRINTF("irq_window_open\n"); 3051 ret = EXCP_INTERRUPT; 3052 break; 3053 case KVM_EXIT_SHUTDOWN: 3054 DPRINTF("shutdown\n"); 3055 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3056 ret = EXCP_INTERRUPT; 3057 break; 3058 case KVM_EXIT_UNKNOWN: 3059 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3060 (uint64_t)run->hw.hardware_exit_reason); 3061 ret = -1; 3062 break; 3063 case KVM_EXIT_INTERNAL_ERROR: 3064 ret = kvm_handle_internal_error(cpu, run); 3065 break; 3066 case KVM_EXIT_DIRTY_RING_FULL: 3067 /* 3068 * We shouldn't continue if the dirty ring of this vcpu is 3069 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3070 */ 3071 trace_kvm_dirty_ring_full(cpu->cpu_index); 3072 qemu_mutex_lock_iothread(); 3073 /* 3074 * We throttle vCPU by making it sleep once it exit from kernel 3075 * due to dirty ring full. In the dirtylimit scenario, reaping 3076 * all vCPUs after a single vCPU dirty ring get full result in 3077 * the miss of sleep, so just reap the ring-fulled vCPU. 3078 */ 3079 if (dirtylimit_in_service()) { 3080 kvm_dirty_ring_reap(kvm_state, cpu); 3081 } else { 3082 kvm_dirty_ring_reap(kvm_state, NULL); 3083 } 3084 qemu_mutex_unlock_iothread(); 3085 dirtylimit_vcpu_execute(cpu); 3086 ret = 0; 3087 break; 3088 case KVM_EXIT_SYSTEM_EVENT: 3089 switch (run->system_event.type) { 3090 case KVM_SYSTEM_EVENT_SHUTDOWN: 3091 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3092 ret = EXCP_INTERRUPT; 3093 break; 3094 case KVM_SYSTEM_EVENT_RESET: 3095 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3096 ret = EXCP_INTERRUPT; 3097 break; 3098 case KVM_SYSTEM_EVENT_CRASH: 3099 kvm_cpu_synchronize_state(cpu); 3100 qemu_mutex_lock_iothread(); 3101 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3102 qemu_mutex_unlock_iothread(); 3103 ret = 0; 3104 break; 3105 default: 3106 DPRINTF("kvm_arch_handle_exit\n"); 3107 ret = kvm_arch_handle_exit(cpu, run); 3108 break; 3109 } 3110 break; 3111 default: 3112 DPRINTF("kvm_arch_handle_exit\n"); 3113 ret = kvm_arch_handle_exit(cpu, run); 3114 break; 3115 } 3116 } while (ret == 0); 3117 3118 cpu_exec_end(cpu); 3119 qemu_mutex_lock_iothread(); 3120 3121 if (ret < 0) { 3122 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3123 vm_stop(RUN_STATE_INTERNAL_ERROR); 3124 } 3125 3126 qatomic_set(&cpu->exit_request, 0); 3127 return ret; 3128 } 3129 3130 int kvm_ioctl(KVMState *s, int type, ...) 3131 { 3132 int ret; 3133 void *arg; 3134 va_list ap; 3135 3136 va_start(ap, type); 3137 arg = va_arg(ap, void *); 3138 va_end(ap); 3139 3140 trace_kvm_ioctl(type, arg); 3141 ret = ioctl(s->fd, type, arg); 3142 if (ret == -1) { 3143 ret = -errno; 3144 } 3145 return ret; 3146 } 3147 3148 int kvm_vm_ioctl(KVMState *s, int type, ...) 3149 { 3150 int ret; 3151 void *arg; 3152 va_list ap; 3153 3154 va_start(ap, type); 3155 arg = va_arg(ap, void *); 3156 va_end(ap); 3157 3158 trace_kvm_vm_ioctl(type, arg); 3159 accel_ioctl_begin(); 3160 ret = ioctl(s->vmfd, type, arg); 3161 accel_ioctl_end(); 3162 if (ret == -1) { 3163 ret = -errno; 3164 } 3165 return ret; 3166 } 3167 3168 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3169 { 3170 int ret; 3171 void *arg; 3172 va_list ap; 3173 3174 va_start(ap, type); 3175 arg = va_arg(ap, void *); 3176 va_end(ap); 3177 3178 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3179 accel_cpu_ioctl_begin(cpu); 3180 ret = ioctl(cpu->kvm_fd, type, arg); 3181 accel_cpu_ioctl_end(cpu); 3182 if (ret == -1) { 3183 ret = -errno; 3184 } 3185 return ret; 3186 } 3187 3188 int kvm_device_ioctl(int fd, int type, ...) 3189 { 3190 int ret; 3191 void *arg; 3192 va_list ap; 3193 3194 va_start(ap, type); 3195 arg = va_arg(ap, void *); 3196 va_end(ap); 3197 3198 trace_kvm_device_ioctl(fd, type, arg); 3199 accel_ioctl_begin(); 3200 ret = ioctl(fd, type, arg); 3201 accel_ioctl_end(); 3202 if (ret == -1) { 3203 ret = -errno; 3204 } 3205 return ret; 3206 } 3207 3208 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3209 { 3210 int ret; 3211 struct kvm_device_attr attribute = { 3212 .group = group, 3213 .attr = attr, 3214 }; 3215 3216 if (!kvm_vm_attributes_allowed) { 3217 return 0; 3218 } 3219 3220 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3221 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3222 return ret ? 0 : 1; 3223 } 3224 3225 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3226 { 3227 struct kvm_device_attr attribute = { 3228 .group = group, 3229 .attr = attr, 3230 .flags = 0, 3231 }; 3232 3233 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3234 } 3235 3236 int kvm_device_access(int fd, int group, uint64_t attr, 3237 void *val, bool write, Error **errp) 3238 { 3239 struct kvm_device_attr kvmattr; 3240 int err; 3241 3242 kvmattr.flags = 0; 3243 kvmattr.group = group; 3244 kvmattr.attr = attr; 3245 kvmattr.addr = (uintptr_t)val; 3246 3247 err = kvm_device_ioctl(fd, 3248 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3249 &kvmattr); 3250 if (err < 0) { 3251 error_setg_errno(errp, -err, 3252 "KVM_%s_DEVICE_ATTR failed: Group %d " 3253 "attr 0x%016" PRIx64, 3254 write ? "SET" : "GET", group, attr); 3255 } 3256 return err; 3257 } 3258 3259 bool kvm_has_sync_mmu(void) 3260 { 3261 return kvm_state->sync_mmu; 3262 } 3263 3264 int kvm_has_vcpu_events(void) 3265 { 3266 return kvm_state->vcpu_events; 3267 } 3268 3269 int kvm_has_robust_singlestep(void) 3270 { 3271 return kvm_state->robust_singlestep; 3272 } 3273 3274 int kvm_has_debugregs(void) 3275 { 3276 return kvm_state->debugregs; 3277 } 3278 3279 int kvm_max_nested_state_length(void) 3280 { 3281 return kvm_state->max_nested_state_len; 3282 } 3283 3284 int kvm_has_many_ioeventfds(void) 3285 { 3286 if (!kvm_enabled()) { 3287 return 0; 3288 } 3289 return kvm_state->many_ioeventfds; 3290 } 3291 3292 int kvm_has_gsi_routing(void) 3293 { 3294 #ifdef KVM_CAP_IRQ_ROUTING 3295 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3296 #else 3297 return false; 3298 #endif 3299 } 3300 3301 int kvm_has_intx_set_mask(void) 3302 { 3303 return kvm_state->intx_set_mask; 3304 } 3305 3306 bool kvm_arm_supports_user_irq(void) 3307 { 3308 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3309 } 3310 3311 #ifdef KVM_CAP_SET_GUEST_DEBUG 3312 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3313 target_ulong pc) 3314 { 3315 struct kvm_sw_breakpoint *bp; 3316 3317 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3318 if (bp->pc == pc) { 3319 return bp; 3320 } 3321 } 3322 return NULL; 3323 } 3324 3325 int kvm_sw_breakpoints_active(CPUState *cpu) 3326 { 3327 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3328 } 3329 3330 struct kvm_set_guest_debug_data { 3331 struct kvm_guest_debug dbg; 3332 int err; 3333 }; 3334 3335 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3336 { 3337 struct kvm_set_guest_debug_data *dbg_data = 3338 (struct kvm_set_guest_debug_data *) data.host_ptr; 3339 3340 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3341 &dbg_data->dbg); 3342 } 3343 3344 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3345 { 3346 struct kvm_set_guest_debug_data data; 3347 3348 data.dbg.control = reinject_trap; 3349 3350 if (cpu->singlestep_enabled) { 3351 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3352 3353 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3354 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3355 } 3356 } 3357 kvm_arch_update_guest_debug(cpu, &data.dbg); 3358 3359 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3360 RUN_ON_CPU_HOST_PTR(&data)); 3361 return data.err; 3362 } 3363 3364 bool kvm_supports_guest_debug(void) 3365 { 3366 /* probed during kvm_init() */ 3367 return kvm_has_guest_debug; 3368 } 3369 3370 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3371 { 3372 struct kvm_sw_breakpoint *bp; 3373 int err; 3374 3375 if (type == GDB_BREAKPOINT_SW) { 3376 bp = kvm_find_sw_breakpoint(cpu, addr); 3377 if (bp) { 3378 bp->use_count++; 3379 return 0; 3380 } 3381 3382 bp = g_new(struct kvm_sw_breakpoint, 1); 3383 bp->pc = addr; 3384 bp->use_count = 1; 3385 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3386 if (err) { 3387 g_free(bp); 3388 return err; 3389 } 3390 3391 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3392 } else { 3393 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3394 if (err) { 3395 return err; 3396 } 3397 } 3398 3399 CPU_FOREACH(cpu) { 3400 err = kvm_update_guest_debug(cpu, 0); 3401 if (err) { 3402 return err; 3403 } 3404 } 3405 return 0; 3406 } 3407 3408 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3409 { 3410 struct kvm_sw_breakpoint *bp; 3411 int err; 3412 3413 if (type == GDB_BREAKPOINT_SW) { 3414 bp = kvm_find_sw_breakpoint(cpu, addr); 3415 if (!bp) { 3416 return -ENOENT; 3417 } 3418 3419 if (bp->use_count > 1) { 3420 bp->use_count--; 3421 return 0; 3422 } 3423 3424 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3425 if (err) { 3426 return err; 3427 } 3428 3429 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3430 g_free(bp); 3431 } else { 3432 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3433 if (err) { 3434 return err; 3435 } 3436 } 3437 3438 CPU_FOREACH(cpu) { 3439 err = kvm_update_guest_debug(cpu, 0); 3440 if (err) { 3441 return err; 3442 } 3443 } 3444 return 0; 3445 } 3446 3447 void kvm_remove_all_breakpoints(CPUState *cpu) 3448 { 3449 struct kvm_sw_breakpoint *bp, *next; 3450 KVMState *s = cpu->kvm_state; 3451 CPUState *tmpcpu; 3452 3453 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3454 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3455 /* Try harder to find a CPU that currently sees the breakpoint. */ 3456 CPU_FOREACH(tmpcpu) { 3457 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3458 break; 3459 } 3460 } 3461 } 3462 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3463 g_free(bp); 3464 } 3465 kvm_arch_remove_all_hw_breakpoints(); 3466 3467 CPU_FOREACH(cpu) { 3468 kvm_update_guest_debug(cpu, 0); 3469 } 3470 } 3471 3472 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3473 3474 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3475 { 3476 KVMState *s = kvm_state; 3477 struct kvm_signal_mask *sigmask; 3478 int r; 3479 3480 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3481 3482 sigmask->len = s->sigmask_len; 3483 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3484 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3485 g_free(sigmask); 3486 3487 return r; 3488 } 3489 3490 static void kvm_ipi_signal(int sig) 3491 { 3492 if (current_cpu) { 3493 assert(kvm_immediate_exit); 3494 kvm_cpu_kick(current_cpu); 3495 } 3496 } 3497 3498 void kvm_init_cpu_signals(CPUState *cpu) 3499 { 3500 int r; 3501 sigset_t set; 3502 struct sigaction sigact; 3503 3504 memset(&sigact, 0, sizeof(sigact)); 3505 sigact.sa_handler = kvm_ipi_signal; 3506 sigaction(SIG_IPI, &sigact, NULL); 3507 3508 pthread_sigmask(SIG_BLOCK, NULL, &set); 3509 #if defined KVM_HAVE_MCE_INJECTION 3510 sigdelset(&set, SIGBUS); 3511 pthread_sigmask(SIG_SETMASK, &set, NULL); 3512 #endif 3513 sigdelset(&set, SIG_IPI); 3514 if (kvm_immediate_exit) { 3515 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3516 } else { 3517 r = kvm_set_signal_mask(cpu, &set); 3518 } 3519 if (r) { 3520 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3521 exit(1); 3522 } 3523 } 3524 3525 /* Called asynchronously in VCPU thread. */ 3526 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3527 { 3528 #ifdef KVM_HAVE_MCE_INJECTION 3529 if (have_sigbus_pending) { 3530 return 1; 3531 } 3532 have_sigbus_pending = true; 3533 pending_sigbus_addr = addr; 3534 pending_sigbus_code = code; 3535 qatomic_set(&cpu->exit_request, 1); 3536 return 0; 3537 #else 3538 return 1; 3539 #endif 3540 } 3541 3542 /* Called synchronously (via signalfd) in main thread. */ 3543 int kvm_on_sigbus(int code, void *addr) 3544 { 3545 #ifdef KVM_HAVE_MCE_INJECTION 3546 /* Action required MCE kills the process if SIGBUS is blocked. Because 3547 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3548 * we can only get action optional here. 3549 */ 3550 assert(code != BUS_MCEERR_AR); 3551 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3552 return 0; 3553 #else 3554 return 1; 3555 #endif 3556 } 3557 3558 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3559 { 3560 int ret; 3561 struct kvm_create_device create_dev; 3562 3563 create_dev.type = type; 3564 create_dev.fd = -1; 3565 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3566 3567 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3568 return -ENOTSUP; 3569 } 3570 3571 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3572 if (ret) { 3573 return ret; 3574 } 3575 3576 return test ? 0 : create_dev.fd; 3577 } 3578 3579 bool kvm_device_supported(int vmfd, uint64_t type) 3580 { 3581 struct kvm_create_device create_dev = { 3582 .type = type, 3583 .fd = -1, 3584 .flags = KVM_CREATE_DEVICE_TEST, 3585 }; 3586 3587 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3588 return false; 3589 } 3590 3591 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3592 } 3593 3594 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3595 { 3596 struct kvm_one_reg reg; 3597 int r; 3598 3599 reg.id = id; 3600 reg.addr = (uintptr_t) source; 3601 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3602 if (r) { 3603 trace_kvm_failed_reg_set(id, strerror(-r)); 3604 } 3605 return r; 3606 } 3607 3608 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3609 { 3610 struct kvm_one_reg reg; 3611 int r; 3612 3613 reg.id = id; 3614 reg.addr = (uintptr_t) target; 3615 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3616 if (r) { 3617 trace_kvm_failed_reg_get(id, strerror(-r)); 3618 } 3619 return r; 3620 } 3621 3622 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3623 hwaddr start_addr, hwaddr size) 3624 { 3625 KVMState *kvm = KVM_STATE(ms->accelerator); 3626 int i; 3627 3628 for (i = 0; i < kvm->nr_as; ++i) { 3629 if (kvm->as[i].as == as && kvm->as[i].ml) { 3630 size = MIN(kvm_max_slot_size, size); 3631 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3632 start_addr, size); 3633 } 3634 } 3635 3636 return false; 3637 } 3638 3639 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3640 const char *name, void *opaque, 3641 Error **errp) 3642 { 3643 KVMState *s = KVM_STATE(obj); 3644 int64_t value = s->kvm_shadow_mem; 3645 3646 visit_type_int(v, name, &value, errp); 3647 } 3648 3649 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3650 const char *name, void *opaque, 3651 Error **errp) 3652 { 3653 KVMState *s = KVM_STATE(obj); 3654 int64_t value; 3655 3656 if (s->fd != -1) { 3657 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3658 return; 3659 } 3660 3661 if (!visit_type_int(v, name, &value, errp)) { 3662 return; 3663 } 3664 3665 s->kvm_shadow_mem = value; 3666 } 3667 3668 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3669 const char *name, void *opaque, 3670 Error **errp) 3671 { 3672 KVMState *s = KVM_STATE(obj); 3673 OnOffSplit mode; 3674 3675 if (s->fd != -1) { 3676 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3677 return; 3678 } 3679 3680 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3681 return; 3682 } 3683 switch (mode) { 3684 case ON_OFF_SPLIT_ON: 3685 s->kernel_irqchip_allowed = true; 3686 s->kernel_irqchip_required = true; 3687 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3688 break; 3689 case ON_OFF_SPLIT_OFF: 3690 s->kernel_irqchip_allowed = false; 3691 s->kernel_irqchip_required = false; 3692 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3693 break; 3694 case ON_OFF_SPLIT_SPLIT: 3695 s->kernel_irqchip_allowed = true; 3696 s->kernel_irqchip_required = true; 3697 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3698 break; 3699 default: 3700 /* The value was checked in visit_type_OnOffSplit() above. If 3701 * we get here, then something is wrong in QEMU. 3702 */ 3703 abort(); 3704 } 3705 } 3706 3707 bool kvm_kernel_irqchip_allowed(void) 3708 { 3709 return kvm_state->kernel_irqchip_allowed; 3710 } 3711 3712 bool kvm_kernel_irqchip_required(void) 3713 { 3714 return kvm_state->kernel_irqchip_required; 3715 } 3716 3717 bool kvm_kernel_irqchip_split(void) 3718 { 3719 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3720 } 3721 3722 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3723 const char *name, void *opaque, 3724 Error **errp) 3725 { 3726 KVMState *s = KVM_STATE(obj); 3727 uint32_t value = s->kvm_dirty_ring_size; 3728 3729 visit_type_uint32(v, name, &value, errp); 3730 } 3731 3732 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3733 const char *name, void *opaque, 3734 Error **errp) 3735 { 3736 KVMState *s = KVM_STATE(obj); 3737 uint32_t value; 3738 3739 if (s->fd != -1) { 3740 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3741 return; 3742 } 3743 3744 if (!visit_type_uint32(v, name, &value, errp)) { 3745 return; 3746 } 3747 if (value & (value - 1)) { 3748 error_setg(errp, "dirty-ring-size must be a power of two."); 3749 return; 3750 } 3751 3752 s->kvm_dirty_ring_size = value; 3753 } 3754 3755 static void kvm_accel_instance_init(Object *obj) 3756 { 3757 KVMState *s = KVM_STATE(obj); 3758 3759 s->fd = -1; 3760 s->vmfd = -1; 3761 s->kvm_shadow_mem = -1; 3762 s->kernel_irqchip_allowed = true; 3763 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3764 /* KVM dirty ring is by default off */ 3765 s->kvm_dirty_ring_size = 0; 3766 s->kvm_dirty_ring_with_bitmap = false; 3767 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3768 s->notify_window = 0; 3769 s->xen_version = 0; 3770 s->xen_gnttab_max_frames = 64; 3771 s->xen_evtchn_max_pirq = 256; 3772 } 3773 3774 /** 3775 * kvm_gdbstub_sstep_flags(): 3776 * 3777 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3778 * support is probed during kvm_init() 3779 */ 3780 static int kvm_gdbstub_sstep_flags(void) 3781 { 3782 return kvm_sstep_flags; 3783 } 3784 3785 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3786 { 3787 AccelClass *ac = ACCEL_CLASS(oc); 3788 ac->name = "KVM"; 3789 ac->init_machine = kvm_init; 3790 ac->has_memory = kvm_accel_has_memory; 3791 ac->allowed = &kvm_allowed; 3792 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3793 3794 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3795 NULL, kvm_set_kernel_irqchip, 3796 NULL, NULL); 3797 object_class_property_set_description(oc, "kernel-irqchip", 3798 "Configure KVM in-kernel irqchip"); 3799 3800 object_class_property_add(oc, "kvm-shadow-mem", "int", 3801 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3802 NULL, NULL); 3803 object_class_property_set_description(oc, "kvm-shadow-mem", 3804 "KVM shadow MMU size"); 3805 3806 object_class_property_add(oc, "dirty-ring-size", "uint32", 3807 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3808 NULL, NULL); 3809 object_class_property_set_description(oc, "dirty-ring-size", 3810 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3811 3812 kvm_arch_accel_class_init(oc); 3813 } 3814 3815 static const TypeInfo kvm_accel_type = { 3816 .name = TYPE_KVM_ACCEL, 3817 .parent = TYPE_ACCEL, 3818 .instance_init = kvm_accel_instance_init, 3819 .class_init = kvm_accel_class_init, 3820 .instance_size = sizeof(KVMState), 3821 }; 3822 3823 static void kvm_type_init(void) 3824 { 3825 type_register_static(&kvm_accel_type); 3826 } 3827 3828 type_init(kvm_type_init); 3829 3830 typedef struct StatsArgs { 3831 union StatsResultsType { 3832 StatsResultList **stats; 3833 StatsSchemaList **schema; 3834 } result; 3835 strList *names; 3836 Error **errp; 3837 } StatsArgs; 3838 3839 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3840 uint64_t *stats_data, 3841 StatsList *stats_list, 3842 Error **errp) 3843 { 3844 3845 Stats *stats; 3846 uint64List *val_list = NULL; 3847 3848 /* Only add stats that we understand. */ 3849 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3850 case KVM_STATS_TYPE_CUMULATIVE: 3851 case KVM_STATS_TYPE_INSTANT: 3852 case KVM_STATS_TYPE_PEAK: 3853 case KVM_STATS_TYPE_LINEAR_HIST: 3854 case KVM_STATS_TYPE_LOG_HIST: 3855 break; 3856 default: 3857 return stats_list; 3858 } 3859 3860 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3861 case KVM_STATS_UNIT_NONE: 3862 case KVM_STATS_UNIT_BYTES: 3863 case KVM_STATS_UNIT_CYCLES: 3864 case KVM_STATS_UNIT_SECONDS: 3865 case KVM_STATS_UNIT_BOOLEAN: 3866 break; 3867 default: 3868 return stats_list; 3869 } 3870 3871 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3872 case KVM_STATS_BASE_POW10: 3873 case KVM_STATS_BASE_POW2: 3874 break; 3875 default: 3876 return stats_list; 3877 } 3878 3879 /* Alloc and populate data list */ 3880 stats = g_new0(Stats, 1); 3881 stats->name = g_strdup(pdesc->name); 3882 stats->value = g_new0(StatsValue, 1);; 3883 3884 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3885 stats->value->u.boolean = *stats_data; 3886 stats->value->type = QTYPE_QBOOL; 3887 } else if (pdesc->size == 1) { 3888 stats->value->u.scalar = *stats_data; 3889 stats->value->type = QTYPE_QNUM; 3890 } else { 3891 int i; 3892 for (i = 0; i < pdesc->size; i++) { 3893 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3894 } 3895 stats->value->u.list = val_list; 3896 stats->value->type = QTYPE_QLIST; 3897 } 3898 3899 QAPI_LIST_PREPEND(stats_list, stats); 3900 return stats_list; 3901 } 3902 3903 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3904 StatsSchemaValueList *list, 3905 Error **errp) 3906 { 3907 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3908 schema_entry->value = g_new0(StatsSchemaValue, 1); 3909 3910 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3911 case KVM_STATS_TYPE_CUMULATIVE: 3912 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3913 break; 3914 case KVM_STATS_TYPE_INSTANT: 3915 schema_entry->value->type = STATS_TYPE_INSTANT; 3916 break; 3917 case KVM_STATS_TYPE_PEAK: 3918 schema_entry->value->type = STATS_TYPE_PEAK; 3919 break; 3920 case KVM_STATS_TYPE_LINEAR_HIST: 3921 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3922 schema_entry->value->bucket_size = pdesc->bucket_size; 3923 schema_entry->value->has_bucket_size = true; 3924 break; 3925 case KVM_STATS_TYPE_LOG_HIST: 3926 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3927 break; 3928 default: 3929 goto exit; 3930 } 3931 3932 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3933 case KVM_STATS_UNIT_NONE: 3934 break; 3935 case KVM_STATS_UNIT_BOOLEAN: 3936 schema_entry->value->has_unit = true; 3937 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3938 break; 3939 case KVM_STATS_UNIT_BYTES: 3940 schema_entry->value->has_unit = true; 3941 schema_entry->value->unit = STATS_UNIT_BYTES; 3942 break; 3943 case KVM_STATS_UNIT_CYCLES: 3944 schema_entry->value->has_unit = true; 3945 schema_entry->value->unit = STATS_UNIT_CYCLES; 3946 break; 3947 case KVM_STATS_UNIT_SECONDS: 3948 schema_entry->value->has_unit = true; 3949 schema_entry->value->unit = STATS_UNIT_SECONDS; 3950 break; 3951 default: 3952 goto exit; 3953 } 3954 3955 schema_entry->value->exponent = pdesc->exponent; 3956 if (pdesc->exponent) { 3957 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3958 case KVM_STATS_BASE_POW10: 3959 schema_entry->value->has_base = true; 3960 schema_entry->value->base = 10; 3961 break; 3962 case KVM_STATS_BASE_POW2: 3963 schema_entry->value->has_base = true; 3964 schema_entry->value->base = 2; 3965 break; 3966 default: 3967 goto exit; 3968 } 3969 } 3970 3971 schema_entry->value->name = g_strdup(pdesc->name); 3972 schema_entry->next = list; 3973 return schema_entry; 3974 exit: 3975 g_free(schema_entry->value); 3976 g_free(schema_entry); 3977 return list; 3978 } 3979 3980 /* Cached stats descriptors */ 3981 typedef struct StatsDescriptors { 3982 const char *ident; /* cache key, currently the StatsTarget */ 3983 struct kvm_stats_desc *kvm_stats_desc; 3984 struct kvm_stats_header kvm_stats_header; 3985 QTAILQ_ENTRY(StatsDescriptors) next; 3986 } StatsDescriptors; 3987 3988 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3989 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3990 3991 /* 3992 * Return the descriptors for 'target', that either have already been read 3993 * or are retrieved from 'stats_fd'. 3994 */ 3995 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3996 Error **errp) 3997 { 3998 StatsDescriptors *descriptors; 3999 const char *ident; 4000 struct kvm_stats_desc *kvm_stats_desc; 4001 struct kvm_stats_header *kvm_stats_header; 4002 size_t size_desc; 4003 ssize_t ret; 4004 4005 ident = StatsTarget_str(target); 4006 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4007 if (g_str_equal(descriptors->ident, ident)) { 4008 return descriptors; 4009 } 4010 } 4011 4012 descriptors = g_new0(StatsDescriptors, 1); 4013 4014 /* Read stats header */ 4015 kvm_stats_header = &descriptors->kvm_stats_header; 4016 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4017 if (ret != sizeof(*kvm_stats_header)) { 4018 error_setg(errp, "KVM stats: failed to read stats header: " 4019 "expected %zu actual %zu", 4020 sizeof(*kvm_stats_header), ret); 4021 g_free(descriptors); 4022 return NULL; 4023 } 4024 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4025 4026 /* Read stats descriptors */ 4027 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4028 ret = pread(stats_fd, kvm_stats_desc, 4029 size_desc * kvm_stats_header->num_desc, 4030 kvm_stats_header->desc_offset); 4031 4032 if (ret != size_desc * kvm_stats_header->num_desc) { 4033 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4034 "expected %zu actual %zu", 4035 size_desc * kvm_stats_header->num_desc, ret); 4036 g_free(descriptors); 4037 g_free(kvm_stats_desc); 4038 return NULL; 4039 } 4040 descriptors->kvm_stats_desc = kvm_stats_desc; 4041 descriptors->ident = ident; 4042 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4043 return descriptors; 4044 } 4045 4046 static void query_stats(StatsResultList **result, StatsTarget target, 4047 strList *names, int stats_fd, CPUState *cpu, 4048 Error **errp) 4049 { 4050 struct kvm_stats_desc *kvm_stats_desc; 4051 struct kvm_stats_header *kvm_stats_header; 4052 StatsDescriptors *descriptors; 4053 g_autofree uint64_t *stats_data = NULL; 4054 struct kvm_stats_desc *pdesc; 4055 StatsList *stats_list = NULL; 4056 size_t size_desc, size_data = 0; 4057 ssize_t ret; 4058 int i; 4059 4060 descriptors = find_stats_descriptors(target, stats_fd, errp); 4061 if (!descriptors) { 4062 return; 4063 } 4064 4065 kvm_stats_header = &descriptors->kvm_stats_header; 4066 kvm_stats_desc = descriptors->kvm_stats_desc; 4067 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4068 4069 /* Tally the total data size; read schema data */ 4070 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4071 pdesc = (void *)kvm_stats_desc + i * size_desc; 4072 size_data += pdesc->size * sizeof(*stats_data); 4073 } 4074 4075 stats_data = g_malloc0(size_data); 4076 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4077 4078 if (ret != size_data) { 4079 error_setg(errp, "KVM stats: failed to read data: " 4080 "expected %zu actual %zu", size_data, ret); 4081 return; 4082 } 4083 4084 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4085 uint64_t *stats; 4086 pdesc = (void *)kvm_stats_desc + i * size_desc; 4087 4088 /* Add entry to the list */ 4089 stats = (void *)stats_data + pdesc->offset; 4090 if (!apply_str_list_filter(pdesc->name, names)) { 4091 continue; 4092 } 4093 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4094 } 4095 4096 if (!stats_list) { 4097 return; 4098 } 4099 4100 switch (target) { 4101 case STATS_TARGET_VM: 4102 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4103 break; 4104 case STATS_TARGET_VCPU: 4105 add_stats_entry(result, STATS_PROVIDER_KVM, 4106 cpu->parent_obj.canonical_path, 4107 stats_list); 4108 break; 4109 default: 4110 g_assert_not_reached(); 4111 } 4112 } 4113 4114 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4115 int stats_fd, Error **errp) 4116 { 4117 struct kvm_stats_desc *kvm_stats_desc; 4118 struct kvm_stats_header *kvm_stats_header; 4119 StatsDescriptors *descriptors; 4120 struct kvm_stats_desc *pdesc; 4121 StatsSchemaValueList *stats_list = NULL; 4122 size_t size_desc; 4123 int i; 4124 4125 descriptors = find_stats_descriptors(target, stats_fd, errp); 4126 if (!descriptors) { 4127 return; 4128 } 4129 4130 kvm_stats_header = &descriptors->kvm_stats_header; 4131 kvm_stats_desc = descriptors->kvm_stats_desc; 4132 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4133 4134 /* Tally the total data size; read schema data */ 4135 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4136 pdesc = (void *)kvm_stats_desc + i * size_desc; 4137 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4138 } 4139 4140 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4141 } 4142 4143 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4144 { 4145 int stats_fd = cpu->kvm_vcpu_stats_fd; 4146 Error *local_err = NULL; 4147 4148 if (stats_fd == -1) { 4149 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4150 error_propagate(kvm_stats_args->errp, local_err); 4151 return; 4152 } 4153 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4154 kvm_stats_args->names, stats_fd, cpu, 4155 kvm_stats_args->errp); 4156 } 4157 4158 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4159 { 4160 int stats_fd = cpu->kvm_vcpu_stats_fd; 4161 Error *local_err = NULL; 4162 4163 if (stats_fd == -1) { 4164 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4165 error_propagate(kvm_stats_args->errp, local_err); 4166 return; 4167 } 4168 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4169 kvm_stats_args->errp); 4170 } 4171 4172 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4173 strList *names, strList *targets, Error **errp) 4174 { 4175 KVMState *s = kvm_state; 4176 CPUState *cpu; 4177 int stats_fd; 4178 4179 switch (target) { 4180 case STATS_TARGET_VM: 4181 { 4182 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4183 if (stats_fd == -1) { 4184 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4185 return; 4186 } 4187 query_stats(result, target, names, stats_fd, NULL, errp); 4188 close(stats_fd); 4189 break; 4190 } 4191 case STATS_TARGET_VCPU: 4192 { 4193 StatsArgs stats_args; 4194 stats_args.result.stats = result; 4195 stats_args.names = names; 4196 stats_args.errp = errp; 4197 CPU_FOREACH(cpu) { 4198 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4199 continue; 4200 } 4201 query_stats_vcpu(cpu, &stats_args); 4202 } 4203 break; 4204 } 4205 default: 4206 break; 4207 } 4208 } 4209 4210 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4211 { 4212 StatsArgs stats_args; 4213 KVMState *s = kvm_state; 4214 int stats_fd; 4215 4216 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4217 if (stats_fd == -1) { 4218 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4219 return; 4220 } 4221 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4222 close(stats_fd); 4223 4224 if (first_cpu) { 4225 stats_args.result.schema = result; 4226 stats_args.errp = errp; 4227 query_stats_schema_vcpu(first_cpu, &stats_args); 4228 } 4229 } 4230