xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 759bac67)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 //#define DEBUG_KVM
73 
74 #ifdef DEBUG_KVM
75 #define DPRINTF(fmt, ...) \
76     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...) \
79     do { } while (0)
80 #endif
81 
82 struct KVMParkedVcpu {
83     unsigned long vcpu_id;
84     int kvm_fd;
85     QLIST_ENTRY(KVMParkedVcpu) node;
86 };
87 
88 KVMState *kvm_state;
89 bool kvm_kernel_irqchip;
90 bool kvm_split_irqchip;
91 bool kvm_async_interrupts_allowed;
92 bool kvm_halt_in_kernel_allowed;
93 bool kvm_eventfds_allowed;
94 bool kvm_irqfds_allowed;
95 bool kvm_resamplefds_allowed;
96 bool kvm_msi_via_irqfd_allowed;
97 bool kvm_gsi_routing_allowed;
98 bool kvm_gsi_direct_mapping;
99 bool kvm_allowed;
100 bool kvm_readonly_mem_allowed;
101 bool kvm_vm_attributes_allowed;
102 bool kvm_direct_msi_allowed;
103 bool kvm_ioeventfd_any_length_allowed;
104 bool kvm_msi_use_devid;
105 bool kvm_has_guest_debug;
106 static int kvm_sstep_flags;
107 static bool kvm_immediate_exit;
108 static hwaddr kvm_max_slot_size = ~0;
109 
110 static const KVMCapabilityInfo kvm_required_capabilites[] = {
111     KVM_CAP_INFO(USER_MEMORY),
112     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
113     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
114     KVM_CAP_LAST_INFO
115 };
116 
117 static NotifierList kvm_irqchip_change_notifiers =
118     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
119 
120 struct KVMResampleFd {
121     int gsi;
122     EventNotifier *resample_event;
123     QLIST_ENTRY(KVMResampleFd) node;
124 };
125 typedef struct KVMResampleFd KVMResampleFd;
126 
127 /*
128  * Only used with split irqchip where we need to do the resample fd
129  * kick for the kernel from userspace.
130  */
131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
132     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
133 
134 static QemuMutex kml_slots_lock;
135 
136 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
137 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
138 
139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
140 
141 static inline void kvm_resample_fd_remove(int gsi)
142 {
143     KVMResampleFd *rfd;
144 
145     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
146         if (rfd->gsi == gsi) {
147             QLIST_REMOVE(rfd, node);
148             g_free(rfd);
149             break;
150         }
151     }
152 }
153 
154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
155 {
156     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
157 
158     rfd->gsi = gsi;
159     rfd->resample_event = event;
160 
161     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
162 }
163 
164 void kvm_resample_fd_notify(int gsi)
165 {
166     KVMResampleFd *rfd;
167 
168     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
169         if (rfd->gsi == gsi) {
170             event_notifier_set(rfd->resample_event);
171             trace_kvm_resample_fd_notify(gsi);
172             return;
173         }
174     }
175 }
176 
177 int kvm_get_max_memslots(void)
178 {
179     KVMState *s = KVM_STATE(current_accel());
180 
181     return s->nr_slots;
182 }
183 
184 unsigned int kvm_get_free_memslots(void)
185 {
186     unsigned int used_slots = 0;
187     KVMState *s = kvm_state;
188     int i;
189 
190     kvm_slots_lock();
191     for (i = 0; i < s->nr_as; i++) {
192         if (!s->as[i].ml) {
193             continue;
194         }
195         used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
196     }
197     kvm_slots_unlock();
198 
199     return s->nr_slots - used_slots;
200 }
201 
202 /* Called with KVMMemoryListener.slots_lock held */
203 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
204 {
205     KVMState *s = kvm_state;
206     int i;
207 
208     for (i = 0; i < s->nr_slots; i++) {
209         if (kml->slots[i].memory_size == 0) {
210             return &kml->slots[i];
211         }
212     }
213 
214     return NULL;
215 }
216 
217 /* Called with KVMMemoryListener.slots_lock held */
218 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
219 {
220     KVMSlot *slot = kvm_get_free_slot(kml);
221 
222     if (slot) {
223         return slot;
224     }
225 
226     fprintf(stderr, "%s: no free slot available\n", __func__);
227     abort();
228 }
229 
230 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
231                                          hwaddr start_addr,
232                                          hwaddr size)
233 {
234     KVMState *s = kvm_state;
235     int i;
236 
237     for (i = 0; i < s->nr_slots; i++) {
238         KVMSlot *mem = &kml->slots[i];
239 
240         if (start_addr == mem->start_addr && size == mem->memory_size) {
241             return mem;
242         }
243     }
244 
245     return NULL;
246 }
247 
248 /*
249  * Calculate and align the start address and the size of the section.
250  * Return the size. If the size is 0, the aligned section is empty.
251  */
252 static hwaddr kvm_align_section(MemoryRegionSection *section,
253                                 hwaddr *start)
254 {
255     hwaddr size = int128_get64(section->size);
256     hwaddr delta, aligned;
257 
258     /* kvm works in page size chunks, but the function may be called
259        with sub-page size and unaligned start address. Pad the start
260        address to next and truncate size to previous page boundary. */
261     aligned = ROUND_UP(section->offset_within_address_space,
262                        qemu_real_host_page_size());
263     delta = aligned - section->offset_within_address_space;
264     *start = aligned;
265     if (delta > size) {
266         return 0;
267     }
268 
269     return (size - delta) & qemu_real_host_page_mask();
270 }
271 
272 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
273                                        hwaddr *phys_addr)
274 {
275     KVMMemoryListener *kml = &s->memory_listener;
276     int i, ret = 0;
277 
278     kvm_slots_lock();
279     for (i = 0; i < s->nr_slots; i++) {
280         KVMSlot *mem = &kml->slots[i];
281 
282         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
283             *phys_addr = mem->start_addr + (ram - mem->ram);
284             ret = 1;
285             break;
286         }
287     }
288     kvm_slots_unlock();
289 
290     return ret;
291 }
292 
293 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
294 {
295     KVMState *s = kvm_state;
296     struct kvm_userspace_memory_region mem;
297     int ret;
298 
299     mem.slot = slot->slot | (kml->as_id << 16);
300     mem.guest_phys_addr = slot->start_addr;
301     mem.userspace_addr = (unsigned long)slot->ram;
302     mem.flags = slot->flags;
303 
304     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
305         /* Set the slot size to 0 before setting the slot to the desired
306          * value. This is needed based on KVM commit 75d61fbc. */
307         mem.memory_size = 0;
308         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
309         if (ret < 0) {
310             goto err;
311         }
312     }
313     mem.memory_size = slot->memory_size;
314     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
315     slot->old_flags = mem.flags;
316 err:
317     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
318                               mem.memory_size, mem.userspace_addr, ret);
319     if (ret < 0) {
320         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
321                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
322                      __func__, mem.slot, slot->start_addr,
323                      (uint64_t)mem.memory_size, strerror(errno));
324     }
325     return ret;
326 }
327 
328 static int do_kvm_destroy_vcpu(CPUState *cpu)
329 {
330     KVMState *s = kvm_state;
331     long mmap_size;
332     struct KVMParkedVcpu *vcpu = NULL;
333     int ret = 0;
334 
335     DPRINTF("kvm_destroy_vcpu\n");
336 
337     ret = kvm_arch_destroy_vcpu(cpu);
338     if (ret < 0) {
339         goto err;
340     }
341 
342     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
343     if (mmap_size < 0) {
344         ret = mmap_size;
345         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
346         goto err;
347     }
348 
349     ret = munmap(cpu->kvm_run, mmap_size);
350     if (ret < 0) {
351         goto err;
352     }
353 
354     if (cpu->kvm_dirty_gfns) {
355         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
356         if (ret < 0) {
357             goto err;
358         }
359     }
360 
361     vcpu = g_malloc0(sizeof(*vcpu));
362     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
363     vcpu->kvm_fd = cpu->kvm_fd;
364     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
365 err:
366     return ret;
367 }
368 
369 void kvm_destroy_vcpu(CPUState *cpu)
370 {
371     if (do_kvm_destroy_vcpu(cpu) < 0) {
372         error_report("kvm_destroy_vcpu failed");
373         exit(EXIT_FAILURE);
374     }
375 }
376 
377 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
378 {
379     struct KVMParkedVcpu *cpu;
380 
381     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
382         if (cpu->vcpu_id == vcpu_id) {
383             int kvm_fd;
384 
385             QLIST_REMOVE(cpu, node);
386             kvm_fd = cpu->kvm_fd;
387             g_free(cpu);
388             return kvm_fd;
389         }
390     }
391 
392     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
393 }
394 
395 int kvm_init_vcpu(CPUState *cpu, Error **errp)
396 {
397     KVMState *s = kvm_state;
398     long mmap_size;
399     int ret;
400 
401     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
402 
403     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
404     if (ret < 0) {
405         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
406                          kvm_arch_vcpu_id(cpu));
407         goto err;
408     }
409 
410     cpu->kvm_fd = ret;
411     cpu->kvm_state = s;
412     cpu->vcpu_dirty = true;
413     cpu->dirty_pages = 0;
414     cpu->throttle_us_per_full = 0;
415 
416     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
417     if (mmap_size < 0) {
418         ret = mmap_size;
419         error_setg_errno(errp, -mmap_size,
420                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
421         goto err;
422     }
423 
424     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
425                         cpu->kvm_fd, 0);
426     if (cpu->kvm_run == MAP_FAILED) {
427         ret = -errno;
428         error_setg_errno(errp, ret,
429                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
430                          kvm_arch_vcpu_id(cpu));
431         goto err;
432     }
433 
434     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
435         s->coalesced_mmio_ring =
436             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
437     }
438 
439     if (s->kvm_dirty_ring_size) {
440         /* Use MAP_SHARED to share pages with the kernel */
441         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
442                                    PROT_READ | PROT_WRITE, MAP_SHARED,
443                                    cpu->kvm_fd,
444                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
445         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
446             ret = -errno;
447             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
448             goto err;
449         }
450     }
451 
452     ret = kvm_arch_init_vcpu(cpu);
453     if (ret < 0) {
454         error_setg_errno(errp, -ret,
455                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
456                          kvm_arch_vcpu_id(cpu));
457     }
458     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
459 
460 err:
461     return ret;
462 }
463 
464 /*
465  * dirty pages logging control
466  */
467 
468 static int kvm_mem_flags(MemoryRegion *mr)
469 {
470     bool readonly = mr->readonly || memory_region_is_romd(mr);
471     int flags = 0;
472 
473     if (memory_region_get_dirty_log_mask(mr) != 0) {
474         flags |= KVM_MEM_LOG_DIRTY_PAGES;
475     }
476     if (readonly && kvm_readonly_mem_allowed) {
477         flags |= KVM_MEM_READONLY;
478     }
479     return flags;
480 }
481 
482 /* Called with KVMMemoryListener.slots_lock held */
483 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
484                                  MemoryRegion *mr)
485 {
486     mem->flags = kvm_mem_flags(mr);
487 
488     /* If nothing changed effectively, no need to issue ioctl */
489     if (mem->flags == mem->old_flags) {
490         return 0;
491     }
492 
493     kvm_slot_init_dirty_bitmap(mem);
494     return kvm_set_user_memory_region(kml, mem, false);
495 }
496 
497 static int kvm_section_update_flags(KVMMemoryListener *kml,
498                                     MemoryRegionSection *section)
499 {
500     hwaddr start_addr, size, slot_size;
501     KVMSlot *mem;
502     int ret = 0;
503 
504     size = kvm_align_section(section, &start_addr);
505     if (!size) {
506         return 0;
507     }
508 
509     kvm_slots_lock();
510 
511     while (size && !ret) {
512         slot_size = MIN(kvm_max_slot_size, size);
513         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
514         if (!mem) {
515             /* We don't have a slot if we want to trap every access. */
516             goto out;
517         }
518 
519         ret = kvm_slot_update_flags(kml, mem, section->mr);
520         start_addr += slot_size;
521         size -= slot_size;
522     }
523 
524 out:
525     kvm_slots_unlock();
526     return ret;
527 }
528 
529 static void kvm_log_start(MemoryListener *listener,
530                           MemoryRegionSection *section,
531                           int old, int new)
532 {
533     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
534     int r;
535 
536     if (old != 0) {
537         return;
538     }
539 
540     r = kvm_section_update_flags(kml, section);
541     if (r < 0) {
542         abort();
543     }
544 }
545 
546 static void kvm_log_stop(MemoryListener *listener,
547                           MemoryRegionSection *section,
548                           int old, int new)
549 {
550     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
551     int r;
552 
553     if (new != 0) {
554         return;
555     }
556 
557     r = kvm_section_update_flags(kml, section);
558     if (r < 0) {
559         abort();
560     }
561 }
562 
563 /* get kvm's dirty pages bitmap and update qemu's */
564 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
565 {
566     ram_addr_t start = slot->ram_start_offset;
567     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
568 
569     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
570 }
571 
572 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
573 {
574     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
575 }
576 
577 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
578 
579 /* Allocate the dirty bitmap for a slot  */
580 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
581 {
582     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
583         return;
584     }
585 
586     /*
587      * XXX bad kernel interface alert
588      * For dirty bitmap, kernel allocates array of size aligned to
589      * bits-per-long.  But for case when the kernel is 64bits and
590      * the userspace is 32bits, userspace can't align to the same
591      * bits-per-long, since sizeof(long) is different between kernel
592      * and user space.  This way, userspace will provide buffer which
593      * may be 4 bytes less than the kernel will use, resulting in
594      * userspace memory corruption (which is not detectable by valgrind
595      * too, in most cases).
596      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
597      * a hope that sizeof(long) won't become >8 any time soon.
598      *
599      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
600      * And mem->memory_size is aligned to it (otherwise this mem can't
601      * be registered to KVM).
602      */
603     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
604                                         /*HOST_LONG_BITS*/ 64) / 8;
605     mem->dirty_bmap = g_malloc0(bitmap_size);
606     mem->dirty_bmap_size = bitmap_size;
607 }
608 
609 /*
610  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
611  * succeeded, false otherwise
612  */
613 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
614 {
615     struct kvm_dirty_log d = {};
616     int ret;
617 
618     d.dirty_bitmap = slot->dirty_bmap;
619     d.slot = slot->slot | (slot->as_id << 16);
620     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
621 
622     if (ret == -ENOENT) {
623         /* kernel does not have dirty bitmap in this slot */
624         ret = 0;
625     }
626     if (ret) {
627         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
628                           __func__, ret);
629     }
630     return ret == 0;
631 }
632 
633 /* Should be with all slots_lock held for the address spaces. */
634 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
635                                      uint32_t slot_id, uint64_t offset)
636 {
637     KVMMemoryListener *kml;
638     KVMSlot *mem;
639 
640     if (as_id >= s->nr_as) {
641         return;
642     }
643 
644     kml = s->as[as_id].ml;
645     mem = &kml->slots[slot_id];
646 
647     if (!mem->memory_size || offset >=
648         (mem->memory_size / qemu_real_host_page_size())) {
649         return;
650     }
651 
652     set_bit(offset, mem->dirty_bmap);
653 }
654 
655 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
656 {
657     /*
658      * Read the flags before the value.  Pairs with barrier in
659      * KVM's kvm_dirty_ring_push() function.
660      */
661     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
662 }
663 
664 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
665 {
666     /*
667      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
668      * sees the full content of the ring:
669      *
670      * CPU0                     CPU1                         CPU2
671      * ------------------------------------------------------------------------------
672      *                                                       fill gfn0
673      *                                                       store-rel flags for gfn0
674      * load-acq flags for gfn0
675      * store-rel RESET for gfn0
676      *                          ioctl(RESET_RINGS)
677      *                            load-acq flags for gfn0
678      *                            check if flags have RESET
679      *
680      * The synchronization goes from CPU2 to CPU0 to CPU1.
681      */
682     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
683 }
684 
685 /*
686  * Should be with all slots_lock held for the address spaces.  It returns the
687  * dirty page we've collected on this dirty ring.
688  */
689 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
690 {
691     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
692     uint32_t ring_size = s->kvm_dirty_ring_size;
693     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
694 
695     /*
696      * It's possible that we race with vcpu creation code where the vcpu is
697      * put onto the vcpus list but not yet initialized the dirty ring
698      * structures.  If so, skip it.
699      */
700     if (!cpu->created) {
701         return 0;
702     }
703 
704     assert(dirty_gfns && ring_size);
705     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
706 
707     while (true) {
708         cur = &dirty_gfns[fetch % ring_size];
709         if (!dirty_gfn_is_dirtied(cur)) {
710             break;
711         }
712         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
713                                  cur->offset);
714         dirty_gfn_set_collected(cur);
715         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
716         fetch++;
717         count++;
718     }
719     cpu->kvm_fetch_index = fetch;
720     cpu->dirty_pages += count;
721 
722     return count;
723 }
724 
725 /* Must be with slots_lock held */
726 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
727 {
728     int ret;
729     uint64_t total = 0;
730     int64_t stamp;
731 
732     stamp = get_clock();
733 
734     if (cpu) {
735         total = kvm_dirty_ring_reap_one(s, cpu);
736     } else {
737         CPU_FOREACH(cpu) {
738             total += kvm_dirty_ring_reap_one(s, cpu);
739         }
740     }
741 
742     if (total) {
743         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
744         assert(ret == total);
745     }
746 
747     stamp = get_clock() - stamp;
748 
749     if (total) {
750         trace_kvm_dirty_ring_reap(total, stamp / 1000);
751     }
752 
753     return total;
754 }
755 
756 /*
757  * Currently for simplicity, we must hold BQL before calling this.  We can
758  * consider to drop the BQL if we're clear with all the race conditions.
759  */
760 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
761 {
762     uint64_t total;
763 
764     /*
765      * We need to lock all kvm slots for all address spaces here,
766      * because:
767      *
768      * (1) We need to mark dirty for dirty bitmaps in multiple slots
769      *     and for tons of pages, so it's better to take the lock here
770      *     once rather than once per page.  And more importantly,
771      *
772      * (2) We must _NOT_ publish dirty bits to the other threads
773      *     (e.g., the migration thread) via the kvm memory slot dirty
774      *     bitmaps before correctly re-protect those dirtied pages.
775      *     Otherwise we can have potential risk of data corruption if
776      *     the page data is read in the other thread before we do
777      *     reset below.
778      */
779     kvm_slots_lock();
780     total = kvm_dirty_ring_reap_locked(s, cpu);
781     kvm_slots_unlock();
782 
783     return total;
784 }
785 
786 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
787 {
788     /* No need to do anything */
789 }
790 
791 /*
792  * Kick all vcpus out in a synchronized way.  When returned, we
793  * guarantee that every vcpu has been kicked and at least returned to
794  * userspace once.
795  */
796 static void kvm_cpu_synchronize_kick_all(void)
797 {
798     CPUState *cpu;
799 
800     CPU_FOREACH(cpu) {
801         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
802     }
803 }
804 
805 /*
806  * Flush all the existing dirty pages to the KVM slot buffers.  When
807  * this call returns, we guarantee that all the touched dirty pages
808  * before calling this function have been put into the per-kvmslot
809  * dirty bitmap.
810  *
811  * This function must be called with BQL held.
812  */
813 static void kvm_dirty_ring_flush(void)
814 {
815     trace_kvm_dirty_ring_flush(0);
816     /*
817      * The function needs to be serialized.  Since this function
818      * should always be with BQL held, serialization is guaranteed.
819      * However, let's be sure of it.
820      */
821     assert(qemu_mutex_iothread_locked());
822     /*
823      * First make sure to flush the hardware buffers by kicking all
824      * vcpus out in a synchronous way.
825      */
826     kvm_cpu_synchronize_kick_all();
827     kvm_dirty_ring_reap(kvm_state, NULL);
828     trace_kvm_dirty_ring_flush(1);
829 }
830 
831 /**
832  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
833  *
834  * This function will first try to fetch dirty bitmap from the kernel,
835  * and then updates qemu's dirty bitmap.
836  *
837  * NOTE: caller must be with kml->slots_lock held.
838  *
839  * @kml: the KVM memory listener object
840  * @section: the memory section to sync the dirty bitmap with
841  */
842 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
843                                            MemoryRegionSection *section)
844 {
845     KVMState *s = kvm_state;
846     KVMSlot *mem;
847     hwaddr start_addr, size;
848     hwaddr slot_size;
849 
850     size = kvm_align_section(section, &start_addr);
851     while (size) {
852         slot_size = MIN(kvm_max_slot_size, size);
853         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
854         if (!mem) {
855             /* We don't have a slot if we want to trap every access. */
856             return;
857         }
858         if (kvm_slot_get_dirty_log(s, mem)) {
859             kvm_slot_sync_dirty_pages(mem);
860         }
861         start_addr += slot_size;
862         size -= slot_size;
863     }
864 }
865 
866 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
867 #define KVM_CLEAR_LOG_SHIFT  6
868 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
869 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
870 
871 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
872                                   uint64_t size)
873 {
874     KVMState *s = kvm_state;
875     uint64_t end, bmap_start, start_delta, bmap_npages;
876     struct kvm_clear_dirty_log d;
877     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
878     int ret;
879 
880     /*
881      * We need to extend either the start or the size or both to
882      * satisfy the KVM interface requirement.  Firstly, do the start
883      * page alignment on 64 host pages
884      */
885     bmap_start = start & KVM_CLEAR_LOG_MASK;
886     start_delta = start - bmap_start;
887     bmap_start /= psize;
888 
889     /*
890      * The kernel interface has restriction on the size too, that either:
891      *
892      * (1) the size is 64 host pages aligned (just like the start), or
893      * (2) the size fills up until the end of the KVM memslot.
894      */
895     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
896         << KVM_CLEAR_LOG_SHIFT;
897     end = mem->memory_size / psize;
898     if (bmap_npages > end - bmap_start) {
899         bmap_npages = end - bmap_start;
900     }
901     start_delta /= psize;
902 
903     /*
904      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
905      * that we won't clear any unknown dirty bits otherwise we might
906      * accidentally clear some set bits which are not yet synced from
907      * the kernel into QEMU's bitmap, then we'll lose track of the
908      * guest modifications upon those pages (which can directly lead
909      * to guest data loss or panic after migration).
910      *
911      * Layout of the KVMSlot.dirty_bmap:
912      *
913      *                   |<-------- bmap_npages -----------..>|
914      *                                                     [1]
915      *                     start_delta         size
916      *  |----------------|-------------|------------------|------------|
917      *  ^                ^             ^                               ^
918      *  |                |             |                               |
919      * start          bmap_start     (start)                         end
920      * of memslot                                             of memslot
921      *
922      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
923      */
924 
925     assert(bmap_start % BITS_PER_LONG == 0);
926     /* We should never do log_clear before log_sync */
927     assert(mem->dirty_bmap);
928     if (start_delta || bmap_npages - size / psize) {
929         /* Slow path - we need to manipulate a temp bitmap */
930         bmap_clear = bitmap_new(bmap_npages);
931         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
932                                     bmap_start, start_delta + size / psize);
933         /*
934          * We need to fill the holes at start because that was not
935          * specified by the caller and we extended the bitmap only for
936          * 64 pages alignment
937          */
938         bitmap_clear(bmap_clear, 0, start_delta);
939         d.dirty_bitmap = bmap_clear;
940     } else {
941         /*
942          * Fast path - both start and size align well with BITS_PER_LONG
943          * (or the end of memory slot)
944          */
945         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
946     }
947 
948     d.first_page = bmap_start;
949     /* It should never overflow.  If it happens, say something */
950     assert(bmap_npages <= UINT32_MAX);
951     d.num_pages = bmap_npages;
952     d.slot = mem->slot | (as_id << 16);
953 
954     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
955     if (ret < 0 && ret != -ENOENT) {
956         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
957                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
958                      __func__, d.slot, (uint64_t)d.first_page,
959                      (uint32_t)d.num_pages, ret);
960     } else {
961         ret = 0;
962         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
963     }
964 
965     /*
966      * After we have updated the remote dirty bitmap, we update the
967      * cached bitmap as well for the memslot, then if another user
968      * clears the same region we know we shouldn't clear it again on
969      * the remote otherwise it's data loss as well.
970      */
971     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
972                  size / psize);
973     /* This handles the NULL case well */
974     g_free(bmap_clear);
975     return ret;
976 }
977 
978 
979 /**
980  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
981  *
982  * NOTE: this will be a no-op if we haven't enabled manual dirty log
983  * protection in the host kernel because in that case this operation
984  * will be done within log_sync().
985  *
986  * @kml:     the kvm memory listener
987  * @section: the memory range to clear dirty bitmap
988  */
989 static int kvm_physical_log_clear(KVMMemoryListener *kml,
990                                   MemoryRegionSection *section)
991 {
992     KVMState *s = kvm_state;
993     uint64_t start, size, offset, count;
994     KVMSlot *mem;
995     int ret = 0, i;
996 
997     if (!s->manual_dirty_log_protect) {
998         /* No need to do explicit clear */
999         return ret;
1000     }
1001 
1002     start = section->offset_within_address_space;
1003     size = int128_get64(section->size);
1004 
1005     if (!size) {
1006         /* Nothing more we can do... */
1007         return ret;
1008     }
1009 
1010     kvm_slots_lock();
1011 
1012     for (i = 0; i < s->nr_slots; i++) {
1013         mem = &kml->slots[i];
1014         /* Discard slots that are empty or do not overlap the section */
1015         if (!mem->memory_size ||
1016             mem->start_addr > start + size - 1 ||
1017             start > mem->start_addr + mem->memory_size - 1) {
1018             continue;
1019         }
1020 
1021         if (start >= mem->start_addr) {
1022             /* The slot starts before section or is aligned to it.  */
1023             offset = start - mem->start_addr;
1024             count = MIN(mem->memory_size - offset, size);
1025         } else {
1026             /* The slot starts after section.  */
1027             offset = 0;
1028             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1029         }
1030         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1031         if (ret < 0) {
1032             break;
1033         }
1034     }
1035 
1036     kvm_slots_unlock();
1037 
1038     return ret;
1039 }
1040 
1041 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1042                                      MemoryRegionSection *secion,
1043                                      hwaddr start, hwaddr size)
1044 {
1045     KVMState *s = kvm_state;
1046 
1047     if (s->coalesced_mmio) {
1048         struct kvm_coalesced_mmio_zone zone;
1049 
1050         zone.addr = start;
1051         zone.size = size;
1052         zone.pad = 0;
1053 
1054         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1055     }
1056 }
1057 
1058 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1059                                        MemoryRegionSection *secion,
1060                                        hwaddr start, hwaddr size)
1061 {
1062     KVMState *s = kvm_state;
1063 
1064     if (s->coalesced_mmio) {
1065         struct kvm_coalesced_mmio_zone zone;
1066 
1067         zone.addr = start;
1068         zone.size = size;
1069         zone.pad = 0;
1070 
1071         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1072     }
1073 }
1074 
1075 static void kvm_coalesce_pio_add(MemoryListener *listener,
1076                                 MemoryRegionSection *section,
1077                                 hwaddr start, hwaddr size)
1078 {
1079     KVMState *s = kvm_state;
1080 
1081     if (s->coalesced_pio) {
1082         struct kvm_coalesced_mmio_zone zone;
1083 
1084         zone.addr = start;
1085         zone.size = size;
1086         zone.pio = 1;
1087 
1088         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1089     }
1090 }
1091 
1092 static void kvm_coalesce_pio_del(MemoryListener *listener,
1093                                 MemoryRegionSection *section,
1094                                 hwaddr start, hwaddr size)
1095 {
1096     KVMState *s = kvm_state;
1097 
1098     if (s->coalesced_pio) {
1099         struct kvm_coalesced_mmio_zone zone;
1100 
1101         zone.addr = start;
1102         zone.size = size;
1103         zone.pio = 1;
1104 
1105         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1106      }
1107 }
1108 
1109 static MemoryListener kvm_coalesced_pio_listener = {
1110     .name = "kvm-coalesced-pio",
1111     .coalesced_io_add = kvm_coalesce_pio_add,
1112     .coalesced_io_del = kvm_coalesce_pio_del,
1113     .priority = MEMORY_LISTENER_PRIORITY_MIN,
1114 };
1115 
1116 int kvm_check_extension(KVMState *s, unsigned int extension)
1117 {
1118     int ret;
1119 
1120     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1121     if (ret < 0) {
1122         ret = 0;
1123     }
1124 
1125     return ret;
1126 }
1127 
1128 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1129 {
1130     int ret;
1131 
1132     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1133     if (ret < 0) {
1134         /* VM wide version not implemented, use global one instead */
1135         ret = kvm_check_extension(s, extension);
1136     }
1137 
1138     return ret;
1139 }
1140 
1141 typedef struct HWPoisonPage {
1142     ram_addr_t ram_addr;
1143     QLIST_ENTRY(HWPoisonPage) list;
1144 } HWPoisonPage;
1145 
1146 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1147     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1148 
1149 static void kvm_unpoison_all(void *param)
1150 {
1151     HWPoisonPage *page, *next_page;
1152 
1153     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1154         QLIST_REMOVE(page, list);
1155         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1156         g_free(page);
1157     }
1158 }
1159 
1160 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1161 {
1162     HWPoisonPage *page;
1163 
1164     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1165         if (page->ram_addr == ram_addr) {
1166             return;
1167         }
1168     }
1169     page = g_new(HWPoisonPage, 1);
1170     page->ram_addr = ram_addr;
1171     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1172 }
1173 
1174 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1175 {
1176 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1177     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1178      * endianness, but the memory core hands them in target endianness.
1179      * For example, PPC is always treated as big-endian even if running
1180      * on KVM and on PPC64LE.  Correct here.
1181      */
1182     switch (size) {
1183     case 2:
1184         val = bswap16(val);
1185         break;
1186     case 4:
1187         val = bswap32(val);
1188         break;
1189     }
1190 #endif
1191     return val;
1192 }
1193 
1194 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1195                                   bool assign, uint32_t size, bool datamatch)
1196 {
1197     int ret;
1198     struct kvm_ioeventfd iofd = {
1199         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1200         .addr = addr,
1201         .len = size,
1202         .flags = 0,
1203         .fd = fd,
1204     };
1205 
1206     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1207                                  datamatch);
1208     if (!kvm_enabled()) {
1209         return -ENOSYS;
1210     }
1211 
1212     if (datamatch) {
1213         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1214     }
1215     if (!assign) {
1216         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1217     }
1218 
1219     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1220 
1221     if (ret < 0) {
1222         return -errno;
1223     }
1224 
1225     return 0;
1226 }
1227 
1228 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1229                                  bool assign, uint32_t size, bool datamatch)
1230 {
1231     struct kvm_ioeventfd kick = {
1232         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1233         .addr = addr,
1234         .flags = KVM_IOEVENTFD_FLAG_PIO,
1235         .len = size,
1236         .fd = fd,
1237     };
1238     int r;
1239     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1240     if (!kvm_enabled()) {
1241         return -ENOSYS;
1242     }
1243     if (datamatch) {
1244         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1245     }
1246     if (!assign) {
1247         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1248     }
1249     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1250     if (r < 0) {
1251         return r;
1252     }
1253     return 0;
1254 }
1255 
1256 
1257 static int kvm_check_many_ioeventfds(void)
1258 {
1259     /* Userspace can use ioeventfd for io notification.  This requires a host
1260      * that supports eventfd(2) and an I/O thread; since eventfd does not
1261      * support SIGIO it cannot interrupt the vcpu.
1262      *
1263      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1264      * can avoid creating too many ioeventfds.
1265      */
1266 #if defined(CONFIG_EVENTFD)
1267     int ioeventfds[7];
1268     int i, ret = 0;
1269     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1270         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1271         if (ioeventfds[i] < 0) {
1272             break;
1273         }
1274         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1275         if (ret < 0) {
1276             close(ioeventfds[i]);
1277             break;
1278         }
1279     }
1280 
1281     /* Decide whether many devices are supported or not */
1282     ret = i == ARRAY_SIZE(ioeventfds);
1283 
1284     while (i-- > 0) {
1285         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1286         close(ioeventfds[i]);
1287     }
1288     return ret;
1289 #else
1290     return 0;
1291 #endif
1292 }
1293 
1294 static const KVMCapabilityInfo *
1295 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1296 {
1297     while (list->name) {
1298         if (!kvm_check_extension(s, list->value)) {
1299             return list;
1300         }
1301         list++;
1302     }
1303     return NULL;
1304 }
1305 
1306 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1307 {
1308     g_assert(
1309         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1310     );
1311     kvm_max_slot_size = max_slot_size;
1312 }
1313 
1314 /* Called with KVMMemoryListener.slots_lock held */
1315 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1316                              MemoryRegionSection *section, bool add)
1317 {
1318     KVMSlot *mem;
1319     int err;
1320     MemoryRegion *mr = section->mr;
1321     bool writable = !mr->readonly && !mr->rom_device;
1322     hwaddr start_addr, size, slot_size, mr_offset;
1323     ram_addr_t ram_start_offset;
1324     void *ram;
1325 
1326     if (!memory_region_is_ram(mr)) {
1327         if (writable || !kvm_readonly_mem_allowed) {
1328             return;
1329         } else if (!mr->romd_mode) {
1330             /* If the memory device is not in romd_mode, then we actually want
1331              * to remove the kvm memory slot so all accesses will trap. */
1332             add = false;
1333         }
1334     }
1335 
1336     size = kvm_align_section(section, &start_addr);
1337     if (!size) {
1338         return;
1339     }
1340 
1341     /* The offset of the kvmslot within the memory region */
1342     mr_offset = section->offset_within_region + start_addr -
1343         section->offset_within_address_space;
1344 
1345     /* use aligned delta to align the ram address and offset */
1346     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1347     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1348 
1349     if (!add) {
1350         do {
1351             slot_size = MIN(kvm_max_slot_size, size);
1352             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1353             if (!mem) {
1354                 return;
1355             }
1356             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1357                 /*
1358                  * NOTE: We should be aware of the fact that here we're only
1359                  * doing a best effort to sync dirty bits.  No matter whether
1360                  * we're using dirty log or dirty ring, we ignored two facts:
1361                  *
1362                  * (1) dirty bits can reside in hardware buffers (PML)
1363                  *
1364                  * (2) after we collected dirty bits here, pages can be dirtied
1365                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1366                  * remove the slot.
1367                  *
1368                  * Not easy.  Let's cross the fingers until it's fixed.
1369                  */
1370                 if (kvm_state->kvm_dirty_ring_size) {
1371                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1372                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1373                         kvm_slot_sync_dirty_pages(mem);
1374                         kvm_slot_get_dirty_log(kvm_state, mem);
1375                     }
1376                 } else {
1377                     kvm_slot_get_dirty_log(kvm_state, mem);
1378                 }
1379                 kvm_slot_sync_dirty_pages(mem);
1380             }
1381 
1382             /* unregister the slot */
1383             g_free(mem->dirty_bmap);
1384             mem->dirty_bmap = NULL;
1385             mem->memory_size = 0;
1386             mem->flags = 0;
1387             err = kvm_set_user_memory_region(kml, mem, false);
1388             if (err) {
1389                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1390                         __func__, strerror(-err));
1391                 abort();
1392             }
1393             start_addr += slot_size;
1394             size -= slot_size;
1395             kml->nr_used_slots--;
1396         } while (size);
1397         return;
1398     }
1399 
1400     /* register the new slot */
1401     do {
1402         slot_size = MIN(kvm_max_slot_size, size);
1403         mem = kvm_alloc_slot(kml);
1404         mem->as_id = kml->as_id;
1405         mem->memory_size = slot_size;
1406         mem->start_addr = start_addr;
1407         mem->ram_start_offset = ram_start_offset;
1408         mem->ram = ram;
1409         mem->flags = kvm_mem_flags(mr);
1410         kvm_slot_init_dirty_bitmap(mem);
1411         err = kvm_set_user_memory_region(kml, mem, true);
1412         if (err) {
1413             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1414                     strerror(-err));
1415             abort();
1416         }
1417         start_addr += slot_size;
1418         ram_start_offset += slot_size;
1419         ram += slot_size;
1420         size -= slot_size;
1421         kml->nr_used_slots++;
1422     } while (size);
1423 }
1424 
1425 static void *kvm_dirty_ring_reaper_thread(void *data)
1426 {
1427     KVMState *s = data;
1428     struct KVMDirtyRingReaper *r = &s->reaper;
1429 
1430     rcu_register_thread();
1431 
1432     trace_kvm_dirty_ring_reaper("init");
1433 
1434     while (true) {
1435         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1436         trace_kvm_dirty_ring_reaper("wait");
1437         /*
1438          * TODO: provide a smarter timeout rather than a constant?
1439          */
1440         sleep(1);
1441 
1442         /* keep sleeping so that dirtylimit not be interfered by reaper */
1443         if (dirtylimit_in_service()) {
1444             continue;
1445         }
1446 
1447         trace_kvm_dirty_ring_reaper("wakeup");
1448         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1449 
1450         qemu_mutex_lock_iothread();
1451         kvm_dirty_ring_reap(s, NULL);
1452         qemu_mutex_unlock_iothread();
1453 
1454         r->reaper_iteration++;
1455     }
1456 
1457     trace_kvm_dirty_ring_reaper("exit");
1458 
1459     rcu_unregister_thread();
1460 
1461     return NULL;
1462 }
1463 
1464 static void kvm_dirty_ring_reaper_init(KVMState *s)
1465 {
1466     struct KVMDirtyRingReaper *r = &s->reaper;
1467 
1468     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1469                        kvm_dirty_ring_reaper_thread,
1470                        s, QEMU_THREAD_JOINABLE);
1471 }
1472 
1473 static int kvm_dirty_ring_init(KVMState *s)
1474 {
1475     uint32_t ring_size = s->kvm_dirty_ring_size;
1476     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1477     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1478     int ret;
1479 
1480     s->kvm_dirty_ring_size = 0;
1481     s->kvm_dirty_ring_bytes = 0;
1482 
1483     /* Bail if the dirty ring size isn't specified */
1484     if (!ring_size) {
1485         return 0;
1486     }
1487 
1488     /*
1489      * Read the max supported pages. Fall back to dirty logging mode
1490      * if the dirty ring isn't supported.
1491      */
1492     ret = kvm_vm_check_extension(s, capability);
1493     if (ret <= 0) {
1494         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1495         ret = kvm_vm_check_extension(s, capability);
1496     }
1497 
1498     if (ret <= 0) {
1499         warn_report("KVM dirty ring not available, using bitmap method");
1500         return 0;
1501     }
1502 
1503     if (ring_bytes > ret) {
1504         error_report("KVM dirty ring size %" PRIu32 " too big "
1505                      "(maximum is %ld).  Please use a smaller value.",
1506                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1507         return -EINVAL;
1508     }
1509 
1510     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1511     if (ret) {
1512         error_report("Enabling of KVM dirty ring failed: %s. "
1513                      "Suggested minimum value is 1024.", strerror(-ret));
1514         return -EIO;
1515     }
1516 
1517     /* Enable the backup bitmap if it is supported */
1518     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1519     if (ret > 0) {
1520         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1521         if (ret) {
1522             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1523                          "%s. ", strerror(-ret));
1524             return -EIO;
1525         }
1526 
1527         s->kvm_dirty_ring_with_bitmap = true;
1528     }
1529 
1530     s->kvm_dirty_ring_size = ring_size;
1531     s->kvm_dirty_ring_bytes = ring_bytes;
1532 
1533     return 0;
1534 }
1535 
1536 static void kvm_region_add(MemoryListener *listener,
1537                            MemoryRegionSection *section)
1538 {
1539     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1540     KVMMemoryUpdate *update;
1541 
1542     update = g_new0(KVMMemoryUpdate, 1);
1543     update->section = *section;
1544 
1545     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1546 }
1547 
1548 static void kvm_region_del(MemoryListener *listener,
1549                            MemoryRegionSection *section)
1550 {
1551     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1552     KVMMemoryUpdate *update;
1553 
1554     update = g_new0(KVMMemoryUpdate, 1);
1555     update->section = *section;
1556 
1557     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1558 }
1559 
1560 static void kvm_region_commit(MemoryListener *listener)
1561 {
1562     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1563                                           listener);
1564     KVMMemoryUpdate *u1, *u2;
1565     bool need_inhibit = false;
1566 
1567     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1568         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1569         return;
1570     }
1571 
1572     /*
1573      * We have to be careful when regions to add overlap with ranges to remove.
1574      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1575      * is currently active.
1576      *
1577      * The lists are order by addresses, so it's easy to find overlaps.
1578      */
1579     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1580     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1581     while (u1 && u2) {
1582         Range r1, r2;
1583 
1584         range_init_nofail(&r1, u1->section.offset_within_address_space,
1585                           int128_get64(u1->section.size));
1586         range_init_nofail(&r2, u2->section.offset_within_address_space,
1587                           int128_get64(u2->section.size));
1588 
1589         if (range_overlaps_range(&r1, &r2)) {
1590             need_inhibit = true;
1591             break;
1592         }
1593         if (range_lob(&r1) < range_lob(&r2)) {
1594             u1 = QSIMPLEQ_NEXT(u1, next);
1595         } else {
1596             u2 = QSIMPLEQ_NEXT(u2, next);
1597         }
1598     }
1599 
1600     kvm_slots_lock();
1601     if (need_inhibit) {
1602         accel_ioctl_inhibit_begin();
1603     }
1604 
1605     /* Remove all memslots before adding the new ones. */
1606     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1607         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1608         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1609 
1610         kvm_set_phys_mem(kml, &u1->section, false);
1611         memory_region_unref(u1->section.mr);
1612 
1613         g_free(u1);
1614     }
1615     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1616         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1617         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1618 
1619         memory_region_ref(u1->section.mr);
1620         kvm_set_phys_mem(kml, &u1->section, true);
1621 
1622         g_free(u1);
1623     }
1624 
1625     if (need_inhibit) {
1626         accel_ioctl_inhibit_end();
1627     }
1628     kvm_slots_unlock();
1629 }
1630 
1631 static void kvm_log_sync(MemoryListener *listener,
1632                          MemoryRegionSection *section)
1633 {
1634     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1635 
1636     kvm_slots_lock();
1637     kvm_physical_sync_dirty_bitmap(kml, section);
1638     kvm_slots_unlock();
1639 }
1640 
1641 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1642 {
1643     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1644     KVMState *s = kvm_state;
1645     KVMSlot *mem;
1646     int i;
1647 
1648     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1649     kvm_dirty_ring_flush();
1650 
1651     /*
1652      * TODO: make this faster when nr_slots is big while there are
1653      * only a few used slots (small VMs).
1654      */
1655     kvm_slots_lock();
1656     for (i = 0; i < s->nr_slots; i++) {
1657         mem = &kml->slots[i];
1658         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1659             kvm_slot_sync_dirty_pages(mem);
1660 
1661             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1662                 kvm_slot_get_dirty_log(s, mem)) {
1663                 kvm_slot_sync_dirty_pages(mem);
1664             }
1665 
1666             /*
1667              * This is not needed by KVM_GET_DIRTY_LOG because the
1668              * ioctl will unconditionally overwrite the whole region.
1669              * However kvm dirty ring has no such side effect.
1670              */
1671             kvm_slot_reset_dirty_pages(mem);
1672         }
1673     }
1674     kvm_slots_unlock();
1675 }
1676 
1677 static void kvm_log_clear(MemoryListener *listener,
1678                           MemoryRegionSection *section)
1679 {
1680     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1681     int r;
1682 
1683     r = kvm_physical_log_clear(kml, section);
1684     if (r < 0) {
1685         error_report_once("%s: kvm log clear failed: mr=%s "
1686                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1687                           section->mr->name, section->offset_within_region,
1688                           int128_get64(section->size));
1689         abort();
1690     }
1691 }
1692 
1693 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1694                                   MemoryRegionSection *section,
1695                                   bool match_data, uint64_t data,
1696                                   EventNotifier *e)
1697 {
1698     int fd = event_notifier_get_fd(e);
1699     int r;
1700 
1701     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1702                                data, true, int128_get64(section->size),
1703                                match_data);
1704     if (r < 0) {
1705         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1706                 __func__, strerror(-r), -r);
1707         abort();
1708     }
1709 }
1710 
1711 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1712                                   MemoryRegionSection *section,
1713                                   bool match_data, uint64_t data,
1714                                   EventNotifier *e)
1715 {
1716     int fd = event_notifier_get_fd(e);
1717     int r;
1718 
1719     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1720                                data, false, int128_get64(section->size),
1721                                match_data);
1722     if (r < 0) {
1723         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1724                 __func__, strerror(-r), -r);
1725         abort();
1726     }
1727 }
1728 
1729 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1730                                  MemoryRegionSection *section,
1731                                  bool match_data, uint64_t data,
1732                                  EventNotifier *e)
1733 {
1734     int fd = event_notifier_get_fd(e);
1735     int r;
1736 
1737     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1738                               data, true, int128_get64(section->size),
1739                               match_data);
1740     if (r < 0) {
1741         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1742                 __func__, strerror(-r), -r);
1743         abort();
1744     }
1745 }
1746 
1747 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1748                                  MemoryRegionSection *section,
1749                                  bool match_data, uint64_t data,
1750                                  EventNotifier *e)
1751 
1752 {
1753     int fd = event_notifier_get_fd(e);
1754     int r;
1755 
1756     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1757                               data, false, int128_get64(section->size),
1758                               match_data);
1759     if (r < 0) {
1760         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1761                 __func__, strerror(-r), -r);
1762         abort();
1763     }
1764 }
1765 
1766 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1767                                   AddressSpace *as, int as_id, const char *name)
1768 {
1769     int i;
1770 
1771     kml->slots = g_new0(KVMSlot, s->nr_slots);
1772     kml->as_id = as_id;
1773 
1774     for (i = 0; i < s->nr_slots; i++) {
1775         kml->slots[i].slot = i;
1776     }
1777 
1778     QSIMPLEQ_INIT(&kml->transaction_add);
1779     QSIMPLEQ_INIT(&kml->transaction_del);
1780 
1781     kml->listener.region_add = kvm_region_add;
1782     kml->listener.region_del = kvm_region_del;
1783     kml->listener.commit = kvm_region_commit;
1784     kml->listener.log_start = kvm_log_start;
1785     kml->listener.log_stop = kvm_log_stop;
1786     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1787     kml->listener.name = name;
1788 
1789     if (s->kvm_dirty_ring_size) {
1790         kml->listener.log_sync_global = kvm_log_sync_global;
1791     } else {
1792         kml->listener.log_sync = kvm_log_sync;
1793         kml->listener.log_clear = kvm_log_clear;
1794     }
1795 
1796     memory_listener_register(&kml->listener, as);
1797 
1798     for (i = 0; i < s->nr_as; ++i) {
1799         if (!s->as[i].as) {
1800             s->as[i].as = as;
1801             s->as[i].ml = kml;
1802             break;
1803         }
1804     }
1805 }
1806 
1807 static MemoryListener kvm_io_listener = {
1808     .name = "kvm-io",
1809     .eventfd_add = kvm_io_ioeventfd_add,
1810     .eventfd_del = kvm_io_ioeventfd_del,
1811     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1812 };
1813 
1814 int kvm_set_irq(KVMState *s, int irq, int level)
1815 {
1816     struct kvm_irq_level event;
1817     int ret;
1818 
1819     assert(kvm_async_interrupts_enabled());
1820 
1821     event.level = level;
1822     event.irq = irq;
1823     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1824     if (ret < 0) {
1825         perror("kvm_set_irq");
1826         abort();
1827     }
1828 
1829     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1830 }
1831 
1832 #ifdef KVM_CAP_IRQ_ROUTING
1833 typedef struct KVMMSIRoute {
1834     struct kvm_irq_routing_entry kroute;
1835     QTAILQ_ENTRY(KVMMSIRoute) entry;
1836 } KVMMSIRoute;
1837 
1838 static void set_gsi(KVMState *s, unsigned int gsi)
1839 {
1840     set_bit(gsi, s->used_gsi_bitmap);
1841 }
1842 
1843 static void clear_gsi(KVMState *s, unsigned int gsi)
1844 {
1845     clear_bit(gsi, s->used_gsi_bitmap);
1846 }
1847 
1848 void kvm_init_irq_routing(KVMState *s)
1849 {
1850     int gsi_count, i;
1851 
1852     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1853     if (gsi_count > 0) {
1854         /* Round up so we can search ints using ffs */
1855         s->used_gsi_bitmap = bitmap_new(gsi_count);
1856         s->gsi_count = gsi_count;
1857     }
1858 
1859     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1860     s->nr_allocated_irq_routes = 0;
1861 
1862     if (!kvm_direct_msi_allowed) {
1863         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1864             QTAILQ_INIT(&s->msi_hashtab[i]);
1865         }
1866     }
1867 
1868     kvm_arch_init_irq_routing(s);
1869 }
1870 
1871 void kvm_irqchip_commit_routes(KVMState *s)
1872 {
1873     int ret;
1874 
1875     if (kvm_gsi_direct_mapping()) {
1876         return;
1877     }
1878 
1879     if (!kvm_gsi_routing_enabled()) {
1880         return;
1881     }
1882 
1883     s->irq_routes->flags = 0;
1884     trace_kvm_irqchip_commit_routes();
1885     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1886     assert(ret == 0);
1887 }
1888 
1889 static void kvm_add_routing_entry(KVMState *s,
1890                                   struct kvm_irq_routing_entry *entry)
1891 {
1892     struct kvm_irq_routing_entry *new;
1893     int n, size;
1894 
1895     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1896         n = s->nr_allocated_irq_routes * 2;
1897         if (n < 64) {
1898             n = 64;
1899         }
1900         size = sizeof(struct kvm_irq_routing);
1901         size += n * sizeof(*new);
1902         s->irq_routes = g_realloc(s->irq_routes, size);
1903         s->nr_allocated_irq_routes = n;
1904     }
1905     n = s->irq_routes->nr++;
1906     new = &s->irq_routes->entries[n];
1907 
1908     *new = *entry;
1909 
1910     set_gsi(s, entry->gsi);
1911 }
1912 
1913 static int kvm_update_routing_entry(KVMState *s,
1914                                     struct kvm_irq_routing_entry *new_entry)
1915 {
1916     struct kvm_irq_routing_entry *entry;
1917     int n;
1918 
1919     for (n = 0; n < s->irq_routes->nr; n++) {
1920         entry = &s->irq_routes->entries[n];
1921         if (entry->gsi != new_entry->gsi) {
1922             continue;
1923         }
1924 
1925         if(!memcmp(entry, new_entry, sizeof *entry)) {
1926             return 0;
1927         }
1928 
1929         *entry = *new_entry;
1930 
1931         return 0;
1932     }
1933 
1934     return -ESRCH;
1935 }
1936 
1937 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1938 {
1939     struct kvm_irq_routing_entry e = {};
1940 
1941     assert(pin < s->gsi_count);
1942 
1943     e.gsi = irq;
1944     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1945     e.flags = 0;
1946     e.u.irqchip.irqchip = irqchip;
1947     e.u.irqchip.pin = pin;
1948     kvm_add_routing_entry(s, &e);
1949 }
1950 
1951 void kvm_irqchip_release_virq(KVMState *s, int virq)
1952 {
1953     struct kvm_irq_routing_entry *e;
1954     int i;
1955 
1956     if (kvm_gsi_direct_mapping()) {
1957         return;
1958     }
1959 
1960     for (i = 0; i < s->irq_routes->nr; i++) {
1961         e = &s->irq_routes->entries[i];
1962         if (e->gsi == virq) {
1963             s->irq_routes->nr--;
1964             *e = s->irq_routes->entries[s->irq_routes->nr];
1965         }
1966     }
1967     clear_gsi(s, virq);
1968     kvm_arch_release_virq_post(virq);
1969     trace_kvm_irqchip_release_virq(virq);
1970 }
1971 
1972 void kvm_irqchip_add_change_notifier(Notifier *n)
1973 {
1974     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1975 }
1976 
1977 void kvm_irqchip_remove_change_notifier(Notifier *n)
1978 {
1979     notifier_remove(n);
1980 }
1981 
1982 void kvm_irqchip_change_notify(void)
1983 {
1984     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1985 }
1986 
1987 static unsigned int kvm_hash_msi(uint32_t data)
1988 {
1989     /* This is optimized for IA32 MSI layout. However, no other arch shall
1990      * repeat the mistake of not providing a direct MSI injection API. */
1991     return data & 0xff;
1992 }
1993 
1994 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1995 {
1996     KVMMSIRoute *route, *next;
1997     unsigned int hash;
1998 
1999     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
2000         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
2001             kvm_irqchip_release_virq(s, route->kroute.gsi);
2002             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
2003             g_free(route);
2004         }
2005     }
2006 }
2007 
2008 static int kvm_irqchip_get_virq(KVMState *s)
2009 {
2010     int next_virq;
2011 
2012     /*
2013      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
2014      * GSI numbers are more than the number of IRQ route. Allocating a GSI
2015      * number can succeed even though a new route entry cannot be added.
2016      * When this happens, flush dynamic MSI entries to free IRQ route entries.
2017      */
2018     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
2019         kvm_flush_dynamic_msi_routes(s);
2020     }
2021 
2022     /* Return the lowest unused GSI in the bitmap */
2023     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2024     if (next_virq >= s->gsi_count) {
2025         return -ENOSPC;
2026     } else {
2027         return next_virq;
2028     }
2029 }
2030 
2031 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
2032 {
2033     unsigned int hash = kvm_hash_msi(msg.data);
2034     KVMMSIRoute *route;
2035 
2036     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
2037         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
2038             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
2039             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
2040             return route;
2041         }
2042     }
2043     return NULL;
2044 }
2045 
2046 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2047 {
2048     struct kvm_msi msi;
2049     KVMMSIRoute *route;
2050 
2051     if (kvm_direct_msi_allowed) {
2052         msi.address_lo = (uint32_t)msg.address;
2053         msi.address_hi = msg.address >> 32;
2054         msi.data = le32_to_cpu(msg.data);
2055         msi.flags = 0;
2056         memset(msi.pad, 0, sizeof(msi.pad));
2057 
2058         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2059     }
2060 
2061     route = kvm_lookup_msi_route(s, msg);
2062     if (!route) {
2063         int virq;
2064 
2065         virq = kvm_irqchip_get_virq(s);
2066         if (virq < 0) {
2067             return virq;
2068         }
2069 
2070         route = g_new0(KVMMSIRoute, 1);
2071         route->kroute.gsi = virq;
2072         route->kroute.type = KVM_IRQ_ROUTING_MSI;
2073         route->kroute.flags = 0;
2074         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
2075         route->kroute.u.msi.address_hi = msg.address >> 32;
2076         route->kroute.u.msi.data = le32_to_cpu(msg.data);
2077 
2078         kvm_add_routing_entry(s, &route->kroute);
2079         kvm_irqchip_commit_routes(s);
2080 
2081         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
2082                            entry);
2083     }
2084 
2085     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
2086 
2087     return kvm_set_irq(s, route->kroute.gsi, 1);
2088 }
2089 
2090 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2091 {
2092     struct kvm_irq_routing_entry kroute = {};
2093     int virq;
2094     KVMState *s = c->s;
2095     MSIMessage msg = {0, 0};
2096 
2097     if (pci_available && dev) {
2098         msg = pci_get_msi_message(dev, vector);
2099     }
2100 
2101     if (kvm_gsi_direct_mapping()) {
2102         return kvm_arch_msi_data_to_gsi(msg.data);
2103     }
2104 
2105     if (!kvm_gsi_routing_enabled()) {
2106         return -ENOSYS;
2107     }
2108 
2109     virq = kvm_irqchip_get_virq(s);
2110     if (virq < 0) {
2111         return virq;
2112     }
2113 
2114     kroute.gsi = virq;
2115     kroute.type = KVM_IRQ_ROUTING_MSI;
2116     kroute.flags = 0;
2117     kroute.u.msi.address_lo = (uint32_t)msg.address;
2118     kroute.u.msi.address_hi = msg.address >> 32;
2119     kroute.u.msi.data = le32_to_cpu(msg.data);
2120     if (pci_available && kvm_msi_devid_required()) {
2121         kroute.flags = KVM_MSI_VALID_DEVID;
2122         kroute.u.msi.devid = pci_requester_id(dev);
2123     }
2124     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2125         kvm_irqchip_release_virq(s, virq);
2126         return -EINVAL;
2127     }
2128 
2129     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2130                                     vector, virq);
2131 
2132     kvm_add_routing_entry(s, &kroute);
2133     kvm_arch_add_msi_route_post(&kroute, vector, dev);
2134     c->changes++;
2135 
2136     return virq;
2137 }
2138 
2139 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2140                                  PCIDevice *dev)
2141 {
2142     struct kvm_irq_routing_entry kroute = {};
2143 
2144     if (kvm_gsi_direct_mapping()) {
2145         return 0;
2146     }
2147 
2148     if (!kvm_irqchip_in_kernel()) {
2149         return -ENOSYS;
2150     }
2151 
2152     kroute.gsi = virq;
2153     kroute.type = KVM_IRQ_ROUTING_MSI;
2154     kroute.flags = 0;
2155     kroute.u.msi.address_lo = (uint32_t)msg.address;
2156     kroute.u.msi.address_hi = msg.address >> 32;
2157     kroute.u.msi.data = le32_to_cpu(msg.data);
2158     if (pci_available && kvm_msi_devid_required()) {
2159         kroute.flags = KVM_MSI_VALID_DEVID;
2160         kroute.u.msi.devid = pci_requester_id(dev);
2161     }
2162     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2163         return -EINVAL;
2164     }
2165 
2166     trace_kvm_irqchip_update_msi_route(virq);
2167 
2168     return kvm_update_routing_entry(s, &kroute);
2169 }
2170 
2171 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2172                                     EventNotifier *resample, int virq,
2173                                     bool assign)
2174 {
2175     int fd = event_notifier_get_fd(event);
2176     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2177 
2178     struct kvm_irqfd irqfd = {
2179         .fd = fd,
2180         .gsi = virq,
2181         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2182     };
2183 
2184     if (rfd != -1) {
2185         assert(assign);
2186         if (kvm_irqchip_is_split()) {
2187             /*
2188              * When the slow irqchip (e.g. IOAPIC) is in the
2189              * userspace, KVM kernel resamplefd will not work because
2190              * the EOI of the interrupt will be delivered to userspace
2191              * instead, so the KVM kernel resamplefd kick will be
2192              * skipped.  The userspace here mimics what the kernel
2193              * provides with resamplefd, remember the resamplefd and
2194              * kick it when we receive EOI of this IRQ.
2195              *
2196              * This is hackery because IOAPIC is mostly bypassed
2197              * (except EOI broadcasts) when irqfd is used.  However
2198              * this can bring much performance back for split irqchip
2199              * with INTx IRQs (for VFIO, this gives 93% perf of the
2200              * full fast path, which is 46% perf boost comparing to
2201              * the INTx slow path).
2202              */
2203             kvm_resample_fd_insert(virq, resample);
2204         } else {
2205             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2206             irqfd.resamplefd = rfd;
2207         }
2208     } else if (!assign) {
2209         if (kvm_irqchip_is_split()) {
2210             kvm_resample_fd_remove(virq);
2211         }
2212     }
2213 
2214     if (!kvm_irqfds_enabled()) {
2215         return -ENOSYS;
2216     }
2217 
2218     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2219 }
2220 
2221 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2222 {
2223     struct kvm_irq_routing_entry kroute = {};
2224     int virq;
2225 
2226     if (!kvm_gsi_routing_enabled()) {
2227         return -ENOSYS;
2228     }
2229 
2230     virq = kvm_irqchip_get_virq(s);
2231     if (virq < 0) {
2232         return virq;
2233     }
2234 
2235     kroute.gsi = virq;
2236     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2237     kroute.flags = 0;
2238     kroute.u.adapter.summary_addr = adapter->summary_addr;
2239     kroute.u.adapter.ind_addr = adapter->ind_addr;
2240     kroute.u.adapter.summary_offset = adapter->summary_offset;
2241     kroute.u.adapter.ind_offset = adapter->ind_offset;
2242     kroute.u.adapter.adapter_id = adapter->adapter_id;
2243 
2244     kvm_add_routing_entry(s, &kroute);
2245 
2246     return virq;
2247 }
2248 
2249 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2250 {
2251     struct kvm_irq_routing_entry kroute = {};
2252     int virq;
2253 
2254     if (!kvm_gsi_routing_enabled()) {
2255         return -ENOSYS;
2256     }
2257     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2258         return -ENOSYS;
2259     }
2260     virq = kvm_irqchip_get_virq(s);
2261     if (virq < 0) {
2262         return virq;
2263     }
2264 
2265     kroute.gsi = virq;
2266     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2267     kroute.flags = 0;
2268     kroute.u.hv_sint.vcpu = vcpu;
2269     kroute.u.hv_sint.sint = sint;
2270 
2271     kvm_add_routing_entry(s, &kroute);
2272     kvm_irqchip_commit_routes(s);
2273 
2274     return virq;
2275 }
2276 
2277 #else /* !KVM_CAP_IRQ_ROUTING */
2278 
2279 void kvm_init_irq_routing(KVMState *s)
2280 {
2281 }
2282 
2283 void kvm_irqchip_release_virq(KVMState *s, int virq)
2284 {
2285 }
2286 
2287 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2288 {
2289     abort();
2290 }
2291 
2292 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2293 {
2294     return -ENOSYS;
2295 }
2296 
2297 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2298 {
2299     return -ENOSYS;
2300 }
2301 
2302 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2303 {
2304     return -ENOSYS;
2305 }
2306 
2307 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2308                                     EventNotifier *resample, int virq,
2309                                     bool assign)
2310 {
2311     abort();
2312 }
2313 
2314 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2315 {
2316     return -ENOSYS;
2317 }
2318 #endif /* !KVM_CAP_IRQ_ROUTING */
2319 
2320 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2321                                        EventNotifier *rn, int virq)
2322 {
2323     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2324 }
2325 
2326 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2327                                           int virq)
2328 {
2329     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2330 }
2331 
2332 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2333                                    EventNotifier *rn, qemu_irq irq)
2334 {
2335     gpointer key, gsi;
2336     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2337 
2338     if (!found) {
2339         return -ENXIO;
2340     }
2341     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2342 }
2343 
2344 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2345                                       qemu_irq irq)
2346 {
2347     gpointer key, gsi;
2348     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2349 
2350     if (!found) {
2351         return -ENXIO;
2352     }
2353     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2354 }
2355 
2356 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2357 {
2358     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2359 }
2360 
2361 static void kvm_irqchip_create(KVMState *s)
2362 {
2363     int ret;
2364 
2365     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2366     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2367         ;
2368     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2369         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2370         if (ret < 0) {
2371             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2372             exit(1);
2373         }
2374     } else {
2375         return;
2376     }
2377 
2378     /* First probe and see if there's a arch-specific hook to create the
2379      * in-kernel irqchip for us */
2380     ret = kvm_arch_irqchip_create(s);
2381     if (ret == 0) {
2382         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2383             error_report("Split IRQ chip mode not supported.");
2384             exit(1);
2385         } else {
2386             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2387         }
2388     }
2389     if (ret < 0) {
2390         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2391         exit(1);
2392     }
2393 
2394     kvm_kernel_irqchip = true;
2395     /* If we have an in-kernel IRQ chip then we must have asynchronous
2396      * interrupt delivery (though the reverse is not necessarily true)
2397      */
2398     kvm_async_interrupts_allowed = true;
2399     kvm_halt_in_kernel_allowed = true;
2400 
2401     kvm_init_irq_routing(s);
2402 
2403     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2404 }
2405 
2406 /* Find number of supported CPUs using the recommended
2407  * procedure from the kernel API documentation to cope with
2408  * older kernels that may be missing capabilities.
2409  */
2410 static int kvm_recommended_vcpus(KVMState *s)
2411 {
2412     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2413     return (ret) ? ret : 4;
2414 }
2415 
2416 static int kvm_max_vcpus(KVMState *s)
2417 {
2418     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2419     return (ret) ? ret : kvm_recommended_vcpus(s);
2420 }
2421 
2422 static int kvm_max_vcpu_id(KVMState *s)
2423 {
2424     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2425     return (ret) ? ret : kvm_max_vcpus(s);
2426 }
2427 
2428 bool kvm_vcpu_id_is_valid(int vcpu_id)
2429 {
2430     KVMState *s = KVM_STATE(current_accel());
2431     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2432 }
2433 
2434 bool kvm_dirty_ring_enabled(void)
2435 {
2436     return kvm_state->kvm_dirty_ring_size ? true : false;
2437 }
2438 
2439 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2440                            strList *names, strList *targets, Error **errp);
2441 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2442 
2443 uint32_t kvm_dirty_ring_size(void)
2444 {
2445     return kvm_state->kvm_dirty_ring_size;
2446 }
2447 
2448 static int kvm_init(MachineState *ms)
2449 {
2450     MachineClass *mc = MACHINE_GET_CLASS(ms);
2451     static const char upgrade_note[] =
2452         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2453         "(see http://sourceforge.net/projects/kvm).\n";
2454     const struct {
2455         const char *name;
2456         int num;
2457     } num_cpus[] = {
2458         { "SMP",          ms->smp.cpus },
2459         { "hotpluggable", ms->smp.max_cpus },
2460         { /* end of list */ }
2461     }, *nc = num_cpus;
2462     int soft_vcpus_limit, hard_vcpus_limit;
2463     KVMState *s;
2464     const KVMCapabilityInfo *missing_cap;
2465     int ret;
2466     int type;
2467     uint64_t dirty_log_manual_caps;
2468 
2469     qemu_mutex_init(&kml_slots_lock);
2470 
2471     s = KVM_STATE(ms->accelerator);
2472 
2473     /*
2474      * On systems where the kernel can support different base page
2475      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2476      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2477      * page size for the system though.
2478      */
2479     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2480 
2481     s->sigmask_len = 8;
2482     accel_blocker_init();
2483 
2484 #ifdef KVM_CAP_SET_GUEST_DEBUG
2485     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2486 #endif
2487     QLIST_INIT(&s->kvm_parked_vcpus);
2488     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2489     if (s->fd == -1) {
2490         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2491         ret = -errno;
2492         goto err;
2493     }
2494 
2495     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2496     if (ret < KVM_API_VERSION) {
2497         if (ret >= 0) {
2498             ret = -EINVAL;
2499         }
2500         fprintf(stderr, "kvm version too old\n");
2501         goto err;
2502     }
2503 
2504     if (ret > KVM_API_VERSION) {
2505         ret = -EINVAL;
2506         fprintf(stderr, "kvm version not supported\n");
2507         goto err;
2508     }
2509 
2510     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2511     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2512 
2513     /* If unspecified, use the default value */
2514     if (!s->nr_slots) {
2515         s->nr_slots = 32;
2516     }
2517 
2518     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2519     if (s->nr_as <= 1) {
2520         s->nr_as = 1;
2521     }
2522     s->as = g_new0(struct KVMAs, s->nr_as);
2523 
2524     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2525         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2526                                                             "kvm-type",
2527                                                             &error_abort);
2528         type = mc->kvm_type(ms, kvm_type);
2529     } else if (mc->kvm_type) {
2530         type = mc->kvm_type(ms, NULL);
2531     } else {
2532         type = kvm_arch_get_default_type(ms);
2533     }
2534 
2535     if (type < 0) {
2536         ret = -EINVAL;
2537         goto err;
2538     }
2539 
2540     do {
2541         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2542     } while (ret == -EINTR);
2543 
2544     if (ret < 0) {
2545         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2546                 strerror(-ret));
2547 
2548 #ifdef TARGET_S390X
2549         if (ret == -EINVAL) {
2550             fprintf(stderr,
2551                     "Host kernel setup problem detected. Please verify:\n");
2552             fprintf(stderr, "- for kernels supporting the switch_amode or"
2553                     " user_mode parameters, whether\n");
2554             fprintf(stderr,
2555                     "  user space is running in primary address space\n");
2556             fprintf(stderr,
2557                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2558                     "whether it is enabled\n");
2559         }
2560 #elif defined(TARGET_PPC)
2561         if (ret == -EINVAL) {
2562             fprintf(stderr,
2563                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2564                     (type == 2) ? "pr" : "hv");
2565         }
2566 #endif
2567         goto err;
2568     }
2569 
2570     s->vmfd = ret;
2571 
2572     /* check the vcpu limits */
2573     soft_vcpus_limit = kvm_recommended_vcpus(s);
2574     hard_vcpus_limit = kvm_max_vcpus(s);
2575 
2576     while (nc->name) {
2577         if (nc->num > soft_vcpus_limit) {
2578             warn_report("Number of %s cpus requested (%d) exceeds "
2579                         "the recommended cpus supported by KVM (%d)",
2580                         nc->name, nc->num, soft_vcpus_limit);
2581 
2582             if (nc->num > hard_vcpus_limit) {
2583                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2584                         "the maximum cpus supported by KVM (%d)\n",
2585                         nc->name, nc->num, hard_vcpus_limit);
2586                 exit(1);
2587             }
2588         }
2589         nc++;
2590     }
2591 
2592     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2593     if (!missing_cap) {
2594         missing_cap =
2595             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2596     }
2597     if (missing_cap) {
2598         ret = -EINVAL;
2599         fprintf(stderr, "kvm does not support %s\n%s",
2600                 missing_cap->name, upgrade_note);
2601         goto err;
2602     }
2603 
2604     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2605     s->coalesced_pio = s->coalesced_mmio &&
2606                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2607 
2608     /*
2609      * Enable KVM dirty ring if supported, otherwise fall back to
2610      * dirty logging mode
2611      */
2612     ret = kvm_dirty_ring_init(s);
2613     if (ret < 0) {
2614         goto err;
2615     }
2616 
2617     /*
2618      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2619      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2620      * page is wr-protected initially, which is against how kvm dirty ring is
2621      * usage - kvm dirty ring requires all pages are wr-protected at the very
2622      * beginning.  Enabling this feature for dirty ring causes data corruption.
2623      *
2624      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2625      * we may expect a higher stall time when starting the migration.  In the
2626      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2627      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2628      * guest pages.
2629      */
2630     if (!s->kvm_dirty_ring_size) {
2631         dirty_log_manual_caps =
2632             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2633         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2634                                   KVM_DIRTY_LOG_INITIALLY_SET);
2635         s->manual_dirty_log_protect = dirty_log_manual_caps;
2636         if (dirty_log_manual_caps) {
2637             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2638                                     dirty_log_manual_caps);
2639             if (ret) {
2640                 warn_report("Trying to enable capability %"PRIu64" of "
2641                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2642                             "Falling back to the legacy mode. ",
2643                             dirty_log_manual_caps);
2644                 s->manual_dirty_log_protect = 0;
2645             }
2646         }
2647     }
2648 
2649 #ifdef KVM_CAP_VCPU_EVENTS
2650     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2651 #endif
2652 
2653     s->robust_singlestep =
2654         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2655 
2656 #ifdef KVM_CAP_DEBUGREGS
2657     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2658 #endif
2659 
2660     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2661 
2662 #ifdef KVM_CAP_IRQ_ROUTING
2663     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2664 #endif
2665 
2666     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2667 
2668     s->irq_set_ioctl = KVM_IRQ_LINE;
2669     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2670         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2671     }
2672 
2673     kvm_readonly_mem_allowed =
2674         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2675 
2676     kvm_eventfds_allowed =
2677         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2678 
2679     kvm_irqfds_allowed =
2680         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2681 
2682     kvm_resamplefds_allowed =
2683         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2684 
2685     kvm_vm_attributes_allowed =
2686         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2687 
2688     kvm_ioeventfd_any_length_allowed =
2689         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2690 
2691 #ifdef KVM_CAP_SET_GUEST_DEBUG
2692     kvm_has_guest_debug =
2693         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2694 #endif
2695 
2696     kvm_sstep_flags = 0;
2697     if (kvm_has_guest_debug) {
2698         kvm_sstep_flags = SSTEP_ENABLE;
2699 
2700 #if defined KVM_CAP_SET_GUEST_DEBUG2
2701         int guest_debug_flags =
2702             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2703 
2704         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2705             kvm_sstep_flags |= SSTEP_NOIRQ;
2706         }
2707 #endif
2708     }
2709 
2710     kvm_state = s;
2711 
2712     ret = kvm_arch_init(ms, s);
2713     if (ret < 0) {
2714         goto err;
2715     }
2716 
2717     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2718         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2719     }
2720 
2721     qemu_register_reset(kvm_unpoison_all, NULL);
2722 
2723     if (s->kernel_irqchip_allowed) {
2724         kvm_irqchip_create(s);
2725     }
2726 
2727     if (kvm_eventfds_allowed) {
2728         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2729         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2730     }
2731     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2732     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2733 
2734     kvm_memory_listener_register(s, &s->memory_listener,
2735                                  &address_space_memory, 0, "kvm-memory");
2736     if (kvm_eventfds_allowed) {
2737         memory_listener_register(&kvm_io_listener,
2738                                  &address_space_io);
2739     }
2740     memory_listener_register(&kvm_coalesced_pio_listener,
2741                              &address_space_io);
2742 
2743     s->many_ioeventfds = kvm_check_many_ioeventfds();
2744 
2745     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2746     if (!s->sync_mmu) {
2747         ret = ram_block_discard_disable(true);
2748         assert(!ret);
2749     }
2750 
2751     if (s->kvm_dirty_ring_size) {
2752         kvm_dirty_ring_reaper_init(s);
2753     }
2754 
2755     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2756         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2757                             query_stats_schemas_cb);
2758     }
2759 
2760     return 0;
2761 
2762 err:
2763     assert(ret < 0);
2764     if (s->vmfd >= 0) {
2765         close(s->vmfd);
2766     }
2767     if (s->fd != -1) {
2768         close(s->fd);
2769     }
2770     g_free(s->as);
2771     g_free(s->memory_listener.slots);
2772 
2773     return ret;
2774 }
2775 
2776 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2777 {
2778     s->sigmask_len = sigmask_len;
2779 }
2780 
2781 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2782                           int size, uint32_t count)
2783 {
2784     int i;
2785     uint8_t *ptr = data;
2786 
2787     for (i = 0; i < count; i++) {
2788         address_space_rw(&address_space_io, port, attrs,
2789                          ptr, size,
2790                          direction == KVM_EXIT_IO_OUT);
2791         ptr += size;
2792     }
2793 }
2794 
2795 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2796 {
2797     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2798             run->internal.suberror);
2799 
2800     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2801         int i;
2802 
2803         for (i = 0; i < run->internal.ndata; ++i) {
2804             fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2805                     i, (uint64_t)run->internal.data[i]);
2806         }
2807     }
2808     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2809         fprintf(stderr, "emulation failure\n");
2810         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2811             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2812             return EXCP_INTERRUPT;
2813         }
2814     }
2815     /* FIXME: Should trigger a qmp message to let management know
2816      * something went wrong.
2817      */
2818     return -1;
2819 }
2820 
2821 void kvm_flush_coalesced_mmio_buffer(void)
2822 {
2823     KVMState *s = kvm_state;
2824 
2825     if (!s || s->coalesced_flush_in_progress) {
2826         return;
2827     }
2828 
2829     s->coalesced_flush_in_progress = true;
2830 
2831     if (s->coalesced_mmio_ring) {
2832         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2833         while (ring->first != ring->last) {
2834             struct kvm_coalesced_mmio *ent;
2835 
2836             ent = &ring->coalesced_mmio[ring->first];
2837 
2838             if (ent->pio == 1) {
2839                 address_space_write(&address_space_io, ent->phys_addr,
2840                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2841                                     ent->len);
2842             } else {
2843                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2844             }
2845             smp_wmb();
2846             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2847         }
2848     }
2849 
2850     s->coalesced_flush_in_progress = false;
2851 }
2852 
2853 bool kvm_cpu_check_are_resettable(void)
2854 {
2855     return kvm_arch_cpu_check_are_resettable();
2856 }
2857 
2858 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2859 {
2860     if (!cpu->vcpu_dirty) {
2861         int ret = kvm_arch_get_registers(cpu);
2862         if (ret) {
2863             error_report("Failed to get registers: %s", strerror(-ret));
2864             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2865             vm_stop(RUN_STATE_INTERNAL_ERROR);
2866         }
2867 
2868         cpu->vcpu_dirty = true;
2869     }
2870 }
2871 
2872 void kvm_cpu_synchronize_state(CPUState *cpu)
2873 {
2874     if (!cpu->vcpu_dirty) {
2875         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2876     }
2877 }
2878 
2879 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2880 {
2881     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2882     if (ret) {
2883         error_report("Failed to put registers after reset: %s", strerror(-ret));
2884         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2885         vm_stop(RUN_STATE_INTERNAL_ERROR);
2886     }
2887 
2888     cpu->vcpu_dirty = false;
2889 }
2890 
2891 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2892 {
2893     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2894 }
2895 
2896 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2897 {
2898     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2899     if (ret) {
2900         error_report("Failed to put registers after init: %s", strerror(-ret));
2901         exit(1);
2902     }
2903 
2904     cpu->vcpu_dirty = false;
2905 }
2906 
2907 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2908 {
2909     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2910 }
2911 
2912 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2913 {
2914     cpu->vcpu_dirty = true;
2915 }
2916 
2917 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2918 {
2919     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2920 }
2921 
2922 #ifdef KVM_HAVE_MCE_INJECTION
2923 static __thread void *pending_sigbus_addr;
2924 static __thread int pending_sigbus_code;
2925 static __thread bool have_sigbus_pending;
2926 #endif
2927 
2928 static void kvm_cpu_kick(CPUState *cpu)
2929 {
2930     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2931 }
2932 
2933 static void kvm_cpu_kick_self(void)
2934 {
2935     if (kvm_immediate_exit) {
2936         kvm_cpu_kick(current_cpu);
2937     } else {
2938         qemu_cpu_kick_self();
2939     }
2940 }
2941 
2942 static void kvm_eat_signals(CPUState *cpu)
2943 {
2944     struct timespec ts = { 0, 0 };
2945     siginfo_t siginfo;
2946     sigset_t waitset;
2947     sigset_t chkset;
2948     int r;
2949 
2950     if (kvm_immediate_exit) {
2951         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2952         /* Write kvm_run->immediate_exit before the cpu->exit_request
2953          * write in kvm_cpu_exec.
2954          */
2955         smp_wmb();
2956         return;
2957     }
2958 
2959     sigemptyset(&waitset);
2960     sigaddset(&waitset, SIG_IPI);
2961 
2962     do {
2963         r = sigtimedwait(&waitset, &siginfo, &ts);
2964         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2965             perror("sigtimedwait");
2966             exit(1);
2967         }
2968 
2969         r = sigpending(&chkset);
2970         if (r == -1) {
2971             perror("sigpending");
2972             exit(1);
2973         }
2974     } while (sigismember(&chkset, SIG_IPI));
2975 }
2976 
2977 int kvm_cpu_exec(CPUState *cpu)
2978 {
2979     struct kvm_run *run = cpu->kvm_run;
2980     int ret, run_ret;
2981 
2982     DPRINTF("kvm_cpu_exec()\n");
2983 
2984     if (kvm_arch_process_async_events(cpu)) {
2985         qatomic_set(&cpu->exit_request, 0);
2986         return EXCP_HLT;
2987     }
2988 
2989     qemu_mutex_unlock_iothread();
2990     cpu_exec_start(cpu);
2991 
2992     do {
2993         MemTxAttrs attrs;
2994 
2995         if (cpu->vcpu_dirty) {
2996             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2997             if (ret) {
2998                 error_report("Failed to put registers after init: %s",
2999                              strerror(-ret));
3000                 ret = -1;
3001                 break;
3002             }
3003 
3004             cpu->vcpu_dirty = false;
3005         }
3006 
3007         kvm_arch_pre_run(cpu, run);
3008         if (qatomic_read(&cpu->exit_request)) {
3009             DPRINTF("interrupt exit requested\n");
3010             /*
3011              * KVM requires us to reenter the kernel after IO exits to complete
3012              * instruction emulation. This self-signal will ensure that we
3013              * leave ASAP again.
3014              */
3015             kvm_cpu_kick_self();
3016         }
3017 
3018         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
3019          * Matching barrier in kvm_eat_signals.
3020          */
3021         smp_rmb();
3022 
3023         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
3024 
3025         attrs = kvm_arch_post_run(cpu, run);
3026 
3027 #ifdef KVM_HAVE_MCE_INJECTION
3028         if (unlikely(have_sigbus_pending)) {
3029             qemu_mutex_lock_iothread();
3030             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
3031                                     pending_sigbus_addr);
3032             have_sigbus_pending = false;
3033             qemu_mutex_unlock_iothread();
3034         }
3035 #endif
3036 
3037         if (run_ret < 0) {
3038             if (run_ret == -EINTR || run_ret == -EAGAIN) {
3039                 DPRINTF("io window exit\n");
3040                 kvm_eat_signals(cpu);
3041                 ret = EXCP_INTERRUPT;
3042                 break;
3043             }
3044             fprintf(stderr, "error: kvm run failed %s\n",
3045                     strerror(-run_ret));
3046 #ifdef TARGET_PPC
3047             if (run_ret == -EBUSY) {
3048                 fprintf(stderr,
3049                         "This is probably because your SMT is enabled.\n"
3050                         "VCPU can only run on primary threads with all "
3051                         "secondary threads offline.\n");
3052             }
3053 #endif
3054             ret = -1;
3055             break;
3056         }
3057 
3058         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3059         switch (run->exit_reason) {
3060         case KVM_EXIT_IO:
3061             DPRINTF("handle_io\n");
3062             /* Called outside BQL */
3063             kvm_handle_io(run->io.port, attrs,
3064                           (uint8_t *)run + run->io.data_offset,
3065                           run->io.direction,
3066                           run->io.size,
3067                           run->io.count);
3068             ret = 0;
3069             break;
3070         case KVM_EXIT_MMIO:
3071             DPRINTF("handle_mmio\n");
3072             /* Called outside BQL */
3073             address_space_rw(&address_space_memory,
3074                              run->mmio.phys_addr, attrs,
3075                              run->mmio.data,
3076                              run->mmio.len,
3077                              run->mmio.is_write);
3078             ret = 0;
3079             break;
3080         case KVM_EXIT_IRQ_WINDOW_OPEN:
3081             DPRINTF("irq_window_open\n");
3082             ret = EXCP_INTERRUPT;
3083             break;
3084         case KVM_EXIT_SHUTDOWN:
3085             DPRINTF("shutdown\n");
3086             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3087             ret = EXCP_INTERRUPT;
3088             break;
3089         case KVM_EXIT_UNKNOWN:
3090             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3091                     (uint64_t)run->hw.hardware_exit_reason);
3092             ret = -1;
3093             break;
3094         case KVM_EXIT_INTERNAL_ERROR:
3095             ret = kvm_handle_internal_error(cpu, run);
3096             break;
3097         case KVM_EXIT_DIRTY_RING_FULL:
3098             /*
3099              * We shouldn't continue if the dirty ring of this vcpu is
3100              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
3101              */
3102             trace_kvm_dirty_ring_full(cpu->cpu_index);
3103             qemu_mutex_lock_iothread();
3104             /*
3105              * We throttle vCPU by making it sleep once it exit from kernel
3106              * due to dirty ring full. In the dirtylimit scenario, reaping
3107              * all vCPUs after a single vCPU dirty ring get full result in
3108              * the miss of sleep, so just reap the ring-fulled vCPU.
3109              */
3110             if (dirtylimit_in_service()) {
3111                 kvm_dirty_ring_reap(kvm_state, cpu);
3112             } else {
3113                 kvm_dirty_ring_reap(kvm_state, NULL);
3114             }
3115             qemu_mutex_unlock_iothread();
3116             dirtylimit_vcpu_execute(cpu);
3117             ret = 0;
3118             break;
3119         case KVM_EXIT_SYSTEM_EVENT:
3120             switch (run->system_event.type) {
3121             case KVM_SYSTEM_EVENT_SHUTDOWN:
3122                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3123                 ret = EXCP_INTERRUPT;
3124                 break;
3125             case KVM_SYSTEM_EVENT_RESET:
3126                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3127                 ret = EXCP_INTERRUPT;
3128                 break;
3129             case KVM_SYSTEM_EVENT_CRASH:
3130                 kvm_cpu_synchronize_state(cpu);
3131                 qemu_mutex_lock_iothread();
3132                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3133                 qemu_mutex_unlock_iothread();
3134                 ret = 0;
3135                 break;
3136             default:
3137                 DPRINTF("kvm_arch_handle_exit\n");
3138                 ret = kvm_arch_handle_exit(cpu, run);
3139                 break;
3140             }
3141             break;
3142         default:
3143             DPRINTF("kvm_arch_handle_exit\n");
3144             ret = kvm_arch_handle_exit(cpu, run);
3145             break;
3146         }
3147     } while (ret == 0);
3148 
3149     cpu_exec_end(cpu);
3150     qemu_mutex_lock_iothread();
3151 
3152     if (ret < 0) {
3153         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3154         vm_stop(RUN_STATE_INTERNAL_ERROR);
3155     }
3156 
3157     qatomic_set(&cpu->exit_request, 0);
3158     return ret;
3159 }
3160 
3161 int kvm_ioctl(KVMState *s, int type, ...)
3162 {
3163     int ret;
3164     void *arg;
3165     va_list ap;
3166 
3167     va_start(ap, type);
3168     arg = va_arg(ap, void *);
3169     va_end(ap);
3170 
3171     trace_kvm_ioctl(type, arg);
3172     ret = ioctl(s->fd, type, arg);
3173     if (ret == -1) {
3174         ret = -errno;
3175     }
3176     return ret;
3177 }
3178 
3179 int kvm_vm_ioctl(KVMState *s, int type, ...)
3180 {
3181     int ret;
3182     void *arg;
3183     va_list ap;
3184 
3185     va_start(ap, type);
3186     arg = va_arg(ap, void *);
3187     va_end(ap);
3188 
3189     trace_kvm_vm_ioctl(type, arg);
3190     accel_ioctl_begin();
3191     ret = ioctl(s->vmfd, type, arg);
3192     accel_ioctl_end();
3193     if (ret == -1) {
3194         ret = -errno;
3195     }
3196     return ret;
3197 }
3198 
3199 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3200 {
3201     int ret;
3202     void *arg;
3203     va_list ap;
3204 
3205     va_start(ap, type);
3206     arg = va_arg(ap, void *);
3207     va_end(ap);
3208 
3209     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3210     accel_cpu_ioctl_begin(cpu);
3211     ret = ioctl(cpu->kvm_fd, type, arg);
3212     accel_cpu_ioctl_end(cpu);
3213     if (ret == -1) {
3214         ret = -errno;
3215     }
3216     return ret;
3217 }
3218 
3219 int kvm_device_ioctl(int fd, int type, ...)
3220 {
3221     int ret;
3222     void *arg;
3223     va_list ap;
3224 
3225     va_start(ap, type);
3226     arg = va_arg(ap, void *);
3227     va_end(ap);
3228 
3229     trace_kvm_device_ioctl(fd, type, arg);
3230     accel_ioctl_begin();
3231     ret = ioctl(fd, type, arg);
3232     accel_ioctl_end();
3233     if (ret == -1) {
3234         ret = -errno;
3235     }
3236     return ret;
3237 }
3238 
3239 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3240 {
3241     int ret;
3242     struct kvm_device_attr attribute = {
3243         .group = group,
3244         .attr = attr,
3245     };
3246 
3247     if (!kvm_vm_attributes_allowed) {
3248         return 0;
3249     }
3250 
3251     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3252     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3253     return ret ? 0 : 1;
3254 }
3255 
3256 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3257 {
3258     struct kvm_device_attr attribute = {
3259         .group = group,
3260         .attr = attr,
3261         .flags = 0,
3262     };
3263 
3264     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3265 }
3266 
3267 int kvm_device_access(int fd, int group, uint64_t attr,
3268                       void *val, bool write, Error **errp)
3269 {
3270     struct kvm_device_attr kvmattr;
3271     int err;
3272 
3273     kvmattr.flags = 0;
3274     kvmattr.group = group;
3275     kvmattr.attr = attr;
3276     kvmattr.addr = (uintptr_t)val;
3277 
3278     err = kvm_device_ioctl(fd,
3279                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3280                            &kvmattr);
3281     if (err < 0) {
3282         error_setg_errno(errp, -err,
3283                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3284                          "attr 0x%016" PRIx64,
3285                          write ? "SET" : "GET", group, attr);
3286     }
3287     return err;
3288 }
3289 
3290 bool kvm_has_sync_mmu(void)
3291 {
3292     return kvm_state->sync_mmu;
3293 }
3294 
3295 int kvm_has_vcpu_events(void)
3296 {
3297     return kvm_state->vcpu_events;
3298 }
3299 
3300 int kvm_has_robust_singlestep(void)
3301 {
3302     return kvm_state->robust_singlestep;
3303 }
3304 
3305 int kvm_has_debugregs(void)
3306 {
3307     return kvm_state->debugregs;
3308 }
3309 
3310 int kvm_max_nested_state_length(void)
3311 {
3312     return kvm_state->max_nested_state_len;
3313 }
3314 
3315 int kvm_has_many_ioeventfds(void)
3316 {
3317     if (!kvm_enabled()) {
3318         return 0;
3319     }
3320     return kvm_state->many_ioeventfds;
3321 }
3322 
3323 int kvm_has_gsi_routing(void)
3324 {
3325 #ifdef KVM_CAP_IRQ_ROUTING
3326     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3327 #else
3328     return false;
3329 #endif
3330 }
3331 
3332 int kvm_has_intx_set_mask(void)
3333 {
3334     return kvm_state->intx_set_mask;
3335 }
3336 
3337 bool kvm_arm_supports_user_irq(void)
3338 {
3339     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3340 }
3341 
3342 #ifdef KVM_CAP_SET_GUEST_DEBUG
3343 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3344 {
3345     struct kvm_sw_breakpoint *bp;
3346 
3347     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3348         if (bp->pc == pc) {
3349             return bp;
3350         }
3351     }
3352     return NULL;
3353 }
3354 
3355 int kvm_sw_breakpoints_active(CPUState *cpu)
3356 {
3357     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3358 }
3359 
3360 struct kvm_set_guest_debug_data {
3361     struct kvm_guest_debug dbg;
3362     int err;
3363 };
3364 
3365 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3366 {
3367     struct kvm_set_guest_debug_data *dbg_data =
3368         (struct kvm_set_guest_debug_data *) data.host_ptr;
3369 
3370     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3371                                    &dbg_data->dbg);
3372 }
3373 
3374 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3375 {
3376     struct kvm_set_guest_debug_data data;
3377 
3378     data.dbg.control = reinject_trap;
3379 
3380     if (cpu->singlestep_enabled) {
3381         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3382 
3383         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3384             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3385         }
3386     }
3387     kvm_arch_update_guest_debug(cpu, &data.dbg);
3388 
3389     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3390                RUN_ON_CPU_HOST_PTR(&data));
3391     return data.err;
3392 }
3393 
3394 bool kvm_supports_guest_debug(void)
3395 {
3396     /* probed during kvm_init() */
3397     return kvm_has_guest_debug;
3398 }
3399 
3400 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3401 {
3402     struct kvm_sw_breakpoint *bp;
3403     int err;
3404 
3405     if (type == GDB_BREAKPOINT_SW) {
3406         bp = kvm_find_sw_breakpoint(cpu, addr);
3407         if (bp) {
3408             bp->use_count++;
3409             return 0;
3410         }
3411 
3412         bp = g_new(struct kvm_sw_breakpoint, 1);
3413         bp->pc = addr;
3414         bp->use_count = 1;
3415         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3416         if (err) {
3417             g_free(bp);
3418             return err;
3419         }
3420 
3421         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3422     } else {
3423         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3424         if (err) {
3425             return err;
3426         }
3427     }
3428 
3429     CPU_FOREACH(cpu) {
3430         err = kvm_update_guest_debug(cpu, 0);
3431         if (err) {
3432             return err;
3433         }
3434     }
3435     return 0;
3436 }
3437 
3438 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3439 {
3440     struct kvm_sw_breakpoint *bp;
3441     int err;
3442 
3443     if (type == GDB_BREAKPOINT_SW) {
3444         bp = kvm_find_sw_breakpoint(cpu, addr);
3445         if (!bp) {
3446             return -ENOENT;
3447         }
3448 
3449         if (bp->use_count > 1) {
3450             bp->use_count--;
3451             return 0;
3452         }
3453 
3454         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3455         if (err) {
3456             return err;
3457         }
3458 
3459         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3460         g_free(bp);
3461     } else {
3462         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3463         if (err) {
3464             return err;
3465         }
3466     }
3467 
3468     CPU_FOREACH(cpu) {
3469         err = kvm_update_guest_debug(cpu, 0);
3470         if (err) {
3471             return err;
3472         }
3473     }
3474     return 0;
3475 }
3476 
3477 void kvm_remove_all_breakpoints(CPUState *cpu)
3478 {
3479     struct kvm_sw_breakpoint *bp, *next;
3480     KVMState *s = cpu->kvm_state;
3481     CPUState *tmpcpu;
3482 
3483     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3484         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3485             /* Try harder to find a CPU that currently sees the breakpoint. */
3486             CPU_FOREACH(tmpcpu) {
3487                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3488                     break;
3489                 }
3490             }
3491         }
3492         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3493         g_free(bp);
3494     }
3495     kvm_arch_remove_all_hw_breakpoints();
3496 
3497     CPU_FOREACH(cpu) {
3498         kvm_update_guest_debug(cpu, 0);
3499     }
3500 }
3501 
3502 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3503 
3504 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3505 {
3506     KVMState *s = kvm_state;
3507     struct kvm_signal_mask *sigmask;
3508     int r;
3509 
3510     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3511 
3512     sigmask->len = s->sigmask_len;
3513     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3514     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3515     g_free(sigmask);
3516 
3517     return r;
3518 }
3519 
3520 static void kvm_ipi_signal(int sig)
3521 {
3522     if (current_cpu) {
3523         assert(kvm_immediate_exit);
3524         kvm_cpu_kick(current_cpu);
3525     }
3526 }
3527 
3528 void kvm_init_cpu_signals(CPUState *cpu)
3529 {
3530     int r;
3531     sigset_t set;
3532     struct sigaction sigact;
3533 
3534     memset(&sigact, 0, sizeof(sigact));
3535     sigact.sa_handler = kvm_ipi_signal;
3536     sigaction(SIG_IPI, &sigact, NULL);
3537 
3538     pthread_sigmask(SIG_BLOCK, NULL, &set);
3539 #if defined KVM_HAVE_MCE_INJECTION
3540     sigdelset(&set, SIGBUS);
3541     pthread_sigmask(SIG_SETMASK, &set, NULL);
3542 #endif
3543     sigdelset(&set, SIG_IPI);
3544     if (kvm_immediate_exit) {
3545         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3546     } else {
3547         r = kvm_set_signal_mask(cpu, &set);
3548     }
3549     if (r) {
3550         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3551         exit(1);
3552     }
3553 }
3554 
3555 /* Called asynchronously in VCPU thread.  */
3556 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3557 {
3558 #ifdef KVM_HAVE_MCE_INJECTION
3559     if (have_sigbus_pending) {
3560         return 1;
3561     }
3562     have_sigbus_pending = true;
3563     pending_sigbus_addr = addr;
3564     pending_sigbus_code = code;
3565     qatomic_set(&cpu->exit_request, 1);
3566     return 0;
3567 #else
3568     return 1;
3569 #endif
3570 }
3571 
3572 /* Called synchronously (via signalfd) in main thread.  */
3573 int kvm_on_sigbus(int code, void *addr)
3574 {
3575 #ifdef KVM_HAVE_MCE_INJECTION
3576     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3577      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3578      * we can only get action optional here.
3579      */
3580     assert(code != BUS_MCEERR_AR);
3581     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3582     return 0;
3583 #else
3584     return 1;
3585 #endif
3586 }
3587 
3588 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3589 {
3590     int ret;
3591     struct kvm_create_device create_dev;
3592 
3593     create_dev.type = type;
3594     create_dev.fd = -1;
3595     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3596 
3597     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3598         return -ENOTSUP;
3599     }
3600 
3601     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3602     if (ret) {
3603         return ret;
3604     }
3605 
3606     return test ? 0 : create_dev.fd;
3607 }
3608 
3609 bool kvm_device_supported(int vmfd, uint64_t type)
3610 {
3611     struct kvm_create_device create_dev = {
3612         .type = type,
3613         .fd = -1,
3614         .flags = KVM_CREATE_DEVICE_TEST,
3615     };
3616 
3617     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3618         return false;
3619     }
3620 
3621     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3622 }
3623 
3624 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3625 {
3626     struct kvm_one_reg reg;
3627     int r;
3628 
3629     reg.id = id;
3630     reg.addr = (uintptr_t) source;
3631     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3632     if (r) {
3633         trace_kvm_failed_reg_set(id, strerror(-r));
3634     }
3635     return r;
3636 }
3637 
3638 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3639 {
3640     struct kvm_one_reg reg;
3641     int r;
3642 
3643     reg.id = id;
3644     reg.addr = (uintptr_t) target;
3645     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3646     if (r) {
3647         trace_kvm_failed_reg_get(id, strerror(-r));
3648     }
3649     return r;
3650 }
3651 
3652 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3653                                  hwaddr start_addr, hwaddr size)
3654 {
3655     KVMState *kvm = KVM_STATE(ms->accelerator);
3656     int i;
3657 
3658     for (i = 0; i < kvm->nr_as; ++i) {
3659         if (kvm->as[i].as == as && kvm->as[i].ml) {
3660             size = MIN(kvm_max_slot_size, size);
3661             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3662                                                     start_addr, size);
3663         }
3664     }
3665 
3666     return false;
3667 }
3668 
3669 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3670                                    const char *name, void *opaque,
3671                                    Error **errp)
3672 {
3673     KVMState *s = KVM_STATE(obj);
3674     int64_t value = s->kvm_shadow_mem;
3675 
3676     visit_type_int(v, name, &value, errp);
3677 }
3678 
3679 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3680                                    const char *name, void *opaque,
3681                                    Error **errp)
3682 {
3683     KVMState *s = KVM_STATE(obj);
3684     int64_t value;
3685 
3686     if (s->fd != -1) {
3687         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3688         return;
3689     }
3690 
3691     if (!visit_type_int(v, name, &value, errp)) {
3692         return;
3693     }
3694 
3695     s->kvm_shadow_mem = value;
3696 }
3697 
3698 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3699                                    const char *name, void *opaque,
3700                                    Error **errp)
3701 {
3702     KVMState *s = KVM_STATE(obj);
3703     OnOffSplit mode;
3704 
3705     if (s->fd != -1) {
3706         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3707         return;
3708     }
3709 
3710     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3711         return;
3712     }
3713     switch (mode) {
3714     case ON_OFF_SPLIT_ON:
3715         s->kernel_irqchip_allowed = true;
3716         s->kernel_irqchip_required = true;
3717         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3718         break;
3719     case ON_OFF_SPLIT_OFF:
3720         s->kernel_irqchip_allowed = false;
3721         s->kernel_irqchip_required = false;
3722         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3723         break;
3724     case ON_OFF_SPLIT_SPLIT:
3725         s->kernel_irqchip_allowed = true;
3726         s->kernel_irqchip_required = true;
3727         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3728         break;
3729     default:
3730         /* The value was checked in visit_type_OnOffSplit() above. If
3731          * we get here, then something is wrong in QEMU.
3732          */
3733         abort();
3734     }
3735 }
3736 
3737 bool kvm_kernel_irqchip_allowed(void)
3738 {
3739     return kvm_state->kernel_irqchip_allowed;
3740 }
3741 
3742 bool kvm_kernel_irqchip_required(void)
3743 {
3744     return kvm_state->kernel_irqchip_required;
3745 }
3746 
3747 bool kvm_kernel_irqchip_split(void)
3748 {
3749     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3750 }
3751 
3752 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3753                                     const char *name, void *opaque,
3754                                     Error **errp)
3755 {
3756     KVMState *s = KVM_STATE(obj);
3757     uint32_t value = s->kvm_dirty_ring_size;
3758 
3759     visit_type_uint32(v, name, &value, errp);
3760 }
3761 
3762 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3763                                     const char *name, void *opaque,
3764                                     Error **errp)
3765 {
3766     KVMState *s = KVM_STATE(obj);
3767     uint32_t value;
3768 
3769     if (s->fd != -1) {
3770         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3771         return;
3772     }
3773 
3774     if (!visit_type_uint32(v, name, &value, errp)) {
3775         return;
3776     }
3777     if (value & (value - 1)) {
3778         error_setg(errp, "dirty-ring-size must be a power of two.");
3779         return;
3780     }
3781 
3782     s->kvm_dirty_ring_size = value;
3783 }
3784 
3785 static void kvm_accel_instance_init(Object *obj)
3786 {
3787     KVMState *s = KVM_STATE(obj);
3788 
3789     s->fd = -1;
3790     s->vmfd = -1;
3791     s->kvm_shadow_mem = -1;
3792     s->kernel_irqchip_allowed = true;
3793     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3794     /* KVM dirty ring is by default off */
3795     s->kvm_dirty_ring_size = 0;
3796     s->kvm_dirty_ring_with_bitmap = false;
3797     s->kvm_eager_split_size = 0;
3798     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3799     s->notify_window = 0;
3800     s->xen_version = 0;
3801     s->xen_gnttab_max_frames = 64;
3802     s->xen_evtchn_max_pirq = 256;
3803 }
3804 
3805 /**
3806  * kvm_gdbstub_sstep_flags():
3807  *
3808  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3809  * support is probed during kvm_init()
3810  */
3811 static int kvm_gdbstub_sstep_flags(void)
3812 {
3813     return kvm_sstep_flags;
3814 }
3815 
3816 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3817 {
3818     AccelClass *ac = ACCEL_CLASS(oc);
3819     ac->name = "KVM";
3820     ac->init_machine = kvm_init;
3821     ac->has_memory = kvm_accel_has_memory;
3822     ac->allowed = &kvm_allowed;
3823     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3824 
3825     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3826         NULL, kvm_set_kernel_irqchip,
3827         NULL, NULL);
3828     object_class_property_set_description(oc, "kernel-irqchip",
3829         "Configure KVM in-kernel irqchip");
3830 
3831     object_class_property_add(oc, "kvm-shadow-mem", "int",
3832         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3833         NULL, NULL);
3834     object_class_property_set_description(oc, "kvm-shadow-mem",
3835         "KVM shadow MMU size");
3836 
3837     object_class_property_add(oc, "dirty-ring-size", "uint32",
3838         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3839         NULL, NULL);
3840     object_class_property_set_description(oc, "dirty-ring-size",
3841         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3842 
3843     kvm_arch_accel_class_init(oc);
3844 }
3845 
3846 static const TypeInfo kvm_accel_type = {
3847     .name = TYPE_KVM_ACCEL,
3848     .parent = TYPE_ACCEL,
3849     .instance_init = kvm_accel_instance_init,
3850     .class_init = kvm_accel_class_init,
3851     .instance_size = sizeof(KVMState),
3852 };
3853 
3854 static void kvm_type_init(void)
3855 {
3856     type_register_static(&kvm_accel_type);
3857 }
3858 
3859 type_init(kvm_type_init);
3860 
3861 typedef struct StatsArgs {
3862     union StatsResultsType {
3863         StatsResultList **stats;
3864         StatsSchemaList **schema;
3865     } result;
3866     strList *names;
3867     Error **errp;
3868 } StatsArgs;
3869 
3870 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3871                                     uint64_t *stats_data,
3872                                     StatsList *stats_list,
3873                                     Error **errp)
3874 {
3875 
3876     Stats *stats;
3877     uint64List *val_list = NULL;
3878 
3879     /* Only add stats that we understand.  */
3880     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3881     case KVM_STATS_TYPE_CUMULATIVE:
3882     case KVM_STATS_TYPE_INSTANT:
3883     case KVM_STATS_TYPE_PEAK:
3884     case KVM_STATS_TYPE_LINEAR_HIST:
3885     case KVM_STATS_TYPE_LOG_HIST:
3886         break;
3887     default:
3888         return stats_list;
3889     }
3890 
3891     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3892     case KVM_STATS_UNIT_NONE:
3893     case KVM_STATS_UNIT_BYTES:
3894     case KVM_STATS_UNIT_CYCLES:
3895     case KVM_STATS_UNIT_SECONDS:
3896     case KVM_STATS_UNIT_BOOLEAN:
3897         break;
3898     default:
3899         return stats_list;
3900     }
3901 
3902     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3903     case KVM_STATS_BASE_POW10:
3904     case KVM_STATS_BASE_POW2:
3905         break;
3906     default:
3907         return stats_list;
3908     }
3909 
3910     /* Alloc and populate data list */
3911     stats = g_new0(Stats, 1);
3912     stats->name = g_strdup(pdesc->name);
3913     stats->value = g_new0(StatsValue, 1);;
3914 
3915     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3916         stats->value->u.boolean = *stats_data;
3917         stats->value->type = QTYPE_QBOOL;
3918     } else if (pdesc->size == 1) {
3919         stats->value->u.scalar = *stats_data;
3920         stats->value->type = QTYPE_QNUM;
3921     } else {
3922         int i;
3923         for (i = 0; i < pdesc->size; i++) {
3924             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3925         }
3926         stats->value->u.list = val_list;
3927         stats->value->type = QTYPE_QLIST;
3928     }
3929 
3930     QAPI_LIST_PREPEND(stats_list, stats);
3931     return stats_list;
3932 }
3933 
3934 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3935                                                  StatsSchemaValueList *list,
3936                                                  Error **errp)
3937 {
3938     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3939     schema_entry->value = g_new0(StatsSchemaValue, 1);
3940 
3941     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3942     case KVM_STATS_TYPE_CUMULATIVE:
3943         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3944         break;
3945     case KVM_STATS_TYPE_INSTANT:
3946         schema_entry->value->type = STATS_TYPE_INSTANT;
3947         break;
3948     case KVM_STATS_TYPE_PEAK:
3949         schema_entry->value->type = STATS_TYPE_PEAK;
3950         break;
3951     case KVM_STATS_TYPE_LINEAR_HIST:
3952         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3953         schema_entry->value->bucket_size = pdesc->bucket_size;
3954         schema_entry->value->has_bucket_size = true;
3955         break;
3956     case KVM_STATS_TYPE_LOG_HIST:
3957         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3958         break;
3959     default:
3960         goto exit;
3961     }
3962 
3963     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3964     case KVM_STATS_UNIT_NONE:
3965         break;
3966     case KVM_STATS_UNIT_BOOLEAN:
3967         schema_entry->value->has_unit = true;
3968         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3969         break;
3970     case KVM_STATS_UNIT_BYTES:
3971         schema_entry->value->has_unit = true;
3972         schema_entry->value->unit = STATS_UNIT_BYTES;
3973         break;
3974     case KVM_STATS_UNIT_CYCLES:
3975         schema_entry->value->has_unit = true;
3976         schema_entry->value->unit = STATS_UNIT_CYCLES;
3977         break;
3978     case KVM_STATS_UNIT_SECONDS:
3979         schema_entry->value->has_unit = true;
3980         schema_entry->value->unit = STATS_UNIT_SECONDS;
3981         break;
3982     default:
3983         goto exit;
3984     }
3985 
3986     schema_entry->value->exponent = pdesc->exponent;
3987     if (pdesc->exponent) {
3988         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3989         case KVM_STATS_BASE_POW10:
3990             schema_entry->value->has_base = true;
3991             schema_entry->value->base = 10;
3992             break;
3993         case KVM_STATS_BASE_POW2:
3994             schema_entry->value->has_base = true;
3995             schema_entry->value->base = 2;
3996             break;
3997         default:
3998             goto exit;
3999         }
4000     }
4001 
4002     schema_entry->value->name = g_strdup(pdesc->name);
4003     schema_entry->next = list;
4004     return schema_entry;
4005 exit:
4006     g_free(schema_entry->value);
4007     g_free(schema_entry);
4008     return list;
4009 }
4010 
4011 /* Cached stats descriptors */
4012 typedef struct StatsDescriptors {
4013     const char *ident; /* cache key, currently the StatsTarget */
4014     struct kvm_stats_desc *kvm_stats_desc;
4015     struct kvm_stats_header kvm_stats_header;
4016     QTAILQ_ENTRY(StatsDescriptors) next;
4017 } StatsDescriptors;
4018 
4019 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
4020     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
4021 
4022 /*
4023  * Return the descriptors for 'target', that either have already been read
4024  * or are retrieved from 'stats_fd'.
4025  */
4026 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
4027                                                 Error **errp)
4028 {
4029     StatsDescriptors *descriptors;
4030     const char *ident;
4031     struct kvm_stats_desc *kvm_stats_desc;
4032     struct kvm_stats_header *kvm_stats_header;
4033     size_t size_desc;
4034     ssize_t ret;
4035 
4036     ident = StatsTarget_str(target);
4037     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4038         if (g_str_equal(descriptors->ident, ident)) {
4039             return descriptors;
4040         }
4041     }
4042 
4043     descriptors = g_new0(StatsDescriptors, 1);
4044 
4045     /* Read stats header */
4046     kvm_stats_header = &descriptors->kvm_stats_header;
4047     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4048     if (ret != sizeof(*kvm_stats_header)) {
4049         error_setg(errp, "KVM stats: failed to read stats header: "
4050                    "expected %zu actual %zu",
4051                    sizeof(*kvm_stats_header), ret);
4052         g_free(descriptors);
4053         return NULL;
4054     }
4055     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4056 
4057     /* Read stats descriptors */
4058     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4059     ret = pread(stats_fd, kvm_stats_desc,
4060                 size_desc * kvm_stats_header->num_desc,
4061                 kvm_stats_header->desc_offset);
4062 
4063     if (ret != size_desc * kvm_stats_header->num_desc) {
4064         error_setg(errp, "KVM stats: failed to read stats descriptors: "
4065                    "expected %zu actual %zu",
4066                    size_desc * kvm_stats_header->num_desc, ret);
4067         g_free(descriptors);
4068         g_free(kvm_stats_desc);
4069         return NULL;
4070     }
4071     descriptors->kvm_stats_desc = kvm_stats_desc;
4072     descriptors->ident = ident;
4073     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4074     return descriptors;
4075 }
4076 
4077 static void query_stats(StatsResultList **result, StatsTarget target,
4078                         strList *names, int stats_fd, CPUState *cpu,
4079                         Error **errp)
4080 {
4081     struct kvm_stats_desc *kvm_stats_desc;
4082     struct kvm_stats_header *kvm_stats_header;
4083     StatsDescriptors *descriptors;
4084     g_autofree uint64_t *stats_data = NULL;
4085     struct kvm_stats_desc *pdesc;
4086     StatsList *stats_list = NULL;
4087     size_t size_desc, size_data = 0;
4088     ssize_t ret;
4089     int i;
4090 
4091     descriptors = find_stats_descriptors(target, stats_fd, errp);
4092     if (!descriptors) {
4093         return;
4094     }
4095 
4096     kvm_stats_header = &descriptors->kvm_stats_header;
4097     kvm_stats_desc = descriptors->kvm_stats_desc;
4098     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4099 
4100     /* Tally the total data size; read schema data */
4101     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4102         pdesc = (void *)kvm_stats_desc + i * size_desc;
4103         size_data += pdesc->size * sizeof(*stats_data);
4104     }
4105 
4106     stats_data = g_malloc0(size_data);
4107     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4108 
4109     if (ret != size_data) {
4110         error_setg(errp, "KVM stats: failed to read data: "
4111                    "expected %zu actual %zu", size_data, ret);
4112         return;
4113     }
4114 
4115     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4116         uint64_t *stats;
4117         pdesc = (void *)kvm_stats_desc + i * size_desc;
4118 
4119         /* Add entry to the list */
4120         stats = (void *)stats_data + pdesc->offset;
4121         if (!apply_str_list_filter(pdesc->name, names)) {
4122             continue;
4123         }
4124         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4125     }
4126 
4127     if (!stats_list) {
4128         return;
4129     }
4130 
4131     switch (target) {
4132     case STATS_TARGET_VM:
4133         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4134         break;
4135     case STATS_TARGET_VCPU:
4136         add_stats_entry(result, STATS_PROVIDER_KVM,
4137                         cpu->parent_obj.canonical_path,
4138                         stats_list);
4139         break;
4140     default:
4141         g_assert_not_reached();
4142     }
4143 }
4144 
4145 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4146                                int stats_fd, Error **errp)
4147 {
4148     struct kvm_stats_desc *kvm_stats_desc;
4149     struct kvm_stats_header *kvm_stats_header;
4150     StatsDescriptors *descriptors;
4151     struct kvm_stats_desc *pdesc;
4152     StatsSchemaValueList *stats_list = NULL;
4153     size_t size_desc;
4154     int i;
4155 
4156     descriptors = find_stats_descriptors(target, stats_fd, errp);
4157     if (!descriptors) {
4158         return;
4159     }
4160 
4161     kvm_stats_header = &descriptors->kvm_stats_header;
4162     kvm_stats_desc = descriptors->kvm_stats_desc;
4163     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4164 
4165     /* Tally the total data size; read schema data */
4166     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4167         pdesc = (void *)kvm_stats_desc + i * size_desc;
4168         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4169     }
4170 
4171     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4172 }
4173 
4174 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4175 {
4176     int stats_fd = cpu->kvm_vcpu_stats_fd;
4177     Error *local_err = NULL;
4178 
4179     if (stats_fd == -1) {
4180         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4181         error_propagate(kvm_stats_args->errp, local_err);
4182         return;
4183     }
4184     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4185                 kvm_stats_args->names, stats_fd, cpu,
4186                 kvm_stats_args->errp);
4187 }
4188 
4189 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4190 {
4191     int stats_fd = cpu->kvm_vcpu_stats_fd;
4192     Error *local_err = NULL;
4193 
4194     if (stats_fd == -1) {
4195         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4196         error_propagate(kvm_stats_args->errp, local_err);
4197         return;
4198     }
4199     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4200                        kvm_stats_args->errp);
4201 }
4202 
4203 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4204                            strList *names, strList *targets, Error **errp)
4205 {
4206     KVMState *s = kvm_state;
4207     CPUState *cpu;
4208     int stats_fd;
4209 
4210     switch (target) {
4211     case STATS_TARGET_VM:
4212     {
4213         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4214         if (stats_fd == -1) {
4215             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4216             return;
4217         }
4218         query_stats(result, target, names, stats_fd, NULL, errp);
4219         close(stats_fd);
4220         break;
4221     }
4222     case STATS_TARGET_VCPU:
4223     {
4224         StatsArgs stats_args;
4225         stats_args.result.stats = result;
4226         stats_args.names = names;
4227         stats_args.errp = errp;
4228         CPU_FOREACH(cpu) {
4229             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4230                 continue;
4231             }
4232             query_stats_vcpu(cpu, &stats_args);
4233         }
4234         break;
4235     }
4236     default:
4237         break;
4238     }
4239 }
4240 
4241 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4242 {
4243     StatsArgs stats_args;
4244     KVMState *s = kvm_state;
4245     int stats_fd;
4246 
4247     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4248     if (stats_fd == -1) {
4249         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4250         return;
4251     }
4252     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4253     close(stats_fd);
4254 
4255     if (first_cpu) {
4256         stats_args.result.schema = result;
4257         stats_args.errp = errp;
4258         query_stats_schema_vcpu(first_cpu, &stats_args);
4259     }
4260 }
4261