1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "gdbstub/enums.h" 31 #include "system/kvm_int.h" 32 #include "system/runstate.h" 33 #include "system/cpus.h" 34 #include "system/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/tswap.h" 37 #include "system/memory.h" 38 #include "system/ram_addr.h" 39 #include "qemu/event_notifier.h" 40 #include "qemu/main-loop.h" 41 #include "trace.h" 42 #include "hw/irq.h" 43 #include "qapi/visitor.h" 44 #include "qapi/qapi-types-common.h" 45 #include "qapi/qapi-visit-common.h" 46 #include "system/reset.h" 47 #include "qemu/guest-random.h" 48 #include "system/hw_accel.h" 49 #include "kvm-cpus.h" 50 #include "system/dirtylimit.h" 51 #include "qemu/range.h" 52 53 #include "hw/boards.h" 54 #include "system/stats.h" 55 56 /* This check must be after config-host.h is included */ 57 #ifdef CONFIG_EVENTFD 58 #include <sys/eventfd.h> 59 #endif 60 61 #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) 62 # define KVM_HAVE_MCE_INJECTION 1 63 #endif 64 65 66 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 67 * need to use the real host PAGE_SIZE, as that's what KVM will use. 68 */ 69 #ifdef PAGE_SIZE 70 #undef PAGE_SIZE 71 #endif 72 #define PAGE_SIZE qemu_real_host_page_size() 73 74 #ifndef KVM_GUESTDBG_BLOCKIRQ 75 #define KVM_GUESTDBG_BLOCKIRQ 0 76 #endif 77 78 /* Default num of memslots to be allocated when VM starts */ 79 #define KVM_MEMSLOTS_NR_ALLOC_DEFAULT 16 80 /* Default max allowed memslots if kernel reported nothing */ 81 #define KVM_MEMSLOTS_NR_MAX_DEFAULT 32 82 83 struct KVMParkedVcpu { 84 unsigned long vcpu_id; 85 int kvm_fd; 86 QLIST_ENTRY(KVMParkedVcpu) node; 87 }; 88 89 KVMState *kvm_state; 90 bool kvm_kernel_irqchip; 91 bool kvm_split_irqchip; 92 bool kvm_async_interrupts_allowed; 93 bool kvm_halt_in_kernel_allowed; 94 bool kvm_resamplefds_allowed; 95 bool kvm_msi_via_irqfd_allowed; 96 bool kvm_gsi_routing_allowed; 97 bool kvm_gsi_direct_mapping; 98 bool kvm_allowed; 99 bool kvm_readonly_mem_allowed; 100 bool kvm_vm_attributes_allowed; 101 bool kvm_msi_use_devid; 102 bool kvm_pre_fault_memory_supported; 103 static bool kvm_has_guest_debug; 104 static int kvm_sstep_flags; 105 static bool kvm_immediate_exit; 106 static uint64_t kvm_supported_memory_attributes; 107 static bool kvm_guest_memfd_supported; 108 static hwaddr kvm_max_slot_size = ~0; 109 110 static const KVMCapabilityInfo kvm_required_capabilites[] = { 111 KVM_CAP_INFO(USER_MEMORY), 112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 114 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 115 KVM_CAP_INFO(IOEVENTFD), 116 KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), 117 KVM_CAP_LAST_INFO 118 }; 119 120 static NotifierList kvm_irqchip_change_notifiers = 121 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 122 123 struct KVMResampleFd { 124 int gsi; 125 EventNotifier *resample_event; 126 QLIST_ENTRY(KVMResampleFd) node; 127 }; 128 typedef struct KVMResampleFd KVMResampleFd; 129 130 /* 131 * Only used with split irqchip where we need to do the resample fd 132 * kick for the kernel from userspace. 133 */ 134 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 135 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 136 137 static QemuMutex kml_slots_lock; 138 139 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 140 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 141 142 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 143 144 static inline void kvm_resample_fd_remove(int gsi) 145 { 146 KVMResampleFd *rfd; 147 148 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 149 if (rfd->gsi == gsi) { 150 QLIST_REMOVE(rfd, node); 151 g_free(rfd); 152 break; 153 } 154 } 155 } 156 157 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 158 { 159 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 160 161 rfd->gsi = gsi; 162 rfd->resample_event = event; 163 164 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 165 } 166 167 void kvm_resample_fd_notify(int gsi) 168 { 169 KVMResampleFd *rfd; 170 171 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 172 if (rfd->gsi == gsi) { 173 event_notifier_set(rfd->resample_event); 174 trace_kvm_resample_fd_notify(gsi); 175 return; 176 } 177 } 178 } 179 180 /** 181 * kvm_slots_grow(): Grow the slots[] array in the KVMMemoryListener 182 * 183 * @kml: The KVMMemoryListener* to grow the slots[] array 184 * @nr_slots_new: The new size of slots[] array 185 * 186 * Returns: True if the array grows larger, false otherwise. 187 */ 188 static bool kvm_slots_grow(KVMMemoryListener *kml, unsigned int nr_slots_new) 189 { 190 unsigned int i, cur = kml->nr_slots_allocated; 191 KVMSlot *slots; 192 193 if (nr_slots_new > kvm_state->nr_slots_max) { 194 nr_slots_new = kvm_state->nr_slots_max; 195 } 196 197 if (cur >= nr_slots_new) { 198 /* Big enough, no need to grow, or we reached max */ 199 return false; 200 } 201 202 if (cur == 0) { 203 slots = g_new0(KVMSlot, nr_slots_new); 204 } else { 205 assert(kml->slots); 206 slots = g_renew(KVMSlot, kml->slots, nr_slots_new); 207 /* 208 * g_renew() doesn't initialize extended buffers, however kvm 209 * memslots require fields to be zero-initialized. E.g. pointers, 210 * memory_size field, etc. 211 */ 212 memset(&slots[cur], 0x0, sizeof(slots[0]) * (nr_slots_new - cur)); 213 } 214 215 for (i = cur; i < nr_slots_new; i++) { 216 slots[i].slot = i; 217 } 218 219 kml->slots = slots; 220 kml->nr_slots_allocated = nr_slots_new; 221 trace_kvm_slots_grow(cur, nr_slots_new); 222 223 return true; 224 } 225 226 static bool kvm_slots_double(KVMMemoryListener *kml) 227 { 228 return kvm_slots_grow(kml, kml->nr_slots_allocated * 2); 229 } 230 231 unsigned int kvm_get_max_memslots(void) 232 { 233 KVMState *s = KVM_STATE(current_accel()); 234 235 return s->nr_slots_max; 236 } 237 238 unsigned int kvm_get_free_memslots(void) 239 { 240 unsigned int used_slots = 0; 241 KVMState *s = kvm_state; 242 int i; 243 244 kvm_slots_lock(); 245 for (i = 0; i < s->nr_as; i++) { 246 if (!s->as[i].ml) { 247 continue; 248 } 249 used_slots = MAX(used_slots, s->as[i].ml->nr_slots_used); 250 } 251 kvm_slots_unlock(); 252 253 return s->nr_slots_max - used_slots; 254 } 255 256 /* Called with KVMMemoryListener.slots_lock held */ 257 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 258 { 259 unsigned int n; 260 int i; 261 262 for (i = 0; i < kml->nr_slots_allocated; i++) { 263 if (kml->slots[i].memory_size == 0) { 264 return &kml->slots[i]; 265 } 266 } 267 268 /* 269 * If no free slots, try to grow first by doubling. Cache the old size 270 * here to avoid another round of search: if the grow succeeded, it 271 * means slots[] now must have the existing "n" slots occupied, 272 * followed by one or more free slots starting from slots[n]. 273 */ 274 n = kml->nr_slots_allocated; 275 if (kvm_slots_double(kml)) { 276 return &kml->slots[n]; 277 } 278 279 return NULL; 280 } 281 282 /* Called with KVMMemoryListener.slots_lock held */ 283 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 284 { 285 KVMSlot *slot = kvm_get_free_slot(kml); 286 287 if (slot) { 288 return slot; 289 } 290 291 fprintf(stderr, "%s: no free slot available\n", __func__); 292 abort(); 293 } 294 295 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 296 hwaddr start_addr, 297 hwaddr size) 298 { 299 int i; 300 301 for (i = 0; i < kml->nr_slots_allocated; i++) { 302 KVMSlot *mem = &kml->slots[i]; 303 304 if (start_addr == mem->start_addr && size == mem->memory_size) { 305 return mem; 306 } 307 } 308 309 return NULL; 310 } 311 312 /* 313 * Calculate and align the start address and the size of the section. 314 * Return the size. If the size is 0, the aligned section is empty. 315 */ 316 static hwaddr kvm_align_section(MemoryRegionSection *section, 317 hwaddr *start) 318 { 319 hwaddr size = int128_get64(section->size); 320 hwaddr delta, aligned; 321 322 /* kvm works in page size chunks, but the function may be called 323 with sub-page size and unaligned start address. Pad the start 324 address to next and truncate size to previous page boundary. */ 325 aligned = ROUND_UP(section->offset_within_address_space, 326 qemu_real_host_page_size()); 327 delta = aligned - section->offset_within_address_space; 328 *start = aligned; 329 if (delta > size) { 330 return 0; 331 } 332 333 return (size - delta) & qemu_real_host_page_mask(); 334 } 335 336 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 337 hwaddr *phys_addr) 338 { 339 KVMMemoryListener *kml = &s->memory_listener; 340 int i, ret = 0; 341 342 kvm_slots_lock(); 343 for (i = 0; i < kml->nr_slots_allocated; i++) { 344 KVMSlot *mem = &kml->slots[i]; 345 346 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 347 *phys_addr = mem->start_addr + (ram - mem->ram); 348 ret = 1; 349 break; 350 } 351 } 352 kvm_slots_unlock(); 353 354 return ret; 355 } 356 357 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 358 { 359 KVMState *s = kvm_state; 360 struct kvm_userspace_memory_region2 mem; 361 int ret; 362 363 mem.slot = slot->slot | (kml->as_id << 16); 364 mem.guest_phys_addr = slot->start_addr; 365 mem.userspace_addr = (unsigned long)slot->ram; 366 mem.flags = slot->flags; 367 mem.guest_memfd = slot->guest_memfd; 368 mem.guest_memfd_offset = slot->guest_memfd_offset; 369 370 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 371 /* Set the slot size to 0 before setting the slot to the desired 372 * value. This is needed based on KVM commit 75d61fbc. */ 373 mem.memory_size = 0; 374 375 if (kvm_guest_memfd_supported) { 376 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 377 } else { 378 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 379 } 380 if (ret < 0) { 381 goto err; 382 } 383 } 384 mem.memory_size = slot->memory_size; 385 if (kvm_guest_memfd_supported) { 386 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem); 387 } else { 388 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 389 } 390 slot->old_flags = mem.flags; 391 err: 392 trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags, 393 mem.guest_phys_addr, mem.memory_size, 394 mem.userspace_addr, mem.guest_memfd, 395 mem.guest_memfd_offset, ret); 396 if (ret < 0) { 397 if (kvm_guest_memfd_supported) { 398 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d," 399 " start=0x%" PRIx64 ", size=0x%" PRIx64 "," 400 " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 "," 401 " guest_memfd_offset=0x%" PRIx64 ": %s", 402 __func__, mem.slot, slot->start_addr, 403 (uint64_t)mem.memory_size, mem.flags, 404 mem.guest_memfd, (uint64_t)mem.guest_memfd_offset, 405 strerror(errno)); 406 } else { 407 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 408 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 409 __func__, mem.slot, slot->start_addr, 410 (uint64_t)mem.memory_size, strerror(errno)); 411 } 412 } 413 return ret; 414 } 415 416 void kvm_park_vcpu(CPUState *cpu) 417 { 418 struct KVMParkedVcpu *vcpu; 419 420 trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 421 422 vcpu = g_malloc0(sizeof(*vcpu)); 423 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 424 vcpu->kvm_fd = cpu->kvm_fd; 425 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 426 } 427 428 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id) 429 { 430 struct KVMParkedVcpu *cpu; 431 int kvm_fd = -ENOENT; 432 433 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 434 if (cpu->vcpu_id == vcpu_id) { 435 QLIST_REMOVE(cpu, node); 436 kvm_fd = cpu->kvm_fd; 437 g_free(cpu); 438 break; 439 } 440 } 441 442 trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked"); 443 444 return kvm_fd; 445 } 446 447 static void kvm_reset_parked_vcpus(KVMState *s) 448 { 449 struct KVMParkedVcpu *cpu; 450 451 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 452 kvm_arch_reset_parked_vcpu(cpu->vcpu_id, cpu->kvm_fd); 453 } 454 } 455 456 int kvm_create_vcpu(CPUState *cpu) 457 { 458 unsigned long vcpu_id = kvm_arch_vcpu_id(cpu); 459 KVMState *s = kvm_state; 460 int kvm_fd; 461 462 /* check if the KVM vCPU already exist but is parked */ 463 kvm_fd = kvm_unpark_vcpu(s, vcpu_id); 464 if (kvm_fd < 0) { 465 /* vCPU not parked: create a new KVM vCPU */ 466 kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id); 467 if (kvm_fd < 0) { 468 error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id); 469 return kvm_fd; 470 } 471 } 472 473 cpu->kvm_fd = kvm_fd; 474 cpu->kvm_state = s; 475 if (!s->guest_state_protected) { 476 cpu->vcpu_dirty = true; 477 } 478 cpu->dirty_pages = 0; 479 cpu->throttle_us_per_full = 0; 480 481 trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd); 482 483 return 0; 484 } 485 486 int kvm_create_and_park_vcpu(CPUState *cpu) 487 { 488 int ret = 0; 489 490 ret = kvm_create_vcpu(cpu); 491 if (!ret) { 492 kvm_park_vcpu(cpu); 493 } 494 495 return ret; 496 } 497 498 static int do_kvm_destroy_vcpu(CPUState *cpu) 499 { 500 KVMState *s = kvm_state; 501 int mmap_size; 502 int ret = 0; 503 504 trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 505 506 ret = kvm_arch_destroy_vcpu(cpu); 507 if (ret < 0) { 508 goto err; 509 } 510 511 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 512 if (mmap_size < 0) { 513 ret = mmap_size; 514 trace_kvm_failed_get_vcpu_mmap_size(); 515 goto err; 516 } 517 518 /* If I am the CPU that created coalesced_mmio_ring, then discard it */ 519 if (s->coalesced_mmio_ring == (void *)cpu->kvm_run + PAGE_SIZE) { 520 s->coalesced_mmio_ring = NULL; 521 } 522 523 ret = munmap(cpu->kvm_run, mmap_size); 524 if (ret < 0) { 525 goto err; 526 } 527 cpu->kvm_run = NULL; 528 529 if (cpu->kvm_dirty_gfns) { 530 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 531 if (ret < 0) { 532 goto err; 533 } 534 cpu->kvm_dirty_gfns = NULL; 535 } 536 537 kvm_park_vcpu(cpu); 538 err: 539 return ret; 540 } 541 542 void kvm_destroy_vcpu(CPUState *cpu) 543 { 544 if (do_kvm_destroy_vcpu(cpu) < 0) { 545 error_report("kvm_destroy_vcpu failed"); 546 exit(EXIT_FAILURE); 547 } 548 } 549 550 int kvm_init_vcpu(CPUState *cpu, Error **errp) 551 { 552 KVMState *s = kvm_state; 553 int mmap_size; 554 int ret; 555 556 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 557 558 ret = kvm_arch_pre_create_vcpu(cpu, errp); 559 if (ret < 0) { 560 goto err; 561 } 562 563 ret = kvm_create_vcpu(cpu); 564 if (ret < 0) { 565 error_setg_errno(errp, -ret, 566 "kvm_init_vcpu: kvm_create_vcpu failed (%lu)", 567 kvm_arch_vcpu_id(cpu)); 568 goto err; 569 } 570 571 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 572 if (mmap_size < 0) { 573 ret = mmap_size; 574 error_setg_errno(errp, -mmap_size, 575 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 576 goto err; 577 } 578 579 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 580 cpu->kvm_fd, 0); 581 if (cpu->kvm_run == MAP_FAILED) { 582 ret = -errno; 583 error_setg_errno(errp, ret, 584 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 585 kvm_arch_vcpu_id(cpu)); 586 goto err; 587 } 588 589 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 590 s->coalesced_mmio_ring = 591 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 592 } 593 594 if (s->kvm_dirty_ring_size) { 595 /* Use MAP_SHARED to share pages with the kernel */ 596 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 597 PROT_READ | PROT_WRITE, MAP_SHARED, 598 cpu->kvm_fd, 599 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 600 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 601 ret = -errno; 602 goto err; 603 } 604 } 605 606 ret = kvm_arch_init_vcpu(cpu); 607 if (ret < 0) { 608 error_setg_errno(errp, -ret, 609 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 610 kvm_arch_vcpu_id(cpu)); 611 } 612 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 613 614 err: 615 return ret; 616 } 617 618 void kvm_close(void) 619 { 620 CPUState *cpu; 621 622 if (!kvm_state || kvm_state->fd == -1) { 623 return; 624 } 625 626 CPU_FOREACH(cpu) { 627 cpu_remove_sync(cpu); 628 close(cpu->kvm_fd); 629 cpu->kvm_fd = -1; 630 close(cpu->kvm_vcpu_stats_fd); 631 cpu->kvm_vcpu_stats_fd = -1; 632 } 633 634 if (kvm_state && kvm_state->fd != -1) { 635 close(kvm_state->vmfd); 636 kvm_state->vmfd = -1; 637 close(kvm_state->fd); 638 kvm_state->fd = -1; 639 } 640 kvm_state = NULL; 641 } 642 643 /* 644 * dirty pages logging control 645 */ 646 647 static int kvm_mem_flags(MemoryRegion *mr) 648 { 649 bool readonly = mr->readonly || memory_region_is_romd(mr); 650 int flags = 0; 651 652 if (memory_region_get_dirty_log_mask(mr) != 0) { 653 flags |= KVM_MEM_LOG_DIRTY_PAGES; 654 } 655 if (readonly && kvm_readonly_mem_allowed) { 656 flags |= KVM_MEM_READONLY; 657 } 658 if (memory_region_has_guest_memfd(mr)) { 659 assert(kvm_guest_memfd_supported); 660 flags |= KVM_MEM_GUEST_MEMFD; 661 } 662 return flags; 663 } 664 665 /* Called with KVMMemoryListener.slots_lock held */ 666 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 667 MemoryRegion *mr) 668 { 669 mem->flags = kvm_mem_flags(mr); 670 671 /* If nothing changed effectively, no need to issue ioctl */ 672 if (mem->flags == mem->old_flags) { 673 return 0; 674 } 675 676 kvm_slot_init_dirty_bitmap(mem); 677 return kvm_set_user_memory_region(kml, mem, false); 678 } 679 680 static int kvm_section_update_flags(KVMMemoryListener *kml, 681 MemoryRegionSection *section) 682 { 683 hwaddr start_addr, size, slot_size; 684 KVMSlot *mem; 685 int ret = 0; 686 687 size = kvm_align_section(section, &start_addr); 688 if (!size) { 689 return 0; 690 } 691 692 kvm_slots_lock(); 693 694 while (size && !ret) { 695 slot_size = MIN(kvm_max_slot_size, size); 696 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 697 if (!mem) { 698 /* We don't have a slot if we want to trap every access. */ 699 goto out; 700 } 701 702 ret = kvm_slot_update_flags(kml, mem, section->mr); 703 start_addr += slot_size; 704 size -= slot_size; 705 } 706 707 out: 708 kvm_slots_unlock(); 709 return ret; 710 } 711 712 static void kvm_log_start(MemoryListener *listener, 713 MemoryRegionSection *section, 714 int old, int new) 715 { 716 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 717 int r; 718 719 if (old != 0) { 720 return; 721 } 722 723 r = kvm_section_update_flags(kml, section); 724 if (r < 0) { 725 abort(); 726 } 727 } 728 729 static void kvm_log_stop(MemoryListener *listener, 730 MemoryRegionSection *section, 731 int old, int new) 732 { 733 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 734 int r; 735 736 if (new != 0) { 737 return; 738 } 739 740 r = kvm_section_update_flags(kml, section); 741 if (r < 0) { 742 abort(); 743 } 744 } 745 746 /* get kvm's dirty pages bitmap and update qemu's */ 747 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 748 { 749 ram_addr_t start = slot->ram_start_offset; 750 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 751 752 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 753 } 754 755 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 756 { 757 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 758 } 759 760 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 761 762 /* Allocate the dirty bitmap for a slot */ 763 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 764 { 765 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 766 return; 767 } 768 769 /* 770 * XXX bad kernel interface alert 771 * For dirty bitmap, kernel allocates array of size aligned to 772 * bits-per-long. But for case when the kernel is 64bits and 773 * the userspace is 32bits, userspace can't align to the same 774 * bits-per-long, since sizeof(long) is different between kernel 775 * and user space. This way, userspace will provide buffer which 776 * may be 4 bytes less than the kernel will use, resulting in 777 * userspace memory corruption (which is not detectable by valgrind 778 * too, in most cases). 779 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 780 * a hope that sizeof(long) won't become >8 any time soon. 781 * 782 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 783 * And mem->memory_size is aligned to it (otherwise this mem can't 784 * be registered to KVM). 785 */ 786 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 787 /*HOST_LONG_BITS*/ 64) / 8; 788 mem->dirty_bmap = g_malloc0(bitmap_size); 789 mem->dirty_bmap_size = bitmap_size; 790 } 791 792 /* 793 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 794 * succeeded, false otherwise 795 */ 796 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 797 { 798 struct kvm_dirty_log d = {}; 799 int ret; 800 801 d.dirty_bitmap = slot->dirty_bmap; 802 d.slot = slot->slot | (slot->as_id << 16); 803 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 804 805 if (ret == -ENOENT) { 806 /* kernel does not have dirty bitmap in this slot */ 807 ret = 0; 808 } 809 if (ret) { 810 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 811 __func__, ret); 812 } 813 return ret == 0; 814 } 815 816 /* Should be with all slots_lock held for the address spaces. */ 817 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 818 uint32_t slot_id, uint64_t offset) 819 { 820 KVMMemoryListener *kml; 821 KVMSlot *mem; 822 823 if (as_id >= s->nr_as) { 824 return; 825 } 826 827 kml = s->as[as_id].ml; 828 mem = &kml->slots[slot_id]; 829 830 if (!mem->memory_size || offset >= 831 (mem->memory_size / qemu_real_host_page_size())) { 832 return; 833 } 834 835 set_bit(offset, mem->dirty_bmap); 836 } 837 838 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 839 { 840 /* 841 * Read the flags before the value. Pairs with barrier in 842 * KVM's kvm_dirty_ring_push() function. 843 */ 844 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 845 } 846 847 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 848 { 849 /* 850 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 851 * sees the full content of the ring: 852 * 853 * CPU0 CPU1 CPU2 854 * ------------------------------------------------------------------------------ 855 * fill gfn0 856 * store-rel flags for gfn0 857 * load-acq flags for gfn0 858 * store-rel RESET for gfn0 859 * ioctl(RESET_RINGS) 860 * load-acq flags for gfn0 861 * check if flags have RESET 862 * 863 * The synchronization goes from CPU2 to CPU0 to CPU1. 864 */ 865 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 866 } 867 868 /* 869 * Should be with all slots_lock held for the address spaces. It returns the 870 * dirty page we've collected on this dirty ring. 871 */ 872 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 873 { 874 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 875 uint32_t ring_size = s->kvm_dirty_ring_size; 876 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 877 878 /* 879 * It's possible that we race with vcpu creation code where the vcpu is 880 * put onto the vcpus list but not yet initialized the dirty ring 881 * structures. If so, skip it. 882 */ 883 if (!cpu->created) { 884 return 0; 885 } 886 887 assert(dirty_gfns && ring_size); 888 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 889 890 while (true) { 891 cur = &dirty_gfns[fetch % ring_size]; 892 if (!dirty_gfn_is_dirtied(cur)) { 893 break; 894 } 895 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 896 cur->offset); 897 dirty_gfn_set_collected(cur); 898 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 899 fetch++; 900 count++; 901 } 902 cpu->kvm_fetch_index = fetch; 903 cpu->dirty_pages += count; 904 905 return count; 906 } 907 908 /* Must be with slots_lock held */ 909 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 910 { 911 int ret; 912 uint64_t total = 0; 913 int64_t stamp; 914 915 stamp = get_clock(); 916 917 if (cpu) { 918 total = kvm_dirty_ring_reap_one(s, cpu); 919 } else { 920 CPU_FOREACH(cpu) { 921 total += kvm_dirty_ring_reap_one(s, cpu); 922 } 923 } 924 925 if (total) { 926 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 927 assert(ret == total); 928 } 929 930 stamp = get_clock() - stamp; 931 932 if (total) { 933 trace_kvm_dirty_ring_reap(total, stamp / 1000); 934 } 935 936 return total; 937 } 938 939 /* 940 * Currently for simplicity, we must hold BQL before calling this. We can 941 * consider to drop the BQL if we're clear with all the race conditions. 942 */ 943 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 944 { 945 uint64_t total; 946 947 /* 948 * We need to lock all kvm slots for all address spaces here, 949 * because: 950 * 951 * (1) We need to mark dirty for dirty bitmaps in multiple slots 952 * and for tons of pages, so it's better to take the lock here 953 * once rather than once per page. And more importantly, 954 * 955 * (2) We must _NOT_ publish dirty bits to the other threads 956 * (e.g., the migration thread) via the kvm memory slot dirty 957 * bitmaps before correctly re-protect those dirtied pages. 958 * Otherwise we can have potential risk of data corruption if 959 * the page data is read in the other thread before we do 960 * reset below. 961 */ 962 kvm_slots_lock(); 963 total = kvm_dirty_ring_reap_locked(s, cpu); 964 kvm_slots_unlock(); 965 966 return total; 967 } 968 969 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 970 { 971 /* No need to do anything */ 972 } 973 974 /* 975 * Kick all vcpus out in a synchronized way. When returned, we 976 * guarantee that every vcpu has been kicked and at least returned to 977 * userspace once. 978 */ 979 static void kvm_cpu_synchronize_kick_all(void) 980 { 981 CPUState *cpu; 982 983 CPU_FOREACH(cpu) { 984 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 985 } 986 } 987 988 /* 989 * Flush all the existing dirty pages to the KVM slot buffers. When 990 * this call returns, we guarantee that all the touched dirty pages 991 * before calling this function have been put into the per-kvmslot 992 * dirty bitmap. 993 * 994 * This function must be called with BQL held. 995 */ 996 static void kvm_dirty_ring_flush(void) 997 { 998 trace_kvm_dirty_ring_flush(0); 999 /* 1000 * The function needs to be serialized. Since this function 1001 * should always be with BQL held, serialization is guaranteed. 1002 * However, let's be sure of it. 1003 */ 1004 assert(bql_locked()); 1005 /* 1006 * First make sure to flush the hardware buffers by kicking all 1007 * vcpus out in a synchronous way. 1008 */ 1009 kvm_cpu_synchronize_kick_all(); 1010 kvm_dirty_ring_reap(kvm_state, NULL); 1011 trace_kvm_dirty_ring_flush(1); 1012 } 1013 1014 /** 1015 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 1016 * 1017 * This function will first try to fetch dirty bitmap from the kernel, 1018 * and then updates qemu's dirty bitmap. 1019 * 1020 * NOTE: caller must be with kml->slots_lock held. 1021 * 1022 * @kml: the KVM memory listener object 1023 * @section: the memory section to sync the dirty bitmap with 1024 */ 1025 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 1026 MemoryRegionSection *section) 1027 { 1028 KVMState *s = kvm_state; 1029 KVMSlot *mem; 1030 hwaddr start_addr, size; 1031 hwaddr slot_size; 1032 1033 size = kvm_align_section(section, &start_addr); 1034 while (size) { 1035 slot_size = MIN(kvm_max_slot_size, size); 1036 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1037 if (!mem) { 1038 /* We don't have a slot if we want to trap every access. */ 1039 return; 1040 } 1041 if (kvm_slot_get_dirty_log(s, mem)) { 1042 kvm_slot_sync_dirty_pages(mem); 1043 } 1044 start_addr += slot_size; 1045 size -= slot_size; 1046 } 1047 } 1048 1049 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 1050 #define KVM_CLEAR_LOG_SHIFT 6 1051 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 1052 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 1053 1054 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 1055 uint64_t size) 1056 { 1057 KVMState *s = kvm_state; 1058 uint64_t end, bmap_start, start_delta, bmap_npages; 1059 struct kvm_clear_dirty_log d; 1060 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 1061 int ret; 1062 1063 /* 1064 * We need to extend either the start or the size or both to 1065 * satisfy the KVM interface requirement. Firstly, do the start 1066 * page alignment on 64 host pages 1067 */ 1068 bmap_start = start & KVM_CLEAR_LOG_MASK; 1069 start_delta = start - bmap_start; 1070 bmap_start /= psize; 1071 1072 /* 1073 * The kernel interface has restriction on the size too, that either: 1074 * 1075 * (1) the size is 64 host pages aligned (just like the start), or 1076 * (2) the size fills up until the end of the KVM memslot. 1077 */ 1078 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 1079 << KVM_CLEAR_LOG_SHIFT; 1080 end = mem->memory_size / psize; 1081 if (bmap_npages > end - bmap_start) { 1082 bmap_npages = end - bmap_start; 1083 } 1084 start_delta /= psize; 1085 1086 /* 1087 * Prepare the bitmap to clear dirty bits. Here we must guarantee 1088 * that we won't clear any unknown dirty bits otherwise we might 1089 * accidentally clear some set bits which are not yet synced from 1090 * the kernel into QEMU's bitmap, then we'll lose track of the 1091 * guest modifications upon those pages (which can directly lead 1092 * to guest data loss or panic after migration). 1093 * 1094 * Layout of the KVMSlot.dirty_bmap: 1095 * 1096 * |<-------- bmap_npages -----------..>| 1097 * [1] 1098 * start_delta size 1099 * |----------------|-------------|------------------|------------| 1100 * ^ ^ ^ ^ 1101 * | | | | 1102 * start bmap_start (start) end 1103 * of memslot of memslot 1104 * 1105 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 1106 */ 1107 1108 assert(bmap_start % BITS_PER_LONG == 0); 1109 /* We should never do log_clear before log_sync */ 1110 assert(mem->dirty_bmap); 1111 if (start_delta || bmap_npages - size / psize) { 1112 /* Slow path - we need to manipulate a temp bitmap */ 1113 bmap_clear = bitmap_new(bmap_npages); 1114 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 1115 bmap_start, start_delta + size / psize); 1116 /* 1117 * We need to fill the holes at start because that was not 1118 * specified by the caller and we extended the bitmap only for 1119 * 64 pages alignment 1120 */ 1121 bitmap_clear(bmap_clear, 0, start_delta); 1122 d.dirty_bitmap = bmap_clear; 1123 } else { 1124 /* 1125 * Fast path - both start and size align well with BITS_PER_LONG 1126 * (or the end of memory slot) 1127 */ 1128 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1129 } 1130 1131 d.first_page = bmap_start; 1132 /* It should never overflow. If it happens, say something */ 1133 assert(bmap_npages <= UINT32_MAX); 1134 d.num_pages = bmap_npages; 1135 d.slot = mem->slot | (as_id << 16); 1136 1137 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1138 if (ret < 0 && ret != -ENOENT) { 1139 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1140 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1141 __func__, d.slot, (uint64_t)d.first_page, 1142 (uint32_t)d.num_pages, ret); 1143 } else { 1144 ret = 0; 1145 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1146 } 1147 1148 /* 1149 * After we have updated the remote dirty bitmap, we update the 1150 * cached bitmap as well for the memslot, then if another user 1151 * clears the same region we know we shouldn't clear it again on 1152 * the remote otherwise it's data loss as well. 1153 */ 1154 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1155 size / psize); 1156 /* This handles the NULL case well */ 1157 g_free(bmap_clear); 1158 return ret; 1159 } 1160 1161 1162 /** 1163 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1164 * 1165 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1166 * protection in the host kernel because in that case this operation 1167 * will be done within log_sync(). 1168 * 1169 * @kml: the kvm memory listener 1170 * @section: the memory range to clear dirty bitmap 1171 */ 1172 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1173 MemoryRegionSection *section) 1174 { 1175 KVMState *s = kvm_state; 1176 uint64_t start, size, offset, count; 1177 KVMSlot *mem; 1178 int ret = 0, i; 1179 1180 if (!s->manual_dirty_log_protect) { 1181 /* No need to do explicit clear */ 1182 return ret; 1183 } 1184 1185 start = section->offset_within_address_space; 1186 size = int128_get64(section->size); 1187 1188 if (!size) { 1189 /* Nothing more we can do... */ 1190 return ret; 1191 } 1192 1193 kvm_slots_lock(); 1194 1195 for (i = 0; i < kml->nr_slots_allocated; i++) { 1196 mem = &kml->slots[i]; 1197 /* Discard slots that are empty or do not overlap the section */ 1198 if (!mem->memory_size || 1199 mem->start_addr > start + size - 1 || 1200 start > mem->start_addr + mem->memory_size - 1) { 1201 continue; 1202 } 1203 1204 if (start >= mem->start_addr) { 1205 /* The slot starts before section or is aligned to it. */ 1206 offset = start - mem->start_addr; 1207 count = MIN(mem->memory_size - offset, size); 1208 } else { 1209 /* The slot starts after section. */ 1210 offset = 0; 1211 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1212 } 1213 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1214 if (ret < 0) { 1215 break; 1216 } 1217 } 1218 1219 kvm_slots_unlock(); 1220 1221 return ret; 1222 } 1223 1224 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1225 MemoryRegionSection *secion, 1226 hwaddr start, hwaddr size) 1227 { 1228 KVMState *s = kvm_state; 1229 1230 if (s->coalesced_mmio) { 1231 struct kvm_coalesced_mmio_zone zone; 1232 1233 zone.addr = start; 1234 zone.size = size; 1235 zone.pad = 0; 1236 1237 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1238 } 1239 } 1240 1241 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1242 MemoryRegionSection *secion, 1243 hwaddr start, hwaddr size) 1244 { 1245 KVMState *s = kvm_state; 1246 1247 if (s->coalesced_mmio) { 1248 struct kvm_coalesced_mmio_zone zone; 1249 1250 zone.addr = start; 1251 zone.size = size; 1252 zone.pad = 0; 1253 1254 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1255 } 1256 } 1257 1258 static void kvm_coalesce_pio_add(MemoryListener *listener, 1259 MemoryRegionSection *section, 1260 hwaddr start, hwaddr size) 1261 { 1262 KVMState *s = kvm_state; 1263 1264 if (s->coalesced_pio) { 1265 struct kvm_coalesced_mmio_zone zone; 1266 1267 zone.addr = start; 1268 zone.size = size; 1269 zone.pio = 1; 1270 1271 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1272 } 1273 } 1274 1275 static void kvm_coalesce_pio_del(MemoryListener *listener, 1276 MemoryRegionSection *section, 1277 hwaddr start, hwaddr size) 1278 { 1279 KVMState *s = kvm_state; 1280 1281 if (s->coalesced_pio) { 1282 struct kvm_coalesced_mmio_zone zone; 1283 1284 zone.addr = start; 1285 zone.size = size; 1286 zone.pio = 1; 1287 1288 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1289 } 1290 } 1291 1292 int kvm_check_extension(KVMState *s, unsigned int extension) 1293 { 1294 int ret; 1295 1296 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1297 if (ret < 0) { 1298 ret = 0; 1299 } 1300 1301 return ret; 1302 } 1303 1304 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1305 { 1306 int ret; 1307 1308 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1309 if (ret < 0) { 1310 /* VM wide version not implemented, use global one instead */ 1311 ret = kvm_check_extension(s, extension); 1312 } 1313 1314 return ret; 1315 } 1316 1317 /* 1318 * We track the poisoned pages to be able to: 1319 * - replace them on VM reset 1320 * - block a migration for a VM with a poisoned page 1321 */ 1322 typedef struct HWPoisonPage { 1323 ram_addr_t ram_addr; 1324 QLIST_ENTRY(HWPoisonPage) list; 1325 } HWPoisonPage; 1326 1327 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1328 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1329 1330 static void kvm_unpoison_all(void *param) 1331 { 1332 HWPoisonPage *page, *next_page; 1333 1334 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1335 QLIST_REMOVE(page, list); 1336 qemu_ram_remap(page->ram_addr); 1337 g_free(page); 1338 } 1339 } 1340 1341 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1342 { 1343 HWPoisonPage *page; 1344 1345 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1346 if (page->ram_addr == ram_addr) { 1347 return; 1348 } 1349 } 1350 page = g_new(HWPoisonPage, 1); 1351 page->ram_addr = ram_addr; 1352 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1353 } 1354 1355 bool kvm_hwpoisoned_mem(void) 1356 { 1357 return !QLIST_EMPTY(&hwpoison_page_list); 1358 } 1359 1360 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1361 { 1362 if (target_needs_bswap()) { 1363 /* 1364 * The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1365 * endianness, but the memory core hands them in target endianness. 1366 * For example, PPC is always treated as big-endian even if running 1367 * on KVM and on PPC64LE. Correct here, swapping back. 1368 */ 1369 switch (size) { 1370 case 2: 1371 val = bswap16(val); 1372 break; 1373 case 4: 1374 val = bswap32(val); 1375 break; 1376 } 1377 } 1378 return val; 1379 } 1380 1381 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1382 bool assign, uint32_t size, bool datamatch) 1383 { 1384 int ret; 1385 struct kvm_ioeventfd iofd = { 1386 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1387 .addr = addr, 1388 .len = size, 1389 .flags = 0, 1390 .fd = fd, 1391 }; 1392 1393 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1394 datamatch); 1395 if (!kvm_enabled()) { 1396 return -ENOSYS; 1397 } 1398 1399 if (datamatch) { 1400 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1401 } 1402 if (!assign) { 1403 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1404 } 1405 1406 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1407 1408 if (ret < 0) { 1409 return -errno; 1410 } 1411 1412 return 0; 1413 } 1414 1415 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1416 bool assign, uint32_t size, bool datamatch) 1417 { 1418 struct kvm_ioeventfd kick = { 1419 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1420 .addr = addr, 1421 .flags = KVM_IOEVENTFD_FLAG_PIO, 1422 .len = size, 1423 .fd = fd, 1424 }; 1425 int r; 1426 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1427 if (!kvm_enabled()) { 1428 return -ENOSYS; 1429 } 1430 if (datamatch) { 1431 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1432 } 1433 if (!assign) { 1434 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1435 } 1436 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1437 if (r < 0) { 1438 return r; 1439 } 1440 return 0; 1441 } 1442 1443 1444 static const KVMCapabilityInfo * 1445 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1446 { 1447 while (list->name) { 1448 if (!kvm_check_extension(s, list->value)) { 1449 return list; 1450 } 1451 list++; 1452 } 1453 return NULL; 1454 } 1455 1456 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1457 { 1458 g_assert( 1459 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1460 ); 1461 kvm_max_slot_size = max_slot_size; 1462 } 1463 1464 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr) 1465 { 1466 struct kvm_memory_attributes attrs; 1467 int r; 1468 1469 assert((attr & kvm_supported_memory_attributes) == attr); 1470 attrs.attributes = attr; 1471 attrs.address = start; 1472 attrs.size = size; 1473 attrs.flags = 0; 1474 1475 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs); 1476 if (r) { 1477 error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") " 1478 "with attr 0x%" PRIx64 " error '%s'", 1479 start, size, attr, strerror(errno)); 1480 } 1481 return r; 1482 } 1483 1484 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size) 1485 { 1486 return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); 1487 } 1488 1489 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size) 1490 { 1491 return kvm_set_memory_attributes(start, size, 0); 1492 } 1493 1494 /* Called with KVMMemoryListener.slots_lock held */ 1495 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1496 MemoryRegionSection *section, bool add) 1497 { 1498 KVMSlot *mem; 1499 int err; 1500 MemoryRegion *mr = section->mr; 1501 bool writable = !mr->readonly && !mr->rom_device; 1502 hwaddr start_addr, size, slot_size, mr_offset; 1503 ram_addr_t ram_start_offset; 1504 void *ram; 1505 1506 if (!memory_region_is_ram(mr)) { 1507 if (writable || !kvm_readonly_mem_allowed) { 1508 return; 1509 } else if (!mr->romd_mode) { 1510 /* If the memory device is not in romd_mode, then we actually want 1511 * to remove the kvm memory slot so all accesses will trap. */ 1512 add = false; 1513 } 1514 } 1515 1516 size = kvm_align_section(section, &start_addr); 1517 if (!size) { 1518 return; 1519 } 1520 1521 /* The offset of the kvmslot within the memory region */ 1522 mr_offset = section->offset_within_region + start_addr - 1523 section->offset_within_address_space; 1524 1525 /* use aligned delta to align the ram address and offset */ 1526 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1527 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1528 1529 if (!add) { 1530 do { 1531 slot_size = MIN(kvm_max_slot_size, size); 1532 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1533 if (!mem) { 1534 return; 1535 } 1536 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1537 /* 1538 * NOTE: We should be aware of the fact that here we're only 1539 * doing a best effort to sync dirty bits. No matter whether 1540 * we're using dirty log or dirty ring, we ignored two facts: 1541 * 1542 * (1) dirty bits can reside in hardware buffers (PML) 1543 * 1544 * (2) after we collected dirty bits here, pages can be dirtied 1545 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1546 * remove the slot. 1547 * 1548 * Not easy. Let's cross the fingers until it's fixed. 1549 */ 1550 if (kvm_state->kvm_dirty_ring_size) { 1551 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1552 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1553 kvm_slot_sync_dirty_pages(mem); 1554 kvm_slot_get_dirty_log(kvm_state, mem); 1555 } 1556 } else { 1557 kvm_slot_get_dirty_log(kvm_state, mem); 1558 } 1559 kvm_slot_sync_dirty_pages(mem); 1560 } 1561 1562 /* unregister the slot */ 1563 g_free(mem->dirty_bmap); 1564 mem->dirty_bmap = NULL; 1565 mem->memory_size = 0; 1566 mem->flags = 0; 1567 err = kvm_set_user_memory_region(kml, mem, false); 1568 if (err) { 1569 fprintf(stderr, "%s: error unregistering slot: %s\n", 1570 __func__, strerror(-err)); 1571 abort(); 1572 } 1573 start_addr += slot_size; 1574 size -= slot_size; 1575 kml->nr_slots_used--; 1576 } while (size); 1577 return; 1578 } 1579 1580 /* register the new slot */ 1581 do { 1582 slot_size = MIN(kvm_max_slot_size, size); 1583 mem = kvm_alloc_slot(kml); 1584 mem->as_id = kml->as_id; 1585 mem->memory_size = slot_size; 1586 mem->start_addr = start_addr; 1587 mem->ram_start_offset = ram_start_offset; 1588 mem->ram = ram; 1589 mem->flags = kvm_mem_flags(mr); 1590 mem->guest_memfd = mr->ram_block->guest_memfd; 1591 mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host; 1592 1593 kvm_slot_init_dirty_bitmap(mem); 1594 err = kvm_set_user_memory_region(kml, mem, true); 1595 if (err) { 1596 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1597 strerror(-err)); 1598 abort(); 1599 } 1600 1601 if (memory_region_has_guest_memfd(mr)) { 1602 err = kvm_set_memory_attributes_private(start_addr, slot_size); 1603 if (err) { 1604 error_report("%s: failed to set memory attribute private: %s", 1605 __func__, strerror(-err)); 1606 exit(1); 1607 } 1608 } 1609 1610 start_addr += slot_size; 1611 ram_start_offset += slot_size; 1612 ram += slot_size; 1613 size -= slot_size; 1614 kml->nr_slots_used++; 1615 } while (size); 1616 } 1617 1618 static void *kvm_dirty_ring_reaper_thread(void *data) 1619 { 1620 KVMState *s = data; 1621 struct KVMDirtyRingReaper *r = &s->reaper; 1622 1623 rcu_register_thread(); 1624 1625 trace_kvm_dirty_ring_reaper("init"); 1626 1627 while (true) { 1628 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1629 trace_kvm_dirty_ring_reaper("wait"); 1630 /* 1631 * TODO: provide a smarter timeout rather than a constant? 1632 */ 1633 sleep(1); 1634 1635 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1636 if (dirtylimit_in_service()) { 1637 continue; 1638 } 1639 1640 trace_kvm_dirty_ring_reaper("wakeup"); 1641 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1642 1643 bql_lock(); 1644 kvm_dirty_ring_reap(s, NULL); 1645 bql_unlock(); 1646 1647 r->reaper_iteration++; 1648 } 1649 1650 g_assert_not_reached(); 1651 } 1652 1653 static void kvm_dirty_ring_reaper_init(KVMState *s) 1654 { 1655 struct KVMDirtyRingReaper *r = &s->reaper; 1656 1657 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1658 kvm_dirty_ring_reaper_thread, 1659 s, QEMU_THREAD_JOINABLE); 1660 } 1661 1662 static int kvm_dirty_ring_init(KVMState *s) 1663 { 1664 uint32_t ring_size = s->kvm_dirty_ring_size; 1665 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1666 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1667 int ret; 1668 1669 s->kvm_dirty_ring_size = 0; 1670 s->kvm_dirty_ring_bytes = 0; 1671 1672 /* Bail if the dirty ring size isn't specified */ 1673 if (!ring_size) { 1674 return 0; 1675 } 1676 1677 /* 1678 * Read the max supported pages. Fall back to dirty logging mode 1679 * if the dirty ring isn't supported. 1680 */ 1681 ret = kvm_vm_check_extension(s, capability); 1682 if (ret <= 0) { 1683 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1684 ret = kvm_vm_check_extension(s, capability); 1685 } 1686 1687 if (ret <= 0) { 1688 warn_report("KVM dirty ring not available, using bitmap method"); 1689 return 0; 1690 } 1691 1692 if (ring_bytes > ret) { 1693 error_report("KVM dirty ring size %" PRIu32 " too big " 1694 "(maximum is %ld). Please use a smaller value.", 1695 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1696 return -EINVAL; 1697 } 1698 1699 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1700 if (ret) { 1701 error_report("Enabling of KVM dirty ring failed: %s. " 1702 "Suggested minimum value is 1024.", strerror(-ret)); 1703 return -EIO; 1704 } 1705 1706 /* Enable the backup bitmap if it is supported */ 1707 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1708 if (ret > 0) { 1709 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1710 if (ret) { 1711 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1712 "%s. ", strerror(-ret)); 1713 return -EIO; 1714 } 1715 1716 s->kvm_dirty_ring_with_bitmap = true; 1717 } 1718 1719 s->kvm_dirty_ring_size = ring_size; 1720 s->kvm_dirty_ring_bytes = ring_bytes; 1721 1722 return 0; 1723 } 1724 1725 static void kvm_region_add(MemoryListener *listener, 1726 MemoryRegionSection *section) 1727 { 1728 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1729 KVMMemoryUpdate *update; 1730 1731 update = g_new0(KVMMemoryUpdate, 1); 1732 update->section = *section; 1733 1734 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1735 } 1736 1737 static void kvm_region_del(MemoryListener *listener, 1738 MemoryRegionSection *section) 1739 { 1740 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1741 KVMMemoryUpdate *update; 1742 1743 update = g_new0(KVMMemoryUpdate, 1); 1744 update->section = *section; 1745 1746 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1747 } 1748 1749 static void kvm_region_commit(MemoryListener *listener) 1750 { 1751 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1752 listener); 1753 KVMMemoryUpdate *u1, *u2; 1754 bool need_inhibit = false; 1755 1756 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1757 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1758 return; 1759 } 1760 1761 /* 1762 * We have to be careful when regions to add overlap with ranges to remove. 1763 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1764 * is currently active. 1765 * 1766 * The lists are order by addresses, so it's easy to find overlaps. 1767 */ 1768 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1769 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1770 while (u1 && u2) { 1771 Range r1, r2; 1772 1773 range_init_nofail(&r1, u1->section.offset_within_address_space, 1774 int128_get64(u1->section.size)); 1775 range_init_nofail(&r2, u2->section.offset_within_address_space, 1776 int128_get64(u2->section.size)); 1777 1778 if (range_overlaps_range(&r1, &r2)) { 1779 need_inhibit = true; 1780 break; 1781 } 1782 if (range_lob(&r1) < range_lob(&r2)) { 1783 u1 = QSIMPLEQ_NEXT(u1, next); 1784 } else { 1785 u2 = QSIMPLEQ_NEXT(u2, next); 1786 } 1787 } 1788 1789 kvm_slots_lock(); 1790 if (need_inhibit) { 1791 accel_ioctl_inhibit_begin(); 1792 } 1793 1794 /* Remove all memslots before adding the new ones. */ 1795 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1796 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1797 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1798 1799 kvm_set_phys_mem(kml, &u1->section, false); 1800 memory_region_unref(u1->section.mr); 1801 1802 g_free(u1); 1803 } 1804 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1805 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1806 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1807 1808 memory_region_ref(u1->section.mr); 1809 kvm_set_phys_mem(kml, &u1->section, true); 1810 1811 g_free(u1); 1812 } 1813 1814 if (need_inhibit) { 1815 accel_ioctl_inhibit_end(); 1816 } 1817 kvm_slots_unlock(); 1818 } 1819 1820 static void kvm_log_sync(MemoryListener *listener, 1821 MemoryRegionSection *section) 1822 { 1823 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1824 1825 kvm_slots_lock(); 1826 kvm_physical_sync_dirty_bitmap(kml, section); 1827 kvm_slots_unlock(); 1828 } 1829 1830 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1831 { 1832 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1833 KVMState *s = kvm_state; 1834 KVMSlot *mem; 1835 int i; 1836 1837 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1838 kvm_dirty_ring_flush(); 1839 1840 kvm_slots_lock(); 1841 for (i = 0; i < kml->nr_slots_allocated; i++) { 1842 mem = &kml->slots[i]; 1843 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1844 kvm_slot_sync_dirty_pages(mem); 1845 1846 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1847 kvm_slot_get_dirty_log(s, mem)) { 1848 kvm_slot_sync_dirty_pages(mem); 1849 } 1850 1851 /* 1852 * This is not needed by KVM_GET_DIRTY_LOG because the 1853 * ioctl will unconditionally overwrite the whole region. 1854 * However kvm dirty ring has no such side effect. 1855 */ 1856 kvm_slot_reset_dirty_pages(mem); 1857 } 1858 } 1859 kvm_slots_unlock(); 1860 } 1861 1862 static void kvm_log_clear(MemoryListener *listener, 1863 MemoryRegionSection *section) 1864 { 1865 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1866 int r; 1867 1868 r = kvm_physical_log_clear(kml, section); 1869 if (r < 0) { 1870 error_report_once("%s: kvm log clear failed: mr=%s " 1871 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1872 section->mr->name, section->offset_within_region, 1873 int128_get64(section->size)); 1874 abort(); 1875 } 1876 } 1877 1878 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1879 MemoryRegionSection *section, 1880 bool match_data, uint64_t data, 1881 EventNotifier *e) 1882 { 1883 int fd = event_notifier_get_fd(e); 1884 int r; 1885 1886 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1887 data, true, int128_get64(section->size), 1888 match_data); 1889 if (r < 0) { 1890 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1891 __func__, strerror(-r), -r); 1892 abort(); 1893 } 1894 } 1895 1896 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1897 MemoryRegionSection *section, 1898 bool match_data, uint64_t data, 1899 EventNotifier *e) 1900 { 1901 int fd = event_notifier_get_fd(e); 1902 int r; 1903 1904 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1905 data, false, int128_get64(section->size), 1906 match_data); 1907 if (r < 0) { 1908 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1909 __func__, strerror(-r), -r); 1910 abort(); 1911 } 1912 } 1913 1914 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1915 MemoryRegionSection *section, 1916 bool match_data, uint64_t data, 1917 EventNotifier *e) 1918 { 1919 int fd = event_notifier_get_fd(e); 1920 int r; 1921 1922 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1923 data, true, int128_get64(section->size), 1924 match_data); 1925 if (r < 0) { 1926 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1927 __func__, strerror(-r), -r); 1928 abort(); 1929 } 1930 } 1931 1932 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1933 MemoryRegionSection *section, 1934 bool match_data, uint64_t data, 1935 EventNotifier *e) 1936 1937 { 1938 int fd = event_notifier_get_fd(e); 1939 int r; 1940 1941 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1942 data, false, int128_get64(section->size), 1943 match_data); 1944 if (r < 0) { 1945 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1946 __func__, strerror(-r), -r); 1947 abort(); 1948 } 1949 } 1950 1951 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1952 AddressSpace *as, int as_id, const char *name) 1953 { 1954 int i; 1955 1956 kml->as_id = as_id; 1957 1958 kvm_slots_grow(kml, KVM_MEMSLOTS_NR_ALLOC_DEFAULT); 1959 1960 QSIMPLEQ_INIT(&kml->transaction_add); 1961 QSIMPLEQ_INIT(&kml->transaction_del); 1962 1963 kml->listener.region_add = kvm_region_add; 1964 kml->listener.region_del = kvm_region_del; 1965 kml->listener.commit = kvm_region_commit; 1966 kml->listener.log_start = kvm_log_start; 1967 kml->listener.log_stop = kvm_log_stop; 1968 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1969 kml->listener.name = name; 1970 1971 if (s->kvm_dirty_ring_size) { 1972 kml->listener.log_sync_global = kvm_log_sync_global; 1973 } else { 1974 kml->listener.log_sync = kvm_log_sync; 1975 kml->listener.log_clear = kvm_log_clear; 1976 } 1977 1978 memory_listener_register(&kml->listener, as); 1979 1980 for (i = 0; i < s->nr_as; ++i) { 1981 if (!s->as[i].as) { 1982 s->as[i].as = as; 1983 s->as[i].ml = kml; 1984 break; 1985 } 1986 } 1987 } 1988 1989 static MemoryListener kvm_io_listener = { 1990 .name = "kvm-io", 1991 .coalesced_io_add = kvm_coalesce_pio_add, 1992 .coalesced_io_del = kvm_coalesce_pio_del, 1993 .eventfd_add = kvm_io_ioeventfd_add, 1994 .eventfd_del = kvm_io_ioeventfd_del, 1995 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1996 }; 1997 1998 int kvm_set_irq(KVMState *s, int irq, int level) 1999 { 2000 struct kvm_irq_level event; 2001 int ret; 2002 2003 assert(kvm_async_interrupts_enabled()); 2004 2005 event.level = level; 2006 event.irq = irq; 2007 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 2008 if (ret < 0) { 2009 perror("kvm_set_irq"); 2010 abort(); 2011 } 2012 2013 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 2014 } 2015 2016 #ifdef KVM_CAP_IRQ_ROUTING 2017 typedef struct KVMMSIRoute { 2018 struct kvm_irq_routing_entry kroute; 2019 QTAILQ_ENTRY(KVMMSIRoute) entry; 2020 } KVMMSIRoute; 2021 2022 static void set_gsi(KVMState *s, unsigned int gsi) 2023 { 2024 set_bit(gsi, s->used_gsi_bitmap); 2025 } 2026 2027 static void clear_gsi(KVMState *s, unsigned int gsi) 2028 { 2029 clear_bit(gsi, s->used_gsi_bitmap); 2030 } 2031 2032 void kvm_init_irq_routing(KVMState *s) 2033 { 2034 int gsi_count; 2035 2036 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 2037 if (gsi_count > 0) { 2038 /* Round up so we can search ints using ffs */ 2039 s->used_gsi_bitmap = bitmap_new(gsi_count); 2040 s->gsi_count = gsi_count; 2041 } 2042 2043 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 2044 s->nr_allocated_irq_routes = 0; 2045 2046 kvm_arch_init_irq_routing(s); 2047 } 2048 2049 void kvm_irqchip_commit_routes(KVMState *s) 2050 { 2051 int ret; 2052 2053 if (kvm_gsi_direct_mapping()) { 2054 return; 2055 } 2056 2057 if (!kvm_gsi_routing_enabled()) { 2058 return; 2059 } 2060 2061 s->irq_routes->flags = 0; 2062 trace_kvm_irqchip_commit_routes(); 2063 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 2064 assert(ret == 0); 2065 } 2066 2067 void kvm_add_routing_entry(KVMState *s, 2068 struct kvm_irq_routing_entry *entry) 2069 { 2070 struct kvm_irq_routing_entry *new; 2071 int n, size; 2072 2073 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 2074 n = s->nr_allocated_irq_routes * 2; 2075 if (n < 64) { 2076 n = 64; 2077 } 2078 size = sizeof(struct kvm_irq_routing); 2079 size += n * sizeof(*new); 2080 s->irq_routes = g_realloc(s->irq_routes, size); 2081 s->nr_allocated_irq_routes = n; 2082 } 2083 n = s->irq_routes->nr++; 2084 new = &s->irq_routes->entries[n]; 2085 2086 *new = *entry; 2087 2088 set_gsi(s, entry->gsi); 2089 } 2090 2091 static int kvm_update_routing_entry(KVMState *s, 2092 struct kvm_irq_routing_entry *new_entry) 2093 { 2094 struct kvm_irq_routing_entry *entry; 2095 int n; 2096 2097 for (n = 0; n < s->irq_routes->nr; n++) { 2098 entry = &s->irq_routes->entries[n]; 2099 if (entry->gsi != new_entry->gsi) { 2100 continue; 2101 } 2102 2103 if(!memcmp(entry, new_entry, sizeof *entry)) { 2104 return 0; 2105 } 2106 2107 *entry = *new_entry; 2108 2109 return 0; 2110 } 2111 2112 return -ESRCH; 2113 } 2114 2115 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 2116 { 2117 struct kvm_irq_routing_entry e = {}; 2118 2119 assert(pin < s->gsi_count); 2120 2121 e.gsi = irq; 2122 e.type = KVM_IRQ_ROUTING_IRQCHIP; 2123 e.flags = 0; 2124 e.u.irqchip.irqchip = irqchip; 2125 e.u.irqchip.pin = pin; 2126 kvm_add_routing_entry(s, &e); 2127 } 2128 2129 void kvm_irqchip_release_virq(KVMState *s, int virq) 2130 { 2131 struct kvm_irq_routing_entry *e; 2132 int i; 2133 2134 if (kvm_gsi_direct_mapping()) { 2135 return; 2136 } 2137 2138 for (i = 0; i < s->irq_routes->nr; i++) { 2139 e = &s->irq_routes->entries[i]; 2140 if (e->gsi == virq) { 2141 s->irq_routes->nr--; 2142 *e = s->irq_routes->entries[s->irq_routes->nr]; 2143 } 2144 } 2145 clear_gsi(s, virq); 2146 kvm_arch_release_virq_post(virq); 2147 trace_kvm_irqchip_release_virq(virq); 2148 } 2149 2150 void kvm_irqchip_add_change_notifier(Notifier *n) 2151 { 2152 notifier_list_add(&kvm_irqchip_change_notifiers, n); 2153 } 2154 2155 void kvm_irqchip_remove_change_notifier(Notifier *n) 2156 { 2157 notifier_remove(n); 2158 } 2159 2160 void kvm_irqchip_change_notify(void) 2161 { 2162 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 2163 } 2164 2165 int kvm_irqchip_get_virq(KVMState *s) 2166 { 2167 int next_virq; 2168 2169 /* Return the lowest unused GSI in the bitmap */ 2170 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2171 if (next_virq >= s->gsi_count) { 2172 return -ENOSPC; 2173 } else { 2174 return next_virq; 2175 } 2176 } 2177 2178 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2179 { 2180 struct kvm_msi msi; 2181 2182 msi.address_lo = (uint32_t)msg.address; 2183 msi.address_hi = msg.address >> 32; 2184 msi.data = le32_to_cpu(msg.data); 2185 msi.flags = 0; 2186 memset(msi.pad, 0, sizeof(msi.pad)); 2187 2188 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2189 } 2190 2191 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2192 { 2193 struct kvm_irq_routing_entry kroute = {}; 2194 int virq; 2195 KVMState *s = c->s; 2196 MSIMessage msg = {0, 0}; 2197 2198 if (pci_available && dev) { 2199 msg = pci_get_msi_message(dev, vector); 2200 } 2201 2202 if (kvm_gsi_direct_mapping()) { 2203 return kvm_arch_msi_data_to_gsi(msg.data); 2204 } 2205 2206 if (!kvm_gsi_routing_enabled()) { 2207 return -ENOSYS; 2208 } 2209 2210 virq = kvm_irqchip_get_virq(s); 2211 if (virq < 0) { 2212 return virq; 2213 } 2214 2215 kroute.gsi = virq; 2216 kroute.type = KVM_IRQ_ROUTING_MSI; 2217 kroute.flags = 0; 2218 kroute.u.msi.address_lo = (uint32_t)msg.address; 2219 kroute.u.msi.address_hi = msg.address >> 32; 2220 kroute.u.msi.data = le32_to_cpu(msg.data); 2221 if (pci_available && kvm_msi_devid_required()) { 2222 kroute.flags = KVM_MSI_VALID_DEVID; 2223 kroute.u.msi.devid = pci_requester_id(dev); 2224 } 2225 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2226 kvm_irqchip_release_virq(s, virq); 2227 return -EINVAL; 2228 } 2229 2230 if (s->irq_routes->nr < s->gsi_count) { 2231 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2232 vector, virq); 2233 2234 kvm_add_routing_entry(s, &kroute); 2235 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2236 c->changes++; 2237 } else { 2238 kvm_irqchip_release_virq(s, virq); 2239 return -ENOSPC; 2240 } 2241 2242 return virq; 2243 } 2244 2245 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2246 PCIDevice *dev) 2247 { 2248 struct kvm_irq_routing_entry kroute = {}; 2249 2250 if (kvm_gsi_direct_mapping()) { 2251 return 0; 2252 } 2253 2254 if (!kvm_irqchip_in_kernel()) { 2255 return -ENOSYS; 2256 } 2257 2258 kroute.gsi = virq; 2259 kroute.type = KVM_IRQ_ROUTING_MSI; 2260 kroute.flags = 0; 2261 kroute.u.msi.address_lo = (uint32_t)msg.address; 2262 kroute.u.msi.address_hi = msg.address >> 32; 2263 kroute.u.msi.data = le32_to_cpu(msg.data); 2264 if (pci_available && kvm_msi_devid_required()) { 2265 kroute.flags = KVM_MSI_VALID_DEVID; 2266 kroute.u.msi.devid = pci_requester_id(dev); 2267 } 2268 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2269 return -EINVAL; 2270 } 2271 2272 trace_kvm_irqchip_update_msi_route(virq); 2273 2274 return kvm_update_routing_entry(s, &kroute); 2275 } 2276 2277 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2278 EventNotifier *resample, int virq, 2279 bool assign) 2280 { 2281 int fd = event_notifier_get_fd(event); 2282 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2283 2284 struct kvm_irqfd irqfd = { 2285 .fd = fd, 2286 .gsi = virq, 2287 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2288 }; 2289 2290 if (rfd != -1) { 2291 assert(assign); 2292 if (kvm_irqchip_is_split()) { 2293 /* 2294 * When the slow irqchip (e.g. IOAPIC) is in the 2295 * userspace, KVM kernel resamplefd will not work because 2296 * the EOI of the interrupt will be delivered to userspace 2297 * instead, so the KVM kernel resamplefd kick will be 2298 * skipped. The userspace here mimics what the kernel 2299 * provides with resamplefd, remember the resamplefd and 2300 * kick it when we receive EOI of this IRQ. 2301 * 2302 * This is hackery because IOAPIC is mostly bypassed 2303 * (except EOI broadcasts) when irqfd is used. However 2304 * this can bring much performance back for split irqchip 2305 * with INTx IRQs (for VFIO, this gives 93% perf of the 2306 * full fast path, which is 46% perf boost comparing to 2307 * the INTx slow path). 2308 */ 2309 kvm_resample_fd_insert(virq, resample); 2310 } else { 2311 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2312 irqfd.resamplefd = rfd; 2313 } 2314 } else if (!assign) { 2315 if (kvm_irqchip_is_split()) { 2316 kvm_resample_fd_remove(virq); 2317 } 2318 } 2319 2320 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2321 } 2322 2323 #else /* !KVM_CAP_IRQ_ROUTING */ 2324 2325 void kvm_init_irq_routing(KVMState *s) 2326 { 2327 } 2328 2329 void kvm_irqchip_release_virq(KVMState *s, int virq) 2330 { 2331 } 2332 2333 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2334 { 2335 abort(); 2336 } 2337 2338 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2339 { 2340 return -ENOSYS; 2341 } 2342 2343 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2344 { 2345 return -ENOSYS; 2346 } 2347 2348 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2349 { 2350 return -ENOSYS; 2351 } 2352 2353 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2354 EventNotifier *resample, int virq, 2355 bool assign) 2356 { 2357 abort(); 2358 } 2359 2360 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2361 { 2362 return -ENOSYS; 2363 } 2364 #endif /* !KVM_CAP_IRQ_ROUTING */ 2365 2366 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2367 EventNotifier *rn, int virq) 2368 { 2369 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2370 } 2371 2372 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2373 int virq) 2374 { 2375 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2376 } 2377 2378 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2379 EventNotifier *rn, qemu_irq irq) 2380 { 2381 gpointer key, gsi; 2382 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2383 2384 if (!found) { 2385 return -ENXIO; 2386 } 2387 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2388 } 2389 2390 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2391 qemu_irq irq) 2392 { 2393 gpointer key, gsi; 2394 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2395 2396 if (!found) { 2397 return -ENXIO; 2398 } 2399 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2400 } 2401 2402 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2403 { 2404 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2405 } 2406 2407 static void kvm_irqchip_create(KVMState *s) 2408 { 2409 int ret; 2410 2411 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2412 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2413 ; 2414 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2415 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2416 if (ret < 0) { 2417 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2418 exit(1); 2419 } 2420 } else { 2421 return; 2422 } 2423 2424 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2425 fprintf(stderr, "kvm: irqfd not implemented\n"); 2426 exit(1); 2427 } 2428 2429 /* First probe and see if there's a arch-specific hook to create the 2430 * in-kernel irqchip for us */ 2431 ret = kvm_arch_irqchip_create(s); 2432 if (ret == 0) { 2433 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2434 error_report("Split IRQ chip mode not supported."); 2435 exit(1); 2436 } else { 2437 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2438 } 2439 } 2440 if (ret < 0) { 2441 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2442 exit(1); 2443 } 2444 2445 kvm_kernel_irqchip = true; 2446 /* If we have an in-kernel IRQ chip then we must have asynchronous 2447 * interrupt delivery (though the reverse is not necessarily true) 2448 */ 2449 kvm_async_interrupts_allowed = true; 2450 kvm_halt_in_kernel_allowed = true; 2451 2452 kvm_init_irq_routing(s); 2453 2454 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2455 } 2456 2457 /* Find number of supported CPUs using the recommended 2458 * procedure from the kernel API documentation to cope with 2459 * older kernels that may be missing capabilities. 2460 */ 2461 static int kvm_recommended_vcpus(KVMState *s) 2462 { 2463 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2464 return (ret) ? ret : 4; 2465 } 2466 2467 static int kvm_max_vcpus(KVMState *s) 2468 { 2469 int ret = kvm_vm_check_extension(s, KVM_CAP_MAX_VCPUS); 2470 return (ret) ? ret : kvm_recommended_vcpus(s); 2471 } 2472 2473 static int kvm_max_vcpu_id(KVMState *s) 2474 { 2475 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2476 return (ret) ? ret : kvm_max_vcpus(s); 2477 } 2478 2479 bool kvm_vcpu_id_is_valid(int vcpu_id) 2480 { 2481 KVMState *s = KVM_STATE(current_accel()); 2482 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2483 } 2484 2485 bool kvm_dirty_ring_enabled(void) 2486 { 2487 return kvm_state && kvm_state->kvm_dirty_ring_size; 2488 } 2489 2490 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2491 strList *names, strList *targets, Error **errp); 2492 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2493 2494 uint32_t kvm_dirty_ring_size(void) 2495 { 2496 return kvm_state->kvm_dirty_ring_size; 2497 } 2498 2499 static int do_kvm_create_vm(MachineState *ms, int type) 2500 { 2501 KVMState *s; 2502 int ret; 2503 2504 s = KVM_STATE(ms->accelerator); 2505 2506 do { 2507 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2508 } while (ret == -EINTR); 2509 2510 if (ret < 0) { 2511 error_report("ioctl(KVM_CREATE_VM) failed: %s", strerror(-ret)); 2512 2513 #ifdef TARGET_S390X 2514 if (ret == -EINVAL) { 2515 error_printf("Host kernel setup problem detected." 2516 " Please verify:\n"); 2517 error_printf("- for kernels supporting the" 2518 " switch_amode or user_mode parameters, whether"); 2519 error_printf(" user space is running in primary address space\n"); 2520 error_printf("- for kernels supporting the vm.allocate_pgste" 2521 " sysctl, whether it is enabled\n"); 2522 } 2523 #elif defined(TARGET_PPC) 2524 if (ret == -EINVAL) { 2525 error_printf("PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2526 (type == 2) ? "pr" : "hv"); 2527 } 2528 #endif 2529 } 2530 2531 return ret; 2532 } 2533 2534 static int find_kvm_machine_type(MachineState *ms) 2535 { 2536 MachineClass *mc = MACHINE_GET_CLASS(ms); 2537 int type; 2538 2539 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2540 g_autofree char *kvm_type; 2541 kvm_type = object_property_get_str(OBJECT(current_machine), 2542 "kvm-type", 2543 &error_abort); 2544 type = mc->kvm_type(ms, kvm_type); 2545 } else if (mc->kvm_type) { 2546 type = mc->kvm_type(ms, NULL); 2547 } else { 2548 type = kvm_arch_get_default_type(ms); 2549 } 2550 return type; 2551 } 2552 2553 static int kvm_setup_dirty_ring(KVMState *s) 2554 { 2555 uint64_t dirty_log_manual_caps; 2556 int ret; 2557 2558 /* 2559 * Enable KVM dirty ring if supported, otherwise fall back to 2560 * dirty logging mode 2561 */ 2562 ret = kvm_dirty_ring_init(s); 2563 if (ret < 0) { 2564 return ret; 2565 } 2566 2567 /* 2568 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2569 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2570 * page is wr-protected initially, which is against how kvm dirty ring is 2571 * usage - kvm dirty ring requires all pages are wr-protected at the very 2572 * beginning. Enabling this feature for dirty ring causes data corruption. 2573 * 2574 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2575 * we may expect a higher stall time when starting the migration. In the 2576 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2577 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2578 * guest pages. 2579 */ 2580 if (!s->kvm_dirty_ring_size) { 2581 dirty_log_manual_caps = 2582 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2583 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2584 KVM_DIRTY_LOG_INITIALLY_SET); 2585 s->manual_dirty_log_protect = dirty_log_manual_caps; 2586 if (dirty_log_manual_caps) { 2587 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2588 dirty_log_manual_caps); 2589 if (ret) { 2590 warn_report("Trying to enable capability %"PRIu64" of " 2591 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2592 "Falling back to the legacy mode. ", 2593 dirty_log_manual_caps); 2594 s->manual_dirty_log_protect = 0; 2595 } 2596 } 2597 } 2598 2599 return 0; 2600 } 2601 2602 static int kvm_init(MachineState *ms) 2603 { 2604 MachineClass *mc = MACHINE_GET_CLASS(ms); 2605 static const char upgrade_note[] = 2606 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2607 "(see http://sourceforge.net/projects/kvm).\n"; 2608 const struct { 2609 const char *name; 2610 int num; 2611 } num_cpus[] = { 2612 { "SMP", ms->smp.cpus }, 2613 { "hotpluggable", ms->smp.max_cpus }, 2614 { /* end of list */ } 2615 }, *nc = num_cpus; 2616 int soft_vcpus_limit, hard_vcpus_limit; 2617 KVMState *s; 2618 const KVMCapabilityInfo *missing_cap; 2619 int ret; 2620 int type; 2621 2622 qemu_mutex_init(&kml_slots_lock); 2623 2624 s = KVM_STATE(ms->accelerator); 2625 2626 /* 2627 * On systems where the kernel can support different base page 2628 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2629 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2630 * page size for the system though. 2631 */ 2632 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2633 2634 s->sigmask_len = 8; 2635 accel_blocker_init(); 2636 2637 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2638 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2639 #endif 2640 QLIST_INIT(&s->kvm_parked_vcpus); 2641 s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR); 2642 if (s->fd == -1) { 2643 error_report("Could not access KVM kernel module: %m"); 2644 ret = -errno; 2645 goto err; 2646 } 2647 2648 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2649 if (ret < KVM_API_VERSION) { 2650 if (ret >= 0) { 2651 ret = -EINVAL; 2652 } 2653 error_report("kvm version too old"); 2654 goto err; 2655 } 2656 2657 if (ret > KVM_API_VERSION) { 2658 ret = -EINVAL; 2659 error_report("kvm version not supported"); 2660 goto err; 2661 } 2662 2663 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2664 s->nr_slots_max = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2665 2666 /* If unspecified, use the default value */ 2667 if (!s->nr_slots_max) { 2668 s->nr_slots_max = KVM_MEMSLOTS_NR_MAX_DEFAULT; 2669 } 2670 2671 type = find_kvm_machine_type(ms); 2672 if (type < 0) { 2673 ret = -EINVAL; 2674 goto err; 2675 } 2676 2677 ret = do_kvm_create_vm(ms, type); 2678 if (ret < 0) { 2679 goto err; 2680 } 2681 2682 s->vmfd = ret; 2683 2684 s->nr_as = kvm_vm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2685 if (s->nr_as <= 1) { 2686 s->nr_as = 1; 2687 } 2688 s->as = g_new0(struct KVMAs, s->nr_as); 2689 2690 /* check the vcpu limits */ 2691 soft_vcpus_limit = kvm_recommended_vcpus(s); 2692 hard_vcpus_limit = kvm_max_vcpus(s); 2693 2694 while (nc->name) { 2695 if (nc->num > soft_vcpus_limit) { 2696 warn_report("Number of %s cpus requested (%d) exceeds " 2697 "the recommended cpus supported by KVM (%d)", 2698 nc->name, nc->num, soft_vcpus_limit); 2699 2700 if (nc->num > hard_vcpus_limit) { 2701 error_report("Number of %s cpus requested (%d) exceeds " 2702 "the maximum cpus supported by KVM (%d)", 2703 nc->name, nc->num, hard_vcpus_limit); 2704 exit(1); 2705 } 2706 } 2707 nc++; 2708 } 2709 2710 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2711 if (!missing_cap) { 2712 missing_cap = 2713 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2714 } 2715 if (missing_cap) { 2716 ret = -EINVAL; 2717 error_report("kvm does not support %s", missing_cap->name); 2718 error_printf("%s", upgrade_note); 2719 goto err; 2720 } 2721 2722 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2723 s->coalesced_pio = s->coalesced_mmio && 2724 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2725 2726 ret = kvm_setup_dirty_ring(s); 2727 if (ret < 0) { 2728 goto err; 2729 } 2730 2731 #ifdef KVM_CAP_VCPU_EVENTS 2732 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2733 #endif 2734 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2735 2736 s->irq_set_ioctl = KVM_IRQ_LINE; 2737 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2738 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2739 } 2740 2741 kvm_readonly_mem_allowed = 2742 (kvm_vm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2743 2744 kvm_resamplefds_allowed = 2745 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2746 2747 kvm_vm_attributes_allowed = 2748 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2749 2750 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 2751 kvm_has_guest_debug = 2752 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2753 #endif 2754 2755 kvm_sstep_flags = 0; 2756 if (kvm_has_guest_debug) { 2757 kvm_sstep_flags = SSTEP_ENABLE; 2758 2759 #if defined TARGET_KVM_HAVE_GUEST_DEBUG 2760 int guest_debug_flags = 2761 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2762 2763 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2764 kvm_sstep_flags |= SSTEP_NOIRQ; 2765 } 2766 #endif 2767 } 2768 2769 kvm_state = s; 2770 2771 ret = kvm_arch_init(ms, s); 2772 if (ret < 0) { 2773 goto err; 2774 } 2775 2776 kvm_supported_memory_attributes = kvm_vm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES); 2777 kvm_guest_memfd_supported = 2778 kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) && 2779 kvm_check_extension(s, KVM_CAP_USER_MEMORY2) && 2780 (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE); 2781 kvm_pre_fault_memory_supported = kvm_vm_check_extension(s, KVM_CAP_PRE_FAULT_MEMORY); 2782 2783 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2784 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2785 } 2786 2787 qemu_register_reset(kvm_unpoison_all, NULL); 2788 2789 if (s->kernel_irqchip_allowed) { 2790 kvm_irqchip_create(s); 2791 } 2792 2793 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2794 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2795 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2796 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2797 2798 kvm_memory_listener_register(s, &s->memory_listener, 2799 &address_space_memory, 0, "kvm-memory"); 2800 memory_listener_register(&kvm_io_listener, 2801 &address_space_io); 2802 2803 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2804 if (!s->sync_mmu) { 2805 ret = ram_block_discard_disable(true); 2806 assert(!ret); 2807 } 2808 2809 if (s->kvm_dirty_ring_size) { 2810 kvm_dirty_ring_reaper_init(s); 2811 } 2812 2813 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2814 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2815 query_stats_schemas_cb); 2816 } 2817 2818 return 0; 2819 2820 err: 2821 assert(ret < 0); 2822 if (s->vmfd >= 0) { 2823 close(s->vmfd); 2824 } 2825 if (s->fd != -1) { 2826 close(s->fd); 2827 } 2828 g_free(s->as); 2829 g_free(s->memory_listener.slots); 2830 2831 return ret; 2832 } 2833 2834 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2835 { 2836 s->sigmask_len = sigmask_len; 2837 } 2838 2839 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2840 int size, uint32_t count) 2841 { 2842 int i; 2843 uint8_t *ptr = data; 2844 2845 for (i = 0; i < count; i++) { 2846 address_space_rw(&address_space_io, port, attrs, 2847 ptr, size, 2848 direction == KVM_EXIT_IO_OUT); 2849 ptr += size; 2850 } 2851 } 2852 2853 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2854 { 2855 int i; 2856 2857 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2858 run->internal.suberror); 2859 2860 for (i = 0; i < run->internal.ndata; ++i) { 2861 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2862 i, (uint64_t)run->internal.data[i]); 2863 } 2864 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2865 fprintf(stderr, "emulation failure\n"); 2866 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2867 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2868 return EXCP_INTERRUPT; 2869 } 2870 } 2871 /* FIXME: Should trigger a qmp message to let management know 2872 * something went wrong. 2873 */ 2874 return -1; 2875 } 2876 2877 void kvm_flush_coalesced_mmio_buffer(void) 2878 { 2879 KVMState *s = kvm_state; 2880 2881 if (!s || s->coalesced_flush_in_progress) { 2882 return; 2883 } 2884 2885 s->coalesced_flush_in_progress = true; 2886 2887 if (s->coalesced_mmio_ring) { 2888 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2889 while (ring->first != ring->last) { 2890 struct kvm_coalesced_mmio *ent; 2891 2892 ent = &ring->coalesced_mmio[ring->first]; 2893 2894 if (ent->pio == 1) { 2895 address_space_write(&address_space_io, ent->phys_addr, 2896 MEMTXATTRS_UNSPECIFIED, ent->data, 2897 ent->len); 2898 } else { 2899 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2900 } 2901 smp_wmb(); 2902 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2903 } 2904 } 2905 2906 s->coalesced_flush_in_progress = false; 2907 } 2908 2909 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2910 { 2911 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2912 Error *err = NULL; 2913 int ret = kvm_arch_get_registers(cpu, &err); 2914 if (ret) { 2915 if (err) { 2916 error_reportf_err(err, "Failed to synchronize CPU state: "); 2917 } else { 2918 error_report("Failed to get registers: %s", strerror(-ret)); 2919 } 2920 2921 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2922 vm_stop(RUN_STATE_INTERNAL_ERROR); 2923 } 2924 2925 cpu->vcpu_dirty = true; 2926 } 2927 } 2928 2929 void kvm_cpu_synchronize_state(CPUState *cpu) 2930 { 2931 if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) { 2932 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2933 } 2934 } 2935 2936 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2937 { 2938 Error *err = NULL; 2939 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE, &err); 2940 if (ret) { 2941 if (err) { 2942 error_reportf_err(err, "Restoring resisters after reset: "); 2943 } else { 2944 error_report("Failed to put registers after reset: %s", 2945 strerror(-ret)); 2946 } 2947 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2948 vm_stop(RUN_STATE_INTERNAL_ERROR); 2949 } 2950 2951 cpu->vcpu_dirty = false; 2952 } 2953 2954 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2955 { 2956 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2957 2958 if (cpu == first_cpu) { 2959 kvm_reset_parked_vcpus(kvm_state); 2960 } 2961 } 2962 2963 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2964 { 2965 Error *err = NULL; 2966 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE, &err); 2967 if (ret) { 2968 if (err) { 2969 error_reportf_err(err, "Putting registers after init: "); 2970 } else { 2971 error_report("Failed to put registers after init: %s", 2972 strerror(-ret)); 2973 } 2974 exit(1); 2975 } 2976 2977 cpu->vcpu_dirty = false; 2978 } 2979 2980 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2981 { 2982 if (!kvm_state->guest_state_protected) { 2983 /* 2984 * This runs before the machine_init_done notifiers, and is the last 2985 * opportunity to synchronize the state of confidential guests. 2986 */ 2987 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2988 } 2989 } 2990 2991 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2992 { 2993 cpu->vcpu_dirty = true; 2994 } 2995 2996 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2997 { 2998 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2999 } 3000 3001 #ifdef KVM_HAVE_MCE_INJECTION 3002 static __thread void *pending_sigbus_addr; 3003 static __thread int pending_sigbus_code; 3004 static __thread bool have_sigbus_pending; 3005 #endif 3006 3007 static void kvm_cpu_kick(CPUState *cpu) 3008 { 3009 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 3010 } 3011 3012 static void kvm_cpu_kick_self(void) 3013 { 3014 if (kvm_immediate_exit) { 3015 kvm_cpu_kick(current_cpu); 3016 } else { 3017 qemu_cpu_kick_self(); 3018 } 3019 } 3020 3021 static void kvm_eat_signals(CPUState *cpu) 3022 { 3023 struct timespec ts = { 0, 0 }; 3024 siginfo_t siginfo; 3025 sigset_t waitset; 3026 sigset_t chkset; 3027 int r; 3028 3029 if (kvm_immediate_exit) { 3030 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 3031 /* Write kvm_run->immediate_exit before the cpu->exit_request 3032 * write in kvm_cpu_exec. 3033 */ 3034 smp_wmb(); 3035 return; 3036 } 3037 3038 sigemptyset(&waitset); 3039 sigaddset(&waitset, SIG_IPI); 3040 3041 do { 3042 r = sigtimedwait(&waitset, &siginfo, &ts); 3043 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 3044 perror("sigtimedwait"); 3045 exit(1); 3046 } 3047 3048 r = sigpending(&chkset); 3049 if (r == -1) { 3050 perror("sigpending"); 3051 exit(1); 3052 } 3053 } while (sigismember(&chkset, SIG_IPI)); 3054 } 3055 3056 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private) 3057 { 3058 MemoryRegionSection section; 3059 ram_addr_t offset; 3060 MemoryRegion *mr; 3061 RAMBlock *rb; 3062 void *addr; 3063 int ret = -EINVAL; 3064 3065 trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared"); 3066 3067 if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) || 3068 !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) { 3069 return ret; 3070 } 3071 3072 if (!size) { 3073 return ret; 3074 } 3075 3076 section = memory_region_find(get_system_memory(), start, size); 3077 mr = section.mr; 3078 if (!mr) { 3079 /* 3080 * Ignore converting non-assigned region to shared. 3081 * 3082 * TDX requires vMMIO region to be shared to inject #VE to guest. 3083 * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region, 3084 * and vIO-APIC 0xFEC00000 4K page. 3085 * OVMF assigns 32bit PCI MMIO region to 3086 * [top of low memory: typically 2GB=0xC000000, 0xFC00000) 3087 */ 3088 if (!to_private) { 3089 return 0; 3090 } 3091 return ret; 3092 } 3093 3094 if (!memory_region_has_guest_memfd(mr)) { 3095 /* 3096 * Because vMMIO region must be shared, guest TD may convert vMMIO 3097 * region to shared explicitly. Don't complain such case. See 3098 * memory_region_type() for checking if the region is MMIO region. 3099 */ 3100 if (!to_private && 3101 !memory_region_is_ram(mr) && 3102 !memory_region_is_ram_device(mr) && 3103 !memory_region_is_rom(mr) && 3104 !memory_region_is_romd(mr)) { 3105 ret = 0; 3106 } else { 3107 error_report("Convert non guest_memfd backed memory region " 3108 "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s", 3109 start, size, to_private ? "private" : "shared"); 3110 } 3111 goto out_unref; 3112 } 3113 3114 if (to_private) { 3115 ret = kvm_set_memory_attributes_private(start, size); 3116 } else { 3117 ret = kvm_set_memory_attributes_shared(start, size); 3118 } 3119 if (ret) { 3120 goto out_unref; 3121 } 3122 3123 addr = memory_region_get_ram_ptr(mr) + section.offset_within_region; 3124 rb = qemu_ram_block_from_host(addr, false, &offset); 3125 3126 ret = ram_block_attributes_state_change(RAM_BLOCK_ATTRIBUTES(mr->rdm), 3127 offset, size, to_private); 3128 if (ret) { 3129 error_report("Failed to notify the listener the state change of " 3130 "(0x%"HWADDR_PRIx" + 0x%"HWADDR_PRIx") to %s", 3131 start, size, to_private ? "private" : "shared"); 3132 goto out_unref; 3133 } 3134 3135 if (to_private) { 3136 if (rb->page_size != qemu_real_host_page_size()) { 3137 /* 3138 * shared memory is backed by hugetlb, which is supposed to be 3139 * pre-allocated and doesn't need to be discarded 3140 */ 3141 goto out_unref; 3142 } 3143 ret = ram_block_discard_range(rb, offset, size); 3144 } else { 3145 ret = ram_block_discard_guest_memfd_range(rb, offset, size); 3146 } 3147 3148 out_unref: 3149 memory_region_unref(mr); 3150 return ret; 3151 } 3152 3153 int kvm_cpu_exec(CPUState *cpu) 3154 { 3155 struct kvm_run *run = cpu->kvm_run; 3156 int ret, run_ret; 3157 3158 trace_kvm_cpu_exec(); 3159 3160 if (kvm_arch_process_async_events(cpu)) { 3161 qatomic_set(&cpu->exit_request, 0); 3162 return EXCP_HLT; 3163 } 3164 3165 bql_unlock(); 3166 cpu_exec_start(cpu); 3167 3168 do { 3169 MemTxAttrs attrs; 3170 3171 if (cpu->vcpu_dirty) { 3172 Error *err = NULL; 3173 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE, &err); 3174 if (ret) { 3175 if (err) { 3176 error_reportf_err(err, "Putting registers after init: "); 3177 } else { 3178 error_report("Failed to put registers after init: %s", 3179 strerror(-ret)); 3180 } 3181 ret = -1; 3182 break; 3183 } 3184 3185 cpu->vcpu_dirty = false; 3186 } 3187 3188 kvm_arch_pre_run(cpu, run); 3189 if (qatomic_read(&cpu->exit_request)) { 3190 trace_kvm_interrupt_exit_request(); 3191 /* 3192 * KVM requires us to reenter the kernel after IO exits to complete 3193 * instruction emulation. This self-signal will ensure that we 3194 * leave ASAP again. 3195 */ 3196 kvm_cpu_kick_self(); 3197 } 3198 3199 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 3200 * Matching barrier in kvm_eat_signals. 3201 */ 3202 smp_rmb(); 3203 3204 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 3205 3206 attrs = kvm_arch_post_run(cpu, run); 3207 3208 #ifdef KVM_HAVE_MCE_INJECTION 3209 if (unlikely(have_sigbus_pending)) { 3210 bql_lock(); 3211 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 3212 pending_sigbus_addr); 3213 have_sigbus_pending = false; 3214 bql_unlock(); 3215 } 3216 #endif 3217 3218 if (run_ret < 0) { 3219 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3220 trace_kvm_io_window_exit(); 3221 kvm_eat_signals(cpu); 3222 ret = EXCP_INTERRUPT; 3223 break; 3224 } 3225 if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) { 3226 fprintf(stderr, "error: kvm run failed %s\n", 3227 strerror(-run_ret)); 3228 #ifdef TARGET_PPC 3229 if (run_ret == -EBUSY) { 3230 fprintf(stderr, 3231 "This is probably because your SMT is enabled.\n" 3232 "VCPU can only run on primary threads with all " 3233 "secondary threads offline.\n"); 3234 } 3235 #endif 3236 ret = -1; 3237 break; 3238 } 3239 } 3240 3241 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3242 switch (run->exit_reason) { 3243 case KVM_EXIT_IO: 3244 /* Called outside BQL */ 3245 kvm_handle_io(run->io.port, attrs, 3246 (uint8_t *)run + run->io.data_offset, 3247 run->io.direction, 3248 run->io.size, 3249 run->io.count); 3250 ret = 0; 3251 break; 3252 case KVM_EXIT_MMIO: 3253 /* Called outside BQL */ 3254 address_space_rw(&address_space_memory, 3255 run->mmio.phys_addr, attrs, 3256 run->mmio.data, 3257 run->mmio.len, 3258 run->mmio.is_write); 3259 ret = 0; 3260 break; 3261 case KVM_EXIT_IRQ_WINDOW_OPEN: 3262 ret = EXCP_INTERRUPT; 3263 break; 3264 case KVM_EXIT_SHUTDOWN: 3265 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3266 ret = EXCP_INTERRUPT; 3267 break; 3268 case KVM_EXIT_UNKNOWN: 3269 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3270 (uint64_t)run->hw.hardware_exit_reason); 3271 ret = -1; 3272 break; 3273 case KVM_EXIT_INTERNAL_ERROR: 3274 ret = kvm_handle_internal_error(cpu, run); 3275 break; 3276 case KVM_EXIT_DIRTY_RING_FULL: 3277 /* 3278 * We shouldn't continue if the dirty ring of this vcpu is 3279 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3280 */ 3281 trace_kvm_dirty_ring_full(cpu->cpu_index); 3282 bql_lock(); 3283 /* 3284 * We throttle vCPU by making it sleep once it exit from kernel 3285 * due to dirty ring full. In the dirtylimit scenario, reaping 3286 * all vCPUs after a single vCPU dirty ring get full result in 3287 * the miss of sleep, so just reap the ring-fulled vCPU. 3288 */ 3289 if (dirtylimit_in_service()) { 3290 kvm_dirty_ring_reap(kvm_state, cpu); 3291 } else { 3292 kvm_dirty_ring_reap(kvm_state, NULL); 3293 } 3294 bql_unlock(); 3295 dirtylimit_vcpu_execute(cpu); 3296 ret = 0; 3297 break; 3298 case KVM_EXIT_SYSTEM_EVENT: 3299 trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type); 3300 switch (run->system_event.type) { 3301 case KVM_SYSTEM_EVENT_SHUTDOWN: 3302 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3303 ret = EXCP_INTERRUPT; 3304 break; 3305 case KVM_SYSTEM_EVENT_RESET: 3306 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3307 ret = EXCP_INTERRUPT; 3308 break; 3309 case KVM_SYSTEM_EVENT_CRASH: 3310 kvm_cpu_synchronize_state(cpu); 3311 bql_lock(); 3312 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3313 bql_unlock(); 3314 ret = 0; 3315 break; 3316 default: 3317 ret = kvm_arch_handle_exit(cpu, run); 3318 break; 3319 } 3320 break; 3321 case KVM_EXIT_MEMORY_FAULT: 3322 trace_kvm_memory_fault(run->memory_fault.gpa, 3323 run->memory_fault.size, 3324 run->memory_fault.flags); 3325 if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) { 3326 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64, 3327 (uint64_t)run->memory_fault.flags); 3328 ret = -1; 3329 break; 3330 } 3331 ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size, 3332 run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE); 3333 break; 3334 default: 3335 ret = kvm_arch_handle_exit(cpu, run); 3336 break; 3337 } 3338 } while (ret == 0); 3339 3340 cpu_exec_end(cpu); 3341 bql_lock(); 3342 3343 if (ret < 0) { 3344 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3345 vm_stop(RUN_STATE_INTERNAL_ERROR); 3346 } 3347 3348 qatomic_set(&cpu->exit_request, 0); 3349 return ret; 3350 } 3351 3352 int kvm_ioctl(KVMState *s, unsigned long type, ...) 3353 { 3354 int ret; 3355 void *arg; 3356 va_list ap; 3357 3358 va_start(ap, type); 3359 arg = va_arg(ap, void *); 3360 va_end(ap); 3361 3362 trace_kvm_ioctl(type, arg); 3363 ret = ioctl(s->fd, type, arg); 3364 if (ret == -1) { 3365 ret = -errno; 3366 } 3367 return ret; 3368 } 3369 3370 int kvm_vm_ioctl(KVMState *s, unsigned long type, ...) 3371 { 3372 int ret; 3373 void *arg; 3374 va_list ap; 3375 3376 va_start(ap, type); 3377 arg = va_arg(ap, void *); 3378 va_end(ap); 3379 3380 trace_kvm_vm_ioctl(type, arg); 3381 accel_ioctl_begin(); 3382 ret = ioctl(s->vmfd, type, arg); 3383 accel_ioctl_end(); 3384 if (ret == -1) { 3385 ret = -errno; 3386 } 3387 return ret; 3388 } 3389 3390 int kvm_vcpu_ioctl(CPUState *cpu, unsigned long type, ...) 3391 { 3392 int ret; 3393 void *arg; 3394 va_list ap; 3395 3396 va_start(ap, type); 3397 arg = va_arg(ap, void *); 3398 va_end(ap); 3399 3400 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3401 accel_cpu_ioctl_begin(cpu); 3402 ret = ioctl(cpu->kvm_fd, type, arg); 3403 accel_cpu_ioctl_end(cpu); 3404 if (ret == -1) { 3405 ret = -errno; 3406 } 3407 return ret; 3408 } 3409 3410 int kvm_device_ioctl(int fd, unsigned long type, ...) 3411 { 3412 int ret; 3413 void *arg; 3414 va_list ap; 3415 3416 va_start(ap, type); 3417 arg = va_arg(ap, void *); 3418 va_end(ap); 3419 3420 trace_kvm_device_ioctl(fd, type, arg); 3421 accel_ioctl_begin(); 3422 ret = ioctl(fd, type, arg); 3423 accel_ioctl_end(); 3424 if (ret == -1) { 3425 ret = -errno; 3426 } 3427 return ret; 3428 } 3429 3430 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3431 { 3432 int ret; 3433 struct kvm_device_attr attribute = { 3434 .group = group, 3435 .attr = attr, 3436 }; 3437 3438 if (!kvm_vm_attributes_allowed) { 3439 return 0; 3440 } 3441 3442 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3443 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3444 return ret ? 0 : 1; 3445 } 3446 3447 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3448 { 3449 struct kvm_device_attr attribute = { 3450 .group = group, 3451 .attr = attr, 3452 .flags = 0, 3453 }; 3454 3455 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3456 } 3457 3458 int kvm_device_access(int fd, int group, uint64_t attr, 3459 void *val, bool write, Error **errp) 3460 { 3461 struct kvm_device_attr kvmattr; 3462 int err; 3463 3464 kvmattr.flags = 0; 3465 kvmattr.group = group; 3466 kvmattr.attr = attr; 3467 kvmattr.addr = (uintptr_t)val; 3468 3469 err = kvm_device_ioctl(fd, 3470 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3471 &kvmattr); 3472 if (err < 0) { 3473 error_setg_errno(errp, -err, 3474 "KVM_%s_DEVICE_ATTR failed: Group %d " 3475 "attr 0x%016" PRIx64, 3476 write ? "SET" : "GET", group, attr); 3477 } 3478 return err; 3479 } 3480 3481 bool kvm_has_sync_mmu(void) 3482 { 3483 return kvm_state->sync_mmu; 3484 } 3485 3486 int kvm_has_vcpu_events(void) 3487 { 3488 return kvm_state->vcpu_events; 3489 } 3490 3491 int kvm_max_nested_state_length(void) 3492 { 3493 return kvm_state->max_nested_state_len; 3494 } 3495 3496 int kvm_has_gsi_routing(void) 3497 { 3498 #ifdef KVM_CAP_IRQ_ROUTING 3499 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3500 #else 3501 return false; 3502 #endif 3503 } 3504 3505 bool kvm_arm_supports_user_irq(void) 3506 { 3507 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3508 } 3509 3510 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG 3511 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3512 { 3513 struct kvm_sw_breakpoint *bp; 3514 3515 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3516 if (bp->pc == pc) { 3517 return bp; 3518 } 3519 } 3520 return NULL; 3521 } 3522 3523 int kvm_sw_breakpoints_active(CPUState *cpu) 3524 { 3525 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3526 } 3527 3528 struct kvm_set_guest_debug_data { 3529 struct kvm_guest_debug dbg; 3530 int err; 3531 }; 3532 3533 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3534 { 3535 struct kvm_set_guest_debug_data *dbg_data = 3536 (struct kvm_set_guest_debug_data *) data.host_ptr; 3537 3538 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3539 &dbg_data->dbg); 3540 } 3541 3542 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3543 { 3544 struct kvm_set_guest_debug_data data; 3545 3546 data.dbg.control = reinject_trap; 3547 3548 if (cpu->singlestep_enabled) { 3549 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3550 3551 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3552 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3553 } 3554 } 3555 kvm_arch_update_guest_debug(cpu, &data.dbg); 3556 3557 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3558 RUN_ON_CPU_HOST_PTR(&data)); 3559 return data.err; 3560 } 3561 3562 bool kvm_supports_guest_debug(void) 3563 { 3564 /* probed during kvm_init() */ 3565 return kvm_has_guest_debug; 3566 } 3567 3568 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3569 { 3570 struct kvm_sw_breakpoint *bp; 3571 int err; 3572 3573 if (type == GDB_BREAKPOINT_SW) { 3574 bp = kvm_find_sw_breakpoint(cpu, addr); 3575 if (bp) { 3576 bp->use_count++; 3577 return 0; 3578 } 3579 3580 bp = g_new(struct kvm_sw_breakpoint, 1); 3581 bp->pc = addr; 3582 bp->use_count = 1; 3583 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3584 if (err) { 3585 g_free(bp); 3586 return err; 3587 } 3588 3589 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3590 } else { 3591 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3592 if (err) { 3593 return err; 3594 } 3595 } 3596 3597 CPU_FOREACH(cpu) { 3598 err = kvm_update_guest_debug(cpu, 0); 3599 if (err) { 3600 return err; 3601 } 3602 } 3603 return 0; 3604 } 3605 3606 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3607 { 3608 struct kvm_sw_breakpoint *bp; 3609 int err; 3610 3611 if (type == GDB_BREAKPOINT_SW) { 3612 bp = kvm_find_sw_breakpoint(cpu, addr); 3613 if (!bp) { 3614 return -ENOENT; 3615 } 3616 3617 if (bp->use_count > 1) { 3618 bp->use_count--; 3619 return 0; 3620 } 3621 3622 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3623 if (err) { 3624 return err; 3625 } 3626 3627 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3628 g_free(bp); 3629 } else { 3630 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3631 if (err) { 3632 return err; 3633 } 3634 } 3635 3636 CPU_FOREACH(cpu) { 3637 err = kvm_update_guest_debug(cpu, 0); 3638 if (err) { 3639 return err; 3640 } 3641 } 3642 return 0; 3643 } 3644 3645 void kvm_remove_all_breakpoints(CPUState *cpu) 3646 { 3647 struct kvm_sw_breakpoint *bp, *next; 3648 KVMState *s = cpu->kvm_state; 3649 CPUState *tmpcpu; 3650 3651 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3652 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3653 /* Try harder to find a CPU that currently sees the breakpoint. */ 3654 CPU_FOREACH(tmpcpu) { 3655 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3656 break; 3657 } 3658 } 3659 } 3660 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3661 g_free(bp); 3662 } 3663 kvm_arch_remove_all_hw_breakpoints(); 3664 3665 CPU_FOREACH(cpu) { 3666 kvm_update_guest_debug(cpu, 0); 3667 } 3668 } 3669 3670 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */ 3671 3672 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3673 { 3674 KVMState *s = kvm_state; 3675 struct kvm_signal_mask *sigmask; 3676 int r; 3677 3678 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3679 3680 sigmask->len = s->sigmask_len; 3681 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3682 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3683 g_free(sigmask); 3684 3685 return r; 3686 } 3687 3688 static void kvm_ipi_signal(int sig) 3689 { 3690 if (current_cpu) { 3691 assert(kvm_immediate_exit); 3692 kvm_cpu_kick(current_cpu); 3693 } 3694 } 3695 3696 void kvm_init_cpu_signals(CPUState *cpu) 3697 { 3698 int r; 3699 sigset_t set; 3700 struct sigaction sigact; 3701 3702 memset(&sigact, 0, sizeof(sigact)); 3703 sigact.sa_handler = kvm_ipi_signal; 3704 sigaction(SIG_IPI, &sigact, NULL); 3705 3706 pthread_sigmask(SIG_BLOCK, NULL, &set); 3707 #if defined KVM_HAVE_MCE_INJECTION 3708 sigdelset(&set, SIGBUS); 3709 pthread_sigmask(SIG_SETMASK, &set, NULL); 3710 #endif 3711 sigdelset(&set, SIG_IPI); 3712 if (kvm_immediate_exit) { 3713 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3714 } else { 3715 r = kvm_set_signal_mask(cpu, &set); 3716 } 3717 if (r) { 3718 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3719 exit(1); 3720 } 3721 } 3722 3723 /* Called asynchronously in VCPU thread. */ 3724 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3725 { 3726 #ifdef KVM_HAVE_MCE_INJECTION 3727 if (have_sigbus_pending) { 3728 return 1; 3729 } 3730 have_sigbus_pending = true; 3731 pending_sigbus_addr = addr; 3732 pending_sigbus_code = code; 3733 qatomic_set(&cpu->exit_request, 1); 3734 return 0; 3735 #else 3736 return 1; 3737 #endif 3738 } 3739 3740 /* Called synchronously (via signalfd) in main thread. */ 3741 int kvm_on_sigbus(int code, void *addr) 3742 { 3743 #ifdef KVM_HAVE_MCE_INJECTION 3744 /* Action required MCE kills the process if SIGBUS is blocked. Because 3745 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3746 * we can only get action optional here. 3747 */ 3748 assert(code != BUS_MCEERR_AR); 3749 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3750 return 0; 3751 #else 3752 return 1; 3753 #endif 3754 } 3755 3756 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3757 { 3758 int ret; 3759 struct kvm_create_device create_dev; 3760 3761 create_dev.type = type; 3762 create_dev.fd = -1; 3763 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3764 3765 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3766 return -ENOTSUP; 3767 } 3768 3769 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3770 if (ret) { 3771 return ret; 3772 } 3773 3774 return test ? 0 : create_dev.fd; 3775 } 3776 3777 bool kvm_device_supported(int vmfd, uint64_t type) 3778 { 3779 struct kvm_create_device create_dev = { 3780 .type = type, 3781 .fd = -1, 3782 .flags = KVM_CREATE_DEVICE_TEST, 3783 }; 3784 3785 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3786 return false; 3787 } 3788 3789 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3790 } 3791 3792 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3793 { 3794 struct kvm_one_reg reg; 3795 int r; 3796 3797 reg.id = id; 3798 reg.addr = (uintptr_t) source; 3799 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3800 if (r) { 3801 trace_kvm_failed_reg_set(id, strerror(-r)); 3802 } 3803 return r; 3804 } 3805 3806 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3807 { 3808 struct kvm_one_reg reg; 3809 int r; 3810 3811 reg.id = id; 3812 reg.addr = (uintptr_t) target; 3813 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3814 if (r) { 3815 trace_kvm_failed_reg_get(id, strerror(-r)); 3816 } 3817 return r; 3818 } 3819 3820 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3821 hwaddr start_addr, hwaddr size) 3822 { 3823 KVMState *kvm = KVM_STATE(ms->accelerator); 3824 int i; 3825 3826 for (i = 0; i < kvm->nr_as; ++i) { 3827 if (kvm->as[i].as == as && kvm->as[i].ml) { 3828 size = MIN(kvm_max_slot_size, size); 3829 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3830 start_addr, size); 3831 } 3832 } 3833 3834 return false; 3835 } 3836 3837 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3838 const char *name, void *opaque, 3839 Error **errp) 3840 { 3841 KVMState *s = KVM_STATE(obj); 3842 int64_t value = s->kvm_shadow_mem; 3843 3844 visit_type_int(v, name, &value, errp); 3845 } 3846 3847 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3848 const char *name, void *opaque, 3849 Error **errp) 3850 { 3851 KVMState *s = KVM_STATE(obj); 3852 int64_t value; 3853 3854 if (s->fd != -1) { 3855 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3856 return; 3857 } 3858 3859 if (!visit_type_int(v, name, &value, errp)) { 3860 return; 3861 } 3862 3863 s->kvm_shadow_mem = value; 3864 } 3865 3866 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3867 const char *name, void *opaque, 3868 Error **errp) 3869 { 3870 KVMState *s = KVM_STATE(obj); 3871 OnOffSplit mode; 3872 3873 if (s->fd != -1) { 3874 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3875 return; 3876 } 3877 3878 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3879 return; 3880 } 3881 switch (mode) { 3882 case ON_OFF_SPLIT_ON: 3883 s->kernel_irqchip_allowed = true; 3884 s->kernel_irqchip_required = true; 3885 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3886 break; 3887 case ON_OFF_SPLIT_OFF: 3888 s->kernel_irqchip_allowed = false; 3889 s->kernel_irqchip_required = false; 3890 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3891 break; 3892 case ON_OFF_SPLIT_SPLIT: 3893 s->kernel_irqchip_allowed = true; 3894 s->kernel_irqchip_required = true; 3895 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3896 break; 3897 default: 3898 /* The value was checked in visit_type_OnOffSplit() above. If 3899 * we get here, then something is wrong in QEMU. 3900 */ 3901 abort(); 3902 } 3903 } 3904 3905 bool kvm_kernel_irqchip_allowed(void) 3906 { 3907 return kvm_state->kernel_irqchip_allowed; 3908 } 3909 3910 bool kvm_kernel_irqchip_required(void) 3911 { 3912 return kvm_state->kernel_irqchip_required; 3913 } 3914 3915 bool kvm_kernel_irqchip_split(void) 3916 { 3917 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3918 } 3919 3920 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3921 const char *name, void *opaque, 3922 Error **errp) 3923 { 3924 KVMState *s = KVM_STATE(obj); 3925 uint32_t value = s->kvm_dirty_ring_size; 3926 3927 visit_type_uint32(v, name, &value, errp); 3928 } 3929 3930 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3931 const char *name, void *opaque, 3932 Error **errp) 3933 { 3934 KVMState *s = KVM_STATE(obj); 3935 uint32_t value; 3936 3937 if (s->fd != -1) { 3938 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3939 return; 3940 } 3941 3942 if (!visit_type_uint32(v, name, &value, errp)) { 3943 return; 3944 } 3945 if (value & (value - 1)) { 3946 error_setg(errp, "dirty-ring-size must be a power of two."); 3947 return; 3948 } 3949 3950 s->kvm_dirty_ring_size = value; 3951 } 3952 3953 static char *kvm_get_device(Object *obj, 3954 Error **errp G_GNUC_UNUSED) 3955 { 3956 KVMState *s = KVM_STATE(obj); 3957 3958 return g_strdup(s->device); 3959 } 3960 3961 static void kvm_set_device(Object *obj, 3962 const char *value, 3963 Error **errp G_GNUC_UNUSED) 3964 { 3965 KVMState *s = KVM_STATE(obj); 3966 3967 g_free(s->device); 3968 s->device = g_strdup(value); 3969 } 3970 3971 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp) 3972 { 3973 KVMState *s = KVM_STATE(obj); 3974 s->msr_energy.enable = value; 3975 } 3976 3977 static void kvm_set_kvm_rapl_socket_path(Object *obj, 3978 const char *str, 3979 Error **errp) 3980 { 3981 KVMState *s = KVM_STATE(obj); 3982 g_free(s->msr_energy.socket_path); 3983 s->msr_energy.socket_path = g_strdup(str); 3984 } 3985 3986 static void kvm_accel_instance_init(Object *obj) 3987 { 3988 KVMState *s = KVM_STATE(obj); 3989 3990 s->fd = -1; 3991 s->vmfd = -1; 3992 s->kvm_shadow_mem = -1; 3993 s->kernel_irqchip_allowed = true; 3994 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3995 /* KVM dirty ring is by default off */ 3996 s->kvm_dirty_ring_size = 0; 3997 s->kvm_dirty_ring_with_bitmap = false; 3998 s->kvm_eager_split_size = 0; 3999 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 4000 s->notify_window = 0; 4001 s->xen_version = 0; 4002 s->xen_gnttab_max_frames = 64; 4003 s->xen_evtchn_max_pirq = 256; 4004 s->device = NULL; 4005 s->msr_energy.enable = false; 4006 } 4007 4008 /** 4009 * kvm_gdbstub_sstep_flags(): 4010 * 4011 * Returns: SSTEP_* flags that KVM supports for guest debug. The 4012 * support is probed during kvm_init() 4013 */ 4014 static int kvm_gdbstub_sstep_flags(void) 4015 { 4016 return kvm_sstep_flags; 4017 } 4018 4019 static void kvm_accel_class_init(ObjectClass *oc, const void *data) 4020 { 4021 AccelClass *ac = ACCEL_CLASS(oc); 4022 ac->name = "KVM"; 4023 ac->init_machine = kvm_init; 4024 ac->has_memory = kvm_accel_has_memory; 4025 ac->allowed = &kvm_allowed; 4026 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 4027 4028 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 4029 NULL, kvm_set_kernel_irqchip, 4030 NULL, NULL); 4031 object_class_property_set_description(oc, "kernel-irqchip", 4032 "Configure KVM in-kernel irqchip"); 4033 4034 object_class_property_add(oc, "kvm-shadow-mem", "int", 4035 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 4036 NULL, NULL); 4037 object_class_property_set_description(oc, "kvm-shadow-mem", 4038 "KVM shadow MMU size"); 4039 4040 object_class_property_add(oc, "dirty-ring-size", "uint32", 4041 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 4042 NULL, NULL); 4043 object_class_property_set_description(oc, "dirty-ring-size", 4044 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 4045 4046 object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device); 4047 object_class_property_set_description(oc, "device", 4048 "Path to the device node to use (default: /dev/kvm)"); 4049 4050 object_class_property_add_bool(oc, "rapl", 4051 NULL, 4052 kvm_set_kvm_rapl); 4053 object_class_property_set_description(oc, "rapl", 4054 "Allow energy related MSRs for RAPL interface in Guest"); 4055 4056 object_class_property_add_str(oc, "rapl-helper-socket", NULL, 4057 kvm_set_kvm_rapl_socket_path); 4058 object_class_property_set_description(oc, "rapl-helper-socket", 4059 "Socket Path for comminucating with the Virtual MSR helper daemon"); 4060 4061 kvm_arch_accel_class_init(oc); 4062 } 4063 4064 static const TypeInfo kvm_accel_type = { 4065 .name = TYPE_KVM_ACCEL, 4066 .parent = TYPE_ACCEL, 4067 .instance_init = kvm_accel_instance_init, 4068 .class_init = kvm_accel_class_init, 4069 .instance_size = sizeof(KVMState), 4070 }; 4071 4072 static void kvm_type_init(void) 4073 { 4074 type_register_static(&kvm_accel_type); 4075 } 4076 4077 type_init(kvm_type_init); 4078 4079 typedef struct StatsArgs { 4080 union StatsResultsType { 4081 StatsResultList **stats; 4082 StatsSchemaList **schema; 4083 } result; 4084 strList *names; 4085 Error **errp; 4086 } StatsArgs; 4087 4088 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 4089 uint64_t *stats_data, 4090 StatsList *stats_list, 4091 Error **errp) 4092 { 4093 4094 Stats *stats; 4095 uint64List *val_list = NULL; 4096 4097 /* Only add stats that we understand. */ 4098 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4099 case KVM_STATS_TYPE_CUMULATIVE: 4100 case KVM_STATS_TYPE_INSTANT: 4101 case KVM_STATS_TYPE_PEAK: 4102 case KVM_STATS_TYPE_LINEAR_HIST: 4103 case KVM_STATS_TYPE_LOG_HIST: 4104 break; 4105 default: 4106 return stats_list; 4107 } 4108 4109 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4110 case KVM_STATS_UNIT_NONE: 4111 case KVM_STATS_UNIT_BYTES: 4112 case KVM_STATS_UNIT_CYCLES: 4113 case KVM_STATS_UNIT_SECONDS: 4114 case KVM_STATS_UNIT_BOOLEAN: 4115 break; 4116 default: 4117 return stats_list; 4118 } 4119 4120 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4121 case KVM_STATS_BASE_POW10: 4122 case KVM_STATS_BASE_POW2: 4123 break; 4124 default: 4125 return stats_list; 4126 } 4127 4128 /* Alloc and populate data list */ 4129 stats = g_new0(Stats, 1); 4130 stats->name = g_strdup(pdesc->name); 4131 stats->value = g_new0(StatsValue, 1); 4132 4133 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 4134 stats->value->u.boolean = *stats_data; 4135 stats->value->type = QTYPE_QBOOL; 4136 } else if (pdesc->size == 1) { 4137 stats->value->u.scalar = *stats_data; 4138 stats->value->type = QTYPE_QNUM; 4139 } else { 4140 int i; 4141 for (i = 0; i < pdesc->size; i++) { 4142 QAPI_LIST_PREPEND(val_list, stats_data[i]); 4143 } 4144 stats->value->u.list = val_list; 4145 stats->value->type = QTYPE_QLIST; 4146 } 4147 4148 QAPI_LIST_PREPEND(stats_list, stats); 4149 return stats_list; 4150 } 4151 4152 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 4153 StatsSchemaValueList *list, 4154 Error **errp) 4155 { 4156 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 4157 schema_entry->value = g_new0(StatsSchemaValue, 1); 4158 4159 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 4160 case KVM_STATS_TYPE_CUMULATIVE: 4161 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 4162 break; 4163 case KVM_STATS_TYPE_INSTANT: 4164 schema_entry->value->type = STATS_TYPE_INSTANT; 4165 break; 4166 case KVM_STATS_TYPE_PEAK: 4167 schema_entry->value->type = STATS_TYPE_PEAK; 4168 break; 4169 case KVM_STATS_TYPE_LINEAR_HIST: 4170 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 4171 schema_entry->value->bucket_size = pdesc->bucket_size; 4172 schema_entry->value->has_bucket_size = true; 4173 break; 4174 case KVM_STATS_TYPE_LOG_HIST: 4175 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 4176 break; 4177 default: 4178 goto exit; 4179 } 4180 4181 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 4182 case KVM_STATS_UNIT_NONE: 4183 break; 4184 case KVM_STATS_UNIT_BOOLEAN: 4185 schema_entry->value->has_unit = true; 4186 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 4187 break; 4188 case KVM_STATS_UNIT_BYTES: 4189 schema_entry->value->has_unit = true; 4190 schema_entry->value->unit = STATS_UNIT_BYTES; 4191 break; 4192 case KVM_STATS_UNIT_CYCLES: 4193 schema_entry->value->has_unit = true; 4194 schema_entry->value->unit = STATS_UNIT_CYCLES; 4195 break; 4196 case KVM_STATS_UNIT_SECONDS: 4197 schema_entry->value->has_unit = true; 4198 schema_entry->value->unit = STATS_UNIT_SECONDS; 4199 break; 4200 default: 4201 goto exit; 4202 } 4203 4204 schema_entry->value->exponent = pdesc->exponent; 4205 if (pdesc->exponent) { 4206 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 4207 case KVM_STATS_BASE_POW10: 4208 schema_entry->value->has_base = true; 4209 schema_entry->value->base = 10; 4210 break; 4211 case KVM_STATS_BASE_POW2: 4212 schema_entry->value->has_base = true; 4213 schema_entry->value->base = 2; 4214 break; 4215 default: 4216 goto exit; 4217 } 4218 } 4219 4220 schema_entry->value->name = g_strdup(pdesc->name); 4221 schema_entry->next = list; 4222 return schema_entry; 4223 exit: 4224 g_free(schema_entry->value); 4225 g_free(schema_entry); 4226 return list; 4227 } 4228 4229 /* Cached stats descriptors */ 4230 typedef struct StatsDescriptors { 4231 const char *ident; /* cache key, currently the StatsTarget */ 4232 struct kvm_stats_desc *kvm_stats_desc; 4233 struct kvm_stats_header kvm_stats_header; 4234 QTAILQ_ENTRY(StatsDescriptors) next; 4235 } StatsDescriptors; 4236 4237 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 4238 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 4239 4240 /* 4241 * Return the descriptors for 'target', that either have already been read 4242 * or are retrieved from 'stats_fd'. 4243 */ 4244 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 4245 Error **errp) 4246 { 4247 StatsDescriptors *descriptors; 4248 const char *ident; 4249 struct kvm_stats_desc *kvm_stats_desc; 4250 struct kvm_stats_header *kvm_stats_header; 4251 size_t size_desc; 4252 ssize_t ret; 4253 4254 ident = StatsTarget_str(target); 4255 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4256 if (g_str_equal(descriptors->ident, ident)) { 4257 return descriptors; 4258 } 4259 } 4260 4261 descriptors = g_new0(StatsDescriptors, 1); 4262 4263 /* Read stats header */ 4264 kvm_stats_header = &descriptors->kvm_stats_header; 4265 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4266 if (ret != sizeof(*kvm_stats_header)) { 4267 error_setg(errp, "KVM stats: failed to read stats header: " 4268 "expected %zu actual %zu", 4269 sizeof(*kvm_stats_header), ret); 4270 g_free(descriptors); 4271 return NULL; 4272 } 4273 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4274 4275 /* Read stats descriptors */ 4276 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4277 ret = pread(stats_fd, kvm_stats_desc, 4278 size_desc * kvm_stats_header->num_desc, 4279 kvm_stats_header->desc_offset); 4280 4281 if (ret != size_desc * kvm_stats_header->num_desc) { 4282 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4283 "expected %zu actual %zu", 4284 size_desc * kvm_stats_header->num_desc, ret); 4285 g_free(descriptors); 4286 g_free(kvm_stats_desc); 4287 return NULL; 4288 } 4289 descriptors->kvm_stats_desc = kvm_stats_desc; 4290 descriptors->ident = ident; 4291 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4292 return descriptors; 4293 } 4294 4295 static void query_stats(StatsResultList **result, StatsTarget target, 4296 strList *names, int stats_fd, CPUState *cpu, 4297 Error **errp) 4298 { 4299 struct kvm_stats_desc *kvm_stats_desc; 4300 struct kvm_stats_header *kvm_stats_header; 4301 StatsDescriptors *descriptors; 4302 g_autofree uint64_t *stats_data = NULL; 4303 struct kvm_stats_desc *pdesc; 4304 StatsList *stats_list = NULL; 4305 size_t size_desc, size_data = 0; 4306 ssize_t ret; 4307 int i; 4308 4309 descriptors = find_stats_descriptors(target, stats_fd, errp); 4310 if (!descriptors) { 4311 return; 4312 } 4313 4314 kvm_stats_header = &descriptors->kvm_stats_header; 4315 kvm_stats_desc = descriptors->kvm_stats_desc; 4316 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4317 4318 /* Tally the total data size; read schema data */ 4319 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4320 pdesc = (void *)kvm_stats_desc + i * size_desc; 4321 size_data += pdesc->size * sizeof(*stats_data); 4322 } 4323 4324 stats_data = g_malloc0(size_data); 4325 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4326 4327 if (ret != size_data) { 4328 error_setg(errp, "KVM stats: failed to read data: " 4329 "expected %zu actual %zu", size_data, ret); 4330 return; 4331 } 4332 4333 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4334 uint64_t *stats; 4335 pdesc = (void *)kvm_stats_desc + i * size_desc; 4336 4337 /* Add entry to the list */ 4338 stats = (void *)stats_data + pdesc->offset; 4339 if (!apply_str_list_filter(pdesc->name, names)) { 4340 continue; 4341 } 4342 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4343 } 4344 4345 if (!stats_list) { 4346 return; 4347 } 4348 4349 switch (target) { 4350 case STATS_TARGET_VM: 4351 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4352 break; 4353 case STATS_TARGET_VCPU: 4354 add_stats_entry(result, STATS_PROVIDER_KVM, 4355 cpu->parent_obj.canonical_path, 4356 stats_list); 4357 break; 4358 default: 4359 g_assert_not_reached(); 4360 } 4361 } 4362 4363 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4364 int stats_fd, Error **errp) 4365 { 4366 struct kvm_stats_desc *kvm_stats_desc; 4367 struct kvm_stats_header *kvm_stats_header; 4368 StatsDescriptors *descriptors; 4369 struct kvm_stats_desc *pdesc; 4370 StatsSchemaValueList *stats_list = NULL; 4371 size_t size_desc; 4372 int i; 4373 4374 descriptors = find_stats_descriptors(target, stats_fd, errp); 4375 if (!descriptors) { 4376 return; 4377 } 4378 4379 kvm_stats_header = &descriptors->kvm_stats_header; 4380 kvm_stats_desc = descriptors->kvm_stats_desc; 4381 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4382 4383 /* Tally the total data size; read schema data */ 4384 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4385 pdesc = (void *)kvm_stats_desc + i * size_desc; 4386 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4387 } 4388 4389 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4390 } 4391 4392 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4393 { 4394 int stats_fd = cpu->kvm_vcpu_stats_fd; 4395 Error *local_err = NULL; 4396 4397 if (stats_fd == -1) { 4398 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4399 error_propagate(kvm_stats_args->errp, local_err); 4400 return; 4401 } 4402 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4403 kvm_stats_args->names, stats_fd, cpu, 4404 kvm_stats_args->errp); 4405 } 4406 4407 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4408 { 4409 int stats_fd = cpu->kvm_vcpu_stats_fd; 4410 Error *local_err = NULL; 4411 4412 if (stats_fd == -1) { 4413 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4414 error_propagate(kvm_stats_args->errp, local_err); 4415 return; 4416 } 4417 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4418 kvm_stats_args->errp); 4419 } 4420 4421 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4422 strList *names, strList *targets, Error **errp) 4423 { 4424 KVMState *s = kvm_state; 4425 CPUState *cpu; 4426 int stats_fd; 4427 4428 switch (target) { 4429 case STATS_TARGET_VM: 4430 { 4431 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4432 if (stats_fd == -1) { 4433 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4434 return; 4435 } 4436 query_stats(result, target, names, stats_fd, NULL, errp); 4437 close(stats_fd); 4438 break; 4439 } 4440 case STATS_TARGET_VCPU: 4441 { 4442 StatsArgs stats_args; 4443 stats_args.result.stats = result; 4444 stats_args.names = names; 4445 stats_args.errp = errp; 4446 CPU_FOREACH(cpu) { 4447 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4448 continue; 4449 } 4450 query_stats_vcpu(cpu, &stats_args); 4451 } 4452 break; 4453 } 4454 default: 4455 break; 4456 } 4457 } 4458 4459 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4460 { 4461 StatsArgs stats_args; 4462 KVMState *s = kvm_state; 4463 int stats_fd; 4464 4465 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4466 if (stats_fd == -1) { 4467 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4468 return; 4469 } 4470 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4471 close(stats_fd); 4472 4473 if (first_cpu) { 4474 stats_args.result.schema = result; 4475 stats_args.errp = errp; 4476 query_stats_schema_vcpu(first_cpu, &stats_args); 4477 } 4478 } 4479 4480 void kvm_mark_guest_state_protected(void) 4481 { 4482 kvm_state->guest_state_protected = true; 4483 } 4484 4485 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp) 4486 { 4487 int fd; 4488 struct kvm_create_guest_memfd guest_memfd = { 4489 .size = size, 4490 .flags = flags, 4491 }; 4492 4493 if (!kvm_guest_memfd_supported) { 4494 error_setg(errp, "KVM does not support guest_memfd"); 4495 return -1; 4496 } 4497 4498 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd); 4499 if (fd < 0) { 4500 error_setg_errno(errp, errno, "Error creating KVM guest_memfd"); 4501 return -1; 4502 } 4503 4504 return fd; 4505 } 4506