xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 6f6e1698a68ceb49e57676528612f22eaf2c16c3)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 
19 #include <linux/kvm.h>
20 
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "sysemu/balloon.h"
44 
45 #include "hw/boards.h"
46 
47 /* This check must be after config-host.h is included */
48 #ifdef CONFIG_EVENTFD
49 #include <sys/eventfd.h>
50 #endif
51 
52 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
53  * need to use the real host PAGE_SIZE, as that's what KVM will use.
54  */
55 #define PAGE_SIZE qemu_real_host_page_size
56 
57 //#define DEBUG_KVM
58 
59 #ifdef DEBUG_KVM
60 #define DPRINTF(fmt, ...) \
61     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62 #else
63 #define DPRINTF(fmt, ...) \
64     do { } while (0)
65 #endif
66 
67 #define KVM_MSI_HASHTAB_SIZE    256
68 
69 struct KVMParkedVcpu {
70     unsigned long vcpu_id;
71     int kvm_fd;
72     QLIST_ENTRY(KVMParkedVcpu) node;
73 };
74 
75 struct KVMState
76 {
77     AccelState parent_obj;
78 
79     int nr_slots;
80     int fd;
81     int vmfd;
82     int coalesced_mmio;
83     int coalesced_pio;
84     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
85     bool coalesced_flush_in_progress;
86     int vcpu_events;
87     int robust_singlestep;
88     int debugregs;
89 #ifdef KVM_CAP_SET_GUEST_DEBUG
90     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
91 #endif
92     int max_nested_state_len;
93     int many_ioeventfds;
94     int intx_set_mask;
95     bool sync_mmu;
96     bool manual_dirty_log_protect;
97     /* The man page (and posix) say ioctl numbers are signed int, but
98      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
99      * unsigned, and treating them as signed here can break things */
100     unsigned irq_set_ioctl;
101     unsigned int sigmask_len;
102     GHashTable *gsimap;
103 #ifdef KVM_CAP_IRQ_ROUTING
104     struct kvm_irq_routing *irq_routes;
105     int nr_allocated_irq_routes;
106     unsigned long *used_gsi_bitmap;
107     unsigned int gsi_count;
108     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
109 #endif
110     KVMMemoryListener memory_listener;
111     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
112 
113     /* memory encryption */
114     void *memcrypt_handle;
115     int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
116 
117     /* For "info mtree -f" to tell if an MR is registered in KVM */
118     int nr_as;
119     struct KVMAs {
120         KVMMemoryListener *ml;
121         AddressSpace *as;
122     } *as;
123 };
124 
125 KVMState *kvm_state;
126 bool kvm_kernel_irqchip;
127 bool kvm_split_irqchip;
128 bool kvm_async_interrupts_allowed;
129 bool kvm_halt_in_kernel_allowed;
130 bool kvm_eventfds_allowed;
131 bool kvm_irqfds_allowed;
132 bool kvm_resamplefds_allowed;
133 bool kvm_msi_via_irqfd_allowed;
134 bool kvm_gsi_routing_allowed;
135 bool kvm_gsi_direct_mapping;
136 bool kvm_allowed;
137 bool kvm_readonly_mem_allowed;
138 bool kvm_vm_attributes_allowed;
139 bool kvm_direct_msi_allowed;
140 bool kvm_ioeventfd_any_length_allowed;
141 bool kvm_msi_use_devid;
142 static bool kvm_immediate_exit;
143 static hwaddr kvm_max_slot_size = ~0;
144 
145 static const KVMCapabilityInfo kvm_required_capabilites[] = {
146     KVM_CAP_INFO(USER_MEMORY),
147     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
148     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
149     KVM_CAP_LAST_INFO
150 };
151 
152 static NotifierList kvm_irqchip_change_notifiers =
153     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
154 
155 #define kvm_slots_lock(kml)      qemu_mutex_lock(&(kml)->slots_lock)
156 #define kvm_slots_unlock(kml)    qemu_mutex_unlock(&(kml)->slots_lock)
157 
158 int kvm_get_max_memslots(void)
159 {
160     KVMState *s = KVM_STATE(current_machine->accelerator);
161 
162     return s->nr_slots;
163 }
164 
165 bool kvm_memcrypt_enabled(void)
166 {
167     if (kvm_state && kvm_state->memcrypt_handle) {
168         return true;
169     }
170 
171     return false;
172 }
173 
174 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
175 {
176     if (kvm_state->memcrypt_handle &&
177         kvm_state->memcrypt_encrypt_data) {
178         return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
179                                               ptr, len);
180     }
181 
182     return 1;
183 }
184 
185 /* Called with KVMMemoryListener.slots_lock held */
186 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
187 {
188     KVMState *s = kvm_state;
189     int i;
190 
191     for (i = 0; i < s->nr_slots; i++) {
192         if (kml->slots[i].memory_size == 0) {
193             return &kml->slots[i];
194         }
195     }
196 
197     return NULL;
198 }
199 
200 bool kvm_has_free_slot(MachineState *ms)
201 {
202     KVMState *s = KVM_STATE(ms->accelerator);
203     bool result;
204     KVMMemoryListener *kml = &s->memory_listener;
205 
206     kvm_slots_lock(kml);
207     result = !!kvm_get_free_slot(kml);
208     kvm_slots_unlock(kml);
209 
210     return result;
211 }
212 
213 /* Called with KVMMemoryListener.slots_lock held */
214 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
215 {
216     KVMSlot *slot = kvm_get_free_slot(kml);
217 
218     if (slot) {
219         return slot;
220     }
221 
222     fprintf(stderr, "%s: no free slot available\n", __func__);
223     abort();
224 }
225 
226 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
227                                          hwaddr start_addr,
228                                          hwaddr size)
229 {
230     KVMState *s = kvm_state;
231     int i;
232 
233     for (i = 0; i < s->nr_slots; i++) {
234         KVMSlot *mem = &kml->slots[i];
235 
236         if (start_addr == mem->start_addr && size == mem->memory_size) {
237             return mem;
238         }
239     }
240 
241     return NULL;
242 }
243 
244 /*
245  * Calculate and align the start address and the size of the section.
246  * Return the size. If the size is 0, the aligned section is empty.
247  */
248 static hwaddr kvm_align_section(MemoryRegionSection *section,
249                                 hwaddr *start)
250 {
251     hwaddr size = int128_get64(section->size);
252     hwaddr delta, aligned;
253 
254     /* kvm works in page size chunks, but the function may be called
255        with sub-page size and unaligned start address. Pad the start
256        address to next and truncate size to previous page boundary. */
257     aligned = ROUND_UP(section->offset_within_address_space,
258                        qemu_real_host_page_size);
259     delta = aligned - section->offset_within_address_space;
260     *start = aligned;
261     if (delta > size) {
262         return 0;
263     }
264 
265     return (size - delta) & qemu_real_host_page_mask;
266 }
267 
268 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
269                                        hwaddr *phys_addr)
270 {
271     KVMMemoryListener *kml = &s->memory_listener;
272     int i, ret = 0;
273 
274     kvm_slots_lock(kml);
275     for (i = 0; i < s->nr_slots; i++) {
276         KVMSlot *mem = &kml->slots[i];
277 
278         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
279             *phys_addr = mem->start_addr + (ram - mem->ram);
280             ret = 1;
281             break;
282         }
283     }
284     kvm_slots_unlock(kml);
285 
286     return ret;
287 }
288 
289 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
290 {
291     KVMState *s = kvm_state;
292     struct kvm_userspace_memory_region mem;
293     int ret;
294 
295     mem.slot = slot->slot | (kml->as_id << 16);
296     mem.guest_phys_addr = slot->start_addr;
297     mem.userspace_addr = (unsigned long)slot->ram;
298     mem.flags = slot->flags;
299 
300     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
301         /* Set the slot size to 0 before setting the slot to the desired
302          * value. This is needed based on KVM commit 75d61fbc. */
303         mem.memory_size = 0;
304         kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
305     }
306     mem.memory_size = slot->memory_size;
307     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
308     slot->old_flags = mem.flags;
309     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
310                               mem.memory_size, mem.userspace_addr, ret);
311     return ret;
312 }
313 
314 int kvm_destroy_vcpu(CPUState *cpu)
315 {
316     KVMState *s = kvm_state;
317     long mmap_size;
318     struct KVMParkedVcpu *vcpu = NULL;
319     int ret = 0;
320 
321     DPRINTF("kvm_destroy_vcpu\n");
322 
323     ret = kvm_arch_destroy_vcpu(cpu);
324     if (ret < 0) {
325         goto err;
326     }
327 
328     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
329     if (mmap_size < 0) {
330         ret = mmap_size;
331         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
332         goto err;
333     }
334 
335     ret = munmap(cpu->kvm_run, mmap_size);
336     if (ret < 0) {
337         goto err;
338     }
339 
340     vcpu = g_malloc0(sizeof(*vcpu));
341     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
342     vcpu->kvm_fd = cpu->kvm_fd;
343     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
344 err:
345     return ret;
346 }
347 
348 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
349 {
350     struct KVMParkedVcpu *cpu;
351 
352     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
353         if (cpu->vcpu_id == vcpu_id) {
354             int kvm_fd;
355 
356             QLIST_REMOVE(cpu, node);
357             kvm_fd = cpu->kvm_fd;
358             g_free(cpu);
359             return kvm_fd;
360         }
361     }
362 
363     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
364 }
365 
366 int kvm_init_vcpu(CPUState *cpu)
367 {
368     KVMState *s = kvm_state;
369     long mmap_size;
370     int ret;
371 
372     DPRINTF("kvm_init_vcpu\n");
373 
374     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
375     if (ret < 0) {
376         DPRINTF("kvm_create_vcpu failed\n");
377         goto err;
378     }
379 
380     cpu->kvm_fd = ret;
381     cpu->kvm_state = s;
382     cpu->vcpu_dirty = true;
383 
384     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
385     if (mmap_size < 0) {
386         ret = mmap_size;
387         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
388         goto err;
389     }
390 
391     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
392                         cpu->kvm_fd, 0);
393     if (cpu->kvm_run == MAP_FAILED) {
394         ret = -errno;
395         DPRINTF("mmap'ing vcpu state failed\n");
396         goto err;
397     }
398 
399     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
400         s->coalesced_mmio_ring =
401             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
402     }
403 
404     ret = kvm_arch_init_vcpu(cpu);
405 err:
406     return ret;
407 }
408 
409 /*
410  * dirty pages logging control
411  */
412 
413 static int kvm_mem_flags(MemoryRegion *mr)
414 {
415     bool readonly = mr->readonly || memory_region_is_romd(mr);
416     int flags = 0;
417 
418     if (memory_region_get_dirty_log_mask(mr) != 0) {
419         flags |= KVM_MEM_LOG_DIRTY_PAGES;
420     }
421     if (readonly && kvm_readonly_mem_allowed) {
422         flags |= KVM_MEM_READONLY;
423     }
424     return flags;
425 }
426 
427 /* Called with KVMMemoryListener.slots_lock held */
428 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
429                                  MemoryRegion *mr)
430 {
431     mem->flags = kvm_mem_flags(mr);
432 
433     /* If nothing changed effectively, no need to issue ioctl */
434     if (mem->flags == mem->old_flags) {
435         return 0;
436     }
437 
438     return kvm_set_user_memory_region(kml, mem, false);
439 }
440 
441 static int kvm_section_update_flags(KVMMemoryListener *kml,
442                                     MemoryRegionSection *section)
443 {
444     hwaddr start_addr, size, slot_size;
445     KVMSlot *mem;
446     int ret = 0;
447 
448     size = kvm_align_section(section, &start_addr);
449     if (!size) {
450         return 0;
451     }
452 
453     kvm_slots_lock(kml);
454 
455     while (size && !ret) {
456         slot_size = MIN(kvm_max_slot_size, size);
457         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
458         if (!mem) {
459             /* We don't have a slot if we want to trap every access. */
460             goto out;
461         }
462 
463         ret = kvm_slot_update_flags(kml, mem, section->mr);
464         start_addr += slot_size;
465         size -= slot_size;
466     }
467 
468 out:
469     kvm_slots_unlock(kml);
470     return ret;
471 }
472 
473 static void kvm_log_start(MemoryListener *listener,
474                           MemoryRegionSection *section,
475                           int old, int new)
476 {
477     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
478     int r;
479 
480     if (old != 0) {
481         return;
482     }
483 
484     r = kvm_section_update_flags(kml, section);
485     if (r < 0) {
486         abort();
487     }
488 }
489 
490 static void kvm_log_stop(MemoryListener *listener,
491                           MemoryRegionSection *section,
492                           int old, int new)
493 {
494     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
495     int r;
496 
497     if (new != 0) {
498         return;
499     }
500 
501     r = kvm_section_update_flags(kml, section);
502     if (r < 0) {
503         abort();
504     }
505 }
506 
507 /* get kvm's dirty pages bitmap and update qemu's */
508 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
509                                          unsigned long *bitmap)
510 {
511     ram_addr_t start = section->offset_within_region +
512                        memory_region_get_ram_addr(section->mr);
513     ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
514 
515     cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
516     return 0;
517 }
518 
519 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
520 
521 /* Allocate the dirty bitmap for a slot  */
522 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
523 {
524     /*
525      * XXX bad kernel interface alert
526      * For dirty bitmap, kernel allocates array of size aligned to
527      * bits-per-long.  But for case when the kernel is 64bits and
528      * the userspace is 32bits, userspace can't align to the same
529      * bits-per-long, since sizeof(long) is different between kernel
530      * and user space.  This way, userspace will provide buffer which
531      * may be 4 bytes less than the kernel will use, resulting in
532      * userspace memory corruption (which is not detectable by valgrind
533      * too, in most cases).
534      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
535      * a hope that sizeof(long) won't become >8 any time soon.
536      */
537     hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
538                                         /*HOST_LONG_BITS*/ 64) / 8;
539     mem->dirty_bmap = g_malloc0(bitmap_size);
540 }
541 
542 /**
543  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
544  *
545  * This function will first try to fetch dirty bitmap from the kernel,
546  * and then updates qemu's dirty bitmap.
547  *
548  * NOTE: caller must be with kml->slots_lock held.
549  *
550  * @kml: the KVM memory listener object
551  * @section: the memory section to sync the dirty bitmap with
552  */
553 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
554                                           MemoryRegionSection *section)
555 {
556     KVMState *s = kvm_state;
557     struct kvm_dirty_log d = {};
558     KVMSlot *mem;
559     hwaddr start_addr, size;
560     hwaddr slot_size, slot_offset = 0;
561     int ret = 0;
562 
563     size = kvm_align_section(section, &start_addr);
564     while (size) {
565         MemoryRegionSection subsection = *section;
566 
567         slot_size = MIN(kvm_max_slot_size, size);
568         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
569         if (!mem) {
570             /* We don't have a slot if we want to trap every access. */
571             goto out;
572         }
573 
574         if (!mem->dirty_bmap) {
575             /* Allocate on the first log_sync, once and for all */
576             kvm_memslot_init_dirty_bitmap(mem);
577         }
578 
579         d.dirty_bitmap = mem->dirty_bmap;
580         d.slot = mem->slot | (kml->as_id << 16);
581         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
582             DPRINTF("ioctl failed %d\n", errno);
583             ret = -1;
584             goto out;
585         }
586 
587         subsection.offset_within_region += slot_offset;
588         subsection.size = int128_make64(slot_size);
589         kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
590 
591         slot_offset += slot_size;
592         start_addr += slot_size;
593         size -= slot_size;
594     }
595 out:
596     return ret;
597 }
598 
599 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
600 #define KVM_CLEAR_LOG_SHIFT  6
601 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
602 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
603 
604 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
605                                   uint64_t size)
606 {
607     KVMState *s = kvm_state;
608     uint64_t end, bmap_start, start_delta, bmap_npages;
609     struct kvm_clear_dirty_log d;
610     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
611     int ret;
612 
613     /*
614      * We need to extend either the start or the size or both to
615      * satisfy the KVM interface requirement.  Firstly, do the start
616      * page alignment on 64 host pages
617      */
618     bmap_start = start & KVM_CLEAR_LOG_MASK;
619     start_delta = start - bmap_start;
620     bmap_start /= psize;
621 
622     /*
623      * The kernel interface has restriction on the size too, that either:
624      *
625      * (1) the size is 64 host pages aligned (just like the start), or
626      * (2) the size fills up until the end of the KVM memslot.
627      */
628     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
629         << KVM_CLEAR_LOG_SHIFT;
630     end = mem->memory_size / psize;
631     if (bmap_npages > end - bmap_start) {
632         bmap_npages = end - bmap_start;
633     }
634     start_delta /= psize;
635 
636     /*
637      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
638      * that we won't clear any unknown dirty bits otherwise we might
639      * accidentally clear some set bits which are not yet synced from
640      * the kernel into QEMU's bitmap, then we'll lose track of the
641      * guest modifications upon those pages (which can directly lead
642      * to guest data loss or panic after migration).
643      *
644      * Layout of the KVMSlot.dirty_bmap:
645      *
646      *                   |<-------- bmap_npages -----------..>|
647      *                                                     [1]
648      *                     start_delta         size
649      *  |----------------|-------------|------------------|------------|
650      *  ^                ^             ^                               ^
651      *  |                |             |                               |
652      * start          bmap_start     (start)                         end
653      * of memslot                                             of memslot
654      *
655      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
656      */
657 
658     assert(bmap_start % BITS_PER_LONG == 0);
659     /* We should never do log_clear before log_sync */
660     assert(mem->dirty_bmap);
661     if (start_delta) {
662         /* Slow path - we need to manipulate a temp bitmap */
663         bmap_clear = bitmap_new(bmap_npages);
664         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
665                                     bmap_start, start_delta + size / psize);
666         /*
667          * We need to fill the holes at start because that was not
668          * specified by the caller and we extended the bitmap only for
669          * 64 pages alignment
670          */
671         bitmap_clear(bmap_clear, 0, start_delta);
672         d.dirty_bitmap = bmap_clear;
673     } else {
674         /* Fast path - start address aligns well with BITS_PER_LONG */
675         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
676     }
677 
678     d.first_page = bmap_start;
679     /* It should never overflow.  If it happens, say something */
680     assert(bmap_npages <= UINT32_MAX);
681     d.num_pages = bmap_npages;
682     d.slot = mem->slot | (as_id << 16);
683 
684     if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
685         ret = -errno;
686         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
687                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
688                      __func__, d.slot, (uint64_t)d.first_page,
689                      (uint32_t)d.num_pages, ret);
690     } else {
691         ret = 0;
692         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
693     }
694 
695     /*
696      * After we have updated the remote dirty bitmap, we update the
697      * cached bitmap as well for the memslot, then if another user
698      * clears the same region we know we shouldn't clear it again on
699      * the remote otherwise it's data loss as well.
700      */
701     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
702                  size / psize);
703     /* This handles the NULL case well */
704     g_free(bmap_clear);
705     return ret;
706 }
707 
708 
709 /**
710  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
711  *
712  * NOTE: this will be a no-op if we haven't enabled manual dirty log
713  * protection in the host kernel because in that case this operation
714  * will be done within log_sync().
715  *
716  * @kml:     the kvm memory listener
717  * @section: the memory range to clear dirty bitmap
718  */
719 static int kvm_physical_log_clear(KVMMemoryListener *kml,
720                                   MemoryRegionSection *section)
721 {
722     KVMState *s = kvm_state;
723     uint64_t start, size, offset, count;
724     KVMSlot *mem;
725     int ret = 0, i;
726 
727     if (!s->manual_dirty_log_protect) {
728         /* No need to do explicit clear */
729         return ret;
730     }
731 
732     start = section->offset_within_address_space;
733     size = int128_get64(section->size);
734 
735     if (!size) {
736         /* Nothing more we can do... */
737         return ret;
738     }
739 
740     kvm_slots_lock(kml);
741 
742     for (i = 0; i < s->nr_slots; i++) {
743         mem = &kml->slots[i];
744         /* Discard slots that are empty or do not overlap the section */
745         if (!mem->memory_size ||
746             mem->start_addr > start + size - 1 ||
747             start > mem->start_addr + mem->memory_size - 1) {
748             continue;
749         }
750 
751         if (start >= mem->start_addr) {
752             /* The slot starts before section or is aligned to it.  */
753             offset = start - mem->start_addr;
754             count = MIN(mem->memory_size - offset, size);
755         } else {
756             /* The slot starts after section.  */
757             offset = 0;
758             count = MIN(mem->memory_size, size - (mem->start_addr - start));
759         }
760         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
761         if (ret < 0) {
762             break;
763         }
764     }
765 
766     kvm_slots_unlock(kml);
767 
768     return ret;
769 }
770 
771 static void kvm_coalesce_mmio_region(MemoryListener *listener,
772                                      MemoryRegionSection *secion,
773                                      hwaddr start, hwaddr size)
774 {
775     KVMState *s = kvm_state;
776 
777     if (s->coalesced_mmio) {
778         struct kvm_coalesced_mmio_zone zone;
779 
780         zone.addr = start;
781         zone.size = size;
782         zone.pad = 0;
783 
784         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
785     }
786 }
787 
788 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
789                                        MemoryRegionSection *secion,
790                                        hwaddr start, hwaddr size)
791 {
792     KVMState *s = kvm_state;
793 
794     if (s->coalesced_mmio) {
795         struct kvm_coalesced_mmio_zone zone;
796 
797         zone.addr = start;
798         zone.size = size;
799         zone.pad = 0;
800 
801         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
802     }
803 }
804 
805 static void kvm_coalesce_pio_add(MemoryListener *listener,
806                                 MemoryRegionSection *section,
807                                 hwaddr start, hwaddr size)
808 {
809     KVMState *s = kvm_state;
810 
811     if (s->coalesced_pio) {
812         struct kvm_coalesced_mmio_zone zone;
813 
814         zone.addr = start;
815         zone.size = size;
816         zone.pio = 1;
817 
818         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
819     }
820 }
821 
822 static void kvm_coalesce_pio_del(MemoryListener *listener,
823                                 MemoryRegionSection *section,
824                                 hwaddr start, hwaddr size)
825 {
826     KVMState *s = kvm_state;
827 
828     if (s->coalesced_pio) {
829         struct kvm_coalesced_mmio_zone zone;
830 
831         zone.addr = start;
832         zone.size = size;
833         zone.pio = 1;
834 
835         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
836      }
837 }
838 
839 static MemoryListener kvm_coalesced_pio_listener = {
840     .coalesced_io_add = kvm_coalesce_pio_add,
841     .coalesced_io_del = kvm_coalesce_pio_del,
842 };
843 
844 int kvm_check_extension(KVMState *s, unsigned int extension)
845 {
846     int ret;
847 
848     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
849     if (ret < 0) {
850         ret = 0;
851     }
852 
853     return ret;
854 }
855 
856 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
857 {
858     int ret;
859 
860     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
861     if (ret < 0) {
862         /* VM wide version not implemented, use global one instead */
863         ret = kvm_check_extension(s, extension);
864     }
865 
866     return ret;
867 }
868 
869 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
870 {
871 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
872     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
873      * endianness, but the memory core hands them in target endianness.
874      * For example, PPC is always treated as big-endian even if running
875      * on KVM and on PPC64LE.  Correct here.
876      */
877     switch (size) {
878     case 2:
879         val = bswap16(val);
880         break;
881     case 4:
882         val = bswap32(val);
883         break;
884     }
885 #endif
886     return val;
887 }
888 
889 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
890                                   bool assign, uint32_t size, bool datamatch)
891 {
892     int ret;
893     struct kvm_ioeventfd iofd = {
894         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
895         .addr = addr,
896         .len = size,
897         .flags = 0,
898         .fd = fd,
899     };
900 
901     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
902                                  datamatch);
903     if (!kvm_enabled()) {
904         return -ENOSYS;
905     }
906 
907     if (datamatch) {
908         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
909     }
910     if (!assign) {
911         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
912     }
913 
914     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
915 
916     if (ret < 0) {
917         return -errno;
918     }
919 
920     return 0;
921 }
922 
923 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
924                                  bool assign, uint32_t size, bool datamatch)
925 {
926     struct kvm_ioeventfd kick = {
927         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
928         .addr = addr,
929         .flags = KVM_IOEVENTFD_FLAG_PIO,
930         .len = size,
931         .fd = fd,
932     };
933     int r;
934     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
935     if (!kvm_enabled()) {
936         return -ENOSYS;
937     }
938     if (datamatch) {
939         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
940     }
941     if (!assign) {
942         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
943     }
944     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
945     if (r < 0) {
946         return r;
947     }
948     return 0;
949 }
950 
951 
952 static int kvm_check_many_ioeventfds(void)
953 {
954     /* Userspace can use ioeventfd for io notification.  This requires a host
955      * that supports eventfd(2) and an I/O thread; since eventfd does not
956      * support SIGIO it cannot interrupt the vcpu.
957      *
958      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
959      * can avoid creating too many ioeventfds.
960      */
961 #if defined(CONFIG_EVENTFD)
962     int ioeventfds[7];
963     int i, ret = 0;
964     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
965         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
966         if (ioeventfds[i] < 0) {
967             break;
968         }
969         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
970         if (ret < 0) {
971             close(ioeventfds[i]);
972             break;
973         }
974     }
975 
976     /* Decide whether many devices are supported or not */
977     ret = i == ARRAY_SIZE(ioeventfds);
978 
979     while (i-- > 0) {
980         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
981         close(ioeventfds[i]);
982     }
983     return ret;
984 #else
985     return 0;
986 #endif
987 }
988 
989 static const KVMCapabilityInfo *
990 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
991 {
992     while (list->name) {
993         if (!kvm_check_extension(s, list->value)) {
994             return list;
995         }
996         list++;
997     }
998     return NULL;
999 }
1000 
1001 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1002 {
1003     g_assert(
1004         ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1005     );
1006     kvm_max_slot_size = max_slot_size;
1007 }
1008 
1009 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1010                              MemoryRegionSection *section, bool add)
1011 {
1012     KVMSlot *mem;
1013     int err;
1014     MemoryRegion *mr = section->mr;
1015     bool writeable = !mr->readonly && !mr->rom_device;
1016     hwaddr start_addr, size, slot_size;
1017     void *ram;
1018 
1019     if (!memory_region_is_ram(mr)) {
1020         if (writeable || !kvm_readonly_mem_allowed) {
1021             return;
1022         } else if (!mr->romd_mode) {
1023             /* If the memory device is not in romd_mode, then we actually want
1024              * to remove the kvm memory slot so all accesses will trap. */
1025             add = false;
1026         }
1027     }
1028 
1029     size = kvm_align_section(section, &start_addr);
1030     if (!size) {
1031         return;
1032     }
1033 
1034     /* use aligned delta to align the ram address */
1035     ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1036           (start_addr - section->offset_within_address_space);
1037 
1038     kvm_slots_lock(kml);
1039 
1040     if (!add) {
1041         do {
1042             slot_size = MIN(kvm_max_slot_size, size);
1043             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1044             if (!mem) {
1045                 goto out;
1046             }
1047             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1048                 kvm_physical_sync_dirty_bitmap(kml, section);
1049             }
1050 
1051             /* unregister the slot */
1052             g_free(mem->dirty_bmap);
1053             mem->dirty_bmap = NULL;
1054             mem->memory_size = 0;
1055             mem->flags = 0;
1056             err = kvm_set_user_memory_region(kml, mem, false);
1057             if (err) {
1058                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1059                         __func__, strerror(-err));
1060                 abort();
1061             }
1062             start_addr += slot_size;
1063             size -= slot_size;
1064         } while (size);
1065         goto out;
1066     }
1067 
1068     /* register the new slot */
1069     do {
1070         slot_size = MIN(kvm_max_slot_size, size);
1071         mem = kvm_alloc_slot(kml);
1072         mem->memory_size = slot_size;
1073         mem->start_addr = start_addr;
1074         mem->ram = ram;
1075         mem->flags = kvm_mem_flags(mr);
1076 
1077         if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1078             /*
1079              * Reallocate the bmap; it means it doesn't disappear in
1080              * middle of a migrate.
1081              */
1082             kvm_memslot_init_dirty_bitmap(mem);
1083         }
1084         err = kvm_set_user_memory_region(kml, mem, true);
1085         if (err) {
1086             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1087                     strerror(-err));
1088             abort();
1089         }
1090         start_addr += slot_size;
1091         ram += slot_size;
1092         size -= slot_size;
1093     } while (size);
1094 
1095 out:
1096     kvm_slots_unlock(kml);
1097 }
1098 
1099 static void kvm_region_add(MemoryListener *listener,
1100                            MemoryRegionSection *section)
1101 {
1102     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1103 
1104     memory_region_ref(section->mr);
1105     kvm_set_phys_mem(kml, section, true);
1106 }
1107 
1108 static void kvm_region_del(MemoryListener *listener,
1109                            MemoryRegionSection *section)
1110 {
1111     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1112 
1113     kvm_set_phys_mem(kml, section, false);
1114     memory_region_unref(section->mr);
1115 }
1116 
1117 static void kvm_log_sync(MemoryListener *listener,
1118                          MemoryRegionSection *section)
1119 {
1120     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1121     int r;
1122 
1123     kvm_slots_lock(kml);
1124     r = kvm_physical_sync_dirty_bitmap(kml, section);
1125     kvm_slots_unlock(kml);
1126     if (r < 0) {
1127         abort();
1128     }
1129 }
1130 
1131 static void kvm_log_clear(MemoryListener *listener,
1132                           MemoryRegionSection *section)
1133 {
1134     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1135     int r;
1136 
1137     r = kvm_physical_log_clear(kml, section);
1138     if (r < 0) {
1139         error_report_once("%s: kvm log clear failed: mr=%s "
1140                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1141                           section->mr->name, section->offset_within_region,
1142                           int128_get64(section->size));
1143         abort();
1144     }
1145 }
1146 
1147 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1148                                   MemoryRegionSection *section,
1149                                   bool match_data, uint64_t data,
1150                                   EventNotifier *e)
1151 {
1152     int fd = event_notifier_get_fd(e);
1153     int r;
1154 
1155     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1156                                data, true, int128_get64(section->size),
1157                                match_data);
1158     if (r < 0) {
1159         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1160                 __func__, strerror(-r), -r);
1161         abort();
1162     }
1163 }
1164 
1165 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1166                                   MemoryRegionSection *section,
1167                                   bool match_data, uint64_t data,
1168                                   EventNotifier *e)
1169 {
1170     int fd = event_notifier_get_fd(e);
1171     int r;
1172 
1173     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1174                                data, false, int128_get64(section->size),
1175                                match_data);
1176     if (r < 0) {
1177         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1178                 __func__, strerror(-r), -r);
1179         abort();
1180     }
1181 }
1182 
1183 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1184                                  MemoryRegionSection *section,
1185                                  bool match_data, uint64_t data,
1186                                  EventNotifier *e)
1187 {
1188     int fd = event_notifier_get_fd(e);
1189     int r;
1190 
1191     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1192                               data, true, int128_get64(section->size),
1193                               match_data);
1194     if (r < 0) {
1195         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1196                 __func__, strerror(-r), -r);
1197         abort();
1198     }
1199 }
1200 
1201 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1202                                  MemoryRegionSection *section,
1203                                  bool match_data, uint64_t data,
1204                                  EventNotifier *e)
1205 
1206 {
1207     int fd = event_notifier_get_fd(e);
1208     int r;
1209 
1210     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1211                               data, false, int128_get64(section->size),
1212                               match_data);
1213     if (r < 0) {
1214         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1215                 __func__, strerror(-r), -r);
1216         abort();
1217     }
1218 }
1219 
1220 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1221                                   AddressSpace *as, int as_id)
1222 {
1223     int i;
1224 
1225     qemu_mutex_init(&kml->slots_lock);
1226     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1227     kml->as_id = as_id;
1228 
1229     for (i = 0; i < s->nr_slots; i++) {
1230         kml->slots[i].slot = i;
1231     }
1232 
1233     kml->listener.region_add = kvm_region_add;
1234     kml->listener.region_del = kvm_region_del;
1235     kml->listener.log_start = kvm_log_start;
1236     kml->listener.log_stop = kvm_log_stop;
1237     kml->listener.log_sync = kvm_log_sync;
1238     kml->listener.log_clear = kvm_log_clear;
1239     kml->listener.priority = 10;
1240 
1241     memory_listener_register(&kml->listener, as);
1242 
1243     for (i = 0; i < s->nr_as; ++i) {
1244         if (!s->as[i].as) {
1245             s->as[i].as = as;
1246             s->as[i].ml = kml;
1247             break;
1248         }
1249     }
1250 }
1251 
1252 static MemoryListener kvm_io_listener = {
1253     .eventfd_add = kvm_io_ioeventfd_add,
1254     .eventfd_del = kvm_io_ioeventfd_del,
1255     .priority = 10,
1256 };
1257 
1258 int kvm_set_irq(KVMState *s, int irq, int level)
1259 {
1260     struct kvm_irq_level event;
1261     int ret;
1262 
1263     assert(kvm_async_interrupts_enabled());
1264 
1265     event.level = level;
1266     event.irq = irq;
1267     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1268     if (ret < 0) {
1269         perror("kvm_set_irq");
1270         abort();
1271     }
1272 
1273     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1274 }
1275 
1276 #ifdef KVM_CAP_IRQ_ROUTING
1277 typedef struct KVMMSIRoute {
1278     struct kvm_irq_routing_entry kroute;
1279     QTAILQ_ENTRY(KVMMSIRoute) entry;
1280 } KVMMSIRoute;
1281 
1282 static void set_gsi(KVMState *s, unsigned int gsi)
1283 {
1284     set_bit(gsi, s->used_gsi_bitmap);
1285 }
1286 
1287 static void clear_gsi(KVMState *s, unsigned int gsi)
1288 {
1289     clear_bit(gsi, s->used_gsi_bitmap);
1290 }
1291 
1292 void kvm_init_irq_routing(KVMState *s)
1293 {
1294     int gsi_count, i;
1295 
1296     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1297     if (gsi_count > 0) {
1298         /* Round up so we can search ints using ffs */
1299         s->used_gsi_bitmap = bitmap_new(gsi_count);
1300         s->gsi_count = gsi_count;
1301     }
1302 
1303     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1304     s->nr_allocated_irq_routes = 0;
1305 
1306     if (!kvm_direct_msi_allowed) {
1307         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1308             QTAILQ_INIT(&s->msi_hashtab[i]);
1309         }
1310     }
1311 
1312     kvm_arch_init_irq_routing(s);
1313 }
1314 
1315 void kvm_irqchip_commit_routes(KVMState *s)
1316 {
1317     int ret;
1318 
1319     if (kvm_gsi_direct_mapping()) {
1320         return;
1321     }
1322 
1323     if (!kvm_gsi_routing_enabled()) {
1324         return;
1325     }
1326 
1327     s->irq_routes->flags = 0;
1328     trace_kvm_irqchip_commit_routes();
1329     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1330     assert(ret == 0);
1331 }
1332 
1333 static void kvm_add_routing_entry(KVMState *s,
1334                                   struct kvm_irq_routing_entry *entry)
1335 {
1336     struct kvm_irq_routing_entry *new;
1337     int n, size;
1338 
1339     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1340         n = s->nr_allocated_irq_routes * 2;
1341         if (n < 64) {
1342             n = 64;
1343         }
1344         size = sizeof(struct kvm_irq_routing);
1345         size += n * sizeof(*new);
1346         s->irq_routes = g_realloc(s->irq_routes, size);
1347         s->nr_allocated_irq_routes = n;
1348     }
1349     n = s->irq_routes->nr++;
1350     new = &s->irq_routes->entries[n];
1351 
1352     *new = *entry;
1353 
1354     set_gsi(s, entry->gsi);
1355 }
1356 
1357 static int kvm_update_routing_entry(KVMState *s,
1358                                     struct kvm_irq_routing_entry *new_entry)
1359 {
1360     struct kvm_irq_routing_entry *entry;
1361     int n;
1362 
1363     for (n = 0; n < s->irq_routes->nr; n++) {
1364         entry = &s->irq_routes->entries[n];
1365         if (entry->gsi != new_entry->gsi) {
1366             continue;
1367         }
1368 
1369         if(!memcmp(entry, new_entry, sizeof *entry)) {
1370             return 0;
1371         }
1372 
1373         *entry = *new_entry;
1374 
1375         return 0;
1376     }
1377 
1378     return -ESRCH;
1379 }
1380 
1381 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1382 {
1383     struct kvm_irq_routing_entry e = {};
1384 
1385     assert(pin < s->gsi_count);
1386 
1387     e.gsi = irq;
1388     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1389     e.flags = 0;
1390     e.u.irqchip.irqchip = irqchip;
1391     e.u.irqchip.pin = pin;
1392     kvm_add_routing_entry(s, &e);
1393 }
1394 
1395 void kvm_irqchip_release_virq(KVMState *s, int virq)
1396 {
1397     struct kvm_irq_routing_entry *e;
1398     int i;
1399 
1400     if (kvm_gsi_direct_mapping()) {
1401         return;
1402     }
1403 
1404     for (i = 0; i < s->irq_routes->nr; i++) {
1405         e = &s->irq_routes->entries[i];
1406         if (e->gsi == virq) {
1407             s->irq_routes->nr--;
1408             *e = s->irq_routes->entries[s->irq_routes->nr];
1409         }
1410     }
1411     clear_gsi(s, virq);
1412     kvm_arch_release_virq_post(virq);
1413     trace_kvm_irqchip_release_virq(virq);
1414 }
1415 
1416 void kvm_irqchip_add_change_notifier(Notifier *n)
1417 {
1418     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1419 }
1420 
1421 void kvm_irqchip_remove_change_notifier(Notifier *n)
1422 {
1423     notifier_remove(n);
1424 }
1425 
1426 void kvm_irqchip_change_notify(void)
1427 {
1428     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1429 }
1430 
1431 static unsigned int kvm_hash_msi(uint32_t data)
1432 {
1433     /* This is optimized for IA32 MSI layout. However, no other arch shall
1434      * repeat the mistake of not providing a direct MSI injection API. */
1435     return data & 0xff;
1436 }
1437 
1438 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1439 {
1440     KVMMSIRoute *route, *next;
1441     unsigned int hash;
1442 
1443     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1444         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1445             kvm_irqchip_release_virq(s, route->kroute.gsi);
1446             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1447             g_free(route);
1448         }
1449     }
1450 }
1451 
1452 static int kvm_irqchip_get_virq(KVMState *s)
1453 {
1454     int next_virq;
1455 
1456     /*
1457      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1458      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1459      * number can succeed even though a new route entry cannot be added.
1460      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1461      */
1462     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1463         kvm_flush_dynamic_msi_routes(s);
1464     }
1465 
1466     /* Return the lowest unused GSI in the bitmap */
1467     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1468     if (next_virq >= s->gsi_count) {
1469         return -ENOSPC;
1470     } else {
1471         return next_virq;
1472     }
1473 }
1474 
1475 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1476 {
1477     unsigned int hash = kvm_hash_msi(msg.data);
1478     KVMMSIRoute *route;
1479 
1480     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1481         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1482             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1483             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1484             return route;
1485         }
1486     }
1487     return NULL;
1488 }
1489 
1490 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1491 {
1492     struct kvm_msi msi;
1493     KVMMSIRoute *route;
1494 
1495     if (kvm_direct_msi_allowed) {
1496         msi.address_lo = (uint32_t)msg.address;
1497         msi.address_hi = msg.address >> 32;
1498         msi.data = le32_to_cpu(msg.data);
1499         msi.flags = 0;
1500         memset(msi.pad, 0, sizeof(msi.pad));
1501 
1502         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1503     }
1504 
1505     route = kvm_lookup_msi_route(s, msg);
1506     if (!route) {
1507         int virq;
1508 
1509         virq = kvm_irqchip_get_virq(s);
1510         if (virq < 0) {
1511             return virq;
1512         }
1513 
1514         route = g_malloc0(sizeof(KVMMSIRoute));
1515         route->kroute.gsi = virq;
1516         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1517         route->kroute.flags = 0;
1518         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1519         route->kroute.u.msi.address_hi = msg.address >> 32;
1520         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1521 
1522         kvm_add_routing_entry(s, &route->kroute);
1523         kvm_irqchip_commit_routes(s);
1524 
1525         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1526                            entry);
1527     }
1528 
1529     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1530 
1531     return kvm_set_irq(s, route->kroute.gsi, 1);
1532 }
1533 
1534 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1535 {
1536     struct kvm_irq_routing_entry kroute = {};
1537     int virq;
1538     MSIMessage msg = {0, 0};
1539 
1540     if (pci_available && dev) {
1541         msg = pci_get_msi_message(dev, vector);
1542     }
1543 
1544     if (kvm_gsi_direct_mapping()) {
1545         return kvm_arch_msi_data_to_gsi(msg.data);
1546     }
1547 
1548     if (!kvm_gsi_routing_enabled()) {
1549         return -ENOSYS;
1550     }
1551 
1552     virq = kvm_irqchip_get_virq(s);
1553     if (virq < 0) {
1554         return virq;
1555     }
1556 
1557     kroute.gsi = virq;
1558     kroute.type = KVM_IRQ_ROUTING_MSI;
1559     kroute.flags = 0;
1560     kroute.u.msi.address_lo = (uint32_t)msg.address;
1561     kroute.u.msi.address_hi = msg.address >> 32;
1562     kroute.u.msi.data = le32_to_cpu(msg.data);
1563     if (pci_available && kvm_msi_devid_required()) {
1564         kroute.flags = KVM_MSI_VALID_DEVID;
1565         kroute.u.msi.devid = pci_requester_id(dev);
1566     }
1567     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1568         kvm_irqchip_release_virq(s, virq);
1569         return -EINVAL;
1570     }
1571 
1572     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1573                                     vector, virq);
1574 
1575     kvm_add_routing_entry(s, &kroute);
1576     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1577     kvm_irqchip_commit_routes(s);
1578 
1579     return virq;
1580 }
1581 
1582 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1583                                  PCIDevice *dev)
1584 {
1585     struct kvm_irq_routing_entry kroute = {};
1586 
1587     if (kvm_gsi_direct_mapping()) {
1588         return 0;
1589     }
1590 
1591     if (!kvm_irqchip_in_kernel()) {
1592         return -ENOSYS;
1593     }
1594 
1595     kroute.gsi = virq;
1596     kroute.type = KVM_IRQ_ROUTING_MSI;
1597     kroute.flags = 0;
1598     kroute.u.msi.address_lo = (uint32_t)msg.address;
1599     kroute.u.msi.address_hi = msg.address >> 32;
1600     kroute.u.msi.data = le32_to_cpu(msg.data);
1601     if (pci_available && kvm_msi_devid_required()) {
1602         kroute.flags = KVM_MSI_VALID_DEVID;
1603         kroute.u.msi.devid = pci_requester_id(dev);
1604     }
1605     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1606         return -EINVAL;
1607     }
1608 
1609     trace_kvm_irqchip_update_msi_route(virq);
1610 
1611     return kvm_update_routing_entry(s, &kroute);
1612 }
1613 
1614 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1615                                     bool assign)
1616 {
1617     struct kvm_irqfd irqfd = {
1618         .fd = fd,
1619         .gsi = virq,
1620         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1621     };
1622 
1623     if (rfd != -1) {
1624         irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1625         irqfd.resamplefd = rfd;
1626     }
1627 
1628     if (!kvm_irqfds_enabled()) {
1629         return -ENOSYS;
1630     }
1631 
1632     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1633 }
1634 
1635 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1636 {
1637     struct kvm_irq_routing_entry kroute = {};
1638     int virq;
1639 
1640     if (!kvm_gsi_routing_enabled()) {
1641         return -ENOSYS;
1642     }
1643 
1644     virq = kvm_irqchip_get_virq(s);
1645     if (virq < 0) {
1646         return virq;
1647     }
1648 
1649     kroute.gsi = virq;
1650     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1651     kroute.flags = 0;
1652     kroute.u.adapter.summary_addr = adapter->summary_addr;
1653     kroute.u.adapter.ind_addr = adapter->ind_addr;
1654     kroute.u.adapter.summary_offset = adapter->summary_offset;
1655     kroute.u.adapter.ind_offset = adapter->ind_offset;
1656     kroute.u.adapter.adapter_id = adapter->adapter_id;
1657 
1658     kvm_add_routing_entry(s, &kroute);
1659 
1660     return virq;
1661 }
1662 
1663 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1664 {
1665     struct kvm_irq_routing_entry kroute = {};
1666     int virq;
1667 
1668     if (!kvm_gsi_routing_enabled()) {
1669         return -ENOSYS;
1670     }
1671     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1672         return -ENOSYS;
1673     }
1674     virq = kvm_irqchip_get_virq(s);
1675     if (virq < 0) {
1676         return virq;
1677     }
1678 
1679     kroute.gsi = virq;
1680     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1681     kroute.flags = 0;
1682     kroute.u.hv_sint.vcpu = vcpu;
1683     kroute.u.hv_sint.sint = sint;
1684 
1685     kvm_add_routing_entry(s, &kroute);
1686     kvm_irqchip_commit_routes(s);
1687 
1688     return virq;
1689 }
1690 
1691 #else /* !KVM_CAP_IRQ_ROUTING */
1692 
1693 void kvm_init_irq_routing(KVMState *s)
1694 {
1695 }
1696 
1697 void kvm_irqchip_release_virq(KVMState *s, int virq)
1698 {
1699 }
1700 
1701 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1702 {
1703     abort();
1704 }
1705 
1706 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1707 {
1708     return -ENOSYS;
1709 }
1710 
1711 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1712 {
1713     return -ENOSYS;
1714 }
1715 
1716 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1717 {
1718     return -ENOSYS;
1719 }
1720 
1721 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1722 {
1723     abort();
1724 }
1725 
1726 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1727 {
1728     return -ENOSYS;
1729 }
1730 #endif /* !KVM_CAP_IRQ_ROUTING */
1731 
1732 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1733                                        EventNotifier *rn, int virq)
1734 {
1735     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1736            rn ? event_notifier_get_fd(rn) : -1, virq, true);
1737 }
1738 
1739 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1740                                           int virq)
1741 {
1742     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1743            false);
1744 }
1745 
1746 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1747                                    EventNotifier *rn, qemu_irq irq)
1748 {
1749     gpointer key, gsi;
1750     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1751 
1752     if (!found) {
1753         return -ENXIO;
1754     }
1755     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1756 }
1757 
1758 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1759                                       qemu_irq irq)
1760 {
1761     gpointer key, gsi;
1762     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1763 
1764     if (!found) {
1765         return -ENXIO;
1766     }
1767     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1768 }
1769 
1770 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1771 {
1772     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1773 }
1774 
1775 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1776 {
1777     int ret;
1778 
1779     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1780         ;
1781     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1782         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1783         if (ret < 0) {
1784             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1785             exit(1);
1786         }
1787     } else {
1788         return;
1789     }
1790 
1791     /* First probe and see if there's a arch-specific hook to create the
1792      * in-kernel irqchip for us */
1793     ret = kvm_arch_irqchip_create(machine, s);
1794     if (ret == 0) {
1795         if (machine_kernel_irqchip_split(machine)) {
1796             perror("Split IRQ chip mode not supported.");
1797             exit(1);
1798         } else {
1799             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1800         }
1801     }
1802     if (ret < 0) {
1803         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1804         exit(1);
1805     }
1806 
1807     kvm_kernel_irqchip = true;
1808     /* If we have an in-kernel IRQ chip then we must have asynchronous
1809      * interrupt delivery (though the reverse is not necessarily true)
1810      */
1811     kvm_async_interrupts_allowed = true;
1812     kvm_halt_in_kernel_allowed = true;
1813 
1814     kvm_init_irq_routing(s);
1815 
1816     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1817 }
1818 
1819 /* Find number of supported CPUs using the recommended
1820  * procedure from the kernel API documentation to cope with
1821  * older kernels that may be missing capabilities.
1822  */
1823 static int kvm_recommended_vcpus(KVMState *s)
1824 {
1825     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1826     return (ret) ? ret : 4;
1827 }
1828 
1829 static int kvm_max_vcpus(KVMState *s)
1830 {
1831     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1832     return (ret) ? ret : kvm_recommended_vcpus(s);
1833 }
1834 
1835 static int kvm_max_vcpu_id(KVMState *s)
1836 {
1837     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1838     return (ret) ? ret : kvm_max_vcpus(s);
1839 }
1840 
1841 bool kvm_vcpu_id_is_valid(int vcpu_id)
1842 {
1843     KVMState *s = KVM_STATE(current_machine->accelerator);
1844     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1845 }
1846 
1847 static int kvm_init(MachineState *ms)
1848 {
1849     MachineClass *mc = MACHINE_GET_CLASS(ms);
1850     static const char upgrade_note[] =
1851         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1852         "(see http://sourceforge.net/projects/kvm).\n";
1853     struct {
1854         const char *name;
1855         int num;
1856     } num_cpus[] = {
1857         { "SMP",          ms->smp.cpus },
1858         { "hotpluggable", ms->smp.max_cpus },
1859         { NULL, }
1860     }, *nc = num_cpus;
1861     int soft_vcpus_limit, hard_vcpus_limit;
1862     KVMState *s;
1863     const KVMCapabilityInfo *missing_cap;
1864     int ret;
1865     int type = 0;
1866     const char *kvm_type;
1867 
1868     s = KVM_STATE(ms->accelerator);
1869 
1870     /*
1871      * On systems where the kernel can support different base page
1872      * sizes, host page size may be different from TARGET_PAGE_SIZE,
1873      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1874      * page size for the system though.
1875      */
1876     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
1877 
1878     s->sigmask_len = 8;
1879 
1880 #ifdef KVM_CAP_SET_GUEST_DEBUG
1881     QTAILQ_INIT(&s->kvm_sw_breakpoints);
1882 #endif
1883     QLIST_INIT(&s->kvm_parked_vcpus);
1884     s->vmfd = -1;
1885     s->fd = qemu_open("/dev/kvm", O_RDWR);
1886     if (s->fd == -1) {
1887         fprintf(stderr, "Could not access KVM kernel module: %m\n");
1888         ret = -errno;
1889         goto err;
1890     }
1891 
1892     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1893     if (ret < KVM_API_VERSION) {
1894         if (ret >= 0) {
1895             ret = -EINVAL;
1896         }
1897         fprintf(stderr, "kvm version too old\n");
1898         goto err;
1899     }
1900 
1901     if (ret > KVM_API_VERSION) {
1902         ret = -EINVAL;
1903         fprintf(stderr, "kvm version not supported\n");
1904         goto err;
1905     }
1906 
1907     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1908     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1909 
1910     /* If unspecified, use the default value */
1911     if (!s->nr_slots) {
1912         s->nr_slots = 32;
1913     }
1914 
1915     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
1916     if (s->nr_as <= 1) {
1917         s->nr_as = 1;
1918     }
1919     s->as = g_new0(struct KVMAs, s->nr_as);
1920 
1921     kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1922     if (mc->kvm_type) {
1923         type = mc->kvm_type(ms, kvm_type);
1924     } else if (kvm_type) {
1925         ret = -EINVAL;
1926         fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1927         goto err;
1928     }
1929 
1930     do {
1931         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1932     } while (ret == -EINTR);
1933 
1934     if (ret < 0) {
1935         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1936                 strerror(-ret));
1937 
1938 #ifdef TARGET_S390X
1939         if (ret == -EINVAL) {
1940             fprintf(stderr,
1941                     "Host kernel setup problem detected. Please verify:\n");
1942             fprintf(stderr, "- for kernels supporting the switch_amode or"
1943                     " user_mode parameters, whether\n");
1944             fprintf(stderr,
1945                     "  user space is running in primary address space\n");
1946             fprintf(stderr,
1947                     "- for kernels supporting the vm.allocate_pgste sysctl, "
1948                     "whether it is enabled\n");
1949         }
1950 #endif
1951         goto err;
1952     }
1953 
1954     s->vmfd = ret;
1955 
1956     /* check the vcpu limits */
1957     soft_vcpus_limit = kvm_recommended_vcpus(s);
1958     hard_vcpus_limit = kvm_max_vcpus(s);
1959 
1960     while (nc->name) {
1961         if (nc->num > soft_vcpus_limit) {
1962             warn_report("Number of %s cpus requested (%d) exceeds "
1963                         "the recommended cpus supported by KVM (%d)",
1964                         nc->name, nc->num, soft_vcpus_limit);
1965 
1966             if (nc->num > hard_vcpus_limit) {
1967                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1968                         "the maximum cpus supported by KVM (%d)\n",
1969                         nc->name, nc->num, hard_vcpus_limit);
1970                 exit(1);
1971             }
1972         }
1973         nc++;
1974     }
1975 
1976     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1977     if (!missing_cap) {
1978         missing_cap =
1979             kvm_check_extension_list(s, kvm_arch_required_capabilities);
1980     }
1981     if (missing_cap) {
1982         ret = -EINVAL;
1983         fprintf(stderr, "kvm does not support %s\n%s",
1984                 missing_cap->name, upgrade_note);
1985         goto err;
1986     }
1987 
1988     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1989     s->coalesced_pio = s->coalesced_mmio &&
1990                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1991 
1992     s->manual_dirty_log_protect =
1993         kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
1994     if (s->manual_dirty_log_protect) {
1995         ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1);
1996         if (ret) {
1997             warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 "
1998                         "but failed.  Falling back to the legacy mode. ");
1999             s->manual_dirty_log_protect = false;
2000         }
2001     }
2002 
2003 #ifdef KVM_CAP_VCPU_EVENTS
2004     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2005 #endif
2006 
2007     s->robust_singlestep =
2008         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2009 
2010 #ifdef KVM_CAP_DEBUGREGS
2011     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2012 #endif
2013 
2014     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2015 
2016 #ifdef KVM_CAP_IRQ_ROUTING
2017     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2018 #endif
2019 
2020     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2021 
2022     s->irq_set_ioctl = KVM_IRQ_LINE;
2023     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2024         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2025     }
2026 
2027     kvm_readonly_mem_allowed =
2028         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2029 
2030     kvm_eventfds_allowed =
2031         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2032 
2033     kvm_irqfds_allowed =
2034         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2035 
2036     kvm_resamplefds_allowed =
2037         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2038 
2039     kvm_vm_attributes_allowed =
2040         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2041 
2042     kvm_ioeventfd_any_length_allowed =
2043         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2044 
2045     kvm_state = s;
2046 
2047     /*
2048      * if memory encryption object is specified then initialize the memory
2049      * encryption context.
2050      */
2051     if (ms->memory_encryption) {
2052         kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2053         if (!kvm_state->memcrypt_handle) {
2054             ret = -1;
2055             goto err;
2056         }
2057 
2058         kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2059     }
2060 
2061     ret = kvm_arch_init(ms, s);
2062     if (ret < 0) {
2063         goto err;
2064     }
2065 
2066     if (machine_kernel_irqchip_allowed(ms)) {
2067         kvm_irqchip_create(ms, s);
2068     }
2069 
2070     if (kvm_eventfds_allowed) {
2071         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2072         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2073     }
2074     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2075     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2076 
2077     kvm_memory_listener_register(s, &s->memory_listener,
2078                                  &address_space_memory, 0);
2079     memory_listener_register(&kvm_io_listener,
2080                              &address_space_io);
2081     memory_listener_register(&kvm_coalesced_pio_listener,
2082                              &address_space_io);
2083 
2084     s->many_ioeventfds = kvm_check_many_ioeventfds();
2085 
2086     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2087     if (!s->sync_mmu) {
2088         qemu_balloon_inhibit(true);
2089     }
2090 
2091     return 0;
2092 
2093 err:
2094     assert(ret < 0);
2095     if (s->vmfd >= 0) {
2096         close(s->vmfd);
2097     }
2098     if (s->fd != -1) {
2099         close(s->fd);
2100     }
2101     g_free(s->memory_listener.slots);
2102 
2103     return ret;
2104 }
2105 
2106 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2107 {
2108     s->sigmask_len = sigmask_len;
2109 }
2110 
2111 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2112                           int size, uint32_t count)
2113 {
2114     int i;
2115     uint8_t *ptr = data;
2116 
2117     for (i = 0; i < count; i++) {
2118         address_space_rw(&address_space_io, port, attrs,
2119                          ptr, size,
2120                          direction == KVM_EXIT_IO_OUT);
2121         ptr += size;
2122     }
2123 }
2124 
2125 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2126 {
2127     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2128             run->internal.suberror);
2129 
2130     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2131         int i;
2132 
2133         for (i = 0; i < run->internal.ndata; ++i) {
2134             fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2135                     i, (uint64_t)run->internal.data[i]);
2136         }
2137     }
2138     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2139         fprintf(stderr, "emulation failure\n");
2140         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2141             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2142             return EXCP_INTERRUPT;
2143         }
2144     }
2145     /* FIXME: Should trigger a qmp message to let management know
2146      * something went wrong.
2147      */
2148     return -1;
2149 }
2150 
2151 void kvm_flush_coalesced_mmio_buffer(void)
2152 {
2153     KVMState *s = kvm_state;
2154 
2155     if (s->coalesced_flush_in_progress) {
2156         return;
2157     }
2158 
2159     s->coalesced_flush_in_progress = true;
2160 
2161     if (s->coalesced_mmio_ring) {
2162         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2163         while (ring->first != ring->last) {
2164             struct kvm_coalesced_mmio *ent;
2165 
2166             ent = &ring->coalesced_mmio[ring->first];
2167 
2168             if (ent->pio == 1) {
2169                 address_space_rw(&address_space_io, ent->phys_addr,
2170                                  MEMTXATTRS_UNSPECIFIED, ent->data,
2171                                  ent->len, true);
2172             } else {
2173                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2174             }
2175             smp_wmb();
2176             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2177         }
2178     }
2179 
2180     s->coalesced_flush_in_progress = false;
2181 }
2182 
2183 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2184 {
2185     if (!cpu->vcpu_dirty) {
2186         kvm_arch_get_registers(cpu);
2187         cpu->vcpu_dirty = true;
2188     }
2189 }
2190 
2191 void kvm_cpu_synchronize_state(CPUState *cpu)
2192 {
2193     if (!cpu->vcpu_dirty) {
2194         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2195     }
2196 }
2197 
2198 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2199 {
2200     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2201     cpu->vcpu_dirty = false;
2202 }
2203 
2204 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2205 {
2206     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2207 }
2208 
2209 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2210 {
2211     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2212     cpu->vcpu_dirty = false;
2213 }
2214 
2215 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2216 {
2217     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2218 }
2219 
2220 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2221 {
2222     cpu->vcpu_dirty = true;
2223 }
2224 
2225 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2226 {
2227     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2228 }
2229 
2230 #ifdef KVM_HAVE_MCE_INJECTION
2231 static __thread void *pending_sigbus_addr;
2232 static __thread int pending_sigbus_code;
2233 static __thread bool have_sigbus_pending;
2234 #endif
2235 
2236 static void kvm_cpu_kick(CPUState *cpu)
2237 {
2238     atomic_set(&cpu->kvm_run->immediate_exit, 1);
2239 }
2240 
2241 static void kvm_cpu_kick_self(void)
2242 {
2243     if (kvm_immediate_exit) {
2244         kvm_cpu_kick(current_cpu);
2245     } else {
2246         qemu_cpu_kick_self();
2247     }
2248 }
2249 
2250 static void kvm_eat_signals(CPUState *cpu)
2251 {
2252     struct timespec ts = { 0, 0 };
2253     siginfo_t siginfo;
2254     sigset_t waitset;
2255     sigset_t chkset;
2256     int r;
2257 
2258     if (kvm_immediate_exit) {
2259         atomic_set(&cpu->kvm_run->immediate_exit, 0);
2260         /* Write kvm_run->immediate_exit before the cpu->exit_request
2261          * write in kvm_cpu_exec.
2262          */
2263         smp_wmb();
2264         return;
2265     }
2266 
2267     sigemptyset(&waitset);
2268     sigaddset(&waitset, SIG_IPI);
2269 
2270     do {
2271         r = sigtimedwait(&waitset, &siginfo, &ts);
2272         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2273             perror("sigtimedwait");
2274             exit(1);
2275         }
2276 
2277         r = sigpending(&chkset);
2278         if (r == -1) {
2279             perror("sigpending");
2280             exit(1);
2281         }
2282     } while (sigismember(&chkset, SIG_IPI));
2283 }
2284 
2285 int kvm_cpu_exec(CPUState *cpu)
2286 {
2287     struct kvm_run *run = cpu->kvm_run;
2288     int ret, run_ret;
2289 
2290     DPRINTF("kvm_cpu_exec()\n");
2291 
2292     if (kvm_arch_process_async_events(cpu)) {
2293         atomic_set(&cpu->exit_request, 0);
2294         return EXCP_HLT;
2295     }
2296 
2297     qemu_mutex_unlock_iothread();
2298     cpu_exec_start(cpu);
2299 
2300     do {
2301         MemTxAttrs attrs;
2302 
2303         if (cpu->vcpu_dirty) {
2304             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2305             cpu->vcpu_dirty = false;
2306         }
2307 
2308         kvm_arch_pre_run(cpu, run);
2309         if (atomic_read(&cpu->exit_request)) {
2310             DPRINTF("interrupt exit requested\n");
2311             /*
2312              * KVM requires us to reenter the kernel after IO exits to complete
2313              * instruction emulation. This self-signal will ensure that we
2314              * leave ASAP again.
2315              */
2316             kvm_cpu_kick_self();
2317         }
2318 
2319         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2320          * Matching barrier in kvm_eat_signals.
2321          */
2322         smp_rmb();
2323 
2324         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2325 
2326         attrs = kvm_arch_post_run(cpu, run);
2327 
2328 #ifdef KVM_HAVE_MCE_INJECTION
2329         if (unlikely(have_sigbus_pending)) {
2330             qemu_mutex_lock_iothread();
2331             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2332                                     pending_sigbus_addr);
2333             have_sigbus_pending = false;
2334             qemu_mutex_unlock_iothread();
2335         }
2336 #endif
2337 
2338         if (run_ret < 0) {
2339             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2340                 DPRINTF("io window exit\n");
2341                 kvm_eat_signals(cpu);
2342                 ret = EXCP_INTERRUPT;
2343                 break;
2344             }
2345             fprintf(stderr, "error: kvm run failed %s\n",
2346                     strerror(-run_ret));
2347 #ifdef TARGET_PPC
2348             if (run_ret == -EBUSY) {
2349                 fprintf(stderr,
2350                         "This is probably because your SMT is enabled.\n"
2351                         "VCPU can only run on primary threads with all "
2352                         "secondary threads offline.\n");
2353             }
2354 #endif
2355             ret = -1;
2356             break;
2357         }
2358 
2359         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2360         switch (run->exit_reason) {
2361         case KVM_EXIT_IO:
2362             DPRINTF("handle_io\n");
2363             /* Called outside BQL */
2364             kvm_handle_io(run->io.port, attrs,
2365                           (uint8_t *)run + run->io.data_offset,
2366                           run->io.direction,
2367                           run->io.size,
2368                           run->io.count);
2369             ret = 0;
2370             break;
2371         case KVM_EXIT_MMIO:
2372             DPRINTF("handle_mmio\n");
2373             /* Called outside BQL */
2374             address_space_rw(&address_space_memory,
2375                              run->mmio.phys_addr, attrs,
2376                              run->mmio.data,
2377                              run->mmio.len,
2378                              run->mmio.is_write);
2379             ret = 0;
2380             break;
2381         case KVM_EXIT_IRQ_WINDOW_OPEN:
2382             DPRINTF("irq_window_open\n");
2383             ret = EXCP_INTERRUPT;
2384             break;
2385         case KVM_EXIT_SHUTDOWN:
2386             DPRINTF("shutdown\n");
2387             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2388             ret = EXCP_INTERRUPT;
2389             break;
2390         case KVM_EXIT_UNKNOWN:
2391             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2392                     (uint64_t)run->hw.hardware_exit_reason);
2393             ret = -1;
2394             break;
2395         case KVM_EXIT_INTERNAL_ERROR:
2396             ret = kvm_handle_internal_error(cpu, run);
2397             break;
2398         case KVM_EXIT_SYSTEM_EVENT:
2399             switch (run->system_event.type) {
2400             case KVM_SYSTEM_EVENT_SHUTDOWN:
2401                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2402                 ret = EXCP_INTERRUPT;
2403                 break;
2404             case KVM_SYSTEM_EVENT_RESET:
2405                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2406                 ret = EXCP_INTERRUPT;
2407                 break;
2408             case KVM_SYSTEM_EVENT_CRASH:
2409                 kvm_cpu_synchronize_state(cpu);
2410                 qemu_mutex_lock_iothread();
2411                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2412                 qemu_mutex_unlock_iothread();
2413                 ret = 0;
2414                 break;
2415             default:
2416                 DPRINTF("kvm_arch_handle_exit\n");
2417                 ret = kvm_arch_handle_exit(cpu, run);
2418                 break;
2419             }
2420             break;
2421         default:
2422             DPRINTF("kvm_arch_handle_exit\n");
2423             ret = kvm_arch_handle_exit(cpu, run);
2424             break;
2425         }
2426     } while (ret == 0);
2427 
2428     cpu_exec_end(cpu);
2429     qemu_mutex_lock_iothread();
2430 
2431     if (ret < 0) {
2432         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2433         vm_stop(RUN_STATE_INTERNAL_ERROR);
2434     }
2435 
2436     atomic_set(&cpu->exit_request, 0);
2437     return ret;
2438 }
2439 
2440 int kvm_ioctl(KVMState *s, int type, ...)
2441 {
2442     int ret;
2443     void *arg;
2444     va_list ap;
2445 
2446     va_start(ap, type);
2447     arg = va_arg(ap, void *);
2448     va_end(ap);
2449 
2450     trace_kvm_ioctl(type, arg);
2451     ret = ioctl(s->fd, type, arg);
2452     if (ret == -1) {
2453         ret = -errno;
2454     }
2455     return ret;
2456 }
2457 
2458 int kvm_vm_ioctl(KVMState *s, int type, ...)
2459 {
2460     int ret;
2461     void *arg;
2462     va_list ap;
2463 
2464     va_start(ap, type);
2465     arg = va_arg(ap, void *);
2466     va_end(ap);
2467 
2468     trace_kvm_vm_ioctl(type, arg);
2469     ret = ioctl(s->vmfd, type, arg);
2470     if (ret == -1) {
2471         ret = -errno;
2472     }
2473     return ret;
2474 }
2475 
2476 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2477 {
2478     int ret;
2479     void *arg;
2480     va_list ap;
2481 
2482     va_start(ap, type);
2483     arg = va_arg(ap, void *);
2484     va_end(ap);
2485 
2486     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2487     ret = ioctl(cpu->kvm_fd, type, arg);
2488     if (ret == -1) {
2489         ret = -errno;
2490     }
2491     return ret;
2492 }
2493 
2494 int kvm_device_ioctl(int fd, int type, ...)
2495 {
2496     int ret;
2497     void *arg;
2498     va_list ap;
2499 
2500     va_start(ap, type);
2501     arg = va_arg(ap, void *);
2502     va_end(ap);
2503 
2504     trace_kvm_device_ioctl(fd, type, arg);
2505     ret = ioctl(fd, type, arg);
2506     if (ret == -1) {
2507         ret = -errno;
2508     }
2509     return ret;
2510 }
2511 
2512 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2513 {
2514     int ret;
2515     struct kvm_device_attr attribute = {
2516         .group = group,
2517         .attr = attr,
2518     };
2519 
2520     if (!kvm_vm_attributes_allowed) {
2521         return 0;
2522     }
2523 
2524     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2525     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2526     return ret ? 0 : 1;
2527 }
2528 
2529 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2530 {
2531     struct kvm_device_attr attribute = {
2532         .group = group,
2533         .attr = attr,
2534         .flags = 0,
2535     };
2536 
2537     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2538 }
2539 
2540 int kvm_device_access(int fd, int group, uint64_t attr,
2541                       void *val, bool write, Error **errp)
2542 {
2543     struct kvm_device_attr kvmattr;
2544     int err;
2545 
2546     kvmattr.flags = 0;
2547     kvmattr.group = group;
2548     kvmattr.attr = attr;
2549     kvmattr.addr = (uintptr_t)val;
2550 
2551     err = kvm_device_ioctl(fd,
2552                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2553                            &kvmattr);
2554     if (err < 0) {
2555         error_setg_errno(errp, -err,
2556                          "KVM_%s_DEVICE_ATTR failed: Group %d "
2557                          "attr 0x%016" PRIx64,
2558                          write ? "SET" : "GET", group, attr);
2559     }
2560     return err;
2561 }
2562 
2563 bool kvm_has_sync_mmu(void)
2564 {
2565     return kvm_state->sync_mmu;
2566 }
2567 
2568 int kvm_has_vcpu_events(void)
2569 {
2570     return kvm_state->vcpu_events;
2571 }
2572 
2573 int kvm_has_robust_singlestep(void)
2574 {
2575     return kvm_state->robust_singlestep;
2576 }
2577 
2578 int kvm_has_debugregs(void)
2579 {
2580     return kvm_state->debugregs;
2581 }
2582 
2583 int kvm_max_nested_state_length(void)
2584 {
2585     return kvm_state->max_nested_state_len;
2586 }
2587 
2588 int kvm_has_many_ioeventfds(void)
2589 {
2590     if (!kvm_enabled()) {
2591         return 0;
2592     }
2593     return kvm_state->many_ioeventfds;
2594 }
2595 
2596 int kvm_has_gsi_routing(void)
2597 {
2598 #ifdef KVM_CAP_IRQ_ROUTING
2599     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2600 #else
2601     return false;
2602 #endif
2603 }
2604 
2605 int kvm_has_intx_set_mask(void)
2606 {
2607     return kvm_state->intx_set_mask;
2608 }
2609 
2610 bool kvm_arm_supports_user_irq(void)
2611 {
2612     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2613 }
2614 
2615 #ifdef KVM_CAP_SET_GUEST_DEBUG
2616 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2617                                                  target_ulong pc)
2618 {
2619     struct kvm_sw_breakpoint *bp;
2620 
2621     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2622         if (bp->pc == pc) {
2623             return bp;
2624         }
2625     }
2626     return NULL;
2627 }
2628 
2629 int kvm_sw_breakpoints_active(CPUState *cpu)
2630 {
2631     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2632 }
2633 
2634 struct kvm_set_guest_debug_data {
2635     struct kvm_guest_debug dbg;
2636     int err;
2637 };
2638 
2639 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2640 {
2641     struct kvm_set_guest_debug_data *dbg_data =
2642         (struct kvm_set_guest_debug_data *) data.host_ptr;
2643 
2644     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2645                                    &dbg_data->dbg);
2646 }
2647 
2648 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2649 {
2650     struct kvm_set_guest_debug_data data;
2651 
2652     data.dbg.control = reinject_trap;
2653 
2654     if (cpu->singlestep_enabled) {
2655         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2656     }
2657     kvm_arch_update_guest_debug(cpu, &data.dbg);
2658 
2659     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2660                RUN_ON_CPU_HOST_PTR(&data));
2661     return data.err;
2662 }
2663 
2664 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2665                           target_ulong len, int type)
2666 {
2667     struct kvm_sw_breakpoint *bp;
2668     int err;
2669 
2670     if (type == GDB_BREAKPOINT_SW) {
2671         bp = kvm_find_sw_breakpoint(cpu, addr);
2672         if (bp) {
2673             bp->use_count++;
2674             return 0;
2675         }
2676 
2677         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2678         bp->pc = addr;
2679         bp->use_count = 1;
2680         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2681         if (err) {
2682             g_free(bp);
2683             return err;
2684         }
2685 
2686         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2687     } else {
2688         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2689         if (err) {
2690             return err;
2691         }
2692     }
2693 
2694     CPU_FOREACH(cpu) {
2695         err = kvm_update_guest_debug(cpu, 0);
2696         if (err) {
2697             return err;
2698         }
2699     }
2700     return 0;
2701 }
2702 
2703 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2704                           target_ulong len, int type)
2705 {
2706     struct kvm_sw_breakpoint *bp;
2707     int err;
2708 
2709     if (type == GDB_BREAKPOINT_SW) {
2710         bp = kvm_find_sw_breakpoint(cpu, addr);
2711         if (!bp) {
2712             return -ENOENT;
2713         }
2714 
2715         if (bp->use_count > 1) {
2716             bp->use_count--;
2717             return 0;
2718         }
2719 
2720         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2721         if (err) {
2722             return err;
2723         }
2724 
2725         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2726         g_free(bp);
2727     } else {
2728         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2729         if (err) {
2730             return err;
2731         }
2732     }
2733 
2734     CPU_FOREACH(cpu) {
2735         err = kvm_update_guest_debug(cpu, 0);
2736         if (err) {
2737             return err;
2738         }
2739     }
2740     return 0;
2741 }
2742 
2743 void kvm_remove_all_breakpoints(CPUState *cpu)
2744 {
2745     struct kvm_sw_breakpoint *bp, *next;
2746     KVMState *s = cpu->kvm_state;
2747     CPUState *tmpcpu;
2748 
2749     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2750         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2751             /* Try harder to find a CPU that currently sees the breakpoint. */
2752             CPU_FOREACH(tmpcpu) {
2753                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2754                     break;
2755                 }
2756             }
2757         }
2758         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2759         g_free(bp);
2760     }
2761     kvm_arch_remove_all_hw_breakpoints();
2762 
2763     CPU_FOREACH(cpu) {
2764         kvm_update_guest_debug(cpu, 0);
2765     }
2766 }
2767 
2768 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2769 
2770 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2771 {
2772     return -EINVAL;
2773 }
2774 
2775 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2776                           target_ulong len, int type)
2777 {
2778     return -EINVAL;
2779 }
2780 
2781 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2782                           target_ulong len, int type)
2783 {
2784     return -EINVAL;
2785 }
2786 
2787 void kvm_remove_all_breakpoints(CPUState *cpu)
2788 {
2789 }
2790 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2791 
2792 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2793 {
2794     KVMState *s = kvm_state;
2795     struct kvm_signal_mask *sigmask;
2796     int r;
2797 
2798     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2799 
2800     sigmask->len = s->sigmask_len;
2801     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2802     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2803     g_free(sigmask);
2804 
2805     return r;
2806 }
2807 
2808 static void kvm_ipi_signal(int sig)
2809 {
2810     if (current_cpu) {
2811         assert(kvm_immediate_exit);
2812         kvm_cpu_kick(current_cpu);
2813     }
2814 }
2815 
2816 void kvm_init_cpu_signals(CPUState *cpu)
2817 {
2818     int r;
2819     sigset_t set;
2820     struct sigaction sigact;
2821 
2822     memset(&sigact, 0, sizeof(sigact));
2823     sigact.sa_handler = kvm_ipi_signal;
2824     sigaction(SIG_IPI, &sigact, NULL);
2825 
2826     pthread_sigmask(SIG_BLOCK, NULL, &set);
2827 #if defined KVM_HAVE_MCE_INJECTION
2828     sigdelset(&set, SIGBUS);
2829     pthread_sigmask(SIG_SETMASK, &set, NULL);
2830 #endif
2831     sigdelset(&set, SIG_IPI);
2832     if (kvm_immediate_exit) {
2833         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2834     } else {
2835         r = kvm_set_signal_mask(cpu, &set);
2836     }
2837     if (r) {
2838         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2839         exit(1);
2840     }
2841 }
2842 
2843 /* Called asynchronously in VCPU thread.  */
2844 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2845 {
2846 #ifdef KVM_HAVE_MCE_INJECTION
2847     if (have_sigbus_pending) {
2848         return 1;
2849     }
2850     have_sigbus_pending = true;
2851     pending_sigbus_addr = addr;
2852     pending_sigbus_code = code;
2853     atomic_set(&cpu->exit_request, 1);
2854     return 0;
2855 #else
2856     return 1;
2857 #endif
2858 }
2859 
2860 /* Called synchronously (via signalfd) in main thread.  */
2861 int kvm_on_sigbus(int code, void *addr)
2862 {
2863 #ifdef KVM_HAVE_MCE_INJECTION
2864     /* Action required MCE kills the process if SIGBUS is blocked.  Because
2865      * that's what happens in the I/O thread, where we handle MCE via signalfd,
2866      * we can only get action optional here.
2867      */
2868     assert(code != BUS_MCEERR_AR);
2869     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2870     return 0;
2871 #else
2872     return 1;
2873 #endif
2874 }
2875 
2876 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2877 {
2878     int ret;
2879     struct kvm_create_device create_dev;
2880 
2881     create_dev.type = type;
2882     create_dev.fd = -1;
2883     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2884 
2885     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2886         return -ENOTSUP;
2887     }
2888 
2889     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2890     if (ret) {
2891         return ret;
2892     }
2893 
2894     return test ? 0 : create_dev.fd;
2895 }
2896 
2897 bool kvm_device_supported(int vmfd, uint64_t type)
2898 {
2899     struct kvm_create_device create_dev = {
2900         .type = type,
2901         .fd = -1,
2902         .flags = KVM_CREATE_DEVICE_TEST,
2903     };
2904 
2905     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2906         return false;
2907     }
2908 
2909     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2910 }
2911 
2912 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2913 {
2914     struct kvm_one_reg reg;
2915     int r;
2916 
2917     reg.id = id;
2918     reg.addr = (uintptr_t) source;
2919     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2920     if (r) {
2921         trace_kvm_failed_reg_set(id, strerror(-r));
2922     }
2923     return r;
2924 }
2925 
2926 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2927 {
2928     struct kvm_one_reg reg;
2929     int r;
2930 
2931     reg.id = id;
2932     reg.addr = (uintptr_t) target;
2933     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2934     if (r) {
2935         trace_kvm_failed_reg_get(id, strerror(-r));
2936     }
2937     return r;
2938 }
2939 
2940 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
2941                                  hwaddr start_addr, hwaddr size)
2942 {
2943     KVMState *kvm = KVM_STATE(ms->accelerator);
2944     int i;
2945 
2946     for (i = 0; i < kvm->nr_as; ++i) {
2947         if (kvm->as[i].as == as && kvm->as[i].ml) {
2948             size = MIN(kvm_max_slot_size, size);
2949             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
2950                                                     start_addr, size);
2951         }
2952     }
2953 
2954     return false;
2955 }
2956 
2957 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2958 {
2959     AccelClass *ac = ACCEL_CLASS(oc);
2960     ac->name = "KVM";
2961     ac->init_machine = kvm_init;
2962     ac->has_memory = kvm_accel_has_memory;
2963     ac->allowed = &kvm_allowed;
2964 }
2965 
2966 static const TypeInfo kvm_accel_type = {
2967     .name = TYPE_KVM_ACCEL,
2968     .parent = TYPE_ACCEL,
2969     .class_init = kvm_accel_class_init,
2970     .instance_size = sizeof(KVMState),
2971 };
2972 
2973 static void kvm_type_init(void)
2974 {
2975     type_register_static(&kvm_accel_type);
2976 }
2977 
2978 type_init(kvm_type_init);
2979