1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "sysemu/sev.h" 43 #include "sysemu/balloon.h" 44 45 #include "hw/boards.h" 46 47 /* This check must be after config-host.h is included */ 48 #ifdef CONFIG_EVENTFD 49 #include <sys/eventfd.h> 50 #endif 51 52 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 53 * need to use the real host PAGE_SIZE, as that's what KVM will use. 54 */ 55 #define PAGE_SIZE qemu_real_host_page_size 56 57 //#define DEBUG_KVM 58 59 #ifdef DEBUG_KVM 60 #define DPRINTF(fmt, ...) \ 61 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 62 #else 63 #define DPRINTF(fmt, ...) \ 64 do { } while (0) 65 #endif 66 67 #define KVM_MSI_HASHTAB_SIZE 256 68 69 struct KVMParkedVcpu { 70 unsigned long vcpu_id; 71 int kvm_fd; 72 QLIST_ENTRY(KVMParkedVcpu) node; 73 }; 74 75 struct KVMState 76 { 77 AccelState parent_obj; 78 79 int nr_slots; 80 int fd; 81 int vmfd; 82 int coalesced_mmio; 83 int coalesced_pio; 84 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 85 bool coalesced_flush_in_progress; 86 int vcpu_events; 87 int robust_singlestep; 88 int debugregs; 89 #ifdef KVM_CAP_SET_GUEST_DEBUG 90 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 91 #endif 92 int max_nested_state_len; 93 int many_ioeventfds; 94 int intx_set_mask; 95 bool sync_mmu; 96 bool manual_dirty_log_protect; 97 /* The man page (and posix) say ioctl numbers are signed int, but 98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 99 * unsigned, and treating them as signed here can break things */ 100 unsigned irq_set_ioctl; 101 unsigned int sigmask_len; 102 GHashTable *gsimap; 103 #ifdef KVM_CAP_IRQ_ROUTING 104 struct kvm_irq_routing *irq_routes; 105 int nr_allocated_irq_routes; 106 unsigned long *used_gsi_bitmap; 107 unsigned int gsi_count; 108 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 109 #endif 110 KVMMemoryListener memory_listener; 111 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 112 113 /* memory encryption */ 114 void *memcrypt_handle; 115 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len); 116 117 /* For "info mtree -f" to tell if an MR is registered in KVM */ 118 int nr_as; 119 struct KVMAs { 120 KVMMemoryListener *ml; 121 AddressSpace *as; 122 } *as; 123 }; 124 125 KVMState *kvm_state; 126 bool kvm_kernel_irqchip; 127 bool kvm_split_irqchip; 128 bool kvm_async_interrupts_allowed; 129 bool kvm_halt_in_kernel_allowed; 130 bool kvm_eventfds_allowed; 131 bool kvm_irqfds_allowed; 132 bool kvm_resamplefds_allowed; 133 bool kvm_msi_via_irqfd_allowed; 134 bool kvm_gsi_routing_allowed; 135 bool kvm_gsi_direct_mapping; 136 bool kvm_allowed; 137 bool kvm_readonly_mem_allowed; 138 bool kvm_vm_attributes_allowed; 139 bool kvm_direct_msi_allowed; 140 bool kvm_ioeventfd_any_length_allowed; 141 bool kvm_msi_use_devid; 142 static bool kvm_immediate_exit; 143 static hwaddr kvm_max_slot_size = ~0; 144 145 static const KVMCapabilityInfo kvm_required_capabilites[] = { 146 KVM_CAP_INFO(USER_MEMORY), 147 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 148 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 149 KVM_CAP_LAST_INFO 150 }; 151 152 static NotifierList kvm_irqchip_change_notifiers = 153 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 154 155 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 156 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 157 158 int kvm_get_max_memslots(void) 159 { 160 KVMState *s = KVM_STATE(current_machine->accelerator); 161 162 return s->nr_slots; 163 } 164 165 bool kvm_memcrypt_enabled(void) 166 { 167 if (kvm_state && kvm_state->memcrypt_handle) { 168 return true; 169 } 170 171 return false; 172 } 173 174 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len) 175 { 176 if (kvm_state->memcrypt_handle && 177 kvm_state->memcrypt_encrypt_data) { 178 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle, 179 ptr, len); 180 } 181 182 return 1; 183 } 184 185 /* Called with KVMMemoryListener.slots_lock held */ 186 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 187 { 188 KVMState *s = kvm_state; 189 int i; 190 191 for (i = 0; i < s->nr_slots; i++) { 192 if (kml->slots[i].memory_size == 0) { 193 return &kml->slots[i]; 194 } 195 } 196 197 return NULL; 198 } 199 200 bool kvm_has_free_slot(MachineState *ms) 201 { 202 KVMState *s = KVM_STATE(ms->accelerator); 203 bool result; 204 KVMMemoryListener *kml = &s->memory_listener; 205 206 kvm_slots_lock(kml); 207 result = !!kvm_get_free_slot(kml); 208 kvm_slots_unlock(kml); 209 210 return result; 211 } 212 213 /* Called with KVMMemoryListener.slots_lock held */ 214 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 215 { 216 KVMSlot *slot = kvm_get_free_slot(kml); 217 218 if (slot) { 219 return slot; 220 } 221 222 fprintf(stderr, "%s: no free slot available\n", __func__); 223 abort(); 224 } 225 226 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 227 hwaddr start_addr, 228 hwaddr size) 229 { 230 KVMState *s = kvm_state; 231 int i; 232 233 for (i = 0; i < s->nr_slots; i++) { 234 KVMSlot *mem = &kml->slots[i]; 235 236 if (start_addr == mem->start_addr && size == mem->memory_size) { 237 return mem; 238 } 239 } 240 241 return NULL; 242 } 243 244 /* 245 * Calculate and align the start address and the size of the section. 246 * Return the size. If the size is 0, the aligned section is empty. 247 */ 248 static hwaddr kvm_align_section(MemoryRegionSection *section, 249 hwaddr *start) 250 { 251 hwaddr size = int128_get64(section->size); 252 hwaddr delta, aligned; 253 254 /* kvm works in page size chunks, but the function may be called 255 with sub-page size and unaligned start address. Pad the start 256 address to next and truncate size to previous page boundary. */ 257 aligned = ROUND_UP(section->offset_within_address_space, 258 qemu_real_host_page_size); 259 delta = aligned - section->offset_within_address_space; 260 *start = aligned; 261 if (delta > size) { 262 return 0; 263 } 264 265 return (size - delta) & qemu_real_host_page_mask; 266 } 267 268 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 269 hwaddr *phys_addr) 270 { 271 KVMMemoryListener *kml = &s->memory_listener; 272 int i, ret = 0; 273 274 kvm_slots_lock(kml); 275 for (i = 0; i < s->nr_slots; i++) { 276 KVMSlot *mem = &kml->slots[i]; 277 278 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 279 *phys_addr = mem->start_addr + (ram - mem->ram); 280 ret = 1; 281 break; 282 } 283 } 284 kvm_slots_unlock(kml); 285 286 return ret; 287 } 288 289 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 290 { 291 KVMState *s = kvm_state; 292 struct kvm_userspace_memory_region mem; 293 int ret; 294 295 mem.slot = slot->slot | (kml->as_id << 16); 296 mem.guest_phys_addr = slot->start_addr; 297 mem.userspace_addr = (unsigned long)slot->ram; 298 mem.flags = slot->flags; 299 300 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 301 /* Set the slot size to 0 before setting the slot to the desired 302 * value. This is needed based on KVM commit 75d61fbc. */ 303 mem.memory_size = 0; 304 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 305 } 306 mem.memory_size = slot->memory_size; 307 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 308 slot->old_flags = mem.flags; 309 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 310 mem.memory_size, mem.userspace_addr, ret); 311 return ret; 312 } 313 314 int kvm_destroy_vcpu(CPUState *cpu) 315 { 316 KVMState *s = kvm_state; 317 long mmap_size; 318 struct KVMParkedVcpu *vcpu = NULL; 319 int ret = 0; 320 321 DPRINTF("kvm_destroy_vcpu\n"); 322 323 ret = kvm_arch_destroy_vcpu(cpu); 324 if (ret < 0) { 325 goto err; 326 } 327 328 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 329 if (mmap_size < 0) { 330 ret = mmap_size; 331 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 332 goto err; 333 } 334 335 ret = munmap(cpu->kvm_run, mmap_size); 336 if (ret < 0) { 337 goto err; 338 } 339 340 vcpu = g_malloc0(sizeof(*vcpu)); 341 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 342 vcpu->kvm_fd = cpu->kvm_fd; 343 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 344 err: 345 return ret; 346 } 347 348 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 349 { 350 struct KVMParkedVcpu *cpu; 351 352 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 353 if (cpu->vcpu_id == vcpu_id) { 354 int kvm_fd; 355 356 QLIST_REMOVE(cpu, node); 357 kvm_fd = cpu->kvm_fd; 358 g_free(cpu); 359 return kvm_fd; 360 } 361 } 362 363 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 364 } 365 366 int kvm_init_vcpu(CPUState *cpu) 367 { 368 KVMState *s = kvm_state; 369 long mmap_size; 370 int ret; 371 372 DPRINTF("kvm_init_vcpu\n"); 373 374 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 375 if (ret < 0) { 376 DPRINTF("kvm_create_vcpu failed\n"); 377 goto err; 378 } 379 380 cpu->kvm_fd = ret; 381 cpu->kvm_state = s; 382 cpu->vcpu_dirty = true; 383 384 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 385 if (mmap_size < 0) { 386 ret = mmap_size; 387 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 388 goto err; 389 } 390 391 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 392 cpu->kvm_fd, 0); 393 if (cpu->kvm_run == MAP_FAILED) { 394 ret = -errno; 395 DPRINTF("mmap'ing vcpu state failed\n"); 396 goto err; 397 } 398 399 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 400 s->coalesced_mmio_ring = 401 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 402 } 403 404 ret = kvm_arch_init_vcpu(cpu); 405 err: 406 return ret; 407 } 408 409 /* 410 * dirty pages logging control 411 */ 412 413 static int kvm_mem_flags(MemoryRegion *mr) 414 { 415 bool readonly = mr->readonly || memory_region_is_romd(mr); 416 int flags = 0; 417 418 if (memory_region_get_dirty_log_mask(mr) != 0) { 419 flags |= KVM_MEM_LOG_DIRTY_PAGES; 420 } 421 if (readonly && kvm_readonly_mem_allowed) { 422 flags |= KVM_MEM_READONLY; 423 } 424 return flags; 425 } 426 427 /* Called with KVMMemoryListener.slots_lock held */ 428 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 429 MemoryRegion *mr) 430 { 431 mem->flags = kvm_mem_flags(mr); 432 433 /* If nothing changed effectively, no need to issue ioctl */ 434 if (mem->flags == mem->old_flags) { 435 return 0; 436 } 437 438 return kvm_set_user_memory_region(kml, mem, false); 439 } 440 441 static int kvm_section_update_flags(KVMMemoryListener *kml, 442 MemoryRegionSection *section) 443 { 444 hwaddr start_addr, size, slot_size; 445 KVMSlot *mem; 446 int ret = 0; 447 448 size = kvm_align_section(section, &start_addr); 449 if (!size) { 450 return 0; 451 } 452 453 kvm_slots_lock(kml); 454 455 while (size && !ret) { 456 slot_size = MIN(kvm_max_slot_size, size); 457 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 458 if (!mem) { 459 /* We don't have a slot if we want to trap every access. */ 460 goto out; 461 } 462 463 ret = kvm_slot_update_flags(kml, mem, section->mr); 464 start_addr += slot_size; 465 size -= slot_size; 466 } 467 468 out: 469 kvm_slots_unlock(kml); 470 return ret; 471 } 472 473 static void kvm_log_start(MemoryListener *listener, 474 MemoryRegionSection *section, 475 int old, int new) 476 { 477 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 478 int r; 479 480 if (old != 0) { 481 return; 482 } 483 484 r = kvm_section_update_flags(kml, section); 485 if (r < 0) { 486 abort(); 487 } 488 } 489 490 static void kvm_log_stop(MemoryListener *listener, 491 MemoryRegionSection *section, 492 int old, int new) 493 { 494 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 495 int r; 496 497 if (new != 0) { 498 return; 499 } 500 501 r = kvm_section_update_flags(kml, section); 502 if (r < 0) { 503 abort(); 504 } 505 } 506 507 /* get kvm's dirty pages bitmap and update qemu's */ 508 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 509 unsigned long *bitmap) 510 { 511 ram_addr_t start = section->offset_within_region + 512 memory_region_get_ram_addr(section->mr); 513 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 514 515 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 516 return 0; 517 } 518 519 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 520 521 /* Allocate the dirty bitmap for a slot */ 522 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 523 { 524 /* 525 * XXX bad kernel interface alert 526 * For dirty bitmap, kernel allocates array of size aligned to 527 * bits-per-long. But for case when the kernel is 64bits and 528 * the userspace is 32bits, userspace can't align to the same 529 * bits-per-long, since sizeof(long) is different between kernel 530 * and user space. This way, userspace will provide buffer which 531 * may be 4 bytes less than the kernel will use, resulting in 532 * userspace memory corruption (which is not detectable by valgrind 533 * too, in most cases). 534 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 535 * a hope that sizeof(long) won't become >8 any time soon. 536 */ 537 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 538 /*HOST_LONG_BITS*/ 64) / 8; 539 mem->dirty_bmap = g_malloc0(bitmap_size); 540 } 541 542 /** 543 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 544 * 545 * This function will first try to fetch dirty bitmap from the kernel, 546 * and then updates qemu's dirty bitmap. 547 * 548 * NOTE: caller must be with kml->slots_lock held. 549 * 550 * @kml: the KVM memory listener object 551 * @section: the memory section to sync the dirty bitmap with 552 */ 553 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 554 MemoryRegionSection *section) 555 { 556 KVMState *s = kvm_state; 557 struct kvm_dirty_log d = {}; 558 KVMSlot *mem; 559 hwaddr start_addr, size; 560 hwaddr slot_size, slot_offset = 0; 561 int ret = 0; 562 563 size = kvm_align_section(section, &start_addr); 564 while (size) { 565 MemoryRegionSection subsection = *section; 566 567 slot_size = MIN(kvm_max_slot_size, size); 568 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 569 if (!mem) { 570 /* We don't have a slot if we want to trap every access. */ 571 goto out; 572 } 573 574 if (!mem->dirty_bmap) { 575 /* Allocate on the first log_sync, once and for all */ 576 kvm_memslot_init_dirty_bitmap(mem); 577 } 578 579 d.dirty_bitmap = mem->dirty_bmap; 580 d.slot = mem->slot | (kml->as_id << 16); 581 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { 582 DPRINTF("ioctl failed %d\n", errno); 583 ret = -1; 584 goto out; 585 } 586 587 subsection.offset_within_region += slot_offset; 588 subsection.size = int128_make64(slot_size); 589 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 590 591 slot_offset += slot_size; 592 start_addr += slot_size; 593 size -= slot_size; 594 } 595 out: 596 return ret; 597 } 598 599 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 600 #define KVM_CLEAR_LOG_SHIFT 6 601 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 602 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 603 604 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 605 uint64_t size) 606 { 607 KVMState *s = kvm_state; 608 uint64_t end, bmap_start, start_delta, bmap_npages; 609 struct kvm_clear_dirty_log d; 610 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 611 int ret; 612 613 /* 614 * We need to extend either the start or the size or both to 615 * satisfy the KVM interface requirement. Firstly, do the start 616 * page alignment on 64 host pages 617 */ 618 bmap_start = start & KVM_CLEAR_LOG_MASK; 619 start_delta = start - bmap_start; 620 bmap_start /= psize; 621 622 /* 623 * The kernel interface has restriction on the size too, that either: 624 * 625 * (1) the size is 64 host pages aligned (just like the start), or 626 * (2) the size fills up until the end of the KVM memslot. 627 */ 628 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 629 << KVM_CLEAR_LOG_SHIFT; 630 end = mem->memory_size / psize; 631 if (bmap_npages > end - bmap_start) { 632 bmap_npages = end - bmap_start; 633 } 634 start_delta /= psize; 635 636 /* 637 * Prepare the bitmap to clear dirty bits. Here we must guarantee 638 * that we won't clear any unknown dirty bits otherwise we might 639 * accidentally clear some set bits which are not yet synced from 640 * the kernel into QEMU's bitmap, then we'll lose track of the 641 * guest modifications upon those pages (which can directly lead 642 * to guest data loss or panic after migration). 643 * 644 * Layout of the KVMSlot.dirty_bmap: 645 * 646 * |<-------- bmap_npages -----------..>| 647 * [1] 648 * start_delta size 649 * |----------------|-------------|------------------|------------| 650 * ^ ^ ^ ^ 651 * | | | | 652 * start bmap_start (start) end 653 * of memslot of memslot 654 * 655 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 656 */ 657 658 assert(bmap_start % BITS_PER_LONG == 0); 659 /* We should never do log_clear before log_sync */ 660 assert(mem->dirty_bmap); 661 if (start_delta) { 662 /* Slow path - we need to manipulate a temp bitmap */ 663 bmap_clear = bitmap_new(bmap_npages); 664 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 665 bmap_start, start_delta + size / psize); 666 /* 667 * We need to fill the holes at start because that was not 668 * specified by the caller and we extended the bitmap only for 669 * 64 pages alignment 670 */ 671 bitmap_clear(bmap_clear, 0, start_delta); 672 d.dirty_bitmap = bmap_clear; 673 } else { 674 /* Fast path - start address aligns well with BITS_PER_LONG */ 675 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 676 } 677 678 d.first_page = bmap_start; 679 /* It should never overflow. If it happens, say something */ 680 assert(bmap_npages <= UINT32_MAX); 681 d.num_pages = bmap_npages; 682 d.slot = mem->slot | (as_id << 16); 683 684 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) { 685 ret = -errno; 686 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 687 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 688 __func__, d.slot, (uint64_t)d.first_page, 689 (uint32_t)d.num_pages, ret); 690 } else { 691 ret = 0; 692 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 693 } 694 695 /* 696 * After we have updated the remote dirty bitmap, we update the 697 * cached bitmap as well for the memslot, then if another user 698 * clears the same region we know we shouldn't clear it again on 699 * the remote otherwise it's data loss as well. 700 */ 701 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 702 size / psize); 703 /* This handles the NULL case well */ 704 g_free(bmap_clear); 705 return ret; 706 } 707 708 709 /** 710 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 711 * 712 * NOTE: this will be a no-op if we haven't enabled manual dirty log 713 * protection in the host kernel because in that case this operation 714 * will be done within log_sync(). 715 * 716 * @kml: the kvm memory listener 717 * @section: the memory range to clear dirty bitmap 718 */ 719 static int kvm_physical_log_clear(KVMMemoryListener *kml, 720 MemoryRegionSection *section) 721 { 722 KVMState *s = kvm_state; 723 uint64_t start, size, offset, count; 724 KVMSlot *mem; 725 int ret = 0, i; 726 727 if (!s->manual_dirty_log_protect) { 728 /* No need to do explicit clear */ 729 return ret; 730 } 731 732 start = section->offset_within_address_space; 733 size = int128_get64(section->size); 734 735 if (!size) { 736 /* Nothing more we can do... */ 737 return ret; 738 } 739 740 kvm_slots_lock(kml); 741 742 for (i = 0; i < s->nr_slots; i++) { 743 mem = &kml->slots[i]; 744 /* Discard slots that are empty or do not overlap the section */ 745 if (!mem->memory_size || 746 mem->start_addr > start + size - 1 || 747 start > mem->start_addr + mem->memory_size - 1) { 748 continue; 749 } 750 751 if (start >= mem->start_addr) { 752 /* The slot starts before section or is aligned to it. */ 753 offset = start - mem->start_addr; 754 count = MIN(mem->memory_size - offset, size); 755 } else { 756 /* The slot starts after section. */ 757 offset = 0; 758 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 759 } 760 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 761 if (ret < 0) { 762 break; 763 } 764 } 765 766 kvm_slots_unlock(kml); 767 768 return ret; 769 } 770 771 static void kvm_coalesce_mmio_region(MemoryListener *listener, 772 MemoryRegionSection *secion, 773 hwaddr start, hwaddr size) 774 { 775 KVMState *s = kvm_state; 776 777 if (s->coalesced_mmio) { 778 struct kvm_coalesced_mmio_zone zone; 779 780 zone.addr = start; 781 zone.size = size; 782 zone.pad = 0; 783 784 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 785 } 786 } 787 788 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 789 MemoryRegionSection *secion, 790 hwaddr start, hwaddr size) 791 { 792 KVMState *s = kvm_state; 793 794 if (s->coalesced_mmio) { 795 struct kvm_coalesced_mmio_zone zone; 796 797 zone.addr = start; 798 zone.size = size; 799 zone.pad = 0; 800 801 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 802 } 803 } 804 805 static void kvm_coalesce_pio_add(MemoryListener *listener, 806 MemoryRegionSection *section, 807 hwaddr start, hwaddr size) 808 { 809 KVMState *s = kvm_state; 810 811 if (s->coalesced_pio) { 812 struct kvm_coalesced_mmio_zone zone; 813 814 zone.addr = start; 815 zone.size = size; 816 zone.pio = 1; 817 818 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 819 } 820 } 821 822 static void kvm_coalesce_pio_del(MemoryListener *listener, 823 MemoryRegionSection *section, 824 hwaddr start, hwaddr size) 825 { 826 KVMState *s = kvm_state; 827 828 if (s->coalesced_pio) { 829 struct kvm_coalesced_mmio_zone zone; 830 831 zone.addr = start; 832 zone.size = size; 833 zone.pio = 1; 834 835 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 836 } 837 } 838 839 static MemoryListener kvm_coalesced_pio_listener = { 840 .coalesced_io_add = kvm_coalesce_pio_add, 841 .coalesced_io_del = kvm_coalesce_pio_del, 842 }; 843 844 int kvm_check_extension(KVMState *s, unsigned int extension) 845 { 846 int ret; 847 848 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 849 if (ret < 0) { 850 ret = 0; 851 } 852 853 return ret; 854 } 855 856 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 857 { 858 int ret; 859 860 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 861 if (ret < 0) { 862 /* VM wide version not implemented, use global one instead */ 863 ret = kvm_check_extension(s, extension); 864 } 865 866 return ret; 867 } 868 869 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 870 { 871 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 872 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 873 * endianness, but the memory core hands them in target endianness. 874 * For example, PPC is always treated as big-endian even if running 875 * on KVM and on PPC64LE. Correct here. 876 */ 877 switch (size) { 878 case 2: 879 val = bswap16(val); 880 break; 881 case 4: 882 val = bswap32(val); 883 break; 884 } 885 #endif 886 return val; 887 } 888 889 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 890 bool assign, uint32_t size, bool datamatch) 891 { 892 int ret; 893 struct kvm_ioeventfd iofd = { 894 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 895 .addr = addr, 896 .len = size, 897 .flags = 0, 898 .fd = fd, 899 }; 900 901 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 902 datamatch); 903 if (!kvm_enabled()) { 904 return -ENOSYS; 905 } 906 907 if (datamatch) { 908 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 909 } 910 if (!assign) { 911 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 912 } 913 914 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 915 916 if (ret < 0) { 917 return -errno; 918 } 919 920 return 0; 921 } 922 923 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 924 bool assign, uint32_t size, bool datamatch) 925 { 926 struct kvm_ioeventfd kick = { 927 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 928 .addr = addr, 929 .flags = KVM_IOEVENTFD_FLAG_PIO, 930 .len = size, 931 .fd = fd, 932 }; 933 int r; 934 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 935 if (!kvm_enabled()) { 936 return -ENOSYS; 937 } 938 if (datamatch) { 939 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 940 } 941 if (!assign) { 942 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 943 } 944 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 945 if (r < 0) { 946 return r; 947 } 948 return 0; 949 } 950 951 952 static int kvm_check_many_ioeventfds(void) 953 { 954 /* Userspace can use ioeventfd for io notification. This requires a host 955 * that supports eventfd(2) and an I/O thread; since eventfd does not 956 * support SIGIO it cannot interrupt the vcpu. 957 * 958 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 959 * can avoid creating too many ioeventfds. 960 */ 961 #if defined(CONFIG_EVENTFD) 962 int ioeventfds[7]; 963 int i, ret = 0; 964 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 965 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 966 if (ioeventfds[i] < 0) { 967 break; 968 } 969 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 970 if (ret < 0) { 971 close(ioeventfds[i]); 972 break; 973 } 974 } 975 976 /* Decide whether many devices are supported or not */ 977 ret = i == ARRAY_SIZE(ioeventfds); 978 979 while (i-- > 0) { 980 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 981 close(ioeventfds[i]); 982 } 983 return ret; 984 #else 985 return 0; 986 #endif 987 } 988 989 static const KVMCapabilityInfo * 990 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 991 { 992 while (list->name) { 993 if (!kvm_check_extension(s, list->value)) { 994 return list; 995 } 996 list++; 997 } 998 return NULL; 999 } 1000 1001 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1002 { 1003 g_assert( 1004 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1005 ); 1006 kvm_max_slot_size = max_slot_size; 1007 } 1008 1009 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1010 MemoryRegionSection *section, bool add) 1011 { 1012 KVMSlot *mem; 1013 int err; 1014 MemoryRegion *mr = section->mr; 1015 bool writeable = !mr->readonly && !mr->rom_device; 1016 hwaddr start_addr, size, slot_size; 1017 void *ram; 1018 1019 if (!memory_region_is_ram(mr)) { 1020 if (writeable || !kvm_readonly_mem_allowed) { 1021 return; 1022 } else if (!mr->romd_mode) { 1023 /* If the memory device is not in romd_mode, then we actually want 1024 * to remove the kvm memory slot so all accesses will trap. */ 1025 add = false; 1026 } 1027 } 1028 1029 size = kvm_align_section(section, &start_addr); 1030 if (!size) { 1031 return; 1032 } 1033 1034 /* use aligned delta to align the ram address */ 1035 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1036 (start_addr - section->offset_within_address_space); 1037 1038 kvm_slots_lock(kml); 1039 1040 if (!add) { 1041 do { 1042 slot_size = MIN(kvm_max_slot_size, size); 1043 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1044 if (!mem) { 1045 goto out; 1046 } 1047 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1048 kvm_physical_sync_dirty_bitmap(kml, section); 1049 } 1050 1051 /* unregister the slot */ 1052 g_free(mem->dirty_bmap); 1053 mem->dirty_bmap = NULL; 1054 mem->memory_size = 0; 1055 mem->flags = 0; 1056 err = kvm_set_user_memory_region(kml, mem, false); 1057 if (err) { 1058 fprintf(stderr, "%s: error unregistering slot: %s\n", 1059 __func__, strerror(-err)); 1060 abort(); 1061 } 1062 start_addr += slot_size; 1063 size -= slot_size; 1064 } while (size); 1065 goto out; 1066 } 1067 1068 /* register the new slot */ 1069 do { 1070 slot_size = MIN(kvm_max_slot_size, size); 1071 mem = kvm_alloc_slot(kml); 1072 mem->memory_size = slot_size; 1073 mem->start_addr = start_addr; 1074 mem->ram = ram; 1075 mem->flags = kvm_mem_flags(mr); 1076 1077 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1078 /* 1079 * Reallocate the bmap; it means it doesn't disappear in 1080 * middle of a migrate. 1081 */ 1082 kvm_memslot_init_dirty_bitmap(mem); 1083 } 1084 err = kvm_set_user_memory_region(kml, mem, true); 1085 if (err) { 1086 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1087 strerror(-err)); 1088 abort(); 1089 } 1090 start_addr += slot_size; 1091 ram += slot_size; 1092 size -= slot_size; 1093 } while (size); 1094 1095 out: 1096 kvm_slots_unlock(kml); 1097 } 1098 1099 static void kvm_region_add(MemoryListener *listener, 1100 MemoryRegionSection *section) 1101 { 1102 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1103 1104 memory_region_ref(section->mr); 1105 kvm_set_phys_mem(kml, section, true); 1106 } 1107 1108 static void kvm_region_del(MemoryListener *listener, 1109 MemoryRegionSection *section) 1110 { 1111 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1112 1113 kvm_set_phys_mem(kml, section, false); 1114 memory_region_unref(section->mr); 1115 } 1116 1117 static void kvm_log_sync(MemoryListener *listener, 1118 MemoryRegionSection *section) 1119 { 1120 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1121 int r; 1122 1123 kvm_slots_lock(kml); 1124 r = kvm_physical_sync_dirty_bitmap(kml, section); 1125 kvm_slots_unlock(kml); 1126 if (r < 0) { 1127 abort(); 1128 } 1129 } 1130 1131 static void kvm_log_clear(MemoryListener *listener, 1132 MemoryRegionSection *section) 1133 { 1134 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1135 int r; 1136 1137 r = kvm_physical_log_clear(kml, section); 1138 if (r < 0) { 1139 error_report_once("%s: kvm log clear failed: mr=%s " 1140 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1141 section->mr->name, section->offset_within_region, 1142 int128_get64(section->size)); 1143 abort(); 1144 } 1145 } 1146 1147 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1148 MemoryRegionSection *section, 1149 bool match_data, uint64_t data, 1150 EventNotifier *e) 1151 { 1152 int fd = event_notifier_get_fd(e); 1153 int r; 1154 1155 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1156 data, true, int128_get64(section->size), 1157 match_data); 1158 if (r < 0) { 1159 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1160 __func__, strerror(-r), -r); 1161 abort(); 1162 } 1163 } 1164 1165 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1166 MemoryRegionSection *section, 1167 bool match_data, uint64_t data, 1168 EventNotifier *e) 1169 { 1170 int fd = event_notifier_get_fd(e); 1171 int r; 1172 1173 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1174 data, false, int128_get64(section->size), 1175 match_data); 1176 if (r < 0) { 1177 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1178 __func__, strerror(-r), -r); 1179 abort(); 1180 } 1181 } 1182 1183 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1184 MemoryRegionSection *section, 1185 bool match_data, uint64_t data, 1186 EventNotifier *e) 1187 { 1188 int fd = event_notifier_get_fd(e); 1189 int r; 1190 1191 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1192 data, true, int128_get64(section->size), 1193 match_data); 1194 if (r < 0) { 1195 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1196 __func__, strerror(-r), -r); 1197 abort(); 1198 } 1199 } 1200 1201 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1202 MemoryRegionSection *section, 1203 bool match_data, uint64_t data, 1204 EventNotifier *e) 1205 1206 { 1207 int fd = event_notifier_get_fd(e); 1208 int r; 1209 1210 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1211 data, false, int128_get64(section->size), 1212 match_data); 1213 if (r < 0) { 1214 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1215 __func__, strerror(-r), -r); 1216 abort(); 1217 } 1218 } 1219 1220 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1221 AddressSpace *as, int as_id) 1222 { 1223 int i; 1224 1225 qemu_mutex_init(&kml->slots_lock); 1226 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1227 kml->as_id = as_id; 1228 1229 for (i = 0; i < s->nr_slots; i++) { 1230 kml->slots[i].slot = i; 1231 } 1232 1233 kml->listener.region_add = kvm_region_add; 1234 kml->listener.region_del = kvm_region_del; 1235 kml->listener.log_start = kvm_log_start; 1236 kml->listener.log_stop = kvm_log_stop; 1237 kml->listener.log_sync = kvm_log_sync; 1238 kml->listener.log_clear = kvm_log_clear; 1239 kml->listener.priority = 10; 1240 1241 memory_listener_register(&kml->listener, as); 1242 1243 for (i = 0; i < s->nr_as; ++i) { 1244 if (!s->as[i].as) { 1245 s->as[i].as = as; 1246 s->as[i].ml = kml; 1247 break; 1248 } 1249 } 1250 } 1251 1252 static MemoryListener kvm_io_listener = { 1253 .eventfd_add = kvm_io_ioeventfd_add, 1254 .eventfd_del = kvm_io_ioeventfd_del, 1255 .priority = 10, 1256 }; 1257 1258 int kvm_set_irq(KVMState *s, int irq, int level) 1259 { 1260 struct kvm_irq_level event; 1261 int ret; 1262 1263 assert(kvm_async_interrupts_enabled()); 1264 1265 event.level = level; 1266 event.irq = irq; 1267 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1268 if (ret < 0) { 1269 perror("kvm_set_irq"); 1270 abort(); 1271 } 1272 1273 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1274 } 1275 1276 #ifdef KVM_CAP_IRQ_ROUTING 1277 typedef struct KVMMSIRoute { 1278 struct kvm_irq_routing_entry kroute; 1279 QTAILQ_ENTRY(KVMMSIRoute) entry; 1280 } KVMMSIRoute; 1281 1282 static void set_gsi(KVMState *s, unsigned int gsi) 1283 { 1284 set_bit(gsi, s->used_gsi_bitmap); 1285 } 1286 1287 static void clear_gsi(KVMState *s, unsigned int gsi) 1288 { 1289 clear_bit(gsi, s->used_gsi_bitmap); 1290 } 1291 1292 void kvm_init_irq_routing(KVMState *s) 1293 { 1294 int gsi_count, i; 1295 1296 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1297 if (gsi_count > 0) { 1298 /* Round up so we can search ints using ffs */ 1299 s->used_gsi_bitmap = bitmap_new(gsi_count); 1300 s->gsi_count = gsi_count; 1301 } 1302 1303 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1304 s->nr_allocated_irq_routes = 0; 1305 1306 if (!kvm_direct_msi_allowed) { 1307 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1308 QTAILQ_INIT(&s->msi_hashtab[i]); 1309 } 1310 } 1311 1312 kvm_arch_init_irq_routing(s); 1313 } 1314 1315 void kvm_irqchip_commit_routes(KVMState *s) 1316 { 1317 int ret; 1318 1319 if (kvm_gsi_direct_mapping()) { 1320 return; 1321 } 1322 1323 if (!kvm_gsi_routing_enabled()) { 1324 return; 1325 } 1326 1327 s->irq_routes->flags = 0; 1328 trace_kvm_irqchip_commit_routes(); 1329 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1330 assert(ret == 0); 1331 } 1332 1333 static void kvm_add_routing_entry(KVMState *s, 1334 struct kvm_irq_routing_entry *entry) 1335 { 1336 struct kvm_irq_routing_entry *new; 1337 int n, size; 1338 1339 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1340 n = s->nr_allocated_irq_routes * 2; 1341 if (n < 64) { 1342 n = 64; 1343 } 1344 size = sizeof(struct kvm_irq_routing); 1345 size += n * sizeof(*new); 1346 s->irq_routes = g_realloc(s->irq_routes, size); 1347 s->nr_allocated_irq_routes = n; 1348 } 1349 n = s->irq_routes->nr++; 1350 new = &s->irq_routes->entries[n]; 1351 1352 *new = *entry; 1353 1354 set_gsi(s, entry->gsi); 1355 } 1356 1357 static int kvm_update_routing_entry(KVMState *s, 1358 struct kvm_irq_routing_entry *new_entry) 1359 { 1360 struct kvm_irq_routing_entry *entry; 1361 int n; 1362 1363 for (n = 0; n < s->irq_routes->nr; n++) { 1364 entry = &s->irq_routes->entries[n]; 1365 if (entry->gsi != new_entry->gsi) { 1366 continue; 1367 } 1368 1369 if(!memcmp(entry, new_entry, sizeof *entry)) { 1370 return 0; 1371 } 1372 1373 *entry = *new_entry; 1374 1375 return 0; 1376 } 1377 1378 return -ESRCH; 1379 } 1380 1381 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1382 { 1383 struct kvm_irq_routing_entry e = {}; 1384 1385 assert(pin < s->gsi_count); 1386 1387 e.gsi = irq; 1388 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1389 e.flags = 0; 1390 e.u.irqchip.irqchip = irqchip; 1391 e.u.irqchip.pin = pin; 1392 kvm_add_routing_entry(s, &e); 1393 } 1394 1395 void kvm_irqchip_release_virq(KVMState *s, int virq) 1396 { 1397 struct kvm_irq_routing_entry *e; 1398 int i; 1399 1400 if (kvm_gsi_direct_mapping()) { 1401 return; 1402 } 1403 1404 for (i = 0; i < s->irq_routes->nr; i++) { 1405 e = &s->irq_routes->entries[i]; 1406 if (e->gsi == virq) { 1407 s->irq_routes->nr--; 1408 *e = s->irq_routes->entries[s->irq_routes->nr]; 1409 } 1410 } 1411 clear_gsi(s, virq); 1412 kvm_arch_release_virq_post(virq); 1413 trace_kvm_irqchip_release_virq(virq); 1414 } 1415 1416 void kvm_irqchip_add_change_notifier(Notifier *n) 1417 { 1418 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1419 } 1420 1421 void kvm_irqchip_remove_change_notifier(Notifier *n) 1422 { 1423 notifier_remove(n); 1424 } 1425 1426 void kvm_irqchip_change_notify(void) 1427 { 1428 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1429 } 1430 1431 static unsigned int kvm_hash_msi(uint32_t data) 1432 { 1433 /* This is optimized for IA32 MSI layout. However, no other arch shall 1434 * repeat the mistake of not providing a direct MSI injection API. */ 1435 return data & 0xff; 1436 } 1437 1438 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1439 { 1440 KVMMSIRoute *route, *next; 1441 unsigned int hash; 1442 1443 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1444 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1445 kvm_irqchip_release_virq(s, route->kroute.gsi); 1446 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1447 g_free(route); 1448 } 1449 } 1450 } 1451 1452 static int kvm_irqchip_get_virq(KVMState *s) 1453 { 1454 int next_virq; 1455 1456 /* 1457 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1458 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1459 * number can succeed even though a new route entry cannot be added. 1460 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1461 */ 1462 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1463 kvm_flush_dynamic_msi_routes(s); 1464 } 1465 1466 /* Return the lowest unused GSI in the bitmap */ 1467 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1468 if (next_virq >= s->gsi_count) { 1469 return -ENOSPC; 1470 } else { 1471 return next_virq; 1472 } 1473 } 1474 1475 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1476 { 1477 unsigned int hash = kvm_hash_msi(msg.data); 1478 KVMMSIRoute *route; 1479 1480 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1481 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1482 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1483 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1484 return route; 1485 } 1486 } 1487 return NULL; 1488 } 1489 1490 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1491 { 1492 struct kvm_msi msi; 1493 KVMMSIRoute *route; 1494 1495 if (kvm_direct_msi_allowed) { 1496 msi.address_lo = (uint32_t)msg.address; 1497 msi.address_hi = msg.address >> 32; 1498 msi.data = le32_to_cpu(msg.data); 1499 msi.flags = 0; 1500 memset(msi.pad, 0, sizeof(msi.pad)); 1501 1502 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1503 } 1504 1505 route = kvm_lookup_msi_route(s, msg); 1506 if (!route) { 1507 int virq; 1508 1509 virq = kvm_irqchip_get_virq(s); 1510 if (virq < 0) { 1511 return virq; 1512 } 1513 1514 route = g_malloc0(sizeof(KVMMSIRoute)); 1515 route->kroute.gsi = virq; 1516 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1517 route->kroute.flags = 0; 1518 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1519 route->kroute.u.msi.address_hi = msg.address >> 32; 1520 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1521 1522 kvm_add_routing_entry(s, &route->kroute); 1523 kvm_irqchip_commit_routes(s); 1524 1525 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1526 entry); 1527 } 1528 1529 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1530 1531 return kvm_set_irq(s, route->kroute.gsi, 1); 1532 } 1533 1534 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1535 { 1536 struct kvm_irq_routing_entry kroute = {}; 1537 int virq; 1538 MSIMessage msg = {0, 0}; 1539 1540 if (pci_available && dev) { 1541 msg = pci_get_msi_message(dev, vector); 1542 } 1543 1544 if (kvm_gsi_direct_mapping()) { 1545 return kvm_arch_msi_data_to_gsi(msg.data); 1546 } 1547 1548 if (!kvm_gsi_routing_enabled()) { 1549 return -ENOSYS; 1550 } 1551 1552 virq = kvm_irqchip_get_virq(s); 1553 if (virq < 0) { 1554 return virq; 1555 } 1556 1557 kroute.gsi = virq; 1558 kroute.type = KVM_IRQ_ROUTING_MSI; 1559 kroute.flags = 0; 1560 kroute.u.msi.address_lo = (uint32_t)msg.address; 1561 kroute.u.msi.address_hi = msg.address >> 32; 1562 kroute.u.msi.data = le32_to_cpu(msg.data); 1563 if (pci_available && kvm_msi_devid_required()) { 1564 kroute.flags = KVM_MSI_VALID_DEVID; 1565 kroute.u.msi.devid = pci_requester_id(dev); 1566 } 1567 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1568 kvm_irqchip_release_virq(s, virq); 1569 return -EINVAL; 1570 } 1571 1572 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1573 vector, virq); 1574 1575 kvm_add_routing_entry(s, &kroute); 1576 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1577 kvm_irqchip_commit_routes(s); 1578 1579 return virq; 1580 } 1581 1582 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1583 PCIDevice *dev) 1584 { 1585 struct kvm_irq_routing_entry kroute = {}; 1586 1587 if (kvm_gsi_direct_mapping()) { 1588 return 0; 1589 } 1590 1591 if (!kvm_irqchip_in_kernel()) { 1592 return -ENOSYS; 1593 } 1594 1595 kroute.gsi = virq; 1596 kroute.type = KVM_IRQ_ROUTING_MSI; 1597 kroute.flags = 0; 1598 kroute.u.msi.address_lo = (uint32_t)msg.address; 1599 kroute.u.msi.address_hi = msg.address >> 32; 1600 kroute.u.msi.data = le32_to_cpu(msg.data); 1601 if (pci_available && kvm_msi_devid_required()) { 1602 kroute.flags = KVM_MSI_VALID_DEVID; 1603 kroute.u.msi.devid = pci_requester_id(dev); 1604 } 1605 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1606 return -EINVAL; 1607 } 1608 1609 trace_kvm_irqchip_update_msi_route(virq); 1610 1611 return kvm_update_routing_entry(s, &kroute); 1612 } 1613 1614 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, 1615 bool assign) 1616 { 1617 struct kvm_irqfd irqfd = { 1618 .fd = fd, 1619 .gsi = virq, 1620 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1621 }; 1622 1623 if (rfd != -1) { 1624 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1625 irqfd.resamplefd = rfd; 1626 } 1627 1628 if (!kvm_irqfds_enabled()) { 1629 return -ENOSYS; 1630 } 1631 1632 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1633 } 1634 1635 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1636 { 1637 struct kvm_irq_routing_entry kroute = {}; 1638 int virq; 1639 1640 if (!kvm_gsi_routing_enabled()) { 1641 return -ENOSYS; 1642 } 1643 1644 virq = kvm_irqchip_get_virq(s); 1645 if (virq < 0) { 1646 return virq; 1647 } 1648 1649 kroute.gsi = virq; 1650 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1651 kroute.flags = 0; 1652 kroute.u.adapter.summary_addr = adapter->summary_addr; 1653 kroute.u.adapter.ind_addr = adapter->ind_addr; 1654 kroute.u.adapter.summary_offset = adapter->summary_offset; 1655 kroute.u.adapter.ind_offset = adapter->ind_offset; 1656 kroute.u.adapter.adapter_id = adapter->adapter_id; 1657 1658 kvm_add_routing_entry(s, &kroute); 1659 1660 return virq; 1661 } 1662 1663 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1664 { 1665 struct kvm_irq_routing_entry kroute = {}; 1666 int virq; 1667 1668 if (!kvm_gsi_routing_enabled()) { 1669 return -ENOSYS; 1670 } 1671 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1672 return -ENOSYS; 1673 } 1674 virq = kvm_irqchip_get_virq(s); 1675 if (virq < 0) { 1676 return virq; 1677 } 1678 1679 kroute.gsi = virq; 1680 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1681 kroute.flags = 0; 1682 kroute.u.hv_sint.vcpu = vcpu; 1683 kroute.u.hv_sint.sint = sint; 1684 1685 kvm_add_routing_entry(s, &kroute); 1686 kvm_irqchip_commit_routes(s); 1687 1688 return virq; 1689 } 1690 1691 #else /* !KVM_CAP_IRQ_ROUTING */ 1692 1693 void kvm_init_irq_routing(KVMState *s) 1694 { 1695 } 1696 1697 void kvm_irqchip_release_virq(KVMState *s, int virq) 1698 { 1699 } 1700 1701 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1702 { 1703 abort(); 1704 } 1705 1706 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1707 { 1708 return -ENOSYS; 1709 } 1710 1711 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1712 { 1713 return -ENOSYS; 1714 } 1715 1716 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1717 { 1718 return -ENOSYS; 1719 } 1720 1721 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) 1722 { 1723 abort(); 1724 } 1725 1726 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1727 { 1728 return -ENOSYS; 1729 } 1730 #endif /* !KVM_CAP_IRQ_ROUTING */ 1731 1732 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1733 EventNotifier *rn, int virq) 1734 { 1735 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), 1736 rn ? event_notifier_get_fd(rn) : -1, virq, true); 1737 } 1738 1739 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1740 int virq) 1741 { 1742 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, 1743 false); 1744 } 1745 1746 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1747 EventNotifier *rn, qemu_irq irq) 1748 { 1749 gpointer key, gsi; 1750 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1751 1752 if (!found) { 1753 return -ENXIO; 1754 } 1755 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1756 } 1757 1758 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1759 qemu_irq irq) 1760 { 1761 gpointer key, gsi; 1762 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1763 1764 if (!found) { 1765 return -ENXIO; 1766 } 1767 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1768 } 1769 1770 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1771 { 1772 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1773 } 1774 1775 static void kvm_irqchip_create(MachineState *machine, KVMState *s) 1776 { 1777 int ret; 1778 1779 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1780 ; 1781 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1782 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1783 if (ret < 0) { 1784 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1785 exit(1); 1786 } 1787 } else { 1788 return; 1789 } 1790 1791 /* First probe and see if there's a arch-specific hook to create the 1792 * in-kernel irqchip for us */ 1793 ret = kvm_arch_irqchip_create(machine, s); 1794 if (ret == 0) { 1795 if (machine_kernel_irqchip_split(machine)) { 1796 perror("Split IRQ chip mode not supported."); 1797 exit(1); 1798 } else { 1799 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1800 } 1801 } 1802 if (ret < 0) { 1803 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1804 exit(1); 1805 } 1806 1807 kvm_kernel_irqchip = true; 1808 /* If we have an in-kernel IRQ chip then we must have asynchronous 1809 * interrupt delivery (though the reverse is not necessarily true) 1810 */ 1811 kvm_async_interrupts_allowed = true; 1812 kvm_halt_in_kernel_allowed = true; 1813 1814 kvm_init_irq_routing(s); 1815 1816 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1817 } 1818 1819 /* Find number of supported CPUs using the recommended 1820 * procedure from the kernel API documentation to cope with 1821 * older kernels that may be missing capabilities. 1822 */ 1823 static int kvm_recommended_vcpus(KVMState *s) 1824 { 1825 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1826 return (ret) ? ret : 4; 1827 } 1828 1829 static int kvm_max_vcpus(KVMState *s) 1830 { 1831 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1832 return (ret) ? ret : kvm_recommended_vcpus(s); 1833 } 1834 1835 static int kvm_max_vcpu_id(KVMState *s) 1836 { 1837 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1838 return (ret) ? ret : kvm_max_vcpus(s); 1839 } 1840 1841 bool kvm_vcpu_id_is_valid(int vcpu_id) 1842 { 1843 KVMState *s = KVM_STATE(current_machine->accelerator); 1844 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1845 } 1846 1847 static int kvm_init(MachineState *ms) 1848 { 1849 MachineClass *mc = MACHINE_GET_CLASS(ms); 1850 static const char upgrade_note[] = 1851 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1852 "(see http://sourceforge.net/projects/kvm).\n"; 1853 struct { 1854 const char *name; 1855 int num; 1856 } num_cpus[] = { 1857 { "SMP", ms->smp.cpus }, 1858 { "hotpluggable", ms->smp.max_cpus }, 1859 { NULL, } 1860 }, *nc = num_cpus; 1861 int soft_vcpus_limit, hard_vcpus_limit; 1862 KVMState *s; 1863 const KVMCapabilityInfo *missing_cap; 1864 int ret; 1865 int type = 0; 1866 const char *kvm_type; 1867 1868 s = KVM_STATE(ms->accelerator); 1869 1870 /* 1871 * On systems where the kernel can support different base page 1872 * sizes, host page size may be different from TARGET_PAGE_SIZE, 1873 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 1874 * page size for the system though. 1875 */ 1876 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 1877 1878 s->sigmask_len = 8; 1879 1880 #ifdef KVM_CAP_SET_GUEST_DEBUG 1881 QTAILQ_INIT(&s->kvm_sw_breakpoints); 1882 #endif 1883 QLIST_INIT(&s->kvm_parked_vcpus); 1884 s->vmfd = -1; 1885 s->fd = qemu_open("/dev/kvm", O_RDWR); 1886 if (s->fd == -1) { 1887 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 1888 ret = -errno; 1889 goto err; 1890 } 1891 1892 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 1893 if (ret < KVM_API_VERSION) { 1894 if (ret >= 0) { 1895 ret = -EINVAL; 1896 } 1897 fprintf(stderr, "kvm version too old\n"); 1898 goto err; 1899 } 1900 1901 if (ret > KVM_API_VERSION) { 1902 ret = -EINVAL; 1903 fprintf(stderr, "kvm version not supported\n"); 1904 goto err; 1905 } 1906 1907 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 1908 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 1909 1910 /* If unspecified, use the default value */ 1911 if (!s->nr_slots) { 1912 s->nr_slots = 32; 1913 } 1914 1915 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 1916 if (s->nr_as <= 1) { 1917 s->nr_as = 1; 1918 } 1919 s->as = g_new0(struct KVMAs, s->nr_as); 1920 1921 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); 1922 if (mc->kvm_type) { 1923 type = mc->kvm_type(ms, kvm_type); 1924 } else if (kvm_type) { 1925 ret = -EINVAL; 1926 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); 1927 goto err; 1928 } 1929 1930 do { 1931 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 1932 } while (ret == -EINTR); 1933 1934 if (ret < 0) { 1935 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 1936 strerror(-ret)); 1937 1938 #ifdef TARGET_S390X 1939 if (ret == -EINVAL) { 1940 fprintf(stderr, 1941 "Host kernel setup problem detected. Please verify:\n"); 1942 fprintf(stderr, "- for kernels supporting the switch_amode or" 1943 " user_mode parameters, whether\n"); 1944 fprintf(stderr, 1945 " user space is running in primary address space\n"); 1946 fprintf(stderr, 1947 "- for kernels supporting the vm.allocate_pgste sysctl, " 1948 "whether it is enabled\n"); 1949 } 1950 #endif 1951 goto err; 1952 } 1953 1954 s->vmfd = ret; 1955 1956 /* check the vcpu limits */ 1957 soft_vcpus_limit = kvm_recommended_vcpus(s); 1958 hard_vcpus_limit = kvm_max_vcpus(s); 1959 1960 while (nc->name) { 1961 if (nc->num > soft_vcpus_limit) { 1962 warn_report("Number of %s cpus requested (%d) exceeds " 1963 "the recommended cpus supported by KVM (%d)", 1964 nc->name, nc->num, soft_vcpus_limit); 1965 1966 if (nc->num > hard_vcpus_limit) { 1967 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 1968 "the maximum cpus supported by KVM (%d)\n", 1969 nc->name, nc->num, hard_vcpus_limit); 1970 exit(1); 1971 } 1972 } 1973 nc++; 1974 } 1975 1976 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 1977 if (!missing_cap) { 1978 missing_cap = 1979 kvm_check_extension_list(s, kvm_arch_required_capabilities); 1980 } 1981 if (missing_cap) { 1982 ret = -EINVAL; 1983 fprintf(stderr, "kvm does not support %s\n%s", 1984 missing_cap->name, upgrade_note); 1985 goto err; 1986 } 1987 1988 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 1989 s->coalesced_pio = s->coalesced_mmio && 1990 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 1991 1992 s->manual_dirty_log_protect = 1993 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 1994 if (s->manual_dirty_log_protect) { 1995 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1); 1996 if (ret) { 1997 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 " 1998 "but failed. Falling back to the legacy mode. "); 1999 s->manual_dirty_log_protect = false; 2000 } 2001 } 2002 2003 #ifdef KVM_CAP_VCPU_EVENTS 2004 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2005 #endif 2006 2007 s->robust_singlestep = 2008 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2009 2010 #ifdef KVM_CAP_DEBUGREGS 2011 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2012 #endif 2013 2014 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2015 2016 #ifdef KVM_CAP_IRQ_ROUTING 2017 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2018 #endif 2019 2020 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2021 2022 s->irq_set_ioctl = KVM_IRQ_LINE; 2023 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2024 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2025 } 2026 2027 kvm_readonly_mem_allowed = 2028 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2029 2030 kvm_eventfds_allowed = 2031 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2032 2033 kvm_irqfds_allowed = 2034 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2035 2036 kvm_resamplefds_allowed = 2037 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2038 2039 kvm_vm_attributes_allowed = 2040 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2041 2042 kvm_ioeventfd_any_length_allowed = 2043 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2044 2045 kvm_state = s; 2046 2047 /* 2048 * if memory encryption object is specified then initialize the memory 2049 * encryption context. 2050 */ 2051 if (ms->memory_encryption) { 2052 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption); 2053 if (!kvm_state->memcrypt_handle) { 2054 ret = -1; 2055 goto err; 2056 } 2057 2058 kvm_state->memcrypt_encrypt_data = sev_encrypt_data; 2059 } 2060 2061 ret = kvm_arch_init(ms, s); 2062 if (ret < 0) { 2063 goto err; 2064 } 2065 2066 if (machine_kernel_irqchip_allowed(ms)) { 2067 kvm_irqchip_create(ms, s); 2068 } 2069 2070 if (kvm_eventfds_allowed) { 2071 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2072 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2073 } 2074 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2075 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2076 2077 kvm_memory_listener_register(s, &s->memory_listener, 2078 &address_space_memory, 0); 2079 memory_listener_register(&kvm_io_listener, 2080 &address_space_io); 2081 memory_listener_register(&kvm_coalesced_pio_listener, 2082 &address_space_io); 2083 2084 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2085 2086 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2087 if (!s->sync_mmu) { 2088 qemu_balloon_inhibit(true); 2089 } 2090 2091 return 0; 2092 2093 err: 2094 assert(ret < 0); 2095 if (s->vmfd >= 0) { 2096 close(s->vmfd); 2097 } 2098 if (s->fd != -1) { 2099 close(s->fd); 2100 } 2101 g_free(s->memory_listener.slots); 2102 2103 return ret; 2104 } 2105 2106 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2107 { 2108 s->sigmask_len = sigmask_len; 2109 } 2110 2111 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2112 int size, uint32_t count) 2113 { 2114 int i; 2115 uint8_t *ptr = data; 2116 2117 for (i = 0; i < count; i++) { 2118 address_space_rw(&address_space_io, port, attrs, 2119 ptr, size, 2120 direction == KVM_EXIT_IO_OUT); 2121 ptr += size; 2122 } 2123 } 2124 2125 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2126 { 2127 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2128 run->internal.suberror); 2129 2130 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2131 int i; 2132 2133 for (i = 0; i < run->internal.ndata; ++i) { 2134 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2135 i, (uint64_t)run->internal.data[i]); 2136 } 2137 } 2138 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2139 fprintf(stderr, "emulation failure\n"); 2140 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2141 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2142 return EXCP_INTERRUPT; 2143 } 2144 } 2145 /* FIXME: Should trigger a qmp message to let management know 2146 * something went wrong. 2147 */ 2148 return -1; 2149 } 2150 2151 void kvm_flush_coalesced_mmio_buffer(void) 2152 { 2153 KVMState *s = kvm_state; 2154 2155 if (s->coalesced_flush_in_progress) { 2156 return; 2157 } 2158 2159 s->coalesced_flush_in_progress = true; 2160 2161 if (s->coalesced_mmio_ring) { 2162 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2163 while (ring->first != ring->last) { 2164 struct kvm_coalesced_mmio *ent; 2165 2166 ent = &ring->coalesced_mmio[ring->first]; 2167 2168 if (ent->pio == 1) { 2169 address_space_rw(&address_space_io, ent->phys_addr, 2170 MEMTXATTRS_UNSPECIFIED, ent->data, 2171 ent->len, true); 2172 } else { 2173 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2174 } 2175 smp_wmb(); 2176 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2177 } 2178 } 2179 2180 s->coalesced_flush_in_progress = false; 2181 } 2182 2183 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2184 { 2185 if (!cpu->vcpu_dirty) { 2186 kvm_arch_get_registers(cpu); 2187 cpu->vcpu_dirty = true; 2188 } 2189 } 2190 2191 void kvm_cpu_synchronize_state(CPUState *cpu) 2192 { 2193 if (!cpu->vcpu_dirty) { 2194 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2195 } 2196 } 2197 2198 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2199 { 2200 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2201 cpu->vcpu_dirty = false; 2202 } 2203 2204 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2205 { 2206 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2207 } 2208 2209 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2210 { 2211 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2212 cpu->vcpu_dirty = false; 2213 } 2214 2215 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2216 { 2217 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2218 } 2219 2220 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2221 { 2222 cpu->vcpu_dirty = true; 2223 } 2224 2225 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2226 { 2227 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2228 } 2229 2230 #ifdef KVM_HAVE_MCE_INJECTION 2231 static __thread void *pending_sigbus_addr; 2232 static __thread int pending_sigbus_code; 2233 static __thread bool have_sigbus_pending; 2234 #endif 2235 2236 static void kvm_cpu_kick(CPUState *cpu) 2237 { 2238 atomic_set(&cpu->kvm_run->immediate_exit, 1); 2239 } 2240 2241 static void kvm_cpu_kick_self(void) 2242 { 2243 if (kvm_immediate_exit) { 2244 kvm_cpu_kick(current_cpu); 2245 } else { 2246 qemu_cpu_kick_self(); 2247 } 2248 } 2249 2250 static void kvm_eat_signals(CPUState *cpu) 2251 { 2252 struct timespec ts = { 0, 0 }; 2253 siginfo_t siginfo; 2254 sigset_t waitset; 2255 sigset_t chkset; 2256 int r; 2257 2258 if (kvm_immediate_exit) { 2259 atomic_set(&cpu->kvm_run->immediate_exit, 0); 2260 /* Write kvm_run->immediate_exit before the cpu->exit_request 2261 * write in kvm_cpu_exec. 2262 */ 2263 smp_wmb(); 2264 return; 2265 } 2266 2267 sigemptyset(&waitset); 2268 sigaddset(&waitset, SIG_IPI); 2269 2270 do { 2271 r = sigtimedwait(&waitset, &siginfo, &ts); 2272 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2273 perror("sigtimedwait"); 2274 exit(1); 2275 } 2276 2277 r = sigpending(&chkset); 2278 if (r == -1) { 2279 perror("sigpending"); 2280 exit(1); 2281 } 2282 } while (sigismember(&chkset, SIG_IPI)); 2283 } 2284 2285 int kvm_cpu_exec(CPUState *cpu) 2286 { 2287 struct kvm_run *run = cpu->kvm_run; 2288 int ret, run_ret; 2289 2290 DPRINTF("kvm_cpu_exec()\n"); 2291 2292 if (kvm_arch_process_async_events(cpu)) { 2293 atomic_set(&cpu->exit_request, 0); 2294 return EXCP_HLT; 2295 } 2296 2297 qemu_mutex_unlock_iothread(); 2298 cpu_exec_start(cpu); 2299 2300 do { 2301 MemTxAttrs attrs; 2302 2303 if (cpu->vcpu_dirty) { 2304 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2305 cpu->vcpu_dirty = false; 2306 } 2307 2308 kvm_arch_pre_run(cpu, run); 2309 if (atomic_read(&cpu->exit_request)) { 2310 DPRINTF("interrupt exit requested\n"); 2311 /* 2312 * KVM requires us to reenter the kernel after IO exits to complete 2313 * instruction emulation. This self-signal will ensure that we 2314 * leave ASAP again. 2315 */ 2316 kvm_cpu_kick_self(); 2317 } 2318 2319 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2320 * Matching barrier in kvm_eat_signals. 2321 */ 2322 smp_rmb(); 2323 2324 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2325 2326 attrs = kvm_arch_post_run(cpu, run); 2327 2328 #ifdef KVM_HAVE_MCE_INJECTION 2329 if (unlikely(have_sigbus_pending)) { 2330 qemu_mutex_lock_iothread(); 2331 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2332 pending_sigbus_addr); 2333 have_sigbus_pending = false; 2334 qemu_mutex_unlock_iothread(); 2335 } 2336 #endif 2337 2338 if (run_ret < 0) { 2339 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2340 DPRINTF("io window exit\n"); 2341 kvm_eat_signals(cpu); 2342 ret = EXCP_INTERRUPT; 2343 break; 2344 } 2345 fprintf(stderr, "error: kvm run failed %s\n", 2346 strerror(-run_ret)); 2347 #ifdef TARGET_PPC 2348 if (run_ret == -EBUSY) { 2349 fprintf(stderr, 2350 "This is probably because your SMT is enabled.\n" 2351 "VCPU can only run on primary threads with all " 2352 "secondary threads offline.\n"); 2353 } 2354 #endif 2355 ret = -1; 2356 break; 2357 } 2358 2359 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2360 switch (run->exit_reason) { 2361 case KVM_EXIT_IO: 2362 DPRINTF("handle_io\n"); 2363 /* Called outside BQL */ 2364 kvm_handle_io(run->io.port, attrs, 2365 (uint8_t *)run + run->io.data_offset, 2366 run->io.direction, 2367 run->io.size, 2368 run->io.count); 2369 ret = 0; 2370 break; 2371 case KVM_EXIT_MMIO: 2372 DPRINTF("handle_mmio\n"); 2373 /* Called outside BQL */ 2374 address_space_rw(&address_space_memory, 2375 run->mmio.phys_addr, attrs, 2376 run->mmio.data, 2377 run->mmio.len, 2378 run->mmio.is_write); 2379 ret = 0; 2380 break; 2381 case KVM_EXIT_IRQ_WINDOW_OPEN: 2382 DPRINTF("irq_window_open\n"); 2383 ret = EXCP_INTERRUPT; 2384 break; 2385 case KVM_EXIT_SHUTDOWN: 2386 DPRINTF("shutdown\n"); 2387 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2388 ret = EXCP_INTERRUPT; 2389 break; 2390 case KVM_EXIT_UNKNOWN: 2391 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2392 (uint64_t)run->hw.hardware_exit_reason); 2393 ret = -1; 2394 break; 2395 case KVM_EXIT_INTERNAL_ERROR: 2396 ret = kvm_handle_internal_error(cpu, run); 2397 break; 2398 case KVM_EXIT_SYSTEM_EVENT: 2399 switch (run->system_event.type) { 2400 case KVM_SYSTEM_EVENT_SHUTDOWN: 2401 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2402 ret = EXCP_INTERRUPT; 2403 break; 2404 case KVM_SYSTEM_EVENT_RESET: 2405 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2406 ret = EXCP_INTERRUPT; 2407 break; 2408 case KVM_SYSTEM_EVENT_CRASH: 2409 kvm_cpu_synchronize_state(cpu); 2410 qemu_mutex_lock_iothread(); 2411 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2412 qemu_mutex_unlock_iothread(); 2413 ret = 0; 2414 break; 2415 default: 2416 DPRINTF("kvm_arch_handle_exit\n"); 2417 ret = kvm_arch_handle_exit(cpu, run); 2418 break; 2419 } 2420 break; 2421 default: 2422 DPRINTF("kvm_arch_handle_exit\n"); 2423 ret = kvm_arch_handle_exit(cpu, run); 2424 break; 2425 } 2426 } while (ret == 0); 2427 2428 cpu_exec_end(cpu); 2429 qemu_mutex_lock_iothread(); 2430 2431 if (ret < 0) { 2432 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2433 vm_stop(RUN_STATE_INTERNAL_ERROR); 2434 } 2435 2436 atomic_set(&cpu->exit_request, 0); 2437 return ret; 2438 } 2439 2440 int kvm_ioctl(KVMState *s, int type, ...) 2441 { 2442 int ret; 2443 void *arg; 2444 va_list ap; 2445 2446 va_start(ap, type); 2447 arg = va_arg(ap, void *); 2448 va_end(ap); 2449 2450 trace_kvm_ioctl(type, arg); 2451 ret = ioctl(s->fd, type, arg); 2452 if (ret == -1) { 2453 ret = -errno; 2454 } 2455 return ret; 2456 } 2457 2458 int kvm_vm_ioctl(KVMState *s, int type, ...) 2459 { 2460 int ret; 2461 void *arg; 2462 va_list ap; 2463 2464 va_start(ap, type); 2465 arg = va_arg(ap, void *); 2466 va_end(ap); 2467 2468 trace_kvm_vm_ioctl(type, arg); 2469 ret = ioctl(s->vmfd, type, arg); 2470 if (ret == -1) { 2471 ret = -errno; 2472 } 2473 return ret; 2474 } 2475 2476 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2477 { 2478 int ret; 2479 void *arg; 2480 va_list ap; 2481 2482 va_start(ap, type); 2483 arg = va_arg(ap, void *); 2484 va_end(ap); 2485 2486 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2487 ret = ioctl(cpu->kvm_fd, type, arg); 2488 if (ret == -1) { 2489 ret = -errno; 2490 } 2491 return ret; 2492 } 2493 2494 int kvm_device_ioctl(int fd, int type, ...) 2495 { 2496 int ret; 2497 void *arg; 2498 va_list ap; 2499 2500 va_start(ap, type); 2501 arg = va_arg(ap, void *); 2502 va_end(ap); 2503 2504 trace_kvm_device_ioctl(fd, type, arg); 2505 ret = ioctl(fd, type, arg); 2506 if (ret == -1) { 2507 ret = -errno; 2508 } 2509 return ret; 2510 } 2511 2512 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2513 { 2514 int ret; 2515 struct kvm_device_attr attribute = { 2516 .group = group, 2517 .attr = attr, 2518 }; 2519 2520 if (!kvm_vm_attributes_allowed) { 2521 return 0; 2522 } 2523 2524 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2525 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2526 return ret ? 0 : 1; 2527 } 2528 2529 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2530 { 2531 struct kvm_device_attr attribute = { 2532 .group = group, 2533 .attr = attr, 2534 .flags = 0, 2535 }; 2536 2537 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2538 } 2539 2540 int kvm_device_access(int fd, int group, uint64_t attr, 2541 void *val, bool write, Error **errp) 2542 { 2543 struct kvm_device_attr kvmattr; 2544 int err; 2545 2546 kvmattr.flags = 0; 2547 kvmattr.group = group; 2548 kvmattr.attr = attr; 2549 kvmattr.addr = (uintptr_t)val; 2550 2551 err = kvm_device_ioctl(fd, 2552 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2553 &kvmattr); 2554 if (err < 0) { 2555 error_setg_errno(errp, -err, 2556 "KVM_%s_DEVICE_ATTR failed: Group %d " 2557 "attr 0x%016" PRIx64, 2558 write ? "SET" : "GET", group, attr); 2559 } 2560 return err; 2561 } 2562 2563 bool kvm_has_sync_mmu(void) 2564 { 2565 return kvm_state->sync_mmu; 2566 } 2567 2568 int kvm_has_vcpu_events(void) 2569 { 2570 return kvm_state->vcpu_events; 2571 } 2572 2573 int kvm_has_robust_singlestep(void) 2574 { 2575 return kvm_state->robust_singlestep; 2576 } 2577 2578 int kvm_has_debugregs(void) 2579 { 2580 return kvm_state->debugregs; 2581 } 2582 2583 int kvm_max_nested_state_length(void) 2584 { 2585 return kvm_state->max_nested_state_len; 2586 } 2587 2588 int kvm_has_many_ioeventfds(void) 2589 { 2590 if (!kvm_enabled()) { 2591 return 0; 2592 } 2593 return kvm_state->many_ioeventfds; 2594 } 2595 2596 int kvm_has_gsi_routing(void) 2597 { 2598 #ifdef KVM_CAP_IRQ_ROUTING 2599 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2600 #else 2601 return false; 2602 #endif 2603 } 2604 2605 int kvm_has_intx_set_mask(void) 2606 { 2607 return kvm_state->intx_set_mask; 2608 } 2609 2610 bool kvm_arm_supports_user_irq(void) 2611 { 2612 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2613 } 2614 2615 #ifdef KVM_CAP_SET_GUEST_DEBUG 2616 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2617 target_ulong pc) 2618 { 2619 struct kvm_sw_breakpoint *bp; 2620 2621 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2622 if (bp->pc == pc) { 2623 return bp; 2624 } 2625 } 2626 return NULL; 2627 } 2628 2629 int kvm_sw_breakpoints_active(CPUState *cpu) 2630 { 2631 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2632 } 2633 2634 struct kvm_set_guest_debug_data { 2635 struct kvm_guest_debug dbg; 2636 int err; 2637 }; 2638 2639 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2640 { 2641 struct kvm_set_guest_debug_data *dbg_data = 2642 (struct kvm_set_guest_debug_data *) data.host_ptr; 2643 2644 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2645 &dbg_data->dbg); 2646 } 2647 2648 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2649 { 2650 struct kvm_set_guest_debug_data data; 2651 2652 data.dbg.control = reinject_trap; 2653 2654 if (cpu->singlestep_enabled) { 2655 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2656 } 2657 kvm_arch_update_guest_debug(cpu, &data.dbg); 2658 2659 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2660 RUN_ON_CPU_HOST_PTR(&data)); 2661 return data.err; 2662 } 2663 2664 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2665 target_ulong len, int type) 2666 { 2667 struct kvm_sw_breakpoint *bp; 2668 int err; 2669 2670 if (type == GDB_BREAKPOINT_SW) { 2671 bp = kvm_find_sw_breakpoint(cpu, addr); 2672 if (bp) { 2673 bp->use_count++; 2674 return 0; 2675 } 2676 2677 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2678 bp->pc = addr; 2679 bp->use_count = 1; 2680 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2681 if (err) { 2682 g_free(bp); 2683 return err; 2684 } 2685 2686 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2687 } else { 2688 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2689 if (err) { 2690 return err; 2691 } 2692 } 2693 2694 CPU_FOREACH(cpu) { 2695 err = kvm_update_guest_debug(cpu, 0); 2696 if (err) { 2697 return err; 2698 } 2699 } 2700 return 0; 2701 } 2702 2703 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2704 target_ulong len, int type) 2705 { 2706 struct kvm_sw_breakpoint *bp; 2707 int err; 2708 2709 if (type == GDB_BREAKPOINT_SW) { 2710 bp = kvm_find_sw_breakpoint(cpu, addr); 2711 if (!bp) { 2712 return -ENOENT; 2713 } 2714 2715 if (bp->use_count > 1) { 2716 bp->use_count--; 2717 return 0; 2718 } 2719 2720 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2721 if (err) { 2722 return err; 2723 } 2724 2725 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2726 g_free(bp); 2727 } else { 2728 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2729 if (err) { 2730 return err; 2731 } 2732 } 2733 2734 CPU_FOREACH(cpu) { 2735 err = kvm_update_guest_debug(cpu, 0); 2736 if (err) { 2737 return err; 2738 } 2739 } 2740 return 0; 2741 } 2742 2743 void kvm_remove_all_breakpoints(CPUState *cpu) 2744 { 2745 struct kvm_sw_breakpoint *bp, *next; 2746 KVMState *s = cpu->kvm_state; 2747 CPUState *tmpcpu; 2748 2749 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2750 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2751 /* Try harder to find a CPU that currently sees the breakpoint. */ 2752 CPU_FOREACH(tmpcpu) { 2753 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2754 break; 2755 } 2756 } 2757 } 2758 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2759 g_free(bp); 2760 } 2761 kvm_arch_remove_all_hw_breakpoints(); 2762 2763 CPU_FOREACH(cpu) { 2764 kvm_update_guest_debug(cpu, 0); 2765 } 2766 } 2767 2768 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2769 2770 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2771 { 2772 return -EINVAL; 2773 } 2774 2775 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2776 target_ulong len, int type) 2777 { 2778 return -EINVAL; 2779 } 2780 2781 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2782 target_ulong len, int type) 2783 { 2784 return -EINVAL; 2785 } 2786 2787 void kvm_remove_all_breakpoints(CPUState *cpu) 2788 { 2789 } 2790 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2791 2792 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2793 { 2794 KVMState *s = kvm_state; 2795 struct kvm_signal_mask *sigmask; 2796 int r; 2797 2798 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2799 2800 sigmask->len = s->sigmask_len; 2801 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2802 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2803 g_free(sigmask); 2804 2805 return r; 2806 } 2807 2808 static void kvm_ipi_signal(int sig) 2809 { 2810 if (current_cpu) { 2811 assert(kvm_immediate_exit); 2812 kvm_cpu_kick(current_cpu); 2813 } 2814 } 2815 2816 void kvm_init_cpu_signals(CPUState *cpu) 2817 { 2818 int r; 2819 sigset_t set; 2820 struct sigaction sigact; 2821 2822 memset(&sigact, 0, sizeof(sigact)); 2823 sigact.sa_handler = kvm_ipi_signal; 2824 sigaction(SIG_IPI, &sigact, NULL); 2825 2826 pthread_sigmask(SIG_BLOCK, NULL, &set); 2827 #if defined KVM_HAVE_MCE_INJECTION 2828 sigdelset(&set, SIGBUS); 2829 pthread_sigmask(SIG_SETMASK, &set, NULL); 2830 #endif 2831 sigdelset(&set, SIG_IPI); 2832 if (kvm_immediate_exit) { 2833 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2834 } else { 2835 r = kvm_set_signal_mask(cpu, &set); 2836 } 2837 if (r) { 2838 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2839 exit(1); 2840 } 2841 } 2842 2843 /* Called asynchronously in VCPU thread. */ 2844 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2845 { 2846 #ifdef KVM_HAVE_MCE_INJECTION 2847 if (have_sigbus_pending) { 2848 return 1; 2849 } 2850 have_sigbus_pending = true; 2851 pending_sigbus_addr = addr; 2852 pending_sigbus_code = code; 2853 atomic_set(&cpu->exit_request, 1); 2854 return 0; 2855 #else 2856 return 1; 2857 #endif 2858 } 2859 2860 /* Called synchronously (via signalfd) in main thread. */ 2861 int kvm_on_sigbus(int code, void *addr) 2862 { 2863 #ifdef KVM_HAVE_MCE_INJECTION 2864 /* Action required MCE kills the process if SIGBUS is blocked. Because 2865 * that's what happens in the I/O thread, where we handle MCE via signalfd, 2866 * we can only get action optional here. 2867 */ 2868 assert(code != BUS_MCEERR_AR); 2869 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 2870 return 0; 2871 #else 2872 return 1; 2873 #endif 2874 } 2875 2876 int kvm_create_device(KVMState *s, uint64_t type, bool test) 2877 { 2878 int ret; 2879 struct kvm_create_device create_dev; 2880 2881 create_dev.type = type; 2882 create_dev.fd = -1; 2883 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2884 2885 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 2886 return -ENOTSUP; 2887 } 2888 2889 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 2890 if (ret) { 2891 return ret; 2892 } 2893 2894 return test ? 0 : create_dev.fd; 2895 } 2896 2897 bool kvm_device_supported(int vmfd, uint64_t type) 2898 { 2899 struct kvm_create_device create_dev = { 2900 .type = type, 2901 .fd = -1, 2902 .flags = KVM_CREATE_DEVICE_TEST, 2903 }; 2904 2905 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 2906 return false; 2907 } 2908 2909 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 2910 } 2911 2912 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 2913 { 2914 struct kvm_one_reg reg; 2915 int r; 2916 2917 reg.id = id; 2918 reg.addr = (uintptr_t) source; 2919 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 2920 if (r) { 2921 trace_kvm_failed_reg_set(id, strerror(-r)); 2922 } 2923 return r; 2924 } 2925 2926 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 2927 { 2928 struct kvm_one_reg reg; 2929 int r; 2930 2931 reg.id = id; 2932 reg.addr = (uintptr_t) target; 2933 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 2934 if (r) { 2935 trace_kvm_failed_reg_get(id, strerror(-r)); 2936 } 2937 return r; 2938 } 2939 2940 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 2941 hwaddr start_addr, hwaddr size) 2942 { 2943 KVMState *kvm = KVM_STATE(ms->accelerator); 2944 int i; 2945 2946 for (i = 0; i < kvm->nr_as; ++i) { 2947 if (kvm->as[i].as == as && kvm->as[i].ml) { 2948 size = MIN(kvm_max_slot_size, size); 2949 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 2950 start_addr, size); 2951 } 2952 } 2953 2954 return false; 2955 } 2956 2957 static void kvm_accel_class_init(ObjectClass *oc, void *data) 2958 { 2959 AccelClass *ac = ACCEL_CLASS(oc); 2960 ac->name = "KVM"; 2961 ac->init_machine = kvm_init; 2962 ac->has_memory = kvm_accel_has_memory; 2963 ac->allowed = &kvm_allowed; 2964 } 2965 2966 static const TypeInfo kvm_accel_type = { 2967 .name = TYPE_KVM_ACCEL, 2968 .parent = TYPE_ACCEL, 2969 .class_init = kvm_accel_class_init, 2970 .instance_size = sizeof(KVMState), 2971 }; 2972 2973 static void kvm_type_init(void) 2974 { 2975 type_register_static(&kvm_accel_type); 2976 } 2977 2978 type_init(kvm_type_init); 2979