1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 19 #include <linux/kvm.h> 20 21 #include "qemu/atomic.h" 22 #include "qemu/option.h" 23 #include "qemu/config-file.h" 24 #include "qemu/error-report.h" 25 #include "qapi/error.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/msix.h" 28 #include "hw/s390x/adapter.h" 29 #include "exec/gdbstub.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "exec/address-spaces.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 50 #include "hw/boards.h" 51 52 /* This check must be after config-host.h is included */ 53 #ifdef CONFIG_EVENTFD 54 #include <sys/eventfd.h> 55 #endif 56 57 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 58 * need to use the real host PAGE_SIZE, as that's what KVM will use. 59 */ 60 #ifdef PAGE_SIZE 61 #undef PAGE_SIZE 62 #endif 63 #define PAGE_SIZE qemu_real_host_page_size 64 65 //#define DEBUG_KVM 66 67 #ifdef DEBUG_KVM 68 #define DPRINTF(fmt, ...) \ 69 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 70 #else 71 #define DPRINTF(fmt, ...) \ 72 do { } while (0) 73 #endif 74 75 #define KVM_MSI_HASHTAB_SIZE 256 76 77 struct KVMParkedVcpu { 78 unsigned long vcpu_id; 79 int kvm_fd; 80 QLIST_ENTRY(KVMParkedVcpu) node; 81 }; 82 83 struct KVMState 84 { 85 AccelState parent_obj; 86 87 int nr_slots; 88 int fd; 89 int vmfd; 90 int coalesced_mmio; 91 int coalesced_pio; 92 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 93 bool coalesced_flush_in_progress; 94 int vcpu_events; 95 int robust_singlestep; 96 int debugregs; 97 #ifdef KVM_CAP_SET_GUEST_DEBUG 98 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 99 #endif 100 int max_nested_state_len; 101 int many_ioeventfds; 102 int intx_set_mask; 103 int kvm_shadow_mem; 104 bool kernel_irqchip_allowed; 105 bool kernel_irqchip_required; 106 OnOffAuto kernel_irqchip_split; 107 bool sync_mmu; 108 uint64_t manual_dirty_log_protect; 109 /* The man page (and posix) say ioctl numbers are signed int, but 110 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 111 * unsigned, and treating them as signed here can break things */ 112 unsigned irq_set_ioctl; 113 unsigned int sigmask_len; 114 GHashTable *gsimap; 115 #ifdef KVM_CAP_IRQ_ROUTING 116 struct kvm_irq_routing *irq_routes; 117 int nr_allocated_irq_routes; 118 unsigned long *used_gsi_bitmap; 119 unsigned int gsi_count; 120 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 121 #endif 122 KVMMemoryListener memory_listener; 123 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 124 125 /* For "info mtree -f" to tell if an MR is registered in KVM */ 126 int nr_as; 127 struct KVMAs { 128 KVMMemoryListener *ml; 129 AddressSpace *as; 130 } *as; 131 }; 132 133 KVMState *kvm_state; 134 bool kvm_kernel_irqchip; 135 bool kvm_split_irqchip; 136 bool kvm_async_interrupts_allowed; 137 bool kvm_halt_in_kernel_allowed; 138 bool kvm_eventfds_allowed; 139 bool kvm_irqfds_allowed; 140 bool kvm_resamplefds_allowed; 141 bool kvm_msi_via_irqfd_allowed; 142 bool kvm_gsi_routing_allowed; 143 bool kvm_gsi_direct_mapping; 144 bool kvm_allowed; 145 bool kvm_readonly_mem_allowed; 146 bool kvm_vm_attributes_allowed; 147 bool kvm_direct_msi_allowed; 148 bool kvm_ioeventfd_any_length_allowed; 149 bool kvm_msi_use_devid; 150 static bool kvm_immediate_exit; 151 static hwaddr kvm_max_slot_size = ~0; 152 153 static const KVMCapabilityInfo kvm_required_capabilites[] = { 154 KVM_CAP_INFO(USER_MEMORY), 155 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 156 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 157 KVM_CAP_LAST_INFO 158 }; 159 160 static NotifierList kvm_irqchip_change_notifiers = 161 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 162 163 struct KVMResampleFd { 164 int gsi; 165 EventNotifier *resample_event; 166 QLIST_ENTRY(KVMResampleFd) node; 167 }; 168 typedef struct KVMResampleFd KVMResampleFd; 169 170 /* 171 * Only used with split irqchip where we need to do the resample fd 172 * kick for the kernel from userspace. 173 */ 174 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 175 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 176 177 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock) 178 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock) 179 180 static inline void kvm_resample_fd_remove(int gsi) 181 { 182 KVMResampleFd *rfd; 183 184 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 185 if (rfd->gsi == gsi) { 186 QLIST_REMOVE(rfd, node); 187 g_free(rfd); 188 break; 189 } 190 } 191 } 192 193 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 194 { 195 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 196 197 rfd->gsi = gsi; 198 rfd->resample_event = event; 199 200 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 201 } 202 203 void kvm_resample_fd_notify(int gsi) 204 { 205 KVMResampleFd *rfd; 206 207 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 208 if (rfd->gsi == gsi) { 209 event_notifier_set(rfd->resample_event); 210 trace_kvm_resample_fd_notify(gsi); 211 return; 212 } 213 } 214 } 215 216 int kvm_get_max_memslots(void) 217 { 218 KVMState *s = KVM_STATE(current_accel()); 219 220 return s->nr_slots; 221 } 222 223 /* Called with KVMMemoryListener.slots_lock held */ 224 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 225 { 226 KVMState *s = kvm_state; 227 int i; 228 229 for (i = 0; i < s->nr_slots; i++) { 230 if (kml->slots[i].memory_size == 0) { 231 return &kml->slots[i]; 232 } 233 } 234 235 return NULL; 236 } 237 238 bool kvm_has_free_slot(MachineState *ms) 239 { 240 KVMState *s = KVM_STATE(ms->accelerator); 241 bool result; 242 KVMMemoryListener *kml = &s->memory_listener; 243 244 kvm_slots_lock(kml); 245 result = !!kvm_get_free_slot(kml); 246 kvm_slots_unlock(kml); 247 248 return result; 249 } 250 251 /* Called with KVMMemoryListener.slots_lock held */ 252 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 253 { 254 KVMSlot *slot = kvm_get_free_slot(kml); 255 256 if (slot) { 257 return slot; 258 } 259 260 fprintf(stderr, "%s: no free slot available\n", __func__); 261 abort(); 262 } 263 264 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 265 hwaddr start_addr, 266 hwaddr size) 267 { 268 KVMState *s = kvm_state; 269 int i; 270 271 for (i = 0; i < s->nr_slots; i++) { 272 KVMSlot *mem = &kml->slots[i]; 273 274 if (start_addr == mem->start_addr && size == mem->memory_size) { 275 return mem; 276 } 277 } 278 279 return NULL; 280 } 281 282 /* 283 * Calculate and align the start address and the size of the section. 284 * Return the size. If the size is 0, the aligned section is empty. 285 */ 286 static hwaddr kvm_align_section(MemoryRegionSection *section, 287 hwaddr *start) 288 { 289 hwaddr size = int128_get64(section->size); 290 hwaddr delta, aligned; 291 292 /* kvm works in page size chunks, but the function may be called 293 with sub-page size and unaligned start address. Pad the start 294 address to next and truncate size to previous page boundary. */ 295 aligned = ROUND_UP(section->offset_within_address_space, 296 qemu_real_host_page_size); 297 delta = aligned - section->offset_within_address_space; 298 *start = aligned; 299 if (delta > size) { 300 return 0; 301 } 302 303 return (size - delta) & qemu_real_host_page_mask; 304 } 305 306 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 307 hwaddr *phys_addr) 308 { 309 KVMMemoryListener *kml = &s->memory_listener; 310 int i, ret = 0; 311 312 kvm_slots_lock(kml); 313 for (i = 0; i < s->nr_slots; i++) { 314 KVMSlot *mem = &kml->slots[i]; 315 316 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 317 *phys_addr = mem->start_addr + (ram - mem->ram); 318 ret = 1; 319 break; 320 } 321 } 322 kvm_slots_unlock(kml); 323 324 return ret; 325 } 326 327 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 328 { 329 KVMState *s = kvm_state; 330 struct kvm_userspace_memory_region mem; 331 int ret; 332 333 mem.slot = slot->slot | (kml->as_id << 16); 334 mem.guest_phys_addr = slot->start_addr; 335 mem.userspace_addr = (unsigned long)slot->ram; 336 mem.flags = slot->flags; 337 338 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 339 /* Set the slot size to 0 before setting the slot to the desired 340 * value. This is needed based on KVM commit 75d61fbc. */ 341 mem.memory_size = 0; 342 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 343 if (ret < 0) { 344 goto err; 345 } 346 } 347 mem.memory_size = slot->memory_size; 348 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 349 slot->old_flags = mem.flags; 350 err: 351 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 352 mem.memory_size, mem.userspace_addr, ret); 353 if (ret < 0) { 354 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 355 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 356 __func__, mem.slot, slot->start_addr, 357 (uint64_t)mem.memory_size, strerror(errno)); 358 } 359 return ret; 360 } 361 362 static int do_kvm_destroy_vcpu(CPUState *cpu) 363 { 364 KVMState *s = kvm_state; 365 long mmap_size; 366 struct KVMParkedVcpu *vcpu = NULL; 367 int ret = 0; 368 369 DPRINTF("kvm_destroy_vcpu\n"); 370 371 ret = kvm_arch_destroy_vcpu(cpu); 372 if (ret < 0) { 373 goto err; 374 } 375 376 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 377 if (mmap_size < 0) { 378 ret = mmap_size; 379 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 380 goto err; 381 } 382 383 ret = munmap(cpu->kvm_run, mmap_size); 384 if (ret < 0) { 385 goto err; 386 } 387 388 vcpu = g_malloc0(sizeof(*vcpu)); 389 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 390 vcpu->kvm_fd = cpu->kvm_fd; 391 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 392 err: 393 return ret; 394 } 395 396 void kvm_destroy_vcpu(CPUState *cpu) 397 { 398 if (do_kvm_destroy_vcpu(cpu) < 0) { 399 error_report("kvm_destroy_vcpu failed"); 400 exit(EXIT_FAILURE); 401 } 402 } 403 404 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 405 { 406 struct KVMParkedVcpu *cpu; 407 408 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 409 if (cpu->vcpu_id == vcpu_id) { 410 int kvm_fd; 411 412 QLIST_REMOVE(cpu, node); 413 kvm_fd = cpu->kvm_fd; 414 g_free(cpu); 415 return kvm_fd; 416 } 417 } 418 419 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 420 } 421 422 int kvm_init_vcpu(CPUState *cpu, Error **errp) 423 { 424 KVMState *s = kvm_state; 425 long mmap_size; 426 int ret; 427 428 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 429 430 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 431 if (ret < 0) { 432 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 433 kvm_arch_vcpu_id(cpu)); 434 goto err; 435 } 436 437 cpu->kvm_fd = ret; 438 cpu->kvm_state = s; 439 cpu->vcpu_dirty = true; 440 441 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 442 if (mmap_size < 0) { 443 ret = mmap_size; 444 error_setg_errno(errp, -mmap_size, 445 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 446 goto err; 447 } 448 449 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 450 cpu->kvm_fd, 0); 451 if (cpu->kvm_run == MAP_FAILED) { 452 ret = -errno; 453 error_setg_errno(errp, ret, 454 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 455 kvm_arch_vcpu_id(cpu)); 456 goto err; 457 } 458 459 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 460 s->coalesced_mmio_ring = 461 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 462 } 463 464 ret = kvm_arch_init_vcpu(cpu); 465 if (ret < 0) { 466 error_setg_errno(errp, -ret, 467 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 468 kvm_arch_vcpu_id(cpu)); 469 } 470 err: 471 return ret; 472 } 473 474 /* 475 * dirty pages logging control 476 */ 477 478 static int kvm_mem_flags(MemoryRegion *mr) 479 { 480 bool readonly = mr->readonly || memory_region_is_romd(mr); 481 int flags = 0; 482 483 if (memory_region_get_dirty_log_mask(mr) != 0) { 484 flags |= KVM_MEM_LOG_DIRTY_PAGES; 485 } 486 if (readonly && kvm_readonly_mem_allowed) { 487 flags |= KVM_MEM_READONLY; 488 } 489 return flags; 490 } 491 492 /* Called with KVMMemoryListener.slots_lock held */ 493 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 494 MemoryRegion *mr) 495 { 496 mem->flags = kvm_mem_flags(mr); 497 498 /* If nothing changed effectively, no need to issue ioctl */ 499 if (mem->flags == mem->old_flags) { 500 return 0; 501 } 502 503 return kvm_set_user_memory_region(kml, mem, false); 504 } 505 506 static int kvm_section_update_flags(KVMMemoryListener *kml, 507 MemoryRegionSection *section) 508 { 509 hwaddr start_addr, size, slot_size; 510 KVMSlot *mem; 511 int ret = 0; 512 513 size = kvm_align_section(section, &start_addr); 514 if (!size) { 515 return 0; 516 } 517 518 kvm_slots_lock(kml); 519 520 while (size && !ret) { 521 slot_size = MIN(kvm_max_slot_size, size); 522 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 523 if (!mem) { 524 /* We don't have a slot if we want to trap every access. */ 525 goto out; 526 } 527 528 ret = kvm_slot_update_flags(kml, mem, section->mr); 529 start_addr += slot_size; 530 size -= slot_size; 531 } 532 533 out: 534 kvm_slots_unlock(kml); 535 return ret; 536 } 537 538 static void kvm_log_start(MemoryListener *listener, 539 MemoryRegionSection *section, 540 int old, int new) 541 { 542 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 543 int r; 544 545 if (old != 0) { 546 return; 547 } 548 549 r = kvm_section_update_flags(kml, section); 550 if (r < 0) { 551 abort(); 552 } 553 } 554 555 static void kvm_log_stop(MemoryListener *listener, 556 MemoryRegionSection *section, 557 int old, int new) 558 { 559 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 560 int r; 561 562 if (new != 0) { 563 return; 564 } 565 566 r = kvm_section_update_flags(kml, section); 567 if (r < 0) { 568 abort(); 569 } 570 } 571 572 /* get kvm's dirty pages bitmap and update qemu's */ 573 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, 574 unsigned long *bitmap) 575 { 576 ram_addr_t start = section->offset_within_region + 577 memory_region_get_ram_addr(section->mr); 578 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size; 579 580 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); 581 return 0; 582 } 583 584 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 585 586 /* Allocate the dirty bitmap for a slot */ 587 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem) 588 { 589 /* 590 * XXX bad kernel interface alert 591 * For dirty bitmap, kernel allocates array of size aligned to 592 * bits-per-long. But for case when the kernel is 64bits and 593 * the userspace is 32bits, userspace can't align to the same 594 * bits-per-long, since sizeof(long) is different between kernel 595 * and user space. This way, userspace will provide buffer which 596 * may be 4 bytes less than the kernel will use, resulting in 597 * userspace memory corruption (which is not detectable by valgrind 598 * too, in most cases). 599 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 600 * a hope that sizeof(long) won't become >8 any time soon. 601 */ 602 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), 603 /*HOST_LONG_BITS*/ 64) / 8; 604 mem->dirty_bmap = g_malloc0(bitmap_size); 605 } 606 607 /** 608 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 609 * 610 * This function will first try to fetch dirty bitmap from the kernel, 611 * and then updates qemu's dirty bitmap. 612 * 613 * NOTE: caller must be with kml->slots_lock held. 614 * 615 * @kml: the KVM memory listener object 616 * @section: the memory section to sync the dirty bitmap with 617 */ 618 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 619 MemoryRegionSection *section) 620 { 621 KVMState *s = kvm_state; 622 struct kvm_dirty_log d = {}; 623 KVMSlot *mem; 624 hwaddr start_addr, size; 625 hwaddr slot_size, slot_offset = 0; 626 int ret = 0; 627 628 size = kvm_align_section(section, &start_addr); 629 while (size) { 630 MemoryRegionSection subsection = *section; 631 632 slot_size = MIN(kvm_max_slot_size, size); 633 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 634 if (!mem) { 635 /* We don't have a slot if we want to trap every access. */ 636 goto out; 637 } 638 639 if (!mem->dirty_bmap) { 640 /* Allocate on the first log_sync, once and for all */ 641 kvm_memslot_init_dirty_bitmap(mem); 642 } 643 644 d.dirty_bitmap = mem->dirty_bmap; 645 d.slot = mem->slot | (kml->as_id << 16); 646 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 647 if (ret == -ENOENT) { 648 /* kernel does not have dirty bitmap in this slot */ 649 ret = 0; 650 } else if (ret < 0) { 651 error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno); 652 goto out; 653 } else { 654 subsection.offset_within_region += slot_offset; 655 subsection.size = int128_make64(slot_size); 656 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap); 657 } 658 659 slot_offset += slot_size; 660 start_addr += slot_size; 661 size -= slot_size; 662 } 663 out: 664 return ret; 665 } 666 667 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 668 #define KVM_CLEAR_LOG_SHIFT 6 669 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 670 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 671 672 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 673 uint64_t size) 674 { 675 KVMState *s = kvm_state; 676 uint64_t end, bmap_start, start_delta, bmap_npages; 677 struct kvm_clear_dirty_log d; 678 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 679 int ret; 680 681 /* 682 * We need to extend either the start or the size or both to 683 * satisfy the KVM interface requirement. Firstly, do the start 684 * page alignment on 64 host pages 685 */ 686 bmap_start = start & KVM_CLEAR_LOG_MASK; 687 start_delta = start - bmap_start; 688 bmap_start /= psize; 689 690 /* 691 * The kernel interface has restriction on the size too, that either: 692 * 693 * (1) the size is 64 host pages aligned (just like the start), or 694 * (2) the size fills up until the end of the KVM memslot. 695 */ 696 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 697 << KVM_CLEAR_LOG_SHIFT; 698 end = mem->memory_size / psize; 699 if (bmap_npages > end - bmap_start) { 700 bmap_npages = end - bmap_start; 701 } 702 start_delta /= psize; 703 704 /* 705 * Prepare the bitmap to clear dirty bits. Here we must guarantee 706 * that we won't clear any unknown dirty bits otherwise we might 707 * accidentally clear some set bits which are not yet synced from 708 * the kernel into QEMU's bitmap, then we'll lose track of the 709 * guest modifications upon those pages (which can directly lead 710 * to guest data loss or panic after migration). 711 * 712 * Layout of the KVMSlot.dirty_bmap: 713 * 714 * |<-------- bmap_npages -----------..>| 715 * [1] 716 * start_delta size 717 * |----------------|-------------|------------------|------------| 718 * ^ ^ ^ ^ 719 * | | | | 720 * start bmap_start (start) end 721 * of memslot of memslot 722 * 723 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 724 */ 725 726 assert(bmap_start % BITS_PER_LONG == 0); 727 /* We should never do log_clear before log_sync */ 728 assert(mem->dirty_bmap); 729 if (start_delta || bmap_npages - size / psize) { 730 /* Slow path - we need to manipulate a temp bitmap */ 731 bmap_clear = bitmap_new(bmap_npages); 732 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 733 bmap_start, start_delta + size / psize); 734 /* 735 * We need to fill the holes at start because that was not 736 * specified by the caller and we extended the bitmap only for 737 * 64 pages alignment 738 */ 739 bitmap_clear(bmap_clear, 0, start_delta); 740 d.dirty_bitmap = bmap_clear; 741 } else { 742 /* 743 * Fast path - both start and size align well with BITS_PER_LONG 744 * (or the end of memory slot) 745 */ 746 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 747 } 748 749 d.first_page = bmap_start; 750 /* It should never overflow. If it happens, say something */ 751 assert(bmap_npages <= UINT32_MAX); 752 d.num_pages = bmap_npages; 753 d.slot = mem->slot | (as_id << 16); 754 755 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 756 if (ret < 0 && ret != -ENOENT) { 757 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 758 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 759 __func__, d.slot, (uint64_t)d.first_page, 760 (uint32_t)d.num_pages, ret); 761 } else { 762 ret = 0; 763 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 764 } 765 766 /* 767 * After we have updated the remote dirty bitmap, we update the 768 * cached bitmap as well for the memslot, then if another user 769 * clears the same region we know we shouldn't clear it again on 770 * the remote otherwise it's data loss as well. 771 */ 772 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 773 size / psize); 774 /* This handles the NULL case well */ 775 g_free(bmap_clear); 776 return ret; 777 } 778 779 780 /** 781 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 782 * 783 * NOTE: this will be a no-op if we haven't enabled manual dirty log 784 * protection in the host kernel because in that case this operation 785 * will be done within log_sync(). 786 * 787 * @kml: the kvm memory listener 788 * @section: the memory range to clear dirty bitmap 789 */ 790 static int kvm_physical_log_clear(KVMMemoryListener *kml, 791 MemoryRegionSection *section) 792 { 793 KVMState *s = kvm_state; 794 uint64_t start, size, offset, count; 795 KVMSlot *mem; 796 int ret = 0, i; 797 798 if (!s->manual_dirty_log_protect) { 799 /* No need to do explicit clear */ 800 return ret; 801 } 802 803 start = section->offset_within_address_space; 804 size = int128_get64(section->size); 805 806 if (!size) { 807 /* Nothing more we can do... */ 808 return ret; 809 } 810 811 kvm_slots_lock(kml); 812 813 for (i = 0; i < s->nr_slots; i++) { 814 mem = &kml->slots[i]; 815 /* Discard slots that are empty or do not overlap the section */ 816 if (!mem->memory_size || 817 mem->start_addr > start + size - 1 || 818 start > mem->start_addr + mem->memory_size - 1) { 819 continue; 820 } 821 822 if (start >= mem->start_addr) { 823 /* The slot starts before section or is aligned to it. */ 824 offset = start - mem->start_addr; 825 count = MIN(mem->memory_size - offset, size); 826 } else { 827 /* The slot starts after section. */ 828 offset = 0; 829 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 830 } 831 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 832 if (ret < 0) { 833 break; 834 } 835 } 836 837 kvm_slots_unlock(kml); 838 839 return ret; 840 } 841 842 static void kvm_coalesce_mmio_region(MemoryListener *listener, 843 MemoryRegionSection *secion, 844 hwaddr start, hwaddr size) 845 { 846 KVMState *s = kvm_state; 847 848 if (s->coalesced_mmio) { 849 struct kvm_coalesced_mmio_zone zone; 850 851 zone.addr = start; 852 zone.size = size; 853 zone.pad = 0; 854 855 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 856 } 857 } 858 859 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 860 MemoryRegionSection *secion, 861 hwaddr start, hwaddr size) 862 { 863 KVMState *s = kvm_state; 864 865 if (s->coalesced_mmio) { 866 struct kvm_coalesced_mmio_zone zone; 867 868 zone.addr = start; 869 zone.size = size; 870 zone.pad = 0; 871 872 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 873 } 874 } 875 876 static void kvm_coalesce_pio_add(MemoryListener *listener, 877 MemoryRegionSection *section, 878 hwaddr start, hwaddr size) 879 { 880 KVMState *s = kvm_state; 881 882 if (s->coalesced_pio) { 883 struct kvm_coalesced_mmio_zone zone; 884 885 zone.addr = start; 886 zone.size = size; 887 zone.pio = 1; 888 889 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 890 } 891 } 892 893 static void kvm_coalesce_pio_del(MemoryListener *listener, 894 MemoryRegionSection *section, 895 hwaddr start, hwaddr size) 896 { 897 KVMState *s = kvm_state; 898 899 if (s->coalesced_pio) { 900 struct kvm_coalesced_mmio_zone zone; 901 902 zone.addr = start; 903 zone.size = size; 904 zone.pio = 1; 905 906 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 907 } 908 } 909 910 static MemoryListener kvm_coalesced_pio_listener = { 911 .coalesced_io_add = kvm_coalesce_pio_add, 912 .coalesced_io_del = kvm_coalesce_pio_del, 913 }; 914 915 int kvm_check_extension(KVMState *s, unsigned int extension) 916 { 917 int ret; 918 919 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 920 if (ret < 0) { 921 ret = 0; 922 } 923 924 return ret; 925 } 926 927 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 928 { 929 int ret; 930 931 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 932 if (ret < 0) { 933 /* VM wide version not implemented, use global one instead */ 934 ret = kvm_check_extension(s, extension); 935 } 936 937 return ret; 938 } 939 940 typedef struct HWPoisonPage { 941 ram_addr_t ram_addr; 942 QLIST_ENTRY(HWPoisonPage) list; 943 } HWPoisonPage; 944 945 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 946 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 947 948 static void kvm_unpoison_all(void *param) 949 { 950 HWPoisonPage *page, *next_page; 951 952 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 953 QLIST_REMOVE(page, list); 954 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 955 g_free(page); 956 } 957 } 958 959 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 960 { 961 HWPoisonPage *page; 962 963 QLIST_FOREACH(page, &hwpoison_page_list, list) { 964 if (page->ram_addr == ram_addr) { 965 return; 966 } 967 } 968 page = g_new(HWPoisonPage, 1); 969 page->ram_addr = ram_addr; 970 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 971 } 972 973 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 974 { 975 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 976 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 977 * endianness, but the memory core hands them in target endianness. 978 * For example, PPC is always treated as big-endian even if running 979 * on KVM and on PPC64LE. Correct here. 980 */ 981 switch (size) { 982 case 2: 983 val = bswap16(val); 984 break; 985 case 4: 986 val = bswap32(val); 987 break; 988 } 989 #endif 990 return val; 991 } 992 993 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 994 bool assign, uint32_t size, bool datamatch) 995 { 996 int ret; 997 struct kvm_ioeventfd iofd = { 998 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 999 .addr = addr, 1000 .len = size, 1001 .flags = 0, 1002 .fd = fd, 1003 }; 1004 1005 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1006 datamatch); 1007 if (!kvm_enabled()) { 1008 return -ENOSYS; 1009 } 1010 1011 if (datamatch) { 1012 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1013 } 1014 if (!assign) { 1015 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1016 } 1017 1018 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1019 1020 if (ret < 0) { 1021 return -errno; 1022 } 1023 1024 return 0; 1025 } 1026 1027 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1028 bool assign, uint32_t size, bool datamatch) 1029 { 1030 struct kvm_ioeventfd kick = { 1031 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1032 .addr = addr, 1033 .flags = KVM_IOEVENTFD_FLAG_PIO, 1034 .len = size, 1035 .fd = fd, 1036 }; 1037 int r; 1038 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1039 if (!kvm_enabled()) { 1040 return -ENOSYS; 1041 } 1042 if (datamatch) { 1043 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1044 } 1045 if (!assign) { 1046 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1047 } 1048 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1049 if (r < 0) { 1050 return r; 1051 } 1052 return 0; 1053 } 1054 1055 1056 static int kvm_check_many_ioeventfds(void) 1057 { 1058 /* Userspace can use ioeventfd for io notification. This requires a host 1059 * that supports eventfd(2) and an I/O thread; since eventfd does not 1060 * support SIGIO it cannot interrupt the vcpu. 1061 * 1062 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1063 * can avoid creating too many ioeventfds. 1064 */ 1065 #if defined(CONFIG_EVENTFD) 1066 int ioeventfds[7]; 1067 int i, ret = 0; 1068 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1069 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1070 if (ioeventfds[i] < 0) { 1071 break; 1072 } 1073 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1074 if (ret < 0) { 1075 close(ioeventfds[i]); 1076 break; 1077 } 1078 } 1079 1080 /* Decide whether many devices are supported or not */ 1081 ret = i == ARRAY_SIZE(ioeventfds); 1082 1083 while (i-- > 0) { 1084 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1085 close(ioeventfds[i]); 1086 } 1087 return ret; 1088 #else 1089 return 0; 1090 #endif 1091 } 1092 1093 static const KVMCapabilityInfo * 1094 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1095 { 1096 while (list->name) { 1097 if (!kvm_check_extension(s, list->value)) { 1098 return list; 1099 } 1100 list++; 1101 } 1102 return NULL; 1103 } 1104 1105 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1106 { 1107 g_assert( 1108 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1109 ); 1110 kvm_max_slot_size = max_slot_size; 1111 } 1112 1113 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1114 MemoryRegionSection *section, bool add) 1115 { 1116 KVMSlot *mem; 1117 int err; 1118 MemoryRegion *mr = section->mr; 1119 bool writeable = !mr->readonly && !mr->rom_device; 1120 hwaddr start_addr, size, slot_size; 1121 void *ram; 1122 1123 if (!memory_region_is_ram(mr)) { 1124 if (writeable || !kvm_readonly_mem_allowed) { 1125 return; 1126 } else if (!mr->romd_mode) { 1127 /* If the memory device is not in romd_mode, then we actually want 1128 * to remove the kvm memory slot so all accesses will trap. */ 1129 add = false; 1130 } 1131 } 1132 1133 size = kvm_align_section(section, &start_addr); 1134 if (!size) { 1135 return; 1136 } 1137 1138 /* use aligned delta to align the ram address */ 1139 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + 1140 (start_addr - section->offset_within_address_space); 1141 1142 kvm_slots_lock(kml); 1143 1144 if (!add) { 1145 do { 1146 slot_size = MIN(kvm_max_slot_size, size); 1147 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1148 if (!mem) { 1149 goto out; 1150 } 1151 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1152 kvm_physical_sync_dirty_bitmap(kml, section); 1153 } 1154 1155 /* unregister the slot */ 1156 g_free(mem->dirty_bmap); 1157 mem->dirty_bmap = NULL; 1158 mem->memory_size = 0; 1159 mem->flags = 0; 1160 err = kvm_set_user_memory_region(kml, mem, false); 1161 if (err) { 1162 fprintf(stderr, "%s: error unregistering slot: %s\n", 1163 __func__, strerror(-err)); 1164 abort(); 1165 } 1166 start_addr += slot_size; 1167 size -= slot_size; 1168 } while (size); 1169 goto out; 1170 } 1171 1172 /* register the new slot */ 1173 do { 1174 slot_size = MIN(kvm_max_slot_size, size); 1175 mem = kvm_alloc_slot(kml); 1176 mem->memory_size = slot_size; 1177 mem->start_addr = start_addr; 1178 mem->ram = ram; 1179 mem->flags = kvm_mem_flags(mr); 1180 1181 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1182 /* 1183 * Reallocate the bmap; it means it doesn't disappear in 1184 * middle of a migrate. 1185 */ 1186 kvm_memslot_init_dirty_bitmap(mem); 1187 } 1188 err = kvm_set_user_memory_region(kml, mem, true); 1189 if (err) { 1190 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1191 strerror(-err)); 1192 abort(); 1193 } 1194 start_addr += slot_size; 1195 ram += slot_size; 1196 size -= slot_size; 1197 } while (size); 1198 1199 out: 1200 kvm_slots_unlock(kml); 1201 } 1202 1203 static void kvm_region_add(MemoryListener *listener, 1204 MemoryRegionSection *section) 1205 { 1206 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1207 1208 memory_region_ref(section->mr); 1209 kvm_set_phys_mem(kml, section, true); 1210 } 1211 1212 static void kvm_region_del(MemoryListener *listener, 1213 MemoryRegionSection *section) 1214 { 1215 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1216 1217 kvm_set_phys_mem(kml, section, false); 1218 memory_region_unref(section->mr); 1219 } 1220 1221 static void kvm_log_sync(MemoryListener *listener, 1222 MemoryRegionSection *section) 1223 { 1224 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1225 int r; 1226 1227 kvm_slots_lock(kml); 1228 r = kvm_physical_sync_dirty_bitmap(kml, section); 1229 kvm_slots_unlock(kml); 1230 if (r < 0) { 1231 abort(); 1232 } 1233 } 1234 1235 static void kvm_log_clear(MemoryListener *listener, 1236 MemoryRegionSection *section) 1237 { 1238 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1239 int r; 1240 1241 r = kvm_physical_log_clear(kml, section); 1242 if (r < 0) { 1243 error_report_once("%s: kvm log clear failed: mr=%s " 1244 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1245 section->mr->name, section->offset_within_region, 1246 int128_get64(section->size)); 1247 abort(); 1248 } 1249 } 1250 1251 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1252 MemoryRegionSection *section, 1253 bool match_data, uint64_t data, 1254 EventNotifier *e) 1255 { 1256 int fd = event_notifier_get_fd(e); 1257 int r; 1258 1259 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1260 data, true, int128_get64(section->size), 1261 match_data); 1262 if (r < 0) { 1263 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1264 __func__, strerror(-r), -r); 1265 abort(); 1266 } 1267 } 1268 1269 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1270 MemoryRegionSection *section, 1271 bool match_data, uint64_t data, 1272 EventNotifier *e) 1273 { 1274 int fd = event_notifier_get_fd(e); 1275 int r; 1276 1277 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1278 data, false, int128_get64(section->size), 1279 match_data); 1280 if (r < 0) { 1281 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1282 __func__, strerror(-r), -r); 1283 abort(); 1284 } 1285 } 1286 1287 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1288 MemoryRegionSection *section, 1289 bool match_data, uint64_t data, 1290 EventNotifier *e) 1291 { 1292 int fd = event_notifier_get_fd(e); 1293 int r; 1294 1295 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1296 data, true, int128_get64(section->size), 1297 match_data); 1298 if (r < 0) { 1299 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1300 __func__, strerror(-r), -r); 1301 abort(); 1302 } 1303 } 1304 1305 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1306 MemoryRegionSection *section, 1307 bool match_data, uint64_t data, 1308 EventNotifier *e) 1309 1310 { 1311 int fd = event_notifier_get_fd(e); 1312 int r; 1313 1314 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1315 data, false, int128_get64(section->size), 1316 match_data); 1317 if (r < 0) { 1318 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1319 __func__, strerror(-r), -r); 1320 abort(); 1321 } 1322 } 1323 1324 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1325 AddressSpace *as, int as_id) 1326 { 1327 int i; 1328 1329 qemu_mutex_init(&kml->slots_lock); 1330 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1331 kml->as_id = as_id; 1332 1333 for (i = 0; i < s->nr_slots; i++) { 1334 kml->slots[i].slot = i; 1335 } 1336 1337 kml->listener.region_add = kvm_region_add; 1338 kml->listener.region_del = kvm_region_del; 1339 kml->listener.log_start = kvm_log_start; 1340 kml->listener.log_stop = kvm_log_stop; 1341 kml->listener.log_sync = kvm_log_sync; 1342 kml->listener.log_clear = kvm_log_clear; 1343 kml->listener.priority = 10; 1344 1345 memory_listener_register(&kml->listener, as); 1346 1347 for (i = 0; i < s->nr_as; ++i) { 1348 if (!s->as[i].as) { 1349 s->as[i].as = as; 1350 s->as[i].ml = kml; 1351 break; 1352 } 1353 } 1354 } 1355 1356 static MemoryListener kvm_io_listener = { 1357 .eventfd_add = kvm_io_ioeventfd_add, 1358 .eventfd_del = kvm_io_ioeventfd_del, 1359 .priority = 10, 1360 }; 1361 1362 int kvm_set_irq(KVMState *s, int irq, int level) 1363 { 1364 struct kvm_irq_level event; 1365 int ret; 1366 1367 assert(kvm_async_interrupts_enabled()); 1368 1369 event.level = level; 1370 event.irq = irq; 1371 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1372 if (ret < 0) { 1373 perror("kvm_set_irq"); 1374 abort(); 1375 } 1376 1377 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1378 } 1379 1380 #ifdef KVM_CAP_IRQ_ROUTING 1381 typedef struct KVMMSIRoute { 1382 struct kvm_irq_routing_entry kroute; 1383 QTAILQ_ENTRY(KVMMSIRoute) entry; 1384 } KVMMSIRoute; 1385 1386 static void set_gsi(KVMState *s, unsigned int gsi) 1387 { 1388 set_bit(gsi, s->used_gsi_bitmap); 1389 } 1390 1391 static void clear_gsi(KVMState *s, unsigned int gsi) 1392 { 1393 clear_bit(gsi, s->used_gsi_bitmap); 1394 } 1395 1396 void kvm_init_irq_routing(KVMState *s) 1397 { 1398 int gsi_count, i; 1399 1400 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1401 if (gsi_count > 0) { 1402 /* Round up so we can search ints using ffs */ 1403 s->used_gsi_bitmap = bitmap_new(gsi_count); 1404 s->gsi_count = gsi_count; 1405 } 1406 1407 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1408 s->nr_allocated_irq_routes = 0; 1409 1410 if (!kvm_direct_msi_allowed) { 1411 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1412 QTAILQ_INIT(&s->msi_hashtab[i]); 1413 } 1414 } 1415 1416 kvm_arch_init_irq_routing(s); 1417 } 1418 1419 void kvm_irqchip_commit_routes(KVMState *s) 1420 { 1421 int ret; 1422 1423 if (kvm_gsi_direct_mapping()) { 1424 return; 1425 } 1426 1427 if (!kvm_gsi_routing_enabled()) { 1428 return; 1429 } 1430 1431 s->irq_routes->flags = 0; 1432 trace_kvm_irqchip_commit_routes(); 1433 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1434 assert(ret == 0); 1435 } 1436 1437 static void kvm_add_routing_entry(KVMState *s, 1438 struct kvm_irq_routing_entry *entry) 1439 { 1440 struct kvm_irq_routing_entry *new; 1441 int n, size; 1442 1443 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1444 n = s->nr_allocated_irq_routes * 2; 1445 if (n < 64) { 1446 n = 64; 1447 } 1448 size = sizeof(struct kvm_irq_routing); 1449 size += n * sizeof(*new); 1450 s->irq_routes = g_realloc(s->irq_routes, size); 1451 s->nr_allocated_irq_routes = n; 1452 } 1453 n = s->irq_routes->nr++; 1454 new = &s->irq_routes->entries[n]; 1455 1456 *new = *entry; 1457 1458 set_gsi(s, entry->gsi); 1459 } 1460 1461 static int kvm_update_routing_entry(KVMState *s, 1462 struct kvm_irq_routing_entry *new_entry) 1463 { 1464 struct kvm_irq_routing_entry *entry; 1465 int n; 1466 1467 for (n = 0; n < s->irq_routes->nr; n++) { 1468 entry = &s->irq_routes->entries[n]; 1469 if (entry->gsi != new_entry->gsi) { 1470 continue; 1471 } 1472 1473 if(!memcmp(entry, new_entry, sizeof *entry)) { 1474 return 0; 1475 } 1476 1477 *entry = *new_entry; 1478 1479 return 0; 1480 } 1481 1482 return -ESRCH; 1483 } 1484 1485 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1486 { 1487 struct kvm_irq_routing_entry e = {}; 1488 1489 assert(pin < s->gsi_count); 1490 1491 e.gsi = irq; 1492 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1493 e.flags = 0; 1494 e.u.irqchip.irqchip = irqchip; 1495 e.u.irqchip.pin = pin; 1496 kvm_add_routing_entry(s, &e); 1497 } 1498 1499 void kvm_irqchip_release_virq(KVMState *s, int virq) 1500 { 1501 struct kvm_irq_routing_entry *e; 1502 int i; 1503 1504 if (kvm_gsi_direct_mapping()) { 1505 return; 1506 } 1507 1508 for (i = 0; i < s->irq_routes->nr; i++) { 1509 e = &s->irq_routes->entries[i]; 1510 if (e->gsi == virq) { 1511 s->irq_routes->nr--; 1512 *e = s->irq_routes->entries[s->irq_routes->nr]; 1513 } 1514 } 1515 clear_gsi(s, virq); 1516 kvm_arch_release_virq_post(virq); 1517 trace_kvm_irqchip_release_virq(virq); 1518 } 1519 1520 void kvm_irqchip_add_change_notifier(Notifier *n) 1521 { 1522 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1523 } 1524 1525 void kvm_irqchip_remove_change_notifier(Notifier *n) 1526 { 1527 notifier_remove(n); 1528 } 1529 1530 void kvm_irqchip_change_notify(void) 1531 { 1532 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1533 } 1534 1535 static unsigned int kvm_hash_msi(uint32_t data) 1536 { 1537 /* This is optimized for IA32 MSI layout. However, no other arch shall 1538 * repeat the mistake of not providing a direct MSI injection API. */ 1539 return data & 0xff; 1540 } 1541 1542 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1543 { 1544 KVMMSIRoute *route, *next; 1545 unsigned int hash; 1546 1547 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1548 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1549 kvm_irqchip_release_virq(s, route->kroute.gsi); 1550 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1551 g_free(route); 1552 } 1553 } 1554 } 1555 1556 static int kvm_irqchip_get_virq(KVMState *s) 1557 { 1558 int next_virq; 1559 1560 /* 1561 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1562 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1563 * number can succeed even though a new route entry cannot be added. 1564 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1565 */ 1566 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1567 kvm_flush_dynamic_msi_routes(s); 1568 } 1569 1570 /* Return the lowest unused GSI in the bitmap */ 1571 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1572 if (next_virq >= s->gsi_count) { 1573 return -ENOSPC; 1574 } else { 1575 return next_virq; 1576 } 1577 } 1578 1579 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1580 { 1581 unsigned int hash = kvm_hash_msi(msg.data); 1582 KVMMSIRoute *route; 1583 1584 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1585 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1586 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1587 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1588 return route; 1589 } 1590 } 1591 return NULL; 1592 } 1593 1594 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1595 { 1596 struct kvm_msi msi; 1597 KVMMSIRoute *route; 1598 1599 if (kvm_direct_msi_allowed) { 1600 msi.address_lo = (uint32_t)msg.address; 1601 msi.address_hi = msg.address >> 32; 1602 msi.data = le32_to_cpu(msg.data); 1603 msi.flags = 0; 1604 memset(msi.pad, 0, sizeof(msi.pad)); 1605 1606 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1607 } 1608 1609 route = kvm_lookup_msi_route(s, msg); 1610 if (!route) { 1611 int virq; 1612 1613 virq = kvm_irqchip_get_virq(s); 1614 if (virq < 0) { 1615 return virq; 1616 } 1617 1618 route = g_malloc0(sizeof(KVMMSIRoute)); 1619 route->kroute.gsi = virq; 1620 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1621 route->kroute.flags = 0; 1622 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1623 route->kroute.u.msi.address_hi = msg.address >> 32; 1624 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1625 1626 kvm_add_routing_entry(s, &route->kroute); 1627 kvm_irqchip_commit_routes(s); 1628 1629 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1630 entry); 1631 } 1632 1633 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1634 1635 return kvm_set_irq(s, route->kroute.gsi, 1); 1636 } 1637 1638 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1639 { 1640 struct kvm_irq_routing_entry kroute = {}; 1641 int virq; 1642 MSIMessage msg = {0, 0}; 1643 1644 if (pci_available && dev) { 1645 msg = pci_get_msi_message(dev, vector); 1646 } 1647 1648 if (kvm_gsi_direct_mapping()) { 1649 return kvm_arch_msi_data_to_gsi(msg.data); 1650 } 1651 1652 if (!kvm_gsi_routing_enabled()) { 1653 return -ENOSYS; 1654 } 1655 1656 virq = kvm_irqchip_get_virq(s); 1657 if (virq < 0) { 1658 return virq; 1659 } 1660 1661 kroute.gsi = virq; 1662 kroute.type = KVM_IRQ_ROUTING_MSI; 1663 kroute.flags = 0; 1664 kroute.u.msi.address_lo = (uint32_t)msg.address; 1665 kroute.u.msi.address_hi = msg.address >> 32; 1666 kroute.u.msi.data = le32_to_cpu(msg.data); 1667 if (pci_available && kvm_msi_devid_required()) { 1668 kroute.flags = KVM_MSI_VALID_DEVID; 1669 kroute.u.msi.devid = pci_requester_id(dev); 1670 } 1671 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1672 kvm_irqchip_release_virq(s, virq); 1673 return -EINVAL; 1674 } 1675 1676 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 1677 vector, virq); 1678 1679 kvm_add_routing_entry(s, &kroute); 1680 kvm_arch_add_msi_route_post(&kroute, vector, dev); 1681 kvm_irqchip_commit_routes(s); 1682 1683 return virq; 1684 } 1685 1686 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 1687 PCIDevice *dev) 1688 { 1689 struct kvm_irq_routing_entry kroute = {}; 1690 1691 if (kvm_gsi_direct_mapping()) { 1692 return 0; 1693 } 1694 1695 if (!kvm_irqchip_in_kernel()) { 1696 return -ENOSYS; 1697 } 1698 1699 kroute.gsi = virq; 1700 kroute.type = KVM_IRQ_ROUTING_MSI; 1701 kroute.flags = 0; 1702 kroute.u.msi.address_lo = (uint32_t)msg.address; 1703 kroute.u.msi.address_hi = msg.address >> 32; 1704 kroute.u.msi.data = le32_to_cpu(msg.data); 1705 if (pci_available && kvm_msi_devid_required()) { 1706 kroute.flags = KVM_MSI_VALID_DEVID; 1707 kroute.u.msi.devid = pci_requester_id(dev); 1708 } 1709 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1710 return -EINVAL; 1711 } 1712 1713 trace_kvm_irqchip_update_msi_route(virq); 1714 1715 return kvm_update_routing_entry(s, &kroute); 1716 } 1717 1718 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1719 EventNotifier *resample, int virq, 1720 bool assign) 1721 { 1722 int fd = event_notifier_get_fd(event); 1723 int rfd = resample ? event_notifier_get_fd(resample) : -1; 1724 1725 struct kvm_irqfd irqfd = { 1726 .fd = fd, 1727 .gsi = virq, 1728 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 1729 }; 1730 1731 if (rfd != -1) { 1732 assert(assign); 1733 if (kvm_irqchip_is_split()) { 1734 /* 1735 * When the slow irqchip (e.g. IOAPIC) is in the 1736 * userspace, KVM kernel resamplefd will not work because 1737 * the EOI of the interrupt will be delivered to userspace 1738 * instead, so the KVM kernel resamplefd kick will be 1739 * skipped. The userspace here mimics what the kernel 1740 * provides with resamplefd, remember the resamplefd and 1741 * kick it when we receive EOI of this IRQ. 1742 * 1743 * This is hackery because IOAPIC is mostly bypassed 1744 * (except EOI broadcasts) when irqfd is used. However 1745 * this can bring much performance back for split irqchip 1746 * with INTx IRQs (for VFIO, this gives 93% perf of the 1747 * full fast path, which is 46% perf boost comparing to 1748 * the INTx slow path). 1749 */ 1750 kvm_resample_fd_insert(virq, resample); 1751 } else { 1752 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 1753 irqfd.resamplefd = rfd; 1754 } 1755 } else if (!assign) { 1756 if (kvm_irqchip_is_split()) { 1757 kvm_resample_fd_remove(virq); 1758 } 1759 } 1760 1761 if (!kvm_irqfds_enabled()) { 1762 return -ENOSYS; 1763 } 1764 1765 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 1766 } 1767 1768 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1769 { 1770 struct kvm_irq_routing_entry kroute = {}; 1771 int virq; 1772 1773 if (!kvm_gsi_routing_enabled()) { 1774 return -ENOSYS; 1775 } 1776 1777 virq = kvm_irqchip_get_virq(s); 1778 if (virq < 0) { 1779 return virq; 1780 } 1781 1782 kroute.gsi = virq; 1783 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 1784 kroute.flags = 0; 1785 kroute.u.adapter.summary_addr = adapter->summary_addr; 1786 kroute.u.adapter.ind_addr = adapter->ind_addr; 1787 kroute.u.adapter.summary_offset = adapter->summary_offset; 1788 kroute.u.adapter.ind_offset = adapter->ind_offset; 1789 kroute.u.adapter.adapter_id = adapter->adapter_id; 1790 1791 kvm_add_routing_entry(s, &kroute); 1792 1793 return virq; 1794 } 1795 1796 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1797 { 1798 struct kvm_irq_routing_entry kroute = {}; 1799 int virq; 1800 1801 if (!kvm_gsi_routing_enabled()) { 1802 return -ENOSYS; 1803 } 1804 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 1805 return -ENOSYS; 1806 } 1807 virq = kvm_irqchip_get_virq(s); 1808 if (virq < 0) { 1809 return virq; 1810 } 1811 1812 kroute.gsi = virq; 1813 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 1814 kroute.flags = 0; 1815 kroute.u.hv_sint.vcpu = vcpu; 1816 kroute.u.hv_sint.sint = sint; 1817 1818 kvm_add_routing_entry(s, &kroute); 1819 kvm_irqchip_commit_routes(s); 1820 1821 return virq; 1822 } 1823 1824 #else /* !KVM_CAP_IRQ_ROUTING */ 1825 1826 void kvm_init_irq_routing(KVMState *s) 1827 { 1828 } 1829 1830 void kvm_irqchip_release_virq(KVMState *s, int virq) 1831 { 1832 } 1833 1834 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1835 { 1836 abort(); 1837 } 1838 1839 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1840 { 1841 return -ENOSYS; 1842 } 1843 1844 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 1845 { 1846 return -ENOSYS; 1847 } 1848 1849 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 1850 { 1851 return -ENOSYS; 1852 } 1853 1854 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 1855 EventNotifier *resample, int virq, 1856 bool assign) 1857 { 1858 abort(); 1859 } 1860 1861 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 1862 { 1863 return -ENOSYS; 1864 } 1865 #endif /* !KVM_CAP_IRQ_ROUTING */ 1866 1867 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1868 EventNotifier *rn, int virq) 1869 { 1870 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 1871 } 1872 1873 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 1874 int virq) 1875 { 1876 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 1877 } 1878 1879 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 1880 EventNotifier *rn, qemu_irq irq) 1881 { 1882 gpointer key, gsi; 1883 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1884 1885 if (!found) { 1886 return -ENXIO; 1887 } 1888 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 1889 } 1890 1891 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 1892 qemu_irq irq) 1893 { 1894 gpointer key, gsi; 1895 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 1896 1897 if (!found) { 1898 return -ENXIO; 1899 } 1900 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 1901 } 1902 1903 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 1904 { 1905 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 1906 } 1907 1908 static void kvm_irqchip_create(KVMState *s) 1909 { 1910 int ret; 1911 1912 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 1913 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 1914 ; 1915 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 1916 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 1917 if (ret < 0) { 1918 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 1919 exit(1); 1920 } 1921 } else { 1922 return; 1923 } 1924 1925 /* First probe and see if there's a arch-specific hook to create the 1926 * in-kernel irqchip for us */ 1927 ret = kvm_arch_irqchip_create(s); 1928 if (ret == 0) { 1929 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 1930 perror("Split IRQ chip mode not supported."); 1931 exit(1); 1932 } else { 1933 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 1934 } 1935 } 1936 if (ret < 0) { 1937 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 1938 exit(1); 1939 } 1940 1941 kvm_kernel_irqchip = true; 1942 /* If we have an in-kernel IRQ chip then we must have asynchronous 1943 * interrupt delivery (though the reverse is not necessarily true) 1944 */ 1945 kvm_async_interrupts_allowed = true; 1946 kvm_halt_in_kernel_allowed = true; 1947 1948 kvm_init_irq_routing(s); 1949 1950 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 1951 } 1952 1953 /* Find number of supported CPUs using the recommended 1954 * procedure from the kernel API documentation to cope with 1955 * older kernels that may be missing capabilities. 1956 */ 1957 static int kvm_recommended_vcpus(KVMState *s) 1958 { 1959 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 1960 return (ret) ? ret : 4; 1961 } 1962 1963 static int kvm_max_vcpus(KVMState *s) 1964 { 1965 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 1966 return (ret) ? ret : kvm_recommended_vcpus(s); 1967 } 1968 1969 static int kvm_max_vcpu_id(KVMState *s) 1970 { 1971 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 1972 return (ret) ? ret : kvm_max_vcpus(s); 1973 } 1974 1975 bool kvm_vcpu_id_is_valid(int vcpu_id) 1976 { 1977 KVMState *s = KVM_STATE(current_accel()); 1978 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 1979 } 1980 1981 static int kvm_init(MachineState *ms) 1982 { 1983 MachineClass *mc = MACHINE_GET_CLASS(ms); 1984 static const char upgrade_note[] = 1985 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 1986 "(see http://sourceforge.net/projects/kvm).\n"; 1987 struct { 1988 const char *name; 1989 int num; 1990 } num_cpus[] = { 1991 { "SMP", ms->smp.cpus }, 1992 { "hotpluggable", ms->smp.max_cpus }, 1993 { NULL, } 1994 }, *nc = num_cpus; 1995 int soft_vcpus_limit, hard_vcpus_limit; 1996 KVMState *s; 1997 const KVMCapabilityInfo *missing_cap; 1998 int ret; 1999 int type = 0; 2000 uint64_t dirty_log_manual_caps; 2001 2002 s = KVM_STATE(ms->accelerator); 2003 2004 /* 2005 * On systems where the kernel can support different base page 2006 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2007 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2008 * page size for the system though. 2009 */ 2010 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2011 2012 s->sigmask_len = 8; 2013 2014 #ifdef KVM_CAP_SET_GUEST_DEBUG 2015 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2016 #endif 2017 QLIST_INIT(&s->kvm_parked_vcpus); 2018 s->vmfd = -1; 2019 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2020 if (s->fd == -1) { 2021 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2022 ret = -errno; 2023 goto err; 2024 } 2025 2026 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2027 if (ret < KVM_API_VERSION) { 2028 if (ret >= 0) { 2029 ret = -EINVAL; 2030 } 2031 fprintf(stderr, "kvm version too old\n"); 2032 goto err; 2033 } 2034 2035 if (ret > KVM_API_VERSION) { 2036 ret = -EINVAL; 2037 fprintf(stderr, "kvm version not supported\n"); 2038 goto err; 2039 } 2040 2041 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2042 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2043 2044 /* If unspecified, use the default value */ 2045 if (!s->nr_slots) { 2046 s->nr_slots = 32; 2047 } 2048 2049 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2050 if (s->nr_as <= 1) { 2051 s->nr_as = 1; 2052 } 2053 s->as = g_new0(struct KVMAs, s->nr_as); 2054 2055 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2056 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2057 "kvm-type", 2058 &error_abort); 2059 type = mc->kvm_type(ms, kvm_type); 2060 } 2061 2062 do { 2063 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2064 } while (ret == -EINTR); 2065 2066 if (ret < 0) { 2067 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2068 strerror(-ret)); 2069 2070 #ifdef TARGET_S390X 2071 if (ret == -EINVAL) { 2072 fprintf(stderr, 2073 "Host kernel setup problem detected. Please verify:\n"); 2074 fprintf(stderr, "- for kernels supporting the switch_amode or" 2075 " user_mode parameters, whether\n"); 2076 fprintf(stderr, 2077 " user space is running in primary address space\n"); 2078 fprintf(stderr, 2079 "- for kernels supporting the vm.allocate_pgste sysctl, " 2080 "whether it is enabled\n"); 2081 } 2082 #endif 2083 goto err; 2084 } 2085 2086 s->vmfd = ret; 2087 2088 /* check the vcpu limits */ 2089 soft_vcpus_limit = kvm_recommended_vcpus(s); 2090 hard_vcpus_limit = kvm_max_vcpus(s); 2091 2092 while (nc->name) { 2093 if (nc->num > soft_vcpus_limit) { 2094 warn_report("Number of %s cpus requested (%d) exceeds " 2095 "the recommended cpus supported by KVM (%d)", 2096 nc->name, nc->num, soft_vcpus_limit); 2097 2098 if (nc->num > hard_vcpus_limit) { 2099 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2100 "the maximum cpus supported by KVM (%d)\n", 2101 nc->name, nc->num, hard_vcpus_limit); 2102 exit(1); 2103 } 2104 } 2105 nc++; 2106 } 2107 2108 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2109 if (!missing_cap) { 2110 missing_cap = 2111 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2112 } 2113 if (missing_cap) { 2114 ret = -EINVAL; 2115 fprintf(stderr, "kvm does not support %s\n%s", 2116 missing_cap->name, upgrade_note); 2117 goto err; 2118 } 2119 2120 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2121 s->coalesced_pio = s->coalesced_mmio && 2122 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2123 2124 dirty_log_manual_caps = 2125 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2126 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2127 KVM_DIRTY_LOG_INITIALLY_SET); 2128 s->manual_dirty_log_protect = dirty_log_manual_caps; 2129 if (dirty_log_manual_caps) { 2130 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2131 dirty_log_manual_caps); 2132 if (ret) { 2133 warn_report("Trying to enable capability %"PRIu64" of " 2134 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2135 "Falling back to the legacy mode. ", 2136 dirty_log_manual_caps); 2137 s->manual_dirty_log_protect = 0; 2138 } 2139 } 2140 2141 #ifdef KVM_CAP_VCPU_EVENTS 2142 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2143 #endif 2144 2145 s->robust_singlestep = 2146 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2147 2148 #ifdef KVM_CAP_DEBUGREGS 2149 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2150 #endif 2151 2152 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2153 2154 #ifdef KVM_CAP_IRQ_ROUTING 2155 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2156 #endif 2157 2158 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2159 2160 s->irq_set_ioctl = KVM_IRQ_LINE; 2161 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2162 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2163 } 2164 2165 kvm_readonly_mem_allowed = 2166 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2167 2168 kvm_eventfds_allowed = 2169 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2170 2171 kvm_irqfds_allowed = 2172 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2173 2174 kvm_resamplefds_allowed = 2175 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2176 2177 kvm_vm_attributes_allowed = 2178 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2179 2180 kvm_ioeventfd_any_length_allowed = 2181 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2182 2183 kvm_state = s; 2184 2185 ret = kvm_arch_init(ms, s); 2186 if (ret < 0) { 2187 goto err; 2188 } 2189 2190 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2191 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2192 } 2193 2194 qemu_register_reset(kvm_unpoison_all, NULL); 2195 2196 if (s->kernel_irqchip_allowed) { 2197 kvm_irqchip_create(s); 2198 } 2199 2200 if (kvm_eventfds_allowed) { 2201 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2202 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2203 } 2204 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2205 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2206 2207 kvm_memory_listener_register(s, &s->memory_listener, 2208 &address_space_memory, 0); 2209 if (kvm_eventfds_allowed) { 2210 memory_listener_register(&kvm_io_listener, 2211 &address_space_io); 2212 } 2213 memory_listener_register(&kvm_coalesced_pio_listener, 2214 &address_space_io); 2215 2216 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2217 2218 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2219 if (!s->sync_mmu) { 2220 ret = ram_block_discard_disable(true); 2221 assert(!ret); 2222 } 2223 return 0; 2224 2225 err: 2226 assert(ret < 0); 2227 if (s->vmfd >= 0) { 2228 close(s->vmfd); 2229 } 2230 if (s->fd != -1) { 2231 close(s->fd); 2232 } 2233 g_free(s->memory_listener.slots); 2234 2235 return ret; 2236 } 2237 2238 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2239 { 2240 s->sigmask_len = sigmask_len; 2241 } 2242 2243 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2244 int size, uint32_t count) 2245 { 2246 int i; 2247 uint8_t *ptr = data; 2248 2249 for (i = 0; i < count; i++) { 2250 address_space_rw(&address_space_io, port, attrs, 2251 ptr, size, 2252 direction == KVM_EXIT_IO_OUT); 2253 ptr += size; 2254 } 2255 } 2256 2257 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2258 { 2259 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2260 run->internal.suberror); 2261 2262 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2263 int i; 2264 2265 for (i = 0; i < run->internal.ndata; ++i) { 2266 fprintf(stderr, "extra data[%d]: %"PRIx64"\n", 2267 i, (uint64_t)run->internal.data[i]); 2268 } 2269 } 2270 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2271 fprintf(stderr, "emulation failure\n"); 2272 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2273 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2274 return EXCP_INTERRUPT; 2275 } 2276 } 2277 /* FIXME: Should trigger a qmp message to let management know 2278 * something went wrong. 2279 */ 2280 return -1; 2281 } 2282 2283 void kvm_flush_coalesced_mmio_buffer(void) 2284 { 2285 KVMState *s = kvm_state; 2286 2287 if (s->coalesced_flush_in_progress) { 2288 return; 2289 } 2290 2291 s->coalesced_flush_in_progress = true; 2292 2293 if (s->coalesced_mmio_ring) { 2294 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2295 while (ring->first != ring->last) { 2296 struct kvm_coalesced_mmio *ent; 2297 2298 ent = &ring->coalesced_mmio[ring->first]; 2299 2300 if (ent->pio == 1) { 2301 address_space_write(&address_space_io, ent->phys_addr, 2302 MEMTXATTRS_UNSPECIFIED, ent->data, 2303 ent->len); 2304 } else { 2305 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2306 } 2307 smp_wmb(); 2308 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2309 } 2310 } 2311 2312 s->coalesced_flush_in_progress = false; 2313 } 2314 2315 bool kvm_cpu_check_are_resettable(void) 2316 { 2317 return kvm_arch_cpu_check_are_resettable(); 2318 } 2319 2320 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2321 { 2322 if (!cpu->vcpu_dirty) { 2323 kvm_arch_get_registers(cpu); 2324 cpu->vcpu_dirty = true; 2325 } 2326 } 2327 2328 void kvm_cpu_synchronize_state(CPUState *cpu) 2329 { 2330 if (!cpu->vcpu_dirty) { 2331 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2332 } 2333 } 2334 2335 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2336 { 2337 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2338 cpu->vcpu_dirty = false; 2339 } 2340 2341 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2342 { 2343 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2344 } 2345 2346 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2347 { 2348 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2349 cpu->vcpu_dirty = false; 2350 } 2351 2352 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2353 { 2354 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2355 } 2356 2357 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2358 { 2359 cpu->vcpu_dirty = true; 2360 } 2361 2362 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2363 { 2364 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2365 } 2366 2367 #ifdef KVM_HAVE_MCE_INJECTION 2368 static __thread void *pending_sigbus_addr; 2369 static __thread int pending_sigbus_code; 2370 static __thread bool have_sigbus_pending; 2371 #endif 2372 2373 static void kvm_cpu_kick(CPUState *cpu) 2374 { 2375 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2376 } 2377 2378 static void kvm_cpu_kick_self(void) 2379 { 2380 if (kvm_immediate_exit) { 2381 kvm_cpu_kick(current_cpu); 2382 } else { 2383 qemu_cpu_kick_self(); 2384 } 2385 } 2386 2387 static void kvm_eat_signals(CPUState *cpu) 2388 { 2389 struct timespec ts = { 0, 0 }; 2390 siginfo_t siginfo; 2391 sigset_t waitset; 2392 sigset_t chkset; 2393 int r; 2394 2395 if (kvm_immediate_exit) { 2396 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2397 /* Write kvm_run->immediate_exit before the cpu->exit_request 2398 * write in kvm_cpu_exec. 2399 */ 2400 smp_wmb(); 2401 return; 2402 } 2403 2404 sigemptyset(&waitset); 2405 sigaddset(&waitset, SIG_IPI); 2406 2407 do { 2408 r = sigtimedwait(&waitset, &siginfo, &ts); 2409 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2410 perror("sigtimedwait"); 2411 exit(1); 2412 } 2413 2414 r = sigpending(&chkset); 2415 if (r == -1) { 2416 perror("sigpending"); 2417 exit(1); 2418 } 2419 } while (sigismember(&chkset, SIG_IPI)); 2420 } 2421 2422 int kvm_cpu_exec(CPUState *cpu) 2423 { 2424 struct kvm_run *run = cpu->kvm_run; 2425 int ret, run_ret; 2426 2427 DPRINTF("kvm_cpu_exec()\n"); 2428 2429 if (kvm_arch_process_async_events(cpu)) { 2430 qatomic_set(&cpu->exit_request, 0); 2431 return EXCP_HLT; 2432 } 2433 2434 qemu_mutex_unlock_iothread(); 2435 cpu_exec_start(cpu); 2436 2437 do { 2438 MemTxAttrs attrs; 2439 2440 if (cpu->vcpu_dirty) { 2441 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2442 cpu->vcpu_dirty = false; 2443 } 2444 2445 kvm_arch_pre_run(cpu, run); 2446 if (qatomic_read(&cpu->exit_request)) { 2447 DPRINTF("interrupt exit requested\n"); 2448 /* 2449 * KVM requires us to reenter the kernel after IO exits to complete 2450 * instruction emulation. This self-signal will ensure that we 2451 * leave ASAP again. 2452 */ 2453 kvm_cpu_kick_self(); 2454 } 2455 2456 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2457 * Matching barrier in kvm_eat_signals. 2458 */ 2459 smp_rmb(); 2460 2461 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2462 2463 attrs = kvm_arch_post_run(cpu, run); 2464 2465 #ifdef KVM_HAVE_MCE_INJECTION 2466 if (unlikely(have_sigbus_pending)) { 2467 qemu_mutex_lock_iothread(); 2468 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2469 pending_sigbus_addr); 2470 have_sigbus_pending = false; 2471 qemu_mutex_unlock_iothread(); 2472 } 2473 #endif 2474 2475 if (run_ret < 0) { 2476 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2477 DPRINTF("io window exit\n"); 2478 kvm_eat_signals(cpu); 2479 ret = EXCP_INTERRUPT; 2480 break; 2481 } 2482 fprintf(stderr, "error: kvm run failed %s\n", 2483 strerror(-run_ret)); 2484 #ifdef TARGET_PPC 2485 if (run_ret == -EBUSY) { 2486 fprintf(stderr, 2487 "This is probably because your SMT is enabled.\n" 2488 "VCPU can only run on primary threads with all " 2489 "secondary threads offline.\n"); 2490 } 2491 #endif 2492 ret = -1; 2493 break; 2494 } 2495 2496 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2497 switch (run->exit_reason) { 2498 case KVM_EXIT_IO: 2499 DPRINTF("handle_io\n"); 2500 /* Called outside BQL */ 2501 kvm_handle_io(run->io.port, attrs, 2502 (uint8_t *)run + run->io.data_offset, 2503 run->io.direction, 2504 run->io.size, 2505 run->io.count); 2506 ret = 0; 2507 break; 2508 case KVM_EXIT_MMIO: 2509 DPRINTF("handle_mmio\n"); 2510 /* Called outside BQL */ 2511 address_space_rw(&address_space_memory, 2512 run->mmio.phys_addr, attrs, 2513 run->mmio.data, 2514 run->mmio.len, 2515 run->mmio.is_write); 2516 ret = 0; 2517 break; 2518 case KVM_EXIT_IRQ_WINDOW_OPEN: 2519 DPRINTF("irq_window_open\n"); 2520 ret = EXCP_INTERRUPT; 2521 break; 2522 case KVM_EXIT_SHUTDOWN: 2523 DPRINTF("shutdown\n"); 2524 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2525 ret = EXCP_INTERRUPT; 2526 break; 2527 case KVM_EXIT_UNKNOWN: 2528 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2529 (uint64_t)run->hw.hardware_exit_reason); 2530 ret = -1; 2531 break; 2532 case KVM_EXIT_INTERNAL_ERROR: 2533 ret = kvm_handle_internal_error(cpu, run); 2534 break; 2535 case KVM_EXIT_SYSTEM_EVENT: 2536 switch (run->system_event.type) { 2537 case KVM_SYSTEM_EVENT_SHUTDOWN: 2538 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2539 ret = EXCP_INTERRUPT; 2540 break; 2541 case KVM_SYSTEM_EVENT_RESET: 2542 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2543 ret = EXCP_INTERRUPT; 2544 break; 2545 case KVM_SYSTEM_EVENT_CRASH: 2546 kvm_cpu_synchronize_state(cpu); 2547 qemu_mutex_lock_iothread(); 2548 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2549 qemu_mutex_unlock_iothread(); 2550 ret = 0; 2551 break; 2552 default: 2553 DPRINTF("kvm_arch_handle_exit\n"); 2554 ret = kvm_arch_handle_exit(cpu, run); 2555 break; 2556 } 2557 break; 2558 default: 2559 DPRINTF("kvm_arch_handle_exit\n"); 2560 ret = kvm_arch_handle_exit(cpu, run); 2561 break; 2562 } 2563 } while (ret == 0); 2564 2565 cpu_exec_end(cpu); 2566 qemu_mutex_lock_iothread(); 2567 2568 if (ret < 0) { 2569 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2570 vm_stop(RUN_STATE_INTERNAL_ERROR); 2571 } 2572 2573 qatomic_set(&cpu->exit_request, 0); 2574 return ret; 2575 } 2576 2577 int kvm_ioctl(KVMState *s, int type, ...) 2578 { 2579 int ret; 2580 void *arg; 2581 va_list ap; 2582 2583 va_start(ap, type); 2584 arg = va_arg(ap, void *); 2585 va_end(ap); 2586 2587 trace_kvm_ioctl(type, arg); 2588 ret = ioctl(s->fd, type, arg); 2589 if (ret == -1) { 2590 ret = -errno; 2591 } 2592 return ret; 2593 } 2594 2595 int kvm_vm_ioctl(KVMState *s, int type, ...) 2596 { 2597 int ret; 2598 void *arg; 2599 va_list ap; 2600 2601 va_start(ap, type); 2602 arg = va_arg(ap, void *); 2603 va_end(ap); 2604 2605 trace_kvm_vm_ioctl(type, arg); 2606 ret = ioctl(s->vmfd, type, arg); 2607 if (ret == -1) { 2608 ret = -errno; 2609 } 2610 return ret; 2611 } 2612 2613 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 2614 { 2615 int ret; 2616 void *arg; 2617 va_list ap; 2618 2619 va_start(ap, type); 2620 arg = va_arg(ap, void *); 2621 va_end(ap); 2622 2623 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 2624 ret = ioctl(cpu->kvm_fd, type, arg); 2625 if (ret == -1) { 2626 ret = -errno; 2627 } 2628 return ret; 2629 } 2630 2631 int kvm_device_ioctl(int fd, int type, ...) 2632 { 2633 int ret; 2634 void *arg; 2635 va_list ap; 2636 2637 va_start(ap, type); 2638 arg = va_arg(ap, void *); 2639 va_end(ap); 2640 2641 trace_kvm_device_ioctl(fd, type, arg); 2642 ret = ioctl(fd, type, arg); 2643 if (ret == -1) { 2644 ret = -errno; 2645 } 2646 return ret; 2647 } 2648 2649 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 2650 { 2651 int ret; 2652 struct kvm_device_attr attribute = { 2653 .group = group, 2654 .attr = attr, 2655 }; 2656 2657 if (!kvm_vm_attributes_allowed) { 2658 return 0; 2659 } 2660 2661 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 2662 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 2663 return ret ? 0 : 1; 2664 } 2665 2666 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2667 { 2668 struct kvm_device_attr attribute = { 2669 .group = group, 2670 .attr = attr, 2671 .flags = 0, 2672 }; 2673 2674 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 2675 } 2676 2677 int kvm_device_access(int fd, int group, uint64_t attr, 2678 void *val, bool write, Error **errp) 2679 { 2680 struct kvm_device_attr kvmattr; 2681 int err; 2682 2683 kvmattr.flags = 0; 2684 kvmattr.group = group; 2685 kvmattr.attr = attr; 2686 kvmattr.addr = (uintptr_t)val; 2687 2688 err = kvm_device_ioctl(fd, 2689 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2690 &kvmattr); 2691 if (err < 0) { 2692 error_setg_errno(errp, -err, 2693 "KVM_%s_DEVICE_ATTR failed: Group %d " 2694 "attr 0x%016" PRIx64, 2695 write ? "SET" : "GET", group, attr); 2696 } 2697 return err; 2698 } 2699 2700 bool kvm_has_sync_mmu(void) 2701 { 2702 return kvm_state->sync_mmu; 2703 } 2704 2705 int kvm_has_vcpu_events(void) 2706 { 2707 return kvm_state->vcpu_events; 2708 } 2709 2710 int kvm_has_robust_singlestep(void) 2711 { 2712 return kvm_state->robust_singlestep; 2713 } 2714 2715 int kvm_has_debugregs(void) 2716 { 2717 return kvm_state->debugregs; 2718 } 2719 2720 int kvm_max_nested_state_length(void) 2721 { 2722 return kvm_state->max_nested_state_len; 2723 } 2724 2725 int kvm_has_many_ioeventfds(void) 2726 { 2727 if (!kvm_enabled()) { 2728 return 0; 2729 } 2730 return kvm_state->many_ioeventfds; 2731 } 2732 2733 int kvm_has_gsi_routing(void) 2734 { 2735 #ifdef KVM_CAP_IRQ_ROUTING 2736 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 2737 #else 2738 return false; 2739 #endif 2740 } 2741 2742 int kvm_has_intx_set_mask(void) 2743 { 2744 return kvm_state->intx_set_mask; 2745 } 2746 2747 bool kvm_arm_supports_user_irq(void) 2748 { 2749 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 2750 } 2751 2752 #ifdef KVM_CAP_SET_GUEST_DEBUG 2753 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 2754 target_ulong pc) 2755 { 2756 struct kvm_sw_breakpoint *bp; 2757 2758 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 2759 if (bp->pc == pc) { 2760 return bp; 2761 } 2762 } 2763 return NULL; 2764 } 2765 2766 int kvm_sw_breakpoints_active(CPUState *cpu) 2767 { 2768 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 2769 } 2770 2771 struct kvm_set_guest_debug_data { 2772 struct kvm_guest_debug dbg; 2773 int err; 2774 }; 2775 2776 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 2777 { 2778 struct kvm_set_guest_debug_data *dbg_data = 2779 (struct kvm_set_guest_debug_data *) data.host_ptr; 2780 2781 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 2782 &dbg_data->dbg); 2783 } 2784 2785 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2786 { 2787 struct kvm_set_guest_debug_data data; 2788 2789 data.dbg.control = reinject_trap; 2790 2791 if (cpu->singlestep_enabled) { 2792 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 2793 } 2794 kvm_arch_update_guest_debug(cpu, &data.dbg); 2795 2796 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 2797 RUN_ON_CPU_HOST_PTR(&data)); 2798 return data.err; 2799 } 2800 2801 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2802 target_ulong len, int type) 2803 { 2804 struct kvm_sw_breakpoint *bp; 2805 int err; 2806 2807 if (type == GDB_BREAKPOINT_SW) { 2808 bp = kvm_find_sw_breakpoint(cpu, addr); 2809 if (bp) { 2810 bp->use_count++; 2811 return 0; 2812 } 2813 2814 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 2815 bp->pc = addr; 2816 bp->use_count = 1; 2817 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 2818 if (err) { 2819 g_free(bp); 2820 return err; 2821 } 2822 2823 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2824 } else { 2825 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 2826 if (err) { 2827 return err; 2828 } 2829 } 2830 2831 CPU_FOREACH(cpu) { 2832 err = kvm_update_guest_debug(cpu, 0); 2833 if (err) { 2834 return err; 2835 } 2836 } 2837 return 0; 2838 } 2839 2840 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2841 target_ulong len, int type) 2842 { 2843 struct kvm_sw_breakpoint *bp; 2844 int err; 2845 2846 if (type == GDB_BREAKPOINT_SW) { 2847 bp = kvm_find_sw_breakpoint(cpu, addr); 2848 if (!bp) { 2849 return -ENOENT; 2850 } 2851 2852 if (bp->use_count > 1) { 2853 bp->use_count--; 2854 return 0; 2855 } 2856 2857 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 2858 if (err) { 2859 return err; 2860 } 2861 2862 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 2863 g_free(bp); 2864 } else { 2865 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 2866 if (err) { 2867 return err; 2868 } 2869 } 2870 2871 CPU_FOREACH(cpu) { 2872 err = kvm_update_guest_debug(cpu, 0); 2873 if (err) { 2874 return err; 2875 } 2876 } 2877 return 0; 2878 } 2879 2880 void kvm_remove_all_breakpoints(CPUState *cpu) 2881 { 2882 struct kvm_sw_breakpoint *bp, *next; 2883 KVMState *s = cpu->kvm_state; 2884 CPUState *tmpcpu; 2885 2886 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 2887 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 2888 /* Try harder to find a CPU that currently sees the breakpoint. */ 2889 CPU_FOREACH(tmpcpu) { 2890 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 2891 break; 2892 } 2893 } 2894 } 2895 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 2896 g_free(bp); 2897 } 2898 kvm_arch_remove_all_hw_breakpoints(); 2899 2900 CPU_FOREACH(cpu) { 2901 kvm_update_guest_debug(cpu, 0); 2902 } 2903 } 2904 2905 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 2906 2907 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 2908 { 2909 return -EINVAL; 2910 } 2911 2912 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 2913 target_ulong len, int type) 2914 { 2915 return -EINVAL; 2916 } 2917 2918 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 2919 target_ulong len, int type) 2920 { 2921 return -EINVAL; 2922 } 2923 2924 void kvm_remove_all_breakpoints(CPUState *cpu) 2925 { 2926 } 2927 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 2928 2929 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 2930 { 2931 KVMState *s = kvm_state; 2932 struct kvm_signal_mask *sigmask; 2933 int r; 2934 2935 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 2936 2937 sigmask->len = s->sigmask_len; 2938 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 2939 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 2940 g_free(sigmask); 2941 2942 return r; 2943 } 2944 2945 static void kvm_ipi_signal(int sig) 2946 { 2947 if (current_cpu) { 2948 assert(kvm_immediate_exit); 2949 kvm_cpu_kick(current_cpu); 2950 } 2951 } 2952 2953 void kvm_init_cpu_signals(CPUState *cpu) 2954 { 2955 int r; 2956 sigset_t set; 2957 struct sigaction sigact; 2958 2959 memset(&sigact, 0, sizeof(sigact)); 2960 sigact.sa_handler = kvm_ipi_signal; 2961 sigaction(SIG_IPI, &sigact, NULL); 2962 2963 pthread_sigmask(SIG_BLOCK, NULL, &set); 2964 #if defined KVM_HAVE_MCE_INJECTION 2965 sigdelset(&set, SIGBUS); 2966 pthread_sigmask(SIG_SETMASK, &set, NULL); 2967 #endif 2968 sigdelset(&set, SIG_IPI); 2969 if (kvm_immediate_exit) { 2970 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 2971 } else { 2972 r = kvm_set_signal_mask(cpu, &set); 2973 } 2974 if (r) { 2975 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 2976 exit(1); 2977 } 2978 } 2979 2980 /* Called asynchronously in VCPU thread. */ 2981 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2982 { 2983 #ifdef KVM_HAVE_MCE_INJECTION 2984 if (have_sigbus_pending) { 2985 return 1; 2986 } 2987 have_sigbus_pending = true; 2988 pending_sigbus_addr = addr; 2989 pending_sigbus_code = code; 2990 qatomic_set(&cpu->exit_request, 1); 2991 return 0; 2992 #else 2993 return 1; 2994 #endif 2995 } 2996 2997 /* Called synchronously (via signalfd) in main thread. */ 2998 int kvm_on_sigbus(int code, void *addr) 2999 { 3000 #ifdef KVM_HAVE_MCE_INJECTION 3001 /* Action required MCE kills the process if SIGBUS is blocked. Because 3002 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3003 * we can only get action optional here. 3004 */ 3005 assert(code != BUS_MCEERR_AR); 3006 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3007 return 0; 3008 #else 3009 return 1; 3010 #endif 3011 } 3012 3013 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3014 { 3015 int ret; 3016 struct kvm_create_device create_dev; 3017 3018 create_dev.type = type; 3019 create_dev.fd = -1; 3020 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3021 3022 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3023 return -ENOTSUP; 3024 } 3025 3026 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3027 if (ret) { 3028 return ret; 3029 } 3030 3031 return test ? 0 : create_dev.fd; 3032 } 3033 3034 bool kvm_device_supported(int vmfd, uint64_t type) 3035 { 3036 struct kvm_create_device create_dev = { 3037 .type = type, 3038 .fd = -1, 3039 .flags = KVM_CREATE_DEVICE_TEST, 3040 }; 3041 3042 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3043 return false; 3044 } 3045 3046 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3047 } 3048 3049 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3050 { 3051 struct kvm_one_reg reg; 3052 int r; 3053 3054 reg.id = id; 3055 reg.addr = (uintptr_t) source; 3056 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3057 if (r) { 3058 trace_kvm_failed_reg_set(id, strerror(-r)); 3059 } 3060 return r; 3061 } 3062 3063 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3064 { 3065 struct kvm_one_reg reg; 3066 int r; 3067 3068 reg.id = id; 3069 reg.addr = (uintptr_t) target; 3070 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3071 if (r) { 3072 trace_kvm_failed_reg_get(id, strerror(-r)); 3073 } 3074 return r; 3075 } 3076 3077 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3078 hwaddr start_addr, hwaddr size) 3079 { 3080 KVMState *kvm = KVM_STATE(ms->accelerator); 3081 int i; 3082 3083 for (i = 0; i < kvm->nr_as; ++i) { 3084 if (kvm->as[i].as == as && kvm->as[i].ml) { 3085 size = MIN(kvm_max_slot_size, size); 3086 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3087 start_addr, size); 3088 } 3089 } 3090 3091 return false; 3092 } 3093 3094 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3095 const char *name, void *opaque, 3096 Error **errp) 3097 { 3098 KVMState *s = KVM_STATE(obj); 3099 int64_t value = s->kvm_shadow_mem; 3100 3101 visit_type_int(v, name, &value, errp); 3102 } 3103 3104 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3105 const char *name, void *opaque, 3106 Error **errp) 3107 { 3108 KVMState *s = KVM_STATE(obj); 3109 int64_t value; 3110 3111 if (!visit_type_int(v, name, &value, errp)) { 3112 return; 3113 } 3114 3115 s->kvm_shadow_mem = value; 3116 } 3117 3118 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3119 const char *name, void *opaque, 3120 Error **errp) 3121 { 3122 KVMState *s = KVM_STATE(obj); 3123 OnOffSplit mode; 3124 3125 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3126 return; 3127 } 3128 switch (mode) { 3129 case ON_OFF_SPLIT_ON: 3130 s->kernel_irqchip_allowed = true; 3131 s->kernel_irqchip_required = true; 3132 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3133 break; 3134 case ON_OFF_SPLIT_OFF: 3135 s->kernel_irqchip_allowed = false; 3136 s->kernel_irqchip_required = false; 3137 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3138 break; 3139 case ON_OFF_SPLIT_SPLIT: 3140 s->kernel_irqchip_allowed = true; 3141 s->kernel_irqchip_required = true; 3142 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3143 break; 3144 default: 3145 /* The value was checked in visit_type_OnOffSplit() above. If 3146 * we get here, then something is wrong in QEMU. 3147 */ 3148 abort(); 3149 } 3150 } 3151 3152 bool kvm_kernel_irqchip_allowed(void) 3153 { 3154 return kvm_state->kernel_irqchip_allowed; 3155 } 3156 3157 bool kvm_kernel_irqchip_required(void) 3158 { 3159 return kvm_state->kernel_irqchip_required; 3160 } 3161 3162 bool kvm_kernel_irqchip_split(void) 3163 { 3164 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3165 } 3166 3167 static void kvm_accel_instance_init(Object *obj) 3168 { 3169 KVMState *s = KVM_STATE(obj); 3170 3171 s->kvm_shadow_mem = -1; 3172 s->kernel_irqchip_allowed = true; 3173 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3174 } 3175 3176 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3177 { 3178 AccelClass *ac = ACCEL_CLASS(oc); 3179 ac->name = "KVM"; 3180 ac->init_machine = kvm_init; 3181 ac->has_memory = kvm_accel_has_memory; 3182 ac->allowed = &kvm_allowed; 3183 3184 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3185 NULL, kvm_set_kernel_irqchip, 3186 NULL, NULL); 3187 object_class_property_set_description(oc, "kernel-irqchip", 3188 "Configure KVM in-kernel irqchip"); 3189 3190 object_class_property_add(oc, "kvm-shadow-mem", "int", 3191 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3192 NULL, NULL); 3193 object_class_property_set_description(oc, "kvm-shadow-mem", 3194 "KVM shadow MMU size"); 3195 } 3196 3197 static const TypeInfo kvm_accel_type = { 3198 .name = TYPE_KVM_ACCEL, 3199 .parent = TYPE_ACCEL, 3200 .instance_init = kvm_accel_instance_init, 3201 .class_init = kvm_accel_class_init, 3202 .instance_size = sizeof(KVMState), 3203 }; 3204 3205 static void kvm_type_init(void) 3206 { 3207 type_register_static(&kvm_accel_type); 3208 } 3209 3210 type_init(kvm_type_init); 3211