1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 //#define DEBUG_KVM 73 74 #ifdef DEBUG_KVM 75 #define DPRINTF(fmt, ...) \ 76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 77 #else 78 #define DPRINTF(fmt, ...) \ 79 do { } while (0) 80 #endif 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_eventfds_allowed; 94 bool kvm_irqfds_allowed; 95 bool kvm_resamplefds_allowed; 96 bool kvm_msi_via_irqfd_allowed; 97 bool kvm_gsi_routing_allowed; 98 bool kvm_gsi_direct_mapping; 99 bool kvm_allowed; 100 bool kvm_readonly_mem_allowed; 101 bool kvm_vm_attributes_allowed; 102 bool kvm_direct_msi_allowed; 103 bool kvm_ioeventfd_any_length_allowed; 104 bool kvm_msi_use_devid; 105 bool kvm_has_guest_debug; 106 static int kvm_sstep_flags; 107 static bool kvm_immediate_exit; 108 static hwaddr kvm_max_slot_size = ~0; 109 110 static const KVMCapabilityInfo kvm_required_capabilites[] = { 111 KVM_CAP_INFO(USER_MEMORY), 112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 114 KVM_CAP_LAST_INFO 115 }; 116 117 static NotifierList kvm_irqchip_change_notifiers = 118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 119 120 struct KVMResampleFd { 121 int gsi; 122 EventNotifier *resample_event; 123 QLIST_ENTRY(KVMResampleFd) node; 124 }; 125 typedef struct KVMResampleFd KVMResampleFd; 126 127 /* 128 * Only used with split irqchip where we need to do the resample fd 129 * kick for the kernel from userspace. 130 */ 131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 133 134 static QemuMutex kml_slots_lock; 135 136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 138 139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 140 141 static inline void kvm_resample_fd_remove(int gsi) 142 { 143 KVMResampleFd *rfd; 144 145 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 146 if (rfd->gsi == gsi) { 147 QLIST_REMOVE(rfd, node); 148 g_free(rfd); 149 break; 150 } 151 } 152 } 153 154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 155 { 156 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 157 158 rfd->gsi = gsi; 159 rfd->resample_event = event; 160 161 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 162 } 163 164 void kvm_resample_fd_notify(int gsi) 165 { 166 KVMResampleFd *rfd; 167 168 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 169 if (rfd->gsi == gsi) { 170 event_notifier_set(rfd->resample_event); 171 trace_kvm_resample_fd_notify(gsi); 172 return; 173 } 174 } 175 } 176 177 int kvm_get_max_memslots(void) 178 { 179 KVMState *s = KVM_STATE(current_accel()); 180 181 return s->nr_slots; 182 } 183 184 /* Called with KVMMemoryListener.slots_lock held */ 185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 186 { 187 KVMState *s = kvm_state; 188 int i; 189 190 for (i = 0; i < s->nr_slots; i++) { 191 if (kml->slots[i].memory_size == 0) { 192 return &kml->slots[i]; 193 } 194 } 195 196 return NULL; 197 } 198 199 bool kvm_has_free_slot(MachineState *ms) 200 { 201 KVMState *s = KVM_STATE(ms->accelerator); 202 bool result; 203 KVMMemoryListener *kml = &s->memory_listener; 204 205 kvm_slots_lock(); 206 result = !!kvm_get_free_slot(kml); 207 kvm_slots_unlock(); 208 209 return result; 210 } 211 212 /* Called with KVMMemoryListener.slots_lock held */ 213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 214 { 215 KVMSlot *slot = kvm_get_free_slot(kml); 216 217 if (slot) { 218 return slot; 219 } 220 221 fprintf(stderr, "%s: no free slot available\n", __func__); 222 abort(); 223 } 224 225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 226 hwaddr start_addr, 227 hwaddr size) 228 { 229 KVMState *s = kvm_state; 230 int i; 231 232 for (i = 0; i < s->nr_slots; i++) { 233 KVMSlot *mem = &kml->slots[i]; 234 235 if (start_addr == mem->start_addr && size == mem->memory_size) { 236 return mem; 237 } 238 } 239 240 return NULL; 241 } 242 243 /* 244 * Calculate and align the start address and the size of the section. 245 * Return the size. If the size is 0, the aligned section is empty. 246 */ 247 static hwaddr kvm_align_section(MemoryRegionSection *section, 248 hwaddr *start) 249 { 250 hwaddr size = int128_get64(section->size); 251 hwaddr delta, aligned; 252 253 /* kvm works in page size chunks, but the function may be called 254 with sub-page size and unaligned start address. Pad the start 255 address to next and truncate size to previous page boundary. */ 256 aligned = ROUND_UP(section->offset_within_address_space, 257 qemu_real_host_page_size()); 258 delta = aligned - section->offset_within_address_space; 259 *start = aligned; 260 if (delta > size) { 261 return 0; 262 } 263 264 return (size - delta) & qemu_real_host_page_mask(); 265 } 266 267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 268 hwaddr *phys_addr) 269 { 270 KVMMemoryListener *kml = &s->memory_listener; 271 int i, ret = 0; 272 273 kvm_slots_lock(); 274 for (i = 0; i < s->nr_slots; i++) { 275 KVMSlot *mem = &kml->slots[i]; 276 277 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 278 *phys_addr = mem->start_addr + (ram - mem->ram); 279 ret = 1; 280 break; 281 } 282 } 283 kvm_slots_unlock(); 284 285 return ret; 286 } 287 288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 289 { 290 KVMState *s = kvm_state; 291 struct kvm_userspace_memory_region mem; 292 int ret; 293 294 mem.slot = slot->slot | (kml->as_id << 16); 295 mem.guest_phys_addr = slot->start_addr; 296 mem.userspace_addr = (unsigned long)slot->ram; 297 mem.flags = slot->flags; 298 299 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 300 /* Set the slot size to 0 before setting the slot to the desired 301 * value. This is needed based on KVM commit 75d61fbc. */ 302 mem.memory_size = 0; 303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 304 if (ret < 0) { 305 goto err; 306 } 307 } 308 mem.memory_size = slot->memory_size; 309 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 310 slot->old_flags = mem.flags; 311 err: 312 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 313 mem.memory_size, mem.userspace_addr, ret); 314 if (ret < 0) { 315 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 316 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 317 __func__, mem.slot, slot->start_addr, 318 (uint64_t)mem.memory_size, strerror(errno)); 319 } 320 return ret; 321 } 322 323 static int do_kvm_destroy_vcpu(CPUState *cpu) 324 { 325 KVMState *s = kvm_state; 326 long mmap_size; 327 struct KVMParkedVcpu *vcpu = NULL; 328 int ret = 0; 329 330 DPRINTF("kvm_destroy_vcpu\n"); 331 332 ret = kvm_arch_destroy_vcpu(cpu); 333 if (ret < 0) { 334 goto err; 335 } 336 337 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 338 if (mmap_size < 0) { 339 ret = mmap_size; 340 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 341 goto err; 342 } 343 344 ret = munmap(cpu->kvm_run, mmap_size); 345 if (ret < 0) { 346 goto err; 347 } 348 349 if (cpu->kvm_dirty_gfns) { 350 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 351 if (ret < 0) { 352 goto err; 353 } 354 } 355 356 vcpu = g_malloc0(sizeof(*vcpu)); 357 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 358 vcpu->kvm_fd = cpu->kvm_fd; 359 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 360 err: 361 return ret; 362 } 363 364 void kvm_destroy_vcpu(CPUState *cpu) 365 { 366 if (do_kvm_destroy_vcpu(cpu) < 0) { 367 error_report("kvm_destroy_vcpu failed"); 368 exit(EXIT_FAILURE); 369 } 370 } 371 372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 373 { 374 struct KVMParkedVcpu *cpu; 375 376 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 377 if (cpu->vcpu_id == vcpu_id) { 378 int kvm_fd; 379 380 QLIST_REMOVE(cpu, node); 381 kvm_fd = cpu->kvm_fd; 382 g_free(cpu); 383 return kvm_fd; 384 } 385 } 386 387 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 388 } 389 390 int kvm_init_vcpu(CPUState *cpu, Error **errp) 391 { 392 KVMState *s = kvm_state; 393 long mmap_size; 394 int ret; 395 396 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 397 398 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 399 if (ret < 0) { 400 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 401 kvm_arch_vcpu_id(cpu)); 402 goto err; 403 } 404 405 cpu->kvm_fd = ret; 406 cpu->kvm_state = s; 407 cpu->vcpu_dirty = true; 408 cpu->dirty_pages = 0; 409 cpu->throttle_us_per_full = 0; 410 411 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 412 if (mmap_size < 0) { 413 ret = mmap_size; 414 error_setg_errno(errp, -mmap_size, 415 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 416 goto err; 417 } 418 419 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 420 cpu->kvm_fd, 0); 421 if (cpu->kvm_run == MAP_FAILED) { 422 ret = -errno; 423 error_setg_errno(errp, ret, 424 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 425 kvm_arch_vcpu_id(cpu)); 426 goto err; 427 } 428 429 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 430 s->coalesced_mmio_ring = 431 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 432 } 433 434 if (s->kvm_dirty_ring_size) { 435 /* Use MAP_SHARED to share pages with the kernel */ 436 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 437 PROT_READ | PROT_WRITE, MAP_SHARED, 438 cpu->kvm_fd, 439 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 440 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 441 ret = -errno; 442 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 443 goto err; 444 } 445 } 446 447 ret = kvm_arch_init_vcpu(cpu); 448 if (ret < 0) { 449 error_setg_errno(errp, -ret, 450 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 451 kvm_arch_vcpu_id(cpu)); 452 } 453 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 454 455 err: 456 return ret; 457 } 458 459 /* 460 * dirty pages logging control 461 */ 462 463 static int kvm_mem_flags(MemoryRegion *mr) 464 { 465 bool readonly = mr->readonly || memory_region_is_romd(mr); 466 int flags = 0; 467 468 if (memory_region_get_dirty_log_mask(mr) != 0) { 469 flags |= KVM_MEM_LOG_DIRTY_PAGES; 470 } 471 if (readonly && kvm_readonly_mem_allowed) { 472 flags |= KVM_MEM_READONLY; 473 } 474 return flags; 475 } 476 477 /* Called with KVMMemoryListener.slots_lock held */ 478 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 479 MemoryRegion *mr) 480 { 481 mem->flags = kvm_mem_flags(mr); 482 483 /* If nothing changed effectively, no need to issue ioctl */ 484 if (mem->flags == mem->old_flags) { 485 return 0; 486 } 487 488 kvm_slot_init_dirty_bitmap(mem); 489 return kvm_set_user_memory_region(kml, mem, false); 490 } 491 492 static int kvm_section_update_flags(KVMMemoryListener *kml, 493 MemoryRegionSection *section) 494 { 495 hwaddr start_addr, size, slot_size; 496 KVMSlot *mem; 497 int ret = 0; 498 499 size = kvm_align_section(section, &start_addr); 500 if (!size) { 501 return 0; 502 } 503 504 kvm_slots_lock(); 505 506 while (size && !ret) { 507 slot_size = MIN(kvm_max_slot_size, size); 508 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 509 if (!mem) { 510 /* We don't have a slot if we want to trap every access. */ 511 goto out; 512 } 513 514 ret = kvm_slot_update_flags(kml, mem, section->mr); 515 start_addr += slot_size; 516 size -= slot_size; 517 } 518 519 out: 520 kvm_slots_unlock(); 521 return ret; 522 } 523 524 static void kvm_log_start(MemoryListener *listener, 525 MemoryRegionSection *section, 526 int old, int new) 527 { 528 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 529 int r; 530 531 if (old != 0) { 532 return; 533 } 534 535 r = kvm_section_update_flags(kml, section); 536 if (r < 0) { 537 abort(); 538 } 539 } 540 541 static void kvm_log_stop(MemoryListener *listener, 542 MemoryRegionSection *section, 543 int old, int new) 544 { 545 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 546 int r; 547 548 if (new != 0) { 549 return; 550 } 551 552 r = kvm_section_update_flags(kml, section); 553 if (r < 0) { 554 abort(); 555 } 556 } 557 558 /* get kvm's dirty pages bitmap and update qemu's */ 559 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 560 { 561 ram_addr_t start = slot->ram_start_offset; 562 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 563 564 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 565 } 566 567 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 568 { 569 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 570 } 571 572 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 573 574 /* Allocate the dirty bitmap for a slot */ 575 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 576 { 577 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 578 return; 579 } 580 581 /* 582 * XXX bad kernel interface alert 583 * For dirty bitmap, kernel allocates array of size aligned to 584 * bits-per-long. But for case when the kernel is 64bits and 585 * the userspace is 32bits, userspace can't align to the same 586 * bits-per-long, since sizeof(long) is different between kernel 587 * and user space. This way, userspace will provide buffer which 588 * may be 4 bytes less than the kernel will use, resulting in 589 * userspace memory corruption (which is not detectable by valgrind 590 * too, in most cases). 591 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 592 * a hope that sizeof(long) won't become >8 any time soon. 593 * 594 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 595 * And mem->memory_size is aligned to it (otherwise this mem can't 596 * be registered to KVM). 597 */ 598 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 599 /*HOST_LONG_BITS*/ 64) / 8; 600 mem->dirty_bmap = g_malloc0(bitmap_size); 601 mem->dirty_bmap_size = bitmap_size; 602 } 603 604 /* 605 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 606 * succeeded, false otherwise 607 */ 608 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 609 { 610 struct kvm_dirty_log d = {}; 611 int ret; 612 613 d.dirty_bitmap = slot->dirty_bmap; 614 d.slot = slot->slot | (slot->as_id << 16); 615 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 616 617 if (ret == -ENOENT) { 618 /* kernel does not have dirty bitmap in this slot */ 619 ret = 0; 620 } 621 if (ret) { 622 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 623 __func__, ret); 624 } 625 return ret == 0; 626 } 627 628 /* Should be with all slots_lock held for the address spaces. */ 629 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 630 uint32_t slot_id, uint64_t offset) 631 { 632 KVMMemoryListener *kml; 633 KVMSlot *mem; 634 635 if (as_id >= s->nr_as) { 636 return; 637 } 638 639 kml = s->as[as_id].ml; 640 mem = &kml->slots[slot_id]; 641 642 if (!mem->memory_size || offset >= 643 (mem->memory_size / qemu_real_host_page_size())) { 644 return; 645 } 646 647 set_bit(offset, mem->dirty_bmap); 648 } 649 650 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 651 { 652 /* 653 * Read the flags before the value. Pairs with barrier in 654 * KVM's kvm_dirty_ring_push() function. 655 */ 656 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 657 } 658 659 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 660 { 661 /* 662 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 663 * sees the full content of the ring: 664 * 665 * CPU0 CPU1 CPU2 666 * ------------------------------------------------------------------------------ 667 * fill gfn0 668 * store-rel flags for gfn0 669 * load-acq flags for gfn0 670 * store-rel RESET for gfn0 671 * ioctl(RESET_RINGS) 672 * load-acq flags for gfn0 673 * check if flags have RESET 674 * 675 * The synchronization goes from CPU2 to CPU0 to CPU1. 676 */ 677 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 678 } 679 680 /* 681 * Should be with all slots_lock held for the address spaces. It returns the 682 * dirty page we've collected on this dirty ring. 683 */ 684 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 685 { 686 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 687 uint32_t ring_size = s->kvm_dirty_ring_size; 688 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 689 690 /* 691 * It's possible that we race with vcpu creation code where the vcpu is 692 * put onto the vcpus list but not yet initialized the dirty ring 693 * structures. If so, skip it. 694 */ 695 if (!cpu->created) { 696 return 0; 697 } 698 699 assert(dirty_gfns && ring_size); 700 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 701 702 while (true) { 703 cur = &dirty_gfns[fetch % ring_size]; 704 if (!dirty_gfn_is_dirtied(cur)) { 705 break; 706 } 707 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 708 cur->offset); 709 dirty_gfn_set_collected(cur); 710 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 711 fetch++; 712 count++; 713 } 714 cpu->kvm_fetch_index = fetch; 715 cpu->dirty_pages += count; 716 717 return count; 718 } 719 720 /* Must be with slots_lock held */ 721 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 722 { 723 int ret; 724 uint64_t total = 0; 725 int64_t stamp; 726 727 stamp = get_clock(); 728 729 if (cpu) { 730 total = kvm_dirty_ring_reap_one(s, cpu); 731 } else { 732 CPU_FOREACH(cpu) { 733 total += kvm_dirty_ring_reap_one(s, cpu); 734 } 735 } 736 737 if (total) { 738 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 739 assert(ret == total); 740 } 741 742 stamp = get_clock() - stamp; 743 744 if (total) { 745 trace_kvm_dirty_ring_reap(total, stamp / 1000); 746 } 747 748 return total; 749 } 750 751 /* 752 * Currently for simplicity, we must hold BQL before calling this. We can 753 * consider to drop the BQL if we're clear with all the race conditions. 754 */ 755 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 756 { 757 uint64_t total; 758 759 /* 760 * We need to lock all kvm slots for all address spaces here, 761 * because: 762 * 763 * (1) We need to mark dirty for dirty bitmaps in multiple slots 764 * and for tons of pages, so it's better to take the lock here 765 * once rather than once per page. And more importantly, 766 * 767 * (2) We must _NOT_ publish dirty bits to the other threads 768 * (e.g., the migration thread) via the kvm memory slot dirty 769 * bitmaps before correctly re-protect those dirtied pages. 770 * Otherwise we can have potential risk of data corruption if 771 * the page data is read in the other thread before we do 772 * reset below. 773 */ 774 kvm_slots_lock(); 775 total = kvm_dirty_ring_reap_locked(s, cpu); 776 kvm_slots_unlock(); 777 778 return total; 779 } 780 781 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 782 { 783 /* No need to do anything */ 784 } 785 786 /* 787 * Kick all vcpus out in a synchronized way. When returned, we 788 * guarantee that every vcpu has been kicked and at least returned to 789 * userspace once. 790 */ 791 static void kvm_cpu_synchronize_kick_all(void) 792 { 793 CPUState *cpu; 794 795 CPU_FOREACH(cpu) { 796 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 797 } 798 } 799 800 /* 801 * Flush all the existing dirty pages to the KVM slot buffers. When 802 * this call returns, we guarantee that all the touched dirty pages 803 * before calling this function have been put into the per-kvmslot 804 * dirty bitmap. 805 * 806 * This function must be called with BQL held. 807 */ 808 static void kvm_dirty_ring_flush(void) 809 { 810 trace_kvm_dirty_ring_flush(0); 811 /* 812 * The function needs to be serialized. Since this function 813 * should always be with BQL held, serialization is guaranteed. 814 * However, let's be sure of it. 815 */ 816 assert(qemu_mutex_iothread_locked()); 817 /* 818 * First make sure to flush the hardware buffers by kicking all 819 * vcpus out in a synchronous way. 820 */ 821 kvm_cpu_synchronize_kick_all(); 822 kvm_dirty_ring_reap(kvm_state, NULL); 823 trace_kvm_dirty_ring_flush(1); 824 } 825 826 /** 827 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 828 * 829 * This function will first try to fetch dirty bitmap from the kernel, 830 * and then updates qemu's dirty bitmap. 831 * 832 * NOTE: caller must be with kml->slots_lock held. 833 * 834 * @kml: the KVM memory listener object 835 * @section: the memory section to sync the dirty bitmap with 836 */ 837 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 838 MemoryRegionSection *section) 839 { 840 KVMState *s = kvm_state; 841 KVMSlot *mem; 842 hwaddr start_addr, size; 843 hwaddr slot_size; 844 845 size = kvm_align_section(section, &start_addr); 846 while (size) { 847 slot_size = MIN(kvm_max_slot_size, size); 848 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 849 if (!mem) { 850 /* We don't have a slot if we want to trap every access. */ 851 return; 852 } 853 if (kvm_slot_get_dirty_log(s, mem)) { 854 kvm_slot_sync_dirty_pages(mem); 855 } 856 start_addr += slot_size; 857 size -= slot_size; 858 } 859 } 860 861 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 862 #define KVM_CLEAR_LOG_SHIFT 6 863 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 864 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 865 866 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 867 uint64_t size) 868 { 869 KVMState *s = kvm_state; 870 uint64_t end, bmap_start, start_delta, bmap_npages; 871 struct kvm_clear_dirty_log d; 872 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 873 int ret; 874 875 /* 876 * We need to extend either the start or the size or both to 877 * satisfy the KVM interface requirement. Firstly, do the start 878 * page alignment on 64 host pages 879 */ 880 bmap_start = start & KVM_CLEAR_LOG_MASK; 881 start_delta = start - bmap_start; 882 bmap_start /= psize; 883 884 /* 885 * The kernel interface has restriction on the size too, that either: 886 * 887 * (1) the size is 64 host pages aligned (just like the start), or 888 * (2) the size fills up until the end of the KVM memslot. 889 */ 890 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 891 << KVM_CLEAR_LOG_SHIFT; 892 end = mem->memory_size / psize; 893 if (bmap_npages > end - bmap_start) { 894 bmap_npages = end - bmap_start; 895 } 896 start_delta /= psize; 897 898 /* 899 * Prepare the bitmap to clear dirty bits. Here we must guarantee 900 * that we won't clear any unknown dirty bits otherwise we might 901 * accidentally clear some set bits which are not yet synced from 902 * the kernel into QEMU's bitmap, then we'll lose track of the 903 * guest modifications upon those pages (which can directly lead 904 * to guest data loss or panic after migration). 905 * 906 * Layout of the KVMSlot.dirty_bmap: 907 * 908 * |<-------- bmap_npages -----------..>| 909 * [1] 910 * start_delta size 911 * |----------------|-------------|------------------|------------| 912 * ^ ^ ^ ^ 913 * | | | | 914 * start bmap_start (start) end 915 * of memslot of memslot 916 * 917 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 918 */ 919 920 assert(bmap_start % BITS_PER_LONG == 0); 921 /* We should never do log_clear before log_sync */ 922 assert(mem->dirty_bmap); 923 if (start_delta || bmap_npages - size / psize) { 924 /* Slow path - we need to manipulate a temp bitmap */ 925 bmap_clear = bitmap_new(bmap_npages); 926 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 927 bmap_start, start_delta + size / psize); 928 /* 929 * We need to fill the holes at start because that was not 930 * specified by the caller and we extended the bitmap only for 931 * 64 pages alignment 932 */ 933 bitmap_clear(bmap_clear, 0, start_delta); 934 d.dirty_bitmap = bmap_clear; 935 } else { 936 /* 937 * Fast path - both start and size align well with BITS_PER_LONG 938 * (or the end of memory slot) 939 */ 940 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 941 } 942 943 d.first_page = bmap_start; 944 /* It should never overflow. If it happens, say something */ 945 assert(bmap_npages <= UINT32_MAX); 946 d.num_pages = bmap_npages; 947 d.slot = mem->slot | (as_id << 16); 948 949 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 950 if (ret < 0 && ret != -ENOENT) { 951 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 952 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 953 __func__, d.slot, (uint64_t)d.first_page, 954 (uint32_t)d.num_pages, ret); 955 } else { 956 ret = 0; 957 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 958 } 959 960 /* 961 * After we have updated the remote dirty bitmap, we update the 962 * cached bitmap as well for the memslot, then if another user 963 * clears the same region we know we shouldn't clear it again on 964 * the remote otherwise it's data loss as well. 965 */ 966 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 967 size / psize); 968 /* This handles the NULL case well */ 969 g_free(bmap_clear); 970 return ret; 971 } 972 973 974 /** 975 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 976 * 977 * NOTE: this will be a no-op if we haven't enabled manual dirty log 978 * protection in the host kernel because in that case this operation 979 * will be done within log_sync(). 980 * 981 * @kml: the kvm memory listener 982 * @section: the memory range to clear dirty bitmap 983 */ 984 static int kvm_physical_log_clear(KVMMemoryListener *kml, 985 MemoryRegionSection *section) 986 { 987 KVMState *s = kvm_state; 988 uint64_t start, size, offset, count; 989 KVMSlot *mem; 990 int ret = 0, i; 991 992 if (!s->manual_dirty_log_protect) { 993 /* No need to do explicit clear */ 994 return ret; 995 } 996 997 start = section->offset_within_address_space; 998 size = int128_get64(section->size); 999 1000 if (!size) { 1001 /* Nothing more we can do... */ 1002 return ret; 1003 } 1004 1005 kvm_slots_lock(); 1006 1007 for (i = 0; i < s->nr_slots; i++) { 1008 mem = &kml->slots[i]; 1009 /* Discard slots that are empty or do not overlap the section */ 1010 if (!mem->memory_size || 1011 mem->start_addr > start + size - 1 || 1012 start > mem->start_addr + mem->memory_size - 1) { 1013 continue; 1014 } 1015 1016 if (start >= mem->start_addr) { 1017 /* The slot starts before section or is aligned to it. */ 1018 offset = start - mem->start_addr; 1019 count = MIN(mem->memory_size - offset, size); 1020 } else { 1021 /* The slot starts after section. */ 1022 offset = 0; 1023 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1024 } 1025 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1026 if (ret < 0) { 1027 break; 1028 } 1029 } 1030 1031 kvm_slots_unlock(); 1032 1033 return ret; 1034 } 1035 1036 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1037 MemoryRegionSection *secion, 1038 hwaddr start, hwaddr size) 1039 { 1040 KVMState *s = kvm_state; 1041 1042 if (s->coalesced_mmio) { 1043 struct kvm_coalesced_mmio_zone zone; 1044 1045 zone.addr = start; 1046 zone.size = size; 1047 zone.pad = 0; 1048 1049 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1050 } 1051 } 1052 1053 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1054 MemoryRegionSection *secion, 1055 hwaddr start, hwaddr size) 1056 { 1057 KVMState *s = kvm_state; 1058 1059 if (s->coalesced_mmio) { 1060 struct kvm_coalesced_mmio_zone zone; 1061 1062 zone.addr = start; 1063 zone.size = size; 1064 zone.pad = 0; 1065 1066 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1067 } 1068 } 1069 1070 static void kvm_coalesce_pio_add(MemoryListener *listener, 1071 MemoryRegionSection *section, 1072 hwaddr start, hwaddr size) 1073 { 1074 KVMState *s = kvm_state; 1075 1076 if (s->coalesced_pio) { 1077 struct kvm_coalesced_mmio_zone zone; 1078 1079 zone.addr = start; 1080 zone.size = size; 1081 zone.pio = 1; 1082 1083 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1084 } 1085 } 1086 1087 static void kvm_coalesce_pio_del(MemoryListener *listener, 1088 MemoryRegionSection *section, 1089 hwaddr start, hwaddr size) 1090 { 1091 KVMState *s = kvm_state; 1092 1093 if (s->coalesced_pio) { 1094 struct kvm_coalesced_mmio_zone zone; 1095 1096 zone.addr = start; 1097 zone.size = size; 1098 zone.pio = 1; 1099 1100 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1101 } 1102 } 1103 1104 static MemoryListener kvm_coalesced_pio_listener = { 1105 .name = "kvm-coalesced-pio", 1106 .coalesced_io_add = kvm_coalesce_pio_add, 1107 .coalesced_io_del = kvm_coalesce_pio_del, 1108 }; 1109 1110 int kvm_check_extension(KVMState *s, unsigned int extension) 1111 { 1112 int ret; 1113 1114 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1115 if (ret < 0) { 1116 ret = 0; 1117 } 1118 1119 return ret; 1120 } 1121 1122 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1123 { 1124 int ret; 1125 1126 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1127 if (ret < 0) { 1128 /* VM wide version not implemented, use global one instead */ 1129 ret = kvm_check_extension(s, extension); 1130 } 1131 1132 return ret; 1133 } 1134 1135 typedef struct HWPoisonPage { 1136 ram_addr_t ram_addr; 1137 QLIST_ENTRY(HWPoisonPage) list; 1138 } HWPoisonPage; 1139 1140 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1141 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1142 1143 static void kvm_unpoison_all(void *param) 1144 { 1145 HWPoisonPage *page, *next_page; 1146 1147 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1148 QLIST_REMOVE(page, list); 1149 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1150 g_free(page); 1151 } 1152 } 1153 1154 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1155 { 1156 HWPoisonPage *page; 1157 1158 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1159 if (page->ram_addr == ram_addr) { 1160 return; 1161 } 1162 } 1163 page = g_new(HWPoisonPage, 1); 1164 page->ram_addr = ram_addr; 1165 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1166 } 1167 1168 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1169 { 1170 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1171 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1172 * endianness, but the memory core hands them in target endianness. 1173 * For example, PPC is always treated as big-endian even if running 1174 * on KVM and on PPC64LE. Correct here. 1175 */ 1176 switch (size) { 1177 case 2: 1178 val = bswap16(val); 1179 break; 1180 case 4: 1181 val = bswap32(val); 1182 break; 1183 } 1184 #endif 1185 return val; 1186 } 1187 1188 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1189 bool assign, uint32_t size, bool datamatch) 1190 { 1191 int ret; 1192 struct kvm_ioeventfd iofd = { 1193 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1194 .addr = addr, 1195 .len = size, 1196 .flags = 0, 1197 .fd = fd, 1198 }; 1199 1200 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1201 datamatch); 1202 if (!kvm_enabled()) { 1203 return -ENOSYS; 1204 } 1205 1206 if (datamatch) { 1207 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1208 } 1209 if (!assign) { 1210 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1211 } 1212 1213 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1214 1215 if (ret < 0) { 1216 return -errno; 1217 } 1218 1219 return 0; 1220 } 1221 1222 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1223 bool assign, uint32_t size, bool datamatch) 1224 { 1225 struct kvm_ioeventfd kick = { 1226 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1227 .addr = addr, 1228 .flags = KVM_IOEVENTFD_FLAG_PIO, 1229 .len = size, 1230 .fd = fd, 1231 }; 1232 int r; 1233 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1234 if (!kvm_enabled()) { 1235 return -ENOSYS; 1236 } 1237 if (datamatch) { 1238 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1239 } 1240 if (!assign) { 1241 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1242 } 1243 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1244 if (r < 0) { 1245 return r; 1246 } 1247 return 0; 1248 } 1249 1250 1251 static int kvm_check_many_ioeventfds(void) 1252 { 1253 /* Userspace can use ioeventfd for io notification. This requires a host 1254 * that supports eventfd(2) and an I/O thread; since eventfd does not 1255 * support SIGIO it cannot interrupt the vcpu. 1256 * 1257 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1258 * can avoid creating too many ioeventfds. 1259 */ 1260 #if defined(CONFIG_EVENTFD) 1261 int ioeventfds[7]; 1262 int i, ret = 0; 1263 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1264 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1265 if (ioeventfds[i] < 0) { 1266 break; 1267 } 1268 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1269 if (ret < 0) { 1270 close(ioeventfds[i]); 1271 break; 1272 } 1273 } 1274 1275 /* Decide whether many devices are supported or not */ 1276 ret = i == ARRAY_SIZE(ioeventfds); 1277 1278 while (i-- > 0) { 1279 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1280 close(ioeventfds[i]); 1281 } 1282 return ret; 1283 #else 1284 return 0; 1285 #endif 1286 } 1287 1288 static const KVMCapabilityInfo * 1289 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1290 { 1291 while (list->name) { 1292 if (!kvm_check_extension(s, list->value)) { 1293 return list; 1294 } 1295 list++; 1296 } 1297 return NULL; 1298 } 1299 1300 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1301 { 1302 g_assert( 1303 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1304 ); 1305 kvm_max_slot_size = max_slot_size; 1306 } 1307 1308 /* Called with KVMMemoryListener.slots_lock held */ 1309 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1310 MemoryRegionSection *section, bool add) 1311 { 1312 KVMSlot *mem; 1313 int err; 1314 MemoryRegion *mr = section->mr; 1315 bool writable = !mr->readonly && !mr->rom_device; 1316 hwaddr start_addr, size, slot_size, mr_offset; 1317 ram_addr_t ram_start_offset; 1318 void *ram; 1319 1320 if (!memory_region_is_ram(mr)) { 1321 if (writable || !kvm_readonly_mem_allowed) { 1322 return; 1323 } else if (!mr->romd_mode) { 1324 /* If the memory device is not in romd_mode, then we actually want 1325 * to remove the kvm memory slot so all accesses will trap. */ 1326 add = false; 1327 } 1328 } 1329 1330 size = kvm_align_section(section, &start_addr); 1331 if (!size) { 1332 return; 1333 } 1334 1335 /* The offset of the kvmslot within the memory region */ 1336 mr_offset = section->offset_within_region + start_addr - 1337 section->offset_within_address_space; 1338 1339 /* use aligned delta to align the ram address and offset */ 1340 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1341 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1342 1343 if (!add) { 1344 do { 1345 slot_size = MIN(kvm_max_slot_size, size); 1346 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1347 if (!mem) { 1348 return; 1349 } 1350 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1351 /* 1352 * NOTE: We should be aware of the fact that here we're only 1353 * doing a best effort to sync dirty bits. No matter whether 1354 * we're using dirty log or dirty ring, we ignored two facts: 1355 * 1356 * (1) dirty bits can reside in hardware buffers (PML) 1357 * 1358 * (2) after we collected dirty bits here, pages can be dirtied 1359 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1360 * remove the slot. 1361 * 1362 * Not easy. Let's cross the fingers until it's fixed. 1363 */ 1364 if (kvm_state->kvm_dirty_ring_size) { 1365 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1366 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1367 kvm_slot_sync_dirty_pages(mem); 1368 kvm_slot_get_dirty_log(kvm_state, mem); 1369 } 1370 } else { 1371 kvm_slot_get_dirty_log(kvm_state, mem); 1372 } 1373 kvm_slot_sync_dirty_pages(mem); 1374 } 1375 1376 /* unregister the slot */ 1377 g_free(mem->dirty_bmap); 1378 mem->dirty_bmap = NULL; 1379 mem->memory_size = 0; 1380 mem->flags = 0; 1381 err = kvm_set_user_memory_region(kml, mem, false); 1382 if (err) { 1383 fprintf(stderr, "%s: error unregistering slot: %s\n", 1384 __func__, strerror(-err)); 1385 abort(); 1386 } 1387 start_addr += slot_size; 1388 size -= slot_size; 1389 } while (size); 1390 return; 1391 } 1392 1393 /* register the new slot */ 1394 do { 1395 slot_size = MIN(kvm_max_slot_size, size); 1396 mem = kvm_alloc_slot(kml); 1397 mem->as_id = kml->as_id; 1398 mem->memory_size = slot_size; 1399 mem->start_addr = start_addr; 1400 mem->ram_start_offset = ram_start_offset; 1401 mem->ram = ram; 1402 mem->flags = kvm_mem_flags(mr); 1403 kvm_slot_init_dirty_bitmap(mem); 1404 err = kvm_set_user_memory_region(kml, mem, true); 1405 if (err) { 1406 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1407 strerror(-err)); 1408 abort(); 1409 } 1410 start_addr += slot_size; 1411 ram_start_offset += slot_size; 1412 ram += slot_size; 1413 size -= slot_size; 1414 } while (size); 1415 } 1416 1417 static void *kvm_dirty_ring_reaper_thread(void *data) 1418 { 1419 KVMState *s = data; 1420 struct KVMDirtyRingReaper *r = &s->reaper; 1421 1422 rcu_register_thread(); 1423 1424 trace_kvm_dirty_ring_reaper("init"); 1425 1426 while (true) { 1427 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1428 trace_kvm_dirty_ring_reaper("wait"); 1429 /* 1430 * TODO: provide a smarter timeout rather than a constant? 1431 */ 1432 sleep(1); 1433 1434 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1435 if (dirtylimit_in_service()) { 1436 continue; 1437 } 1438 1439 trace_kvm_dirty_ring_reaper("wakeup"); 1440 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1441 1442 qemu_mutex_lock_iothread(); 1443 kvm_dirty_ring_reap(s, NULL); 1444 qemu_mutex_unlock_iothread(); 1445 1446 r->reaper_iteration++; 1447 } 1448 1449 trace_kvm_dirty_ring_reaper("exit"); 1450 1451 rcu_unregister_thread(); 1452 1453 return NULL; 1454 } 1455 1456 static int kvm_dirty_ring_reaper_init(KVMState *s) 1457 { 1458 struct KVMDirtyRingReaper *r = &s->reaper; 1459 1460 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1461 kvm_dirty_ring_reaper_thread, 1462 s, QEMU_THREAD_JOINABLE); 1463 1464 return 0; 1465 } 1466 1467 static int kvm_dirty_ring_init(KVMState *s) 1468 { 1469 uint32_t ring_size = s->kvm_dirty_ring_size; 1470 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1471 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1472 int ret; 1473 1474 s->kvm_dirty_ring_size = 0; 1475 s->kvm_dirty_ring_bytes = 0; 1476 1477 /* Bail if the dirty ring size isn't specified */ 1478 if (!ring_size) { 1479 return 0; 1480 } 1481 1482 /* 1483 * Read the max supported pages. Fall back to dirty logging mode 1484 * if the dirty ring isn't supported. 1485 */ 1486 ret = kvm_vm_check_extension(s, capability); 1487 if (ret <= 0) { 1488 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1489 ret = kvm_vm_check_extension(s, capability); 1490 } 1491 1492 if (ret <= 0) { 1493 warn_report("KVM dirty ring not available, using bitmap method"); 1494 return 0; 1495 } 1496 1497 if (ring_bytes > ret) { 1498 error_report("KVM dirty ring size %" PRIu32 " too big " 1499 "(maximum is %ld). Please use a smaller value.", 1500 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1501 return -EINVAL; 1502 } 1503 1504 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1505 if (ret) { 1506 error_report("Enabling of KVM dirty ring failed: %s. " 1507 "Suggested minimum value is 1024.", strerror(-ret)); 1508 return -EIO; 1509 } 1510 1511 /* Enable the backup bitmap if it is supported */ 1512 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1513 if (ret > 0) { 1514 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1515 if (ret) { 1516 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1517 "%s. ", strerror(-ret)); 1518 return -EIO; 1519 } 1520 1521 s->kvm_dirty_ring_with_bitmap = true; 1522 } 1523 1524 s->kvm_dirty_ring_size = ring_size; 1525 s->kvm_dirty_ring_bytes = ring_bytes; 1526 1527 return 0; 1528 } 1529 1530 static void kvm_region_add(MemoryListener *listener, 1531 MemoryRegionSection *section) 1532 { 1533 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1534 KVMMemoryUpdate *update; 1535 1536 update = g_new0(KVMMemoryUpdate, 1); 1537 update->section = *section; 1538 1539 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1540 } 1541 1542 static void kvm_region_del(MemoryListener *listener, 1543 MemoryRegionSection *section) 1544 { 1545 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1546 KVMMemoryUpdate *update; 1547 1548 update = g_new0(KVMMemoryUpdate, 1); 1549 update->section = *section; 1550 1551 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1552 } 1553 1554 static void kvm_region_commit(MemoryListener *listener) 1555 { 1556 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1557 listener); 1558 KVMMemoryUpdate *u1, *u2; 1559 bool need_inhibit = false; 1560 1561 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1562 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1563 return; 1564 } 1565 1566 /* 1567 * We have to be careful when regions to add overlap with ranges to remove. 1568 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1569 * is currently active. 1570 * 1571 * The lists are order by addresses, so it's easy to find overlaps. 1572 */ 1573 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1574 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1575 while (u1 && u2) { 1576 Range r1, r2; 1577 1578 range_init_nofail(&r1, u1->section.offset_within_address_space, 1579 int128_get64(u1->section.size)); 1580 range_init_nofail(&r2, u2->section.offset_within_address_space, 1581 int128_get64(u2->section.size)); 1582 1583 if (range_overlaps_range(&r1, &r2)) { 1584 need_inhibit = true; 1585 break; 1586 } 1587 if (range_lob(&r1) < range_lob(&r2)) { 1588 u1 = QSIMPLEQ_NEXT(u1, next); 1589 } else { 1590 u2 = QSIMPLEQ_NEXT(u2, next); 1591 } 1592 } 1593 1594 kvm_slots_lock(); 1595 if (need_inhibit) { 1596 accel_ioctl_inhibit_begin(); 1597 } 1598 1599 /* Remove all memslots before adding the new ones. */ 1600 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1601 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1602 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1603 1604 kvm_set_phys_mem(kml, &u1->section, false); 1605 memory_region_unref(u1->section.mr); 1606 1607 g_free(u1); 1608 } 1609 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1610 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1611 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1612 1613 memory_region_ref(u1->section.mr); 1614 kvm_set_phys_mem(kml, &u1->section, true); 1615 1616 g_free(u1); 1617 } 1618 1619 if (need_inhibit) { 1620 accel_ioctl_inhibit_end(); 1621 } 1622 kvm_slots_unlock(); 1623 } 1624 1625 static void kvm_log_sync(MemoryListener *listener, 1626 MemoryRegionSection *section) 1627 { 1628 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1629 1630 kvm_slots_lock(); 1631 kvm_physical_sync_dirty_bitmap(kml, section); 1632 kvm_slots_unlock(); 1633 } 1634 1635 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1636 { 1637 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1638 KVMState *s = kvm_state; 1639 KVMSlot *mem; 1640 int i; 1641 1642 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1643 kvm_dirty_ring_flush(); 1644 1645 /* 1646 * TODO: make this faster when nr_slots is big while there are 1647 * only a few used slots (small VMs). 1648 */ 1649 kvm_slots_lock(); 1650 for (i = 0; i < s->nr_slots; i++) { 1651 mem = &kml->slots[i]; 1652 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1653 kvm_slot_sync_dirty_pages(mem); 1654 1655 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1656 kvm_slot_get_dirty_log(s, mem)) { 1657 kvm_slot_sync_dirty_pages(mem); 1658 } 1659 1660 /* 1661 * This is not needed by KVM_GET_DIRTY_LOG because the 1662 * ioctl will unconditionally overwrite the whole region. 1663 * However kvm dirty ring has no such side effect. 1664 */ 1665 kvm_slot_reset_dirty_pages(mem); 1666 } 1667 } 1668 kvm_slots_unlock(); 1669 } 1670 1671 static void kvm_log_clear(MemoryListener *listener, 1672 MemoryRegionSection *section) 1673 { 1674 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1675 int r; 1676 1677 r = kvm_physical_log_clear(kml, section); 1678 if (r < 0) { 1679 error_report_once("%s: kvm log clear failed: mr=%s " 1680 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1681 section->mr->name, section->offset_within_region, 1682 int128_get64(section->size)); 1683 abort(); 1684 } 1685 } 1686 1687 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1688 MemoryRegionSection *section, 1689 bool match_data, uint64_t data, 1690 EventNotifier *e) 1691 { 1692 int fd = event_notifier_get_fd(e); 1693 int r; 1694 1695 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1696 data, true, int128_get64(section->size), 1697 match_data); 1698 if (r < 0) { 1699 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1700 __func__, strerror(-r), -r); 1701 abort(); 1702 } 1703 } 1704 1705 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1706 MemoryRegionSection *section, 1707 bool match_data, uint64_t data, 1708 EventNotifier *e) 1709 { 1710 int fd = event_notifier_get_fd(e); 1711 int r; 1712 1713 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1714 data, false, int128_get64(section->size), 1715 match_data); 1716 if (r < 0) { 1717 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1718 __func__, strerror(-r), -r); 1719 abort(); 1720 } 1721 } 1722 1723 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1724 MemoryRegionSection *section, 1725 bool match_data, uint64_t data, 1726 EventNotifier *e) 1727 { 1728 int fd = event_notifier_get_fd(e); 1729 int r; 1730 1731 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1732 data, true, int128_get64(section->size), 1733 match_data); 1734 if (r < 0) { 1735 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1736 __func__, strerror(-r), -r); 1737 abort(); 1738 } 1739 } 1740 1741 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1742 MemoryRegionSection *section, 1743 bool match_data, uint64_t data, 1744 EventNotifier *e) 1745 1746 { 1747 int fd = event_notifier_get_fd(e); 1748 int r; 1749 1750 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1751 data, false, int128_get64(section->size), 1752 match_data); 1753 if (r < 0) { 1754 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1755 __func__, strerror(-r), -r); 1756 abort(); 1757 } 1758 } 1759 1760 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1761 AddressSpace *as, int as_id, const char *name) 1762 { 1763 int i; 1764 1765 kml->slots = g_new0(KVMSlot, s->nr_slots); 1766 kml->as_id = as_id; 1767 1768 for (i = 0; i < s->nr_slots; i++) { 1769 kml->slots[i].slot = i; 1770 } 1771 1772 QSIMPLEQ_INIT(&kml->transaction_add); 1773 QSIMPLEQ_INIT(&kml->transaction_del); 1774 1775 kml->listener.region_add = kvm_region_add; 1776 kml->listener.region_del = kvm_region_del; 1777 kml->listener.commit = kvm_region_commit; 1778 kml->listener.log_start = kvm_log_start; 1779 kml->listener.log_stop = kvm_log_stop; 1780 kml->listener.priority = 10; 1781 kml->listener.name = name; 1782 1783 if (s->kvm_dirty_ring_size) { 1784 kml->listener.log_sync_global = kvm_log_sync_global; 1785 } else { 1786 kml->listener.log_sync = kvm_log_sync; 1787 kml->listener.log_clear = kvm_log_clear; 1788 } 1789 1790 memory_listener_register(&kml->listener, as); 1791 1792 for (i = 0; i < s->nr_as; ++i) { 1793 if (!s->as[i].as) { 1794 s->as[i].as = as; 1795 s->as[i].ml = kml; 1796 break; 1797 } 1798 } 1799 } 1800 1801 static MemoryListener kvm_io_listener = { 1802 .name = "kvm-io", 1803 .eventfd_add = kvm_io_ioeventfd_add, 1804 .eventfd_del = kvm_io_ioeventfd_del, 1805 .priority = 10, 1806 }; 1807 1808 int kvm_set_irq(KVMState *s, int irq, int level) 1809 { 1810 struct kvm_irq_level event; 1811 int ret; 1812 1813 assert(kvm_async_interrupts_enabled()); 1814 1815 event.level = level; 1816 event.irq = irq; 1817 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1818 if (ret < 0) { 1819 perror("kvm_set_irq"); 1820 abort(); 1821 } 1822 1823 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1824 } 1825 1826 #ifdef KVM_CAP_IRQ_ROUTING 1827 typedef struct KVMMSIRoute { 1828 struct kvm_irq_routing_entry kroute; 1829 QTAILQ_ENTRY(KVMMSIRoute) entry; 1830 } KVMMSIRoute; 1831 1832 static void set_gsi(KVMState *s, unsigned int gsi) 1833 { 1834 set_bit(gsi, s->used_gsi_bitmap); 1835 } 1836 1837 static void clear_gsi(KVMState *s, unsigned int gsi) 1838 { 1839 clear_bit(gsi, s->used_gsi_bitmap); 1840 } 1841 1842 void kvm_init_irq_routing(KVMState *s) 1843 { 1844 int gsi_count, i; 1845 1846 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1847 if (gsi_count > 0) { 1848 /* Round up so we can search ints using ffs */ 1849 s->used_gsi_bitmap = bitmap_new(gsi_count); 1850 s->gsi_count = gsi_count; 1851 } 1852 1853 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1854 s->nr_allocated_irq_routes = 0; 1855 1856 if (!kvm_direct_msi_allowed) { 1857 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1858 QTAILQ_INIT(&s->msi_hashtab[i]); 1859 } 1860 } 1861 1862 kvm_arch_init_irq_routing(s); 1863 } 1864 1865 void kvm_irqchip_commit_routes(KVMState *s) 1866 { 1867 int ret; 1868 1869 if (kvm_gsi_direct_mapping()) { 1870 return; 1871 } 1872 1873 if (!kvm_gsi_routing_enabled()) { 1874 return; 1875 } 1876 1877 s->irq_routes->flags = 0; 1878 trace_kvm_irqchip_commit_routes(); 1879 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1880 assert(ret == 0); 1881 } 1882 1883 static void kvm_add_routing_entry(KVMState *s, 1884 struct kvm_irq_routing_entry *entry) 1885 { 1886 struct kvm_irq_routing_entry *new; 1887 int n, size; 1888 1889 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1890 n = s->nr_allocated_irq_routes * 2; 1891 if (n < 64) { 1892 n = 64; 1893 } 1894 size = sizeof(struct kvm_irq_routing); 1895 size += n * sizeof(*new); 1896 s->irq_routes = g_realloc(s->irq_routes, size); 1897 s->nr_allocated_irq_routes = n; 1898 } 1899 n = s->irq_routes->nr++; 1900 new = &s->irq_routes->entries[n]; 1901 1902 *new = *entry; 1903 1904 set_gsi(s, entry->gsi); 1905 } 1906 1907 static int kvm_update_routing_entry(KVMState *s, 1908 struct kvm_irq_routing_entry *new_entry) 1909 { 1910 struct kvm_irq_routing_entry *entry; 1911 int n; 1912 1913 for (n = 0; n < s->irq_routes->nr; n++) { 1914 entry = &s->irq_routes->entries[n]; 1915 if (entry->gsi != new_entry->gsi) { 1916 continue; 1917 } 1918 1919 if(!memcmp(entry, new_entry, sizeof *entry)) { 1920 return 0; 1921 } 1922 1923 *entry = *new_entry; 1924 1925 return 0; 1926 } 1927 1928 return -ESRCH; 1929 } 1930 1931 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1932 { 1933 struct kvm_irq_routing_entry e = {}; 1934 1935 assert(pin < s->gsi_count); 1936 1937 e.gsi = irq; 1938 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1939 e.flags = 0; 1940 e.u.irqchip.irqchip = irqchip; 1941 e.u.irqchip.pin = pin; 1942 kvm_add_routing_entry(s, &e); 1943 } 1944 1945 void kvm_irqchip_release_virq(KVMState *s, int virq) 1946 { 1947 struct kvm_irq_routing_entry *e; 1948 int i; 1949 1950 if (kvm_gsi_direct_mapping()) { 1951 return; 1952 } 1953 1954 for (i = 0; i < s->irq_routes->nr; i++) { 1955 e = &s->irq_routes->entries[i]; 1956 if (e->gsi == virq) { 1957 s->irq_routes->nr--; 1958 *e = s->irq_routes->entries[s->irq_routes->nr]; 1959 } 1960 } 1961 clear_gsi(s, virq); 1962 kvm_arch_release_virq_post(virq); 1963 trace_kvm_irqchip_release_virq(virq); 1964 } 1965 1966 void kvm_irqchip_add_change_notifier(Notifier *n) 1967 { 1968 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1969 } 1970 1971 void kvm_irqchip_remove_change_notifier(Notifier *n) 1972 { 1973 notifier_remove(n); 1974 } 1975 1976 void kvm_irqchip_change_notify(void) 1977 { 1978 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1979 } 1980 1981 static unsigned int kvm_hash_msi(uint32_t data) 1982 { 1983 /* This is optimized for IA32 MSI layout. However, no other arch shall 1984 * repeat the mistake of not providing a direct MSI injection API. */ 1985 return data & 0xff; 1986 } 1987 1988 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1989 { 1990 KVMMSIRoute *route, *next; 1991 unsigned int hash; 1992 1993 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1994 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1995 kvm_irqchip_release_virq(s, route->kroute.gsi); 1996 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1997 g_free(route); 1998 } 1999 } 2000 } 2001 2002 static int kvm_irqchip_get_virq(KVMState *s) 2003 { 2004 int next_virq; 2005 2006 /* 2007 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 2008 * GSI numbers are more than the number of IRQ route. Allocating a GSI 2009 * number can succeed even though a new route entry cannot be added. 2010 * When this happens, flush dynamic MSI entries to free IRQ route entries. 2011 */ 2012 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 2013 kvm_flush_dynamic_msi_routes(s); 2014 } 2015 2016 /* Return the lowest unused GSI in the bitmap */ 2017 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 2018 if (next_virq >= s->gsi_count) { 2019 return -ENOSPC; 2020 } else { 2021 return next_virq; 2022 } 2023 } 2024 2025 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 2026 { 2027 unsigned int hash = kvm_hash_msi(msg.data); 2028 KVMMSIRoute *route; 2029 2030 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 2031 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 2032 route->kroute.u.msi.address_hi == (msg.address >> 32) && 2033 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 2034 return route; 2035 } 2036 } 2037 return NULL; 2038 } 2039 2040 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2041 { 2042 struct kvm_msi msi; 2043 KVMMSIRoute *route; 2044 2045 if (kvm_direct_msi_allowed) { 2046 msi.address_lo = (uint32_t)msg.address; 2047 msi.address_hi = msg.address >> 32; 2048 msi.data = le32_to_cpu(msg.data); 2049 msi.flags = 0; 2050 memset(msi.pad, 0, sizeof(msi.pad)); 2051 2052 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2053 } 2054 2055 route = kvm_lookup_msi_route(s, msg); 2056 if (!route) { 2057 int virq; 2058 2059 virq = kvm_irqchip_get_virq(s); 2060 if (virq < 0) { 2061 return virq; 2062 } 2063 2064 route = g_new0(KVMMSIRoute, 1); 2065 route->kroute.gsi = virq; 2066 route->kroute.type = KVM_IRQ_ROUTING_MSI; 2067 route->kroute.flags = 0; 2068 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 2069 route->kroute.u.msi.address_hi = msg.address >> 32; 2070 route->kroute.u.msi.data = le32_to_cpu(msg.data); 2071 2072 kvm_add_routing_entry(s, &route->kroute); 2073 kvm_irqchip_commit_routes(s); 2074 2075 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 2076 entry); 2077 } 2078 2079 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 2080 2081 return kvm_set_irq(s, route->kroute.gsi, 1); 2082 } 2083 2084 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2085 { 2086 struct kvm_irq_routing_entry kroute = {}; 2087 int virq; 2088 KVMState *s = c->s; 2089 MSIMessage msg = {0, 0}; 2090 2091 if (pci_available && dev) { 2092 msg = pci_get_msi_message(dev, vector); 2093 } 2094 2095 if (kvm_gsi_direct_mapping()) { 2096 return kvm_arch_msi_data_to_gsi(msg.data); 2097 } 2098 2099 if (!kvm_gsi_routing_enabled()) { 2100 return -ENOSYS; 2101 } 2102 2103 virq = kvm_irqchip_get_virq(s); 2104 if (virq < 0) { 2105 return virq; 2106 } 2107 2108 kroute.gsi = virq; 2109 kroute.type = KVM_IRQ_ROUTING_MSI; 2110 kroute.flags = 0; 2111 kroute.u.msi.address_lo = (uint32_t)msg.address; 2112 kroute.u.msi.address_hi = msg.address >> 32; 2113 kroute.u.msi.data = le32_to_cpu(msg.data); 2114 if (pci_available && kvm_msi_devid_required()) { 2115 kroute.flags = KVM_MSI_VALID_DEVID; 2116 kroute.u.msi.devid = pci_requester_id(dev); 2117 } 2118 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2119 kvm_irqchip_release_virq(s, virq); 2120 return -EINVAL; 2121 } 2122 2123 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2124 vector, virq); 2125 2126 kvm_add_routing_entry(s, &kroute); 2127 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2128 c->changes++; 2129 2130 return virq; 2131 } 2132 2133 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2134 PCIDevice *dev) 2135 { 2136 struct kvm_irq_routing_entry kroute = {}; 2137 2138 if (kvm_gsi_direct_mapping()) { 2139 return 0; 2140 } 2141 2142 if (!kvm_irqchip_in_kernel()) { 2143 return -ENOSYS; 2144 } 2145 2146 kroute.gsi = virq; 2147 kroute.type = KVM_IRQ_ROUTING_MSI; 2148 kroute.flags = 0; 2149 kroute.u.msi.address_lo = (uint32_t)msg.address; 2150 kroute.u.msi.address_hi = msg.address >> 32; 2151 kroute.u.msi.data = le32_to_cpu(msg.data); 2152 if (pci_available && kvm_msi_devid_required()) { 2153 kroute.flags = KVM_MSI_VALID_DEVID; 2154 kroute.u.msi.devid = pci_requester_id(dev); 2155 } 2156 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2157 return -EINVAL; 2158 } 2159 2160 trace_kvm_irqchip_update_msi_route(virq); 2161 2162 return kvm_update_routing_entry(s, &kroute); 2163 } 2164 2165 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2166 EventNotifier *resample, int virq, 2167 bool assign) 2168 { 2169 int fd = event_notifier_get_fd(event); 2170 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2171 2172 struct kvm_irqfd irqfd = { 2173 .fd = fd, 2174 .gsi = virq, 2175 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2176 }; 2177 2178 if (rfd != -1) { 2179 assert(assign); 2180 if (kvm_irqchip_is_split()) { 2181 /* 2182 * When the slow irqchip (e.g. IOAPIC) is in the 2183 * userspace, KVM kernel resamplefd will not work because 2184 * the EOI of the interrupt will be delivered to userspace 2185 * instead, so the KVM kernel resamplefd kick will be 2186 * skipped. The userspace here mimics what the kernel 2187 * provides with resamplefd, remember the resamplefd and 2188 * kick it when we receive EOI of this IRQ. 2189 * 2190 * This is hackery because IOAPIC is mostly bypassed 2191 * (except EOI broadcasts) when irqfd is used. However 2192 * this can bring much performance back for split irqchip 2193 * with INTx IRQs (for VFIO, this gives 93% perf of the 2194 * full fast path, which is 46% perf boost comparing to 2195 * the INTx slow path). 2196 */ 2197 kvm_resample_fd_insert(virq, resample); 2198 } else { 2199 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2200 irqfd.resamplefd = rfd; 2201 } 2202 } else if (!assign) { 2203 if (kvm_irqchip_is_split()) { 2204 kvm_resample_fd_remove(virq); 2205 } 2206 } 2207 2208 if (!kvm_irqfds_enabled()) { 2209 return -ENOSYS; 2210 } 2211 2212 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2213 } 2214 2215 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2216 { 2217 struct kvm_irq_routing_entry kroute = {}; 2218 int virq; 2219 2220 if (!kvm_gsi_routing_enabled()) { 2221 return -ENOSYS; 2222 } 2223 2224 virq = kvm_irqchip_get_virq(s); 2225 if (virq < 0) { 2226 return virq; 2227 } 2228 2229 kroute.gsi = virq; 2230 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2231 kroute.flags = 0; 2232 kroute.u.adapter.summary_addr = adapter->summary_addr; 2233 kroute.u.adapter.ind_addr = adapter->ind_addr; 2234 kroute.u.adapter.summary_offset = adapter->summary_offset; 2235 kroute.u.adapter.ind_offset = adapter->ind_offset; 2236 kroute.u.adapter.adapter_id = adapter->adapter_id; 2237 2238 kvm_add_routing_entry(s, &kroute); 2239 2240 return virq; 2241 } 2242 2243 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2244 { 2245 struct kvm_irq_routing_entry kroute = {}; 2246 int virq; 2247 2248 if (!kvm_gsi_routing_enabled()) { 2249 return -ENOSYS; 2250 } 2251 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2252 return -ENOSYS; 2253 } 2254 virq = kvm_irqchip_get_virq(s); 2255 if (virq < 0) { 2256 return virq; 2257 } 2258 2259 kroute.gsi = virq; 2260 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2261 kroute.flags = 0; 2262 kroute.u.hv_sint.vcpu = vcpu; 2263 kroute.u.hv_sint.sint = sint; 2264 2265 kvm_add_routing_entry(s, &kroute); 2266 kvm_irqchip_commit_routes(s); 2267 2268 return virq; 2269 } 2270 2271 #else /* !KVM_CAP_IRQ_ROUTING */ 2272 2273 void kvm_init_irq_routing(KVMState *s) 2274 { 2275 } 2276 2277 void kvm_irqchip_release_virq(KVMState *s, int virq) 2278 { 2279 } 2280 2281 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2282 { 2283 abort(); 2284 } 2285 2286 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2287 { 2288 return -ENOSYS; 2289 } 2290 2291 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2292 { 2293 return -ENOSYS; 2294 } 2295 2296 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2297 { 2298 return -ENOSYS; 2299 } 2300 2301 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2302 EventNotifier *resample, int virq, 2303 bool assign) 2304 { 2305 abort(); 2306 } 2307 2308 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2309 { 2310 return -ENOSYS; 2311 } 2312 #endif /* !KVM_CAP_IRQ_ROUTING */ 2313 2314 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2315 EventNotifier *rn, int virq) 2316 { 2317 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2318 } 2319 2320 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2321 int virq) 2322 { 2323 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2324 } 2325 2326 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2327 EventNotifier *rn, qemu_irq irq) 2328 { 2329 gpointer key, gsi; 2330 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2331 2332 if (!found) { 2333 return -ENXIO; 2334 } 2335 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2336 } 2337 2338 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2339 qemu_irq irq) 2340 { 2341 gpointer key, gsi; 2342 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2343 2344 if (!found) { 2345 return -ENXIO; 2346 } 2347 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2348 } 2349 2350 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2351 { 2352 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2353 } 2354 2355 static void kvm_irqchip_create(KVMState *s) 2356 { 2357 int ret; 2358 2359 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2360 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2361 ; 2362 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2363 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2364 if (ret < 0) { 2365 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2366 exit(1); 2367 } 2368 } else { 2369 return; 2370 } 2371 2372 /* First probe and see if there's a arch-specific hook to create the 2373 * in-kernel irqchip for us */ 2374 ret = kvm_arch_irqchip_create(s); 2375 if (ret == 0) { 2376 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2377 error_report("Split IRQ chip mode not supported."); 2378 exit(1); 2379 } else { 2380 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2381 } 2382 } 2383 if (ret < 0) { 2384 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2385 exit(1); 2386 } 2387 2388 kvm_kernel_irqchip = true; 2389 /* If we have an in-kernel IRQ chip then we must have asynchronous 2390 * interrupt delivery (though the reverse is not necessarily true) 2391 */ 2392 kvm_async_interrupts_allowed = true; 2393 kvm_halt_in_kernel_allowed = true; 2394 2395 kvm_init_irq_routing(s); 2396 2397 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2398 } 2399 2400 /* Find number of supported CPUs using the recommended 2401 * procedure from the kernel API documentation to cope with 2402 * older kernels that may be missing capabilities. 2403 */ 2404 static int kvm_recommended_vcpus(KVMState *s) 2405 { 2406 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2407 return (ret) ? ret : 4; 2408 } 2409 2410 static int kvm_max_vcpus(KVMState *s) 2411 { 2412 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2413 return (ret) ? ret : kvm_recommended_vcpus(s); 2414 } 2415 2416 static int kvm_max_vcpu_id(KVMState *s) 2417 { 2418 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2419 return (ret) ? ret : kvm_max_vcpus(s); 2420 } 2421 2422 bool kvm_vcpu_id_is_valid(int vcpu_id) 2423 { 2424 KVMState *s = KVM_STATE(current_accel()); 2425 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2426 } 2427 2428 bool kvm_dirty_ring_enabled(void) 2429 { 2430 return kvm_state->kvm_dirty_ring_size ? true : false; 2431 } 2432 2433 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2434 strList *names, strList *targets, Error **errp); 2435 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2436 2437 uint32_t kvm_dirty_ring_size(void) 2438 { 2439 return kvm_state->kvm_dirty_ring_size; 2440 } 2441 2442 static int kvm_init(MachineState *ms) 2443 { 2444 MachineClass *mc = MACHINE_GET_CLASS(ms); 2445 static const char upgrade_note[] = 2446 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2447 "(see http://sourceforge.net/projects/kvm).\n"; 2448 const struct { 2449 const char *name; 2450 int num; 2451 } num_cpus[] = { 2452 { "SMP", ms->smp.cpus }, 2453 { "hotpluggable", ms->smp.max_cpus }, 2454 { /* end of list */ } 2455 }, *nc = num_cpus; 2456 int soft_vcpus_limit, hard_vcpus_limit; 2457 KVMState *s; 2458 const KVMCapabilityInfo *missing_cap; 2459 int ret; 2460 int type = 0; 2461 uint64_t dirty_log_manual_caps; 2462 2463 qemu_mutex_init(&kml_slots_lock); 2464 2465 s = KVM_STATE(ms->accelerator); 2466 2467 /* 2468 * On systems where the kernel can support different base page 2469 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2470 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2471 * page size for the system though. 2472 */ 2473 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2474 2475 s->sigmask_len = 8; 2476 accel_blocker_init(); 2477 2478 #ifdef KVM_CAP_SET_GUEST_DEBUG 2479 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2480 #endif 2481 QLIST_INIT(&s->kvm_parked_vcpus); 2482 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2483 if (s->fd == -1) { 2484 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2485 ret = -errno; 2486 goto err; 2487 } 2488 2489 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2490 if (ret < KVM_API_VERSION) { 2491 if (ret >= 0) { 2492 ret = -EINVAL; 2493 } 2494 fprintf(stderr, "kvm version too old\n"); 2495 goto err; 2496 } 2497 2498 if (ret > KVM_API_VERSION) { 2499 ret = -EINVAL; 2500 fprintf(stderr, "kvm version not supported\n"); 2501 goto err; 2502 } 2503 2504 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2505 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2506 2507 /* If unspecified, use the default value */ 2508 if (!s->nr_slots) { 2509 s->nr_slots = 32; 2510 } 2511 2512 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2513 if (s->nr_as <= 1) { 2514 s->nr_as = 1; 2515 } 2516 s->as = g_new0(struct KVMAs, s->nr_as); 2517 2518 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2519 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2520 "kvm-type", 2521 &error_abort); 2522 type = mc->kvm_type(ms, kvm_type); 2523 } else if (mc->kvm_type) { 2524 type = mc->kvm_type(ms, NULL); 2525 } 2526 2527 do { 2528 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2529 } while (ret == -EINTR); 2530 2531 if (ret < 0) { 2532 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2533 strerror(-ret)); 2534 2535 #ifdef TARGET_S390X 2536 if (ret == -EINVAL) { 2537 fprintf(stderr, 2538 "Host kernel setup problem detected. Please verify:\n"); 2539 fprintf(stderr, "- for kernels supporting the switch_amode or" 2540 " user_mode parameters, whether\n"); 2541 fprintf(stderr, 2542 " user space is running in primary address space\n"); 2543 fprintf(stderr, 2544 "- for kernels supporting the vm.allocate_pgste sysctl, " 2545 "whether it is enabled\n"); 2546 } 2547 #elif defined(TARGET_PPC) 2548 if (ret == -EINVAL) { 2549 fprintf(stderr, 2550 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2551 (type == 2) ? "pr" : "hv"); 2552 } 2553 #endif 2554 goto err; 2555 } 2556 2557 s->vmfd = ret; 2558 2559 /* check the vcpu limits */ 2560 soft_vcpus_limit = kvm_recommended_vcpus(s); 2561 hard_vcpus_limit = kvm_max_vcpus(s); 2562 2563 while (nc->name) { 2564 if (nc->num > soft_vcpus_limit) { 2565 warn_report("Number of %s cpus requested (%d) exceeds " 2566 "the recommended cpus supported by KVM (%d)", 2567 nc->name, nc->num, soft_vcpus_limit); 2568 2569 if (nc->num > hard_vcpus_limit) { 2570 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2571 "the maximum cpus supported by KVM (%d)\n", 2572 nc->name, nc->num, hard_vcpus_limit); 2573 exit(1); 2574 } 2575 } 2576 nc++; 2577 } 2578 2579 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2580 if (!missing_cap) { 2581 missing_cap = 2582 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2583 } 2584 if (missing_cap) { 2585 ret = -EINVAL; 2586 fprintf(stderr, "kvm does not support %s\n%s", 2587 missing_cap->name, upgrade_note); 2588 goto err; 2589 } 2590 2591 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2592 s->coalesced_pio = s->coalesced_mmio && 2593 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2594 2595 /* 2596 * Enable KVM dirty ring if supported, otherwise fall back to 2597 * dirty logging mode 2598 */ 2599 ret = kvm_dirty_ring_init(s); 2600 if (ret < 0) { 2601 goto err; 2602 } 2603 2604 /* 2605 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2606 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2607 * page is wr-protected initially, which is against how kvm dirty ring is 2608 * usage - kvm dirty ring requires all pages are wr-protected at the very 2609 * beginning. Enabling this feature for dirty ring causes data corruption. 2610 * 2611 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2612 * we may expect a higher stall time when starting the migration. In the 2613 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2614 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2615 * guest pages. 2616 */ 2617 if (!s->kvm_dirty_ring_size) { 2618 dirty_log_manual_caps = 2619 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2620 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2621 KVM_DIRTY_LOG_INITIALLY_SET); 2622 s->manual_dirty_log_protect = dirty_log_manual_caps; 2623 if (dirty_log_manual_caps) { 2624 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2625 dirty_log_manual_caps); 2626 if (ret) { 2627 warn_report("Trying to enable capability %"PRIu64" of " 2628 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2629 "Falling back to the legacy mode. ", 2630 dirty_log_manual_caps); 2631 s->manual_dirty_log_protect = 0; 2632 } 2633 } 2634 } 2635 2636 #ifdef KVM_CAP_VCPU_EVENTS 2637 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2638 #endif 2639 2640 s->robust_singlestep = 2641 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2642 2643 #ifdef KVM_CAP_DEBUGREGS 2644 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2645 #endif 2646 2647 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2648 2649 #ifdef KVM_CAP_IRQ_ROUTING 2650 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2651 #endif 2652 2653 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2654 2655 s->irq_set_ioctl = KVM_IRQ_LINE; 2656 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2657 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2658 } 2659 2660 kvm_readonly_mem_allowed = 2661 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2662 2663 kvm_eventfds_allowed = 2664 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2665 2666 kvm_irqfds_allowed = 2667 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2668 2669 kvm_resamplefds_allowed = 2670 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2671 2672 kvm_vm_attributes_allowed = 2673 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2674 2675 kvm_ioeventfd_any_length_allowed = 2676 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2677 2678 #ifdef KVM_CAP_SET_GUEST_DEBUG 2679 kvm_has_guest_debug = 2680 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2681 #endif 2682 2683 kvm_sstep_flags = 0; 2684 if (kvm_has_guest_debug) { 2685 kvm_sstep_flags = SSTEP_ENABLE; 2686 2687 #if defined KVM_CAP_SET_GUEST_DEBUG2 2688 int guest_debug_flags = 2689 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2690 2691 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2692 kvm_sstep_flags |= SSTEP_NOIRQ; 2693 } 2694 #endif 2695 } 2696 2697 kvm_state = s; 2698 2699 ret = kvm_arch_init(ms, s); 2700 if (ret < 0) { 2701 goto err; 2702 } 2703 2704 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2705 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2706 } 2707 2708 qemu_register_reset(kvm_unpoison_all, NULL); 2709 2710 if (s->kernel_irqchip_allowed) { 2711 kvm_irqchip_create(s); 2712 } 2713 2714 if (kvm_eventfds_allowed) { 2715 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2716 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2717 } 2718 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2719 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2720 2721 kvm_memory_listener_register(s, &s->memory_listener, 2722 &address_space_memory, 0, "kvm-memory"); 2723 if (kvm_eventfds_allowed) { 2724 memory_listener_register(&kvm_io_listener, 2725 &address_space_io); 2726 } 2727 memory_listener_register(&kvm_coalesced_pio_listener, 2728 &address_space_io); 2729 2730 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2731 2732 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2733 if (!s->sync_mmu) { 2734 ret = ram_block_discard_disable(true); 2735 assert(!ret); 2736 } 2737 2738 if (s->kvm_dirty_ring_size) { 2739 ret = kvm_dirty_ring_reaper_init(s); 2740 if (ret) { 2741 goto err; 2742 } 2743 } 2744 2745 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2746 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2747 query_stats_schemas_cb); 2748 } 2749 2750 return 0; 2751 2752 err: 2753 assert(ret < 0); 2754 if (s->vmfd >= 0) { 2755 close(s->vmfd); 2756 } 2757 if (s->fd != -1) { 2758 close(s->fd); 2759 } 2760 g_free(s->memory_listener.slots); 2761 2762 return ret; 2763 } 2764 2765 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2766 { 2767 s->sigmask_len = sigmask_len; 2768 } 2769 2770 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2771 int size, uint32_t count) 2772 { 2773 int i; 2774 uint8_t *ptr = data; 2775 2776 for (i = 0; i < count; i++) { 2777 address_space_rw(&address_space_io, port, attrs, 2778 ptr, size, 2779 direction == KVM_EXIT_IO_OUT); 2780 ptr += size; 2781 } 2782 } 2783 2784 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2785 { 2786 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2787 run->internal.suberror); 2788 2789 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2790 int i; 2791 2792 for (i = 0; i < run->internal.ndata; ++i) { 2793 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2794 i, (uint64_t)run->internal.data[i]); 2795 } 2796 } 2797 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2798 fprintf(stderr, "emulation failure\n"); 2799 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2800 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2801 return EXCP_INTERRUPT; 2802 } 2803 } 2804 /* FIXME: Should trigger a qmp message to let management know 2805 * something went wrong. 2806 */ 2807 return -1; 2808 } 2809 2810 void kvm_flush_coalesced_mmio_buffer(void) 2811 { 2812 KVMState *s = kvm_state; 2813 2814 if (s->coalesced_flush_in_progress) { 2815 return; 2816 } 2817 2818 s->coalesced_flush_in_progress = true; 2819 2820 if (s->coalesced_mmio_ring) { 2821 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2822 while (ring->first != ring->last) { 2823 struct kvm_coalesced_mmio *ent; 2824 2825 ent = &ring->coalesced_mmio[ring->first]; 2826 2827 if (ent->pio == 1) { 2828 address_space_write(&address_space_io, ent->phys_addr, 2829 MEMTXATTRS_UNSPECIFIED, ent->data, 2830 ent->len); 2831 } else { 2832 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2833 } 2834 smp_wmb(); 2835 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2836 } 2837 } 2838 2839 s->coalesced_flush_in_progress = false; 2840 } 2841 2842 bool kvm_cpu_check_are_resettable(void) 2843 { 2844 return kvm_arch_cpu_check_are_resettable(); 2845 } 2846 2847 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2848 { 2849 if (!cpu->vcpu_dirty) { 2850 kvm_arch_get_registers(cpu); 2851 cpu->vcpu_dirty = true; 2852 } 2853 } 2854 2855 void kvm_cpu_synchronize_state(CPUState *cpu) 2856 { 2857 if (!cpu->vcpu_dirty) { 2858 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2859 } 2860 } 2861 2862 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2863 { 2864 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2865 cpu->vcpu_dirty = false; 2866 } 2867 2868 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2869 { 2870 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2871 } 2872 2873 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2874 { 2875 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2876 cpu->vcpu_dirty = false; 2877 } 2878 2879 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2880 { 2881 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2882 } 2883 2884 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2885 { 2886 cpu->vcpu_dirty = true; 2887 } 2888 2889 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2890 { 2891 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2892 } 2893 2894 #ifdef KVM_HAVE_MCE_INJECTION 2895 static __thread void *pending_sigbus_addr; 2896 static __thread int pending_sigbus_code; 2897 static __thread bool have_sigbus_pending; 2898 #endif 2899 2900 static void kvm_cpu_kick(CPUState *cpu) 2901 { 2902 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2903 } 2904 2905 static void kvm_cpu_kick_self(void) 2906 { 2907 if (kvm_immediate_exit) { 2908 kvm_cpu_kick(current_cpu); 2909 } else { 2910 qemu_cpu_kick_self(); 2911 } 2912 } 2913 2914 static void kvm_eat_signals(CPUState *cpu) 2915 { 2916 struct timespec ts = { 0, 0 }; 2917 siginfo_t siginfo; 2918 sigset_t waitset; 2919 sigset_t chkset; 2920 int r; 2921 2922 if (kvm_immediate_exit) { 2923 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2924 /* Write kvm_run->immediate_exit before the cpu->exit_request 2925 * write in kvm_cpu_exec. 2926 */ 2927 smp_wmb(); 2928 return; 2929 } 2930 2931 sigemptyset(&waitset); 2932 sigaddset(&waitset, SIG_IPI); 2933 2934 do { 2935 r = sigtimedwait(&waitset, &siginfo, &ts); 2936 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2937 perror("sigtimedwait"); 2938 exit(1); 2939 } 2940 2941 r = sigpending(&chkset); 2942 if (r == -1) { 2943 perror("sigpending"); 2944 exit(1); 2945 } 2946 } while (sigismember(&chkset, SIG_IPI)); 2947 } 2948 2949 int kvm_cpu_exec(CPUState *cpu) 2950 { 2951 struct kvm_run *run = cpu->kvm_run; 2952 int ret, run_ret; 2953 2954 DPRINTF("kvm_cpu_exec()\n"); 2955 2956 if (kvm_arch_process_async_events(cpu)) { 2957 qatomic_set(&cpu->exit_request, 0); 2958 return EXCP_HLT; 2959 } 2960 2961 qemu_mutex_unlock_iothread(); 2962 cpu_exec_start(cpu); 2963 2964 do { 2965 MemTxAttrs attrs; 2966 2967 if (cpu->vcpu_dirty) { 2968 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2969 cpu->vcpu_dirty = false; 2970 } 2971 2972 kvm_arch_pre_run(cpu, run); 2973 if (qatomic_read(&cpu->exit_request)) { 2974 DPRINTF("interrupt exit requested\n"); 2975 /* 2976 * KVM requires us to reenter the kernel after IO exits to complete 2977 * instruction emulation. This self-signal will ensure that we 2978 * leave ASAP again. 2979 */ 2980 kvm_cpu_kick_self(); 2981 } 2982 2983 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2984 * Matching barrier in kvm_eat_signals. 2985 */ 2986 smp_rmb(); 2987 2988 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2989 2990 attrs = kvm_arch_post_run(cpu, run); 2991 2992 #ifdef KVM_HAVE_MCE_INJECTION 2993 if (unlikely(have_sigbus_pending)) { 2994 qemu_mutex_lock_iothread(); 2995 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2996 pending_sigbus_addr); 2997 have_sigbus_pending = false; 2998 qemu_mutex_unlock_iothread(); 2999 } 3000 #endif 3001 3002 if (run_ret < 0) { 3003 if (run_ret == -EINTR || run_ret == -EAGAIN) { 3004 DPRINTF("io window exit\n"); 3005 kvm_eat_signals(cpu); 3006 ret = EXCP_INTERRUPT; 3007 break; 3008 } 3009 fprintf(stderr, "error: kvm run failed %s\n", 3010 strerror(-run_ret)); 3011 #ifdef TARGET_PPC 3012 if (run_ret == -EBUSY) { 3013 fprintf(stderr, 3014 "This is probably because your SMT is enabled.\n" 3015 "VCPU can only run on primary threads with all " 3016 "secondary threads offline.\n"); 3017 } 3018 #endif 3019 ret = -1; 3020 break; 3021 } 3022 3023 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 3024 switch (run->exit_reason) { 3025 case KVM_EXIT_IO: 3026 DPRINTF("handle_io\n"); 3027 /* Called outside BQL */ 3028 kvm_handle_io(run->io.port, attrs, 3029 (uint8_t *)run + run->io.data_offset, 3030 run->io.direction, 3031 run->io.size, 3032 run->io.count); 3033 ret = 0; 3034 break; 3035 case KVM_EXIT_MMIO: 3036 DPRINTF("handle_mmio\n"); 3037 /* Called outside BQL */ 3038 address_space_rw(&address_space_memory, 3039 run->mmio.phys_addr, attrs, 3040 run->mmio.data, 3041 run->mmio.len, 3042 run->mmio.is_write); 3043 ret = 0; 3044 break; 3045 case KVM_EXIT_IRQ_WINDOW_OPEN: 3046 DPRINTF("irq_window_open\n"); 3047 ret = EXCP_INTERRUPT; 3048 break; 3049 case KVM_EXIT_SHUTDOWN: 3050 DPRINTF("shutdown\n"); 3051 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3052 ret = EXCP_INTERRUPT; 3053 break; 3054 case KVM_EXIT_UNKNOWN: 3055 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 3056 (uint64_t)run->hw.hardware_exit_reason); 3057 ret = -1; 3058 break; 3059 case KVM_EXIT_INTERNAL_ERROR: 3060 ret = kvm_handle_internal_error(cpu, run); 3061 break; 3062 case KVM_EXIT_DIRTY_RING_FULL: 3063 /* 3064 * We shouldn't continue if the dirty ring of this vcpu is 3065 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3066 */ 3067 trace_kvm_dirty_ring_full(cpu->cpu_index); 3068 qemu_mutex_lock_iothread(); 3069 /* 3070 * We throttle vCPU by making it sleep once it exit from kernel 3071 * due to dirty ring full. In the dirtylimit scenario, reaping 3072 * all vCPUs after a single vCPU dirty ring get full result in 3073 * the miss of sleep, so just reap the ring-fulled vCPU. 3074 */ 3075 if (dirtylimit_in_service()) { 3076 kvm_dirty_ring_reap(kvm_state, cpu); 3077 } else { 3078 kvm_dirty_ring_reap(kvm_state, NULL); 3079 } 3080 qemu_mutex_unlock_iothread(); 3081 dirtylimit_vcpu_execute(cpu); 3082 ret = 0; 3083 break; 3084 case KVM_EXIT_SYSTEM_EVENT: 3085 switch (run->system_event.type) { 3086 case KVM_SYSTEM_EVENT_SHUTDOWN: 3087 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3088 ret = EXCP_INTERRUPT; 3089 break; 3090 case KVM_SYSTEM_EVENT_RESET: 3091 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3092 ret = EXCP_INTERRUPT; 3093 break; 3094 case KVM_SYSTEM_EVENT_CRASH: 3095 kvm_cpu_synchronize_state(cpu); 3096 qemu_mutex_lock_iothread(); 3097 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3098 qemu_mutex_unlock_iothread(); 3099 ret = 0; 3100 break; 3101 default: 3102 DPRINTF("kvm_arch_handle_exit\n"); 3103 ret = kvm_arch_handle_exit(cpu, run); 3104 break; 3105 } 3106 break; 3107 default: 3108 DPRINTF("kvm_arch_handle_exit\n"); 3109 ret = kvm_arch_handle_exit(cpu, run); 3110 break; 3111 } 3112 } while (ret == 0); 3113 3114 cpu_exec_end(cpu); 3115 qemu_mutex_lock_iothread(); 3116 3117 if (ret < 0) { 3118 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3119 vm_stop(RUN_STATE_INTERNAL_ERROR); 3120 } 3121 3122 qatomic_set(&cpu->exit_request, 0); 3123 return ret; 3124 } 3125 3126 int kvm_ioctl(KVMState *s, int type, ...) 3127 { 3128 int ret; 3129 void *arg; 3130 va_list ap; 3131 3132 va_start(ap, type); 3133 arg = va_arg(ap, void *); 3134 va_end(ap); 3135 3136 trace_kvm_ioctl(type, arg); 3137 ret = ioctl(s->fd, type, arg); 3138 if (ret == -1) { 3139 ret = -errno; 3140 } 3141 return ret; 3142 } 3143 3144 int kvm_vm_ioctl(KVMState *s, int type, ...) 3145 { 3146 int ret; 3147 void *arg; 3148 va_list ap; 3149 3150 va_start(ap, type); 3151 arg = va_arg(ap, void *); 3152 va_end(ap); 3153 3154 trace_kvm_vm_ioctl(type, arg); 3155 accel_ioctl_begin(); 3156 ret = ioctl(s->vmfd, type, arg); 3157 accel_ioctl_end(); 3158 if (ret == -1) { 3159 ret = -errno; 3160 } 3161 return ret; 3162 } 3163 3164 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3165 { 3166 int ret; 3167 void *arg; 3168 va_list ap; 3169 3170 va_start(ap, type); 3171 arg = va_arg(ap, void *); 3172 va_end(ap); 3173 3174 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3175 accel_cpu_ioctl_begin(cpu); 3176 ret = ioctl(cpu->kvm_fd, type, arg); 3177 accel_cpu_ioctl_end(cpu); 3178 if (ret == -1) { 3179 ret = -errno; 3180 } 3181 return ret; 3182 } 3183 3184 int kvm_device_ioctl(int fd, int type, ...) 3185 { 3186 int ret; 3187 void *arg; 3188 va_list ap; 3189 3190 va_start(ap, type); 3191 arg = va_arg(ap, void *); 3192 va_end(ap); 3193 3194 trace_kvm_device_ioctl(fd, type, arg); 3195 accel_ioctl_begin(); 3196 ret = ioctl(fd, type, arg); 3197 accel_ioctl_end(); 3198 if (ret == -1) { 3199 ret = -errno; 3200 } 3201 return ret; 3202 } 3203 3204 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3205 { 3206 int ret; 3207 struct kvm_device_attr attribute = { 3208 .group = group, 3209 .attr = attr, 3210 }; 3211 3212 if (!kvm_vm_attributes_allowed) { 3213 return 0; 3214 } 3215 3216 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3217 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3218 return ret ? 0 : 1; 3219 } 3220 3221 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3222 { 3223 struct kvm_device_attr attribute = { 3224 .group = group, 3225 .attr = attr, 3226 .flags = 0, 3227 }; 3228 3229 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3230 } 3231 3232 int kvm_device_access(int fd, int group, uint64_t attr, 3233 void *val, bool write, Error **errp) 3234 { 3235 struct kvm_device_attr kvmattr; 3236 int err; 3237 3238 kvmattr.flags = 0; 3239 kvmattr.group = group; 3240 kvmattr.attr = attr; 3241 kvmattr.addr = (uintptr_t)val; 3242 3243 err = kvm_device_ioctl(fd, 3244 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3245 &kvmattr); 3246 if (err < 0) { 3247 error_setg_errno(errp, -err, 3248 "KVM_%s_DEVICE_ATTR failed: Group %d " 3249 "attr 0x%016" PRIx64, 3250 write ? "SET" : "GET", group, attr); 3251 } 3252 return err; 3253 } 3254 3255 bool kvm_has_sync_mmu(void) 3256 { 3257 return kvm_state->sync_mmu; 3258 } 3259 3260 int kvm_has_vcpu_events(void) 3261 { 3262 return kvm_state->vcpu_events; 3263 } 3264 3265 int kvm_has_robust_singlestep(void) 3266 { 3267 return kvm_state->robust_singlestep; 3268 } 3269 3270 int kvm_has_debugregs(void) 3271 { 3272 return kvm_state->debugregs; 3273 } 3274 3275 int kvm_max_nested_state_length(void) 3276 { 3277 return kvm_state->max_nested_state_len; 3278 } 3279 3280 int kvm_has_many_ioeventfds(void) 3281 { 3282 if (!kvm_enabled()) { 3283 return 0; 3284 } 3285 return kvm_state->many_ioeventfds; 3286 } 3287 3288 int kvm_has_gsi_routing(void) 3289 { 3290 #ifdef KVM_CAP_IRQ_ROUTING 3291 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3292 #else 3293 return false; 3294 #endif 3295 } 3296 3297 int kvm_has_intx_set_mask(void) 3298 { 3299 return kvm_state->intx_set_mask; 3300 } 3301 3302 bool kvm_arm_supports_user_irq(void) 3303 { 3304 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3305 } 3306 3307 #ifdef KVM_CAP_SET_GUEST_DEBUG 3308 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3309 target_ulong pc) 3310 { 3311 struct kvm_sw_breakpoint *bp; 3312 3313 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3314 if (bp->pc == pc) { 3315 return bp; 3316 } 3317 } 3318 return NULL; 3319 } 3320 3321 int kvm_sw_breakpoints_active(CPUState *cpu) 3322 { 3323 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3324 } 3325 3326 struct kvm_set_guest_debug_data { 3327 struct kvm_guest_debug dbg; 3328 int err; 3329 }; 3330 3331 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3332 { 3333 struct kvm_set_guest_debug_data *dbg_data = 3334 (struct kvm_set_guest_debug_data *) data.host_ptr; 3335 3336 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3337 &dbg_data->dbg); 3338 } 3339 3340 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3341 { 3342 struct kvm_set_guest_debug_data data; 3343 3344 data.dbg.control = reinject_trap; 3345 3346 if (cpu->singlestep_enabled) { 3347 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3348 3349 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3350 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3351 } 3352 } 3353 kvm_arch_update_guest_debug(cpu, &data.dbg); 3354 3355 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3356 RUN_ON_CPU_HOST_PTR(&data)); 3357 return data.err; 3358 } 3359 3360 bool kvm_supports_guest_debug(void) 3361 { 3362 /* probed during kvm_init() */ 3363 return kvm_has_guest_debug; 3364 } 3365 3366 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3367 { 3368 struct kvm_sw_breakpoint *bp; 3369 int err; 3370 3371 if (type == GDB_BREAKPOINT_SW) { 3372 bp = kvm_find_sw_breakpoint(cpu, addr); 3373 if (bp) { 3374 bp->use_count++; 3375 return 0; 3376 } 3377 3378 bp = g_new(struct kvm_sw_breakpoint, 1); 3379 bp->pc = addr; 3380 bp->use_count = 1; 3381 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3382 if (err) { 3383 g_free(bp); 3384 return err; 3385 } 3386 3387 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3388 } else { 3389 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3390 if (err) { 3391 return err; 3392 } 3393 } 3394 3395 CPU_FOREACH(cpu) { 3396 err = kvm_update_guest_debug(cpu, 0); 3397 if (err) { 3398 return err; 3399 } 3400 } 3401 return 0; 3402 } 3403 3404 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3405 { 3406 struct kvm_sw_breakpoint *bp; 3407 int err; 3408 3409 if (type == GDB_BREAKPOINT_SW) { 3410 bp = kvm_find_sw_breakpoint(cpu, addr); 3411 if (!bp) { 3412 return -ENOENT; 3413 } 3414 3415 if (bp->use_count > 1) { 3416 bp->use_count--; 3417 return 0; 3418 } 3419 3420 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3421 if (err) { 3422 return err; 3423 } 3424 3425 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3426 g_free(bp); 3427 } else { 3428 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3429 if (err) { 3430 return err; 3431 } 3432 } 3433 3434 CPU_FOREACH(cpu) { 3435 err = kvm_update_guest_debug(cpu, 0); 3436 if (err) { 3437 return err; 3438 } 3439 } 3440 return 0; 3441 } 3442 3443 void kvm_remove_all_breakpoints(CPUState *cpu) 3444 { 3445 struct kvm_sw_breakpoint *bp, *next; 3446 KVMState *s = cpu->kvm_state; 3447 CPUState *tmpcpu; 3448 3449 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3450 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3451 /* Try harder to find a CPU that currently sees the breakpoint. */ 3452 CPU_FOREACH(tmpcpu) { 3453 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3454 break; 3455 } 3456 } 3457 } 3458 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3459 g_free(bp); 3460 } 3461 kvm_arch_remove_all_hw_breakpoints(); 3462 3463 CPU_FOREACH(cpu) { 3464 kvm_update_guest_debug(cpu, 0); 3465 } 3466 } 3467 3468 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3469 3470 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3471 { 3472 KVMState *s = kvm_state; 3473 struct kvm_signal_mask *sigmask; 3474 int r; 3475 3476 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3477 3478 sigmask->len = s->sigmask_len; 3479 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3480 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3481 g_free(sigmask); 3482 3483 return r; 3484 } 3485 3486 static void kvm_ipi_signal(int sig) 3487 { 3488 if (current_cpu) { 3489 assert(kvm_immediate_exit); 3490 kvm_cpu_kick(current_cpu); 3491 } 3492 } 3493 3494 void kvm_init_cpu_signals(CPUState *cpu) 3495 { 3496 int r; 3497 sigset_t set; 3498 struct sigaction sigact; 3499 3500 memset(&sigact, 0, sizeof(sigact)); 3501 sigact.sa_handler = kvm_ipi_signal; 3502 sigaction(SIG_IPI, &sigact, NULL); 3503 3504 pthread_sigmask(SIG_BLOCK, NULL, &set); 3505 #if defined KVM_HAVE_MCE_INJECTION 3506 sigdelset(&set, SIGBUS); 3507 pthread_sigmask(SIG_SETMASK, &set, NULL); 3508 #endif 3509 sigdelset(&set, SIG_IPI); 3510 if (kvm_immediate_exit) { 3511 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3512 } else { 3513 r = kvm_set_signal_mask(cpu, &set); 3514 } 3515 if (r) { 3516 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3517 exit(1); 3518 } 3519 } 3520 3521 /* Called asynchronously in VCPU thread. */ 3522 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3523 { 3524 #ifdef KVM_HAVE_MCE_INJECTION 3525 if (have_sigbus_pending) { 3526 return 1; 3527 } 3528 have_sigbus_pending = true; 3529 pending_sigbus_addr = addr; 3530 pending_sigbus_code = code; 3531 qatomic_set(&cpu->exit_request, 1); 3532 return 0; 3533 #else 3534 return 1; 3535 #endif 3536 } 3537 3538 /* Called synchronously (via signalfd) in main thread. */ 3539 int kvm_on_sigbus(int code, void *addr) 3540 { 3541 #ifdef KVM_HAVE_MCE_INJECTION 3542 /* Action required MCE kills the process if SIGBUS is blocked. Because 3543 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3544 * we can only get action optional here. 3545 */ 3546 assert(code != BUS_MCEERR_AR); 3547 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3548 return 0; 3549 #else 3550 return 1; 3551 #endif 3552 } 3553 3554 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3555 { 3556 int ret; 3557 struct kvm_create_device create_dev; 3558 3559 create_dev.type = type; 3560 create_dev.fd = -1; 3561 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3562 3563 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3564 return -ENOTSUP; 3565 } 3566 3567 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3568 if (ret) { 3569 return ret; 3570 } 3571 3572 return test ? 0 : create_dev.fd; 3573 } 3574 3575 bool kvm_device_supported(int vmfd, uint64_t type) 3576 { 3577 struct kvm_create_device create_dev = { 3578 .type = type, 3579 .fd = -1, 3580 .flags = KVM_CREATE_DEVICE_TEST, 3581 }; 3582 3583 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3584 return false; 3585 } 3586 3587 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3588 } 3589 3590 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3591 { 3592 struct kvm_one_reg reg; 3593 int r; 3594 3595 reg.id = id; 3596 reg.addr = (uintptr_t) source; 3597 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3598 if (r) { 3599 trace_kvm_failed_reg_set(id, strerror(-r)); 3600 } 3601 return r; 3602 } 3603 3604 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3605 { 3606 struct kvm_one_reg reg; 3607 int r; 3608 3609 reg.id = id; 3610 reg.addr = (uintptr_t) target; 3611 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3612 if (r) { 3613 trace_kvm_failed_reg_get(id, strerror(-r)); 3614 } 3615 return r; 3616 } 3617 3618 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3619 hwaddr start_addr, hwaddr size) 3620 { 3621 KVMState *kvm = KVM_STATE(ms->accelerator); 3622 int i; 3623 3624 for (i = 0; i < kvm->nr_as; ++i) { 3625 if (kvm->as[i].as == as && kvm->as[i].ml) { 3626 size = MIN(kvm_max_slot_size, size); 3627 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3628 start_addr, size); 3629 } 3630 } 3631 3632 return false; 3633 } 3634 3635 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3636 const char *name, void *opaque, 3637 Error **errp) 3638 { 3639 KVMState *s = KVM_STATE(obj); 3640 int64_t value = s->kvm_shadow_mem; 3641 3642 visit_type_int(v, name, &value, errp); 3643 } 3644 3645 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3646 const char *name, void *opaque, 3647 Error **errp) 3648 { 3649 KVMState *s = KVM_STATE(obj); 3650 int64_t value; 3651 3652 if (s->fd != -1) { 3653 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3654 return; 3655 } 3656 3657 if (!visit_type_int(v, name, &value, errp)) { 3658 return; 3659 } 3660 3661 s->kvm_shadow_mem = value; 3662 } 3663 3664 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3665 const char *name, void *opaque, 3666 Error **errp) 3667 { 3668 KVMState *s = KVM_STATE(obj); 3669 OnOffSplit mode; 3670 3671 if (s->fd != -1) { 3672 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3673 return; 3674 } 3675 3676 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3677 return; 3678 } 3679 switch (mode) { 3680 case ON_OFF_SPLIT_ON: 3681 s->kernel_irqchip_allowed = true; 3682 s->kernel_irqchip_required = true; 3683 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3684 break; 3685 case ON_OFF_SPLIT_OFF: 3686 s->kernel_irqchip_allowed = false; 3687 s->kernel_irqchip_required = false; 3688 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3689 break; 3690 case ON_OFF_SPLIT_SPLIT: 3691 s->kernel_irqchip_allowed = true; 3692 s->kernel_irqchip_required = true; 3693 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3694 break; 3695 default: 3696 /* The value was checked in visit_type_OnOffSplit() above. If 3697 * we get here, then something is wrong in QEMU. 3698 */ 3699 abort(); 3700 } 3701 } 3702 3703 bool kvm_kernel_irqchip_allowed(void) 3704 { 3705 return kvm_state->kernel_irqchip_allowed; 3706 } 3707 3708 bool kvm_kernel_irqchip_required(void) 3709 { 3710 return kvm_state->kernel_irqchip_required; 3711 } 3712 3713 bool kvm_kernel_irqchip_split(void) 3714 { 3715 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3716 } 3717 3718 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3719 const char *name, void *opaque, 3720 Error **errp) 3721 { 3722 KVMState *s = KVM_STATE(obj); 3723 uint32_t value = s->kvm_dirty_ring_size; 3724 3725 visit_type_uint32(v, name, &value, errp); 3726 } 3727 3728 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3729 const char *name, void *opaque, 3730 Error **errp) 3731 { 3732 KVMState *s = KVM_STATE(obj); 3733 uint32_t value; 3734 3735 if (s->fd != -1) { 3736 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3737 return; 3738 } 3739 3740 if (!visit_type_uint32(v, name, &value, errp)) { 3741 return; 3742 } 3743 if (value & (value - 1)) { 3744 error_setg(errp, "dirty-ring-size must be a power of two."); 3745 return; 3746 } 3747 3748 s->kvm_dirty_ring_size = value; 3749 } 3750 3751 static void kvm_accel_instance_init(Object *obj) 3752 { 3753 KVMState *s = KVM_STATE(obj); 3754 3755 s->fd = -1; 3756 s->vmfd = -1; 3757 s->kvm_shadow_mem = -1; 3758 s->kernel_irqchip_allowed = true; 3759 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3760 /* KVM dirty ring is by default off */ 3761 s->kvm_dirty_ring_size = 0; 3762 s->kvm_dirty_ring_with_bitmap = false; 3763 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3764 s->notify_window = 0; 3765 s->xen_version = 0; 3766 s->xen_gnttab_max_frames = 64; 3767 s->xen_evtchn_max_pirq = 256; 3768 } 3769 3770 /** 3771 * kvm_gdbstub_sstep_flags(): 3772 * 3773 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3774 * support is probed during kvm_init() 3775 */ 3776 static int kvm_gdbstub_sstep_flags(void) 3777 { 3778 return kvm_sstep_flags; 3779 } 3780 3781 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3782 { 3783 AccelClass *ac = ACCEL_CLASS(oc); 3784 ac->name = "KVM"; 3785 ac->init_machine = kvm_init; 3786 ac->has_memory = kvm_accel_has_memory; 3787 ac->allowed = &kvm_allowed; 3788 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3789 3790 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3791 NULL, kvm_set_kernel_irqchip, 3792 NULL, NULL); 3793 object_class_property_set_description(oc, "kernel-irqchip", 3794 "Configure KVM in-kernel irqchip"); 3795 3796 object_class_property_add(oc, "kvm-shadow-mem", "int", 3797 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3798 NULL, NULL); 3799 object_class_property_set_description(oc, "kvm-shadow-mem", 3800 "KVM shadow MMU size"); 3801 3802 object_class_property_add(oc, "dirty-ring-size", "uint32", 3803 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3804 NULL, NULL); 3805 object_class_property_set_description(oc, "dirty-ring-size", 3806 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3807 3808 kvm_arch_accel_class_init(oc); 3809 } 3810 3811 static const TypeInfo kvm_accel_type = { 3812 .name = TYPE_KVM_ACCEL, 3813 .parent = TYPE_ACCEL, 3814 .instance_init = kvm_accel_instance_init, 3815 .class_init = kvm_accel_class_init, 3816 .instance_size = sizeof(KVMState), 3817 }; 3818 3819 static void kvm_type_init(void) 3820 { 3821 type_register_static(&kvm_accel_type); 3822 } 3823 3824 type_init(kvm_type_init); 3825 3826 typedef struct StatsArgs { 3827 union StatsResultsType { 3828 StatsResultList **stats; 3829 StatsSchemaList **schema; 3830 } result; 3831 strList *names; 3832 Error **errp; 3833 } StatsArgs; 3834 3835 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3836 uint64_t *stats_data, 3837 StatsList *stats_list, 3838 Error **errp) 3839 { 3840 3841 Stats *stats; 3842 uint64List *val_list = NULL; 3843 3844 /* Only add stats that we understand. */ 3845 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3846 case KVM_STATS_TYPE_CUMULATIVE: 3847 case KVM_STATS_TYPE_INSTANT: 3848 case KVM_STATS_TYPE_PEAK: 3849 case KVM_STATS_TYPE_LINEAR_HIST: 3850 case KVM_STATS_TYPE_LOG_HIST: 3851 break; 3852 default: 3853 return stats_list; 3854 } 3855 3856 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3857 case KVM_STATS_UNIT_NONE: 3858 case KVM_STATS_UNIT_BYTES: 3859 case KVM_STATS_UNIT_CYCLES: 3860 case KVM_STATS_UNIT_SECONDS: 3861 case KVM_STATS_UNIT_BOOLEAN: 3862 break; 3863 default: 3864 return stats_list; 3865 } 3866 3867 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3868 case KVM_STATS_BASE_POW10: 3869 case KVM_STATS_BASE_POW2: 3870 break; 3871 default: 3872 return stats_list; 3873 } 3874 3875 /* Alloc and populate data list */ 3876 stats = g_new0(Stats, 1); 3877 stats->name = g_strdup(pdesc->name); 3878 stats->value = g_new0(StatsValue, 1);; 3879 3880 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3881 stats->value->u.boolean = *stats_data; 3882 stats->value->type = QTYPE_QBOOL; 3883 } else if (pdesc->size == 1) { 3884 stats->value->u.scalar = *stats_data; 3885 stats->value->type = QTYPE_QNUM; 3886 } else { 3887 int i; 3888 for (i = 0; i < pdesc->size; i++) { 3889 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3890 } 3891 stats->value->u.list = val_list; 3892 stats->value->type = QTYPE_QLIST; 3893 } 3894 3895 QAPI_LIST_PREPEND(stats_list, stats); 3896 return stats_list; 3897 } 3898 3899 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3900 StatsSchemaValueList *list, 3901 Error **errp) 3902 { 3903 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3904 schema_entry->value = g_new0(StatsSchemaValue, 1); 3905 3906 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3907 case KVM_STATS_TYPE_CUMULATIVE: 3908 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3909 break; 3910 case KVM_STATS_TYPE_INSTANT: 3911 schema_entry->value->type = STATS_TYPE_INSTANT; 3912 break; 3913 case KVM_STATS_TYPE_PEAK: 3914 schema_entry->value->type = STATS_TYPE_PEAK; 3915 break; 3916 case KVM_STATS_TYPE_LINEAR_HIST: 3917 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3918 schema_entry->value->bucket_size = pdesc->bucket_size; 3919 schema_entry->value->has_bucket_size = true; 3920 break; 3921 case KVM_STATS_TYPE_LOG_HIST: 3922 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3923 break; 3924 default: 3925 goto exit; 3926 } 3927 3928 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3929 case KVM_STATS_UNIT_NONE: 3930 break; 3931 case KVM_STATS_UNIT_BOOLEAN: 3932 schema_entry->value->has_unit = true; 3933 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3934 break; 3935 case KVM_STATS_UNIT_BYTES: 3936 schema_entry->value->has_unit = true; 3937 schema_entry->value->unit = STATS_UNIT_BYTES; 3938 break; 3939 case KVM_STATS_UNIT_CYCLES: 3940 schema_entry->value->has_unit = true; 3941 schema_entry->value->unit = STATS_UNIT_CYCLES; 3942 break; 3943 case KVM_STATS_UNIT_SECONDS: 3944 schema_entry->value->has_unit = true; 3945 schema_entry->value->unit = STATS_UNIT_SECONDS; 3946 break; 3947 default: 3948 goto exit; 3949 } 3950 3951 schema_entry->value->exponent = pdesc->exponent; 3952 if (pdesc->exponent) { 3953 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3954 case KVM_STATS_BASE_POW10: 3955 schema_entry->value->has_base = true; 3956 schema_entry->value->base = 10; 3957 break; 3958 case KVM_STATS_BASE_POW2: 3959 schema_entry->value->has_base = true; 3960 schema_entry->value->base = 2; 3961 break; 3962 default: 3963 goto exit; 3964 } 3965 } 3966 3967 schema_entry->value->name = g_strdup(pdesc->name); 3968 schema_entry->next = list; 3969 return schema_entry; 3970 exit: 3971 g_free(schema_entry->value); 3972 g_free(schema_entry); 3973 return list; 3974 } 3975 3976 /* Cached stats descriptors */ 3977 typedef struct StatsDescriptors { 3978 const char *ident; /* cache key, currently the StatsTarget */ 3979 struct kvm_stats_desc *kvm_stats_desc; 3980 struct kvm_stats_header kvm_stats_header; 3981 QTAILQ_ENTRY(StatsDescriptors) next; 3982 } StatsDescriptors; 3983 3984 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3985 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3986 3987 /* 3988 * Return the descriptors for 'target', that either have already been read 3989 * or are retrieved from 'stats_fd'. 3990 */ 3991 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3992 Error **errp) 3993 { 3994 StatsDescriptors *descriptors; 3995 const char *ident; 3996 struct kvm_stats_desc *kvm_stats_desc; 3997 struct kvm_stats_header *kvm_stats_header; 3998 size_t size_desc; 3999 ssize_t ret; 4000 4001 ident = StatsTarget_str(target); 4002 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 4003 if (g_str_equal(descriptors->ident, ident)) { 4004 return descriptors; 4005 } 4006 } 4007 4008 descriptors = g_new0(StatsDescriptors, 1); 4009 4010 /* Read stats header */ 4011 kvm_stats_header = &descriptors->kvm_stats_header; 4012 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 4013 if (ret != sizeof(*kvm_stats_header)) { 4014 error_setg(errp, "KVM stats: failed to read stats header: " 4015 "expected %zu actual %zu", 4016 sizeof(*kvm_stats_header), ret); 4017 g_free(descriptors); 4018 return NULL; 4019 } 4020 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4021 4022 /* Read stats descriptors */ 4023 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 4024 ret = pread(stats_fd, kvm_stats_desc, 4025 size_desc * kvm_stats_header->num_desc, 4026 kvm_stats_header->desc_offset); 4027 4028 if (ret != size_desc * kvm_stats_header->num_desc) { 4029 error_setg(errp, "KVM stats: failed to read stats descriptors: " 4030 "expected %zu actual %zu", 4031 size_desc * kvm_stats_header->num_desc, ret); 4032 g_free(descriptors); 4033 g_free(kvm_stats_desc); 4034 return NULL; 4035 } 4036 descriptors->kvm_stats_desc = kvm_stats_desc; 4037 descriptors->ident = ident; 4038 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 4039 return descriptors; 4040 } 4041 4042 static void query_stats(StatsResultList **result, StatsTarget target, 4043 strList *names, int stats_fd, CPUState *cpu, 4044 Error **errp) 4045 { 4046 struct kvm_stats_desc *kvm_stats_desc; 4047 struct kvm_stats_header *kvm_stats_header; 4048 StatsDescriptors *descriptors; 4049 g_autofree uint64_t *stats_data = NULL; 4050 struct kvm_stats_desc *pdesc; 4051 StatsList *stats_list = NULL; 4052 size_t size_desc, size_data = 0; 4053 ssize_t ret; 4054 int i; 4055 4056 descriptors = find_stats_descriptors(target, stats_fd, errp); 4057 if (!descriptors) { 4058 return; 4059 } 4060 4061 kvm_stats_header = &descriptors->kvm_stats_header; 4062 kvm_stats_desc = descriptors->kvm_stats_desc; 4063 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4064 4065 /* Tally the total data size; read schema data */ 4066 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4067 pdesc = (void *)kvm_stats_desc + i * size_desc; 4068 size_data += pdesc->size * sizeof(*stats_data); 4069 } 4070 4071 stats_data = g_malloc0(size_data); 4072 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4073 4074 if (ret != size_data) { 4075 error_setg(errp, "KVM stats: failed to read data: " 4076 "expected %zu actual %zu", size_data, ret); 4077 return; 4078 } 4079 4080 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4081 uint64_t *stats; 4082 pdesc = (void *)kvm_stats_desc + i * size_desc; 4083 4084 /* Add entry to the list */ 4085 stats = (void *)stats_data + pdesc->offset; 4086 if (!apply_str_list_filter(pdesc->name, names)) { 4087 continue; 4088 } 4089 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4090 } 4091 4092 if (!stats_list) { 4093 return; 4094 } 4095 4096 switch (target) { 4097 case STATS_TARGET_VM: 4098 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4099 break; 4100 case STATS_TARGET_VCPU: 4101 add_stats_entry(result, STATS_PROVIDER_KVM, 4102 cpu->parent_obj.canonical_path, 4103 stats_list); 4104 break; 4105 default: 4106 g_assert_not_reached(); 4107 } 4108 } 4109 4110 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4111 int stats_fd, Error **errp) 4112 { 4113 struct kvm_stats_desc *kvm_stats_desc; 4114 struct kvm_stats_header *kvm_stats_header; 4115 StatsDescriptors *descriptors; 4116 struct kvm_stats_desc *pdesc; 4117 StatsSchemaValueList *stats_list = NULL; 4118 size_t size_desc; 4119 int i; 4120 4121 descriptors = find_stats_descriptors(target, stats_fd, errp); 4122 if (!descriptors) { 4123 return; 4124 } 4125 4126 kvm_stats_header = &descriptors->kvm_stats_header; 4127 kvm_stats_desc = descriptors->kvm_stats_desc; 4128 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4129 4130 /* Tally the total data size; read schema data */ 4131 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4132 pdesc = (void *)kvm_stats_desc + i * size_desc; 4133 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4134 } 4135 4136 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4137 } 4138 4139 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4140 { 4141 int stats_fd = cpu->kvm_vcpu_stats_fd; 4142 Error *local_err = NULL; 4143 4144 if (stats_fd == -1) { 4145 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4146 error_propagate(kvm_stats_args->errp, local_err); 4147 return; 4148 } 4149 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4150 kvm_stats_args->names, stats_fd, cpu, 4151 kvm_stats_args->errp); 4152 } 4153 4154 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4155 { 4156 int stats_fd = cpu->kvm_vcpu_stats_fd; 4157 Error *local_err = NULL; 4158 4159 if (stats_fd == -1) { 4160 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4161 error_propagate(kvm_stats_args->errp, local_err); 4162 return; 4163 } 4164 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4165 kvm_stats_args->errp); 4166 } 4167 4168 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4169 strList *names, strList *targets, Error **errp) 4170 { 4171 KVMState *s = kvm_state; 4172 CPUState *cpu; 4173 int stats_fd; 4174 4175 switch (target) { 4176 case STATS_TARGET_VM: 4177 { 4178 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4179 if (stats_fd == -1) { 4180 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4181 return; 4182 } 4183 query_stats(result, target, names, stats_fd, NULL, errp); 4184 close(stats_fd); 4185 break; 4186 } 4187 case STATS_TARGET_VCPU: 4188 { 4189 StatsArgs stats_args; 4190 stats_args.result.stats = result; 4191 stats_args.names = names; 4192 stats_args.errp = errp; 4193 CPU_FOREACH(cpu) { 4194 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4195 continue; 4196 } 4197 query_stats_vcpu(cpu, &stats_args); 4198 } 4199 break; 4200 } 4201 default: 4202 break; 4203 } 4204 } 4205 4206 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4207 { 4208 StatsArgs stats_args; 4209 KVMState *s = kvm_state; 4210 int stats_fd; 4211 4212 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4213 if (stats_fd == -1) { 4214 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4215 return; 4216 } 4217 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4218 close(stats_fd); 4219 4220 if (first_cpu) { 4221 stats_args.result.schema = result; 4222 stats_args.errp = errp; 4223 query_stats_schema_vcpu(first_cpu, &stats_args); 4224 } 4225 } 4226