xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 6b90a4cd)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 //#define DEBUG_KVM
73 
74 #ifdef DEBUG_KVM
75 #define DPRINTF(fmt, ...) \
76     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...) \
79     do { } while (0)
80 #endif
81 
82 struct KVMParkedVcpu {
83     unsigned long vcpu_id;
84     int kvm_fd;
85     QLIST_ENTRY(KVMParkedVcpu) node;
86 };
87 
88 KVMState *kvm_state;
89 bool kvm_kernel_irqchip;
90 bool kvm_split_irqchip;
91 bool kvm_async_interrupts_allowed;
92 bool kvm_halt_in_kernel_allowed;
93 bool kvm_eventfds_allowed;
94 bool kvm_irqfds_allowed;
95 bool kvm_resamplefds_allowed;
96 bool kvm_msi_via_irqfd_allowed;
97 bool kvm_gsi_routing_allowed;
98 bool kvm_gsi_direct_mapping;
99 bool kvm_allowed;
100 bool kvm_readonly_mem_allowed;
101 bool kvm_vm_attributes_allowed;
102 bool kvm_direct_msi_allowed;
103 bool kvm_ioeventfd_any_length_allowed;
104 bool kvm_msi_use_devid;
105 bool kvm_has_guest_debug;
106 static int kvm_sstep_flags;
107 static bool kvm_immediate_exit;
108 static hwaddr kvm_max_slot_size = ~0;
109 
110 static const KVMCapabilityInfo kvm_required_capabilites[] = {
111     KVM_CAP_INFO(USER_MEMORY),
112     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
113     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
114     KVM_CAP_LAST_INFO
115 };
116 
117 static NotifierList kvm_irqchip_change_notifiers =
118     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
119 
120 struct KVMResampleFd {
121     int gsi;
122     EventNotifier *resample_event;
123     QLIST_ENTRY(KVMResampleFd) node;
124 };
125 typedef struct KVMResampleFd KVMResampleFd;
126 
127 /*
128  * Only used with split irqchip where we need to do the resample fd
129  * kick for the kernel from userspace.
130  */
131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
132     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
133 
134 static QemuMutex kml_slots_lock;
135 
136 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
137 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
138 
139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
140 
141 static inline void kvm_resample_fd_remove(int gsi)
142 {
143     KVMResampleFd *rfd;
144 
145     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
146         if (rfd->gsi == gsi) {
147             QLIST_REMOVE(rfd, node);
148             g_free(rfd);
149             break;
150         }
151     }
152 }
153 
154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
155 {
156     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
157 
158     rfd->gsi = gsi;
159     rfd->resample_event = event;
160 
161     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
162 }
163 
164 void kvm_resample_fd_notify(int gsi)
165 {
166     KVMResampleFd *rfd;
167 
168     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
169         if (rfd->gsi == gsi) {
170             event_notifier_set(rfd->resample_event);
171             trace_kvm_resample_fd_notify(gsi);
172             return;
173         }
174     }
175 }
176 
177 int kvm_get_max_memslots(void)
178 {
179     KVMState *s = KVM_STATE(current_accel());
180 
181     return s->nr_slots;
182 }
183 
184 /* Called with KVMMemoryListener.slots_lock held */
185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
186 {
187     KVMState *s = kvm_state;
188     int i;
189 
190     for (i = 0; i < s->nr_slots; i++) {
191         if (kml->slots[i].memory_size == 0) {
192             return &kml->slots[i];
193         }
194     }
195 
196     return NULL;
197 }
198 
199 bool kvm_has_free_slot(MachineState *ms)
200 {
201     KVMState *s = KVM_STATE(ms->accelerator);
202     bool result;
203     KVMMemoryListener *kml = &s->memory_listener;
204 
205     kvm_slots_lock();
206     result = !!kvm_get_free_slot(kml);
207     kvm_slots_unlock();
208 
209     return result;
210 }
211 
212 /* Called with KVMMemoryListener.slots_lock held */
213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
214 {
215     KVMSlot *slot = kvm_get_free_slot(kml);
216 
217     if (slot) {
218         return slot;
219     }
220 
221     fprintf(stderr, "%s: no free slot available\n", __func__);
222     abort();
223 }
224 
225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
226                                          hwaddr start_addr,
227                                          hwaddr size)
228 {
229     KVMState *s = kvm_state;
230     int i;
231 
232     for (i = 0; i < s->nr_slots; i++) {
233         KVMSlot *mem = &kml->slots[i];
234 
235         if (start_addr == mem->start_addr && size == mem->memory_size) {
236             return mem;
237         }
238     }
239 
240     return NULL;
241 }
242 
243 /*
244  * Calculate and align the start address and the size of the section.
245  * Return the size. If the size is 0, the aligned section is empty.
246  */
247 static hwaddr kvm_align_section(MemoryRegionSection *section,
248                                 hwaddr *start)
249 {
250     hwaddr size = int128_get64(section->size);
251     hwaddr delta, aligned;
252 
253     /* kvm works in page size chunks, but the function may be called
254        with sub-page size and unaligned start address. Pad the start
255        address to next and truncate size to previous page boundary. */
256     aligned = ROUND_UP(section->offset_within_address_space,
257                        qemu_real_host_page_size());
258     delta = aligned - section->offset_within_address_space;
259     *start = aligned;
260     if (delta > size) {
261         return 0;
262     }
263 
264     return (size - delta) & qemu_real_host_page_mask();
265 }
266 
267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
268                                        hwaddr *phys_addr)
269 {
270     KVMMemoryListener *kml = &s->memory_listener;
271     int i, ret = 0;
272 
273     kvm_slots_lock();
274     for (i = 0; i < s->nr_slots; i++) {
275         KVMSlot *mem = &kml->slots[i];
276 
277         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
278             *phys_addr = mem->start_addr + (ram - mem->ram);
279             ret = 1;
280             break;
281         }
282     }
283     kvm_slots_unlock();
284 
285     return ret;
286 }
287 
288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
289 {
290     KVMState *s = kvm_state;
291     struct kvm_userspace_memory_region mem;
292     int ret;
293 
294     mem.slot = slot->slot | (kml->as_id << 16);
295     mem.guest_phys_addr = slot->start_addr;
296     mem.userspace_addr = (unsigned long)slot->ram;
297     mem.flags = slot->flags;
298 
299     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
300         /* Set the slot size to 0 before setting the slot to the desired
301          * value. This is needed based on KVM commit 75d61fbc. */
302         mem.memory_size = 0;
303         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304         if (ret < 0) {
305             goto err;
306         }
307     }
308     mem.memory_size = slot->memory_size;
309     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
310     slot->old_flags = mem.flags;
311 err:
312     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
313                               mem.memory_size, mem.userspace_addr, ret);
314     if (ret < 0) {
315         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
316                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
317                      __func__, mem.slot, slot->start_addr,
318                      (uint64_t)mem.memory_size, strerror(errno));
319     }
320     return ret;
321 }
322 
323 static int do_kvm_destroy_vcpu(CPUState *cpu)
324 {
325     KVMState *s = kvm_state;
326     long mmap_size;
327     struct KVMParkedVcpu *vcpu = NULL;
328     int ret = 0;
329 
330     DPRINTF("kvm_destroy_vcpu\n");
331 
332     ret = kvm_arch_destroy_vcpu(cpu);
333     if (ret < 0) {
334         goto err;
335     }
336 
337     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
338     if (mmap_size < 0) {
339         ret = mmap_size;
340         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
341         goto err;
342     }
343 
344     ret = munmap(cpu->kvm_run, mmap_size);
345     if (ret < 0) {
346         goto err;
347     }
348 
349     if (cpu->kvm_dirty_gfns) {
350         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
351         if (ret < 0) {
352             goto err;
353         }
354     }
355 
356     vcpu = g_malloc0(sizeof(*vcpu));
357     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
358     vcpu->kvm_fd = cpu->kvm_fd;
359     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
360 err:
361     return ret;
362 }
363 
364 void kvm_destroy_vcpu(CPUState *cpu)
365 {
366     if (do_kvm_destroy_vcpu(cpu) < 0) {
367         error_report("kvm_destroy_vcpu failed");
368         exit(EXIT_FAILURE);
369     }
370 }
371 
372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
373 {
374     struct KVMParkedVcpu *cpu;
375 
376     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
377         if (cpu->vcpu_id == vcpu_id) {
378             int kvm_fd;
379 
380             QLIST_REMOVE(cpu, node);
381             kvm_fd = cpu->kvm_fd;
382             g_free(cpu);
383             return kvm_fd;
384         }
385     }
386 
387     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
388 }
389 
390 int kvm_init_vcpu(CPUState *cpu, Error **errp)
391 {
392     KVMState *s = kvm_state;
393     long mmap_size;
394     int ret;
395 
396     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
397 
398     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
399     if (ret < 0) {
400         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
401                          kvm_arch_vcpu_id(cpu));
402         goto err;
403     }
404 
405     cpu->kvm_fd = ret;
406     cpu->kvm_state = s;
407     cpu->vcpu_dirty = true;
408     cpu->dirty_pages = 0;
409     cpu->throttle_us_per_full = 0;
410 
411     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
412     if (mmap_size < 0) {
413         ret = mmap_size;
414         error_setg_errno(errp, -mmap_size,
415                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
416         goto err;
417     }
418 
419     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
420                         cpu->kvm_fd, 0);
421     if (cpu->kvm_run == MAP_FAILED) {
422         ret = -errno;
423         error_setg_errno(errp, ret,
424                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
425                          kvm_arch_vcpu_id(cpu));
426         goto err;
427     }
428 
429     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
430         s->coalesced_mmio_ring =
431             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
432     }
433 
434     if (s->kvm_dirty_ring_size) {
435         /* Use MAP_SHARED to share pages with the kernel */
436         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
437                                    PROT_READ | PROT_WRITE, MAP_SHARED,
438                                    cpu->kvm_fd,
439                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
440         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
441             ret = -errno;
442             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
443             goto err;
444         }
445     }
446 
447     ret = kvm_arch_init_vcpu(cpu);
448     if (ret < 0) {
449         error_setg_errno(errp, -ret,
450                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
451                          kvm_arch_vcpu_id(cpu));
452     }
453     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
454 
455 err:
456     return ret;
457 }
458 
459 /*
460  * dirty pages logging control
461  */
462 
463 static int kvm_mem_flags(MemoryRegion *mr)
464 {
465     bool readonly = mr->readonly || memory_region_is_romd(mr);
466     int flags = 0;
467 
468     if (memory_region_get_dirty_log_mask(mr) != 0) {
469         flags |= KVM_MEM_LOG_DIRTY_PAGES;
470     }
471     if (readonly && kvm_readonly_mem_allowed) {
472         flags |= KVM_MEM_READONLY;
473     }
474     return flags;
475 }
476 
477 /* Called with KVMMemoryListener.slots_lock held */
478 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
479                                  MemoryRegion *mr)
480 {
481     mem->flags = kvm_mem_flags(mr);
482 
483     /* If nothing changed effectively, no need to issue ioctl */
484     if (mem->flags == mem->old_flags) {
485         return 0;
486     }
487 
488     kvm_slot_init_dirty_bitmap(mem);
489     return kvm_set_user_memory_region(kml, mem, false);
490 }
491 
492 static int kvm_section_update_flags(KVMMemoryListener *kml,
493                                     MemoryRegionSection *section)
494 {
495     hwaddr start_addr, size, slot_size;
496     KVMSlot *mem;
497     int ret = 0;
498 
499     size = kvm_align_section(section, &start_addr);
500     if (!size) {
501         return 0;
502     }
503 
504     kvm_slots_lock();
505 
506     while (size && !ret) {
507         slot_size = MIN(kvm_max_slot_size, size);
508         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
509         if (!mem) {
510             /* We don't have a slot if we want to trap every access. */
511             goto out;
512         }
513 
514         ret = kvm_slot_update_flags(kml, mem, section->mr);
515         start_addr += slot_size;
516         size -= slot_size;
517     }
518 
519 out:
520     kvm_slots_unlock();
521     return ret;
522 }
523 
524 static void kvm_log_start(MemoryListener *listener,
525                           MemoryRegionSection *section,
526                           int old, int new)
527 {
528     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
529     int r;
530 
531     if (old != 0) {
532         return;
533     }
534 
535     r = kvm_section_update_flags(kml, section);
536     if (r < 0) {
537         abort();
538     }
539 }
540 
541 static void kvm_log_stop(MemoryListener *listener,
542                           MemoryRegionSection *section,
543                           int old, int new)
544 {
545     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
546     int r;
547 
548     if (new != 0) {
549         return;
550     }
551 
552     r = kvm_section_update_flags(kml, section);
553     if (r < 0) {
554         abort();
555     }
556 }
557 
558 /* get kvm's dirty pages bitmap and update qemu's */
559 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
560 {
561     ram_addr_t start = slot->ram_start_offset;
562     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
563 
564     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
565 }
566 
567 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
568 {
569     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
570 }
571 
572 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
573 
574 /* Allocate the dirty bitmap for a slot  */
575 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
576 {
577     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
578         return;
579     }
580 
581     /*
582      * XXX bad kernel interface alert
583      * For dirty bitmap, kernel allocates array of size aligned to
584      * bits-per-long.  But for case when the kernel is 64bits and
585      * the userspace is 32bits, userspace can't align to the same
586      * bits-per-long, since sizeof(long) is different between kernel
587      * and user space.  This way, userspace will provide buffer which
588      * may be 4 bytes less than the kernel will use, resulting in
589      * userspace memory corruption (which is not detectable by valgrind
590      * too, in most cases).
591      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
592      * a hope that sizeof(long) won't become >8 any time soon.
593      *
594      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
595      * And mem->memory_size is aligned to it (otherwise this mem can't
596      * be registered to KVM).
597      */
598     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
599                                         /*HOST_LONG_BITS*/ 64) / 8;
600     mem->dirty_bmap = g_malloc0(bitmap_size);
601     mem->dirty_bmap_size = bitmap_size;
602 }
603 
604 /*
605  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
606  * succeeded, false otherwise
607  */
608 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
609 {
610     struct kvm_dirty_log d = {};
611     int ret;
612 
613     d.dirty_bitmap = slot->dirty_bmap;
614     d.slot = slot->slot | (slot->as_id << 16);
615     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
616 
617     if (ret == -ENOENT) {
618         /* kernel does not have dirty bitmap in this slot */
619         ret = 0;
620     }
621     if (ret) {
622         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
623                           __func__, ret);
624     }
625     return ret == 0;
626 }
627 
628 /* Should be with all slots_lock held for the address spaces. */
629 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
630                                      uint32_t slot_id, uint64_t offset)
631 {
632     KVMMemoryListener *kml;
633     KVMSlot *mem;
634 
635     if (as_id >= s->nr_as) {
636         return;
637     }
638 
639     kml = s->as[as_id].ml;
640     mem = &kml->slots[slot_id];
641 
642     if (!mem->memory_size || offset >=
643         (mem->memory_size / qemu_real_host_page_size())) {
644         return;
645     }
646 
647     set_bit(offset, mem->dirty_bmap);
648 }
649 
650 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
651 {
652     /*
653      * Read the flags before the value.  Pairs with barrier in
654      * KVM's kvm_dirty_ring_push() function.
655      */
656     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
657 }
658 
659 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
660 {
661     /*
662      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
663      * sees the full content of the ring:
664      *
665      * CPU0                     CPU1                         CPU2
666      * ------------------------------------------------------------------------------
667      *                                                       fill gfn0
668      *                                                       store-rel flags for gfn0
669      * load-acq flags for gfn0
670      * store-rel RESET for gfn0
671      *                          ioctl(RESET_RINGS)
672      *                            load-acq flags for gfn0
673      *                            check if flags have RESET
674      *
675      * The synchronization goes from CPU2 to CPU0 to CPU1.
676      */
677     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
678 }
679 
680 /*
681  * Should be with all slots_lock held for the address spaces.  It returns the
682  * dirty page we've collected on this dirty ring.
683  */
684 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
685 {
686     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
687     uint32_t ring_size = s->kvm_dirty_ring_size;
688     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
689 
690     /*
691      * It's possible that we race with vcpu creation code where the vcpu is
692      * put onto the vcpus list but not yet initialized the dirty ring
693      * structures.  If so, skip it.
694      */
695     if (!cpu->created) {
696         return 0;
697     }
698 
699     assert(dirty_gfns && ring_size);
700     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
701 
702     while (true) {
703         cur = &dirty_gfns[fetch % ring_size];
704         if (!dirty_gfn_is_dirtied(cur)) {
705             break;
706         }
707         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
708                                  cur->offset);
709         dirty_gfn_set_collected(cur);
710         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
711         fetch++;
712         count++;
713     }
714     cpu->kvm_fetch_index = fetch;
715     cpu->dirty_pages += count;
716 
717     return count;
718 }
719 
720 /* Must be with slots_lock held */
721 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
722 {
723     int ret;
724     uint64_t total = 0;
725     int64_t stamp;
726 
727     stamp = get_clock();
728 
729     if (cpu) {
730         total = kvm_dirty_ring_reap_one(s, cpu);
731     } else {
732         CPU_FOREACH(cpu) {
733             total += kvm_dirty_ring_reap_one(s, cpu);
734         }
735     }
736 
737     if (total) {
738         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
739         assert(ret == total);
740     }
741 
742     stamp = get_clock() - stamp;
743 
744     if (total) {
745         trace_kvm_dirty_ring_reap(total, stamp / 1000);
746     }
747 
748     return total;
749 }
750 
751 /*
752  * Currently for simplicity, we must hold BQL before calling this.  We can
753  * consider to drop the BQL if we're clear with all the race conditions.
754  */
755 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
756 {
757     uint64_t total;
758 
759     /*
760      * We need to lock all kvm slots for all address spaces here,
761      * because:
762      *
763      * (1) We need to mark dirty for dirty bitmaps in multiple slots
764      *     and for tons of pages, so it's better to take the lock here
765      *     once rather than once per page.  And more importantly,
766      *
767      * (2) We must _NOT_ publish dirty bits to the other threads
768      *     (e.g., the migration thread) via the kvm memory slot dirty
769      *     bitmaps before correctly re-protect those dirtied pages.
770      *     Otherwise we can have potential risk of data corruption if
771      *     the page data is read in the other thread before we do
772      *     reset below.
773      */
774     kvm_slots_lock();
775     total = kvm_dirty_ring_reap_locked(s, cpu);
776     kvm_slots_unlock();
777 
778     return total;
779 }
780 
781 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
782 {
783     /* No need to do anything */
784 }
785 
786 /*
787  * Kick all vcpus out in a synchronized way.  When returned, we
788  * guarantee that every vcpu has been kicked and at least returned to
789  * userspace once.
790  */
791 static void kvm_cpu_synchronize_kick_all(void)
792 {
793     CPUState *cpu;
794 
795     CPU_FOREACH(cpu) {
796         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
797     }
798 }
799 
800 /*
801  * Flush all the existing dirty pages to the KVM slot buffers.  When
802  * this call returns, we guarantee that all the touched dirty pages
803  * before calling this function have been put into the per-kvmslot
804  * dirty bitmap.
805  *
806  * This function must be called with BQL held.
807  */
808 static void kvm_dirty_ring_flush(void)
809 {
810     trace_kvm_dirty_ring_flush(0);
811     /*
812      * The function needs to be serialized.  Since this function
813      * should always be with BQL held, serialization is guaranteed.
814      * However, let's be sure of it.
815      */
816     assert(qemu_mutex_iothread_locked());
817     /*
818      * First make sure to flush the hardware buffers by kicking all
819      * vcpus out in a synchronous way.
820      */
821     kvm_cpu_synchronize_kick_all();
822     kvm_dirty_ring_reap(kvm_state, NULL);
823     trace_kvm_dirty_ring_flush(1);
824 }
825 
826 /**
827  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
828  *
829  * This function will first try to fetch dirty bitmap from the kernel,
830  * and then updates qemu's dirty bitmap.
831  *
832  * NOTE: caller must be with kml->slots_lock held.
833  *
834  * @kml: the KVM memory listener object
835  * @section: the memory section to sync the dirty bitmap with
836  */
837 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
838                                            MemoryRegionSection *section)
839 {
840     KVMState *s = kvm_state;
841     KVMSlot *mem;
842     hwaddr start_addr, size;
843     hwaddr slot_size;
844 
845     size = kvm_align_section(section, &start_addr);
846     while (size) {
847         slot_size = MIN(kvm_max_slot_size, size);
848         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
849         if (!mem) {
850             /* We don't have a slot if we want to trap every access. */
851             return;
852         }
853         if (kvm_slot_get_dirty_log(s, mem)) {
854             kvm_slot_sync_dirty_pages(mem);
855         }
856         start_addr += slot_size;
857         size -= slot_size;
858     }
859 }
860 
861 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
862 #define KVM_CLEAR_LOG_SHIFT  6
863 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
864 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
865 
866 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
867                                   uint64_t size)
868 {
869     KVMState *s = kvm_state;
870     uint64_t end, bmap_start, start_delta, bmap_npages;
871     struct kvm_clear_dirty_log d;
872     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
873     int ret;
874 
875     /*
876      * We need to extend either the start or the size or both to
877      * satisfy the KVM interface requirement.  Firstly, do the start
878      * page alignment on 64 host pages
879      */
880     bmap_start = start & KVM_CLEAR_LOG_MASK;
881     start_delta = start - bmap_start;
882     bmap_start /= psize;
883 
884     /*
885      * The kernel interface has restriction on the size too, that either:
886      *
887      * (1) the size is 64 host pages aligned (just like the start), or
888      * (2) the size fills up until the end of the KVM memslot.
889      */
890     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
891         << KVM_CLEAR_LOG_SHIFT;
892     end = mem->memory_size / psize;
893     if (bmap_npages > end - bmap_start) {
894         bmap_npages = end - bmap_start;
895     }
896     start_delta /= psize;
897 
898     /*
899      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
900      * that we won't clear any unknown dirty bits otherwise we might
901      * accidentally clear some set bits which are not yet synced from
902      * the kernel into QEMU's bitmap, then we'll lose track of the
903      * guest modifications upon those pages (which can directly lead
904      * to guest data loss or panic after migration).
905      *
906      * Layout of the KVMSlot.dirty_bmap:
907      *
908      *                   |<-------- bmap_npages -----------..>|
909      *                                                     [1]
910      *                     start_delta         size
911      *  |----------------|-------------|------------------|------------|
912      *  ^                ^             ^                               ^
913      *  |                |             |                               |
914      * start          bmap_start     (start)                         end
915      * of memslot                                             of memslot
916      *
917      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
918      */
919 
920     assert(bmap_start % BITS_PER_LONG == 0);
921     /* We should never do log_clear before log_sync */
922     assert(mem->dirty_bmap);
923     if (start_delta || bmap_npages - size / psize) {
924         /* Slow path - we need to manipulate a temp bitmap */
925         bmap_clear = bitmap_new(bmap_npages);
926         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
927                                     bmap_start, start_delta + size / psize);
928         /*
929          * We need to fill the holes at start because that was not
930          * specified by the caller and we extended the bitmap only for
931          * 64 pages alignment
932          */
933         bitmap_clear(bmap_clear, 0, start_delta);
934         d.dirty_bitmap = bmap_clear;
935     } else {
936         /*
937          * Fast path - both start and size align well with BITS_PER_LONG
938          * (or the end of memory slot)
939          */
940         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
941     }
942 
943     d.first_page = bmap_start;
944     /* It should never overflow.  If it happens, say something */
945     assert(bmap_npages <= UINT32_MAX);
946     d.num_pages = bmap_npages;
947     d.slot = mem->slot | (as_id << 16);
948 
949     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
950     if (ret < 0 && ret != -ENOENT) {
951         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
952                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
953                      __func__, d.slot, (uint64_t)d.first_page,
954                      (uint32_t)d.num_pages, ret);
955     } else {
956         ret = 0;
957         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
958     }
959 
960     /*
961      * After we have updated the remote dirty bitmap, we update the
962      * cached bitmap as well for the memslot, then if another user
963      * clears the same region we know we shouldn't clear it again on
964      * the remote otherwise it's data loss as well.
965      */
966     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
967                  size / psize);
968     /* This handles the NULL case well */
969     g_free(bmap_clear);
970     return ret;
971 }
972 
973 
974 /**
975  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
976  *
977  * NOTE: this will be a no-op if we haven't enabled manual dirty log
978  * protection in the host kernel because in that case this operation
979  * will be done within log_sync().
980  *
981  * @kml:     the kvm memory listener
982  * @section: the memory range to clear dirty bitmap
983  */
984 static int kvm_physical_log_clear(KVMMemoryListener *kml,
985                                   MemoryRegionSection *section)
986 {
987     KVMState *s = kvm_state;
988     uint64_t start, size, offset, count;
989     KVMSlot *mem;
990     int ret = 0, i;
991 
992     if (!s->manual_dirty_log_protect) {
993         /* No need to do explicit clear */
994         return ret;
995     }
996 
997     start = section->offset_within_address_space;
998     size = int128_get64(section->size);
999 
1000     if (!size) {
1001         /* Nothing more we can do... */
1002         return ret;
1003     }
1004 
1005     kvm_slots_lock();
1006 
1007     for (i = 0; i < s->nr_slots; i++) {
1008         mem = &kml->slots[i];
1009         /* Discard slots that are empty or do not overlap the section */
1010         if (!mem->memory_size ||
1011             mem->start_addr > start + size - 1 ||
1012             start > mem->start_addr + mem->memory_size - 1) {
1013             continue;
1014         }
1015 
1016         if (start >= mem->start_addr) {
1017             /* The slot starts before section or is aligned to it.  */
1018             offset = start - mem->start_addr;
1019             count = MIN(mem->memory_size - offset, size);
1020         } else {
1021             /* The slot starts after section.  */
1022             offset = 0;
1023             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1024         }
1025         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1026         if (ret < 0) {
1027             break;
1028         }
1029     }
1030 
1031     kvm_slots_unlock();
1032 
1033     return ret;
1034 }
1035 
1036 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1037                                      MemoryRegionSection *secion,
1038                                      hwaddr start, hwaddr size)
1039 {
1040     KVMState *s = kvm_state;
1041 
1042     if (s->coalesced_mmio) {
1043         struct kvm_coalesced_mmio_zone zone;
1044 
1045         zone.addr = start;
1046         zone.size = size;
1047         zone.pad = 0;
1048 
1049         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1050     }
1051 }
1052 
1053 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1054                                        MemoryRegionSection *secion,
1055                                        hwaddr start, hwaddr size)
1056 {
1057     KVMState *s = kvm_state;
1058 
1059     if (s->coalesced_mmio) {
1060         struct kvm_coalesced_mmio_zone zone;
1061 
1062         zone.addr = start;
1063         zone.size = size;
1064         zone.pad = 0;
1065 
1066         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1067     }
1068 }
1069 
1070 static void kvm_coalesce_pio_add(MemoryListener *listener,
1071                                 MemoryRegionSection *section,
1072                                 hwaddr start, hwaddr size)
1073 {
1074     KVMState *s = kvm_state;
1075 
1076     if (s->coalesced_pio) {
1077         struct kvm_coalesced_mmio_zone zone;
1078 
1079         zone.addr = start;
1080         zone.size = size;
1081         zone.pio = 1;
1082 
1083         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1084     }
1085 }
1086 
1087 static void kvm_coalesce_pio_del(MemoryListener *listener,
1088                                 MemoryRegionSection *section,
1089                                 hwaddr start, hwaddr size)
1090 {
1091     KVMState *s = kvm_state;
1092 
1093     if (s->coalesced_pio) {
1094         struct kvm_coalesced_mmio_zone zone;
1095 
1096         zone.addr = start;
1097         zone.size = size;
1098         zone.pio = 1;
1099 
1100         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1101      }
1102 }
1103 
1104 static MemoryListener kvm_coalesced_pio_listener = {
1105     .name = "kvm-coalesced-pio",
1106     .coalesced_io_add = kvm_coalesce_pio_add,
1107     .coalesced_io_del = kvm_coalesce_pio_del,
1108 };
1109 
1110 int kvm_check_extension(KVMState *s, unsigned int extension)
1111 {
1112     int ret;
1113 
1114     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1115     if (ret < 0) {
1116         ret = 0;
1117     }
1118 
1119     return ret;
1120 }
1121 
1122 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1123 {
1124     int ret;
1125 
1126     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1127     if (ret < 0) {
1128         /* VM wide version not implemented, use global one instead */
1129         ret = kvm_check_extension(s, extension);
1130     }
1131 
1132     return ret;
1133 }
1134 
1135 typedef struct HWPoisonPage {
1136     ram_addr_t ram_addr;
1137     QLIST_ENTRY(HWPoisonPage) list;
1138 } HWPoisonPage;
1139 
1140 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1141     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1142 
1143 static void kvm_unpoison_all(void *param)
1144 {
1145     HWPoisonPage *page, *next_page;
1146 
1147     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1148         QLIST_REMOVE(page, list);
1149         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1150         g_free(page);
1151     }
1152 }
1153 
1154 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1155 {
1156     HWPoisonPage *page;
1157 
1158     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1159         if (page->ram_addr == ram_addr) {
1160             return;
1161         }
1162     }
1163     page = g_new(HWPoisonPage, 1);
1164     page->ram_addr = ram_addr;
1165     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1166 }
1167 
1168 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1169 {
1170 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1171     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1172      * endianness, but the memory core hands them in target endianness.
1173      * For example, PPC is always treated as big-endian even if running
1174      * on KVM and on PPC64LE.  Correct here.
1175      */
1176     switch (size) {
1177     case 2:
1178         val = bswap16(val);
1179         break;
1180     case 4:
1181         val = bswap32(val);
1182         break;
1183     }
1184 #endif
1185     return val;
1186 }
1187 
1188 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1189                                   bool assign, uint32_t size, bool datamatch)
1190 {
1191     int ret;
1192     struct kvm_ioeventfd iofd = {
1193         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1194         .addr = addr,
1195         .len = size,
1196         .flags = 0,
1197         .fd = fd,
1198     };
1199 
1200     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1201                                  datamatch);
1202     if (!kvm_enabled()) {
1203         return -ENOSYS;
1204     }
1205 
1206     if (datamatch) {
1207         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1208     }
1209     if (!assign) {
1210         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1211     }
1212 
1213     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1214 
1215     if (ret < 0) {
1216         return -errno;
1217     }
1218 
1219     return 0;
1220 }
1221 
1222 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1223                                  bool assign, uint32_t size, bool datamatch)
1224 {
1225     struct kvm_ioeventfd kick = {
1226         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1227         .addr = addr,
1228         .flags = KVM_IOEVENTFD_FLAG_PIO,
1229         .len = size,
1230         .fd = fd,
1231     };
1232     int r;
1233     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1234     if (!kvm_enabled()) {
1235         return -ENOSYS;
1236     }
1237     if (datamatch) {
1238         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1239     }
1240     if (!assign) {
1241         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1242     }
1243     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1244     if (r < 0) {
1245         return r;
1246     }
1247     return 0;
1248 }
1249 
1250 
1251 static int kvm_check_many_ioeventfds(void)
1252 {
1253     /* Userspace can use ioeventfd for io notification.  This requires a host
1254      * that supports eventfd(2) and an I/O thread; since eventfd does not
1255      * support SIGIO it cannot interrupt the vcpu.
1256      *
1257      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1258      * can avoid creating too many ioeventfds.
1259      */
1260 #if defined(CONFIG_EVENTFD)
1261     int ioeventfds[7];
1262     int i, ret = 0;
1263     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1264         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1265         if (ioeventfds[i] < 0) {
1266             break;
1267         }
1268         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1269         if (ret < 0) {
1270             close(ioeventfds[i]);
1271             break;
1272         }
1273     }
1274 
1275     /* Decide whether many devices are supported or not */
1276     ret = i == ARRAY_SIZE(ioeventfds);
1277 
1278     while (i-- > 0) {
1279         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1280         close(ioeventfds[i]);
1281     }
1282     return ret;
1283 #else
1284     return 0;
1285 #endif
1286 }
1287 
1288 static const KVMCapabilityInfo *
1289 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1290 {
1291     while (list->name) {
1292         if (!kvm_check_extension(s, list->value)) {
1293             return list;
1294         }
1295         list++;
1296     }
1297     return NULL;
1298 }
1299 
1300 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1301 {
1302     g_assert(
1303         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1304     );
1305     kvm_max_slot_size = max_slot_size;
1306 }
1307 
1308 /* Called with KVMMemoryListener.slots_lock held */
1309 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1310                              MemoryRegionSection *section, bool add)
1311 {
1312     KVMSlot *mem;
1313     int err;
1314     MemoryRegion *mr = section->mr;
1315     bool writable = !mr->readonly && !mr->rom_device;
1316     hwaddr start_addr, size, slot_size, mr_offset;
1317     ram_addr_t ram_start_offset;
1318     void *ram;
1319 
1320     if (!memory_region_is_ram(mr)) {
1321         if (writable || !kvm_readonly_mem_allowed) {
1322             return;
1323         } else if (!mr->romd_mode) {
1324             /* If the memory device is not in romd_mode, then we actually want
1325              * to remove the kvm memory slot so all accesses will trap. */
1326             add = false;
1327         }
1328     }
1329 
1330     size = kvm_align_section(section, &start_addr);
1331     if (!size) {
1332         return;
1333     }
1334 
1335     /* The offset of the kvmslot within the memory region */
1336     mr_offset = section->offset_within_region + start_addr -
1337         section->offset_within_address_space;
1338 
1339     /* use aligned delta to align the ram address and offset */
1340     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1341     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1342 
1343     if (!add) {
1344         do {
1345             slot_size = MIN(kvm_max_slot_size, size);
1346             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1347             if (!mem) {
1348                 return;
1349             }
1350             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1351                 /*
1352                  * NOTE: We should be aware of the fact that here we're only
1353                  * doing a best effort to sync dirty bits.  No matter whether
1354                  * we're using dirty log or dirty ring, we ignored two facts:
1355                  *
1356                  * (1) dirty bits can reside in hardware buffers (PML)
1357                  *
1358                  * (2) after we collected dirty bits here, pages can be dirtied
1359                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1360                  * remove the slot.
1361                  *
1362                  * Not easy.  Let's cross the fingers until it's fixed.
1363                  */
1364                 if (kvm_state->kvm_dirty_ring_size) {
1365                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1366                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1367                         kvm_slot_sync_dirty_pages(mem);
1368                         kvm_slot_get_dirty_log(kvm_state, mem);
1369                     }
1370                 } else {
1371                     kvm_slot_get_dirty_log(kvm_state, mem);
1372                 }
1373                 kvm_slot_sync_dirty_pages(mem);
1374             }
1375 
1376             /* unregister the slot */
1377             g_free(mem->dirty_bmap);
1378             mem->dirty_bmap = NULL;
1379             mem->memory_size = 0;
1380             mem->flags = 0;
1381             err = kvm_set_user_memory_region(kml, mem, false);
1382             if (err) {
1383                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1384                         __func__, strerror(-err));
1385                 abort();
1386             }
1387             start_addr += slot_size;
1388             size -= slot_size;
1389         } while (size);
1390         return;
1391     }
1392 
1393     /* register the new slot */
1394     do {
1395         slot_size = MIN(kvm_max_slot_size, size);
1396         mem = kvm_alloc_slot(kml);
1397         mem->as_id = kml->as_id;
1398         mem->memory_size = slot_size;
1399         mem->start_addr = start_addr;
1400         mem->ram_start_offset = ram_start_offset;
1401         mem->ram = ram;
1402         mem->flags = kvm_mem_flags(mr);
1403         kvm_slot_init_dirty_bitmap(mem);
1404         err = kvm_set_user_memory_region(kml, mem, true);
1405         if (err) {
1406             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1407                     strerror(-err));
1408             abort();
1409         }
1410         start_addr += slot_size;
1411         ram_start_offset += slot_size;
1412         ram += slot_size;
1413         size -= slot_size;
1414     } while (size);
1415 }
1416 
1417 static void *kvm_dirty_ring_reaper_thread(void *data)
1418 {
1419     KVMState *s = data;
1420     struct KVMDirtyRingReaper *r = &s->reaper;
1421 
1422     rcu_register_thread();
1423 
1424     trace_kvm_dirty_ring_reaper("init");
1425 
1426     while (true) {
1427         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1428         trace_kvm_dirty_ring_reaper("wait");
1429         /*
1430          * TODO: provide a smarter timeout rather than a constant?
1431          */
1432         sleep(1);
1433 
1434         /* keep sleeping so that dirtylimit not be interfered by reaper */
1435         if (dirtylimit_in_service()) {
1436             continue;
1437         }
1438 
1439         trace_kvm_dirty_ring_reaper("wakeup");
1440         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1441 
1442         qemu_mutex_lock_iothread();
1443         kvm_dirty_ring_reap(s, NULL);
1444         qemu_mutex_unlock_iothread();
1445 
1446         r->reaper_iteration++;
1447     }
1448 
1449     trace_kvm_dirty_ring_reaper("exit");
1450 
1451     rcu_unregister_thread();
1452 
1453     return NULL;
1454 }
1455 
1456 static int kvm_dirty_ring_reaper_init(KVMState *s)
1457 {
1458     struct KVMDirtyRingReaper *r = &s->reaper;
1459 
1460     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1461                        kvm_dirty_ring_reaper_thread,
1462                        s, QEMU_THREAD_JOINABLE);
1463 
1464     return 0;
1465 }
1466 
1467 static int kvm_dirty_ring_init(KVMState *s)
1468 {
1469     uint32_t ring_size = s->kvm_dirty_ring_size;
1470     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1471     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1472     int ret;
1473 
1474     s->kvm_dirty_ring_size = 0;
1475     s->kvm_dirty_ring_bytes = 0;
1476 
1477     /* Bail if the dirty ring size isn't specified */
1478     if (!ring_size) {
1479         return 0;
1480     }
1481 
1482     /*
1483      * Read the max supported pages. Fall back to dirty logging mode
1484      * if the dirty ring isn't supported.
1485      */
1486     ret = kvm_vm_check_extension(s, capability);
1487     if (ret <= 0) {
1488         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1489         ret = kvm_vm_check_extension(s, capability);
1490     }
1491 
1492     if (ret <= 0) {
1493         warn_report("KVM dirty ring not available, using bitmap method");
1494         return 0;
1495     }
1496 
1497     if (ring_bytes > ret) {
1498         error_report("KVM dirty ring size %" PRIu32 " too big "
1499                      "(maximum is %ld).  Please use a smaller value.",
1500                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1501         return -EINVAL;
1502     }
1503 
1504     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1505     if (ret) {
1506         error_report("Enabling of KVM dirty ring failed: %s. "
1507                      "Suggested minimum value is 1024.", strerror(-ret));
1508         return -EIO;
1509     }
1510 
1511     /* Enable the backup bitmap if it is supported */
1512     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1513     if (ret > 0) {
1514         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1515         if (ret) {
1516             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1517                          "%s. ", strerror(-ret));
1518             return -EIO;
1519         }
1520 
1521         s->kvm_dirty_ring_with_bitmap = true;
1522     }
1523 
1524     s->kvm_dirty_ring_size = ring_size;
1525     s->kvm_dirty_ring_bytes = ring_bytes;
1526 
1527     return 0;
1528 }
1529 
1530 static void kvm_region_add(MemoryListener *listener,
1531                            MemoryRegionSection *section)
1532 {
1533     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1534     KVMMemoryUpdate *update;
1535 
1536     update = g_new0(KVMMemoryUpdate, 1);
1537     update->section = *section;
1538 
1539     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1540 }
1541 
1542 static void kvm_region_del(MemoryListener *listener,
1543                            MemoryRegionSection *section)
1544 {
1545     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1546     KVMMemoryUpdate *update;
1547 
1548     update = g_new0(KVMMemoryUpdate, 1);
1549     update->section = *section;
1550 
1551     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1552 }
1553 
1554 static void kvm_region_commit(MemoryListener *listener)
1555 {
1556     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1557                                           listener);
1558     KVMMemoryUpdate *u1, *u2;
1559     bool need_inhibit = false;
1560 
1561     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1562         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1563         return;
1564     }
1565 
1566     /*
1567      * We have to be careful when regions to add overlap with ranges to remove.
1568      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1569      * is currently active.
1570      *
1571      * The lists are order by addresses, so it's easy to find overlaps.
1572      */
1573     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1574     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1575     while (u1 && u2) {
1576         Range r1, r2;
1577 
1578         range_init_nofail(&r1, u1->section.offset_within_address_space,
1579                           int128_get64(u1->section.size));
1580         range_init_nofail(&r2, u2->section.offset_within_address_space,
1581                           int128_get64(u2->section.size));
1582 
1583         if (range_overlaps_range(&r1, &r2)) {
1584             need_inhibit = true;
1585             break;
1586         }
1587         if (range_lob(&r1) < range_lob(&r2)) {
1588             u1 = QSIMPLEQ_NEXT(u1, next);
1589         } else {
1590             u2 = QSIMPLEQ_NEXT(u2, next);
1591         }
1592     }
1593 
1594     kvm_slots_lock();
1595     if (need_inhibit) {
1596         accel_ioctl_inhibit_begin();
1597     }
1598 
1599     /* Remove all memslots before adding the new ones. */
1600     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1601         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1602         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1603 
1604         kvm_set_phys_mem(kml, &u1->section, false);
1605         memory_region_unref(u1->section.mr);
1606 
1607         g_free(u1);
1608     }
1609     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1610         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1611         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1612 
1613         memory_region_ref(u1->section.mr);
1614         kvm_set_phys_mem(kml, &u1->section, true);
1615 
1616         g_free(u1);
1617     }
1618 
1619     if (need_inhibit) {
1620         accel_ioctl_inhibit_end();
1621     }
1622     kvm_slots_unlock();
1623 }
1624 
1625 static void kvm_log_sync(MemoryListener *listener,
1626                          MemoryRegionSection *section)
1627 {
1628     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1629 
1630     kvm_slots_lock();
1631     kvm_physical_sync_dirty_bitmap(kml, section);
1632     kvm_slots_unlock();
1633 }
1634 
1635 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1636 {
1637     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1638     KVMState *s = kvm_state;
1639     KVMSlot *mem;
1640     int i;
1641 
1642     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1643     kvm_dirty_ring_flush();
1644 
1645     /*
1646      * TODO: make this faster when nr_slots is big while there are
1647      * only a few used slots (small VMs).
1648      */
1649     kvm_slots_lock();
1650     for (i = 0; i < s->nr_slots; i++) {
1651         mem = &kml->slots[i];
1652         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1653             kvm_slot_sync_dirty_pages(mem);
1654 
1655             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1656                 kvm_slot_get_dirty_log(s, mem)) {
1657                 kvm_slot_sync_dirty_pages(mem);
1658             }
1659 
1660             /*
1661              * This is not needed by KVM_GET_DIRTY_LOG because the
1662              * ioctl will unconditionally overwrite the whole region.
1663              * However kvm dirty ring has no such side effect.
1664              */
1665             kvm_slot_reset_dirty_pages(mem);
1666         }
1667     }
1668     kvm_slots_unlock();
1669 }
1670 
1671 static void kvm_log_clear(MemoryListener *listener,
1672                           MemoryRegionSection *section)
1673 {
1674     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1675     int r;
1676 
1677     r = kvm_physical_log_clear(kml, section);
1678     if (r < 0) {
1679         error_report_once("%s: kvm log clear failed: mr=%s "
1680                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1681                           section->mr->name, section->offset_within_region,
1682                           int128_get64(section->size));
1683         abort();
1684     }
1685 }
1686 
1687 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1688                                   MemoryRegionSection *section,
1689                                   bool match_data, uint64_t data,
1690                                   EventNotifier *e)
1691 {
1692     int fd = event_notifier_get_fd(e);
1693     int r;
1694 
1695     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1696                                data, true, int128_get64(section->size),
1697                                match_data);
1698     if (r < 0) {
1699         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1700                 __func__, strerror(-r), -r);
1701         abort();
1702     }
1703 }
1704 
1705 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1706                                   MemoryRegionSection *section,
1707                                   bool match_data, uint64_t data,
1708                                   EventNotifier *e)
1709 {
1710     int fd = event_notifier_get_fd(e);
1711     int r;
1712 
1713     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1714                                data, false, int128_get64(section->size),
1715                                match_data);
1716     if (r < 0) {
1717         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1718                 __func__, strerror(-r), -r);
1719         abort();
1720     }
1721 }
1722 
1723 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1724                                  MemoryRegionSection *section,
1725                                  bool match_data, uint64_t data,
1726                                  EventNotifier *e)
1727 {
1728     int fd = event_notifier_get_fd(e);
1729     int r;
1730 
1731     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1732                               data, true, int128_get64(section->size),
1733                               match_data);
1734     if (r < 0) {
1735         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1736                 __func__, strerror(-r), -r);
1737         abort();
1738     }
1739 }
1740 
1741 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1742                                  MemoryRegionSection *section,
1743                                  bool match_data, uint64_t data,
1744                                  EventNotifier *e)
1745 
1746 {
1747     int fd = event_notifier_get_fd(e);
1748     int r;
1749 
1750     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1751                               data, false, int128_get64(section->size),
1752                               match_data);
1753     if (r < 0) {
1754         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1755                 __func__, strerror(-r), -r);
1756         abort();
1757     }
1758 }
1759 
1760 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1761                                   AddressSpace *as, int as_id, const char *name)
1762 {
1763     int i;
1764 
1765     kml->slots = g_new0(KVMSlot, s->nr_slots);
1766     kml->as_id = as_id;
1767 
1768     for (i = 0; i < s->nr_slots; i++) {
1769         kml->slots[i].slot = i;
1770     }
1771 
1772     QSIMPLEQ_INIT(&kml->transaction_add);
1773     QSIMPLEQ_INIT(&kml->transaction_del);
1774 
1775     kml->listener.region_add = kvm_region_add;
1776     kml->listener.region_del = kvm_region_del;
1777     kml->listener.commit = kvm_region_commit;
1778     kml->listener.log_start = kvm_log_start;
1779     kml->listener.log_stop = kvm_log_stop;
1780     kml->listener.priority = 10;
1781     kml->listener.name = name;
1782 
1783     if (s->kvm_dirty_ring_size) {
1784         kml->listener.log_sync_global = kvm_log_sync_global;
1785     } else {
1786         kml->listener.log_sync = kvm_log_sync;
1787         kml->listener.log_clear = kvm_log_clear;
1788     }
1789 
1790     memory_listener_register(&kml->listener, as);
1791 
1792     for (i = 0; i < s->nr_as; ++i) {
1793         if (!s->as[i].as) {
1794             s->as[i].as = as;
1795             s->as[i].ml = kml;
1796             break;
1797         }
1798     }
1799 }
1800 
1801 static MemoryListener kvm_io_listener = {
1802     .name = "kvm-io",
1803     .eventfd_add = kvm_io_ioeventfd_add,
1804     .eventfd_del = kvm_io_ioeventfd_del,
1805     .priority = 10,
1806 };
1807 
1808 int kvm_set_irq(KVMState *s, int irq, int level)
1809 {
1810     struct kvm_irq_level event;
1811     int ret;
1812 
1813     assert(kvm_async_interrupts_enabled());
1814 
1815     event.level = level;
1816     event.irq = irq;
1817     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1818     if (ret < 0) {
1819         perror("kvm_set_irq");
1820         abort();
1821     }
1822 
1823     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1824 }
1825 
1826 #ifdef KVM_CAP_IRQ_ROUTING
1827 typedef struct KVMMSIRoute {
1828     struct kvm_irq_routing_entry kroute;
1829     QTAILQ_ENTRY(KVMMSIRoute) entry;
1830 } KVMMSIRoute;
1831 
1832 static void set_gsi(KVMState *s, unsigned int gsi)
1833 {
1834     set_bit(gsi, s->used_gsi_bitmap);
1835 }
1836 
1837 static void clear_gsi(KVMState *s, unsigned int gsi)
1838 {
1839     clear_bit(gsi, s->used_gsi_bitmap);
1840 }
1841 
1842 void kvm_init_irq_routing(KVMState *s)
1843 {
1844     int gsi_count, i;
1845 
1846     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1847     if (gsi_count > 0) {
1848         /* Round up so we can search ints using ffs */
1849         s->used_gsi_bitmap = bitmap_new(gsi_count);
1850         s->gsi_count = gsi_count;
1851     }
1852 
1853     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1854     s->nr_allocated_irq_routes = 0;
1855 
1856     if (!kvm_direct_msi_allowed) {
1857         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1858             QTAILQ_INIT(&s->msi_hashtab[i]);
1859         }
1860     }
1861 
1862     kvm_arch_init_irq_routing(s);
1863 }
1864 
1865 void kvm_irqchip_commit_routes(KVMState *s)
1866 {
1867     int ret;
1868 
1869     if (kvm_gsi_direct_mapping()) {
1870         return;
1871     }
1872 
1873     if (!kvm_gsi_routing_enabled()) {
1874         return;
1875     }
1876 
1877     s->irq_routes->flags = 0;
1878     trace_kvm_irqchip_commit_routes();
1879     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1880     assert(ret == 0);
1881 }
1882 
1883 static void kvm_add_routing_entry(KVMState *s,
1884                                   struct kvm_irq_routing_entry *entry)
1885 {
1886     struct kvm_irq_routing_entry *new;
1887     int n, size;
1888 
1889     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1890         n = s->nr_allocated_irq_routes * 2;
1891         if (n < 64) {
1892             n = 64;
1893         }
1894         size = sizeof(struct kvm_irq_routing);
1895         size += n * sizeof(*new);
1896         s->irq_routes = g_realloc(s->irq_routes, size);
1897         s->nr_allocated_irq_routes = n;
1898     }
1899     n = s->irq_routes->nr++;
1900     new = &s->irq_routes->entries[n];
1901 
1902     *new = *entry;
1903 
1904     set_gsi(s, entry->gsi);
1905 }
1906 
1907 static int kvm_update_routing_entry(KVMState *s,
1908                                     struct kvm_irq_routing_entry *new_entry)
1909 {
1910     struct kvm_irq_routing_entry *entry;
1911     int n;
1912 
1913     for (n = 0; n < s->irq_routes->nr; n++) {
1914         entry = &s->irq_routes->entries[n];
1915         if (entry->gsi != new_entry->gsi) {
1916             continue;
1917         }
1918 
1919         if(!memcmp(entry, new_entry, sizeof *entry)) {
1920             return 0;
1921         }
1922 
1923         *entry = *new_entry;
1924 
1925         return 0;
1926     }
1927 
1928     return -ESRCH;
1929 }
1930 
1931 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1932 {
1933     struct kvm_irq_routing_entry e = {};
1934 
1935     assert(pin < s->gsi_count);
1936 
1937     e.gsi = irq;
1938     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1939     e.flags = 0;
1940     e.u.irqchip.irqchip = irqchip;
1941     e.u.irqchip.pin = pin;
1942     kvm_add_routing_entry(s, &e);
1943 }
1944 
1945 void kvm_irqchip_release_virq(KVMState *s, int virq)
1946 {
1947     struct kvm_irq_routing_entry *e;
1948     int i;
1949 
1950     if (kvm_gsi_direct_mapping()) {
1951         return;
1952     }
1953 
1954     for (i = 0; i < s->irq_routes->nr; i++) {
1955         e = &s->irq_routes->entries[i];
1956         if (e->gsi == virq) {
1957             s->irq_routes->nr--;
1958             *e = s->irq_routes->entries[s->irq_routes->nr];
1959         }
1960     }
1961     clear_gsi(s, virq);
1962     kvm_arch_release_virq_post(virq);
1963     trace_kvm_irqchip_release_virq(virq);
1964 }
1965 
1966 void kvm_irqchip_add_change_notifier(Notifier *n)
1967 {
1968     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1969 }
1970 
1971 void kvm_irqchip_remove_change_notifier(Notifier *n)
1972 {
1973     notifier_remove(n);
1974 }
1975 
1976 void kvm_irqchip_change_notify(void)
1977 {
1978     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1979 }
1980 
1981 static unsigned int kvm_hash_msi(uint32_t data)
1982 {
1983     /* This is optimized for IA32 MSI layout. However, no other arch shall
1984      * repeat the mistake of not providing a direct MSI injection API. */
1985     return data & 0xff;
1986 }
1987 
1988 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1989 {
1990     KVMMSIRoute *route, *next;
1991     unsigned int hash;
1992 
1993     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1994         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1995             kvm_irqchip_release_virq(s, route->kroute.gsi);
1996             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1997             g_free(route);
1998         }
1999     }
2000 }
2001 
2002 static int kvm_irqchip_get_virq(KVMState *s)
2003 {
2004     int next_virq;
2005 
2006     /*
2007      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
2008      * GSI numbers are more than the number of IRQ route. Allocating a GSI
2009      * number can succeed even though a new route entry cannot be added.
2010      * When this happens, flush dynamic MSI entries to free IRQ route entries.
2011      */
2012     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
2013         kvm_flush_dynamic_msi_routes(s);
2014     }
2015 
2016     /* Return the lowest unused GSI in the bitmap */
2017     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2018     if (next_virq >= s->gsi_count) {
2019         return -ENOSPC;
2020     } else {
2021         return next_virq;
2022     }
2023 }
2024 
2025 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
2026 {
2027     unsigned int hash = kvm_hash_msi(msg.data);
2028     KVMMSIRoute *route;
2029 
2030     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
2031         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
2032             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
2033             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
2034             return route;
2035         }
2036     }
2037     return NULL;
2038 }
2039 
2040 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2041 {
2042     struct kvm_msi msi;
2043     KVMMSIRoute *route;
2044 
2045     if (kvm_direct_msi_allowed) {
2046         msi.address_lo = (uint32_t)msg.address;
2047         msi.address_hi = msg.address >> 32;
2048         msi.data = le32_to_cpu(msg.data);
2049         msi.flags = 0;
2050         memset(msi.pad, 0, sizeof(msi.pad));
2051 
2052         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2053     }
2054 
2055     route = kvm_lookup_msi_route(s, msg);
2056     if (!route) {
2057         int virq;
2058 
2059         virq = kvm_irqchip_get_virq(s);
2060         if (virq < 0) {
2061             return virq;
2062         }
2063 
2064         route = g_new0(KVMMSIRoute, 1);
2065         route->kroute.gsi = virq;
2066         route->kroute.type = KVM_IRQ_ROUTING_MSI;
2067         route->kroute.flags = 0;
2068         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
2069         route->kroute.u.msi.address_hi = msg.address >> 32;
2070         route->kroute.u.msi.data = le32_to_cpu(msg.data);
2071 
2072         kvm_add_routing_entry(s, &route->kroute);
2073         kvm_irqchip_commit_routes(s);
2074 
2075         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
2076                            entry);
2077     }
2078 
2079     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
2080 
2081     return kvm_set_irq(s, route->kroute.gsi, 1);
2082 }
2083 
2084 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2085 {
2086     struct kvm_irq_routing_entry kroute = {};
2087     int virq;
2088     KVMState *s = c->s;
2089     MSIMessage msg = {0, 0};
2090 
2091     if (pci_available && dev) {
2092         msg = pci_get_msi_message(dev, vector);
2093     }
2094 
2095     if (kvm_gsi_direct_mapping()) {
2096         return kvm_arch_msi_data_to_gsi(msg.data);
2097     }
2098 
2099     if (!kvm_gsi_routing_enabled()) {
2100         return -ENOSYS;
2101     }
2102 
2103     virq = kvm_irqchip_get_virq(s);
2104     if (virq < 0) {
2105         return virq;
2106     }
2107 
2108     kroute.gsi = virq;
2109     kroute.type = KVM_IRQ_ROUTING_MSI;
2110     kroute.flags = 0;
2111     kroute.u.msi.address_lo = (uint32_t)msg.address;
2112     kroute.u.msi.address_hi = msg.address >> 32;
2113     kroute.u.msi.data = le32_to_cpu(msg.data);
2114     if (pci_available && kvm_msi_devid_required()) {
2115         kroute.flags = KVM_MSI_VALID_DEVID;
2116         kroute.u.msi.devid = pci_requester_id(dev);
2117     }
2118     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2119         kvm_irqchip_release_virq(s, virq);
2120         return -EINVAL;
2121     }
2122 
2123     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2124                                     vector, virq);
2125 
2126     kvm_add_routing_entry(s, &kroute);
2127     kvm_arch_add_msi_route_post(&kroute, vector, dev);
2128     c->changes++;
2129 
2130     return virq;
2131 }
2132 
2133 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2134                                  PCIDevice *dev)
2135 {
2136     struct kvm_irq_routing_entry kroute = {};
2137 
2138     if (kvm_gsi_direct_mapping()) {
2139         return 0;
2140     }
2141 
2142     if (!kvm_irqchip_in_kernel()) {
2143         return -ENOSYS;
2144     }
2145 
2146     kroute.gsi = virq;
2147     kroute.type = KVM_IRQ_ROUTING_MSI;
2148     kroute.flags = 0;
2149     kroute.u.msi.address_lo = (uint32_t)msg.address;
2150     kroute.u.msi.address_hi = msg.address >> 32;
2151     kroute.u.msi.data = le32_to_cpu(msg.data);
2152     if (pci_available && kvm_msi_devid_required()) {
2153         kroute.flags = KVM_MSI_VALID_DEVID;
2154         kroute.u.msi.devid = pci_requester_id(dev);
2155     }
2156     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2157         return -EINVAL;
2158     }
2159 
2160     trace_kvm_irqchip_update_msi_route(virq);
2161 
2162     return kvm_update_routing_entry(s, &kroute);
2163 }
2164 
2165 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2166                                     EventNotifier *resample, int virq,
2167                                     bool assign)
2168 {
2169     int fd = event_notifier_get_fd(event);
2170     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2171 
2172     struct kvm_irqfd irqfd = {
2173         .fd = fd,
2174         .gsi = virq,
2175         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2176     };
2177 
2178     if (rfd != -1) {
2179         assert(assign);
2180         if (kvm_irqchip_is_split()) {
2181             /*
2182              * When the slow irqchip (e.g. IOAPIC) is in the
2183              * userspace, KVM kernel resamplefd will not work because
2184              * the EOI of the interrupt will be delivered to userspace
2185              * instead, so the KVM kernel resamplefd kick will be
2186              * skipped.  The userspace here mimics what the kernel
2187              * provides with resamplefd, remember the resamplefd and
2188              * kick it when we receive EOI of this IRQ.
2189              *
2190              * This is hackery because IOAPIC is mostly bypassed
2191              * (except EOI broadcasts) when irqfd is used.  However
2192              * this can bring much performance back for split irqchip
2193              * with INTx IRQs (for VFIO, this gives 93% perf of the
2194              * full fast path, which is 46% perf boost comparing to
2195              * the INTx slow path).
2196              */
2197             kvm_resample_fd_insert(virq, resample);
2198         } else {
2199             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2200             irqfd.resamplefd = rfd;
2201         }
2202     } else if (!assign) {
2203         if (kvm_irqchip_is_split()) {
2204             kvm_resample_fd_remove(virq);
2205         }
2206     }
2207 
2208     if (!kvm_irqfds_enabled()) {
2209         return -ENOSYS;
2210     }
2211 
2212     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2213 }
2214 
2215 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2216 {
2217     struct kvm_irq_routing_entry kroute = {};
2218     int virq;
2219 
2220     if (!kvm_gsi_routing_enabled()) {
2221         return -ENOSYS;
2222     }
2223 
2224     virq = kvm_irqchip_get_virq(s);
2225     if (virq < 0) {
2226         return virq;
2227     }
2228 
2229     kroute.gsi = virq;
2230     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2231     kroute.flags = 0;
2232     kroute.u.adapter.summary_addr = adapter->summary_addr;
2233     kroute.u.adapter.ind_addr = adapter->ind_addr;
2234     kroute.u.adapter.summary_offset = adapter->summary_offset;
2235     kroute.u.adapter.ind_offset = adapter->ind_offset;
2236     kroute.u.adapter.adapter_id = adapter->adapter_id;
2237 
2238     kvm_add_routing_entry(s, &kroute);
2239 
2240     return virq;
2241 }
2242 
2243 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2244 {
2245     struct kvm_irq_routing_entry kroute = {};
2246     int virq;
2247 
2248     if (!kvm_gsi_routing_enabled()) {
2249         return -ENOSYS;
2250     }
2251     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2252         return -ENOSYS;
2253     }
2254     virq = kvm_irqchip_get_virq(s);
2255     if (virq < 0) {
2256         return virq;
2257     }
2258 
2259     kroute.gsi = virq;
2260     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2261     kroute.flags = 0;
2262     kroute.u.hv_sint.vcpu = vcpu;
2263     kroute.u.hv_sint.sint = sint;
2264 
2265     kvm_add_routing_entry(s, &kroute);
2266     kvm_irqchip_commit_routes(s);
2267 
2268     return virq;
2269 }
2270 
2271 #else /* !KVM_CAP_IRQ_ROUTING */
2272 
2273 void kvm_init_irq_routing(KVMState *s)
2274 {
2275 }
2276 
2277 void kvm_irqchip_release_virq(KVMState *s, int virq)
2278 {
2279 }
2280 
2281 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2282 {
2283     abort();
2284 }
2285 
2286 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2287 {
2288     return -ENOSYS;
2289 }
2290 
2291 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2292 {
2293     return -ENOSYS;
2294 }
2295 
2296 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2297 {
2298     return -ENOSYS;
2299 }
2300 
2301 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2302                                     EventNotifier *resample, int virq,
2303                                     bool assign)
2304 {
2305     abort();
2306 }
2307 
2308 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2309 {
2310     return -ENOSYS;
2311 }
2312 #endif /* !KVM_CAP_IRQ_ROUTING */
2313 
2314 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2315                                        EventNotifier *rn, int virq)
2316 {
2317     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2318 }
2319 
2320 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2321                                           int virq)
2322 {
2323     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2324 }
2325 
2326 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2327                                    EventNotifier *rn, qemu_irq irq)
2328 {
2329     gpointer key, gsi;
2330     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2331 
2332     if (!found) {
2333         return -ENXIO;
2334     }
2335     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2336 }
2337 
2338 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2339                                       qemu_irq irq)
2340 {
2341     gpointer key, gsi;
2342     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2343 
2344     if (!found) {
2345         return -ENXIO;
2346     }
2347     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2348 }
2349 
2350 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2351 {
2352     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2353 }
2354 
2355 static void kvm_irqchip_create(KVMState *s)
2356 {
2357     int ret;
2358 
2359     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2360     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2361         ;
2362     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2363         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2364         if (ret < 0) {
2365             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2366             exit(1);
2367         }
2368     } else {
2369         return;
2370     }
2371 
2372     /* First probe and see if there's a arch-specific hook to create the
2373      * in-kernel irqchip for us */
2374     ret = kvm_arch_irqchip_create(s);
2375     if (ret == 0) {
2376         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2377             error_report("Split IRQ chip mode not supported.");
2378             exit(1);
2379         } else {
2380             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2381         }
2382     }
2383     if (ret < 0) {
2384         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2385         exit(1);
2386     }
2387 
2388     kvm_kernel_irqchip = true;
2389     /* If we have an in-kernel IRQ chip then we must have asynchronous
2390      * interrupt delivery (though the reverse is not necessarily true)
2391      */
2392     kvm_async_interrupts_allowed = true;
2393     kvm_halt_in_kernel_allowed = true;
2394 
2395     kvm_init_irq_routing(s);
2396 
2397     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2398 }
2399 
2400 /* Find number of supported CPUs using the recommended
2401  * procedure from the kernel API documentation to cope with
2402  * older kernels that may be missing capabilities.
2403  */
2404 static int kvm_recommended_vcpus(KVMState *s)
2405 {
2406     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2407     return (ret) ? ret : 4;
2408 }
2409 
2410 static int kvm_max_vcpus(KVMState *s)
2411 {
2412     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2413     return (ret) ? ret : kvm_recommended_vcpus(s);
2414 }
2415 
2416 static int kvm_max_vcpu_id(KVMState *s)
2417 {
2418     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2419     return (ret) ? ret : kvm_max_vcpus(s);
2420 }
2421 
2422 bool kvm_vcpu_id_is_valid(int vcpu_id)
2423 {
2424     KVMState *s = KVM_STATE(current_accel());
2425     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2426 }
2427 
2428 bool kvm_dirty_ring_enabled(void)
2429 {
2430     return kvm_state->kvm_dirty_ring_size ? true : false;
2431 }
2432 
2433 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2434                            strList *names, strList *targets, Error **errp);
2435 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2436 
2437 uint32_t kvm_dirty_ring_size(void)
2438 {
2439     return kvm_state->kvm_dirty_ring_size;
2440 }
2441 
2442 static int kvm_init(MachineState *ms)
2443 {
2444     MachineClass *mc = MACHINE_GET_CLASS(ms);
2445     static const char upgrade_note[] =
2446         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2447         "(see http://sourceforge.net/projects/kvm).\n";
2448     const struct {
2449         const char *name;
2450         int num;
2451     } num_cpus[] = {
2452         { "SMP",          ms->smp.cpus },
2453         { "hotpluggable", ms->smp.max_cpus },
2454         { /* end of list */ }
2455     }, *nc = num_cpus;
2456     int soft_vcpus_limit, hard_vcpus_limit;
2457     KVMState *s;
2458     const KVMCapabilityInfo *missing_cap;
2459     int ret;
2460     int type = 0;
2461     uint64_t dirty_log_manual_caps;
2462 
2463     qemu_mutex_init(&kml_slots_lock);
2464 
2465     s = KVM_STATE(ms->accelerator);
2466 
2467     /*
2468      * On systems where the kernel can support different base page
2469      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2470      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2471      * page size for the system though.
2472      */
2473     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2474 
2475     s->sigmask_len = 8;
2476     accel_blocker_init();
2477 
2478 #ifdef KVM_CAP_SET_GUEST_DEBUG
2479     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2480 #endif
2481     QLIST_INIT(&s->kvm_parked_vcpus);
2482     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2483     if (s->fd == -1) {
2484         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2485         ret = -errno;
2486         goto err;
2487     }
2488 
2489     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2490     if (ret < KVM_API_VERSION) {
2491         if (ret >= 0) {
2492             ret = -EINVAL;
2493         }
2494         fprintf(stderr, "kvm version too old\n");
2495         goto err;
2496     }
2497 
2498     if (ret > KVM_API_VERSION) {
2499         ret = -EINVAL;
2500         fprintf(stderr, "kvm version not supported\n");
2501         goto err;
2502     }
2503 
2504     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2505     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2506 
2507     /* If unspecified, use the default value */
2508     if (!s->nr_slots) {
2509         s->nr_slots = 32;
2510     }
2511 
2512     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2513     if (s->nr_as <= 1) {
2514         s->nr_as = 1;
2515     }
2516     s->as = g_new0(struct KVMAs, s->nr_as);
2517 
2518     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2519         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2520                                                             "kvm-type",
2521                                                             &error_abort);
2522         type = mc->kvm_type(ms, kvm_type);
2523     } else if (mc->kvm_type) {
2524         type = mc->kvm_type(ms, NULL);
2525     }
2526 
2527     do {
2528         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2529     } while (ret == -EINTR);
2530 
2531     if (ret < 0) {
2532         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2533                 strerror(-ret));
2534 
2535 #ifdef TARGET_S390X
2536         if (ret == -EINVAL) {
2537             fprintf(stderr,
2538                     "Host kernel setup problem detected. Please verify:\n");
2539             fprintf(stderr, "- for kernels supporting the switch_amode or"
2540                     " user_mode parameters, whether\n");
2541             fprintf(stderr,
2542                     "  user space is running in primary address space\n");
2543             fprintf(stderr,
2544                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2545                     "whether it is enabled\n");
2546         }
2547 #elif defined(TARGET_PPC)
2548         if (ret == -EINVAL) {
2549             fprintf(stderr,
2550                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2551                     (type == 2) ? "pr" : "hv");
2552         }
2553 #endif
2554         goto err;
2555     }
2556 
2557     s->vmfd = ret;
2558 
2559     /* check the vcpu limits */
2560     soft_vcpus_limit = kvm_recommended_vcpus(s);
2561     hard_vcpus_limit = kvm_max_vcpus(s);
2562 
2563     while (nc->name) {
2564         if (nc->num > soft_vcpus_limit) {
2565             warn_report("Number of %s cpus requested (%d) exceeds "
2566                         "the recommended cpus supported by KVM (%d)",
2567                         nc->name, nc->num, soft_vcpus_limit);
2568 
2569             if (nc->num > hard_vcpus_limit) {
2570                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2571                         "the maximum cpus supported by KVM (%d)\n",
2572                         nc->name, nc->num, hard_vcpus_limit);
2573                 exit(1);
2574             }
2575         }
2576         nc++;
2577     }
2578 
2579     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2580     if (!missing_cap) {
2581         missing_cap =
2582             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2583     }
2584     if (missing_cap) {
2585         ret = -EINVAL;
2586         fprintf(stderr, "kvm does not support %s\n%s",
2587                 missing_cap->name, upgrade_note);
2588         goto err;
2589     }
2590 
2591     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2592     s->coalesced_pio = s->coalesced_mmio &&
2593                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2594 
2595     /*
2596      * Enable KVM dirty ring if supported, otherwise fall back to
2597      * dirty logging mode
2598      */
2599     ret = kvm_dirty_ring_init(s);
2600     if (ret < 0) {
2601         goto err;
2602     }
2603 
2604     /*
2605      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2606      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2607      * page is wr-protected initially, which is against how kvm dirty ring is
2608      * usage - kvm dirty ring requires all pages are wr-protected at the very
2609      * beginning.  Enabling this feature for dirty ring causes data corruption.
2610      *
2611      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2612      * we may expect a higher stall time when starting the migration.  In the
2613      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2614      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2615      * guest pages.
2616      */
2617     if (!s->kvm_dirty_ring_size) {
2618         dirty_log_manual_caps =
2619             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2620         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2621                                   KVM_DIRTY_LOG_INITIALLY_SET);
2622         s->manual_dirty_log_protect = dirty_log_manual_caps;
2623         if (dirty_log_manual_caps) {
2624             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2625                                     dirty_log_manual_caps);
2626             if (ret) {
2627                 warn_report("Trying to enable capability %"PRIu64" of "
2628                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2629                             "Falling back to the legacy mode. ",
2630                             dirty_log_manual_caps);
2631                 s->manual_dirty_log_protect = 0;
2632             }
2633         }
2634     }
2635 
2636 #ifdef KVM_CAP_VCPU_EVENTS
2637     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2638 #endif
2639 
2640     s->robust_singlestep =
2641         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2642 
2643 #ifdef KVM_CAP_DEBUGREGS
2644     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2645 #endif
2646 
2647     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2648 
2649 #ifdef KVM_CAP_IRQ_ROUTING
2650     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2651 #endif
2652 
2653     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2654 
2655     s->irq_set_ioctl = KVM_IRQ_LINE;
2656     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2657         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2658     }
2659 
2660     kvm_readonly_mem_allowed =
2661         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2662 
2663     kvm_eventfds_allowed =
2664         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2665 
2666     kvm_irqfds_allowed =
2667         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2668 
2669     kvm_resamplefds_allowed =
2670         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2671 
2672     kvm_vm_attributes_allowed =
2673         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2674 
2675     kvm_ioeventfd_any_length_allowed =
2676         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2677 
2678 #ifdef KVM_CAP_SET_GUEST_DEBUG
2679     kvm_has_guest_debug =
2680         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2681 #endif
2682 
2683     kvm_sstep_flags = 0;
2684     if (kvm_has_guest_debug) {
2685         kvm_sstep_flags = SSTEP_ENABLE;
2686 
2687 #if defined KVM_CAP_SET_GUEST_DEBUG2
2688         int guest_debug_flags =
2689             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2690 
2691         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2692             kvm_sstep_flags |= SSTEP_NOIRQ;
2693         }
2694 #endif
2695     }
2696 
2697     kvm_state = s;
2698 
2699     ret = kvm_arch_init(ms, s);
2700     if (ret < 0) {
2701         goto err;
2702     }
2703 
2704     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2705         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2706     }
2707 
2708     qemu_register_reset(kvm_unpoison_all, NULL);
2709 
2710     if (s->kernel_irqchip_allowed) {
2711         kvm_irqchip_create(s);
2712     }
2713 
2714     if (kvm_eventfds_allowed) {
2715         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2716         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2717     }
2718     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2719     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2720 
2721     kvm_memory_listener_register(s, &s->memory_listener,
2722                                  &address_space_memory, 0, "kvm-memory");
2723     if (kvm_eventfds_allowed) {
2724         memory_listener_register(&kvm_io_listener,
2725                                  &address_space_io);
2726     }
2727     memory_listener_register(&kvm_coalesced_pio_listener,
2728                              &address_space_io);
2729 
2730     s->many_ioeventfds = kvm_check_many_ioeventfds();
2731 
2732     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2733     if (!s->sync_mmu) {
2734         ret = ram_block_discard_disable(true);
2735         assert(!ret);
2736     }
2737 
2738     if (s->kvm_dirty_ring_size) {
2739         ret = kvm_dirty_ring_reaper_init(s);
2740         if (ret) {
2741             goto err;
2742         }
2743     }
2744 
2745     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2746         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2747                             query_stats_schemas_cb);
2748     }
2749 
2750     return 0;
2751 
2752 err:
2753     assert(ret < 0);
2754     if (s->vmfd >= 0) {
2755         close(s->vmfd);
2756     }
2757     if (s->fd != -1) {
2758         close(s->fd);
2759     }
2760     g_free(s->memory_listener.slots);
2761 
2762     return ret;
2763 }
2764 
2765 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2766 {
2767     s->sigmask_len = sigmask_len;
2768 }
2769 
2770 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2771                           int size, uint32_t count)
2772 {
2773     int i;
2774     uint8_t *ptr = data;
2775 
2776     for (i = 0; i < count; i++) {
2777         address_space_rw(&address_space_io, port, attrs,
2778                          ptr, size,
2779                          direction == KVM_EXIT_IO_OUT);
2780         ptr += size;
2781     }
2782 }
2783 
2784 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2785 {
2786     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2787             run->internal.suberror);
2788 
2789     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2790         int i;
2791 
2792         for (i = 0; i < run->internal.ndata; ++i) {
2793             fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2794                     i, (uint64_t)run->internal.data[i]);
2795         }
2796     }
2797     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2798         fprintf(stderr, "emulation failure\n");
2799         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2800             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2801             return EXCP_INTERRUPT;
2802         }
2803     }
2804     /* FIXME: Should trigger a qmp message to let management know
2805      * something went wrong.
2806      */
2807     return -1;
2808 }
2809 
2810 void kvm_flush_coalesced_mmio_buffer(void)
2811 {
2812     KVMState *s = kvm_state;
2813 
2814     if (s->coalesced_flush_in_progress) {
2815         return;
2816     }
2817 
2818     s->coalesced_flush_in_progress = true;
2819 
2820     if (s->coalesced_mmio_ring) {
2821         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2822         while (ring->first != ring->last) {
2823             struct kvm_coalesced_mmio *ent;
2824 
2825             ent = &ring->coalesced_mmio[ring->first];
2826 
2827             if (ent->pio == 1) {
2828                 address_space_write(&address_space_io, ent->phys_addr,
2829                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2830                                     ent->len);
2831             } else {
2832                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2833             }
2834             smp_wmb();
2835             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2836         }
2837     }
2838 
2839     s->coalesced_flush_in_progress = false;
2840 }
2841 
2842 bool kvm_cpu_check_are_resettable(void)
2843 {
2844     return kvm_arch_cpu_check_are_resettable();
2845 }
2846 
2847 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2848 {
2849     if (!cpu->vcpu_dirty) {
2850         kvm_arch_get_registers(cpu);
2851         cpu->vcpu_dirty = true;
2852     }
2853 }
2854 
2855 void kvm_cpu_synchronize_state(CPUState *cpu)
2856 {
2857     if (!cpu->vcpu_dirty) {
2858         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2859     }
2860 }
2861 
2862 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2863 {
2864     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2865     cpu->vcpu_dirty = false;
2866 }
2867 
2868 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2869 {
2870     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2871 }
2872 
2873 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2874 {
2875     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2876     cpu->vcpu_dirty = false;
2877 }
2878 
2879 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2880 {
2881     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2882 }
2883 
2884 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2885 {
2886     cpu->vcpu_dirty = true;
2887 }
2888 
2889 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2890 {
2891     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2892 }
2893 
2894 #ifdef KVM_HAVE_MCE_INJECTION
2895 static __thread void *pending_sigbus_addr;
2896 static __thread int pending_sigbus_code;
2897 static __thread bool have_sigbus_pending;
2898 #endif
2899 
2900 static void kvm_cpu_kick(CPUState *cpu)
2901 {
2902     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2903 }
2904 
2905 static void kvm_cpu_kick_self(void)
2906 {
2907     if (kvm_immediate_exit) {
2908         kvm_cpu_kick(current_cpu);
2909     } else {
2910         qemu_cpu_kick_self();
2911     }
2912 }
2913 
2914 static void kvm_eat_signals(CPUState *cpu)
2915 {
2916     struct timespec ts = { 0, 0 };
2917     siginfo_t siginfo;
2918     sigset_t waitset;
2919     sigset_t chkset;
2920     int r;
2921 
2922     if (kvm_immediate_exit) {
2923         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2924         /* Write kvm_run->immediate_exit before the cpu->exit_request
2925          * write in kvm_cpu_exec.
2926          */
2927         smp_wmb();
2928         return;
2929     }
2930 
2931     sigemptyset(&waitset);
2932     sigaddset(&waitset, SIG_IPI);
2933 
2934     do {
2935         r = sigtimedwait(&waitset, &siginfo, &ts);
2936         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2937             perror("sigtimedwait");
2938             exit(1);
2939         }
2940 
2941         r = sigpending(&chkset);
2942         if (r == -1) {
2943             perror("sigpending");
2944             exit(1);
2945         }
2946     } while (sigismember(&chkset, SIG_IPI));
2947 }
2948 
2949 int kvm_cpu_exec(CPUState *cpu)
2950 {
2951     struct kvm_run *run = cpu->kvm_run;
2952     int ret, run_ret;
2953 
2954     DPRINTF("kvm_cpu_exec()\n");
2955 
2956     if (kvm_arch_process_async_events(cpu)) {
2957         qatomic_set(&cpu->exit_request, 0);
2958         return EXCP_HLT;
2959     }
2960 
2961     qemu_mutex_unlock_iothread();
2962     cpu_exec_start(cpu);
2963 
2964     do {
2965         MemTxAttrs attrs;
2966 
2967         if (cpu->vcpu_dirty) {
2968             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2969             cpu->vcpu_dirty = false;
2970         }
2971 
2972         kvm_arch_pre_run(cpu, run);
2973         if (qatomic_read(&cpu->exit_request)) {
2974             DPRINTF("interrupt exit requested\n");
2975             /*
2976              * KVM requires us to reenter the kernel after IO exits to complete
2977              * instruction emulation. This self-signal will ensure that we
2978              * leave ASAP again.
2979              */
2980             kvm_cpu_kick_self();
2981         }
2982 
2983         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2984          * Matching barrier in kvm_eat_signals.
2985          */
2986         smp_rmb();
2987 
2988         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2989 
2990         attrs = kvm_arch_post_run(cpu, run);
2991 
2992 #ifdef KVM_HAVE_MCE_INJECTION
2993         if (unlikely(have_sigbus_pending)) {
2994             qemu_mutex_lock_iothread();
2995             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2996                                     pending_sigbus_addr);
2997             have_sigbus_pending = false;
2998             qemu_mutex_unlock_iothread();
2999         }
3000 #endif
3001 
3002         if (run_ret < 0) {
3003             if (run_ret == -EINTR || run_ret == -EAGAIN) {
3004                 DPRINTF("io window exit\n");
3005                 kvm_eat_signals(cpu);
3006                 ret = EXCP_INTERRUPT;
3007                 break;
3008             }
3009             fprintf(stderr, "error: kvm run failed %s\n",
3010                     strerror(-run_ret));
3011 #ifdef TARGET_PPC
3012             if (run_ret == -EBUSY) {
3013                 fprintf(stderr,
3014                         "This is probably because your SMT is enabled.\n"
3015                         "VCPU can only run on primary threads with all "
3016                         "secondary threads offline.\n");
3017             }
3018 #endif
3019             ret = -1;
3020             break;
3021         }
3022 
3023         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3024         switch (run->exit_reason) {
3025         case KVM_EXIT_IO:
3026             DPRINTF("handle_io\n");
3027             /* Called outside BQL */
3028             kvm_handle_io(run->io.port, attrs,
3029                           (uint8_t *)run + run->io.data_offset,
3030                           run->io.direction,
3031                           run->io.size,
3032                           run->io.count);
3033             ret = 0;
3034             break;
3035         case KVM_EXIT_MMIO:
3036             DPRINTF("handle_mmio\n");
3037             /* Called outside BQL */
3038             address_space_rw(&address_space_memory,
3039                              run->mmio.phys_addr, attrs,
3040                              run->mmio.data,
3041                              run->mmio.len,
3042                              run->mmio.is_write);
3043             ret = 0;
3044             break;
3045         case KVM_EXIT_IRQ_WINDOW_OPEN:
3046             DPRINTF("irq_window_open\n");
3047             ret = EXCP_INTERRUPT;
3048             break;
3049         case KVM_EXIT_SHUTDOWN:
3050             DPRINTF("shutdown\n");
3051             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3052             ret = EXCP_INTERRUPT;
3053             break;
3054         case KVM_EXIT_UNKNOWN:
3055             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3056                     (uint64_t)run->hw.hardware_exit_reason);
3057             ret = -1;
3058             break;
3059         case KVM_EXIT_INTERNAL_ERROR:
3060             ret = kvm_handle_internal_error(cpu, run);
3061             break;
3062         case KVM_EXIT_DIRTY_RING_FULL:
3063             /*
3064              * We shouldn't continue if the dirty ring of this vcpu is
3065              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
3066              */
3067             trace_kvm_dirty_ring_full(cpu->cpu_index);
3068             qemu_mutex_lock_iothread();
3069             /*
3070              * We throttle vCPU by making it sleep once it exit from kernel
3071              * due to dirty ring full. In the dirtylimit scenario, reaping
3072              * all vCPUs after a single vCPU dirty ring get full result in
3073              * the miss of sleep, so just reap the ring-fulled vCPU.
3074              */
3075             if (dirtylimit_in_service()) {
3076                 kvm_dirty_ring_reap(kvm_state, cpu);
3077             } else {
3078                 kvm_dirty_ring_reap(kvm_state, NULL);
3079             }
3080             qemu_mutex_unlock_iothread();
3081             dirtylimit_vcpu_execute(cpu);
3082             ret = 0;
3083             break;
3084         case KVM_EXIT_SYSTEM_EVENT:
3085             switch (run->system_event.type) {
3086             case KVM_SYSTEM_EVENT_SHUTDOWN:
3087                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3088                 ret = EXCP_INTERRUPT;
3089                 break;
3090             case KVM_SYSTEM_EVENT_RESET:
3091                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3092                 ret = EXCP_INTERRUPT;
3093                 break;
3094             case KVM_SYSTEM_EVENT_CRASH:
3095                 kvm_cpu_synchronize_state(cpu);
3096                 qemu_mutex_lock_iothread();
3097                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3098                 qemu_mutex_unlock_iothread();
3099                 ret = 0;
3100                 break;
3101             default:
3102                 DPRINTF("kvm_arch_handle_exit\n");
3103                 ret = kvm_arch_handle_exit(cpu, run);
3104                 break;
3105             }
3106             break;
3107         default:
3108             DPRINTF("kvm_arch_handle_exit\n");
3109             ret = kvm_arch_handle_exit(cpu, run);
3110             break;
3111         }
3112     } while (ret == 0);
3113 
3114     cpu_exec_end(cpu);
3115     qemu_mutex_lock_iothread();
3116 
3117     if (ret < 0) {
3118         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3119         vm_stop(RUN_STATE_INTERNAL_ERROR);
3120     }
3121 
3122     qatomic_set(&cpu->exit_request, 0);
3123     return ret;
3124 }
3125 
3126 int kvm_ioctl(KVMState *s, int type, ...)
3127 {
3128     int ret;
3129     void *arg;
3130     va_list ap;
3131 
3132     va_start(ap, type);
3133     arg = va_arg(ap, void *);
3134     va_end(ap);
3135 
3136     trace_kvm_ioctl(type, arg);
3137     ret = ioctl(s->fd, type, arg);
3138     if (ret == -1) {
3139         ret = -errno;
3140     }
3141     return ret;
3142 }
3143 
3144 int kvm_vm_ioctl(KVMState *s, int type, ...)
3145 {
3146     int ret;
3147     void *arg;
3148     va_list ap;
3149 
3150     va_start(ap, type);
3151     arg = va_arg(ap, void *);
3152     va_end(ap);
3153 
3154     trace_kvm_vm_ioctl(type, arg);
3155     accel_ioctl_begin();
3156     ret = ioctl(s->vmfd, type, arg);
3157     accel_ioctl_end();
3158     if (ret == -1) {
3159         ret = -errno;
3160     }
3161     return ret;
3162 }
3163 
3164 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3165 {
3166     int ret;
3167     void *arg;
3168     va_list ap;
3169 
3170     va_start(ap, type);
3171     arg = va_arg(ap, void *);
3172     va_end(ap);
3173 
3174     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3175     accel_cpu_ioctl_begin(cpu);
3176     ret = ioctl(cpu->kvm_fd, type, arg);
3177     accel_cpu_ioctl_end(cpu);
3178     if (ret == -1) {
3179         ret = -errno;
3180     }
3181     return ret;
3182 }
3183 
3184 int kvm_device_ioctl(int fd, int type, ...)
3185 {
3186     int ret;
3187     void *arg;
3188     va_list ap;
3189 
3190     va_start(ap, type);
3191     arg = va_arg(ap, void *);
3192     va_end(ap);
3193 
3194     trace_kvm_device_ioctl(fd, type, arg);
3195     accel_ioctl_begin();
3196     ret = ioctl(fd, type, arg);
3197     accel_ioctl_end();
3198     if (ret == -1) {
3199         ret = -errno;
3200     }
3201     return ret;
3202 }
3203 
3204 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3205 {
3206     int ret;
3207     struct kvm_device_attr attribute = {
3208         .group = group,
3209         .attr = attr,
3210     };
3211 
3212     if (!kvm_vm_attributes_allowed) {
3213         return 0;
3214     }
3215 
3216     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3217     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3218     return ret ? 0 : 1;
3219 }
3220 
3221 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3222 {
3223     struct kvm_device_attr attribute = {
3224         .group = group,
3225         .attr = attr,
3226         .flags = 0,
3227     };
3228 
3229     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3230 }
3231 
3232 int kvm_device_access(int fd, int group, uint64_t attr,
3233                       void *val, bool write, Error **errp)
3234 {
3235     struct kvm_device_attr kvmattr;
3236     int err;
3237 
3238     kvmattr.flags = 0;
3239     kvmattr.group = group;
3240     kvmattr.attr = attr;
3241     kvmattr.addr = (uintptr_t)val;
3242 
3243     err = kvm_device_ioctl(fd,
3244                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3245                            &kvmattr);
3246     if (err < 0) {
3247         error_setg_errno(errp, -err,
3248                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3249                          "attr 0x%016" PRIx64,
3250                          write ? "SET" : "GET", group, attr);
3251     }
3252     return err;
3253 }
3254 
3255 bool kvm_has_sync_mmu(void)
3256 {
3257     return kvm_state->sync_mmu;
3258 }
3259 
3260 int kvm_has_vcpu_events(void)
3261 {
3262     return kvm_state->vcpu_events;
3263 }
3264 
3265 int kvm_has_robust_singlestep(void)
3266 {
3267     return kvm_state->robust_singlestep;
3268 }
3269 
3270 int kvm_has_debugregs(void)
3271 {
3272     return kvm_state->debugregs;
3273 }
3274 
3275 int kvm_max_nested_state_length(void)
3276 {
3277     return kvm_state->max_nested_state_len;
3278 }
3279 
3280 int kvm_has_many_ioeventfds(void)
3281 {
3282     if (!kvm_enabled()) {
3283         return 0;
3284     }
3285     return kvm_state->many_ioeventfds;
3286 }
3287 
3288 int kvm_has_gsi_routing(void)
3289 {
3290 #ifdef KVM_CAP_IRQ_ROUTING
3291     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3292 #else
3293     return false;
3294 #endif
3295 }
3296 
3297 int kvm_has_intx_set_mask(void)
3298 {
3299     return kvm_state->intx_set_mask;
3300 }
3301 
3302 bool kvm_arm_supports_user_irq(void)
3303 {
3304     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3305 }
3306 
3307 #ifdef KVM_CAP_SET_GUEST_DEBUG
3308 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3309                                                  target_ulong pc)
3310 {
3311     struct kvm_sw_breakpoint *bp;
3312 
3313     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3314         if (bp->pc == pc) {
3315             return bp;
3316         }
3317     }
3318     return NULL;
3319 }
3320 
3321 int kvm_sw_breakpoints_active(CPUState *cpu)
3322 {
3323     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3324 }
3325 
3326 struct kvm_set_guest_debug_data {
3327     struct kvm_guest_debug dbg;
3328     int err;
3329 };
3330 
3331 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3332 {
3333     struct kvm_set_guest_debug_data *dbg_data =
3334         (struct kvm_set_guest_debug_data *) data.host_ptr;
3335 
3336     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3337                                    &dbg_data->dbg);
3338 }
3339 
3340 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3341 {
3342     struct kvm_set_guest_debug_data data;
3343 
3344     data.dbg.control = reinject_trap;
3345 
3346     if (cpu->singlestep_enabled) {
3347         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3348 
3349         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3350             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3351         }
3352     }
3353     kvm_arch_update_guest_debug(cpu, &data.dbg);
3354 
3355     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3356                RUN_ON_CPU_HOST_PTR(&data));
3357     return data.err;
3358 }
3359 
3360 bool kvm_supports_guest_debug(void)
3361 {
3362     /* probed during kvm_init() */
3363     return kvm_has_guest_debug;
3364 }
3365 
3366 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3367 {
3368     struct kvm_sw_breakpoint *bp;
3369     int err;
3370 
3371     if (type == GDB_BREAKPOINT_SW) {
3372         bp = kvm_find_sw_breakpoint(cpu, addr);
3373         if (bp) {
3374             bp->use_count++;
3375             return 0;
3376         }
3377 
3378         bp = g_new(struct kvm_sw_breakpoint, 1);
3379         bp->pc = addr;
3380         bp->use_count = 1;
3381         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3382         if (err) {
3383             g_free(bp);
3384             return err;
3385         }
3386 
3387         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3388     } else {
3389         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3390         if (err) {
3391             return err;
3392         }
3393     }
3394 
3395     CPU_FOREACH(cpu) {
3396         err = kvm_update_guest_debug(cpu, 0);
3397         if (err) {
3398             return err;
3399         }
3400     }
3401     return 0;
3402 }
3403 
3404 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3405 {
3406     struct kvm_sw_breakpoint *bp;
3407     int err;
3408 
3409     if (type == GDB_BREAKPOINT_SW) {
3410         bp = kvm_find_sw_breakpoint(cpu, addr);
3411         if (!bp) {
3412             return -ENOENT;
3413         }
3414 
3415         if (bp->use_count > 1) {
3416             bp->use_count--;
3417             return 0;
3418         }
3419 
3420         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3421         if (err) {
3422             return err;
3423         }
3424 
3425         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3426         g_free(bp);
3427     } else {
3428         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3429         if (err) {
3430             return err;
3431         }
3432     }
3433 
3434     CPU_FOREACH(cpu) {
3435         err = kvm_update_guest_debug(cpu, 0);
3436         if (err) {
3437             return err;
3438         }
3439     }
3440     return 0;
3441 }
3442 
3443 void kvm_remove_all_breakpoints(CPUState *cpu)
3444 {
3445     struct kvm_sw_breakpoint *bp, *next;
3446     KVMState *s = cpu->kvm_state;
3447     CPUState *tmpcpu;
3448 
3449     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3450         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3451             /* Try harder to find a CPU that currently sees the breakpoint. */
3452             CPU_FOREACH(tmpcpu) {
3453                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3454                     break;
3455                 }
3456             }
3457         }
3458         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3459         g_free(bp);
3460     }
3461     kvm_arch_remove_all_hw_breakpoints();
3462 
3463     CPU_FOREACH(cpu) {
3464         kvm_update_guest_debug(cpu, 0);
3465     }
3466 }
3467 
3468 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3469 
3470 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3471 {
3472     KVMState *s = kvm_state;
3473     struct kvm_signal_mask *sigmask;
3474     int r;
3475 
3476     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3477 
3478     sigmask->len = s->sigmask_len;
3479     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3480     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3481     g_free(sigmask);
3482 
3483     return r;
3484 }
3485 
3486 static void kvm_ipi_signal(int sig)
3487 {
3488     if (current_cpu) {
3489         assert(kvm_immediate_exit);
3490         kvm_cpu_kick(current_cpu);
3491     }
3492 }
3493 
3494 void kvm_init_cpu_signals(CPUState *cpu)
3495 {
3496     int r;
3497     sigset_t set;
3498     struct sigaction sigact;
3499 
3500     memset(&sigact, 0, sizeof(sigact));
3501     sigact.sa_handler = kvm_ipi_signal;
3502     sigaction(SIG_IPI, &sigact, NULL);
3503 
3504     pthread_sigmask(SIG_BLOCK, NULL, &set);
3505 #if defined KVM_HAVE_MCE_INJECTION
3506     sigdelset(&set, SIGBUS);
3507     pthread_sigmask(SIG_SETMASK, &set, NULL);
3508 #endif
3509     sigdelset(&set, SIG_IPI);
3510     if (kvm_immediate_exit) {
3511         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3512     } else {
3513         r = kvm_set_signal_mask(cpu, &set);
3514     }
3515     if (r) {
3516         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3517         exit(1);
3518     }
3519 }
3520 
3521 /* Called asynchronously in VCPU thread.  */
3522 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3523 {
3524 #ifdef KVM_HAVE_MCE_INJECTION
3525     if (have_sigbus_pending) {
3526         return 1;
3527     }
3528     have_sigbus_pending = true;
3529     pending_sigbus_addr = addr;
3530     pending_sigbus_code = code;
3531     qatomic_set(&cpu->exit_request, 1);
3532     return 0;
3533 #else
3534     return 1;
3535 #endif
3536 }
3537 
3538 /* Called synchronously (via signalfd) in main thread.  */
3539 int kvm_on_sigbus(int code, void *addr)
3540 {
3541 #ifdef KVM_HAVE_MCE_INJECTION
3542     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3543      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3544      * we can only get action optional here.
3545      */
3546     assert(code != BUS_MCEERR_AR);
3547     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3548     return 0;
3549 #else
3550     return 1;
3551 #endif
3552 }
3553 
3554 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3555 {
3556     int ret;
3557     struct kvm_create_device create_dev;
3558 
3559     create_dev.type = type;
3560     create_dev.fd = -1;
3561     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3562 
3563     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3564         return -ENOTSUP;
3565     }
3566 
3567     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3568     if (ret) {
3569         return ret;
3570     }
3571 
3572     return test ? 0 : create_dev.fd;
3573 }
3574 
3575 bool kvm_device_supported(int vmfd, uint64_t type)
3576 {
3577     struct kvm_create_device create_dev = {
3578         .type = type,
3579         .fd = -1,
3580         .flags = KVM_CREATE_DEVICE_TEST,
3581     };
3582 
3583     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3584         return false;
3585     }
3586 
3587     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3588 }
3589 
3590 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3591 {
3592     struct kvm_one_reg reg;
3593     int r;
3594 
3595     reg.id = id;
3596     reg.addr = (uintptr_t) source;
3597     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3598     if (r) {
3599         trace_kvm_failed_reg_set(id, strerror(-r));
3600     }
3601     return r;
3602 }
3603 
3604 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3605 {
3606     struct kvm_one_reg reg;
3607     int r;
3608 
3609     reg.id = id;
3610     reg.addr = (uintptr_t) target;
3611     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3612     if (r) {
3613         trace_kvm_failed_reg_get(id, strerror(-r));
3614     }
3615     return r;
3616 }
3617 
3618 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3619                                  hwaddr start_addr, hwaddr size)
3620 {
3621     KVMState *kvm = KVM_STATE(ms->accelerator);
3622     int i;
3623 
3624     for (i = 0; i < kvm->nr_as; ++i) {
3625         if (kvm->as[i].as == as && kvm->as[i].ml) {
3626             size = MIN(kvm_max_slot_size, size);
3627             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3628                                                     start_addr, size);
3629         }
3630     }
3631 
3632     return false;
3633 }
3634 
3635 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3636                                    const char *name, void *opaque,
3637                                    Error **errp)
3638 {
3639     KVMState *s = KVM_STATE(obj);
3640     int64_t value = s->kvm_shadow_mem;
3641 
3642     visit_type_int(v, name, &value, errp);
3643 }
3644 
3645 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3646                                    const char *name, void *opaque,
3647                                    Error **errp)
3648 {
3649     KVMState *s = KVM_STATE(obj);
3650     int64_t value;
3651 
3652     if (s->fd != -1) {
3653         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3654         return;
3655     }
3656 
3657     if (!visit_type_int(v, name, &value, errp)) {
3658         return;
3659     }
3660 
3661     s->kvm_shadow_mem = value;
3662 }
3663 
3664 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3665                                    const char *name, void *opaque,
3666                                    Error **errp)
3667 {
3668     KVMState *s = KVM_STATE(obj);
3669     OnOffSplit mode;
3670 
3671     if (s->fd != -1) {
3672         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3673         return;
3674     }
3675 
3676     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3677         return;
3678     }
3679     switch (mode) {
3680     case ON_OFF_SPLIT_ON:
3681         s->kernel_irqchip_allowed = true;
3682         s->kernel_irqchip_required = true;
3683         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3684         break;
3685     case ON_OFF_SPLIT_OFF:
3686         s->kernel_irqchip_allowed = false;
3687         s->kernel_irqchip_required = false;
3688         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3689         break;
3690     case ON_OFF_SPLIT_SPLIT:
3691         s->kernel_irqchip_allowed = true;
3692         s->kernel_irqchip_required = true;
3693         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3694         break;
3695     default:
3696         /* The value was checked in visit_type_OnOffSplit() above. If
3697          * we get here, then something is wrong in QEMU.
3698          */
3699         abort();
3700     }
3701 }
3702 
3703 bool kvm_kernel_irqchip_allowed(void)
3704 {
3705     return kvm_state->kernel_irqchip_allowed;
3706 }
3707 
3708 bool kvm_kernel_irqchip_required(void)
3709 {
3710     return kvm_state->kernel_irqchip_required;
3711 }
3712 
3713 bool kvm_kernel_irqchip_split(void)
3714 {
3715     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3716 }
3717 
3718 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3719                                     const char *name, void *opaque,
3720                                     Error **errp)
3721 {
3722     KVMState *s = KVM_STATE(obj);
3723     uint32_t value = s->kvm_dirty_ring_size;
3724 
3725     visit_type_uint32(v, name, &value, errp);
3726 }
3727 
3728 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3729                                     const char *name, void *opaque,
3730                                     Error **errp)
3731 {
3732     KVMState *s = KVM_STATE(obj);
3733     uint32_t value;
3734 
3735     if (s->fd != -1) {
3736         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3737         return;
3738     }
3739 
3740     if (!visit_type_uint32(v, name, &value, errp)) {
3741         return;
3742     }
3743     if (value & (value - 1)) {
3744         error_setg(errp, "dirty-ring-size must be a power of two.");
3745         return;
3746     }
3747 
3748     s->kvm_dirty_ring_size = value;
3749 }
3750 
3751 static void kvm_accel_instance_init(Object *obj)
3752 {
3753     KVMState *s = KVM_STATE(obj);
3754 
3755     s->fd = -1;
3756     s->vmfd = -1;
3757     s->kvm_shadow_mem = -1;
3758     s->kernel_irqchip_allowed = true;
3759     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3760     /* KVM dirty ring is by default off */
3761     s->kvm_dirty_ring_size = 0;
3762     s->kvm_dirty_ring_with_bitmap = false;
3763     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3764     s->notify_window = 0;
3765     s->xen_version = 0;
3766     s->xen_gnttab_max_frames = 64;
3767     s->xen_evtchn_max_pirq = 256;
3768 }
3769 
3770 /**
3771  * kvm_gdbstub_sstep_flags():
3772  *
3773  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3774  * support is probed during kvm_init()
3775  */
3776 static int kvm_gdbstub_sstep_flags(void)
3777 {
3778     return kvm_sstep_flags;
3779 }
3780 
3781 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3782 {
3783     AccelClass *ac = ACCEL_CLASS(oc);
3784     ac->name = "KVM";
3785     ac->init_machine = kvm_init;
3786     ac->has_memory = kvm_accel_has_memory;
3787     ac->allowed = &kvm_allowed;
3788     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3789 
3790     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3791         NULL, kvm_set_kernel_irqchip,
3792         NULL, NULL);
3793     object_class_property_set_description(oc, "kernel-irqchip",
3794         "Configure KVM in-kernel irqchip");
3795 
3796     object_class_property_add(oc, "kvm-shadow-mem", "int",
3797         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3798         NULL, NULL);
3799     object_class_property_set_description(oc, "kvm-shadow-mem",
3800         "KVM shadow MMU size");
3801 
3802     object_class_property_add(oc, "dirty-ring-size", "uint32",
3803         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3804         NULL, NULL);
3805     object_class_property_set_description(oc, "dirty-ring-size",
3806         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3807 
3808     kvm_arch_accel_class_init(oc);
3809 }
3810 
3811 static const TypeInfo kvm_accel_type = {
3812     .name = TYPE_KVM_ACCEL,
3813     .parent = TYPE_ACCEL,
3814     .instance_init = kvm_accel_instance_init,
3815     .class_init = kvm_accel_class_init,
3816     .instance_size = sizeof(KVMState),
3817 };
3818 
3819 static void kvm_type_init(void)
3820 {
3821     type_register_static(&kvm_accel_type);
3822 }
3823 
3824 type_init(kvm_type_init);
3825 
3826 typedef struct StatsArgs {
3827     union StatsResultsType {
3828         StatsResultList **stats;
3829         StatsSchemaList **schema;
3830     } result;
3831     strList *names;
3832     Error **errp;
3833 } StatsArgs;
3834 
3835 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3836                                     uint64_t *stats_data,
3837                                     StatsList *stats_list,
3838                                     Error **errp)
3839 {
3840 
3841     Stats *stats;
3842     uint64List *val_list = NULL;
3843 
3844     /* Only add stats that we understand.  */
3845     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3846     case KVM_STATS_TYPE_CUMULATIVE:
3847     case KVM_STATS_TYPE_INSTANT:
3848     case KVM_STATS_TYPE_PEAK:
3849     case KVM_STATS_TYPE_LINEAR_HIST:
3850     case KVM_STATS_TYPE_LOG_HIST:
3851         break;
3852     default:
3853         return stats_list;
3854     }
3855 
3856     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3857     case KVM_STATS_UNIT_NONE:
3858     case KVM_STATS_UNIT_BYTES:
3859     case KVM_STATS_UNIT_CYCLES:
3860     case KVM_STATS_UNIT_SECONDS:
3861     case KVM_STATS_UNIT_BOOLEAN:
3862         break;
3863     default:
3864         return stats_list;
3865     }
3866 
3867     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3868     case KVM_STATS_BASE_POW10:
3869     case KVM_STATS_BASE_POW2:
3870         break;
3871     default:
3872         return stats_list;
3873     }
3874 
3875     /* Alloc and populate data list */
3876     stats = g_new0(Stats, 1);
3877     stats->name = g_strdup(pdesc->name);
3878     stats->value = g_new0(StatsValue, 1);;
3879 
3880     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3881         stats->value->u.boolean = *stats_data;
3882         stats->value->type = QTYPE_QBOOL;
3883     } else if (pdesc->size == 1) {
3884         stats->value->u.scalar = *stats_data;
3885         stats->value->type = QTYPE_QNUM;
3886     } else {
3887         int i;
3888         for (i = 0; i < pdesc->size; i++) {
3889             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3890         }
3891         stats->value->u.list = val_list;
3892         stats->value->type = QTYPE_QLIST;
3893     }
3894 
3895     QAPI_LIST_PREPEND(stats_list, stats);
3896     return stats_list;
3897 }
3898 
3899 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3900                                                  StatsSchemaValueList *list,
3901                                                  Error **errp)
3902 {
3903     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3904     schema_entry->value = g_new0(StatsSchemaValue, 1);
3905 
3906     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3907     case KVM_STATS_TYPE_CUMULATIVE:
3908         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3909         break;
3910     case KVM_STATS_TYPE_INSTANT:
3911         schema_entry->value->type = STATS_TYPE_INSTANT;
3912         break;
3913     case KVM_STATS_TYPE_PEAK:
3914         schema_entry->value->type = STATS_TYPE_PEAK;
3915         break;
3916     case KVM_STATS_TYPE_LINEAR_HIST:
3917         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3918         schema_entry->value->bucket_size = pdesc->bucket_size;
3919         schema_entry->value->has_bucket_size = true;
3920         break;
3921     case KVM_STATS_TYPE_LOG_HIST:
3922         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3923         break;
3924     default:
3925         goto exit;
3926     }
3927 
3928     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3929     case KVM_STATS_UNIT_NONE:
3930         break;
3931     case KVM_STATS_UNIT_BOOLEAN:
3932         schema_entry->value->has_unit = true;
3933         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3934         break;
3935     case KVM_STATS_UNIT_BYTES:
3936         schema_entry->value->has_unit = true;
3937         schema_entry->value->unit = STATS_UNIT_BYTES;
3938         break;
3939     case KVM_STATS_UNIT_CYCLES:
3940         schema_entry->value->has_unit = true;
3941         schema_entry->value->unit = STATS_UNIT_CYCLES;
3942         break;
3943     case KVM_STATS_UNIT_SECONDS:
3944         schema_entry->value->has_unit = true;
3945         schema_entry->value->unit = STATS_UNIT_SECONDS;
3946         break;
3947     default:
3948         goto exit;
3949     }
3950 
3951     schema_entry->value->exponent = pdesc->exponent;
3952     if (pdesc->exponent) {
3953         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3954         case KVM_STATS_BASE_POW10:
3955             schema_entry->value->has_base = true;
3956             schema_entry->value->base = 10;
3957             break;
3958         case KVM_STATS_BASE_POW2:
3959             schema_entry->value->has_base = true;
3960             schema_entry->value->base = 2;
3961             break;
3962         default:
3963             goto exit;
3964         }
3965     }
3966 
3967     schema_entry->value->name = g_strdup(pdesc->name);
3968     schema_entry->next = list;
3969     return schema_entry;
3970 exit:
3971     g_free(schema_entry->value);
3972     g_free(schema_entry);
3973     return list;
3974 }
3975 
3976 /* Cached stats descriptors */
3977 typedef struct StatsDescriptors {
3978     const char *ident; /* cache key, currently the StatsTarget */
3979     struct kvm_stats_desc *kvm_stats_desc;
3980     struct kvm_stats_header kvm_stats_header;
3981     QTAILQ_ENTRY(StatsDescriptors) next;
3982 } StatsDescriptors;
3983 
3984 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3985     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3986 
3987 /*
3988  * Return the descriptors for 'target', that either have already been read
3989  * or are retrieved from 'stats_fd'.
3990  */
3991 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3992                                                 Error **errp)
3993 {
3994     StatsDescriptors *descriptors;
3995     const char *ident;
3996     struct kvm_stats_desc *kvm_stats_desc;
3997     struct kvm_stats_header *kvm_stats_header;
3998     size_t size_desc;
3999     ssize_t ret;
4000 
4001     ident = StatsTarget_str(target);
4002     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4003         if (g_str_equal(descriptors->ident, ident)) {
4004             return descriptors;
4005         }
4006     }
4007 
4008     descriptors = g_new0(StatsDescriptors, 1);
4009 
4010     /* Read stats header */
4011     kvm_stats_header = &descriptors->kvm_stats_header;
4012     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4013     if (ret != sizeof(*kvm_stats_header)) {
4014         error_setg(errp, "KVM stats: failed to read stats header: "
4015                    "expected %zu actual %zu",
4016                    sizeof(*kvm_stats_header), ret);
4017         g_free(descriptors);
4018         return NULL;
4019     }
4020     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4021 
4022     /* Read stats descriptors */
4023     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4024     ret = pread(stats_fd, kvm_stats_desc,
4025                 size_desc * kvm_stats_header->num_desc,
4026                 kvm_stats_header->desc_offset);
4027 
4028     if (ret != size_desc * kvm_stats_header->num_desc) {
4029         error_setg(errp, "KVM stats: failed to read stats descriptors: "
4030                    "expected %zu actual %zu",
4031                    size_desc * kvm_stats_header->num_desc, ret);
4032         g_free(descriptors);
4033         g_free(kvm_stats_desc);
4034         return NULL;
4035     }
4036     descriptors->kvm_stats_desc = kvm_stats_desc;
4037     descriptors->ident = ident;
4038     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4039     return descriptors;
4040 }
4041 
4042 static void query_stats(StatsResultList **result, StatsTarget target,
4043                         strList *names, int stats_fd, CPUState *cpu,
4044                         Error **errp)
4045 {
4046     struct kvm_stats_desc *kvm_stats_desc;
4047     struct kvm_stats_header *kvm_stats_header;
4048     StatsDescriptors *descriptors;
4049     g_autofree uint64_t *stats_data = NULL;
4050     struct kvm_stats_desc *pdesc;
4051     StatsList *stats_list = NULL;
4052     size_t size_desc, size_data = 0;
4053     ssize_t ret;
4054     int i;
4055 
4056     descriptors = find_stats_descriptors(target, stats_fd, errp);
4057     if (!descriptors) {
4058         return;
4059     }
4060 
4061     kvm_stats_header = &descriptors->kvm_stats_header;
4062     kvm_stats_desc = descriptors->kvm_stats_desc;
4063     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4064 
4065     /* Tally the total data size; read schema data */
4066     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4067         pdesc = (void *)kvm_stats_desc + i * size_desc;
4068         size_data += pdesc->size * sizeof(*stats_data);
4069     }
4070 
4071     stats_data = g_malloc0(size_data);
4072     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4073 
4074     if (ret != size_data) {
4075         error_setg(errp, "KVM stats: failed to read data: "
4076                    "expected %zu actual %zu", size_data, ret);
4077         return;
4078     }
4079 
4080     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4081         uint64_t *stats;
4082         pdesc = (void *)kvm_stats_desc + i * size_desc;
4083 
4084         /* Add entry to the list */
4085         stats = (void *)stats_data + pdesc->offset;
4086         if (!apply_str_list_filter(pdesc->name, names)) {
4087             continue;
4088         }
4089         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4090     }
4091 
4092     if (!stats_list) {
4093         return;
4094     }
4095 
4096     switch (target) {
4097     case STATS_TARGET_VM:
4098         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4099         break;
4100     case STATS_TARGET_VCPU:
4101         add_stats_entry(result, STATS_PROVIDER_KVM,
4102                         cpu->parent_obj.canonical_path,
4103                         stats_list);
4104         break;
4105     default:
4106         g_assert_not_reached();
4107     }
4108 }
4109 
4110 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4111                                int stats_fd, Error **errp)
4112 {
4113     struct kvm_stats_desc *kvm_stats_desc;
4114     struct kvm_stats_header *kvm_stats_header;
4115     StatsDescriptors *descriptors;
4116     struct kvm_stats_desc *pdesc;
4117     StatsSchemaValueList *stats_list = NULL;
4118     size_t size_desc;
4119     int i;
4120 
4121     descriptors = find_stats_descriptors(target, stats_fd, errp);
4122     if (!descriptors) {
4123         return;
4124     }
4125 
4126     kvm_stats_header = &descriptors->kvm_stats_header;
4127     kvm_stats_desc = descriptors->kvm_stats_desc;
4128     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4129 
4130     /* Tally the total data size; read schema data */
4131     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4132         pdesc = (void *)kvm_stats_desc + i * size_desc;
4133         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4134     }
4135 
4136     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4137 }
4138 
4139 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4140 {
4141     int stats_fd = cpu->kvm_vcpu_stats_fd;
4142     Error *local_err = NULL;
4143 
4144     if (stats_fd == -1) {
4145         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4146         error_propagate(kvm_stats_args->errp, local_err);
4147         return;
4148     }
4149     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4150                 kvm_stats_args->names, stats_fd, cpu,
4151                 kvm_stats_args->errp);
4152 }
4153 
4154 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4155 {
4156     int stats_fd = cpu->kvm_vcpu_stats_fd;
4157     Error *local_err = NULL;
4158 
4159     if (stats_fd == -1) {
4160         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4161         error_propagate(kvm_stats_args->errp, local_err);
4162         return;
4163     }
4164     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4165                        kvm_stats_args->errp);
4166 }
4167 
4168 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4169                            strList *names, strList *targets, Error **errp)
4170 {
4171     KVMState *s = kvm_state;
4172     CPUState *cpu;
4173     int stats_fd;
4174 
4175     switch (target) {
4176     case STATS_TARGET_VM:
4177     {
4178         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4179         if (stats_fd == -1) {
4180             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4181             return;
4182         }
4183         query_stats(result, target, names, stats_fd, NULL, errp);
4184         close(stats_fd);
4185         break;
4186     }
4187     case STATS_TARGET_VCPU:
4188     {
4189         StatsArgs stats_args;
4190         stats_args.result.stats = result;
4191         stats_args.names = names;
4192         stats_args.errp = errp;
4193         CPU_FOREACH(cpu) {
4194             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4195                 continue;
4196             }
4197             query_stats_vcpu(cpu, &stats_args);
4198         }
4199         break;
4200     }
4201     default:
4202         break;
4203     }
4204 }
4205 
4206 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4207 {
4208     StatsArgs stats_args;
4209     KVMState *s = kvm_state;
4210     int stats_fd;
4211 
4212     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4213     if (stats_fd == -1) {
4214         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4215         return;
4216     }
4217     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4218     close(stats_fd);
4219 
4220     if (first_cpu) {
4221         stats_args.result.schema = result;
4222         stats_args.errp = errp;
4223         query_stats_schema_vcpu(first_cpu, &stats_args);
4224     }
4225 }
4226