xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 65e728a2)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
48 
49 #include "hw/boards.h"
50 
51 /* This check must be after config-host.h is included */
52 #ifdef CONFIG_EVENTFD
53 #include <sys/eventfd.h>
54 #endif
55 
56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
57  * need to use the real host PAGE_SIZE, as that's what KVM will use.
58  */
59 #ifdef PAGE_SIZE
60 #undef PAGE_SIZE
61 #endif
62 #define PAGE_SIZE qemu_real_host_page_size
63 
64 //#define DEBUG_KVM
65 
66 #ifdef DEBUG_KVM
67 #define DPRINTF(fmt, ...) \
68     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
69 #else
70 #define DPRINTF(fmt, ...) \
71     do { } while (0)
72 #endif
73 
74 #define KVM_MSI_HASHTAB_SIZE    256
75 
76 struct KVMParkedVcpu {
77     unsigned long vcpu_id;
78     int kvm_fd;
79     QLIST_ENTRY(KVMParkedVcpu) node;
80 };
81 
82 enum KVMDirtyRingReaperState {
83     KVM_DIRTY_RING_REAPER_NONE = 0,
84     /* The reaper is sleeping */
85     KVM_DIRTY_RING_REAPER_WAIT,
86     /* The reaper is reaping for dirty pages */
87     KVM_DIRTY_RING_REAPER_REAPING,
88 };
89 
90 /*
91  * KVM reaper instance, responsible for collecting the KVM dirty bits
92  * via the dirty ring.
93  */
94 struct KVMDirtyRingReaper {
95     /* The reaper thread */
96     QemuThread reaper_thr;
97     volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
98     volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
99 };
100 
101 struct KVMState
102 {
103     AccelState parent_obj;
104 
105     int nr_slots;
106     int fd;
107     int vmfd;
108     int coalesced_mmio;
109     int coalesced_pio;
110     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
111     bool coalesced_flush_in_progress;
112     int vcpu_events;
113     int robust_singlestep;
114     int debugregs;
115 #ifdef KVM_CAP_SET_GUEST_DEBUG
116     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
117 #endif
118     int max_nested_state_len;
119     int many_ioeventfds;
120     int intx_set_mask;
121     int kvm_shadow_mem;
122     bool kernel_irqchip_allowed;
123     bool kernel_irqchip_required;
124     OnOffAuto kernel_irqchip_split;
125     bool sync_mmu;
126     uint64_t manual_dirty_log_protect;
127     /* The man page (and posix) say ioctl numbers are signed int, but
128      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
129      * unsigned, and treating them as signed here can break things */
130     unsigned irq_set_ioctl;
131     unsigned int sigmask_len;
132     GHashTable *gsimap;
133 #ifdef KVM_CAP_IRQ_ROUTING
134     struct kvm_irq_routing *irq_routes;
135     int nr_allocated_irq_routes;
136     unsigned long *used_gsi_bitmap;
137     unsigned int gsi_count;
138     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
139 #endif
140     KVMMemoryListener memory_listener;
141     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
142 
143     /* For "info mtree -f" to tell if an MR is registered in KVM */
144     int nr_as;
145     struct KVMAs {
146         KVMMemoryListener *ml;
147         AddressSpace *as;
148     } *as;
149     uint64_t kvm_dirty_ring_bytes;  /* Size of the per-vcpu dirty ring */
150     uint32_t kvm_dirty_ring_size;   /* Number of dirty GFNs per ring */
151     struct KVMDirtyRingReaper reaper;
152 };
153 
154 KVMState *kvm_state;
155 bool kvm_kernel_irqchip;
156 bool kvm_split_irqchip;
157 bool kvm_async_interrupts_allowed;
158 bool kvm_halt_in_kernel_allowed;
159 bool kvm_eventfds_allowed;
160 bool kvm_irqfds_allowed;
161 bool kvm_resamplefds_allowed;
162 bool kvm_msi_via_irqfd_allowed;
163 bool kvm_gsi_routing_allowed;
164 bool kvm_gsi_direct_mapping;
165 bool kvm_allowed;
166 bool kvm_readonly_mem_allowed;
167 bool kvm_vm_attributes_allowed;
168 bool kvm_direct_msi_allowed;
169 bool kvm_ioeventfd_any_length_allowed;
170 bool kvm_msi_use_devid;
171 static bool kvm_immediate_exit;
172 static hwaddr kvm_max_slot_size = ~0;
173 
174 static const KVMCapabilityInfo kvm_required_capabilites[] = {
175     KVM_CAP_INFO(USER_MEMORY),
176     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
177     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
178     KVM_CAP_LAST_INFO
179 };
180 
181 static NotifierList kvm_irqchip_change_notifiers =
182     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
183 
184 struct KVMResampleFd {
185     int gsi;
186     EventNotifier *resample_event;
187     QLIST_ENTRY(KVMResampleFd) node;
188 };
189 typedef struct KVMResampleFd KVMResampleFd;
190 
191 /*
192  * Only used with split irqchip where we need to do the resample fd
193  * kick for the kernel from userspace.
194  */
195 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
196     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
197 
198 static QemuMutex kml_slots_lock;
199 
200 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
201 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
202 
203 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
204 
205 static inline void kvm_resample_fd_remove(int gsi)
206 {
207     KVMResampleFd *rfd;
208 
209     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
210         if (rfd->gsi == gsi) {
211             QLIST_REMOVE(rfd, node);
212             g_free(rfd);
213             break;
214         }
215     }
216 }
217 
218 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
219 {
220     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
221 
222     rfd->gsi = gsi;
223     rfd->resample_event = event;
224 
225     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
226 }
227 
228 void kvm_resample_fd_notify(int gsi)
229 {
230     KVMResampleFd *rfd;
231 
232     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
233         if (rfd->gsi == gsi) {
234             event_notifier_set(rfd->resample_event);
235             trace_kvm_resample_fd_notify(gsi);
236             return;
237         }
238     }
239 }
240 
241 int kvm_get_max_memslots(void)
242 {
243     KVMState *s = KVM_STATE(current_accel());
244 
245     return s->nr_slots;
246 }
247 
248 /* Called with KVMMemoryListener.slots_lock held */
249 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
250 {
251     KVMState *s = kvm_state;
252     int i;
253 
254     for (i = 0; i < s->nr_slots; i++) {
255         if (kml->slots[i].memory_size == 0) {
256             return &kml->slots[i];
257         }
258     }
259 
260     return NULL;
261 }
262 
263 bool kvm_has_free_slot(MachineState *ms)
264 {
265     KVMState *s = KVM_STATE(ms->accelerator);
266     bool result;
267     KVMMemoryListener *kml = &s->memory_listener;
268 
269     kvm_slots_lock();
270     result = !!kvm_get_free_slot(kml);
271     kvm_slots_unlock();
272 
273     return result;
274 }
275 
276 /* Called with KVMMemoryListener.slots_lock held */
277 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
278 {
279     KVMSlot *slot = kvm_get_free_slot(kml);
280 
281     if (slot) {
282         return slot;
283     }
284 
285     fprintf(stderr, "%s: no free slot available\n", __func__);
286     abort();
287 }
288 
289 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
290                                          hwaddr start_addr,
291                                          hwaddr size)
292 {
293     KVMState *s = kvm_state;
294     int i;
295 
296     for (i = 0; i < s->nr_slots; i++) {
297         KVMSlot *mem = &kml->slots[i];
298 
299         if (start_addr == mem->start_addr && size == mem->memory_size) {
300             return mem;
301         }
302     }
303 
304     return NULL;
305 }
306 
307 /*
308  * Calculate and align the start address and the size of the section.
309  * Return the size. If the size is 0, the aligned section is empty.
310  */
311 static hwaddr kvm_align_section(MemoryRegionSection *section,
312                                 hwaddr *start)
313 {
314     hwaddr size = int128_get64(section->size);
315     hwaddr delta, aligned;
316 
317     /* kvm works in page size chunks, but the function may be called
318        with sub-page size and unaligned start address. Pad the start
319        address to next and truncate size to previous page boundary. */
320     aligned = ROUND_UP(section->offset_within_address_space,
321                        qemu_real_host_page_size);
322     delta = aligned - section->offset_within_address_space;
323     *start = aligned;
324     if (delta > size) {
325         return 0;
326     }
327 
328     return (size - delta) & qemu_real_host_page_mask;
329 }
330 
331 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
332                                        hwaddr *phys_addr)
333 {
334     KVMMemoryListener *kml = &s->memory_listener;
335     int i, ret = 0;
336 
337     kvm_slots_lock();
338     for (i = 0; i < s->nr_slots; i++) {
339         KVMSlot *mem = &kml->slots[i];
340 
341         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
342             *phys_addr = mem->start_addr + (ram - mem->ram);
343             ret = 1;
344             break;
345         }
346     }
347     kvm_slots_unlock();
348 
349     return ret;
350 }
351 
352 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
353 {
354     KVMState *s = kvm_state;
355     struct kvm_userspace_memory_region mem;
356     int ret;
357 
358     mem.slot = slot->slot | (kml->as_id << 16);
359     mem.guest_phys_addr = slot->start_addr;
360     mem.userspace_addr = (unsigned long)slot->ram;
361     mem.flags = slot->flags;
362 
363     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
364         /* Set the slot size to 0 before setting the slot to the desired
365          * value. This is needed based on KVM commit 75d61fbc. */
366         mem.memory_size = 0;
367         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
368         if (ret < 0) {
369             goto err;
370         }
371     }
372     mem.memory_size = slot->memory_size;
373     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
374     slot->old_flags = mem.flags;
375 err:
376     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
377                               mem.memory_size, mem.userspace_addr, ret);
378     if (ret < 0) {
379         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
380                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
381                      __func__, mem.slot, slot->start_addr,
382                      (uint64_t)mem.memory_size, strerror(errno));
383     }
384     return ret;
385 }
386 
387 static int do_kvm_destroy_vcpu(CPUState *cpu)
388 {
389     KVMState *s = kvm_state;
390     long mmap_size;
391     struct KVMParkedVcpu *vcpu = NULL;
392     int ret = 0;
393 
394     DPRINTF("kvm_destroy_vcpu\n");
395 
396     ret = kvm_arch_destroy_vcpu(cpu);
397     if (ret < 0) {
398         goto err;
399     }
400 
401     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
402     if (mmap_size < 0) {
403         ret = mmap_size;
404         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
405         goto err;
406     }
407 
408     ret = munmap(cpu->kvm_run, mmap_size);
409     if (ret < 0) {
410         goto err;
411     }
412 
413     if (cpu->kvm_dirty_gfns) {
414         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
415         if (ret < 0) {
416             goto err;
417         }
418     }
419 
420     vcpu = g_malloc0(sizeof(*vcpu));
421     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
422     vcpu->kvm_fd = cpu->kvm_fd;
423     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
424 err:
425     return ret;
426 }
427 
428 void kvm_destroy_vcpu(CPUState *cpu)
429 {
430     if (do_kvm_destroy_vcpu(cpu) < 0) {
431         error_report("kvm_destroy_vcpu failed");
432         exit(EXIT_FAILURE);
433     }
434 }
435 
436 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
437 {
438     struct KVMParkedVcpu *cpu;
439 
440     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
441         if (cpu->vcpu_id == vcpu_id) {
442             int kvm_fd;
443 
444             QLIST_REMOVE(cpu, node);
445             kvm_fd = cpu->kvm_fd;
446             g_free(cpu);
447             return kvm_fd;
448         }
449     }
450 
451     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
452 }
453 
454 int kvm_init_vcpu(CPUState *cpu, Error **errp)
455 {
456     KVMState *s = kvm_state;
457     long mmap_size;
458     int ret;
459 
460     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
461 
462     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
463     if (ret < 0) {
464         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
465                          kvm_arch_vcpu_id(cpu));
466         goto err;
467     }
468 
469     cpu->kvm_fd = ret;
470     cpu->kvm_state = s;
471     cpu->vcpu_dirty = true;
472 
473     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
474     if (mmap_size < 0) {
475         ret = mmap_size;
476         error_setg_errno(errp, -mmap_size,
477                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
478         goto err;
479     }
480 
481     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
482                         cpu->kvm_fd, 0);
483     if (cpu->kvm_run == MAP_FAILED) {
484         ret = -errno;
485         error_setg_errno(errp, ret,
486                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
487                          kvm_arch_vcpu_id(cpu));
488         goto err;
489     }
490 
491     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
492         s->coalesced_mmio_ring =
493             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
494     }
495 
496     if (s->kvm_dirty_ring_size) {
497         /* Use MAP_SHARED to share pages with the kernel */
498         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
499                                    PROT_READ | PROT_WRITE, MAP_SHARED,
500                                    cpu->kvm_fd,
501                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
502         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
503             ret = -errno;
504             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
505             goto err;
506         }
507     }
508 
509     ret = kvm_arch_init_vcpu(cpu);
510     if (ret < 0) {
511         error_setg_errno(errp, -ret,
512                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
513                          kvm_arch_vcpu_id(cpu));
514     }
515 err:
516     return ret;
517 }
518 
519 /*
520  * dirty pages logging control
521  */
522 
523 static int kvm_mem_flags(MemoryRegion *mr)
524 {
525     bool readonly = mr->readonly || memory_region_is_romd(mr);
526     int flags = 0;
527 
528     if (memory_region_get_dirty_log_mask(mr) != 0) {
529         flags |= KVM_MEM_LOG_DIRTY_PAGES;
530     }
531     if (readonly && kvm_readonly_mem_allowed) {
532         flags |= KVM_MEM_READONLY;
533     }
534     return flags;
535 }
536 
537 /* Called with KVMMemoryListener.slots_lock held */
538 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
539                                  MemoryRegion *mr)
540 {
541     mem->flags = kvm_mem_flags(mr);
542 
543     /* If nothing changed effectively, no need to issue ioctl */
544     if (mem->flags == mem->old_flags) {
545         return 0;
546     }
547 
548     kvm_slot_init_dirty_bitmap(mem);
549     return kvm_set_user_memory_region(kml, mem, false);
550 }
551 
552 static int kvm_section_update_flags(KVMMemoryListener *kml,
553                                     MemoryRegionSection *section)
554 {
555     hwaddr start_addr, size, slot_size;
556     KVMSlot *mem;
557     int ret = 0;
558 
559     size = kvm_align_section(section, &start_addr);
560     if (!size) {
561         return 0;
562     }
563 
564     kvm_slots_lock();
565 
566     while (size && !ret) {
567         slot_size = MIN(kvm_max_slot_size, size);
568         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
569         if (!mem) {
570             /* We don't have a slot if we want to trap every access. */
571             goto out;
572         }
573 
574         ret = kvm_slot_update_flags(kml, mem, section->mr);
575         start_addr += slot_size;
576         size -= slot_size;
577     }
578 
579 out:
580     kvm_slots_unlock();
581     return ret;
582 }
583 
584 static void kvm_log_start(MemoryListener *listener,
585                           MemoryRegionSection *section,
586                           int old, int new)
587 {
588     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
589     int r;
590 
591     if (old != 0) {
592         return;
593     }
594 
595     r = kvm_section_update_flags(kml, section);
596     if (r < 0) {
597         abort();
598     }
599 }
600 
601 static void kvm_log_stop(MemoryListener *listener,
602                           MemoryRegionSection *section,
603                           int old, int new)
604 {
605     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
606     int r;
607 
608     if (new != 0) {
609         return;
610     }
611 
612     r = kvm_section_update_flags(kml, section);
613     if (r < 0) {
614         abort();
615     }
616 }
617 
618 /* get kvm's dirty pages bitmap and update qemu's */
619 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
620 {
621     ram_addr_t start = slot->ram_start_offset;
622     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size;
623 
624     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
625 }
626 
627 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
628 {
629     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
630 }
631 
632 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
633 
634 /* Allocate the dirty bitmap for a slot  */
635 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
636 {
637     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
638         return;
639     }
640 
641     /*
642      * XXX bad kernel interface alert
643      * For dirty bitmap, kernel allocates array of size aligned to
644      * bits-per-long.  But for case when the kernel is 64bits and
645      * the userspace is 32bits, userspace can't align to the same
646      * bits-per-long, since sizeof(long) is different between kernel
647      * and user space.  This way, userspace will provide buffer which
648      * may be 4 bytes less than the kernel will use, resulting in
649      * userspace memory corruption (which is not detectable by valgrind
650      * too, in most cases).
651      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
652      * a hope that sizeof(long) won't become >8 any time soon.
653      *
654      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
655      * And mem->memory_size is aligned to it (otherwise this mem can't
656      * be registered to KVM).
657      */
658     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
659                                         /*HOST_LONG_BITS*/ 64) / 8;
660     mem->dirty_bmap = g_malloc0(bitmap_size);
661     mem->dirty_bmap_size = bitmap_size;
662 }
663 
664 /*
665  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
666  * succeeded, false otherwise
667  */
668 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
669 {
670     struct kvm_dirty_log d = {};
671     int ret;
672 
673     d.dirty_bitmap = slot->dirty_bmap;
674     d.slot = slot->slot | (slot->as_id << 16);
675     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
676 
677     if (ret == -ENOENT) {
678         /* kernel does not have dirty bitmap in this slot */
679         ret = 0;
680     }
681     if (ret) {
682         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
683                           __func__, ret);
684     }
685     return ret == 0;
686 }
687 
688 /* Should be with all slots_lock held for the address spaces. */
689 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
690                                      uint32_t slot_id, uint64_t offset)
691 {
692     KVMMemoryListener *kml;
693     KVMSlot *mem;
694 
695     if (as_id >= s->nr_as) {
696         return;
697     }
698 
699     kml = s->as[as_id].ml;
700     mem = &kml->slots[slot_id];
701 
702     if (!mem->memory_size || offset >=
703         (mem->memory_size / qemu_real_host_page_size)) {
704         return;
705     }
706 
707     set_bit(offset, mem->dirty_bmap);
708 }
709 
710 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
711 {
712     return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
713 }
714 
715 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
716 {
717     gfn->flags = KVM_DIRTY_GFN_F_RESET;
718 }
719 
720 /*
721  * Should be with all slots_lock held for the address spaces.  It returns the
722  * dirty page we've collected on this dirty ring.
723  */
724 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
725 {
726     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
727     uint32_t ring_size = s->kvm_dirty_ring_size;
728     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
729 
730     assert(dirty_gfns && ring_size);
731     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
732 
733     while (true) {
734         cur = &dirty_gfns[fetch % ring_size];
735         if (!dirty_gfn_is_dirtied(cur)) {
736             break;
737         }
738         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
739                                  cur->offset);
740         dirty_gfn_set_collected(cur);
741         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
742         fetch++;
743         count++;
744     }
745     cpu->kvm_fetch_index = fetch;
746 
747     return count;
748 }
749 
750 /* Must be with slots_lock held */
751 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s)
752 {
753     int ret;
754     CPUState *cpu;
755     uint64_t total = 0;
756     int64_t stamp;
757 
758     stamp = get_clock();
759 
760     CPU_FOREACH(cpu) {
761         total += kvm_dirty_ring_reap_one(s, cpu);
762     }
763 
764     if (total) {
765         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
766         assert(ret == total);
767     }
768 
769     stamp = get_clock() - stamp;
770 
771     if (total) {
772         trace_kvm_dirty_ring_reap(total, stamp / 1000);
773     }
774 
775     return total;
776 }
777 
778 /*
779  * Currently for simplicity, we must hold BQL before calling this.  We can
780  * consider to drop the BQL if we're clear with all the race conditions.
781  */
782 static uint64_t kvm_dirty_ring_reap(KVMState *s)
783 {
784     uint64_t total;
785 
786     /*
787      * We need to lock all kvm slots for all address spaces here,
788      * because:
789      *
790      * (1) We need to mark dirty for dirty bitmaps in multiple slots
791      *     and for tons of pages, so it's better to take the lock here
792      *     once rather than once per page.  And more importantly,
793      *
794      * (2) We must _NOT_ publish dirty bits to the other threads
795      *     (e.g., the migration thread) via the kvm memory slot dirty
796      *     bitmaps before correctly re-protect those dirtied pages.
797      *     Otherwise we can have potential risk of data corruption if
798      *     the page data is read in the other thread before we do
799      *     reset below.
800      */
801     kvm_slots_lock();
802     total = kvm_dirty_ring_reap_locked(s);
803     kvm_slots_unlock();
804 
805     return total;
806 }
807 
808 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
809 {
810     /* No need to do anything */
811 }
812 
813 /*
814  * Kick all vcpus out in a synchronized way.  When returned, we
815  * guarantee that every vcpu has been kicked and at least returned to
816  * userspace once.
817  */
818 static void kvm_cpu_synchronize_kick_all(void)
819 {
820     CPUState *cpu;
821 
822     CPU_FOREACH(cpu) {
823         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
824     }
825 }
826 
827 /*
828  * Flush all the existing dirty pages to the KVM slot buffers.  When
829  * this call returns, we guarantee that all the touched dirty pages
830  * before calling this function have been put into the per-kvmslot
831  * dirty bitmap.
832  *
833  * This function must be called with BQL held.
834  */
835 static void kvm_dirty_ring_flush(void)
836 {
837     trace_kvm_dirty_ring_flush(0);
838     /*
839      * The function needs to be serialized.  Since this function
840      * should always be with BQL held, serialization is guaranteed.
841      * However, let's be sure of it.
842      */
843     assert(qemu_mutex_iothread_locked());
844     /*
845      * First make sure to flush the hardware buffers by kicking all
846      * vcpus out in a synchronous way.
847      */
848     kvm_cpu_synchronize_kick_all();
849     kvm_dirty_ring_reap(kvm_state);
850     trace_kvm_dirty_ring_flush(1);
851 }
852 
853 /**
854  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
855  *
856  * This function will first try to fetch dirty bitmap from the kernel,
857  * and then updates qemu's dirty bitmap.
858  *
859  * NOTE: caller must be with kml->slots_lock held.
860  *
861  * @kml: the KVM memory listener object
862  * @section: the memory section to sync the dirty bitmap with
863  */
864 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
865                                            MemoryRegionSection *section)
866 {
867     KVMState *s = kvm_state;
868     KVMSlot *mem;
869     hwaddr start_addr, size;
870     hwaddr slot_size;
871 
872     size = kvm_align_section(section, &start_addr);
873     while (size) {
874         slot_size = MIN(kvm_max_slot_size, size);
875         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
876         if (!mem) {
877             /* We don't have a slot if we want to trap every access. */
878             return;
879         }
880         if (kvm_slot_get_dirty_log(s, mem)) {
881             kvm_slot_sync_dirty_pages(mem);
882         }
883         start_addr += slot_size;
884         size -= slot_size;
885     }
886 }
887 
888 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
889 #define KVM_CLEAR_LOG_SHIFT  6
890 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
891 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
892 
893 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
894                                   uint64_t size)
895 {
896     KVMState *s = kvm_state;
897     uint64_t end, bmap_start, start_delta, bmap_npages;
898     struct kvm_clear_dirty_log d;
899     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
900     int ret;
901 
902     /*
903      * We need to extend either the start or the size or both to
904      * satisfy the KVM interface requirement.  Firstly, do the start
905      * page alignment on 64 host pages
906      */
907     bmap_start = start & KVM_CLEAR_LOG_MASK;
908     start_delta = start - bmap_start;
909     bmap_start /= psize;
910 
911     /*
912      * The kernel interface has restriction on the size too, that either:
913      *
914      * (1) the size is 64 host pages aligned (just like the start), or
915      * (2) the size fills up until the end of the KVM memslot.
916      */
917     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
918         << KVM_CLEAR_LOG_SHIFT;
919     end = mem->memory_size / psize;
920     if (bmap_npages > end - bmap_start) {
921         bmap_npages = end - bmap_start;
922     }
923     start_delta /= psize;
924 
925     /*
926      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
927      * that we won't clear any unknown dirty bits otherwise we might
928      * accidentally clear some set bits which are not yet synced from
929      * the kernel into QEMU's bitmap, then we'll lose track of the
930      * guest modifications upon those pages (which can directly lead
931      * to guest data loss or panic after migration).
932      *
933      * Layout of the KVMSlot.dirty_bmap:
934      *
935      *                   |<-------- bmap_npages -----------..>|
936      *                                                     [1]
937      *                     start_delta         size
938      *  |----------------|-------------|------------------|------------|
939      *  ^                ^             ^                               ^
940      *  |                |             |                               |
941      * start          bmap_start     (start)                         end
942      * of memslot                                             of memslot
943      *
944      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
945      */
946 
947     assert(bmap_start % BITS_PER_LONG == 0);
948     /* We should never do log_clear before log_sync */
949     assert(mem->dirty_bmap);
950     if (start_delta || bmap_npages - size / psize) {
951         /* Slow path - we need to manipulate a temp bitmap */
952         bmap_clear = bitmap_new(bmap_npages);
953         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
954                                     bmap_start, start_delta + size / psize);
955         /*
956          * We need to fill the holes at start because that was not
957          * specified by the caller and we extended the bitmap only for
958          * 64 pages alignment
959          */
960         bitmap_clear(bmap_clear, 0, start_delta);
961         d.dirty_bitmap = bmap_clear;
962     } else {
963         /*
964          * Fast path - both start and size align well with BITS_PER_LONG
965          * (or the end of memory slot)
966          */
967         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
968     }
969 
970     d.first_page = bmap_start;
971     /* It should never overflow.  If it happens, say something */
972     assert(bmap_npages <= UINT32_MAX);
973     d.num_pages = bmap_npages;
974     d.slot = mem->slot | (as_id << 16);
975 
976     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
977     if (ret < 0 && ret != -ENOENT) {
978         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
979                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
980                      __func__, d.slot, (uint64_t)d.first_page,
981                      (uint32_t)d.num_pages, ret);
982     } else {
983         ret = 0;
984         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
985     }
986 
987     /*
988      * After we have updated the remote dirty bitmap, we update the
989      * cached bitmap as well for the memslot, then if another user
990      * clears the same region we know we shouldn't clear it again on
991      * the remote otherwise it's data loss as well.
992      */
993     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
994                  size / psize);
995     /* This handles the NULL case well */
996     g_free(bmap_clear);
997     return ret;
998 }
999 
1000 
1001 /**
1002  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1003  *
1004  * NOTE: this will be a no-op if we haven't enabled manual dirty log
1005  * protection in the host kernel because in that case this operation
1006  * will be done within log_sync().
1007  *
1008  * @kml:     the kvm memory listener
1009  * @section: the memory range to clear dirty bitmap
1010  */
1011 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1012                                   MemoryRegionSection *section)
1013 {
1014     KVMState *s = kvm_state;
1015     uint64_t start, size, offset, count;
1016     KVMSlot *mem;
1017     int ret = 0, i;
1018 
1019     if (!s->manual_dirty_log_protect) {
1020         /* No need to do explicit clear */
1021         return ret;
1022     }
1023 
1024     start = section->offset_within_address_space;
1025     size = int128_get64(section->size);
1026 
1027     if (!size) {
1028         /* Nothing more we can do... */
1029         return ret;
1030     }
1031 
1032     kvm_slots_lock();
1033 
1034     for (i = 0; i < s->nr_slots; i++) {
1035         mem = &kml->slots[i];
1036         /* Discard slots that are empty or do not overlap the section */
1037         if (!mem->memory_size ||
1038             mem->start_addr > start + size - 1 ||
1039             start > mem->start_addr + mem->memory_size - 1) {
1040             continue;
1041         }
1042 
1043         if (start >= mem->start_addr) {
1044             /* The slot starts before section or is aligned to it.  */
1045             offset = start - mem->start_addr;
1046             count = MIN(mem->memory_size - offset, size);
1047         } else {
1048             /* The slot starts after section.  */
1049             offset = 0;
1050             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1051         }
1052         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1053         if (ret < 0) {
1054             break;
1055         }
1056     }
1057 
1058     kvm_slots_unlock();
1059 
1060     return ret;
1061 }
1062 
1063 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1064                                      MemoryRegionSection *secion,
1065                                      hwaddr start, hwaddr size)
1066 {
1067     KVMState *s = kvm_state;
1068 
1069     if (s->coalesced_mmio) {
1070         struct kvm_coalesced_mmio_zone zone;
1071 
1072         zone.addr = start;
1073         zone.size = size;
1074         zone.pad = 0;
1075 
1076         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1077     }
1078 }
1079 
1080 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1081                                        MemoryRegionSection *secion,
1082                                        hwaddr start, hwaddr size)
1083 {
1084     KVMState *s = kvm_state;
1085 
1086     if (s->coalesced_mmio) {
1087         struct kvm_coalesced_mmio_zone zone;
1088 
1089         zone.addr = start;
1090         zone.size = size;
1091         zone.pad = 0;
1092 
1093         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1094     }
1095 }
1096 
1097 static void kvm_coalesce_pio_add(MemoryListener *listener,
1098                                 MemoryRegionSection *section,
1099                                 hwaddr start, hwaddr size)
1100 {
1101     KVMState *s = kvm_state;
1102 
1103     if (s->coalesced_pio) {
1104         struct kvm_coalesced_mmio_zone zone;
1105 
1106         zone.addr = start;
1107         zone.size = size;
1108         zone.pio = 1;
1109 
1110         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1111     }
1112 }
1113 
1114 static void kvm_coalesce_pio_del(MemoryListener *listener,
1115                                 MemoryRegionSection *section,
1116                                 hwaddr start, hwaddr size)
1117 {
1118     KVMState *s = kvm_state;
1119 
1120     if (s->coalesced_pio) {
1121         struct kvm_coalesced_mmio_zone zone;
1122 
1123         zone.addr = start;
1124         zone.size = size;
1125         zone.pio = 1;
1126 
1127         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1128      }
1129 }
1130 
1131 static MemoryListener kvm_coalesced_pio_listener = {
1132     .coalesced_io_add = kvm_coalesce_pio_add,
1133     .coalesced_io_del = kvm_coalesce_pio_del,
1134 };
1135 
1136 int kvm_check_extension(KVMState *s, unsigned int extension)
1137 {
1138     int ret;
1139 
1140     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1141     if (ret < 0) {
1142         ret = 0;
1143     }
1144 
1145     return ret;
1146 }
1147 
1148 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1149 {
1150     int ret;
1151 
1152     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1153     if (ret < 0) {
1154         /* VM wide version not implemented, use global one instead */
1155         ret = kvm_check_extension(s, extension);
1156     }
1157 
1158     return ret;
1159 }
1160 
1161 typedef struct HWPoisonPage {
1162     ram_addr_t ram_addr;
1163     QLIST_ENTRY(HWPoisonPage) list;
1164 } HWPoisonPage;
1165 
1166 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1167     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1168 
1169 static void kvm_unpoison_all(void *param)
1170 {
1171     HWPoisonPage *page, *next_page;
1172 
1173     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1174         QLIST_REMOVE(page, list);
1175         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1176         g_free(page);
1177     }
1178 }
1179 
1180 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1181 {
1182     HWPoisonPage *page;
1183 
1184     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1185         if (page->ram_addr == ram_addr) {
1186             return;
1187         }
1188     }
1189     page = g_new(HWPoisonPage, 1);
1190     page->ram_addr = ram_addr;
1191     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1192 }
1193 
1194 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1195 {
1196 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
1197     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
1198      * endianness, but the memory core hands them in target endianness.
1199      * For example, PPC is always treated as big-endian even if running
1200      * on KVM and on PPC64LE.  Correct here.
1201      */
1202     switch (size) {
1203     case 2:
1204         val = bswap16(val);
1205         break;
1206     case 4:
1207         val = bswap32(val);
1208         break;
1209     }
1210 #endif
1211     return val;
1212 }
1213 
1214 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1215                                   bool assign, uint32_t size, bool datamatch)
1216 {
1217     int ret;
1218     struct kvm_ioeventfd iofd = {
1219         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1220         .addr = addr,
1221         .len = size,
1222         .flags = 0,
1223         .fd = fd,
1224     };
1225 
1226     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1227                                  datamatch);
1228     if (!kvm_enabled()) {
1229         return -ENOSYS;
1230     }
1231 
1232     if (datamatch) {
1233         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1234     }
1235     if (!assign) {
1236         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1237     }
1238 
1239     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1240 
1241     if (ret < 0) {
1242         return -errno;
1243     }
1244 
1245     return 0;
1246 }
1247 
1248 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1249                                  bool assign, uint32_t size, bool datamatch)
1250 {
1251     struct kvm_ioeventfd kick = {
1252         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1253         .addr = addr,
1254         .flags = KVM_IOEVENTFD_FLAG_PIO,
1255         .len = size,
1256         .fd = fd,
1257     };
1258     int r;
1259     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1260     if (!kvm_enabled()) {
1261         return -ENOSYS;
1262     }
1263     if (datamatch) {
1264         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1265     }
1266     if (!assign) {
1267         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1268     }
1269     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1270     if (r < 0) {
1271         return r;
1272     }
1273     return 0;
1274 }
1275 
1276 
1277 static int kvm_check_many_ioeventfds(void)
1278 {
1279     /* Userspace can use ioeventfd for io notification.  This requires a host
1280      * that supports eventfd(2) and an I/O thread; since eventfd does not
1281      * support SIGIO it cannot interrupt the vcpu.
1282      *
1283      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1284      * can avoid creating too many ioeventfds.
1285      */
1286 #if defined(CONFIG_EVENTFD)
1287     int ioeventfds[7];
1288     int i, ret = 0;
1289     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1290         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1291         if (ioeventfds[i] < 0) {
1292             break;
1293         }
1294         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1295         if (ret < 0) {
1296             close(ioeventfds[i]);
1297             break;
1298         }
1299     }
1300 
1301     /* Decide whether many devices are supported or not */
1302     ret = i == ARRAY_SIZE(ioeventfds);
1303 
1304     while (i-- > 0) {
1305         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1306         close(ioeventfds[i]);
1307     }
1308     return ret;
1309 #else
1310     return 0;
1311 #endif
1312 }
1313 
1314 static const KVMCapabilityInfo *
1315 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1316 {
1317     while (list->name) {
1318         if (!kvm_check_extension(s, list->value)) {
1319             return list;
1320         }
1321         list++;
1322     }
1323     return NULL;
1324 }
1325 
1326 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1327 {
1328     g_assert(
1329         ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1330     );
1331     kvm_max_slot_size = max_slot_size;
1332 }
1333 
1334 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1335                              MemoryRegionSection *section, bool add)
1336 {
1337     KVMSlot *mem;
1338     int err;
1339     MemoryRegion *mr = section->mr;
1340     bool writeable = !mr->readonly && !mr->rom_device;
1341     hwaddr start_addr, size, slot_size, mr_offset;
1342     ram_addr_t ram_start_offset;
1343     void *ram;
1344 
1345     if (!memory_region_is_ram(mr)) {
1346         if (writeable || !kvm_readonly_mem_allowed) {
1347             return;
1348         } else if (!mr->romd_mode) {
1349             /* If the memory device is not in romd_mode, then we actually want
1350              * to remove the kvm memory slot so all accesses will trap. */
1351             add = false;
1352         }
1353     }
1354 
1355     size = kvm_align_section(section, &start_addr);
1356     if (!size) {
1357         return;
1358     }
1359 
1360     /* The offset of the kvmslot within the memory region */
1361     mr_offset = section->offset_within_region + start_addr -
1362         section->offset_within_address_space;
1363 
1364     /* use aligned delta to align the ram address and offset */
1365     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1366     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1367 
1368     kvm_slots_lock();
1369 
1370     if (!add) {
1371         do {
1372             slot_size = MIN(kvm_max_slot_size, size);
1373             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1374             if (!mem) {
1375                 goto out;
1376             }
1377             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1378                 /*
1379                  * NOTE: We should be aware of the fact that here we're only
1380                  * doing a best effort to sync dirty bits.  No matter whether
1381                  * we're using dirty log or dirty ring, we ignored two facts:
1382                  *
1383                  * (1) dirty bits can reside in hardware buffers (PML)
1384                  *
1385                  * (2) after we collected dirty bits here, pages can be dirtied
1386                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1387                  * remove the slot.
1388                  *
1389                  * Not easy.  Let's cross the fingers until it's fixed.
1390                  */
1391                 if (kvm_state->kvm_dirty_ring_size) {
1392                     kvm_dirty_ring_reap_locked(kvm_state);
1393                 } else {
1394                     kvm_slot_get_dirty_log(kvm_state, mem);
1395                 }
1396                 kvm_slot_sync_dirty_pages(mem);
1397             }
1398 
1399             /* unregister the slot */
1400             g_free(mem->dirty_bmap);
1401             mem->dirty_bmap = NULL;
1402             mem->memory_size = 0;
1403             mem->flags = 0;
1404             err = kvm_set_user_memory_region(kml, mem, false);
1405             if (err) {
1406                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1407                         __func__, strerror(-err));
1408                 abort();
1409             }
1410             start_addr += slot_size;
1411             size -= slot_size;
1412         } while (size);
1413         goto out;
1414     }
1415 
1416     /* register the new slot */
1417     do {
1418         slot_size = MIN(kvm_max_slot_size, size);
1419         mem = kvm_alloc_slot(kml);
1420         mem->as_id = kml->as_id;
1421         mem->memory_size = slot_size;
1422         mem->start_addr = start_addr;
1423         mem->ram_start_offset = ram_start_offset;
1424         mem->ram = ram;
1425         mem->flags = kvm_mem_flags(mr);
1426         kvm_slot_init_dirty_bitmap(mem);
1427         err = kvm_set_user_memory_region(kml, mem, true);
1428         if (err) {
1429             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1430                     strerror(-err));
1431             abort();
1432         }
1433         start_addr += slot_size;
1434         ram_start_offset += slot_size;
1435         ram += slot_size;
1436         size -= slot_size;
1437     } while (size);
1438 
1439 out:
1440     kvm_slots_unlock();
1441 }
1442 
1443 static void *kvm_dirty_ring_reaper_thread(void *data)
1444 {
1445     KVMState *s = data;
1446     struct KVMDirtyRingReaper *r = &s->reaper;
1447 
1448     rcu_register_thread();
1449 
1450     trace_kvm_dirty_ring_reaper("init");
1451 
1452     while (true) {
1453         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1454         trace_kvm_dirty_ring_reaper("wait");
1455         /*
1456          * TODO: provide a smarter timeout rather than a constant?
1457          */
1458         sleep(1);
1459 
1460         trace_kvm_dirty_ring_reaper("wakeup");
1461         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1462 
1463         qemu_mutex_lock_iothread();
1464         kvm_dirty_ring_reap(s);
1465         qemu_mutex_unlock_iothread();
1466 
1467         r->reaper_iteration++;
1468     }
1469 
1470     trace_kvm_dirty_ring_reaper("exit");
1471 
1472     rcu_unregister_thread();
1473 
1474     return NULL;
1475 }
1476 
1477 static int kvm_dirty_ring_reaper_init(KVMState *s)
1478 {
1479     struct KVMDirtyRingReaper *r = &s->reaper;
1480 
1481     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1482                        kvm_dirty_ring_reaper_thread,
1483                        s, QEMU_THREAD_JOINABLE);
1484 
1485     return 0;
1486 }
1487 
1488 static void kvm_region_add(MemoryListener *listener,
1489                            MemoryRegionSection *section)
1490 {
1491     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1492 
1493     memory_region_ref(section->mr);
1494     kvm_set_phys_mem(kml, section, true);
1495 }
1496 
1497 static void kvm_region_del(MemoryListener *listener,
1498                            MemoryRegionSection *section)
1499 {
1500     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1501 
1502     kvm_set_phys_mem(kml, section, false);
1503     memory_region_unref(section->mr);
1504 }
1505 
1506 static void kvm_log_sync(MemoryListener *listener,
1507                          MemoryRegionSection *section)
1508 {
1509     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1510 
1511     kvm_slots_lock();
1512     kvm_physical_sync_dirty_bitmap(kml, section);
1513     kvm_slots_unlock();
1514 }
1515 
1516 static void kvm_log_sync_global(MemoryListener *l)
1517 {
1518     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1519     KVMState *s = kvm_state;
1520     KVMSlot *mem;
1521     int i;
1522 
1523     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1524     kvm_dirty_ring_flush();
1525 
1526     /*
1527      * TODO: make this faster when nr_slots is big while there are
1528      * only a few used slots (small VMs).
1529      */
1530     kvm_slots_lock();
1531     for (i = 0; i < s->nr_slots; i++) {
1532         mem = &kml->slots[i];
1533         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1534             kvm_slot_sync_dirty_pages(mem);
1535             /*
1536              * This is not needed by KVM_GET_DIRTY_LOG because the
1537              * ioctl will unconditionally overwrite the whole region.
1538              * However kvm dirty ring has no such side effect.
1539              */
1540             kvm_slot_reset_dirty_pages(mem);
1541         }
1542     }
1543     kvm_slots_unlock();
1544 }
1545 
1546 static void kvm_log_clear(MemoryListener *listener,
1547                           MemoryRegionSection *section)
1548 {
1549     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1550     int r;
1551 
1552     r = kvm_physical_log_clear(kml, section);
1553     if (r < 0) {
1554         error_report_once("%s: kvm log clear failed: mr=%s "
1555                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1556                           section->mr->name, section->offset_within_region,
1557                           int128_get64(section->size));
1558         abort();
1559     }
1560 }
1561 
1562 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1563                                   MemoryRegionSection *section,
1564                                   bool match_data, uint64_t data,
1565                                   EventNotifier *e)
1566 {
1567     int fd = event_notifier_get_fd(e);
1568     int r;
1569 
1570     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1571                                data, true, int128_get64(section->size),
1572                                match_data);
1573     if (r < 0) {
1574         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1575                 __func__, strerror(-r), -r);
1576         abort();
1577     }
1578 }
1579 
1580 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1581                                   MemoryRegionSection *section,
1582                                   bool match_data, uint64_t data,
1583                                   EventNotifier *e)
1584 {
1585     int fd = event_notifier_get_fd(e);
1586     int r;
1587 
1588     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1589                                data, false, int128_get64(section->size),
1590                                match_data);
1591     if (r < 0) {
1592         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1593                 __func__, strerror(-r), -r);
1594         abort();
1595     }
1596 }
1597 
1598 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1599                                  MemoryRegionSection *section,
1600                                  bool match_data, uint64_t data,
1601                                  EventNotifier *e)
1602 {
1603     int fd = event_notifier_get_fd(e);
1604     int r;
1605 
1606     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1607                               data, true, int128_get64(section->size),
1608                               match_data);
1609     if (r < 0) {
1610         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1611                 __func__, strerror(-r), -r);
1612         abort();
1613     }
1614 }
1615 
1616 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1617                                  MemoryRegionSection *section,
1618                                  bool match_data, uint64_t data,
1619                                  EventNotifier *e)
1620 
1621 {
1622     int fd = event_notifier_get_fd(e);
1623     int r;
1624 
1625     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1626                               data, false, int128_get64(section->size),
1627                               match_data);
1628     if (r < 0) {
1629         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1630                 __func__, strerror(-r), -r);
1631         abort();
1632     }
1633 }
1634 
1635 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1636                                   AddressSpace *as, int as_id)
1637 {
1638     int i;
1639 
1640     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1641     kml->as_id = as_id;
1642 
1643     for (i = 0; i < s->nr_slots; i++) {
1644         kml->slots[i].slot = i;
1645     }
1646 
1647     kml->listener.region_add = kvm_region_add;
1648     kml->listener.region_del = kvm_region_del;
1649     kml->listener.log_start = kvm_log_start;
1650     kml->listener.log_stop = kvm_log_stop;
1651     kml->listener.priority = 10;
1652 
1653     if (s->kvm_dirty_ring_size) {
1654         kml->listener.log_sync_global = kvm_log_sync_global;
1655     } else {
1656         kml->listener.log_sync = kvm_log_sync;
1657         kml->listener.log_clear = kvm_log_clear;
1658     }
1659 
1660     memory_listener_register(&kml->listener, as);
1661 
1662     for (i = 0; i < s->nr_as; ++i) {
1663         if (!s->as[i].as) {
1664             s->as[i].as = as;
1665             s->as[i].ml = kml;
1666             break;
1667         }
1668     }
1669 }
1670 
1671 static MemoryListener kvm_io_listener = {
1672     .eventfd_add = kvm_io_ioeventfd_add,
1673     .eventfd_del = kvm_io_ioeventfd_del,
1674     .priority = 10,
1675 };
1676 
1677 int kvm_set_irq(KVMState *s, int irq, int level)
1678 {
1679     struct kvm_irq_level event;
1680     int ret;
1681 
1682     assert(kvm_async_interrupts_enabled());
1683 
1684     event.level = level;
1685     event.irq = irq;
1686     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1687     if (ret < 0) {
1688         perror("kvm_set_irq");
1689         abort();
1690     }
1691 
1692     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1693 }
1694 
1695 #ifdef KVM_CAP_IRQ_ROUTING
1696 typedef struct KVMMSIRoute {
1697     struct kvm_irq_routing_entry kroute;
1698     QTAILQ_ENTRY(KVMMSIRoute) entry;
1699 } KVMMSIRoute;
1700 
1701 static void set_gsi(KVMState *s, unsigned int gsi)
1702 {
1703     set_bit(gsi, s->used_gsi_bitmap);
1704 }
1705 
1706 static void clear_gsi(KVMState *s, unsigned int gsi)
1707 {
1708     clear_bit(gsi, s->used_gsi_bitmap);
1709 }
1710 
1711 void kvm_init_irq_routing(KVMState *s)
1712 {
1713     int gsi_count, i;
1714 
1715     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1716     if (gsi_count > 0) {
1717         /* Round up so we can search ints using ffs */
1718         s->used_gsi_bitmap = bitmap_new(gsi_count);
1719         s->gsi_count = gsi_count;
1720     }
1721 
1722     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1723     s->nr_allocated_irq_routes = 0;
1724 
1725     if (!kvm_direct_msi_allowed) {
1726         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1727             QTAILQ_INIT(&s->msi_hashtab[i]);
1728         }
1729     }
1730 
1731     kvm_arch_init_irq_routing(s);
1732 }
1733 
1734 void kvm_irqchip_commit_routes(KVMState *s)
1735 {
1736     int ret;
1737 
1738     if (kvm_gsi_direct_mapping()) {
1739         return;
1740     }
1741 
1742     if (!kvm_gsi_routing_enabled()) {
1743         return;
1744     }
1745 
1746     s->irq_routes->flags = 0;
1747     trace_kvm_irqchip_commit_routes();
1748     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1749     assert(ret == 0);
1750 }
1751 
1752 static void kvm_add_routing_entry(KVMState *s,
1753                                   struct kvm_irq_routing_entry *entry)
1754 {
1755     struct kvm_irq_routing_entry *new;
1756     int n, size;
1757 
1758     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1759         n = s->nr_allocated_irq_routes * 2;
1760         if (n < 64) {
1761             n = 64;
1762         }
1763         size = sizeof(struct kvm_irq_routing);
1764         size += n * sizeof(*new);
1765         s->irq_routes = g_realloc(s->irq_routes, size);
1766         s->nr_allocated_irq_routes = n;
1767     }
1768     n = s->irq_routes->nr++;
1769     new = &s->irq_routes->entries[n];
1770 
1771     *new = *entry;
1772 
1773     set_gsi(s, entry->gsi);
1774 }
1775 
1776 static int kvm_update_routing_entry(KVMState *s,
1777                                     struct kvm_irq_routing_entry *new_entry)
1778 {
1779     struct kvm_irq_routing_entry *entry;
1780     int n;
1781 
1782     for (n = 0; n < s->irq_routes->nr; n++) {
1783         entry = &s->irq_routes->entries[n];
1784         if (entry->gsi != new_entry->gsi) {
1785             continue;
1786         }
1787 
1788         if(!memcmp(entry, new_entry, sizeof *entry)) {
1789             return 0;
1790         }
1791 
1792         *entry = *new_entry;
1793 
1794         return 0;
1795     }
1796 
1797     return -ESRCH;
1798 }
1799 
1800 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1801 {
1802     struct kvm_irq_routing_entry e = {};
1803 
1804     assert(pin < s->gsi_count);
1805 
1806     e.gsi = irq;
1807     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1808     e.flags = 0;
1809     e.u.irqchip.irqchip = irqchip;
1810     e.u.irqchip.pin = pin;
1811     kvm_add_routing_entry(s, &e);
1812 }
1813 
1814 void kvm_irqchip_release_virq(KVMState *s, int virq)
1815 {
1816     struct kvm_irq_routing_entry *e;
1817     int i;
1818 
1819     if (kvm_gsi_direct_mapping()) {
1820         return;
1821     }
1822 
1823     for (i = 0; i < s->irq_routes->nr; i++) {
1824         e = &s->irq_routes->entries[i];
1825         if (e->gsi == virq) {
1826             s->irq_routes->nr--;
1827             *e = s->irq_routes->entries[s->irq_routes->nr];
1828         }
1829     }
1830     clear_gsi(s, virq);
1831     kvm_arch_release_virq_post(virq);
1832     trace_kvm_irqchip_release_virq(virq);
1833 }
1834 
1835 void kvm_irqchip_add_change_notifier(Notifier *n)
1836 {
1837     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1838 }
1839 
1840 void kvm_irqchip_remove_change_notifier(Notifier *n)
1841 {
1842     notifier_remove(n);
1843 }
1844 
1845 void kvm_irqchip_change_notify(void)
1846 {
1847     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1848 }
1849 
1850 static unsigned int kvm_hash_msi(uint32_t data)
1851 {
1852     /* This is optimized for IA32 MSI layout. However, no other arch shall
1853      * repeat the mistake of not providing a direct MSI injection API. */
1854     return data & 0xff;
1855 }
1856 
1857 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1858 {
1859     KVMMSIRoute *route, *next;
1860     unsigned int hash;
1861 
1862     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1863         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1864             kvm_irqchip_release_virq(s, route->kroute.gsi);
1865             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1866             g_free(route);
1867         }
1868     }
1869 }
1870 
1871 static int kvm_irqchip_get_virq(KVMState *s)
1872 {
1873     int next_virq;
1874 
1875     /*
1876      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1877      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1878      * number can succeed even though a new route entry cannot be added.
1879      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1880      */
1881     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1882         kvm_flush_dynamic_msi_routes(s);
1883     }
1884 
1885     /* Return the lowest unused GSI in the bitmap */
1886     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1887     if (next_virq >= s->gsi_count) {
1888         return -ENOSPC;
1889     } else {
1890         return next_virq;
1891     }
1892 }
1893 
1894 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1895 {
1896     unsigned int hash = kvm_hash_msi(msg.data);
1897     KVMMSIRoute *route;
1898 
1899     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1900         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1901             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1902             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1903             return route;
1904         }
1905     }
1906     return NULL;
1907 }
1908 
1909 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1910 {
1911     struct kvm_msi msi;
1912     KVMMSIRoute *route;
1913 
1914     if (kvm_direct_msi_allowed) {
1915         msi.address_lo = (uint32_t)msg.address;
1916         msi.address_hi = msg.address >> 32;
1917         msi.data = le32_to_cpu(msg.data);
1918         msi.flags = 0;
1919         memset(msi.pad, 0, sizeof(msi.pad));
1920 
1921         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1922     }
1923 
1924     route = kvm_lookup_msi_route(s, msg);
1925     if (!route) {
1926         int virq;
1927 
1928         virq = kvm_irqchip_get_virq(s);
1929         if (virq < 0) {
1930             return virq;
1931         }
1932 
1933         route = g_malloc0(sizeof(KVMMSIRoute));
1934         route->kroute.gsi = virq;
1935         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1936         route->kroute.flags = 0;
1937         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1938         route->kroute.u.msi.address_hi = msg.address >> 32;
1939         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1940 
1941         kvm_add_routing_entry(s, &route->kroute);
1942         kvm_irqchip_commit_routes(s);
1943 
1944         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1945                            entry);
1946     }
1947 
1948     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1949 
1950     return kvm_set_irq(s, route->kroute.gsi, 1);
1951 }
1952 
1953 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1954 {
1955     struct kvm_irq_routing_entry kroute = {};
1956     int virq;
1957     MSIMessage msg = {0, 0};
1958 
1959     if (pci_available && dev) {
1960         msg = pci_get_msi_message(dev, vector);
1961     }
1962 
1963     if (kvm_gsi_direct_mapping()) {
1964         return kvm_arch_msi_data_to_gsi(msg.data);
1965     }
1966 
1967     if (!kvm_gsi_routing_enabled()) {
1968         return -ENOSYS;
1969     }
1970 
1971     virq = kvm_irqchip_get_virq(s);
1972     if (virq < 0) {
1973         return virq;
1974     }
1975 
1976     kroute.gsi = virq;
1977     kroute.type = KVM_IRQ_ROUTING_MSI;
1978     kroute.flags = 0;
1979     kroute.u.msi.address_lo = (uint32_t)msg.address;
1980     kroute.u.msi.address_hi = msg.address >> 32;
1981     kroute.u.msi.data = le32_to_cpu(msg.data);
1982     if (pci_available && kvm_msi_devid_required()) {
1983         kroute.flags = KVM_MSI_VALID_DEVID;
1984         kroute.u.msi.devid = pci_requester_id(dev);
1985     }
1986     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1987         kvm_irqchip_release_virq(s, virq);
1988         return -EINVAL;
1989     }
1990 
1991     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1992                                     vector, virq);
1993 
1994     kvm_add_routing_entry(s, &kroute);
1995     kvm_arch_add_msi_route_post(&kroute, vector, dev);
1996     kvm_irqchip_commit_routes(s);
1997 
1998     return virq;
1999 }
2000 
2001 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2002                                  PCIDevice *dev)
2003 {
2004     struct kvm_irq_routing_entry kroute = {};
2005 
2006     if (kvm_gsi_direct_mapping()) {
2007         return 0;
2008     }
2009 
2010     if (!kvm_irqchip_in_kernel()) {
2011         return -ENOSYS;
2012     }
2013 
2014     kroute.gsi = virq;
2015     kroute.type = KVM_IRQ_ROUTING_MSI;
2016     kroute.flags = 0;
2017     kroute.u.msi.address_lo = (uint32_t)msg.address;
2018     kroute.u.msi.address_hi = msg.address >> 32;
2019     kroute.u.msi.data = le32_to_cpu(msg.data);
2020     if (pci_available && kvm_msi_devid_required()) {
2021         kroute.flags = KVM_MSI_VALID_DEVID;
2022         kroute.u.msi.devid = pci_requester_id(dev);
2023     }
2024     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2025         return -EINVAL;
2026     }
2027 
2028     trace_kvm_irqchip_update_msi_route(virq);
2029 
2030     return kvm_update_routing_entry(s, &kroute);
2031 }
2032 
2033 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2034                                     EventNotifier *resample, int virq,
2035                                     bool assign)
2036 {
2037     int fd = event_notifier_get_fd(event);
2038     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2039 
2040     struct kvm_irqfd irqfd = {
2041         .fd = fd,
2042         .gsi = virq,
2043         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2044     };
2045 
2046     if (rfd != -1) {
2047         assert(assign);
2048         if (kvm_irqchip_is_split()) {
2049             /*
2050              * When the slow irqchip (e.g. IOAPIC) is in the
2051              * userspace, KVM kernel resamplefd will not work because
2052              * the EOI of the interrupt will be delivered to userspace
2053              * instead, so the KVM kernel resamplefd kick will be
2054              * skipped.  The userspace here mimics what the kernel
2055              * provides with resamplefd, remember the resamplefd and
2056              * kick it when we receive EOI of this IRQ.
2057              *
2058              * This is hackery because IOAPIC is mostly bypassed
2059              * (except EOI broadcasts) when irqfd is used.  However
2060              * this can bring much performance back for split irqchip
2061              * with INTx IRQs (for VFIO, this gives 93% perf of the
2062              * full fast path, which is 46% perf boost comparing to
2063              * the INTx slow path).
2064              */
2065             kvm_resample_fd_insert(virq, resample);
2066         } else {
2067             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2068             irqfd.resamplefd = rfd;
2069         }
2070     } else if (!assign) {
2071         if (kvm_irqchip_is_split()) {
2072             kvm_resample_fd_remove(virq);
2073         }
2074     }
2075 
2076     if (!kvm_irqfds_enabled()) {
2077         return -ENOSYS;
2078     }
2079 
2080     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2081 }
2082 
2083 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2084 {
2085     struct kvm_irq_routing_entry kroute = {};
2086     int virq;
2087 
2088     if (!kvm_gsi_routing_enabled()) {
2089         return -ENOSYS;
2090     }
2091 
2092     virq = kvm_irqchip_get_virq(s);
2093     if (virq < 0) {
2094         return virq;
2095     }
2096 
2097     kroute.gsi = virq;
2098     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2099     kroute.flags = 0;
2100     kroute.u.adapter.summary_addr = adapter->summary_addr;
2101     kroute.u.adapter.ind_addr = adapter->ind_addr;
2102     kroute.u.adapter.summary_offset = adapter->summary_offset;
2103     kroute.u.adapter.ind_offset = adapter->ind_offset;
2104     kroute.u.adapter.adapter_id = adapter->adapter_id;
2105 
2106     kvm_add_routing_entry(s, &kroute);
2107 
2108     return virq;
2109 }
2110 
2111 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2112 {
2113     struct kvm_irq_routing_entry kroute = {};
2114     int virq;
2115 
2116     if (!kvm_gsi_routing_enabled()) {
2117         return -ENOSYS;
2118     }
2119     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2120         return -ENOSYS;
2121     }
2122     virq = kvm_irqchip_get_virq(s);
2123     if (virq < 0) {
2124         return virq;
2125     }
2126 
2127     kroute.gsi = virq;
2128     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2129     kroute.flags = 0;
2130     kroute.u.hv_sint.vcpu = vcpu;
2131     kroute.u.hv_sint.sint = sint;
2132 
2133     kvm_add_routing_entry(s, &kroute);
2134     kvm_irqchip_commit_routes(s);
2135 
2136     return virq;
2137 }
2138 
2139 #else /* !KVM_CAP_IRQ_ROUTING */
2140 
2141 void kvm_init_irq_routing(KVMState *s)
2142 {
2143 }
2144 
2145 void kvm_irqchip_release_virq(KVMState *s, int virq)
2146 {
2147 }
2148 
2149 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2150 {
2151     abort();
2152 }
2153 
2154 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
2155 {
2156     return -ENOSYS;
2157 }
2158 
2159 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2160 {
2161     return -ENOSYS;
2162 }
2163 
2164 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2165 {
2166     return -ENOSYS;
2167 }
2168 
2169 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2170                                     EventNotifier *resample, int virq,
2171                                     bool assign)
2172 {
2173     abort();
2174 }
2175 
2176 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2177 {
2178     return -ENOSYS;
2179 }
2180 #endif /* !KVM_CAP_IRQ_ROUTING */
2181 
2182 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2183                                        EventNotifier *rn, int virq)
2184 {
2185     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2186 }
2187 
2188 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2189                                           int virq)
2190 {
2191     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2192 }
2193 
2194 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2195                                    EventNotifier *rn, qemu_irq irq)
2196 {
2197     gpointer key, gsi;
2198     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2199 
2200     if (!found) {
2201         return -ENXIO;
2202     }
2203     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2204 }
2205 
2206 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2207                                       qemu_irq irq)
2208 {
2209     gpointer key, gsi;
2210     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2211 
2212     if (!found) {
2213         return -ENXIO;
2214     }
2215     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2216 }
2217 
2218 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2219 {
2220     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2221 }
2222 
2223 static void kvm_irqchip_create(KVMState *s)
2224 {
2225     int ret;
2226 
2227     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2228     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2229         ;
2230     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2231         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2232         if (ret < 0) {
2233             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2234             exit(1);
2235         }
2236     } else {
2237         return;
2238     }
2239 
2240     /* First probe and see if there's a arch-specific hook to create the
2241      * in-kernel irqchip for us */
2242     ret = kvm_arch_irqchip_create(s);
2243     if (ret == 0) {
2244         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2245             perror("Split IRQ chip mode not supported.");
2246             exit(1);
2247         } else {
2248             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2249         }
2250     }
2251     if (ret < 0) {
2252         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2253         exit(1);
2254     }
2255 
2256     kvm_kernel_irqchip = true;
2257     /* If we have an in-kernel IRQ chip then we must have asynchronous
2258      * interrupt delivery (though the reverse is not necessarily true)
2259      */
2260     kvm_async_interrupts_allowed = true;
2261     kvm_halt_in_kernel_allowed = true;
2262 
2263     kvm_init_irq_routing(s);
2264 
2265     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2266 }
2267 
2268 /* Find number of supported CPUs using the recommended
2269  * procedure from the kernel API documentation to cope with
2270  * older kernels that may be missing capabilities.
2271  */
2272 static int kvm_recommended_vcpus(KVMState *s)
2273 {
2274     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2275     return (ret) ? ret : 4;
2276 }
2277 
2278 static int kvm_max_vcpus(KVMState *s)
2279 {
2280     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2281     return (ret) ? ret : kvm_recommended_vcpus(s);
2282 }
2283 
2284 static int kvm_max_vcpu_id(KVMState *s)
2285 {
2286     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2287     return (ret) ? ret : kvm_max_vcpus(s);
2288 }
2289 
2290 bool kvm_vcpu_id_is_valid(int vcpu_id)
2291 {
2292     KVMState *s = KVM_STATE(current_accel());
2293     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2294 }
2295 
2296 static int kvm_init(MachineState *ms)
2297 {
2298     MachineClass *mc = MACHINE_GET_CLASS(ms);
2299     static const char upgrade_note[] =
2300         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2301         "(see http://sourceforge.net/projects/kvm).\n";
2302     struct {
2303         const char *name;
2304         int num;
2305     } num_cpus[] = {
2306         { "SMP",          ms->smp.cpus },
2307         { "hotpluggable", ms->smp.max_cpus },
2308         { NULL, }
2309     }, *nc = num_cpus;
2310     int soft_vcpus_limit, hard_vcpus_limit;
2311     KVMState *s;
2312     const KVMCapabilityInfo *missing_cap;
2313     int ret;
2314     int type = 0;
2315     uint64_t dirty_log_manual_caps;
2316 
2317     qemu_mutex_init(&kml_slots_lock);
2318 
2319     s = KVM_STATE(ms->accelerator);
2320 
2321     /*
2322      * On systems where the kernel can support different base page
2323      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2324      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2325      * page size for the system though.
2326      */
2327     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2328 
2329     s->sigmask_len = 8;
2330 
2331 #ifdef KVM_CAP_SET_GUEST_DEBUG
2332     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2333 #endif
2334     QLIST_INIT(&s->kvm_parked_vcpus);
2335     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2336     if (s->fd == -1) {
2337         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2338         ret = -errno;
2339         goto err;
2340     }
2341 
2342     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2343     if (ret < KVM_API_VERSION) {
2344         if (ret >= 0) {
2345             ret = -EINVAL;
2346         }
2347         fprintf(stderr, "kvm version too old\n");
2348         goto err;
2349     }
2350 
2351     if (ret > KVM_API_VERSION) {
2352         ret = -EINVAL;
2353         fprintf(stderr, "kvm version not supported\n");
2354         goto err;
2355     }
2356 
2357     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2358     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2359 
2360     /* If unspecified, use the default value */
2361     if (!s->nr_slots) {
2362         s->nr_slots = 32;
2363     }
2364 
2365     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2366     if (s->nr_as <= 1) {
2367         s->nr_as = 1;
2368     }
2369     s->as = g_new0(struct KVMAs, s->nr_as);
2370 
2371     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2372         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2373                                                             "kvm-type",
2374                                                             &error_abort);
2375         type = mc->kvm_type(ms, kvm_type);
2376     } else if (mc->kvm_type) {
2377         type = mc->kvm_type(ms, NULL);
2378     }
2379 
2380     do {
2381         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2382     } while (ret == -EINTR);
2383 
2384     if (ret < 0) {
2385         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2386                 strerror(-ret));
2387 
2388 #ifdef TARGET_S390X
2389         if (ret == -EINVAL) {
2390             fprintf(stderr,
2391                     "Host kernel setup problem detected. Please verify:\n");
2392             fprintf(stderr, "- for kernels supporting the switch_amode or"
2393                     " user_mode parameters, whether\n");
2394             fprintf(stderr,
2395                     "  user space is running in primary address space\n");
2396             fprintf(stderr,
2397                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2398                     "whether it is enabled\n");
2399         }
2400 #elif defined(TARGET_PPC)
2401         if (ret == -EINVAL) {
2402             fprintf(stderr,
2403                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2404                     (type == 2) ? "pr" : "hv");
2405         }
2406 #endif
2407         goto err;
2408     }
2409 
2410     s->vmfd = ret;
2411 
2412     /* check the vcpu limits */
2413     soft_vcpus_limit = kvm_recommended_vcpus(s);
2414     hard_vcpus_limit = kvm_max_vcpus(s);
2415 
2416     while (nc->name) {
2417         if (nc->num > soft_vcpus_limit) {
2418             warn_report("Number of %s cpus requested (%d) exceeds "
2419                         "the recommended cpus supported by KVM (%d)",
2420                         nc->name, nc->num, soft_vcpus_limit);
2421 
2422             if (nc->num > hard_vcpus_limit) {
2423                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2424                         "the maximum cpus supported by KVM (%d)\n",
2425                         nc->name, nc->num, hard_vcpus_limit);
2426                 exit(1);
2427             }
2428         }
2429         nc++;
2430     }
2431 
2432     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2433     if (!missing_cap) {
2434         missing_cap =
2435             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2436     }
2437     if (missing_cap) {
2438         ret = -EINVAL;
2439         fprintf(stderr, "kvm does not support %s\n%s",
2440                 missing_cap->name, upgrade_note);
2441         goto err;
2442     }
2443 
2444     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2445     s->coalesced_pio = s->coalesced_mmio &&
2446                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2447 
2448     /*
2449      * Enable KVM dirty ring if supported, otherwise fall back to
2450      * dirty logging mode
2451      */
2452     if (s->kvm_dirty_ring_size > 0) {
2453         uint64_t ring_bytes;
2454 
2455         ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2456 
2457         /* Read the max supported pages */
2458         ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2459         if (ret > 0) {
2460             if (ring_bytes > ret) {
2461                 error_report("KVM dirty ring size %" PRIu32 " too big "
2462                              "(maximum is %ld).  Please use a smaller value.",
2463                              s->kvm_dirty_ring_size,
2464                              (long)ret / sizeof(struct kvm_dirty_gfn));
2465                 ret = -EINVAL;
2466                 goto err;
2467             }
2468 
2469             ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2470             if (ret) {
2471                 error_report("Enabling of KVM dirty ring failed: %s. "
2472                              "Suggested mininum value is 1024.", strerror(-ret));
2473                 goto err;
2474             }
2475 
2476             s->kvm_dirty_ring_bytes = ring_bytes;
2477          } else {
2478              warn_report("KVM dirty ring not available, using bitmap method");
2479              s->kvm_dirty_ring_size = 0;
2480         }
2481     }
2482 
2483     /*
2484      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2485      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2486      * page is wr-protected initially, which is against how kvm dirty ring is
2487      * usage - kvm dirty ring requires all pages are wr-protected at the very
2488      * beginning.  Enabling this feature for dirty ring causes data corruption.
2489      *
2490      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2491      * we may expect a higher stall time when starting the migration.  In the
2492      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2493      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2494      * guest pages.
2495      */
2496     if (!s->kvm_dirty_ring_size) {
2497         dirty_log_manual_caps =
2498             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2499         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2500                                   KVM_DIRTY_LOG_INITIALLY_SET);
2501         s->manual_dirty_log_protect = dirty_log_manual_caps;
2502         if (dirty_log_manual_caps) {
2503             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2504                                     dirty_log_manual_caps);
2505             if (ret) {
2506                 warn_report("Trying to enable capability %"PRIu64" of "
2507                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2508                             "Falling back to the legacy mode. ",
2509                             dirty_log_manual_caps);
2510                 s->manual_dirty_log_protect = 0;
2511             }
2512         }
2513     }
2514 
2515 #ifdef KVM_CAP_VCPU_EVENTS
2516     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2517 #endif
2518 
2519     s->robust_singlestep =
2520         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2521 
2522 #ifdef KVM_CAP_DEBUGREGS
2523     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2524 #endif
2525 
2526     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2527 
2528 #ifdef KVM_CAP_IRQ_ROUTING
2529     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2530 #endif
2531 
2532     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2533 
2534     s->irq_set_ioctl = KVM_IRQ_LINE;
2535     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2536         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2537     }
2538 
2539     kvm_readonly_mem_allowed =
2540         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2541 
2542     kvm_eventfds_allowed =
2543         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2544 
2545     kvm_irqfds_allowed =
2546         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2547 
2548     kvm_resamplefds_allowed =
2549         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2550 
2551     kvm_vm_attributes_allowed =
2552         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2553 
2554     kvm_ioeventfd_any_length_allowed =
2555         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2556 
2557     kvm_state = s;
2558 
2559     ret = kvm_arch_init(ms, s);
2560     if (ret < 0) {
2561         goto err;
2562     }
2563 
2564     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2565         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2566     }
2567 
2568     qemu_register_reset(kvm_unpoison_all, NULL);
2569 
2570     if (s->kernel_irqchip_allowed) {
2571         kvm_irqchip_create(s);
2572     }
2573 
2574     if (kvm_eventfds_allowed) {
2575         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2576         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2577     }
2578     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2579     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2580 
2581     kvm_memory_listener_register(s, &s->memory_listener,
2582                                  &address_space_memory, 0);
2583     if (kvm_eventfds_allowed) {
2584         memory_listener_register(&kvm_io_listener,
2585                                  &address_space_io);
2586     }
2587     memory_listener_register(&kvm_coalesced_pio_listener,
2588                              &address_space_io);
2589 
2590     s->many_ioeventfds = kvm_check_many_ioeventfds();
2591 
2592     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2593     if (!s->sync_mmu) {
2594         ret = ram_block_discard_disable(true);
2595         assert(!ret);
2596     }
2597 
2598     if (s->kvm_dirty_ring_size) {
2599         ret = kvm_dirty_ring_reaper_init(s);
2600         if (ret) {
2601             goto err;
2602         }
2603     }
2604 
2605     return 0;
2606 
2607 err:
2608     assert(ret < 0);
2609     if (s->vmfd >= 0) {
2610         close(s->vmfd);
2611     }
2612     if (s->fd != -1) {
2613         close(s->fd);
2614     }
2615     g_free(s->memory_listener.slots);
2616 
2617     return ret;
2618 }
2619 
2620 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2621 {
2622     s->sigmask_len = sigmask_len;
2623 }
2624 
2625 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2626                           int size, uint32_t count)
2627 {
2628     int i;
2629     uint8_t *ptr = data;
2630 
2631     for (i = 0; i < count; i++) {
2632         address_space_rw(&address_space_io, port, attrs,
2633                          ptr, size,
2634                          direction == KVM_EXIT_IO_OUT);
2635         ptr += size;
2636     }
2637 }
2638 
2639 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2640 {
2641     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2642             run->internal.suberror);
2643 
2644     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2645         int i;
2646 
2647         for (i = 0; i < run->internal.ndata; ++i) {
2648             fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2649                     i, (uint64_t)run->internal.data[i]);
2650         }
2651     }
2652     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2653         fprintf(stderr, "emulation failure\n");
2654         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2655             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2656             return EXCP_INTERRUPT;
2657         }
2658     }
2659     /* FIXME: Should trigger a qmp message to let management know
2660      * something went wrong.
2661      */
2662     return -1;
2663 }
2664 
2665 void kvm_flush_coalesced_mmio_buffer(void)
2666 {
2667     KVMState *s = kvm_state;
2668 
2669     if (s->coalesced_flush_in_progress) {
2670         return;
2671     }
2672 
2673     s->coalesced_flush_in_progress = true;
2674 
2675     if (s->coalesced_mmio_ring) {
2676         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2677         while (ring->first != ring->last) {
2678             struct kvm_coalesced_mmio *ent;
2679 
2680             ent = &ring->coalesced_mmio[ring->first];
2681 
2682             if (ent->pio == 1) {
2683                 address_space_write(&address_space_io, ent->phys_addr,
2684                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2685                                     ent->len);
2686             } else {
2687                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2688             }
2689             smp_wmb();
2690             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2691         }
2692     }
2693 
2694     s->coalesced_flush_in_progress = false;
2695 }
2696 
2697 bool kvm_cpu_check_are_resettable(void)
2698 {
2699     return kvm_arch_cpu_check_are_resettable();
2700 }
2701 
2702 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2703 {
2704     if (!cpu->vcpu_dirty) {
2705         kvm_arch_get_registers(cpu);
2706         cpu->vcpu_dirty = true;
2707     }
2708 }
2709 
2710 void kvm_cpu_synchronize_state(CPUState *cpu)
2711 {
2712     if (!cpu->vcpu_dirty) {
2713         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2714     }
2715 }
2716 
2717 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2718 {
2719     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2720     cpu->vcpu_dirty = false;
2721 }
2722 
2723 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2724 {
2725     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2726 }
2727 
2728 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2729 {
2730     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2731     cpu->vcpu_dirty = false;
2732 }
2733 
2734 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2735 {
2736     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2737 }
2738 
2739 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2740 {
2741     cpu->vcpu_dirty = true;
2742 }
2743 
2744 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2745 {
2746     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2747 }
2748 
2749 #ifdef KVM_HAVE_MCE_INJECTION
2750 static __thread void *pending_sigbus_addr;
2751 static __thread int pending_sigbus_code;
2752 static __thread bool have_sigbus_pending;
2753 #endif
2754 
2755 static void kvm_cpu_kick(CPUState *cpu)
2756 {
2757     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2758 }
2759 
2760 static void kvm_cpu_kick_self(void)
2761 {
2762     if (kvm_immediate_exit) {
2763         kvm_cpu_kick(current_cpu);
2764     } else {
2765         qemu_cpu_kick_self();
2766     }
2767 }
2768 
2769 static void kvm_eat_signals(CPUState *cpu)
2770 {
2771     struct timespec ts = { 0, 0 };
2772     siginfo_t siginfo;
2773     sigset_t waitset;
2774     sigset_t chkset;
2775     int r;
2776 
2777     if (kvm_immediate_exit) {
2778         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2779         /* Write kvm_run->immediate_exit before the cpu->exit_request
2780          * write in kvm_cpu_exec.
2781          */
2782         smp_wmb();
2783         return;
2784     }
2785 
2786     sigemptyset(&waitset);
2787     sigaddset(&waitset, SIG_IPI);
2788 
2789     do {
2790         r = sigtimedwait(&waitset, &siginfo, &ts);
2791         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2792             perror("sigtimedwait");
2793             exit(1);
2794         }
2795 
2796         r = sigpending(&chkset);
2797         if (r == -1) {
2798             perror("sigpending");
2799             exit(1);
2800         }
2801     } while (sigismember(&chkset, SIG_IPI));
2802 }
2803 
2804 int kvm_cpu_exec(CPUState *cpu)
2805 {
2806     struct kvm_run *run = cpu->kvm_run;
2807     int ret, run_ret;
2808 
2809     DPRINTF("kvm_cpu_exec()\n");
2810 
2811     if (kvm_arch_process_async_events(cpu)) {
2812         qatomic_set(&cpu->exit_request, 0);
2813         return EXCP_HLT;
2814     }
2815 
2816     qemu_mutex_unlock_iothread();
2817     cpu_exec_start(cpu);
2818 
2819     do {
2820         MemTxAttrs attrs;
2821 
2822         if (cpu->vcpu_dirty) {
2823             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2824             cpu->vcpu_dirty = false;
2825         }
2826 
2827         kvm_arch_pre_run(cpu, run);
2828         if (qatomic_read(&cpu->exit_request)) {
2829             DPRINTF("interrupt exit requested\n");
2830             /*
2831              * KVM requires us to reenter the kernel after IO exits to complete
2832              * instruction emulation. This self-signal will ensure that we
2833              * leave ASAP again.
2834              */
2835             kvm_cpu_kick_self();
2836         }
2837 
2838         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2839          * Matching barrier in kvm_eat_signals.
2840          */
2841         smp_rmb();
2842 
2843         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2844 
2845         attrs = kvm_arch_post_run(cpu, run);
2846 
2847 #ifdef KVM_HAVE_MCE_INJECTION
2848         if (unlikely(have_sigbus_pending)) {
2849             qemu_mutex_lock_iothread();
2850             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2851                                     pending_sigbus_addr);
2852             have_sigbus_pending = false;
2853             qemu_mutex_unlock_iothread();
2854         }
2855 #endif
2856 
2857         if (run_ret < 0) {
2858             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2859                 DPRINTF("io window exit\n");
2860                 kvm_eat_signals(cpu);
2861                 ret = EXCP_INTERRUPT;
2862                 break;
2863             }
2864             fprintf(stderr, "error: kvm run failed %s\n",
2865                     strerror(-run_ret));
2866 #ifdef TARGET_PPC
2867             if (run_ret == -EBUSY) {
2868                 fprintf(stderr,
2869                         "This is probably because your SMT is enabled.\n"
2870                         "VCPU can only run on primary threads with all "
2871                         "secondary threads offline.\n");
2872             }
2873 #endif
2874             ret = -1;
2875             break;
2876         }
2877 
2878         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2879         switch (run->exit_reason) {
2880         case KVM_EXIT_IO:
2881             DPRINTF("handle_io\n");
2882             /* Called outside BQL */
2883             kvm_handle_io(run->io.port, attrs,
2884                           (uint8_t *)run + run->io.data_offset,
2885                           run->io.direction,
2886                           run->io.size,
2887                           run->io.count);
2888             ret = 0;
2889             break;
2890         case KVM_EXIT_MMIO:
2891             DPRINTF("handle_mmio\n");
2892             /* Called outside BQL */
2893             address_space_rw(&address_space_memory,
2894                              run->mmio.phys_addr, attrs,
2895                              run->mmio.data,
2896                              run->mmio.len,
2897                              run->mmio.is_write);
2898             ret = 0;
2899             break;
2900         case KVM_EXIT_IRQ_WINDOW_OPEN:
2901             DPRINTF("irq_window_open\n");
2902             ret = EXCP_INTERRUPT;
2903             break;
2904         case KVM_EXIT_SHUTDOWN:
2905             DPRINTF("shutdown\n");
2906             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2907             ret = EXCP_INTERRUPT;
2908             break;
2909         case KVM_EXIT_UNKNOWN:
2910             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2911                     (uint64_t)run->hw.hardware_exit_reason);
2912             ret = -1;
2913             break;
2914         case KVM_EXIT_INTERNAL_ERROR:
2915             ret = kvm_handle_internal_error(cpu, run);
2916             break;
2917         case KVM_EXIT_DIRTY_RING_FULL:
2918             /*
2919              * We shouldn't continue if the dirty ring of this vcpu is
2920              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2921              */
2922             trace_kvm_dirty_ring_full(cpu->cpu_index);
2923             qemu_mutex_lock_iothread();
2924             kvm_dirty_ring_reap(kvm_state);
2925             qemu_mutex_unlock_iothread();
2926             ret = 0;
2927             break;
2928         case KVM_EXIT_SYSTEM_EVENT:
2929             switch (run->system_event.type) {
2930             case KVM_SYSTEM_EVENT_SHUTDOWN:
2931                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2932                 ret = EXCP_INTERRUPT;
2933                 break;
2934             case KVM_SYSTEM_EVENT_RESET:
2935                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2936                 ret = EXCP_INTERRUPT;
2937                 break;
2938             case KVM_SYSTEM_EVENT_CRASH:
2939                 kvm_cpu_synchronize_state(cpu);
2940                 qemu_mutex_lock_iothread();
2941                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2942                 qemu_mutex_unlock_iothread();
2943                 ret = 0;
2944                 break;
2945             default:
2946                 DPRINTF("kvm_arch_handle_exit\n");
2947                 ret = kvm_arch_handle_exit(cpu, run);
2948                 break;
2949             }
2950             break;
2951         default:
2952             DPRINTF("kvm_arch_handle_exit\n");
2953             ret = kvm_arch_handle_exit(cpu, run);
2954             break;
2955         }
2956     } while (ret == 0);
2957 
2958     cpu_exec_end(cpu);
2959     qemu_mutex_lock_iothread();
2960 
2961     if (ret < 0) {
2962         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2963         vm_stop(RUN_STATE_INTERNAL_ERROR);
2964     }
2965 
2966     qatomic_set(&cpu->exit_request, 0);
2967     return ret;
2968 }
2969 
2970 int kvm_ioctl(KVMState *s, int type, ...)
2971 {
2972     int ret;
2973     void *arg;
2974     va_list ap;
2975 
2976     va_start(ap, type);
2977     arg = va_arg(ap, void *);
2978     va_end(ap);
2979 
2980     trace_kvm_ioctl(type, arg);
2981     ret = ioctl(s->fd, type, arg);
2982     if (ret == -1) {
2983         ret = -errno;
2984     }
2985     return ret;
2986 }
2987 
2988 int kvm_vm_ioctl(KVMState *s, int type, ...)
2989 {
2990     int ret;
2991     void *arg;
2992     va_list ap;
2993 
2994     va_start(ap, type);
2995     arg = va_arg(ap, void *);
2996     va_end(ap);
2997 
2998     trace_kvm_vm_ioctl(type, arg);
2999     ret = ioctl(s->vmfd, type, arg);
3000     if (ret == -1) {
3001         ret = -errno;
3002     }
3003     return ret;
3004 }
3005 
3006 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3007 {
3008     int ret;
3009     void *arg;
3010     va_list ap;
3011 
3012     va_start(ap, type);
3013     arg = va_arg(ap, void *);
3014     va_end(ap);
3015 
3016     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3017     ret = ioctl(cpu->kvm_fd, type, arg);
3018     if (ret == -1) {
3019         ret = -errno;
3020     }
3021     return ret;
3022 }
3023 
3024 int kvm_device_ioctl(int fd, int type, ...)
3025 {
3026     int ret;
3027     void *arg;
3028     va_list ap;
3029 
3030     va_start(ap, type);
3031     arg = va_arg(ap, void *);
3032     va_end(ap);
3033 
3034     trace_kvm_device_ioctl(fd, type, arg);
3035     ret = ioctl(fd, type, arg);
3036     if (ret == -1) {
3037         ret = -errno;
3038     }
3039     return ret;
3040 }
3041 
3042 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3043 {
3044     int ret;
3045     struct kvm_device_attr attribute = {
3046         .group = group,
3047         .attr = attr,
3048     };
3049 
3050     if (!kvm_vm_attributes_allowed) {
3051         return 0;
3052     }
3053 
3054     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3055     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3056     return ret ? 0 : 1;
3057 }
3058 
3059 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3060 {
3061     struct kvm_device_attr attribute = {
3062         .group = group,
3063         .attr = attr,
3064         .flags = 0,
3065     };
3066 
3067     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3068 }
3069 
3070 int kvm_device_access(int fd, int group, uint64_t attr,
3071                       void *val, bool write, Error **errp)
3072 {
3073     struct kvm_device_attr kvmattr;
3074     int err;
3075 
3076     kvmattr.flags = 0;
3077     kvmattr.group = group;
3078     kvmattr.attr = attr;
3079     kvmattr.addr = (uintptr_t)val;
3080 
3081     err = kvm_device_ioctl(fd,
3082                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3083                            &kvmattr);
3084     if (err < 0) {
3085         error_setg_errno(errp, -err,
3086                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3087                          "attr 0x%016" PRIx64,
3088                          write ? "SET" : "GET", group, attr);
3089     }
3090     return err;
3091 }
3092 
3093 bool kvm_has_sync_mmu(void)
3094 {
3095     return kvm_state->sync_mmu;
3096 }
3097 
3098 int kvm_has_vcpu_events(void)
3099 {
3100     return kvm_state->vcpu_events;
3101 }
3102 
3103 int kvm_has_robust_singlestep(void)
3104 {
3105     return kvm_state->robust_singlestep;
3106 }
3107 
3108 int kvm_has_debugregs(void)
3109 {
3110     return kvm_state->debugregs;
3111 }
3112 
3113 int kvm_max_nested_state_length(void)
3114 {
3115     return kvm_state->max_nested_state_len;
3116 }
3117 
3118 int kvm_has_many_ioeventfds(void)
3119 {
3120     if (!kvm_enabled()) {
3121         return 0;
3122     }
3123     return kvm_state->many_ioeventfds;
3124 }
3125 
3126 int kvm_has_gsi_routing(void)
3127 {
3128 #ifdef KVM_CAP_IRQ_ROUTING
3129     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3130 #else
3131     return false;
3132 #endif
3133 }
3134 
3135 int kvm_has_intx_set_mask(void)
3136 {
3137     return kvm_state->intx_set_mask;
3138 }
3139 
3140 bool kvm_arm_supports_user_irq(void)
3141 {
3142     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3143 }
3144 
3145 #ifdef KVM_CAP_SET_GUEST_DEBUG
3146 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3147                                                  target_ulong pc)
3148 {
3149     struct kvm_sw_breakpoint *bp;
3150 
3151     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3152         if (bp->pc == pc) {
3153             return bp;
3154         }
3155     }
3156     return NULL;
3157 }
3158 
3159 int kvm_sw_breakpoints_active(CPUState *cpu)
3160 {
3161     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3162 }
3163 
3164 struct kvm_set_guest_debug_data {
3165     struct kvm_guest_debug dbg;
3166     int err;
3167 };
3168 
3169 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3170 {
3171     struct kvm_set_guest_debug_data *dbg_data =
3172         (struct kvm_set_guest_debug_data *) data.host_ptr;
3173 
3174     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3175                                    &dbg_data->dbg);
3176 }
3177 
3178 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3179 {
3180     struct kvm_set_guest_debug_data data;
3181 
3182     data.dbg.control = reinject_trap;
3183 
3184     if (cpu->singlestep_enabled) {
3185         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3186     }
3187     kvm_arch_update_guest_debug(cpu, &data.dbg);
3188 
3189     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3190                RUN_ON_CPU_HOST_PTR(&data));
3191     return data.err;
3192 }
3193 
3194 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3195                           target_ulong len, int type)
3196 {
3197     struct kvm_sw_breakpoint *bp;
3198     int err;
3199 
3200     if (type == GDB_BREAKPOINT_SW) {
3201         bp = kvm_find_sw_breakpoint(cpu, addr);
3202         if (bp) {
3203             bp->use_count++;
3204             return 0;
3205         }
3206 
3207         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
3208         bp->pc = addr;
3209         bp->use_count = 1;
3210         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3211         if (err) {
3212             g_free(bp);
3213             return err;
3214         }
3215 
3216         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3217     } else {
3218         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3219         if (err) {
3220             return err;
3221         }
3222     }
3223 
3224     CPU_FOREACH(cpu) {
3225         err = kvm_update_guest_debug(cpu, 0);
3226         if (err) {
3227             return err;
3228         }
3229     }
3230     return 0;
3231 }
3232 
3233 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3234                           target_ulong len, int type)
3235 {
3236     struct kvm_sw_breakpoint *bp;
3237     int err;
3238 
3239     if (type == GDB_BREAKPOINT_SW) {
3240         bp = kvm_find_sw_breakpoint(cpu, addr);
3241         if (!bp) {
3242             return -ENOENT;
3243         }
3244 
3245         if (bp->use_count > 1) {
3246             bp->use_count--;
3247             return 0;
3248         }
3249 
3250         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3251         if (err) {
3252             return err;
3253         }
3254 
3255         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3256         g_free(bp);
3257     } else {
3258         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3259         if (err) {
3260             return err;
3261         }
3262     }
3263 
3264     CPU_FOREACH(cpu) {
3265         err = kvm_update_guest_debug(cpu, 0);
3266         if (err) {
3267             return err;
3268         }
3269     }
3270     return 0;
3271 }
3272 
3273 void kvm_remove_all_breakpoints(CPUState *cpu)
3274 {
3275     struct kvm_sw_breakpoint *bp, *next;
3276     KVMState *s = cpu->kvm_state;
3277     CPUState *tmpcpu;
3278 
3279     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3280         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3281             /* Try harder to find a CPU that currently sees the breakpoint. */
3282             CPU_FOREACH(tmpcpu) {
3283                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3284                     break;
3285                 }
3286             }
3287         }
3288         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3289         g_free(bp);
3290     }
3291     kvm_arch_remove_all_hw_breakpoints();
3292 
3293     CPU_FOREACH(cpu) {
3294         kvm_update_guest_debug(cpu, 0);
3295     }
3296 }
3297 
3298 #else /* !KVM_CAP_SET_GUEST_DEBUG */
3299 
3300 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3301 {
3302     return -EINVAL;
3303 }
3304 
3305 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3306                           target_ulong len, int type)
3307 {
3308     return -EINVAL;
3309 }
3310 
3311 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3312                           target_ulong len, int type)
3313 {
3314     return -EINVAL;
3315 }
3316 
3317 void kvm_remove_all_breakpoints(CPUState *cpu)
3318 {
3319 }
3320 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3321 
3322 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3323 {
3324     KVMState *s = kvm_state;
3325     struct kvm_signal_mask *sigmask;
3326     int r;
3327 
3328     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3329 
3330     sigmask->len = s->sigmask_len;
3331     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3332     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3333     g_free(sigmask);
3334 
3335     return r;
3336 }
3337 
3338 static void kvm_ipi_signal(int sig)
3339 {
3340     if (current_cpu) {
3341         assert(kvm_immediate_exit);
3342         kvm_cpu_kick(current_cpu);
3343     }
3344 }
3345 
3346 void kvm_init_cpu_signals(CPUState *cpu)
3347 {
3348     int r;
3349     sigset_t set;
3350     struct sigaction sigact;
3351 
3352     memset(&sigact, 0, sizeof(sigact));
3353     sigact.sa_handler = kvm_ipi_signal;
3354     sigaction(SIG_IPI, &sigact, NULL);
3355 
3356     pthread_sigmask(SIG_BLOCK, NULL, &set);
3357 #if defined KVM_HAVE_MCE_INJECTION
3358     sigdelset(&set, SIGBUS);
3359     pthread_sigmask(SIG_SETMASK, &set, NULL);
3360 #endif
3361     sigdelset(&set, SIG_IPI);
3362     if (kvm_immediate_exit) {
3363         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3364     } else {
3365         r = kvm_set_signal_mask(cpu, &set);
3366     }
3367     if (r) {
3368         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3369         exit(1);
3370     }
3371 }
3372 
3373 /* Called asynchronously in VCPU thread.  */
3374 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3375 {
3376 #ifdef KVM_HAVE_MCE_INJECTION
3377     if (have_sigbus_pending) {
3378         return 1;
3379     }
3380     have_sigbus_pending = true;
3381     pending_sigbus_addr = addr;
3382     pending_sigbus_code = code;
3383     qatomic_set(&cpu->exit_request, 1);
3384     return 0;
3385 #else
3386     return 1;
3387 #endif
3388 }
3389 
3390 /* Called synchronously (via signalfd) in main thread.  */
3391 int kvm_on_sigbus(int code, void *addr)
3392 {
3393 #ifdef KVM_HAVE_MCE_INJECTION
3394     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3395      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3396      * we can only get action optional here.
3397      */
3398     assert(code != BUS_MCEERR_AR);
3399     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3400     return 0;
3401 #else
3402     return 1;
3403 #endif
3404 }
3405 
3406 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3407 {
3408     int ret;
3409     struct kvm_create_device create_dev;
3410 
3411     create_dev.type = type;
3412     create_dev.fd = -1;
3413     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3414 
3415     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3416         return -ENOTSUP;
3417     }
3418 
3419     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3420     if (ret) {
3421         return ret;
3422     }
3423 
3424     return test ? 0 : create_dev.fd;
3425 }
3426 
3427 bool kvm_device_supported(int vmfd, uint64_t type)
3428 {
3429     struct kvm_create_device create_dev = {
3430         .type = type,
3431         .fd = -1,
3432         .flags = KVM_CREATE_DEVICE_TEST,
3433     };
3434 
3435     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3436         return false;
3437     }
3438 
3439     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3440 }
3441 
3442 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3443 {
3444     struct kvm_one_reg reg;
3445     int r;
3446 
3447     reg.id = id;
3448     reg.addr = (uintptr_t) source;
3449     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3450     if (r) {
3451         trace_kvm_failed_reg_set(id, strerror(-r));
3452     }
3453     return r;
3454 }
3455 
3456 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3457 {
3458     struct kvm_one_reg reg;
3459     int r;
3460 
3461     reg.id = id;
3462     reg.addr = (uintptr_t) target;
3463     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3464     if (r) {
3465         trace_kvm_failed_reg_get(id, strerror(-r));
3466     }
3467     return r;
3468 }
3469 
3470 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3471                                  hwaddr start_addr, hwaddr size)
3472 {
3473     KVMState *kvm = KVM_STATE(ms->accelerator);
3474     int i;
3475 
3476     for (i = 0; i < kvm->nr_as; ++i) {
3477         if (kvm->as[i].as == as && kvm->as[i].ml) {
3478             size = MIN(kvm_max_slot_size, size);
3479             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3480                                                     start_addr, size);
3481         }
3482     }
3483 
3484     return false;
3485 }
3486 
3487 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3488                                    const char *name, void *opaque,
3489                                    Error **errp)
3490 {
3491     KVMState *s = KVM_STATE(obj);
3492     int64_t value = s->kvm_shadow_mem;
3493 
3494     visit_type_int(v, name, &value, errp);
3495 }
3496 
3497 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3498                                    const char *name, void *opaque,
3499                                    Error **errp)
3500 {
3501     KVMState *s = KVM_STATE(obj);
3502     int64_t value;
3503 
3504     if (s->fd != -1) {
3505         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3506         return;
3507     }
3508 
3509     if (!visit_type_int(v, name, &value, errp)) {
3510         return;
3511     }
3512 
3513     s->kvm_shadow_mem = value;
3514 }
3515 
3516 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3517                                    const char *name, void *opaque,
3518                                    Error **errp)
3519 {
3520     KVMState *s = KVM_STATE(obj);
3521     OnOffSplit mode;
3522 
3523     if (s->fd != -1) {
3524         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3525         return;
3526     }
3527 
3528     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3529         return;
3530     }
3531     switch (mode) {
3532     case ON_OFF_SPLIT_ON:
3533         s->kernel_irqchip_allowed = true;
3534         s->kernel_irqchip_required = true;
3535         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3536         break;
3537     case ON_OFF_SPLIT_OFF:
3538         s->kernel_irqchip_allowed = false;
3539         s->kernel_irqchip_required = false;
3540         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3541         break;
3542     case ON_OFF_SPLIT_SPLIT:
3543         s->kernel_irqchip_allowed = true;
3544         s->kernel_irqchip_required = true;
3545         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3546         break;
3547     default:
3548         /* The value was checked in visit_type_OnOffSplit() above. If
3549          * we get here, then something is wrong in QEMU.
3550          */
3551         abort();
3552     }
3553 }
3554 
3555 bool kvm_kernel_irqchip_allowed(void)
3556 {
3557     return kvm_state->kernel_irqchip_allowed;
3558 }
3559 
3560 bool kvm_kernel_irqchip_required(void)
3561 {
3562     return kvm_state->kernel_irqchip_required;
3563 }
3564 
3565 bool kvm_kernel_irqchip_split(void)
3566 {
3567     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3568 }
3569 
3570 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3571                                     const char *name, void *opaque,
3572                                     Error **errp)
3573 {
3574     KVMState *s = KVM_STATE(obj);
3575     uint32_t value = s->kvm_dirty_ring_size;
3576 
3577     visit_type_uint32(v, name, &value, errp);
3578 }
3579 
3580 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3581                                     const char *name, void *opaque,
3582                                     Error **errp)
3583 {
3584     KVMState *s = KVM_STATE(obj);
3585     Error *error = NULL;
3586     uint32_t value;
3587 
3588     if (s->fd != -1) {
3589         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3590         return;
3591     }
3592 
3593     visit_type_uint32(v, name, &value, &error);
3594     if (error) {
3595         error_propagate(errp, error);
3596         return;
3597     }
3598     if (value & (value - 1)) {
3599         error_setg(errp, "dirty-ring-size must be a power of two.");
3600         return;
3601     }
3602 
3603     s->kvm_dirty_ring_size = value;
3604 }
3605 
3606 static void kvm_accel_instance_init(Object *obj)
3607 {
3608     KVMState *s = KVM_STATE(obj);
3609 
3610     s->fd = -1;
3611     s->vmfd = -1;
3612     s->kvm_shadow_mem = -1;
3613     s->kernel_irqchip_allowed = true;
3614     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3615     /* KVM dirty ring is by default off */
3616     s->kvm_dirty_ring_size = 0;
3617 }
3618 
3619 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3620 {
3621     AccelClass *ac = ACCEL_CLASS(oc);
3622     ac->name = "KVM";
3623     ac->init_machine = kvm_init;
3624     ac->has_memory = kvm_accel_has_memory;
3625     ac->allowed = &kvm_allowed;
3626 
3627     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3628         NULL, kvm_set_kernel_irqchip,
3629         NULL, NULL);
3630     object_class_property_set_description(oc, "kernel-irqchip",
3631         "Configure KVM in-kernel irqchip");
3632 
3633     object_class_property_add(oc, "kvm-shadow-mem", "int",
3634         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3635         NULL, NULL);
3636     object_class_property_set_description(oc, "kvm-shadow-mem",
3637         "KVM shadow MMU size");
3638 
3639     object_class_property_add(oc, "dirty-ring-size", "uint32",
3640         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3641         NULL, NULL);
3642     object_class_property_set_description(oc, "dirty-ring-size",
3643         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3644 }
3645 
3646 static const TypeInfo kvm_accel_type = {
3647     .name = TYPE_KVM_ACCEL,
3648     .parent = TYPE_ACCEL,
3649     .instance_init = kvm_accel_instance_init,
3650     .class_init = kvm_accel_class_init,
3651     .instance_size = sizeof(KVMState),
3652 };
3653 
3654 static void kvm_type_init(void)
3655 {
3656     type_register_static(&kvm_accel_type);
3657 }
3658 
3659 type_init(kvm_type_init);
3660