xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 64f75f57)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "gdbstub/enums.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 struct KVMParkedVcpu {
73     unsigned long vcpu_id;
74     int kvm_fd;
75     QLIST_ENTRY(KVMParkedVcpu) node;
76 };
77 
78 KVMState *kvm_state;
79 bool kvm_kernel_irqchip;
80 bool kvm_split_irqchip;
81 bool kvm_async_interrupts_allowed;
82 bool kvm_halt_in_kernel_allowed;
83 bool kvm_resamplefds_allowed;
84 bool kvm_msi_via_irqfd_allowed;
85 bool kvm_gsi_routing_allowed;
86 bool kvm_gsi_direct_mapping;
87 bool kvm_allowed;
88 bool kvm_readonly_mem_allowed;
89 bool kvm_vm_attributes_allowed;
90 bool kvm_msi_use_devid;
91 static bool kvm_has_guest_debug;
92 static int kvm_sstep_flags;
93 static bool kvm_immediate_exit;
94 static uint64_t kvm_supported_memory_attributes;
95 static bool kvm_guest_memfd_supported;
96 static hwaddr kvm_max_slot_size = ~0;
97 
98 static const KVMCapabilityInfo kvm_required_capabilites[] = {
99     KVM_CAP_INFO(USER_MEMORY),
100     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
101     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
102     KVM_CAP_INFO(INTERNAL_ERROR_DATA),
103     KVM_CAP_INFO(IOEVENTFD),
104     KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
105     KVM_CAP_LAST_INFO
106 };
107 
108 static NotifierList kvm_irqchip_change_notifiers =
109     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
110 
111 struct KVMResampleFd {
112     int gsi;
113     EventNotifier *resample_event;
114     QLIST_ENTRY(KVMResampleFd) node;
115 };
116 typedef struct KVMResampleFd KVMResampleFd;
117 
118 /*
119  * Only used with split irqchip where we need to do the resample fd
120  * kick for the kernel from userspace.
121  */
122 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
123     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
124 
125 static QemuMutex kml_slots_lock;
126 
127 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
128 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
129 
130 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
131 
132 static inline void kvm_resample_fd_remove(int gsi)
133 {
134     KVMResampleFd *rfd;
135 
136     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
137         if (rfd->gsi == gsi) {
138             QLIST_REMOVE(rfd, node);
139             g_free(rfd);
140             break;
141         }
142     }
143 }
144 
145 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
146 {
147     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
148 
149     rfd->gsi = gsi;
150     rfd->resample_event = event;
151 
152     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
153 }
154 
155 void kvm_resample_fd_notify(int gsi)
156 {
157     KVMResampleFd *rfd;
158 
159     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
160         if (rfd->gsi == gsi) {
161             event_notifier_set(rfd->resample_event);
162             trace_kvm_resample_fd_notify(gsi);
163             return;
164         }
165     }
166 }
167 
168 unsigned int kvm_get_max_memslots(void)
169 {
170     KVMState *s = KVM_STATE(current_accel());
171 
172     return s->nr_slots;
173 }
174 
175 unsigned int kvm_get_free_memslots(void)
176 {
177     unsigned int used_slots = 0;
178     KVMState *s = kvm_state;
179     int i;
180 
181     kvm_slots_lock();
182     for (i = 0; i < s->nr_as; i++) {
183         if (!s->as[i].ml) {
184             continue;
185         }
186         used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
187     }
188     kvm_slots_unlock();
189 
190     return s->nr_slots - used_slots;
191 }
192 
193 /* Called with KVMMemoryListener.slots_lock held */
194 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
195 {
196     KVMState *s = kvm_state;
197     int i;
198 
199     for (i = 0; i < s->nr_slots; i++) {
200         if (kml->slots[i].memory_size == 0) {
201             return &kml->slots[i];
202         }
203     }
204 
205     return NULL;
206 }
207 
208 /* Called with KVMMemoryListener.slots_lock held */
209 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
210 {
211     KVMSlot *slot = kvm_get_free_slot(kml);
212 
213     if (slot) {
214         return slot;
215     }
216 
217     fprintf(stderr, "%s: no free slot available\n", __func__);
218     abort();
219 }
220 
221 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
222                                          hwaddr start_addr,
223                                          hwaddr size)
224 {
225     KVMState *s = kvm_state;
226     int i;
227 
228     for (i = 0; i < s->nr_slots; i++) {
229         KVMSlot *mem = &kml->slots[i];
230 
231         if (start_addr == mem->start_addr && size == mem->memory_size) {
232             return mem;
233         }
234     }
235 
236     return NULL;
237 }
238 
239 /*
240  * Calculate and align the start address and the size of the section.
241  * Return the size. If the size is 0, the aligned section is empty.
242  */
243 static hwaddr kvm_align_section(MemoryRegionSection *section,
244                                 hwaddr *start)
245 {
246     hwaddr size = int128_get64(section->size);
247     hwaddr delta, aligned;
248 
249     /* kvm works in page size chunks, but the function may be called
250        with sub-page size and unaligned start address. Pad the start
251        address to next and truncate size to previous page boundary. */
252     aligned = ROUND_UP(section->offset_within_address_space,
253                        qemu_real_host_page_size());
254     delta = aligned - section->offset_within_address_space;
255     *start = aligned;
256     if (delta > size) {
257         return 0;
258     }
259 
260     return (size - delta) & qemu_real_host_page_mask();
261 }
262 
263 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
264                                        hwaddr *phys_addr)
265 {
266     KVMMemoryListener *kml = &s->memory_listener;
267     int i, ret = 0;
268 
269     kvm_slots_lock();
270     for (i = 0; i < s->nr_slots; i++) {
271         KVMSlot *mem = &kml->slots[i];
272 
273         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
274             *phys_addr = mem->start_addr + (ram - mem->ram);
275             ret = 1;
276             break;
277         }
278     }
279     kvm_slots_unlock();
280 
281     return ret;
282 }
283 
284 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
285 {
286     KVMState *s = kvm_state;
287     struct kvm_userspace_memory_region2 mem;
288     int ret;
289 
290     mem.slot = slot->slot | (kml->as_id << 16);
291     mem.guest_phys_addr = slot->start_addr;
292     mem.userspace_addr = (unsigned long)slot->ram;
293     mem.flags = slot->flags;
294     mem.guest_memfd = slot->guest_memfd;
295     mem.guest_memfd_offset = slot->guest_memfd_offset;
296 
297     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
298         /* Set the slot size to 0 before setting the slot to the desired
299          * value. This is needed based on KVM commit 75d61fbc. */
300         mem.memory_size = 0;
301 
302         if (kvm_guest_memfd_supported) {
303             ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
304         } else {
305             ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
306         }
307         if (ret < 0) {
308             goto err;
309         }
310     }
311     mem.memory_size = slot->memory_size;
312     if (kvm_guest_memfd_supported) {
313         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION2, &mem);
314     } else {
315         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
316     }
317     slot->old_flags = mem.flags;
318 err:
319     trace_kvm_set_user_memory(mem.slot >> 16, (uint16_t)mem.slot, mem.flags,
320                               mem.guest_phys_addr, mem.memory_size,
321                               mem.userspace_addr, mem.guest_memfd,
322                               mem.guest_memfd_offset, ret);
323     if (ret < 0) {
324         if (kvm_guest_memfd_supported) {
325                 error_report("%s: KVM_SET_USER_MEMORY_REGION2 failed, slot=%d,"
326                         " start=0x%" PRIx64 ", size=0x%" PRIx64 ","
327                         " flags=0x%" PRIx32 ", guest_memfd=%" PRId32 ","
328                         " guest_memfd_offset=0x%" PRIx64 ": %s",
329                         __func__, mem.slot, slot->start_addr,
330                         (uint64_t)mem.memory_size, mem.flags,
331                         mem.guest_memfd, (uint64_t)mem.guest_memfd_offset,
332                         strerror(errno));
333         } else {
334                 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
335                             " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
336                             __func__, mem.slot, slot->start_addr,
337                             (uint64_t)mem.memory_size, strerror(errno));
338         }
339     }
340     return ret;
341 }
342 
343 void kvm_park_vcpu(CPUState *cpu)
344 {
345     struct KVMParkedVcpu *vcpu;
346 
347     trace_kvm_park_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
348 
349     vcpu = g_malloc0(sizeof(*vcpu));
350     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
351     vcpu->kvm_fd = cpu->kvm_fd;
352     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
353 }
354 
355 int kvm_unpark_vcpu(KVMState *s, unsigned long vcpu_id)
356 {
357     struct KVMParkedVcpu *cpu;
358     int kvm_fd = -ENOENT;
359 
360     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
361         if (cpu->vcpu_id == vcpu_id) {
362             QLIST_REMOVE(cpu, node);
363             kvm_fd = cpu->kvm_fd;
364             g_free(cpu);
365             break;
366         }
367     }
368 
369     trace_kvm_unpark_vcpu(vcpu_id, kvm_fd > 0 ? "unparked" : "!found parked");
370 
371     return kvm_fd;
372 }
373 
374 int kvm_create_vcpu(CPUState *cpu)
375 {
376     unsigned long vcpu_id = kvm_arch_vcpu_id(cpu);
377     KVMState *s = kvm_state;
378     int kvm_fd;
379 
380     /* check if the KVM vCPU already exist but is parked */
381     kvm_fd = kvm_unpark_vcpu(s, vcpu_id);
382     if (kvm_fd < 0) {
383         /* vCPU not parked: create a new KVM vCPU */
384         kvm_fd = kvm_vm_ioctl(s, KVM_CREATE_VCPU, vcpu_id);
385         if (kvm_fd < 0) {
386             error_report("KVM_CREATE_VCPU IOCTL failed for vCPU %lu", vcpu_id);
387             return kvm_fd;
388         }
389     }
390 
391     cpu->kvm_fd = kvm_fd;
392     cpu->kvm_state = s;
393     cpu->vcpu_dirty = true;
394     cpu->dirty_pages = 0;
395     cpu->throttle_us_per_full = 0;
396 
397     trace_kvm_create_vcpu(cpu->cpu_index, vcpu_id, kvm_fd);
398 
399     return 0;
400 }
401 
402 int kvm_create_and_park_vcpu(CPUState *cpu)
403 {
404     int ret = 0;
405 
406     ret = kvm_create_vcpu(cpu);
407     if (!ret) {
408         kvm_park_vcpu(cpu);
409     }
410 
411     return ret;
412 }
413 
414 static int do_kvm_destroy_vcpu(CPUState *cpu)
415 {
416     KVMState *s = kvm_state;
417     long mmap_size;
418     int ret = 0;
419 
420     trace_kvm_destroy_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
421 
422     ret = kvm_arch_destroy_vcpu(cpu);
423     if (ret < 0) {
424         goto err;
425     }
426 
427     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
428     if (mmap_size < 0) {
429         ret = mmap_size;
430         trace_kvm_failed_get_vcpu_mmap_size();
431         goto err;
432     }
433 
434     ret = munmap(cpu->kvm_run, mmap_size);
435     if (ret < 0) {
436         goto err;
437     }
438 
439     if (cpu->kvm_dirty_gfns) {
440         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
441         if (ret < 0) {
442             goto err;
443         }
444     }
445 
446     kvm_park_vcpu(cpu);
447 err:
448     return ret;
449 }
450 
451 void kvm_destroy_vcpu(CPUState *cpu)
452 {
453     if (do_kvm_destroy_vcpu(cpu) < 0) {
454         error_report("kvm_destroy_vcpu failed");
455         exit(EXIT_FAILURE);
456     }
457 }
458 
459 int kvm_init_vcpu(CPUState *cpu, Error **errp)
460 {
461     KVMState *s = kvm_state;
462     long mmap_size;
463     int ret;
464 
465     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
466 
467     ret = kvm_create_vcpu(cpu);
468     if (ret < 0) {
469         error_setg_errno(errp, -ret,
470                          "kvm_init_vcpu: kvm_create_vcpu failed (%lu)",
471                          kvm_arch_vcpu_id(cpu));
472         goto err;
473     }
474 
475     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
476     if (mmap_size < 0) {
477         ret = mmap_size;
478         error_setg_errno(errp, -mmap_size,
479                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
480         goto err;
481     }
482 
483     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
484                         cpu->kvm_fd, 0);
485     if (cpu->kvm_run == MAP_FAILED) {
486         ret = -errno;
487         error_setg_errno(errp, ret,
488                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
489                          kvm_arch_vcpu_id(cpu));
490         goto err;
491     }
492 
493     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
494         s->coalesced_mmio_ring =
495             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
496     }
497 
498     if (s->kvm_dirty_ring_size) {
499         /* Use MAP_SHARED to share pages with the kernel */
500         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
501                                    PROT_READ | PROT_WRITE, MAP_SHARED,
502                                    cpu->kvm_fd,
503                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
504         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
505             ret = -errno;
506             goto err;
507         }
508     }
509 
510     ret = kvm_arch_init_vcpu(cpu);
511     if (ret < 0) {
512         error_setg_errno(errp, -ret,
513                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
514                          kvm_arch_vcpu_id(cpu));
515     }
516     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
517 
518 err:
519     return ret;
520 }
521 
522 /*
523  * dirty pages logging control
524  */
525 
526 static int kvm_mem_flags(MemoryRegion *mr)
527 {
528     bool readonly = mr->readonly || memory_region_is_romd(mr);
529     int flags = 0;
530 
531     if (memory_region_get_dirty_log_mask(mr) != 0) {
532         flags |= KVM_MEM_LOG_DIRTY_PAGES;
533     }
534     if (readonly && kvm_readonly_mem_allowed) {
535         flags |= KVM_MEM_READONLY;
536     }
537     if (memory_region_has_guest_memfd(mr)) {
538         assert(kvm_guest_memfd_supported);
539         flags |= KVM_MEM_GUEST_MEMFD;
540     }
541     return flags;
542 }
543 
544 /* Called with KVMMemoryListener.slots_lock held */
545 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
546                                  MemoryRegion *mr)
547 {
548     mem->flags = kvm_mem_flags(mr);
549 
550     /* If nothing changed effectively, no need to issue ioctl */
551     if (mem->flags == mem->old_flags) {
552         return 0;
553     }
554 
555     kvm_slot_init_dirty_bitmap(mem);
556     return kvm_set_user_memory_region(kml, mem, false);
557 }
558 
559 static int kvm_section_update_flags(KVMMemoryListener *kml,
560                                     MemoryRegionSection *section)
561 {
562     hwaddr start_addr, size, slot_size;
563     KVMSlot *mem;
564     int ret = 0;
565 
566     size = kvm_align_section(section, &start_addr);
567     if (!size) {
568         return 0;
569     }
570 
571     kvm_slots_lock();
572 
573     while (size && !ret) {
574         slot_size = MIN(kvm_max_slot_size, size);
575         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
576         if (!mem) {
577             /* We don't have a slot if we want to trap every access. */
578             goto out;
579         }
580 
581         ret = kvm_slot_update_flags(kml, mem, section->mr);
582         start_addr += slot_size;
583         size -= slot_size;
584     }
585 
586 out:
587     kvm_slots_unlock();
588     return ret;
589 }
590 
591 static void kvm_log_start(MemoryListener *listener,
592                           MemoryRegionSection *section,
593                           int old, int new)
594 {
595     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
596     int r;
597 
598     if (old != 0) {
599         return;
600     }
601 
602     r = kvm_section_update_flags(kml, section);
603     if (r < 0) {
604         abort();
605     }
606 }
607 
608 static void kvm_log_stop(MemoryListener *listener,
609                           MemoryRegionSection *section,
610                           int old, int new)
611 {
612     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
613     int r;
614 
615     if (new != 0) {
616         return;
617     }
618 
619     r = kvm_section_update_flags(kml, section);
620     if (r < 0) {
621         abort();
622     }
623 }
624 
625 /* get kvm's dirty pages bitmap and update qemu's */
626 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
627 {
628     ram_addr_t start = slot->ram_start_offset;
629     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
630 
631     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
632 }
633 
634 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
635 {
636     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
637 }
638 
639 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
640 
641 /* Allocate the dirty bitmap for a slot  */
642 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
643 {
644     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
645         return;
646     }
647 
648     /*
649      * XXX bad kernel interface alert
650      * For dirty bitmap, kernel allocates array of size aligned to
651      * bits-per-long.  But for case when the kernel is 64bits and
652      * the userspace is 32bits, userspace can't align to the same
653      * bits-per-long, since sizeof(long) is different between kernel
654      * and user space.  This way, userspace will provide buffer which
655      * may be 4 bytes less than the kernel will use, resulting in
656      * userspace memory corruption (which is not detectable by valgrind
657      * too, in most cases).
658      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
659      * a hope that sizeof(long) won't become >8 any time soon.
660      *
661      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
662      * And mem->memory_size is aligned to it (otherwise this mem can't
663      * be registered to KVM).
664      */
665     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
666                                         /*HOST_LONG_BITS*/ 64) / 8;
667     mem->dirty_bmap = g_malloc0(bitmap_size);
668     mem->dirty_bmap_size = bitmap_size;
669 }
670 
671 /*
672  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
673  * succeeded, false otherwise
674  */
675 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
676 {
677     struct kvm_dirty_log d = {};
678     int ret;
679 
680     d.dirty_bitmap = slot->dirty_bmap;
681     d.slot = slot->slot | (slot->as_id << 16);
682     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
683 
684     if (ret == -ENOENT) {
685         /* kernel does not have dirty bitmap in this slot */
686         ret = 0;
687     }
688     if (ret) {
689         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
690                           __func__, ret);
691     }
692     return ret == 0;
693 }
694 
695 /* Should be with all slots_lock held for the address spaces. */
696 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
697                                      uint32_t slot_id, uint64_t offset)
698 {
699     KVMMemoryListener *kml;
700     KVMSlot *mem;
701 
702     if (as_id >= s->nr_as) {
703         return;
704     }
705 
706     kml = s->as[as_id].ml;
707     mem = &kml->slots[slot_id];
708 
709     if (!mem->memory_size || offset >=
710         (mem->memory_size / qemu_real_host_page_size())) {
711         return;
712     }
713 
714     set_bit(offset, mem->dirty_bmap);
715 }
716 
717 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
718 {
719     /*
720      * Read the flags before the value.  Pairs with barrier in
721      * KVM's kvm_dirty_ring_push() function.
722      */
723     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
724 }
725 
726 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
727 {
728     /*
729      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
730      * sees the full content of the ring:
731      *
732      * CPU0                     CPU1                         CPU2
733      * ------------------------------------------------------------------------------
734      *                                                       fill gfn0
735      *                                                       store-rel flags for gfn0
736      * load-acq flags for gfn0
737      * store-rel RESET for gfn0
738      *                          ioctl(RESET_RINGS)
739      *                            load-acq flags for gfn0
740      *                            check if flags have RESET
741      *
742      * The synchronization goes from CPU2 to CPU0 to CPU1.
743      */
744     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
745 }
746 
747 /*
748  * Should be with all slots_lock held for the address spaces.  It returns the
749  * dirty page we've collected on this dirty ring.
750  */
751 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
752 {
753     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
754     uint32_t ring_size = s->kvm_dirty_ring_size;
755     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
756 
757     /*
758      * It's possible that we race with vcpu creation code where the vcpu is
759      * put onto the vcpus list but not yet initialized the dirty ring
760      * structures.  If so, skip it.
761      */
762     if (!cpu->created) {
763         return 0;
764     }
765 
766     assert(dirty_gfns && ring_size);
767     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
768 
769     while (true) {
770         cur = &dirty_gfns[fetch % ring_size];
771         if (!dirty_gfn_is_dirtied(cur)) {
772             break;
773         }
774         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
775                                  cur->offset);
776         dirty_gfn_set_collected(cur);
777         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
778         fetch++;
779         count++;
780     }
781     cpu->kvm_fetch_index = fetch;
782     cpu->dirty_pages += count;
783 
784     return count;
785 }
786 
787 /* Must be with slots_lock held */
788 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
789 {
790     int ret;
791     uint64_t total = 0;
792     int64_t stamp;
793 
794     stamp = get_clock();
795 
796     if (cpu) {
797         total = kvm_dirty_ring_reap_one(s, cpu);
798     } else {
799         CPU_FOREACH(cpu) {
800             total += kvm_dirty_ring_reap_one(s, cpu);
801         }
802     }
803 
804     if (total) {
805         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
806         assert(ret == total);
807     }
808 
809     stamp = get_clock() - stamp;
810 
811     if (total) {
812         trace_kvm_dirty_ring_reap(total, stamp / 1000);
813     }
814 
815     return total;
816 }
817 
818 /*
819  * Currently for simplicity, we must hold BQL before calling this.  We can
820  * consider to drop the BQL if we're clear with all the race conditions.
821  */
822 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
823 {
824     uint64_t total;
825 
826     /*
827      * We need to lock all kvm slots for all address spaces here,
828      * because:
829      *
830      * (1) We need to mark dirty for dirty bitmaps in multiple slots
831      *     and for tons of pages, so it's better to take the lock here
832      *     once rather than once per page.  And more importantly,
833      *
834      * (2) We must _NOT_ publish dirty bits to the other threads
835      *     (e.g., the migration thread) via the kvm memory slot dirty
836      *     bitmaps before correctly re-protect those dirtied pages.
837      *     Otherwise we can have potential risk of data corruption if
838      *     the page data is read in the other thread before we do
839      *     reset below.
840      */
841     kvm_slots_lock();
842     total = kvm_dirty_ring_reap_locked(s, cpu);
843     kvm_slots_unlock();
844 
845     return total;
846 }
847 
848 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
849 {
850     /* No need to do anything */
851 }
852 
853 /*
854  * Kick all vcpus out in a synchronized way.  When returned, we
855  * guarantee that every vcpu has been kicked and at least returned to
856  * userspace once.
857  */
858 static void kvm_cpu_synchronize_kick_all(void)
859 {
860     CPUState *cpu;
861 
862     CPU_FOREACH(cpu) {
863         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
864     }
865 }
866 
867 /*
868  * Flush all the existing dirty pages to the KVM slot buffers.  When
869  * this call returns, we guarantee that all the touched dirty pages
870  * before calling this function have been put into the per-kvmslot
871  * dirty bitmap.
872  *
873  * This function must be called with BQL held.
874  */
875 static void kvm_dirty_ring_flush(void)
876 {
877     trace_kvm_dirty_ring_flush(0);
878     /*
879      * The function needs to be serialized.  Since this function
880      * should always be with BQL held, serialization is guaranteed.
881      * However, let's be sure of it.
882      */
883     assert(bql_locked());
884     /*
885      * First make sure to flush the hardware buffers by kicking all
886      * vcpus out in a synchronous way.
887      */
888     kvm_cpu_synchronize_kick_all();
889     kvm_dirty_ring_reap(kvm_state, NULL);
890     trace_kvm_dirty_ring_flush(1);
891 }
892 
893 /**
894  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
895  *
896  * This function will first try to fetch dirty bitmap from the kernel,
897  * and then updates qemu's dirty bitmap.
898  *
899  * NOTE: caller must be with kml->slots_lock held.
900  *
901  * @kml: the KVM memory listener object
902  * @section: the memory section to sync the dirty bitmap with
903  */
904 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
905                                            MemoryRegionSection *section)
906 {
907     KVMState *s = kvm_state;
908     KVMSlot *mem;
909     hwaddr start_addr, size;
910     hwaddr slot_size;
911 
912     size = kvm_align_section(section, &start_addr);
913     while (size) {
914         slot_size = MIN(kvm_max_slot_size, size);
915         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
916         if (!mem) {
917             /* We don't have a slot if we want to trap every access. */
918             return;
919         }
920         if (kvm_slot_get_dirty_log(s, mem)) {
921             kvm_slot_sync_dirty_pages(mem);
922         }
923         start_addr += slot_size;
924         size -= slot_size;
925     }
926 }
927 
928 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
929 #define KVM_CLEAR_LOG_SHIFT  6
930 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
931 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
932 
933 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
934                                   uint64_t size)
935 {
936     KVMState *s = kvm_state;
937     uint64_t end, bmap_start, start_delta, bmap_npages;
938     struct kvm_clear_dirty_log d;
939     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
940     int ret;
941 
942     /*
943      * We need to extend either the start or the size or both to
944      * satisfy the KVM interface requirement.  Firstly, do the start
945      * page alignment on 64 host pages
946      */
947     bmap_start = start & KVM_CLEAR_LOG_MASK;
948     start_delta = start - bmap_start;
949     bmap_start /= psize;
950 
951     /*
952      * The kernel interface has restriction on the size too, that either:
953      *
954      * (1) the size is 64 host pages aligned (just like the start), or
955      * (2) the size fills up until the end of the KVM memslot.
956      */
957     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
958         << KVM_CLEAR_LOG_SHIFT;
959     end = mem->memory_size / psize;
960     if (bmap_npages > end - bmap_start) {
961         bmap_npages = end - bmap_start;
962     }
963     start_delta /= psize;
964 
965     /*
966      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
967      * that we won't clear any unknown dirty bits otherwise we might
968      * accidentally clear some set bits which are not yet synced from
969      * the kernel into QEMU's bitmap, then we'll lose track of the
970      * guest modifications upon those pages (which can directly lead
971      * to guest data loss or panic after migration).
972      *
973      * Layout of the KVMSlot.dirty_bmap:
974      *
975      *                   |<-------- bmap_npages -----------..>|
976      *                                                     [1]
977      *                     start_delta         size
978      *  |----------------|-------------|------------------|------------|
979      *  ^                ^             ^                               ^
980      *  |                |             |                               |
981      * start          bmap_start     (start)                         end
982      * of memslot                                             of memslot
983      *
984      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
985      */
986 
987     assert(bmap_start % BITS_PER_LONG == 0);
988     /* We should never do log_clear before log_sync */
989     assert(mem->dirty_bmap);
990     if (start_delta || bmap_npages - size / psize) {
991         /* Slow path - we need to manipulate a temp bitmap */
992         bmap_clear = bitmap_new(bmap_npages);
993         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
994                                     bmap_start, start_delta + size / psize);
995         /*
996          * We need to fill the holes at start because that was not
997          * specified by the caller and we extended the bitmap only for
998          * 64 pages alignment
999          */
1000         bitmap_clear(bmap_clear, 0, start_delta);
1001         d.dirty_bitmap = bmap_clear;
1002     } else {
1003         /*
1004          * Fast path - both start and size align well with BITS_PER_LONG
1005          * (or the end of memory slot)
1006          */
1007         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
1008     }
1009 
1010     d.first_page = bmap_start;
1011     /* It should never overflow.  If it happens, say something */
1012     assert(bmap_npages <= UINT32_MAX);
1013     d.num_pages = bmap_npages;
1014     d.slot = mem->slot | (as_id << 16);
1015 
1016     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
1017     if (ret < 0 && ret != -ENOENT) {
1018         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
1019                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
1020                      __func__, d.slot, (uint64_t)d.first_page,
1021                      (uint32_t)d.num_pages, ret);
1022     } else {
1023         ret = 0;
1024         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
1025     }
1026 
1027     /*
1028      * After we have updated the remote dirty bitmap, we update the
1029      * cached bitmap as well for the memslot, then if another user
1030      * clears the same region we know we shouldn't clear it again on
1031      * the remote otherwise it's data loss as well.
1032      */
1033     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1034                  size / psize);
1035     /* This handles the NULL case well */
1036     g_free(bmap_clear);
1037     return ret;
1038 }
1039 
1040 
1041 /**
1042  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1043  *
1044  * NOTE: this will be a no-op if we haven't enabled manual dirty log
1045  * protection in the host kernel because in that case this operation
1046  * will be done within log_sync().
1047  *
1048  * @kml:     the kvm memory listener
1049  * @section: the memory range to clear dirty bitmap
1050  */
1051 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1052                                   MemoryRegionSection *section)
1053 {
1054     KVMState *s = kvm_state;
1055     uint64_t start, size, offset, count;
1056     KVMSlot *mem;
1057     int ret = 0, i;
1058 
1059     if (!s->manual_dirty_log_protect) {
1060         /* No need to do explicit clear */
1061         return ret;
1062     }
1063 
1064     start = section->offset_within_address_space;
1065     size = int128_get64(section->size);
1066 
1067     if (!size) {
1068         /* Nothing more we can do... */
1069         return ret;
1070     }
1071 
1072     kvm_slots_lock();
1073 
1074     for (i = 0; i < s->nr_slots; i++) {
1075         mem = &kml->slots[i];
1076         /* Discard slots that are empty or do not overlap the section */
1077         if (!mem->memory_size ||
1078             mem->start_addr > start + size - 1 ||
1079             start > mem->start_addr + mem->memory_size - 1) {
1080             continue;
1081         }
1082 
1083         if (start >= mem->start_addr) {
1084             /* The slot starts before section or is aligned to it.  */
1085             offset = start - mem->start_addr;
1086             count = MIN(mem->memory_size - offset, size);
1087         } else {
1088             /* The slot starts after section.  */
1089             offset = 0;
1090             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1091         }
1092         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1093         if (ret < 0) {
1094             break;
1095         }
1096     }
1097 
1098     kvm_slots_unlock();
1099 
1100     return ret;
1101 }
1102 
1103 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1104                                      MemoryRegionSection *secion,
1105                                      hwaddr start, hwaddr size)
1106 {
1107     KVMState *s = kvm_state;
1108 
1109     if (s->coalesced_mmio) {
1110         struct kvm_coalesced_mmio_zone zone;
1111 
1112         zone.addr = start;
1113         zone.size = size;
1114         zone.pad = 0;
1115 
1116         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1117     }
1118 }
1119 
1120 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1121                                        MemoryRegionSection *secion,
1122                                        hwaddr start, hwaddr size)
1123 {
1124     KVMState *s = kvm_state;
1125 
1126     if (s->coalesced_mmio) {
1127         struct kvm_coalesced_mmio_zone zone;
1128 
1129         zone.addr = start;
1130         zone.size = size;
1131         zone.pad = 0;
1132 
1133         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1134     }
1135 }
1136 
1137 static void kvm_coalesce_pio_add(MemoryListener *listener,
1138                                 MemoryRegionSection *section,
1139                                 hwaddr start, hwaddr size)
1140 {
1141     KVMState *s = kvm_state;
1142 
1143     if (s->coalesced_pio) {
1144         struct kvm_coalesced_mmio_zone zone;
1145 
1146         zone.addr = start;
1147         zone.size = size;
1148         zone.pio = 1;
1149 
1150         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1151     }
1152 }
1153 
1154 static void kvm_coalesce_pio_del(MemoryListener *listener,
1155                                 MemoryRegionSection *section,
1156                                 hwaddr start, hwaddr size)
1157 {
1158     KVMState *s = kvm_state;
1159 
1160     if (s->coalesced_pio) {
1161         struct kvm_coalesced_mmio_zone zone;
1162 
1163         zone.addr = start;
1164         zone.size = size;
1165         zone.pio = 1;
1166 
1167         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1168      }
1169 }
1170 
1171 int kvm_check_extension(KVMState *s, unsigned int extension)
1172 {
1173     int ret;
1174 
1175     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1176     if (ret < 0) {
1177         ret = 0;
1178     }
1179 
1180     return ret;
1181 }
1182 
1183 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1184 {
1185     int ret;
1186 
1187     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1188     if (ret < 0) {
1189         /* VM wide version not implemented, use global one instead */
1190         ret = kvm_check_extension(s, extension);
1191     }
1192 
1193     return ret;
1194 }
1195 
1196 /*
1197  * We track the poisoned pages to be able to:
1198  * - replace them on VM reset
1199  * - block a migration for a VM with a poisoned page
1200  */
1201 typedef struct HWPoisonPage {
1202     ram_addr_t ram_addr;
1203     QLIST_ENTRY(HWPoisonPage) list;
1204 } HWPoisonPage;
1205 
1206 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1207     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1208 
1209 static void kvm_unpoison_all(void *param)
1210 {
1211     HWPoisonPage *page, *next_page;
1212 
1213     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1214         QLIST_REMOVE(page, list);
1215         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1216         g_free(page);
1217     }
1218 }
1219 
1220 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1221 {
1222     HWPoisonPage *page;
1223 
1224     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1225         if (page->ram_addr == ram_addr) {
1226             return;
1227         }
1228     }
1229     page = g_new(HWPoisonPage, 1);
1230     page->ram_addr = ram_addr;
1231     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1232 }
1233 
1234 bool kvm_hwpoisoned_mem(void)
1235 {
1236     return !QLIST_EMPTY(&hwpoison_page_list);
1237 }
1238 
1239 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1240 {
1241 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1242     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1243      * endianness, but the memory core hands them in target endianness.
1244      * For example, PPC is always treated as big-endian even if running
1245      * on KVM and on PPC64LE.  Correct here.
1246      */
1247     switch (size) {
1248     case 2:
1249         val = bswap16(val);
1250         break;
1251     case 4:
1252         val = bswap32(val);
1253         break;
1254     }
1255 #endif
1256     return val;
1257 }
1258 
1259 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1260                                   bool assign, uint32_t size, bool datamatch)
1261 {
1262     int ret;
1263     struct kvm_ioeventfd iofd = {
1264         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1265         .addr = addr,
1266         .len = size,
1267         .flags = 0,
1268         .fd = fd,
1269     };
1270 
1271     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1272                                  datamatch);
1273     if (!kvm_enabled()) {
1274         return -ENOSYS;
1275     }
1276 
1277     if (datamatch) {
1278         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1279     }
1280     if (!assign) {
1281         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1282     }
1283 
1284     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1285 
1286     if (ret < 0) {
1287         return -errno;
1288     }
1289 
1290     return 0;
1291 }
1292 
1293 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1294                                  bool assign, uint32_t size, bool datamatch)
1295 {
1296     struct kvm_ioeventfd kick = {
1297         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1298         .addr = addr,
1299         .flags = KVM_IOEVENTFD_FLAG_PIO,
1300         .len = size,
1301         .fd = fd,
1302     };
1303     int r;
1304     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1305     if (!kvm_enabled()) {
1306         return -ENOSYS;
1307     }
1308     if (datamatch) {
1309         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1310     }
1311     if (!assign) {
1312         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1313     }
1314     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1315     if (r < 0) {
1316         return r;
1317     }
1318     return 0;
1319 }
1320 
1321 
1322 static const KVMCapabilityInfo *
1323 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1324 {
1325     while (list->name) {
1326         if (!kvm_check_extension(s, list->value)) {
1327             return list;
1328         }
1329         list++;
1330     }
1331     return NULL;
1332 }
1333 
1334 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1335 {
1336     g_assert(
1337         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1338     );
1339     kvm_max_slot_size = max_slot_size;
1340 }
1341 
1342 static int kvm_set_memory_attributes(hwaddr start, uint64_t size, uint64_t attr)
1343 {
1344     struct kvm_memory_attributes attrs;
1345     int r;
1346 
1347     assert((attr & kvm_supported_memory_attributes) == attr);
1348     attrs.attributes = attr;
1349     attrs.address = start;
1350     attrs.size = size;
1351     attrs.flags = 0;
1352 
1353     r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ATTRIBUTES, &attrs);
1354     if (r) {
1355         error_report("failed to set memory (0x%" HWADDR_PRIx "+0x%" PRIx64 ") "
1356                      "with attr 0x%" PRIx64 " error '%s'",
1357                      start, size, attr, strerror(errno));
1358     }
1359     return r;
1360 }
1361 
1362 int kvm_set_memory_attributes_private(hwaddr start, uint64_t size)
1363 {
1364     return kvm_set_memory_attributes(start, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
1365 }
1366 
1367 int kvm_set_memory_attributes_shared(hwaddr start, uint64_t size)
1368 {
1369     return kvm_set_memory_attributes(start, size, 0);
1370 }
1371 
1372 /* Called with KVMMemoryListener.slots_lock held */
1373 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1374                              MemoryRegionSection *section, bool add)
1375 {
1376     KVMSlot *mem;
1377     int err;
1378     MemoryRegion *mr = section->mr;
1379     bool writable = !mr->readonly && !mr->rom_device;
1380     hwaddr start_addr, size, slot_size, mr_offset;
1381     ram_addr_t ram_start_offset;
1382     void *ram;
1383 
1384     if (!memory_region_is_ram(mr)) {
1385         if (writable || !kvm_readonly_mem_allowed) {
1386             return;
1387         } else if (!mr->romd_mode) {
1388             /* If the memory device is not in romd_mode, then we actually want
1389              * to remove the kvm memory slot so all accesses will trap. */
1390             add = false;
1391         }
1392     }
1393 
1394     size = kvm_align_section(section, &start_addr);
1395     if (!size) {
1396         return;
1397     }
1398 
1399     /* The offset of the kvmslot within the memory region */
1400     mr_offset = section->offset_within_region + start_addr -
1401         section->offset_within_address_space;
1402 
1403     /* use aligned delta to align the ram address and offset */
1404     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1405     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1406 
1407     if (!add) {
1408         do {
1409             slot_size = MIN(kvm_max_slot_size, size);
1410             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1411             if (!mem) {
1412                 return;
1413             }
1414             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1415                 /*
1416                  * NOTE: We should be aware of the fact that here we're only
1417                  * doing a best effort to sync dirty bits.  No matter whether
1418                  * we're using dirty log or dirty ring, we ignored two facts:
1419                  *
1420                  * (1) dirty bits can reside in hardware buffers (PML)
1421                  *
1422                  * (2) after we collected dirty bits here, pages can be dirtied
1423                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1424                  * remove the slot.
1425                  *
1426                  * Not easy.  Let's cross the fingers until it's fixed.
1427                  */
1428                 if (kvm_state->kvm_dirty_ring_size) {
1429                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1430                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1431                         kvm_slot_sync_dirty_pages(mem);
1432                         kvm_slot_get_dirty_log(kvm_state, mem);
1433                     }
1434                 } else {
1435                     kvm_slot_get_dirty_log(kvm_state, mem);
1436                 }
1437                 kvm_slot_sync_dirty_pages(mem);
1438             }
1439 
1440             /* unregister the slot */
1441             g_free(mem->dirty_bmap);
1442             mem->dirty_bmap = NULL;
1443             mem->memory_size = 0;
1444             mem->flags = 0;
1445             err = kvm_set_user_memory_region(kml, mem, false);
1446             if (err) {
1447                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1448                         __func__, strerror(-err));
1449                 abort();
1450             }
1451             start_addr += slot_size;
1452             size -= slot_size;
1453             kml->nr_used_slots--;
1454         } while (size);
1455         return;
1456     }
1457 
1458     /* register the new slot */
1459     do {
1460         slot_size = MIN(kvm_max_slot_size, size);
1461         mem = kvm_alloc_slot(kml);
1462         mem->as_id = kml->as_id;
1463         mem->memory_size = slot_size;
1464         mem->start_addr = start_addr;
1465         mem->ram_start_offset = ram_start_offset;
1466         mem->ram = ram;
1467         mem->flags = kvm_mem_flags(mr);
1468         mem->guest_memfd = mr->ram_block->guest_memfd;
1469         mem->guest_memfd_offset = (uint8_t*)ram - mr->ram_block->host;
1470 
1471         kvm_slot_init_dirty_bitmap(mem);
1472         err = kvm_set_user_memory_region(kml, mem, true);
1473         if (err) {
1474             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1475                     strerror(-err));
1476             abort();
1477         }
1478 
1479         if (memory_region_has_guest_memfd(mr)) {
1480             err = kvm_set_memory_attributes_private(start_addr, slot_size);
1481             if (err) {
1482                 error_report("%s: failed to set memory attribute private: %s",
1483                              __func__, strerror(-err));
1484                 exit(1);
1485             }
1486         }
1487 
1488         start_addr += slot_size;
1489         ram_start_offset += slot_size;
1490         ram += slot_size;
1491         size -= slot_size;
1492         kml->nr_used_slots++;
1493     } while (size);
1494 }
1495 
1496 static void *kvm_dirty_ring_reaper_thread(void *data)
1497 {
1498     KVMState *s = data;
1499     struct KVMDirtyRingReaper *r = &s->reaper;
1500 
1501     rcu_register_thread();
1502 
1503     trace_kvm_dirty_ring_reaper("init");
1504 
1505     while (true) {
1506         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1507         trace_kvm_dirty_ring_reaper("wait");
1508         /*
1509          * TODO: provide a smarter timeout rather than a constant?
1510          */
1511         sleep(1);
1512 
1513         /* keep sleeping so that dirtylimit not be interfered by reaper */
1514         if (dirtylimit_in_service()) {
1515             continue;
1516         }
1517 
1518         trace_kvm_dirty_ring_reaper("wakeup");
1519         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1520 
1521         bql_lock();
1522         kvm_dirty_ring_reap(s, NULL);
1523         bql_unlock();
1524 
1525         r->reaper_iteration++;
1526     }
1527 
1528     trace_kvm_dirty_ring_reaper("exit");
1529 
1530     rcu_unregister_thread();
1531 
1532     return NULL;
1533 }
1534 
1535 static void kvm_dirty_ring_reaper_init(KVMState *s)
1536 {
1537     struct KVMDirtyRingReaper *r = &s->reaper;
1538 
1539     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1540                        kvm_dirty_ring_reaper_thread,
1541                        s, QEMU_THREAD_JOINABLE);
1542 }
1543 
1544 static int kvm_dirty_ring_init(KVMState *s)
1545 {
1546     uint32_t ring_size = s->kvm_dirty_ring_size;
1547     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1548     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1549     int ret;
1550 
1551     s->kvm_dirty_ring_size = 0;
1552     s->kvm_dirty_ring_bytes = 0;
1553 
1554     /* Bail if the dirty ring size isn't specified */
1555     if (!ring_size) {
1556         return 0;
1557     }
1558 
1559     /*
1560      * Read the max supported pages. Fall back to dirty logging mode
1561      * if the dirty ring isn't supported.
1562      */
1563     ret = kvm_vm_check_extension(s, capability);
1564     if (ret <= 0) {
1565         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1566         ret = kvm_vm_check_extension(s, capability);
1567     }
1568 
1569     if (ret <= 0) {
1570         warn_report("KVM dirty ring not available, using bitmap method");
1571         return 0;
1572     }
1573 
1574     if (ring_bytes > ret) {
1575         error_report("KVM dirty ring size %" PRIu32 " too big "
1576                      "(maximum is %ld).  Please use a smaller value.",
1577                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1578         return -EINVAL;
1579     }
1580 
1581     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1582     if (ret) {
1583         error_report("Enabling of KVM dirty ring failed: %s. "
1584                      "Suggested minimum value is 1024.", strerror(-ret));
1585         return -EIO;
1586     }
1587 
1588     /* Enable the backup bitmap if it is supported */
1589     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1590     if (ret > 0) {
1591         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1592         if (ret) {
1593             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1594                          "%s. ", strerror(-ret));
1595             return -EIO;
1596         }
1597 
1598         s->kvm_dirty_ring_with_bitmap = true;
1599     }
1600 
1601     s->kvm_dirty_ring_size = ring_size;
1602     s->kvm_dirty_ring_bytes = ring_bytes;
1603 
1604     return 0;
1605 }
1606 
1607 static void kvm_region_add(MemoryListener *listener,
1608                            MemoryRegionSection *section)
1609 {
1610     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1611     KVMMemoryUpdate *update;
1612 
1613     update = g_new0(KVMMemoryUpdate, 1);
1614     update->section = *section;
1615 
1616     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1617 }
1618 
1619 static void kvm_region_del(MemoryListener *listener,
1620                            MemoryRegionSection *section)
1621 {
1622     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1623     KVMMemoryUpdate *update;
1624 
1625     update = g_new0(KVMMemoryUpdate, 1);
1626     update->section = *section;
1627 
1628     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1629 }
1630 
1631 static void kvm_region_commit(MemoryListener *listener)
1632 {
1633     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1634                                           listener);
1635     KVMMemoryUpdate *u1, *u2;
1636     bool need_inhibit = false;
1637 
1638     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1639         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1640         return;
1641     }
1642 
1643     /*
1644      * We have to be careful when regions to add overlap with ranges to remove.
1645      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1646      * is currently active.
1647      *
1648      * The lists are order by addresses, so it's easy to find overlaps.
1649      */
1650     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1651     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1652     while (u1 && u2) {
1653         Range r1, r2;
1654 
1655         range_init_nofail(&r1, u1->section.offset_within_address_space,
1656                           int128_get64(u1->section.size));
1657         range_init_nofail(&r2, u2->section.offset_within_address_space,
1658                           int128_get64(u2->section.size));
1659 
1660         if (range_overlaps_range(&r1, &r2)) {
1661             need_inhibit = true;
1662             break;
1663         }
1664         if (range_lob(&r1) < range_lob(&r2)) {
1665             u1 = QSIMPLEQ_NEXT(u1, next);
1666         } else {
1667             u2 = QSIMPLEQ_NEXT(u2, next);
1668         }
1669     }
1670 
1671     kvm_slots_lock();
1672     if (need_inhibit) {
1673         accel_ioctl_inhibit_begin();
1674     }
1675 
1676     /* Remove all memslots before adding the new ones. */
1677     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1678         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1679         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1680 
1681         kvm_set_phys_mem(kml, &u1->section, false);
1682         memory_region_unref(u1->section.mr);
1683 
1684         g_free(u1);
1685     }
1686     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1687         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1688         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1689 
1690         memory_region_ref(u1->section.mr);
1691         kvm_set_phys_mem(kml, &u1->section, true);
1692 
1693         g_free(u1);
1694     }
1695 
1696     if (need_inhibit) {
1697         accel_ioctl_inhibit_end();
1698     }
1699     kvm_slots_unlock();
1700 }
1701 
1702 static void kvm_log_sync(MemoryListener *listener,
1703                          MemoryRegionSection *section)
1704 {
1705     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1706 
1707     kvm_slots_lock();
1708     kvm_physical_sync_dirty_bitmap(kml, section);
1709     kvm_slots_unlock();
1710 }
1711 
1712 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1713 {
1714     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1715     KVMState *s = kvm_state;
1716     KVMSlot *mem;
1717     int i;
1718 
1719     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1720     kvm_dirty_ring_flush();
1721 
1722     /*
1723      * TODO: make this faster when nr_slots is big while there are
1724      * only a few used slots (small VMs).
1725      */
1726     kvm_slots_lock();
1727     for (i = 0; i < s->nr_slots; i++) {
1728         mem = &kml->slots[i];
1729         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1730             kvm_slot_sync_dirty_pages(mem);
1731 
1732             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1733                 kvm_slot_get_dirty_log(s, mem)) {
1734                 kvm_slot_sync_dirty_pages(mem);
1735             }
1736 
1737             /*
1738              * This is not needed by KVM_GET_DIRTY_LOG because the
1739              * ioctl will unconditionally overwrite the whole region.
1740              * However kvm dirty ring has no such side effect.
1741              */
1742             kvm_slot_reset_dirty_pages(mem);
1743         }
1744     }
1745     kvm_slots_unlock();
1746 }
1747 
1748 static void kvm_log_clear(MemoryListener *listener,
1749                           MemoryRegionSection *section)
1750 {
1751     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1752     int r;
1753 
1754     r = kvm_physical_log_clear(kml, section);
1755     if (r < 0) {
1756         error_report_once("%s: kvm log clear failed: mr=%s "
1757                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1758                           section->mr->name, section->offset_within_region,
1759                           int128_get64(section->size));
1760         abort();
1761     }
1762 }
1763 
1764 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1765                                   MemoryRegionSection *section,
1766                                   bool match_data, uint64_t data,
1767                                   EventNotifier *e)
1768 {
1769     int fd = event_notifier_get_fd(e);
1770     int r;
1771 
1772     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1773                                data, true, int128_get64(section->size),
1774                                match_data);
1775     if (r < 0) {
1776         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1777                 __func__, strerror(-r), -r);
1778         abort();
1779     }
1780 }
1781 
1782 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1783                                   MemoryRegionSection *section,
1784                                   bool match_data, uint64_t data,
1785                                   EventNotifier *e)
1786 {
1787     int fd = event_notifier_get_fd(e);
1788     int r;
1789 
1790     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1791                                data, false, int128_get64(section->size),
1792                                match_data);
1793     if (r < 0) {
1794         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1795                 __func__, strerror(-r), -r);
1796         abort();
1797     }
1798 }
1799 
1800 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1801                                  MemoryRegionSection *section,
1802                                  bool match_data, uint64_t data,
1803                                  EventNotifier *e)
1804 {
1805     int fd = event_notifier_get_fd(e);
1806     int r;
1807 
1808     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1809                               data, true, int128_get64(section->size),
1810                               match_data);
1811     if (r < 0) {
1812         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1813                 __func__, strerror(-r), -r);
1814         abort();
1815     }
1816 }
1817 
1818 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1819                                  MemoryRegionSection *section,
1820                                  bool match_data, uint64_t data,
1821                                  EventNotifier *e)
1822 
1823 {
1824     int fd = event_notifier_get_fd(e);
1825     int r;
1826 
1827     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1828                               data, false, int128_get64(section->size),
1829                               match_data);
1830     if (r < 0) {
1831         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1832                 __func__, strerror(-r), -r);
1833         abort();
1834     }
1835 }
1836 
1837 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1838                                   AddressSpace *as, int as_id, const char *name)
1839 {
1840     int i;
1841 
1842     kml->slots = g_new0(KVMSlot, s->nr_slots);
1843     kml->as_id = as_id;
1844 
1845     for (i = 0; i < s->nr_slots; i++) {
1846         kml->slots[i].slot = i;
1847     }
1848 
1849     QSIMPLEQ_INIT(&kml->transaction_add);
1850     QSIMPLEQ_INIT(&kml->transaction_del);
1851 
1852     kml->listener.region_add = kvm_region_add;
1853     kml->listener.region_del = kvm_region_del;
1854     kml->listener.commit = kvm_region_commit;
1855     kml->listener.log_start = kvm_log_start;
1856     kml->listener.log_stop = kvm_log_stop;
1857     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1858     kml->listener.name = name;
1859 
1860     if (s->kvm_dirty_ring_size) {
1861         kml->listener.log_sync_global = kvm_log_sync_global;
1862     } else {
1863         kml->listener.log_sync = kvm_log_sync;
1864         kml->listener.log_clear = kvm_log_clear;
1865     }
1866 
1867     memory_listener_register(&kml->listener, as);
1868 
1869     for (i = 0; i < s->nr_as; ++i) {
1870         if (!s->as[i].as) {
1871             s->as[i].as = as;
1872             s->as[i].ml = kml;
1873             break;
1874         }
1875     }
1876 }
1877 
1878 static MemoryListener kvm_io_listener = {
1879     .name = "kvm-io",
1880     .coalesced_io_add = kvm_coalesce_pio_add,
1881     .coalesced_io_del = kvm_coalesce_pio_del,
1882     .eventfd_add = kvm_io_ioeventfd_add,
1883     .eventfd_del = kvm_io_ioeventfd_del,
1884     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1885 };
1886 
1887 int kvm_set_irq(KVMState *s, int irq, int level)
1888 {
1889     struct kvm_irq_level event;
1890     int ret;
1891 
1892     assert(kvm_async_interrupts_enabled());
1893 
1894     event.level = level;
1895     event.irq = irq;
1896     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1897     if (ret < 0) {
1898         perror("kvm_set_irq");
1899         abort();
1900     }
1901 
1902     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1903 }
1904 
1905 #ifdef KVM_CAP_IRQ_ROUTING
1906 typedef struct KVMMSIRoute {
1907     struct kvm_irq_routing_entry kroute;
1908     QTAILQ_ENTRY(KVMMSIRoute) entry;
1909 } KVMMSIRoute;
1910 
1911 static void set_gsi(KVMState *s, unsigned int gsi)
1912 {
1913     set_bit(gsi, s->used_gsi_bitmap);
1914 }
1915 
1916 static void clear_gsi(KVMState *s, unsigned int gsi)
1917 {
1918     clear_bit(gsi, s->used_gsi_bitmap);
1919 }
1920 
1921 void kvm_init_irq_routing(KVMState *s)
1922 {
1923     int gsi_count;
1924 
1925     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1926     if (gsi_count > 0) {
1927         /* Round up so we can search ints using ffs */
1928         s->used_gsi_bitmap = bitmap_new(gsi_count);
1929         s->gsi_count = gsi_count;
1930     }
1931 
1932     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1933     s->nr_allocated_irq_routes = 0;
1934 
1935     kvm_arch_init_irq_routing(s);
1936 }
1937 
1938 void kvm_irqchip_commit_routes(KVMState *s)
1939 {
1940     int ret;
1941 
1942     if (kvm_gsi_direct_mapping()) {
1943         return;
1944     }
1945 
1946     if (!kvm_gsi_routing_enabled()) {
1947         return;
1948     }
1949 
1950     s->irq_routes->flags = 0;
1951     trace_kvm_irqchip_commit_routes();
1952     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1953     assert(ret == 0);
1954 }
1955 
1956 void kvm_add_routing_entry(KVMState *s,
1957                            struct kvm_irq_routing_entry *entry)
1958 {
1959     struct kvm_irq_routing_entry *new;
1960     int n, size;
1961 
1962     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1963         n = s->nr_allocated_irq_routes * 2;
1964         if (n < 64) {
1965             n = 64;
1966         }
1967         size = sizeof(struct kvm_irq_routing);
1968         size += n * sizeof(*new);
1969         s->irq_routes = g_realloc(s->irq_routes, size);
1970         s->nr_allocated_irq_routes = n;
1971     }
1972     n = s->irq_routes->nr++;
1973     new = &s->irq_routes->entries[n];
1974 
1975     *new = *entry;
1976 
1977     set_gsi(s, entry->gsi);
1978 }
1979 
1980 static int kvm_update_routing_entry(KVMState *s,
1981                                     struct kvm_irq_routing_entry *new_entry)
1982 {
1983     struct kvm_irq_routing_entry *entry;
1984     int n;
1985 
1986     for (n = 0; n < s->irq_routes->nr; n++) {
1987         entry = &s->irq_routes->entries[n];
1988         if (entry->gsi != new_entry->gsi) {
1989             continue;
1990         }
1991 
1992         if(!memcmp(entry, new_entry, sizeof *entry)) {
1993             return 0;
1994         }
1995 
1996         *entry = *new_entry;
1997 
1998         return 0;
1999     }
2000 
2001     return -ESRCH;
2002 }
2003 
2004 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
2005 {
2006     struct kvm_irq_routing_entry e = {};
2007 
2008     assert(pin < s->gsi_count);
2009 
2010     e.gsi = irq;
2011     e.type = KVM_IRQ_ROUTING_IRQCHIP;
2012     e.flags = 0;
2013     e.u.irqchip.irqchip = irqchip;
2014     e.u.irqchip.pin = pin;
2015     kvm_add_routing_entry(s, &e);
2016 }
2017 
2018 void kvm_irqchip_release_virq(KVMState *s, int virq)
2019 {
2020     struct kvm_irq_routing_entry *e;
2021     int i;
2022 
2023     if (kvm_gsi_direct_mapping()) {
2024         return;
2025     }
2026 
2027     for (i = 0; i < s->irq_routes->nr; i++) {
2028         e = &s->irq_routes->entries[i];
2029         if (e->gsi == virq) {
2030             s->irq_routes->nr--;
2031             *e = s->irq_routes->entries[s->irq_routes->nr];
2032         }
2033     }
2034     clear_gsi(s, virq);
2035     kvm_arch_release_virq_post(virq);
2036     trace_kvm_irqchip_release_virq(virq);
2037 }
2038 
2039 void kvm_irqchip_add_change_notifier(Notifier *n)
2040 {
2041     notifier_list_add(&kvm_irqchip_change_notifiers, n);
2042 }
2043 
2044 void kvm_irqchip_remove_change_notifier(Notifier *n)
2045 {
2046     notifier_remove(n);
2047 }
2048 
2049 void kvm_irqchip_change_notify(void)
2050 {
2051     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
2052 }
2053 
2054 int kvm_irqchip_get_virq(KVMState *s)
2055 {
2056     int next_virq;
2057 
2058     /* Return the lowest unused GSI in the bitmap */
2059     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
2060     if (next_virq >= s->gsi_count) {
2061         return -ENOSPC;
2062     } else {
2063         return next_virq;
2064     }
2065 }
2066 
2067 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2068 {
2069     struct kvm_msi msi;
2070 
2071     msi.address_lo = (uint32_t)msg.address;
2072     msi.address_hi = msg.address >> 32;
2073     msi.data = le32_to_cpu(msg.data);
2074     msi.flags = 0;
2075     memset(msi.pad, 0, sizeof(msi.pad));
2076 
2077     return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
2078 }
2079 
2080 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2081 {
2082     struct kvm_irq_routing_entry kroute = {};
2083     int virq;
2084     KVMState *s = c->s;
2085     MSIMessage msg = {0, 0};
2086 
2087     if (pci_available && dev) {
2088         msg = pci_get_msi_message(dev, vector);
2089     }
2090 
2091     if (kvm_gsi_direct_mapping()) {
2092         return kvm_arch_msi_data_to_gsi(msg.data);
2093     }
2094 
2095     if (!kvm_gsi_routing_enabled()) {
2096         return -ENOSYS;
2097     }
2098 
2099     virq = kvm_irqchip_get_virq(s);
2100     if (virq < 0) {
2101         return virq;
2102     }
2103 
2104     kroute.gsi = virq;
2105     kroute.type = KVM_IRQ_ROUTING_MSI;
2106     kroute.flags = 0;
2107     kroute.u.msi.address_lo = (uint32_t)msg.address;
2108     kroute.u.msi.address_hi = msg.address >> 32;
2109     kroute.u.msi.data = le32_to_cpu(msg.data);
2110     if (pci_available && kvm_msi_devid_required()) {
2111         kroute.flags = KVM_MSI_VALID_DEVID;
2112         kroute.u.msi.devid = pci_requester_id(dev);
2113     }
2114     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2115         kvm_irqchip_release_virq(s, virq);
2116         return -EINVAL;
2117     }
2118 
2119     if (s->irq_routes->nr < s->gsi_count) {
2120         trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2121                                         vector, virq);
2122 
2123         kvm_add_routing_entry(s, &kroute);
2124         kvm_arch_add_msi_route_post(&kroute, vector, dev);
2125         c->changes++;
2126     } else {
2127         kvm_irqchip_release_virq(s, virq);
2128         return -ENOSPC;
2129     }
2130 
2131     return virq;
2132 }
2133 
2134 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2135                                  PCIDevice *dev)
2136 {
2137     struct kvm_irq_routing_entry kroute = {};
2138 
2139     if (kvm_gsi_direct_mapping()) {
2140         return 0;
2141     }
2142 
2143     if (!kvm_irqchip_in_kernel()) {
2144         return -ENOSYS;
2145     }
2146 
2147     kroute.gsi = virq;
2148     kroute.type = KVM_IRQ_ROUTING_MSI;
2149     kroute.flags = 0;
2150     kroute.u.msi.address_lo = (uint32_t)msg.address;
2151     kroute.u.msi.address_hi = msg.address >> 32;
2152     kroute.u.msi.data = le32_to_cpu(msg.data);
2153     if (pci_available && kvm_msi_devid_required()) {
2154         kroute.flags = KVM_MSI_VALID_DEVID;
2155         kroute.u.msi.devid = pci_requester_id(dev);
2156     }
2157     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2158         return -EINVAL;
2159     }
2160 
2161     trace_kvm_irqchip_update_msi_route(virq);
2162 
2163     return kvm_update_routing_entry(s, &kroute);
2164 }
2165 
2166 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2167                                     EventNotifier *resample, int virq,
2168                                     bool assign)
2169 {
2170     int fd = event_notifier_get_fd(event);
2171     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2172 
2173     struct kvm_irqfd irqfd = {
2174         .fd = fd,
2175         .gsi = virq,
2176         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2177     };
2178 
2179     if (rfd != -1) {
2180         assert(assign);
2181         if (kvm_irqchip_is_split()) {
2182             /*
2183              * When the slow irqchip (e.g. IOAPIC) is in the
2184              * userspace, KVM kernel resamplefd will not work because
2185              * the EOI of the interrupt will be delivered to userspace
2186              * instead, so the KVM kernel resamplefd kick will be
2187              * skipped.  The userspace here mimics what the kernel
2188              * provides with resamplefd, remember the resamplefd and
2189              * kick it when we receive EOI of this IRQ.
2190              *
2191              * This is hackery because IOAPIC is mostly bypassed
2192              * (except EOI broadcasts) when irqfd is used.  However
2193              * this can bring much performance back for split irqchip
2194              * with INTx IRQs (for VFIO, this gives 93% perf of the
2195              * full fast path, which is 46% perf boost comparing to
2196              * the INTx slow path).
2197              */
2198             kvm_resample_fd_insert(virq, resample);
2199         } else {
2200             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2201             irqfd.resamplefd = rfd;
2202         }
2203     } else if (!assign) {
2204         if (kvm_irqchip_is_split()) {
2205             kvm_resample_fd_remove(virq);
2206         }
2207     }
2208 
2209     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2210 }
2211 
2212 #else /* !KVM_CAP_IRQ_ROUTING */
2213 
2214 void kvm_init_irq_routing(KVMState *s)
2215 {
2216 }
2217 
2218 void kvm_irqchip_release_virq(KVMState *s, int virq)
2219 {
2220 }
2221 
2222 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2223 {
2224     abort();
2225 }
2226 
2227 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2228 {
2229     return -ENOSYS;
2230 }
2231 
2232 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2233 {
2234     return -ENOSYS;
2235 }
2236 
2237 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2238 {
2239     return -ENOSYS;
2240 }
2241 
2242 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2243                                     EventNotifier *resample, int virq,
2244                                     bool assign)
2245 {
2246     abort();
2247 }
2248 
2249 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2250 {
2251     return -ENOSYS;
2252 }
2253 #endif /* !KVM_CAP_IRQ_ROUTING */
2254 
2255 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2256                                        EventNotifier *rn, int virq)
2257 {
2258     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2259 }
2260 
2261 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2262                                           int virq)
2263 {
2264     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2265 }
2266 
2267 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2268                                    EventNotifier *rn, qemu_irq irq)
2269 {
2270     gpointer key, gsi;
2271     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2272 
2273     if (!found) {
2274         return -ENXIO;
2275     }
2276     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2277 }
2278 
2279 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2280                                       qemu_irq irq)
2281 {
2282     gpointer key, gsi;
2283     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2284 
2285     if (!found) {
2286         return -ENXIO;
2287     }
2288     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2289 }
2290 
2291 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2292 {
2293     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2294 }
2295 
2296 static void kvm_irqchip_create(KVMState *s)
2297 {
2298     int ret;
2299 
2300     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2301     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2302         ;
2303     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2304         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2305         if (ret < 0) {
2306             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2307             exit(1);
2308         }
2309     } else {
2310         return;
2311     }
2312 
2313     if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2314         fprintf(stderr, "kvm: irqfd not implemented\n");
2315         exit(1);
2316     }
2317 
2318     /* First probe and see if there's a arch-specific hook to create the
2319      * in-kernel irqchip for us */
2320     ret = kvm_arch_irqchip_create(s);
2321     if (ret == 0) {
2322         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2323             error_report("Split IRQ chip mode not supported.");
2324             exit(1);
2325         } else {
2326             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2327         }
2328     }
2329     if (ret < 0) {
2330         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2331         exit(1);
2332     }
2333 
2334     kvm_kernel_irqchip = true;
2335     /* If we have an in-kernel IRQ chip then we must have asynchronous
2336      * interrupt delivery (though the reverse is not necessarily true)
2337      */
2338     kvm_async_interrupts_allowed = true;
2339     kvm_halt_in_kernel_allowed = true;
2340 
2341     kvm_init_irq_routing(s);
2342 
2343     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2344 }
2345 
2346 /* Find number of supported CPUs using the recommended
2347  * procedure from the kernel API documentation to cope with
2348  * older kernels that may be missing capabilities.
2349  */
2350 static int kvm_recommended_vcpus(KVMState *s)
2351 {
2352     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2353     return (ret) ? ret : 4;
2354 }
2355 
2356 static int kvm_max_vcpus(KVMState *s)
2357 {
2358     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2359     return (ret) ? ret : kvm_recommended_vcpus(s);
2360 }
2361 
2362 static int kvm_max_vcpu_id(KVMState *s)
2363 {
2364     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2365     return (ret) ? ret : kvm_max_vcpus(s);
2366 }
2367 
2368 bool kvm_vcpu_id_is_valid(int vcpu_id)
2369 {
2370     KVMState *s = KVM_STATE(current_accel());
2371     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2372 }
2373 
2374 bool kvm_dirty_ring_enabled(void)
2375 {
2376     return kvm_state && kvm_state->kvm_dirty_ring_size;
2377 }
2378 
2379 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2380                            strList *names, strList *targets, Error **errp);
2381 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2382 
2383 uint32_t kvm_dirty_ring_size(void)
2384 {
2385     return kvm_state->kvm_dirty_ring_size;
2386 }
2387 
2388 static int kvm_init(MachineState *ms)
2389 {
2390     MachineClass *mc = MACHINE_GET_CLASS(ms);
2391     static const char upgrade_note[] =
2392         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2393         "(see http://sourceforge.net/projects/kvm).\n";
2394     const struct {
2395         const char *name;
2396         int num;
2397     } num_cpus[] = {
2398         { "SMP",          ms->smp.cpus },
2399         { "hotpluggable", ms->smp.max_cpus },
2400         { /* end of list */ }
2401     }, *nc = num_cpus;
2402     int soft_vcpus_limit, hard_vcpus_limit;
2403     KVMState *s;
2404     const KVMCapabilityInfo *missing_cap;
2405     int ret;
2406     int type;
2407     uint64_t dirty_log_manual_caps;
2408 
2409     qemu_mutex_init(&kml_slots_lock);
2410 
2411     s = KVM_STATE(ms->accelerator);
2412 
2413     /*
2414      * On systems where the kernel can support different base page
2415      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2416      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2417      * page size for the system though.
2418      */
2419     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2420 
2421     s->sigmask_len = 8;
2422     accel_blocker_init();
2423 
2424 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2425     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2426 #endif
2427     QLIST_INIT(&s->kvm_parked_vcpus);
2428     s->fd = qemu_open_old(s->device ?: "/dev/kvm", O_RDWR);
2429     if (s->fd == -1) {
2430         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2431         ret = -errno;
2432         goto err;
2433     }
2434 
2435     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2436     if (ret < KVM_API_VERSION) {
2437         if (ret >= 0) {
2438             ret = -EINVAL;
2439         }
2440         fprintf(stderr, "kvm version too old\n");
2441         goto err;
2442     }
2443 
2444     if (ret > KVM_API_VERSION) {
2445         ret = -EINVAL;
2446         fprintf(stderr, "kvm version not supported\n");
2447         goto err;
2448     }
2449 
2450     kvm_supported_memory_attributes = kvm_check_extension(s, KVM_CAP_MEMORY_ATTRIBUTES);
2451     kvm_guest_memfd_supported =
2452         kvm_check_extension(s, KVM_CAP_GUEST_MEMFD) &&
2453         kvm_check_extension(s, KVM_CAP_USER_MEMORY2) &&
2454         (kvm_supported_memory_attributes & KVM_MEMORY_ATTRIBUTE_PRIVATE);
2455 
2456     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2457     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2458 
2459     /* If unspecified, use the default value */
2460     if (!s->nr_slots) {
2461         s->nr_slots = 32;
2462     }
2463 
2464     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2465     if (s->nr_as <= 1) {
2466         s->nr_as = 1;
2467     }
2468     s->as = g_new0(struct KVMAs, s->nr_as);
2469 
2470     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2471         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2472                                                             "kvm-type",
2473                                                             &error_abort);
2474         type = mc->kvm_type(ms, kvm_type);
2475     } else if (mc->kvm_type) {
2476         type = mc->kvm_type(ms, NULL);
2477     } else {
2478         type = kvm_arch_get_default_type(ms);
2479     }
2480 
2481     if (type < 0) {
2482         ret = -EINVAL;
2483         goto err;
2484     }
2485 
2486     do {
2487         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2488     } while (ret == -EINTR);
2489 
2490     if (ret < 0) {
2491         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2492                 strerror(-ret));
2493 
2494 #ifdef TARGET_S390X
2495         if (ret == -EINVAL) {
2496             fprintf(stderr,
2497                     "Host kernel setup problem detected. Please verify:\n");
2498             fprintf(stderr, "- for kernels supporting the switch_amode or"
2499                     " user_mode parameters, whether\n");
2500             fprintf(stderr,
2501                     "  user space is running in primary address space\n");
2502             fprintf(stderr,
2503                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2504                     "whether it is enabled\n");
2505         }
2506 #elif defined(TARGET_PPC)
2507         if (ret == -EINVAL) {
2508             fprintf(stderr,
2509                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2510                     (type == 2) ? "pr" : "hv");
2511         }
2512 #endif
2513         goto err;
2514     }
2515 
2516     s->vmfd = ret;
2517 
2518     /* check the vcpu limits */
2519     soft_vcpus_limit = kvm_recommended_vcpus(s);
2520     hard_vcpus_limit = kvm_max_vcpus(s);
2521 
2522     while (nc->name) {
2523         if (nc->num > soft_vcpus_limit) {
2524             warn_report("Number of %s cpus requested (%d) exceeds "
2525                         "the recommended cpus supported by KVM (%d)",
2526                         nc->name, nc->num, soft_vcpus_limit);
2527 
2528             if (nc->num > hard_vcpus_limit) {
2529                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2530                         "the maximum cpus supported by KVM (%d)\n",
2531                         nc->name, nc->num, hard_vcpus_limit);
2532                 exit(1);
2533             }
2534         }
2535         nc++;
2536     }
2537 
2538     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2539     if (!missing_cap) {
2540         missing_cap =
2541             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2542     }
2543     if (missing_cap) {
2544         ret = -EINVAL;
2545         fprintf(stderr, "kvm does not support %s\n%s",
2546                 missing_cap->name, upgrade_note);
2547         goto err;
2548     }
2549 
2550     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2551     s->coalesced_pio = s->coalesced_mmio &&
2552                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2553 
2554     /*
2555      * Enable KVM dirty ring if supported, otherwise fall back to
2556      * dirty logging mode
2557      */
2558     ret = kvm_dirty_ring_init(s);
2559     if (ret < 0) {
2560         goto err;
2561     }
2562 
2563     /*
2564      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2565      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2566      * page is wr-protected initially, which is against how kvm dirty ring is
2567      * usage - kvm dirty ring requires all pages are wr-protected at the very
2568      * beginning.  Enabling this feature for dirty ring causes data corruption.
2569      *
2570      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2571      * we may expect a higher stall time when starting the migration.  In the
2572      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2573      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2574      * guest pages.
2575      */
2576     if (!s->kvm_dirty_ring_size) {
2577         dirty_log_manual_caps =
2578             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2579         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2580                                   KVM_DIRTY_LOG_INITIALLY_SET);
2581         s->manual_dirty_log_protect = dirty_log_manual_caps;
2582         if (dirty_log_manual_caps) {
2583             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2584                                     dirty_log_manual_caps);
2585             if (ret) {
2586                 warn_report("Trying to enable capability %"PRIu64" of "
2587                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2588                             "Falling back to the legacy mode. ",
2589                             dirty_log_manual_caps);
2590                 s->manual_dirty_log_protect = 0;
2591             }
2592         }
2593     }
2594 
2595 #ifdef KVM_CAP_VCPU_EVENTS
2596     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2597 #endif
2598     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2599 
2600     s->irq_set_ioctl = KVM_IRQ_LINE;
2601     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2602         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2603     }
2604 
2605     kvm_readonly_mem_allowed =
2606         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2607 
2608     kvm_resamplefds_allowed =
2609         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2610 
2611     kvm_vm_attributes_allowed =
2612         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2613 
2614 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
2615     kvm_has_guest_debug =
2616         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2617 #endif
2618 
2619     kvm_sstep_flags = 0;
2620     if (kvm_has_guest_debug) {
2621         kvm_sstep_flags = SSTEP_ENABLE;
2622 
2623 #if defined TARGET_KVM_HAVE_GUEST_DEBUG
2624         int guest_debug_flags =
2625             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2626 
2627         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2628             kvm_sstep_flags |= SSTEP_NOIRQ;
2629         }
2630 #endif
2631     }
2632 
2633     kvm_state = s;
2634 
2635     ret = kvm_arch_init(ms, s);
2636     if (ret < 0) {
2637         goto err;
2638     }
2639 
2640     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2641         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2642     }
2643 
2644     qemu_register_reset(kvm_unpoison_all, NULL);
2645 
2646     if (s->kernel_irqchip_allowed) {
2647         kvm_irqchip_create(s);
2648     }
2649 
2650     s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2651     s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2652     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2653     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2654 
2655     kvm_memory_listener_register(s, &s->memory_listener,
2656                                  &address_space_memory, 0, "kvm-memory");
2657     memory_listener_register(&kvm_io_listener,
2658                              &address_space_io);
2659 
2660     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2661     if (!s->sync_mmu) {
2662         ret = ram_block_discard_disable(true);
2663         assert(!ret);
2664     }
2665 
2666     if (s->kvm_dirty_ring_size) {
2667         kvm_dirty_ring_reaper_init(s);
2668     }
2669 
2670     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2671         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2672                             query_stats_schemas_cb);
2673     }
2674 
2675     return 0;
2676 
2677 err:
2678     assert(ret < 0);
2679     if (s->vmfd >= 0) {
2680         close(s->vmfd);
2681     }
2682     if (s->fd != -1) {
2683         close(s->fd);
2684     }
2685     g_free(s->as);
2686     g_free(s->memory_listener.slots);
2687 
2688     return ret;
2689 }
2690 
2691 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2692 {
2693     s->sigmask_len = sigmask_len;
2694 }
2695 
2696 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2697                           int size, uint32_t count)
2698 {
2699     int i;
2700     uint8_t *ptr = data;
2701 
2702     for (i = 0; i < count; i++) {
2703         address_space_rw(&address_space_io, port, attrs,
2704                          ptr, size,
2705                          direction == KVM_EXIT_IO_OUT);
2706         ptr += size;
2707     }
2708 }
2709 
2710 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2711 {
2712     int i;
2713 
2714     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2715             run->internal.suberror);
2716 
2717     for (i = 0; i < run->internal.ndata; ++i) {
2718         fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2719                 i, (uint64_t)run->internal.data[i]);
2720     }
2721     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2722         fprintf(stderr, "emulation failure\n");
2723         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2724             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2725             return EXCP_INTERRUPT;
2726         }
2727     }
2728     /* FIXME: Should trigger a qmp message to let management know
2729      * something went wrong.
2730      */
2731     return -1;
2732 }
2733 
2734 void kvm_flush_coalesced_mmio_buffer(void)
2735 {
2736     KVMState *s = kvm_state;
2737 
2738     if (!s || s->coalesced_flush_in_progress) {
2739         return;
2740     }
2741 
2742     s->coalesced_flush_in_progress = true;
2743 
2744     if (s->coalesced_mmio_ring) {
2745         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2746         while (ring->first != ring->last) {
2747             struct kvm_coalesced_mmio *ent;
2748 
2749             ent = &ring->coalesced_mmio[ring->first];
2750 
2751             if (ent->pio == 1) {
2752                 address_space_write(&address_space_io, ent->phys_addr,
2753                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2754                                     ent->len);
2755             } else {
2756                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2757             }
2758             smp_wmb();
2759             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2760         }
2761     }
2762 
2763     s->coalesced_flush_in_progress = false;
2764 }
2765 
2766 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2767 {
2768     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2769         int ret = kvm_arch_get_registers(cpu);
2770         if (ret) {
2771             error_report("Failed to get registers: %s", strerror(-ret));
2772             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2773             vm_stop(RUN_STATE_INTERNAL_ERROR);
2774         }
2775 
2776         cpu->vcpu_dirty = true;
2777     }
2778 }
2779 
2780 void kvm_cpu_synchronize_state(CPUState *cpu)
2781 {
2782     if (!cpu->vcpu_dirty && !kvm_state->guest_state_protected) {
2783         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2784     }
2785 }
2786 
2787 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2788 {
2789     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2790     if (ret) {
2791         error_report("Failed to put registers after reset: %s", strerror(-ret));
2792         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2793         vm_stop(RUN_STATE_INTERNAL_ERROR);
2794     }
2795 
2796     cpu->vcpu_dirty = false;
2797 }
2798 
2799 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2800 {
2801     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2802 }
2803 
2804 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2805 {
2806     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2807     if (ret) {
2808         error_report("Failed to put registers after init: %s", strerror(-ret));
2809         exit(1);
2810     }
2811 
2812     cpu->vcpu_dirty = false;
2813 }
2814 
2815 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2816 {
2817     if (!kvm_state->guest_state_protected) {
2818         /*
2819          * This runs before the machine_init_done notifiers, and is the last
2820          * opportunity to synchronize the state of confidential guests.
2821          */
2822         run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2823     }
2824 }
2825 
2826 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2827 {
2828     cpu->vcpu_dirty = true;
2829 }
2830 
2831 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2832 {
2833     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2834 }
2835 
2836 #ifdef KVM_HAVE_MCE_INJECTION
2837 static __thread void *pending_sigbus_addr;
2838 static __thread int pending_sigbus_code;
2839 static __thread bool have_sigbus_pending;
2840 #endif
2841 
2842 static void kvm_cpu_kick(CPUState *cpu)
2843 {
2844     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2845 }
2846 
2847 static void kvm_cpu_kick_self(void)
2848 {
2849     if (kvm_immediate_exit) {
2850         kvm_cpu_kick(current_cpu);
2851     } else {
2852         qemu_cpu_kick_self();
2853     }
2854 }
2855 
2856 static void kvm_eat_signals(CPUState *cpu)
2857 {
2858     struct timespec ts = { 0, 0 };
2859     siginfo_t siginfo;
2860     sigset_t waitset;
2861     sigset_t chkset;
2862     int r;
2863 
2864     if (kvm_immediate_exit) {
2865         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2866         /* Write kvm_run->immediate_exit before the cpu->exit_request
2867          * write in kvm_cpu_exec.
2868          */
2869         smp_wmb();
2870         return;
2871     }
2872 
2873     sigemptyset(&waitset);
2874     sigaddset(&waitset, SIG_IPI);
2875 
2876     do {
2877         r = sigtimedwait(&waitset, &siginfo, &ts);
2878         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2879             perror("sigtimedwait");
2880             exit(1);
2881         }
2882 
2883         r = sigpending(&chkset);
2884         if (r == -1) {
2885             perror("sigpending");
2886             exit(1);
2887         }
2888     } while (sigismember(&chkset, SIG_IPI));
2889 }
2890 
2891 int kvm_convert_memory(hwaddr start, hwaddr size, bool to_private)
2892 {
2893     MemoryRegionSection section;
2894     ram_addr_t offset;
2895     MemoryRegion *mr;
2896     RAMBlock *rb;
2897     void *addr;
2898     int ret = -1;
2899 
2900     trace_kvm_convert_memory(start, size, to_private ? "shared_to_private" : "private_to_shared");
2901 
2902     if (!QEMU_PTR_IS_ALIGNED(start, qemu_real_host_page_size()) ||
2903         !QEMU_PTR_IS_ALIGNED(size, qemu_real_host_page_size())) {
2904         return -1;
2905     }
2906 
2907     if (!size) {
2908         return -1;
2909     }
2910 
2911     section = memory_region_find(get_system_memory(), start, size);
2912     mr = section.mr;
2913     if (!mr) {
2914         /*
2915          * Ignore converting non-assigned region to shared.
2916          *
2917          * TDX requires vMMIO region to be shared to inject #VE to guest.
2918          * OVMF issues conservatively MapGPA(shared) on 32bit PCI MMIO region,
2919          * and vIO-APIC 0xFEC00000 4K page.
2920          * OVMF assigns 32bit PCI MMIO region to
2921          * [top of low memory: typically 2GB=0xC000000,  0xFC00000)
2922          */
2923         if (!to_private) {
2924             return 0;
2925         }
2926         return -1;
2927     }
2928 
2929     if (!memory_region_has_guest_memfd(mr)) {
2930         /*
2931          * Because vMMIO region must be shared, guest TD may convert vMMIO
2932          * region to shared explicitly.  Don't complain such case.  See
2933          * memory_region_type() for checking if the region is MMIO region.
2934          */
2935         if (!to_private &&
2936             !memory_region_is_ram(mr) &&
2937             !memory_region_is_ram_device(mr) &&
2938             !memory_region_is_rom(mr) &&
2939             !memory_region_is_romd(mr)) {
2940             ret = 0;
2941         } else {
2942             error_report("Convert non guest_memfd backed memory region "
2943                         "(0x%"HWADDR_PRIx" ,+ 0x%"HWADDR_PRIx") to %s",
2944                         start, size, to_private ? "private" : "shared");
2945         }
2946         goto out_unref;
2947     }
2948 
2949     if (to_private) {
2950         ret = kvm_set_memory_attributes_private(start, size);
2951     } else {
2952         ret = kvm_set_memory_attributes_shared(start, size);
2953     }
2954     if (ret) {
2955         goto out_unref;
2956     }
2957 
2958     addr = memory_region_get_ram_ptr(mr) + section.offset_within_region;
2959     rb = qemu_ram_block_from_host(addr, false, &offset);
2960 
2961     if (to_private) {
2962         if (rb->page_size != qemu_real_host_page_size()) {
2963             /*
2964              * shared memory is backed by hugetlb, which is supposed to be
2965              * pre-allocated and doesn't need to be discarded
2966              */
2967             goto out_unref;
2968         }
2969         ret = ram_block_discard_range(rb, offset, size);
2970     } else {
2971         ret = ram_block_discard_guest_memfd_range(rb, offset, size);
2972     }
2973 
2974 out_unref:
2975     memory_region_unref(mr);
2976     return ret;
2977 }
2978 
2979 int kvm_cpu_exec(CPUState *cpu)
2980 {
2981     struct kvm_run *run = cpu->kvm_run;
2982     int ret, run_ret;
2983 
2984     trace_kvm_cpu_exec();
2985 
2986     if (kvm_arch_process_async_events(cpu)) {
2987         qatomic_set(&cpu->exit_request, 0);
2988         return EXCP_HLT;
2989     }
2990 
2991     bql_unlock();
2992     cpu_exec_start(cpu);
2993 
2994     do {
2995         MemTxAttrs attrs;
2996 
2997         if (cpu->vcpu_dirty) {
2998             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2999             if (ret) {
3000                 error_report("Failed to put registers after init: %s",
3001                              strerror(-ret));
3002                 ret = -1;
3003                 break;
3004             }
3005 
3006             cpu->vcpu_dirty = false;
3007         }
3008 
3009         kvm_arch_pre_run(cpu, run);
3010         if (qatomic_read(&cpu->exit_request)) {
3011             trace_kvm_interrupt_exit_request();
3012             /*
3013              * KVM requires us to reenter the kernel after IO exits to complete
3014              * instruction emulation. This self-signal will ensure that we
3015              * leave ASAP again.
3016              */
3017             kvm_cpu_kick_self();
3018         }
3019 
3020         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
3021          * Matching barrier in kvm_eat_signals.
3022          */
3023         smp_rmb();
3024 
3025         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
3026 
3027         attrs = kvm_arch_post_run(cpu, run);
3028 
3029 #ifdef KVM_HAVE_MCE_INJECTION
3030         if (unlikely(have_sigbus_pending)) {
3031             bql_lock();
3032             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
3033                                     pending_sigbus_addr);
3034             have_sigbus_pending = false;
3035             bql_unlock();
3036         }
3037 #endif
3038 
3039         if (run_ret < 0) {
3040             if (run_ret == -EINTR || run_ret == -EAGAIN) {
3041                 trace_kvm_io_window_exit();
3042                 kvm_eat_signals(cpu);
3043                 ret = EXCP_INTERRUPT;
3044                 break;
3045             }
3046             if (!(run_ret == -EFAULT && run->exit_reason == KVM_EXIT_MEMORY_FAULT)) {
3047                 fprintf(stderr, "error: kvm run failed %s\n",
3048                         strerror(-run_ret));
3049 #ifdef TARGET_PPC
3050                 if (run_ret == -EBUSY) {
3051                     fprintf(stderr,
3052                             "This is probably because your SMT is enabled.\n"
3053                             "VCPU can only run on primary threads with all "
3054                             "secondary threads offline.\n");
3055                 }
3056 #endif
3057                 ret = -1;
3058                 break;
3059             }
3060         }
3061 
3062         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
3063         switch (run->exit_reason) {
3064         case KVM_EXIT_IO:
3065             /* Called outside BQL */
3066             kvm_handle_io(run->io.port, attrs,
3067                           (uint8_t *)run + run->io.data_offset,
3068                           run->io.direction,
3069                           run->io.size,
3070                           run->io.count);
3071             ret = 0;
3072             break;
3073         case KVM_EXIT_MMIO:
3074             /* Called outside BQL */
3075             address_space_rw(&address_space_memory,
3076                              run->mmio.phys_addr, attrs,
3077                              run->mmio.data,
3078                              run->mmio.len,
3079                              run->mmio.is_write);
3080             ret = 0;
3081             break;
3082         case KVM_EXIT_IRQ_WINDOW_OPEN:
3083             ret = EXCP_INTERRUPT;
3084             break;
3085         case KVM_EXIT_SHUTDOWN:
3086             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3087             ret = EXCP_INTERRUPT;
3088             break;
3089         case KVM_EXIT_UNKNOWN:
3090             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
3091                     (uint64_t)run->hw.hardware_exit_reason);
3092             ret = -1;
3093             break;
3094         case KVM_EXIT_INTERNAL_ERROR:
3095             ret = kvm_handle_internal_error(cpu, run);
3096             break;
3097         case KVM_EXIT_DIRTY_RING_FULL:
3098             /*
3099              * We shouldn't continue if the dirty ring of this vcpu is
3100              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
3101              */
3102             trace_kvm_dirty_ring_full(cpu->cpu_index);
3103             bql_lock();
3104             /*
3105              * We throttle vCPU by making it sleep once it exit from kernel
3106              * due to dirty ring full. In the dirtylimit scenario, reaping
3107              * all vCPUs after a single vCPU dirty ring get full result in
3108              * the miss of sleep, so just reap the ring-fulled vCPU.
3109              */
3110             if (dirtylimit_in_service()) {
3111                 kvm_dirty_ring_reap(kvm_state, cpu);
3112             } else {
3113                 kvm_dirty_ring_reap(kvm_state, NULL);
3114             }
3115             bql_unlock();
3116             dirtylimit_vcpu_execute(cpu);
3117             ret = 0;
3118             break;
3119         case KVM_EXIT_SYSTEM_EVENT:
3120             trace_kvm_run_exit_system_event(cpu->cpu_index, run->system_event.type);
3121             switch (run->system_event.type) {
3122             case KVM_SYSTEM_EVENT_SHUTDOWN:
3123                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3124                 ret = EXCP_INTERRUPT;
3125                 break;
3126             case KVM_SYSTEM_EVENT_RESET:
3127                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3128                 ret = EXCP_INTERRUPT;
3129                 break;
3130             case KVM_SYSTEM_EVENT_CRASH:
3131                 kvm_cpu_synchronize_state(cpu);
3132                 bql_lock();
3133                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3134                 bql_unlock();
3135                 ret = 0;
3136                 break;
3137             default:
3138                 ret = kvm_arch_handle_exit(cpu, run);
3139                 break;
3140             }
3141             break;
3142         case KVM_EXIT_MEMORY_FAULT:
3143             trace_kvm_memory_fault(run->memory_fault.gpa,
3144                                    run->memory_fault.size,
3145                                    run->memory_fault.flags);
3146             if (run->memory_fault.flags & ~KVM_MEMORY_EXIT_FLAG_PRIVATE) {
3147                 error_report("KVM_EXIT_MEMORY_FAULT: Unknown flag 0x%" PRIx64,
3148                              (uint64_t)run->memory_fault.flags);
3149                 ret = -1;
3150                 break;
3151             }
3152             ret = kvm_convert_memory(run->memory_fault.gpa, run->memory_fault.size,
3153                                      run->memory_fault.flags & KVM_MEMORY_EXIT_FLAG_PRIVATE);
3154             break;
3155         default:
3156             ret = kvm_arch_handle_exit(cpu, run);
3157             break;
3158         }
3159     } while (ret == 0);
3160 
3161     cpu_exec_end(cpu);
3162     bql_lock();
3163 
3164     if (ret < 0) {
3165         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3166         vm_stop(RUN_STATE_INTERNAL_ERROR);
3167     }
3168 
3169     qatomic_set(&cpu->exit_request, 0);
3170     return ret;
3171 }
3172 
3173 int kvm_ioctl(KVMState *s, int type, ...)
3174 {
3175     int ret;
3176     void *arg;
3177     va_list ap;
3178 
3179     va_start(ap, type);
3180     arg = va_arg(ap, void *);
3181     va_end(ap);
3182 
3183     trace_kvm_ioctl(type, arg);
3184     ret = ioctl(s->fd, type, arg);
3185     if (ret == -1) {
3186         ret = -errno;
3187     }
3188     return ret;
3189 }
3190 
3191 int kvm_vm_ioctl(KVMState *s, int type, ...)
3192 {
3193     int ret;
3194     void *arg;
3195     va_list ap;
3196 
3197     va_start(ap, type);
3198     arg = va_arg(ap, void *);
3199     va_end(ap);
3200 
3201     trace_kvm_vm_ioctl(type, arg);
3202     accel_ioctl_begin();
3203     ret = ioctl(s->vmfd, type, arg);
3204     accel_ioctl_end();
3205     if (ret == -1) {
3206         ret = -errno;
3207     }
3208     return ret;
3209 }
3210 
3211 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3212 {
3213     int ret;
3214     void *arg;
3215     va_list ap;
3216 
3217     va_start(ap, type);
3218     arg = va_arg(ap, void *);
3219     va_end(ap);
3220 
3221     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3222     accel_cpu_ioctl_begin(cpu);
3223     ret = ioctl(cpu->kvm_fd, type, arg);
3224     accel_cpu_ioctl_end(cpu);
3225     if (ret == -1) {
3226         ret = -errno;
3227     }
3228     return ret;
3229 }
3230 
3231 int kvm_device_ioctl(int fd, int type, ...)
3232 {
3233     int ret;
3234     void *arg;
3235     va_list ap;
3236 
3237     va_start(ap, type);
3238     arg = va_arg(ap, void *);
3239     va_end(ap);
3240 
3241     trace_kvm_device_ioctl(fd, type, arg);
3242     accel_ioctl_begin();
3243     ret = ioctl(fd, type, arg);
3244     accel_ioctl_end();
3245     if (ret == -1) {
3246         ret = -errno;
3247     }
3248     return ret;
3249 }
3250 
3251 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3252 {
3253     int ret;
3254     struct kvm_device_attr attribute = {
3255         .group = group,
3256         .attr = attr,
3257     };
3258 
3259     if (!kvm_vm_attributes_allowed) {
3260         return 0;
3261     }
3262 
3263     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3264     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3265     return ret ? 0 : 1;
3266 }
3267 
3268 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3269 {
3270     struct kvm_device_attr attribute = {
3271         .group = group,
3272         .attr = attr,
3273         .flags = 0,
3274     };
3275 
3276     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3277 }
3278 
3279 int kvm_device_access(int fd, int group, uint64_t attr,
3280                       void *val, bool write, Error **errp)
3281 {
3282     struct kvm_device_attr kvmattr;
3283     int err;
3284 
3285     kvmattr.flags = 0;
3286     kvmattr.group = group;
3287     kvmattr.attr = attr;
3288     kvmattr.addr = (uintptr_t)val;
3289 
3290     err = kvm_device_ioctl(fd,
3291                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3292                            &kvmattr);
3293     if (err < 0) {
3294         error_setg_errno(errp, -err,
3295                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3296                          "attr 0x%016" PRIx64,
3297                          write ? "SET" : "GET", group, attr);
3298     }
3299     return err;
3300 }
3301 
3302 bool kvm_has_sync_mmu(void)
3303 {
3304     return kvm_state->sync_mmu;
3305 }
3306 
3307 int kvm_has_vcpu_events(void)
3308 {
3309     return kvm_state->vcpu_events;
3310 }
3311 
3312 int kvm_max_nested_state_length(void)
3313 {
3314     return kvm_state->max_nested_state_len;
3315 }
3316 
3317 int kvm_has_gsi_routing(void)
3318 {
3319 #ifdef KVM_CAP_IRQ_ROUTING
3320     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3321 #else
3322     return false;
3323 #endif
3324 }
3325 
3326 bool kvm_arm_supports_user_irq(void)
3327 {
3328     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3329 }
3330 
3331 #ifdef TARGET_KVM_HAVE_GUEST_DEBUG
3332 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3333 {
3334     struct kvm_sw_breakpoint *bp;
3335 
3336     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3337         if (bp->pc == pc) {
3338             return bp;
3339         }
3340     }
3341     return NULL;
3342 }
3343 
3344 int kvm_sw_breakpoints_active(CPUState *cpu)
3345 {
3346     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3347 }
3348 
3349 struct kvm_set_guest_debug_data {
3350     struct kvm_guest_debug dbg;
3351     int err;
3352 };
3353 
3354 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3355 {
3356     struct kvm_set_guest_debug_data *dbg_data =
3357         (struct kvm_set_guest_debug_data *) data.host_ptr;
3358 
3359     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3360                                    &dbg_data->dbg);
3361 }
3362 
3363 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3364 {
3365     struct kvm_set_guest_debug_data data;
3366 
3367     data.dbg.control = reinject_trap;
3368 
3369     if (cpu->singlestep_enabled) {
3370         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3371 
3372         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3373             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3374         }
3375     }
3376     kvm_arch_update_guest_debug(cpu, &data.dbg);
3377 
3378     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3379                RUN_ON_CPU_HOST_PTR(&data));
3380     return data.err;
3381 }
3382 
3383 bool kvm_supports_guest_debug(void)
3384 {
3385     /* probed during kvm_init() */
3386     return kvm_has_guest_debug;
3387 }
3388 
3389 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3390 {
3391     struct kvm_sw_breakpoint *bp;
3392     int err;
3393 
3394     if (type == GDB_BREAKPOINT_SW) {
3395         bp = kvm_find_sw_breakpoint(cpu, addr);
3396         if (bp) {
3397             bp->use_count++;
3398             return 0;
3399         }
3400 
3401         bp = g_new(struct kvm_sw_breakpoint, 1);
3402         bp->pc = addr;
3403         bp->use_count = 1;
3404         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3405         if (err) {
3406             g_free(bp);
3407             return err;
3408         }
3409 
3410         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3411     } else {
3412         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3413         if (err) {
3414             return err;
3415         }
3416     }
3417 
3418     CPU_FOREACH(cpu) {
3419         err = kvm_update_guest_debug(cpu, 0);
3420         if (err) {
3421             return err;
3422         }
3423     }
3424     return 0;
3425 }
3426 
3427 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3428 {
3429     struct kvm_sw_breakpoint *bp;
3430     int err;
3431 
3432     if (type == GDB_BREAKPOINT_SW) {
3433         bp = kvm_find_sw_breakpoint(cpu, addr);
3434         if (!bp) {
3435             return -ENOENT;
3436         }
3437 
3438         if (bp->use_count > 1) {
3439             bp->use_count--;
3440             return 0;
3441         }
3442 
3443         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3444         if (err) {
3445             return err;
3446         }
3447 
3448         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3449         g_free(bp);
3450     } else {
3451         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3452         if (err) {
3453             return err;
3454         }
3455     }
3456 
3457     CPU_FOREACH(cpu) {
3458         err = kvm_update_guest_debug(cpu, 0);
3459         if (err) {
3460             return err;
3461         }
3462     }
3463     return 0;
3464 }
3465 
3466 void kvm_remove_all_breakpoints(CPUState *cpu)
3467 {
3468     struct kvm_sw_breakpoint *bp, *next;
3469     KVMState *s = cpu->kvm_state;
3470     CPUState *tmpcpu;
3471 
3472     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3473         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3474             /* Try harder to find a CPU that currently sees the breakpoint. */
3475             CPU_FOREACH(tmpcpu) {
3476                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3477                     break;
3478                 }
3479             }
3480         }
3481         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3482         g_free(bp);
3483     }
3484     kvm_arch_remove_all_hw_breakpoints();
3485 
3486     CPU_FOREACH(cpu) {
3487         kvm_update_guest_debug(cpu, 0);
3488     }
3489 }
3490 
3491 #endif /* !TARGET_KVM_HAVE_GUEST_DEBUG */
3492 
3493 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3494 {
3495     KVMState *s = kvm_state;
3496     struct kvm_signal_mask *sigmask;
3497     int r;
3498 
3499     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3500 
3501     sigmask->len = s->sigmask_len;
3502     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3503     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3504     g_free(sigmask);
3505 
3506     return r;
3507 }
3508 
3509 static void kvm_ipi_signal(int sig)
3510 {
3511     if (current_cpu) {
3512         assert(kvm_immediate_exit);
3513         kvm_cpu_kick(current_cpu);
3514     }
3515 }
3516 
3517 void kvm_init_cpu_signals(CPUState *cpu)
3518 {
3519     int r;
3520     sigset_t set;
3521     struct sigaction sigact;
3522 
3523     memset(&sigact, 0, sizeof(sigact));
3524     sigact.sa_handler = kvm_ipi_signal;
3525     sigaction(SIG_IPI, &sigact, NULL);
3526 
3527     pthread_sigmask(SIG_BLOCK, NULL, &set);
3528 #if defined KVM_HAVE_MCE_INJECTION
3529     sigdelset(&set, SIGBUS);
3530     pthread_sigmask(SIG_SETMASK, &set, NULL);
3531 #endif
3532     sigdelset(&set, SIG_IPI);
3533     if (kvm_immediate_exit) {
3534         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3535     } else {
3536         r = kvm_set_signal_mask(cpu, &set);
3537     }
3538     if (r) {
3539         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3540         exit(1);
3541     }
3542 }
3543 
3544 /* Called asynchronously in VCPU thread.  */
3545 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3546 {
3547 #ifdef KVM_HAVE_MCE_INJECTION
3548     if (have_sigbus_pending) {
3549         return 1;
3550     }
3551     have_sigbus_pending = true;
3552     pending_sigbus_addr = addr;
3553     pending_sigbus_code = code;
3554     qatomic_set(&cpu->exit_request, 1);
3555     return 0;
3556 #else
3557     return 1;
3558 #endif
3559 }
3560 
3561 /* Called synchronously (via signalfd) in main thread.  */
3562 int kvm_on_sigbus(int code, void *addr)
3563 {
3564 #ifdef KVM_HAVE_MCE_INJECTION
3565     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3566      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3567      * we can only get action optional here.
3568      */
3569     assert(code != BUS_MCEERR_AR);
3570     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3571     return 0;
3572 #else
3573     return 1;
3574 #endif
3575 }
3576 
3577 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3578 {
3579     int ret;
3580     struct kvm_create_device create_dev;
3581 
3582     create_dev.type = type;
3583     create_dev.fd = -1;
3584     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3585 
3586     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3587         return -ENOTSUP;
3588     }
3589 
3590     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3591     if (ret) {
3592         return ret;
3593     }
3594 
3595     return test ? 0 : create_dev.fd;
3596 }
3597 
3598 bool kvm_device_supported(int vmfd, uint64_t type)
3599 {
3600     struct kvm_create_device create_dev = {
3601         .type = type,
3602         .fd = -1,
3603         .flags = KVM_CREATE_DEVICE_TEST,
3604     };
3605 
3606     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3607         return false;
3608     }
3609 
3610     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3611 }
3612 
3613 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3614 {
3615     struct kvm_one_reg reg;
3616     int r;
3617 
3618     reg.id = id;
3619     reg.addr = (uintptr_t) source;
3620     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3621     if (r) {
3622         trace_kvm_failed_reg_set(id, strerror(-r));
3623     }
3624     return r;
3625 }
3626 
3627 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3628 {
3629     struct kvm_one_reg reg;
3630     int r;
3631 
3632     reg.id = id;
3633     reg.addr = (uintptr_t) target;
3634     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3635     if (r) {
3636         trace_kvm_failed_reg_get(id, strerror(-r));
3637     }
3638     return r;
3639 }
3640 
3641 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3642                                  hwaddr start_addr, hwaddr size)
3643 {
3644     KVMState *kvm = KVM_STATE(ms->accelerator);
3645     int i;
3646 
3647     for (i = 0; i < kvm->nr_as; ++i) {
3648         if (kvm->as[i].as == as && kvm->as[i].ml) {
3649             size = MIN(kvm_max_slot_size, size);
3650             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3651                                                     start_addr, size);
3652         }
3653     }
3654 
3655     return false;
3656 }
3657 
3658 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3659                                    const char *name, void *opaque,
3660                                    Error **errp)
3661 {
3662     KVMState *s = KVM_STATE(obj);
3663     int64_t value = s->kvm_shadow_mem;
3664 
3665     visit_type_int(v, name, &value, errp);
3666 }
3667 
3668 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3669                                    const char *name, void *opaque,
3670                                    Error **errp)
3671 {
3672     KVMState *s = KVM_STATE(obj);
3673     int64_t value;
3674 
3675     if (s->fd != -1) {
3676         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3677         return;
3678     }
3679 
3680     if (!visit_type_int(v, name, &value, errp)) {
3681         return;
3682     }
3683 
3684     s->kvm_shadow_mem = value;
3685 }
3686 
3687 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3688                                    const char *name, void *opaque,
3689                                    Error **errp)
3690 {
3691     KVMState *s = KVM_STATE(obj);
3692     OnOffSplit mode;
3693 
3694     if (s->fd != -1) {
3695         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3696         return;
3697     }
3698 
3699     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3700         return;
3701     }
3702     switch (mode) {
3703     case ON_OFF_SPLIT_ON:
3704         s->kernel_irqchip_allowed = true;
3705         s->kernel_irqchip_required = true;
3706         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3707         break;
3708     case ON_OFF_SPLIT_OFF:
3709         s->kernel_irqchip_allowed = false;
3710         s->kernel_irqchip_required = false;
3711         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3712         break;
3713     case ON_OFF_SPLIT_SPLIT:
3714         s->kernel_irqchip_allowed = true;
3715         s->kernel_irqchip_required = true;
3716         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3717         break;
3718     default:
3719         /* The value was checked in visit_type_OnOffSplit() above. If
3720          * we get here, then something is wrong in QEMU.
3721          */
3722         abort();
3723     }
3724 }
3725 
3726 bool kvm_kernel_irqchip_allowed(void)
3727 {
3728     return kvm_state->kernel_irqchip_allowed;
3729 }
3730 
3731 bool kvm_kernel_irqchip_required(void)
3732 {
3733     return kvm_state->kernel_irqchip_required;
3734 }
3735 
3736 bool kvm_kernel_irqchip_split(void)
3737 {
3738     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3739 }
3740 
3741 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3742                                     const char *name, void *opaque,
3743                                     Error **errp)
3744 {
3745     KVMState *s = KVM_STATE(obj);
3746     uint32_t value = s->kvm_dirty_ring_size;
3747 
3748     visit_type_uint32(v, name, &value, errp);
3749 }
3750 
3751 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3752                                     const char *name, void *opaque,
3753                                     Error **errp)
3754 {
3755     KVMState *s = KVM_STATE(obj);
3756     uint32_t value;
3757 
3758     if (s->fd != -1) {
3759         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3760         return;
3761     }
3762 
3763     if (!visit_type_uint32(v, name, &value, errp)) {
3764         return;
3765     }
3766     if (value & (value - 1)) {
3767         error_setg(errp, "dirty-ring-size must be a power of two.");
3768         return;
3769     }
3770 
3771     s->kvm_dirty_ring_size = value;
3772 }
3773 
3774 static char *kvm_get_device(Object *obj,
3775                             Error **errp G_GNUC_UNUSED)
3776 {
3777     KVMState *s = KVM_STATE(obj);
3778 
3779     return g_strdup(s->device);
3780 }
3781 
3782 static void kvm_set_device(Object *obj,
3783                            const char *value,
3784                            Error **errp G_GNUC_UNUSED)
3785 {
3786     KVMState *s = KVM_STATE(obj);
3787 
3788     g_free(s->device);
3789     s->device = g_strdup(value);
3790 }
3791 
3792 static void kvm_set_kvm_rapl(Object *obj, bool value, Error **errp)
3793 {
3794     KVMState *s = KVM_STATE(obj);
3795     s->msr_energy.enable = value;
3796 }
3797 
3798 static void kvm_set_kvm_rapl_socket_path(Object *obj,
3799                                          const char *str,
3800                                          Error **errp)
3801 {
3802     KVMState *s = KVM_STATE(obj);
3803     g_free(s->msr_energy.socket_path);
3804     s->msr_energy.socket_path = g_strdup(str);
3805 }
3806 
3807 static void kvm_accel_instance_init(Object *obj)
3808 {
3809     KVMState *s = KVM_STATE(obj);
3810 
3811     s->fd = -1;
3812     s->vmfd = -1;
3813     s->kvm_shadow_mem = -1;
3814     s->kernel_irqchip_allowed = true;
3815     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3816     /* KVM dirty ring is by default off */
3817     s->kvm_dirty_ring_size = 0;
3818     s->kvm_dirty_ring_with_bitmap = false;
3819     s->kvm_eager_split_size = 0;
3820     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3821     s->notify_window = 0;
3822     s->xen_version = 0;
3823     s->xen_gnttab_max_frames = 64;
3824     s->xen_evtchn_max_pirq = 256;
3825     s->device = NULL;
3826     s->msr_energy.enable = false;
3827 }
3828 
3829 /**
3830  * kvm_gdbstub_sstep_flags():
3831  *
3832  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3833  * support is probed during kvm_init()
3834  */
3835 static int kvm_gdbstub_sstep_flags(void)
3836 {
3837     return kvm_sstep_flags;
3838 }
3839 
3840 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3841 {
3842     AccelClass *ac = ACCEL_CLASS(oc);
3843     ac->name = "KVM";
3844     ac->init_machine = kvm_init;
3845     ac->has_memory = kvm_accel_has_memory;
3846     ac->allowed = &kvm_allowed;
3847     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3848 
3849     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3850         NULL, kvm_set_kernel_irqchip,
3851         NULL, NULL);
3852     object_class_property_set_description(oc, "kernel-irqchip",
3853         "Configure KVM in-kernel irqchip");
3854 
3855     object_class_property_add(oc, "kvm-shadow-mem", "int",
3856         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3857         NULL, NULL);
3858     object_class_property_set_description(oc, "kvm-shadow-mem",
3859         "KVM shadow MMU size");
3860 
3861     object_class_property_add(oc, "dirty-ring-size", "uint32",
3862         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3863         NULL, NULL);
3864     object_class_property_set_description(oc, "dirty-ring-size",
3865         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3866 
3867     object_class_property_add_str(oc, "device", kvm_get_device, kvm_set_device);
3868     object_class_property_set_description(oc, "device",
3869         "Path to the device node to use (default: /dev/kvm)");
3870 
3871     object_class_property_add_bool(oc, "rapl",
3872                                    NULL,
3873                                    kvm_set_kvm_rapl);
3874     object_class_property_set_description(oc, "rapl",
3875         "Allow energy related MSRs for RAPL interface in Guest");
3876 
3877     object_class_property_add_str(oc, "rapl-helper-socket", NULL,
3878                                   kvm_set_kvm_rapl_socket_path);
3879     object_class_property_set_description(oc, "rapl-helper-socket",
3880         "Socket Path for comminucating with the Virtual MSR helper daemon");
3881 
3882     kvm_arch_accel_class_init(oc);
3883 }
3884 
3885 static const TypeInfo kvm_accel_type = {
3886     .name = TYPE_KVM_ACCEL,
3887     .parent = TYPE_ACCEL,
3888     .instance_init = kvm_accel_instance_init,
3889     .class_init = kvm_accel_class_init,
3890     .instance_size = sizeof(KVMState),
3891 };
3892 
3893 static void kvm_type_init(void)
3894 {
3895     type_register_static(&kvm_accel_type);
3896 }
3897 
3898 type_init(kvm_type_init);
3899 
3900 typedef struct StatsArgs {
3901     union StatsResultsType {
3902         StatsResultList **stats;
3903         StatsSchemaList **schema;
3904     } result;
3905     strList *names;
3906     Error **errp;
3907 } StatsArgs;
3908 
3909 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3910                                     uint64_t *stats_data,
3911                                     StatsList *stats_list,
3912                                     Error **errp)
3913 {
3914 
3915     Stats *stats;
3916     uint64List *val_list = NULL;
3917 
3918     /* Only add stats that we understand.  */
3919     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3920     case KVM_STATS_TYPE_CUMULATIVE:
3921     case KVM_STATS_TYPE_INSTANT:
3922     case KVM_STATS_TYPE_PEAK:
3923     case KVM_STATS_TYPE_LINEAR_HIST:
3924     case KVM_STATS_TYPE_LOG_HIST:
3925         break;
3926     default:
3927         return stats_list;
3928     }
3929 
3930     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3931     case KVM_STATS_UNIT_NONE:
3932     case KVM_STATS_UNIT_BYTES:
3933     case KVM_STATS_UNIT_CYCLES:
3934     case KVM_STATS_UNIT_SECONDS:
3935     case KVM_STATS_UNIT_BOOLEAN:
3936         break;
3937     default:
3938         return stats_list;
3939     }
3940 
3941     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3942     case KVM_STATS_BASE_POW10:
3943     case KVM_STATS_BASE_POW2:
3944         break;
3945     default:
3946         return stats_list;
3947     }
3948 
3949     /* Alloc and populate data list */
3950     stats = g_new0(Stats, 1);
3951     stats->name = g_strdup(pdesc->name);
3952     stats->value = g_new0(StatsValue, 1);
3953 
3954     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3955         stats->value->u.boolean = *stats_data;
3956         stats->value->type = QTYPE_QBOOL;
3957     } else if (pdesc->size == 1) {
3958         stats->value->u.scalar = *stats_data;
3959         stats->value->type = QTYPE_QNUM;
3960     } else {
3961         int i;
3962         for (i = 0; i < pdesc->size; i++) {
3963             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3964         }
3965         stats->value->u.list = val_list;
3966         stats->value->type = QTYPE_QLIST;
3967     }
3968 
3969     QAPI_LIST_PREPEND(stats_list, stats);
3970     return stats_list;
3971 }
3972 
3973 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3974                                                  StatsSchemaValueList *list,
3975                                                  Error **errp)
3976 {
3977     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3978     schema_entry->value = g_new0(StatsSchemaValue, 1);
3979 
3980     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3981     case KVM_STATS_TYPE_CUMULATIVE:
3982         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3983         break;
3984     case KVM_STATS_TYPE_INSTANT:
3985         schema_entry->value->type = STATS_TYPE_INSTANT;
3986         break;
3987     case KVM_STATS_TYPE_PEAK:
3988         schema_entry->value->type = STATS_TYPE_PEAK;
3989         break;
3990     case KVM_STATS_TYPE_LINEAR_HIST:
3991         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3992         schema_entry->value->bucket_size = pdesc->bucket_size;
3993         schema_entry->value->has_bucket_size = true;
3994         break;
3995     case KVM_STATS_TYPE_LOG_HIST:
3996         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3997         break;
3998     default:
3999         goto exit;
4000     }
4001 
4002     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
4003     case KVM_STATS_UNIT_NONE:
4004         break;
4005     case KVM_STATS_UNIT_BOOLEAN:
4006         schema_entry->value->has_unit = true;
4007         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
4008         break;
4009     case KVM_STATS_UNIT_BYTES:
4010         schema_entry->value->has_unit = true;
4011         schema_entry->value->unit = STATS_UNIT_BYTES;
4012         break;
4013     case KVM_STATS_UNIT_CYCLES:
4014         schema_entry->value->has_unit = true;
4015         schema_entry->value->unit = STATS_UNIT_CYCLES;
4016         break;
4017     case KVM_STATS_UNIT_SECONDS:
4018         schema_entry->value->has_unit = true;
4019         schema_entry->value->unit = STATS_UNIT_SECONDS;
4020         break;
4021     default:
4022         goto exit;
4023     }
4024 
4025     schema_entry->value->exponent = pdesc->exponent;
4026     if (pdesc->exponent) {
4027         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
4028         case KVM_STATS_BASE_POW10:
4029             schema_entry->value->has_base = true;
4030             schema_entry->value->base = 10;
4031             break;
4032         case KVM_STATS_BASE_POW2:
4033             schema_entry->value->has_base = true;
4034             schema_entry->value->base = 2;
4035             break;
4036         default:
4037             goto exit;
4038         }
4039     }
4040 
4041     schema_entry->value->name = g_strdup(pdesc->name);
4042     schema_entry->next = list;
4043     return schema_entry;
4044 exit:
4045     g_free(schema_entry->value);
4046     g_free(schema_entry);
4047     return list;
4048 }
4049 
4050 /* Cached stats descriptors */
4051 typedef struct StatsDescriptors {
4052     const char *ident; /* cache key, currently the StatsTarget */
4053     struct kvm_stats_desc *kvm_stats_desc;
4054     struct kvm_stats_header kvm_stats_header;
4055     QTAILQ_ENTRY(StatsDescriptors) next;
4056 } StatsDescriptors;
4057 
4058 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
4059     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
4060 
4061 /*
4062  * Return the descriptors for 'target', that either have already been read
4063  * or are retrieved from 'stats_fd'.
4064  */
4065 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
4066                                                 Error **errp)
4067 {
4068     StatsDescriptors *descriptors;
4069     const char *ident;
4070     struct kvm_stats_desc *kvm_stats_desc;
4071     struct kvm_stats_header *kvm_stats_header;
4072     size_t size_desc;
4073     ssize_t ret;
4074 
4075     ident = StatsTarget_str(target);
4076     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
4077         if (g_str_equal(descriptors->ident, ident)) {
4078             return descriptors;
4079         }
4080     }
4081 
4082     descriptors = g_new0(StatsDescriptors, 1);
4083 
4084     /* Read stats header */
4085     kvm_stats_header = &descriptors->kvm_stats_header;
4086     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
4087     if (ret != sizeof(*kvm_stats_header)) {
4088         error_setg(errp, "KVM stats: failed to read stats header: "
4089                    "expected %zu actual %zu",
4090                    sizeof(*kvm_stats_header), ret);
4091         g_free(descriptors);
4092         return NULL;
4093     }
4094     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4095 
4096     /* Read stats descriptors */
4097     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
4098     ret = pread(stats_fd, kvm_stats_desc,
4099                 size_desc * kvm_stats_header->num_desc,
4100                 kvm_stats_header->desc_offset);
4101 
4102     if (ret != size_desc * kvm_stats_header->num_desc) {
4103         error_setg(errp, "KVM stats: failed to read stats descriptors: "
4104                    "expected %zu actual %zu",
4105                    size_desc * kvm_stats_header->num_desc, ret);
4106         g_free(descriptors);
4107         g_free(kvm_stats_desc);
4108         return NULL;
4109     }
4110     descriptors->kvm_stats_desc = kvm_stats_desc;
4111     descriptors->ident = ident;
4112     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
4113     return descriptors;
4114 }
4115 
4116 static void query_stats(StatsResultList **result, StatsTarget target,
4117                         strList *names, int stats_fd, CPUState *cpu,
4118                         Error **errp)
4119 {
4120     struct kvm_stats_desc *kvm_stats_desc;
4121     struct kvm_stats_header *kvm_stats_header;
4122     StatsDescriptors *descriptors;
4123     g_autofree uint64_t *stats_data = NULL;
4124     struct kvm_stats_desc *pdesc;
4125     StatsList *stats_list = NULL;
4126     size_t size_desc, size_data = 0;
4127     ssize_t ret;
4128     int i;
4129 
4130     descriptors = find_stats_descriptors(target, stats_fd, errp);
4131     if (!descriptors) {
4132         return;
4133     }
4134 
4135     kvm_stats_header = &descriptors->kvm_stats_header;
4136     kvm_stats_desc = descriptors->kvm_stats_desc;
4137     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4138 
4139     /* Tally the total data size; read schema data */
4140     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4141         pdesc = (void *)kvm_stats_desc + i * size_desc;
4142         size_data += pdesc->size * sizeof(*stats_data);
4143     }
4144 
4145     stats_data = g_malloc0(size_data);
4146     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4147 
4148     if (ret != size_data) {
4149         error_setg(errp, "KVM stats: failed to read data: "
4150                    "expected %zu actual %zu", size_data, ret);
4151         return;
4152     }
4153 
4154     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4155         uint64_t *stats;
4156         pdesc = (void *)kvm_stats_desc + i * size_desc;
4157 
4158         /* Add entry to the list */
4159         stats = (void *)stats_data + pdesc->offset;
4160         if (!apply_str_list_filter(pdesc->name, names)) {
4161             continue;
4162         }
4163         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4164     }
4165 
4166     if (!stats_list) {
4167         return;
4168     }
4169 
4170     switch (target) {
4171     case STATS_TARGET_VM:
4172         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4173         break;
4174     case STATS_TARGET_VCPU:
4175         add_stats_entry(result, STATS_PROVIDER_KVM,
4176                         cpu->parent_obj.canonical_path,
4177                         stats_list);
4178         break;
4179     default:
4180         g_assert_not_reached();
4181     }
4182 }
4183 
4184 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4185                                int stats_fd, Error **errp)
4186 {
4187     struct kvm_stats_desc *kvm_stats_desc;
4188     struct kvm_stats_header *kvm_stats_header;
4189     StatsDescriptors *descriptors;
4190     struct kvm_stats_desc *pdesc;
4191     StatsSchemaValueList *stats_list = NULL;
4192     size_t size_desc;
4193     int i;
4194 
4195     descriptors = find_stats_descriptors(target, stats_fd, errp);
4196     if (!descriptors) {
4197         return;
4198     }
4199 
4200     kvm_stats_header = &descriptors->kvm_stats_header;
4201     kvm_stats_desc = descriptors->kvm_stats_desc;
4202     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4203 
4204     /* Tally the total data size; read schema data */
4205     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4206         pdesc = (void *)kvm_stats_desc + i * size_desc;
4207         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4208     }
4209 
4210     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4211 }
4212 
4213 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4214 {
4215     int stats_fd = cpu->kvm_vcpu_stats_fd;
4216     Error *local_err = NULL;
4217 
4218     if (stats_fd == -1) {
4219         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4220         error_propagate(kvm_stats_args->errp, local_err);
4221         return;
4222     }
4223     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4224                 kvm_stats_args->names, stats_fd, cpu,
4225                 kvm_stats_args->errp);
4226 }
4227 
4228 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4229 {
4230     int stats_fd = cpu->kvm_vcpu_stats_fd;
4231     Error *local_err = NULL;
4232 
4233     if (stats_fd == -1) {
4234         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4235         error_propagate(kvm_stats_args->errp, local_err);
4236         return;
4237     }
4238     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4239                        kvm_stats_args->errp);
4240 }
4241 
4242 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4243                            strList *names, strList *targets, Error **errp)
4244 {
4245     KVMState *s = kvm_state;
4246     CPUState *cpu;
4247     int stats_fd;
4248 
4249     switch (target) {
4250     case STATS_TARGET_VM:
4251     {
4252         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4253         if (stats_fd == -1) {
4254             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4255             return;
4256         }
4257         query_stats(result, target, names, stats_fd, NULL, errp);
4258         close(stats_fd);
4259         break;
4260     }
4261     case STATS_TARGET_VCPU:
4262     {
4263         StatsArgs stats_args;
4264         stats_args.result.stats = result;
4265         stats_args.names = names;
4266         stats_args.errp = errp;
4267         CPU_FOREACH(cpu) {
4268             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4269                 continue;
4270             }
4271             query_stats_vcpu(cpu, &stats_args);
4272         }
4273         break;
4274     }
4275     default:
4276         break;
4277     }
4278 }
4279 
4280 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4281 {
4282     StatsArgs stats_args;
4283     KVMState *s = kvm_state;
4284     int stats_fd;
4285 
4286     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4287     if (stats_fd == -1) {
4288         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4289         return;
4290     }
4291     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4292     close(stats_fd);
4293 
4294     if (first_cpu) {
4295         stats_args.result.schema = result;
4296         stats_args.errp = errp;
4297         query_stats_schema_vcpu(first_cpu, &stats_args);
4298     }
4299 }
4300 
4301 void kvm_mark_guest_state_protected(void)
4302 {
4303     kvm_state->guest_state_protected = true;
4304 }
4305 
4306 int kvm_create_guest_memfd(uint64_t size, uint64_t flags, Error **errp)
4307 {
4308     int fd;
4309     struct kvm_create_guest_memfd guest_memfd = {
4310         .size = size,
4311         .flags = flags,
4312     };
4313 
4314     if (!kvm_guest_memfd_supported) {
4315         error_setg(errp, "KVM does not support guest_memfd");
4316         return -1;
4317     }
4318 
4319     fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
4320     if (fd < 0) {
4321         error_setg_errno(errp, errno, "Error creating KVM guest_memfd");
4322         return -1;
4323     }
4324 
4325     return fd;
4326 }
4327