xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 6016b7b46edb714a53a31536b30ead9c3aafaef7)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
48 
49 #include "hw/boards.h"
50 
51 /* This check must be after config-host.h is included */
52 #ifdef CONFIG_EVENTFD
53 #include <sys/eventfd.h>
54 #endif
55 
56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
57  * need to use the real host PAGE_SIZE, as that's what KVM will use.
58  */
59 #ifdef PAGE_SIZE
60 #undef PAGE_SIZE
61 #endif
62 #define PAGE_SIZE qemu_real_host_page_size
63 
64 #ifndef KVM_GUESTDBG_BLOCKIRQ
65 #define KVM_GUESTDBG_BLOCKIRQ 0
66 #endif
67 
68 //#define DEBUG_KVM
69 
70 #ifdef DEBUG_KVM
71 #define DPRINTF(fmt, ...) \
72     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
73 #else
74 #define DPRINTF(fmt, ...) \
75     do { } while (0)
76 #endif
77 
78 #define KVM_MSI_HASHTAB_SIZE    256
79 
80 struct KVMParkedVcpu {
81     unsigned long vcpu_id;
82     int kvm_fd;
83     QLIST_ENTRY(KVMParkedVcpu) node;
84 };
85 
86 enum KVMDirtyRingReaperState {
87     KVM_DIRTY_RING_REAPER_NONE = 0,
88     /* The reaper is sleeping */
89     KVM_DIRTY_RING_REAPER_WAIT,
90     /* The reaper is reaping for dirty pages */
91     KVM_DIRTY_RING_REAPER_REAPING,
92 };
93 
94 /*
95  * KVM reaper instance, responsible for collecting the KVM dirty bits
96  * via the dirty ring.
97  */
98 struct KVMDirtyRingReaper {
99     /* The reaper thread */
100     QemuThread reaper_thr;
101     volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
102     volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
103 };
104 
105 struct KVMState
106 {
107     AccelState parent_obj;
108 
109     int nr_slots;
110     int fd;
111     int vmfd;
112     int coalesced_mmio;
113     int coalesced_pio;
114     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
115     bool coalesced_flush_in_progress;
116     int vcpu_events;
117     int robust_singlestep;
118     int debugregs;
119 #ifdef KVM_CAP_SET_GUEST_DEBUG
120     QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
121 #endif
122     int max_nested_state_len;
123     int many_ioeventfds;
124     int intx_set_mask;
125     int kvm_shadow_mem;
126     bool kernel_irqchip_allowed;
127     bool kernel_irqchip_required;
128     OnOffAuto kernel_irqchip_split;
129     bool sync_mmu;
130     uint64_t manual_dirty_log_protect;
131     /* The man page (and posix) say ioctl numbers are signed int, but
132      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
133      * unsigned, and treating them as signed here can break things */
134     unsigned irq_set_ioctl;
135     unsigned int sigmask_len;
136     GHashTable *gsimap;
137 #ifdef KVM_CAP_IRQ_ROUTING
138     struct kvm_irq_routing *irq_routes;
139     int nr_allocated_irq_routes;
140     unsigned long *used_gsi_bitmap;
141     unsigned int gsi_count;
142     QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
143 #endif
144     KVMMemoryListener memory_listener;
145     QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
146 
147     /* For "info mtree -f" to tell if an MR is registered in KVM */
148     int nr_as;
149     struct KVMAs {
150         KVMMemoryListener *ml;
151         AddressSpace *as;
152     } *as;
153     uint64_t kvm_dirty_ring_bytes;  /* Size of the per-vcpu dirty ring */
154     uint32_t kvm_dirty_ring_size;   /* Number of dirty GFNs per ring */
155     struct KVMDirtyRingReaper reaper;
156 };
157 
158 KVMState *kvm_state;
159 bool kvm_kernel_irqchip;
160 bool kvm_split_irqchip;
161 bool kvm_async_interrupts_allowed;
162 bool kvm_halt_in_kernel_allowed;
163 bool kvm_eventfds_allowed;
164 bool kvm_irqfds_allowed;
165 bool kvm_resamplefds_allowed;
166 bool kvm_msi_via_irqfd_allowed;
167 bool kvm_gsi_routing_allowed;
168 bool kvm_gsi_direct_mapping;
169 bool kvm_allowed;
170 bool kvm_readonly_mem_allowed;
171 bool kvm_vm_attributes_allowed;
172 bool kvm_direct_msi_allowed;
173 bool kvm_ioeventfd_any_length_allowed;
174 bool kvm_msi_use_devid;
175 bool kvm_has_guest_debug;
176 int kvm_sstep_flags;
177 static bool kvm_immediate_exit;
178 static hwaddr kvm_max_slot_size = ~0;
179 
180 static const KVMCapabilityInfo kvm_required_capabilites[] = {
181     KVM_CAP_INFO(USER_MEMORY),
182     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
183     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
184     KVM_CAP_LAST_INFO
185 };
186 
187 static NotifierList kvm_irqchip_change_notifiers =
188     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
189 
190 struct KVMResampleFd {
191     int gsi;
192     EventNotifier *resample_event;
193     QLIST_ENTRY(KVMResampleFd) node;
194 };
195 typedef struct KVMResampleFd KVMResampleFd;
196 
197 /*
198  * Only used with split irqchip where we need to do the resample fd
199  * kick for the kernel from userspace.
200  */
201 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
202     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
203 
204 static QemuMutex kml_slots_lock;
205 
206 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
207 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
208 
209 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
210 
211 static inline void kvm_resample_fd_remove(int gsi)
212 {
213     KVMResampleFd *rfd;
214 
215     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
216         if (rfd->gsi == gsi) {
217             QLIST_REMOVE(rfd, node);
218             g_free(rfd);
219             break;
220         }
221     }
222 }
223 
224 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
225 {
226     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
227 
228     rfd->gsi = gsi;
229     rfd->resample_event = event;
230 
231     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
232 }
233 
234 void kvm_resample_fd_notify(int gsi)
235 {
236     KVMResampleFd *rfd;
237 
238     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
239         if (rfd->gsi == gsi) {
240             event_notifier_set(rfd->resample_event);
241             trace_kvm_resample_fd_notify(gsi);
242             return;
243         }
244     }
245 }
246 
247 int kvm_get_max_memslots(void)
248 {
249     KVMState *s = KVM_STATE(current_accel());
250 
251     return s->nr_slots;
252 }
253 
254 /* Called with KVMMemoryListener.slots_lock held */
255 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
256 {
257     KVMState *s = kvm_state;
258     int i;
259 
260     for (i = 0; i < s->nr_slots; i++) {
261         if (kml->slots[i].memory_size == 0) {
262             return &kml->slots[i];
263         }
264     }
265 
266     return NULL;
267 }
268 
269 bool kvm_has_free_slot(MachineState *ms)
270 {
271     KVMState *s = KVM_STATE(ms->accelerator);
272     bool result;
273     KVMMemoryListener *kml = &s->memory_listener;
274 
275     kvm_slots_lock();
276     result = !!kvm_get_free_slot(kml);
277     kvm_slots_unlock();
278 
279     return result;
280 }
281 
282 /* Called with KVMMemoryListener.slots_lock held */
283 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
284 {
285     KVMSlot *slot = kvm_get_free_slot(kml);
286 
287     if (slot) {
288         return slot;
289     }
290 
291     fprintf(stderr, "%s: no free slot available\n", __func__);
292     abort();
293 }
294 
295 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
296                                          hwaddr start_addr,
297                                          hwaddr size)
298 {
299     KVMState *s = kvm_state;
300     int i;
301 
302     for (i = 0; i < s->nr_slots; i++) {
303         KVMSlot *mem = &kml->slots[i];
304 
305         if (start_addr == mem->start_addr && size == mem->memory_size) {
306             return mem;
307         }
308     }
309 
310     return NULL;
311 }
312 
313 /*
314  * Calculate and align the start address and the size of the section.
315  * Return the size. If the size is 0, the aligned section is empty.
316  */
317 static hwaddr kvm_align_section(MemoryRegionSection *section,
318                                 hwaddr *start)
319 {
320     hwaddr size = int128_get64(section->size);
321     hwaddr delta, aligned;
322 
323     /* kvm works in page size chunks, but the function may be called
324        with sub-page size and unaligned start address. Pad the start
325        address to next and truncate size to previous page boundary. */
326     aligned = ROUND_UP(section->offset_within_address_space,
327                        qemu_real_host_page_size);
328     delta = aligned - section->offset_within_address_space;
329     *start = aligned;
330     if (delta > size) {
331         return 0;
332     }
333 
334     return (size - delta) & qemu_real_host_page_mask;
335 }
336 
337 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
338                                        hwaddr *phys_addr)
339 {
340     KVMMemoryListener *kml = &s->memory_listener;
341     int i, ret = 0;
342 
343     kvm_slots_lock();
344     for (i = 0; i < s->nr_slots; i++) {
345         KVMSlot *mem = &kml->slots[i];
346 
347         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
348             *phys_addr = mem->start_addr + (ram - mem->ram);
349             ret = 1;
350             break;
351         }
352     }
353     kvm_slots_unlock();
354 
355     return ret;
356 }
357 
358 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
359 {
360     KVMState *s = kvm_state;
361     struct kvm_userspace_memory_region mem;
362     int ret;
363 
364     mem.slot = slot->slot | (kml->as_id << 16);
365     mem.guest_phys_addr = slot->start_addr;
366     mem.userspace_addr = (unsigned long)slot->ram;
367     mem.flags = slot->flags;
368 
369     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
370         /* Set the slot size to 0 before setting the slot to the desired
371          * value. This is needed based on KVM commit 75d61fbc. */
372         mem.memory_size = 0;
373         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
374         if (ret < 0) {
375             goto err;
376         }
377     }
378     mem.memory_size = slot->memory_size;
379     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
380     slot->old_flags = mem.flags;
381 err:
382     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
383                               mem.memory_size, mem.userspace_addr, ret);
384     if (ret < 0) {
385         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
386                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
387                      __func__, mem.slot, slot->start_addr,
388                      (uint64_t)mem.memory_size, strerror(errno));
389     }
390     return ret;
391 }
392 
393 static int do_kvm_destroy_vcpu(CPUState *cpu)
394 {
395     KVMState *s = kvm_state;
396     long mmap_size;
397     struct KVMParkedVcpu *vcpu = NULL;
398     int ret = 0;
399 
400     DPRINTF("kvm_destroy_vcpu\n");
401 
402     ret = kvm_arch_destroy_vcpu(cpu);
403     if (ret < 0) {
404         goto err;
405     }
406 
407     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
408     if (mmap_size < 0) {
409         ret = mmap_size;
410         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
411         goto err;
412     }
413 
414     ret = munmap(cpu->kvm_run, mmap_size);
415     if (ret < 0) {
416         goto err;
417     }
418 
419     if (cpu->kvm_dirty_gfns) {
420         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
421         if (ret < 0) {
422             goto err;
423         }
424     }
425 
426     vcpu = g_malloc0(sizeof(*vcpu));
427     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
428     vcpu->kvm_fd = cpu->kvm_fd;
429     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
430 err:
431     return ret;
432 }
433 
434 void kvm_destroy_vcpu(CPUState *cpu)
435 {
436     if (do_kvm_destroy_vcpu(cpu) < 0) {
437         error_report("kvm_destroy_vcpu failed");
438         exit(EXIT_FAILURE);
439     }
440 }
441 
442 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
443 {
444     struct KVMParkedVcpu *cpu;
445 
446     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
447         if (cpu->vcpu_id == vcpu_id) {
448             int kvm_fd;
449 
450             QLIST_REMOVE(cpu, node);
451             kvm_fd = cpu->kvm_fd;
452             g_free(cpu);
453             return kvm_fd;
454         }
455     }
456 
457     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
458 }
459 
460 int kvm_init_vcpu(CPUState *cpu, Error **errp)
461 {
462     KVMState *s = kvm_state;
463     long mmap_size;
464     int ret;
465 
466     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
467 
468     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
469     if (ret < 0) {
470         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
471                          kvm_arch_vcpu_id(cpu));
472         goto err;
473     }
474 
475     cpu->kvm_fd = ret;
476     cpu->kvm_state = s;
477     cpu->vcpu_dirty = true;
478     cpu->dirty_pages = 0;
479 
480     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
481     if (mmap_size < 0) {
482         ret = mmap_size;
483         error_setg_errno(errp, -mmap_size,
484                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
485         goto err;
486     }
487 
488     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
489                         cpu->kvm_fd, 0);
490     if (cpu->kvm_run == MAP_FAILED) {
491         ret = -errno;
492         error_setg_errno(errp, ret,
493                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
494                          kvm_arch_vcpu_id(cpu));
495         goto err;
496     }
497 
498     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
499         s->coalesced_mmio_ring =
500             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
501     }
502 
503     if (s->kvm_dirty_ring_size) {
504         /* Use MAP_SHARED to share pages with the kernel */
505         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
506                                    PROT_READ | PROT_WRITE, MAP_SHARED,
507                                    cpu->kvm_fd,
508                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
509         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
510             ret = -errno;
511             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
512             goto err;
513         }
514     }
515 
516     ret = kvm_arch_init_vcpu(cpu);
517     if (ret < 0) {
518         error_setg_errno(errp, -ret,
519                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
520                          kvm_arch_vcpu_id(cpu));
521     }
522 err:
523     return ret;
524 }
525 
526 /*
527  * dirty pages logging control
528  */
529 
530 static int kvm_mem_flags(MemoryRegion *mr)
531 {
532     bool readonly = mr->readonly || memory_region_is_romd(mr);
533     int flags = 0;
534 
535     if (memory_region_get_dirty_log_mask(mr) != 0) {
536         flags |= KVM_MEM_LOG_DIRTY_PAGES;
537     }
538     if (readonly && kvm_readonly_mem_allowed) {
539         flags |= KVM_MEM_READONLY;
540     }
541     return flags;
542 }
543 
544 /* Called with KVMMemoryListener.slots_lock held */
545 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
546                                  MemoryRegion *mr)
547 {
548     mem->flags = kvm_mem_flags(mr);
549 
550     /* If nothing changed effectively, no need to issue ioctl */
551     if (mem->flags == mem->old_flags) {
552         return 0;
553     }
554 
555     kvm_slot_init_dirty_bitmap(mem);
556     return kvm_set_user_memory_region(kml, mem, false);
557 }
558 
559 static int kvm_section_update_flags(KVMMemoryListener *kml,
560                                     MemoryRegionSection *section)
561 {
562     hwaddr start_addr, size, slot_size;
563     KVMSlot *mem;
564     int ret = 0;
565 
566     size = kvm_align_section(section, &start_addr);
567     if (!size) {
568         return 0;
569     }
570 
571     kvm_slots_lock();
572 
573     while (size && !ret) {
574         slot_size = MIN(kvm_max_slot_size, size);
575         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
576         if (!mem) {
577             /* We don't have a slot if we want to trap every access. */
578             goto out;
579         }
580 
581         ret = kvm_slot_update_flags(kml, mem, section->mr);
582         start_addr += slot_size;
583         size -= slot_size;
584     }
585 
586 out:
587     kvm_slots_unlock();
588     return ret;
589 }
590 
591 static void kvm_log_start(MemoryListener *listener,
592                           MemoryRegionSection *section,
593                           int old, int new)
594 {
595     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
596     int r;
597 
598     if (old != 0) {
599         return;
600     }
601 
602     r = kvm_section_update_flags(kml, section);
603     if (r < 0) {
604         abort();
605     }
606 }
607 
608 static void kvm_log_stop(MemoryListener *listener,
609                           MemoryRegionSection *section,
610                           int old, int new)
611 {
612     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
613     int r;
614 
615     if (new != 0) {
616         return;
617     }
618 
619     r = kvm_section_update_flags(kml, section);
620     if (r < 0) {
621         abort();
622     }
623 }
624 
625 /* get kvm's dirty pages bitmap and update qemu's */
626 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
627 {
628     ram_addr_t start = slot->ram_start_offset;
629     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size;
630 
631     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
632 }
633 
634 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
635 {
636     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
637 }
638 
639 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
640 
641 /* Allocate the dirty bitmap for a slot  */
642 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
643 {
644     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
645         return;
646     }
647 
648     /*
649      * XXX bad kernel interface alert
650      * For dirty bitmap, kernel allocates array of size aligned to
651      * bits-per-long.  But for case when the kernel is 64bits and
652      * the userspace is 32bits, userspace can't align to the same
653      * bits-per-long, since sizeof(long) is different between kernel
654      * and user space.  This way, userspace will provide buffer which
655      * may be 4 bytes less than the kernel will use, resulting in
656      * userspace memory corruption (which is not detectable by valgrind
657      * too, in most cases).
658      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
659      * a hope that sizeof(long) won't become >8 any time soon.
660      *
661      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
662      * And mem->memory_size is aligned to it (otherwise this mem can't
663      * be registered to KVM).
664      */
665     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
666                                         /*HOST_LONG_BITS*/ 64) / 8;
667     mem->dirty_bmap = g_malloc0(bitmap_size);
668     mem->dirty_bmap_size = bitmap_size;
669 }
670 
671 /*
672  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
673  * succeeded, false otherwise
674  */
675 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
676 {
677     struct kvm_dirty_log d = {};
678     int ret;
679 
680     d.dirty_bitmap = slot->dirty_bmap;
681     d.slot = slot->slot | (slot->as_id << 16);
682     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
683 
684     if (ret == -ENOENT) {
685         /* kernel does not have dirty bitmap in this slot */
686         ret = 0;
687     }
688     if (ret) {
689         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
690                           __func__, ret);
691     }
692     return ret == 0;
693 }
694 
695 /* Should be with all slots_lock held for the address spaces. */
696 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
697                                      uint32_t slot_id, uint64_t offset)
698 {
699     KVMMemoryListener *kml;
700     KVMSlot *mem;
701 
702     if (as_id >= s->nr_as) {
703         return;
704     }
705 
706     kml = s->as[as_id].ml;
707     mem = &kml->slots[slot_id];
708 
709     if (!mem->memory_size || offset >=
710         (mem->memory_size / qemu_real_host_page_size)) {
711         return;
712     }
713 
714     set_bit(offset, mem->dirty_bmap);
715 }
716 
717 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
718 {
719     return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
720 }
721 
722 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
723 {
724     gfn->flags = KVM_DIRTY_GFN_F_RESET;
725 }
726 
727 /*
728  * Should be with all slots_lock held for the address spaces.  It returns the
729  * dirty page we've collected on this dirty ring.
730  */
731 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
732 {
733     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
734     uint32_t ring_size = s->kvm_dirty_ring_size;
735     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
736 
737     assert(dirty_gfns && ring_size);
738     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
739 
740     while (true) {
741         cur = &dirty_gfns[fetch % ring_size];
742         if (!dirty_gfn_is_dirtied(cur)) {
743             break;
744         }
745         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
746                                  cur->offset);
747         dirty_gfn_set_collected(cur);
748         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
749         fetch++;
750         count++;
751     }
752     cpu->kvm_fetch_index = fetch;
753     cpu->dirty_pages += count;
754 
755     return count;
756 }
757 
758 /* Must be with slots_lock held */
759 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s)
760 {
761     int ret;
762     CPUState *cpu;
763     uint64_t total = 0;
764     int64_t stamp;
765 
766     stamp = get_clock();
767 
768     CPU_FOREACH(cpu) {
769         total += kvm_dirty_ring_reap_one(s, cpu);
770     }
771 
772     if (total) {
773         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
774         assert(ret == total);
775     }
776 
777     stamp = get_clock() - stamp;
778 
779     if (total) {
780         trace_kvm_dirty_ring_reap(total, stamp / 1000);
781     }
782 
783     return total;
784 }
785 
786 /*
787  * Currently for simplicity, we must hold BQL before calling this.  We can
788  * consider to drop the BQL if we're clear with all the race conditions.
789  */
790 static uint64_t kvm_dirty_ring_reap(KVMState *s)
791 {
792     uint64_t total;
793 
794     /*
795      * We need to lock all kvm slots for all address spaces here,
796      * because:
797      *
798      * (1) We need to mark dirty for dirty bitmaps in multiple slots
799      *     and for tons of pages, so it's better to take the lock here
800      *     once rather than once per page.  And more importantly,
801      *
802      * (2) We must _NOT_ publish dirty bits to the other threads
803      *     (e.g., the migration thread) via the kvm memory slot dirty
804      *     bitmaps before correctly re-protect those dirtied pages.
805      *     Otherwise we can have potential risk of data corruption if
806      *     the page data is read in the other thread before we do
807      *     reset below.
808      */
809     kvm_slots_lock();
810     total = kvm_dirty_ring_reap_locked(s);
811     kvm_slots_unlock();
812 
813     return total;
814 }
815 
816 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
817 {
818     /* No need to do anything */
819 }
820 
821 /*
822  * Kick all vcpus out in a synchronized way.  When returned, we
823  * guarantee that every vcpu has been kicked and at least returned to
824  * userspace once.
825  */
826 static void kvm_cpu_synchronize_kick_all(void)
827 {
828     CPUState *cpu;
829 
830     CPU_FOREACH(cpu) {
831         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
832     }
833 }
834 
835 /*
836  * Flush all the existing dirty pages to the KVM slot buffers.  When
837  * this call returns, we guarantee that all the touched dirty pages
838  * before calling this function have been put into the per-kvmslot
839  * dirty bitmap.
840  *
841  * This function must be called with BQL held.
842  */
843 static void kvm_dirty_ring_flush(void)
844 {
845     trace_kvm_dirty_ring_flush(0);
846     /*
847      * The function needs to be serialized.  Since this function
848      * should always be with BQL held, serialization is guaranteed.
849      * However, let's be sure of it.
850      */
851     assert(qemu_mutex_iothread_locked());
852     /*
853      * First make sure to flush the hardware buffers by kicking all
854      * vcpus out in a synchronous way.
855      */
856     kvm_cpu_synchronize_kick_all();
857     kvm_dirty_ring_reap(kvm_state);
858     trace_kvm_dirty_ring_flush(1);
859 }
860 
861 /**
862  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
863  *
864  * This function will first try to fetch dirty bitmap from the kernel,
865  * and then updates qemu's dirty bitmap.
866  *
867  * NOTE: caller must be with kml->slots_lock held.
868  *
869  * @kml: the KVM memory listener object
870  * @section: the memory section to sync the dirty bitmap with
871  */
872 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
873                                            MemoryRegionSection *section)
874 {
875     KVMState *s = kvm_state;
876     KVMSlot *mem;
877     hwaddr start_addr, size;
878     hwaddr slot_size;
879 
880     size = kvm_align_section(section, &start_addr);
881     while (size) {
882         slot_size = MIN(kvm_max_slot_size, size);
883         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
884         if (!mem) {
885             /* We don't have a slot if we want to trap every access. */
886             return;
887         }
888         if (kvm_slot_get_dirty_log(s, mem)) {
889             kvm_slot_sync_dirty_pages(mem);
890         }
891         start_addr += slot_size;
892         size -= slot_size;
893     }
894 }
895 
896 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
897 #define KVM_CLEAR_LOG_SHIFT  6
898 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
899 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
900 
901 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
902                                   uint64_t size)
903 {
904     KVMState *s = kvm_state;
905     uint64_t end, bmap_start, start_delta, bmap_npages;
906     struct kvm_clear_dirty_log d;
907     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
908     int ret;
909 
910     /*
911      * We need to extend either the start or the size or both to
912      * satisfy the KVM interface requirement.  Firstly, do the start
913      * page alignment on 64 host pages
914      */
915     bmap_start = start & KVM_CLEAR_LOG_MASK;
916     start_delta = start - bmap_start;
917     bmap_start /= psize;
918 
919     /*
920      * The kernel interface has restriction on the size too, that either:
921      *
922      * (1) the size is 64 host pages aligned (just like the start), or
923      * (2) the size fills up until the end of the KVM memslot.
924      */
925     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
926         << KVM_CLEAR_LOG_SHIFT;
927     end = mem->memory_size / psize;
928     if (bmap_npages > end - bmap_start) {
929         bmap_npages = end - bmap_start;
930     }
931     start_delta /= psize;
932 
933     /*
934      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
935      * that we won't clear any unknown dirty bits otherwise we might
936      * accidentally clear some set bits which are not yet synced from
937      * the kernel into QEMU's bitmap, then we'll lose track of the
938      * guest modifications upon those pages (which can directly lead
939      * to guest data loss or panic after migration).
940      *
941      * Layout of the KVMSlot.dirty_bmap:
942      *
943      *                   |<-------- bmap_npages -----------..>|
944      *                                                     [1]
945      *                     start_delta         size
946      *  |----------------|-------------|------------------|------------|
947      *  ^                ^             ^                               ^
948      *  |                |             |                               |
949      * start          bmap_start     (start)                         end
950      * of memslot                                             of memslot
951      *
952      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
953      */
954 
955     assert(bmap_start % BITS_PER_LONG == 0);
956     /* We should never do log_clear before log_sync */
957     assert(mem->dirty_bmap);
958     if (start_delta || bmap_npages - size / psize) {
959         /* Slow path - we need to manipulate a temp bitmap */
960         bmap_clear = bitmap_new(bmap_npages);
961         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
962                                     bmap_start, start_delta + size / psize);
963         /*
964          * We need to fill the holes at start because that was not
965          * specified by the caller and we extended the bitmap only for
966          * 64 pages alignment
967          */
968         bitmap_clear(bmap_clear, 0, start_delta);
969         d.dirty_bitmap = bmap_clear;
970     } else {
971         /*
972          * Fast path - both start and size align well with BITS_PER_LONG
973          * (or the end of memory slot)
974          */
975         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
976     }
977 
978     d.first_page = bmap_start;
979     /* It should never overflow.  If it happens, say something */
980     assert(bmap_npages <= UINT32_MAX);
981     d.num_pages = bmap_npages;
982     d.slot = mem->slot | (as_id << 16);
983 
984     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
985     if (ret < 0 && ret != -ENOENT) {
986         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
987                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
988                      __func__, d.slot, (uint64_t)d.first_page,
989                      (uint32_t)d.num_pages, ret);
990     } else {
991         ret = 0;
992         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
993     }
994 
995     /*
996      * After we have updated the remote dirty bitmap, we update the
997      * cached bitmap as well for the memslot, then if another user
998      * clears the same region we know we shouldn't clear it again on
999      * the remote otherwise it's data loss as well.
1000      */
1001     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1002                  size / psize);
1003     /* This handles the NULL case well */
1004     g_free(bmap_clear);
1005     return ret;
1006 }
1007 
1008 
1009 /**
1010  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1011  *
1012  * NOTE: this will be a no-op if we haven't enabled manual dirty log
1013  * protection in the host kernel because in that case this operation
1014  * will be done within log_sync().
1015  *
1016  * @kml:     the kvm memory listener
1017  * @section: the memory range to clear dirty bitmap
1018  */
1019 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1020                                   MemoryRegionSection *section)
1021 {
1022     KVMState *s = kvm_state;
1023     uint64_t start, size, offset, count;
1024     KVMSlot *mem;
1025     int ret = 0, i;
1026 
1027     if (!s->manual_dirty_log_protect) {
1028         /* No need to do explicit clear */
1029         return ret;
1030     }
1031 
1032     start = section->offset_within_address_space;
1033     size = int128_get64(section->size);
1034 
1035     if (!size) {
1036         /* Nothing more we can do... */
1037         return ret;
1038     }
1039 
1040     kvm_slots_lock();
1041 
1042     for (i = 0; i < s->nr_slots; i++) {
1043         mem = &kml->slots[i];
1044         /* Discard slots that are empty or do not overlap the section */
1045         if (!mem->memory_size ||
1046             mem->start_addr > start + size - 1 ||
1047             start > mem->start_addr + mem->memory_size - 1) {
1048             continue;
1049         }
1050 
1051         if (start >= mem->start_addr) {
1052             /* The slot starts before section or is aligned to it.  */
1053             offset = start - mem->start_addr;
1054             count = MIN(mem->memory_size - offset, size);
1055         } else {
1056             /* The slot starts after section.  */
1057             offset = 0;
1058             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1059         }
1060         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1061         if (ret < 0) {
1062             break;
1063         }
1064     }
1065 
1066     kvm_slots_unlock();
1067 
1068     return ret;
1069 }
1070 
1071 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1072                                      MemoryRegionSection *secion,
1073                                      hwaddr start, hwaddr size)
1074 {
1075     KVMState *s = kvm_state;
1076 
1077     if (s->coalesced_mmio) {
1078         struct kvm_coalesced_mmio_zone zone;
1079 
1080         zone.addr = start;
1081         zone.size = size;
1082         zone.pad = 0;
1083 
1084         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1085     }
1086 }
1087 
1088 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1089                                        MemoryRegionSection *secion,
1090                                        hwaddr start, hwaddr size)
1091 {
1092     KVMState *s = kvm_state;
1093 
1094     if (s->coalesced_mmio) {
1095         struct kvm_coalesced_mmio_zone zone;
1096 
1097         zone.addr = start;
1098         zone.size = size;
1099         zone.pad = 0;
1100 
1101         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1102     }
1103 }
1104 
1105 static void kvm_coalesce_pio_add(MemoryListener *listener,
1106                                 MemoryRegionSection *section,
1107                                 hwaddr start, hwaddr size)
1108 {
1109     KVMState *s = kvm_state;
1110 
1111     if (s->coalesced_pio) {
1112         struct kvm_coalesced_mmio_zone zone;
1113 
1114         zone.addr = start;
1115         zone.size = size;
1116         zone.pio = 1;
1117 
1118         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1119     }
1120 }
1121 
1122 static void kvm_coalesce_pio_del(MemoryListener *listener,
1123                                 MemoryRegionSection *section,
1124                                 hwaddr start, hwaddr size)
1125 {
1126     KVMState *s = kvm_state;
1127 
1128     if (s->coalesced_pio) {
1129         struct kvm_coalesced_mmio_zone zone;
1130 
1131         zone.addr = start;
1132         zone.size = size;
1133         zone.pio = 1;
1134 
1135         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1136      }
1137 }
1138 
1139 static MemoryListener kvm_coalesced_pio_listener = {
1140     .name = "kvm-coalesced-pio",
1141     .coalesced_io_add = kvm_coalesce_pio_add,
1142     .coalesced_io_del = kvm_coalesce_pio_del,
1143 };
1144 
1145 int kvm_check_extension(KVMState *s, unsigned int extension)
1146 {
1147     int ret;
1148 
1149     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1150     if (ret < 0) {
1151         ret = 0;
1152     }
1153 
1154     return ret;
1155 }
1156 
1157 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1158 {
1159     int ret;
1160 
1161     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1162     if (ret < 0) {
1163         /* VM wide version not implemented, use global one instead */
1164         ret = kvm_check_extension(s, extension);
1165     }
1166 
1167     return ret;
1168 }
1169 
1170 typedef struct HWPoisonPage {
1171     ram_addr_t ram_addr;
1172     QLIST_ENTRY(HWPoisonPage) list;
1173 } HWPoisonPage;
1174 
1175 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1176     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1177 
1178 static void kvm_unpoison_all(void *param)
1179 {
1180     HWPoisonPage *page, *next_page;
1181 
1182     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1183         QLIST_REMOVE(page, list);
1184         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1185         g_free(page);
1186     }
1187 }
1188 
1189 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1190 {
1191     HWPoisonPage *page;
1192 
1193     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1194         if (page->ram_addr == ram_addr) {
1195             return;
1196         }
1197     }
1198     page = g_new(HWPoisonPage, 1);
1199     page->ram_addr = ram_addr;
1200     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1201 }
1202 
1203 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1204 {
1205 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
1206     /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
1207      * endianness, but the memory core hands them in target endianness.
1208      * For example, PPC is always treated as big-endian even if running
1209      * on KVM and on PPC64LE.  Correct here.
1210      */
1211     switch (size) {
1212     case 2:
1213         val = bswap16(val);
1214         break;
1215     case 4:
1216         val = bswap32(val);
1217         break;
1218     }
1219 #endif
1220     return val;
1221 }
1222 
1223 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1224                                   bool assign, uint32_t size, bool datamatch)
1225 {
1226     int ret;
1227     struct kvm_ioeventfd iofd = {
1228         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1229         .addr = addr,
1230         .len = size,
1231         .flags = 0,
1232         .fd = fd,
1233     };
1234 
1235     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1236                                  datamatch);
1237     if (!kvm_enabled()) {
1238         return -ENOSYS;
1239     }
1240 
1241     if (datamatch) {
1242         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1243     }
1244     if (!assign) {
1245         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1246     }
1247 
1248     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1249 
1250     if (ret < 0) {
1251         return -errno;
1252     }
1253 
1254     return 0;
1255 }
1256 
1257 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1258                                  bool assign, uint32_t size, bool datamatch)
1259 {
1260     struct kvm_ioeventfd kick = {
1261         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1262         .addr = addr,
1263         .flags = KVM_IOEVENTFD_FLAG_PIO,
1264         .len = size,
1265         .fd = fd,
1266     };
1267     int r;
1268     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1269     if (!kvm_enabled()) {
1270         return -ENOSYS;
1271     }
1272     if (datamatch) {
1273         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1274     }
1275     if (!assign) {
1276         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1277     }
1278     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1279     if (r < 0) {
1280         return r;
1281     }
1282     return 0;
1283 }
1284 
1285 
1286 static int kvm_check_many_ioeventfds(void)
1287 {
1288     /* Userspace can use ioeventfd for io notification.  This requires a host
1289      * that supports eventfd(2) and an I/O thread; since eventfd does not
1290      * support SIGIO it cannot interrupt the vcpu.
1291      *
1292      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1293      * can avoid creating too many ioeventfds.
1294      */
1295 #if defined(CONFIG_EVENTFD)
1296     int ioeventfds[7];
1297     int i, ret = 0;
1298     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1299         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1300         if (ioeventfds[i] < 0) {
1301             break;
1302         }
1303         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1304         if (ret < 0) {
1305             close(ioeventfds[i]);
1306             break;
1307         }
1308     }
1309 
1310     /* Decide whether many devices are supported or not */
1311     ret = i == ARRAY_SIZE(ioeventfds);
1312 
1313     while (i-- > 0) {
1314         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1315         close(ioeventfds[i]);
1316     }
1317     return ret;
1318 #else
1319     return 0;
1320 #endif
1321 }
1322 
1323 static const KVMCapabilityInfo *
1324 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1325 {
1326     while (list->name) {
1327         if (!kvm_check_extension(s, list->value)) {
1328             return list;
1329         }
1330         list++;
1331     }
1332     return NULL;
1333 }
1334 
1335 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1336 {
1337     g_assert(
1338         ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1339     );
1340     kvm_max_slot_size = max_slot_size;
1341 }
1342 
1343 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1344                              MemoryRegionSection *section, bool add)
1345 {
1346     KVMSlot *mem;
1347     int err;
1348     MemoryRegion *mr = section->mr;
1349     bool writeable = !mr->readonly && !mr->rom_device;
1350     hwaddr start_addr, size, slot_size, mr_offset;
1351     ram_addr_t ram_start_offset;
1352     void *ram;
1353 
1354     if (!memory_region_is_ram(mr)) {
1355         if (writeable || !kvm_readonly_mem_allowed) {
1356             return;
1357         } else if (!mr->romd_mode) {
1358             /* If the memory device is not in romd_mode, then we actually want
1359              * to remove the kvm memory slot so all accesses will trap. */
1360             add = false;
1361         }
1362     }
1363 
1364     size = kvm_align_section(section, &start_addr);
1365     if (!size) {
1366         return;
1367     }
1368 
1369     /* The offset of the kvmslot within the memory region */
1370     mr_offset = section->offset_within_region + start_addr -
1371         section->offset_within_address_space;
1372 
1373     /* use aligned delta to align the ram address and offset */
1374     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1375     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1376 
1377     kvm_slots_lock();
1378 
1379     if (!add) {
1380         do {
1381             slot_size = MIN(kvm_max_slot_size, size);
1382             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1383             if (!mem) {
1384                 goto out;
1385             }
1386             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1387                 /*
1388                  * NOTE: We should be aware of the fact that here we're only
1389                  * doing a best effort to sync dirty bits.  No matter whether
1390                  * we're using dirty log or dirty ring, we ignored two facts:
1391                  *
1392                  * (1) dirty bits can reside in hardware buffers (PML)
1393                  *
1394                  * (2) after we collected dirty bits here, pages can be dirtied
1395                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1396                  * remove the slot.
1397                  *
1398                  * Not easy.  Let's cross the fingers until it's fixed.
1399                  */
1400                 if (kvm_state->kvm_dirty_ring_size) {
1401                     kvm_dirty_ring_reap_locked(kvm_state);
1402                 } else {
1403                     kvm_slot_get_dirty_log(kvm_state, mem);
1404                 }
1405                 kvm_slot_sync_dirty_pages(mem);
1406             }
1407 
1408             /* unregister the slot */
1409             g_free(mem->dirty_bmap);
1410             mem->dirty_bmap = NULL;
1411             mem->memory_size = 0;
1412             mem->flags = 0;
1413             err = kvm_set_user_memory_region(kml, mem, false);
1414             if (err) {
1415                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1416                         __func__, strerror(-err));
1417                 abort();
1418             }
1419             start_addr += slot_size;
1420             size -= slot_size;
1421         } while (size);
1422         goto out;
1423     }
1424 
1425     /* register the new slot */
1426     do {
1427         slot_size = MIN(kvm_max_slot_size, size);
1428         mem = kvm_alloc_slot(kml);
1429         mem->as_id = kml->as_id;
1430         mem->memory_size = slot_size;
1431         mem->start_addr = start_addr;
1432         mem->ram_start_offset = ram_start_offset;
1433         mem->ram = ram;
1434         mem->flags = kvm_mem_flags(mr);
1435         kvm_slot_init_dirty_bitmap(mem);
1436         err = kvm_set_user_memory_region(kml, mem, true);
1437         if (err) {
1438             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1439                     strerror(-err));
1440             abort();
1441         }
1442         start_addr += slot_size;
1443         ram_start_offset += slot_size;
1444         ram += slot_size;
1445         size -= slot_size;
1446     } while (size);
1447 
1448 out:
1449     kvm_slots_unlock();
1450 }
1451 
1452 static void *kvm_dirty_ring_reaper_thread(void *data)
1453 {
1454     KVMState *s = data;
1455     struct KVMDirtyRingReaper *r = &s->reaper;
1456 
1457     rcu_register_thread();
1458 
1459     trace_kvm_dirty_ring_reaper("init");
1460 
1461     while (true) {
1462         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1463         trace_kvm_dirty_ring_reaper("wait");
1464         /*
1465          * TODO: provide a smarter timeout rather than a constant?
1466          */
1467         sleep(1);
1468 
1469         trace_kvm_dirty_ring_reaper("wakeup");
1470         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1471 
1472         qemu_mutex_lock_iothread();
1473         kvm_dirty_ring_reap(s);
1474         qemu_mutex_unlock_iothread();
1475 
1476         r->reaper_iteration++;
1477     }
1478 
1479     trace_kvm_dirty_ring_reaper("exit");
1480 
1481     rcu_unregister_thread();
1482 
1483     return NULL;
1484 }
1485 
1486 static int kvm_dirty_ring_reaper_init(KVMState *s)
1487 {
1488     struct KVMDirtyRingReaper *r = &s->reaper;
1489 
1490     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1491                        kvm_dirty_ring_reaper_thread,
1492                        s, QEMU_THREAD_JOINABLE);
1493 
1494     return 0;
1495 }
1496 
1497 static void kvm_region_add(MemoryListener *listener,
1498                            MemoryRegionSection *section)
1499 {
1500     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1501 
1502     memory_region_ref(section->mr);
1503     kvm_set_phys_mem(kml, section, true);
1504 }
1505 
1506 static void kvm_region_del(MemoryListener *listener,
1507                            MemoryRegionSection *section)
1508 {
1509     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1510 
1511     kvm_set_phys_mem(kml, section, false);
1512     memory_region_unref(section->mr);
1513 }
1514 
1515 static void kvm_log_sync(MemoryListener *listener,
1516                          MemoryRegionSection *section)
1517 {
1518     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1519 
1520     kvm_slots_lock();
1521     kvm_physical_sync_dirty_bitmap(kml, section);
1522     kvm_slots_unlock();
1523 }
1524 
1525 static void kvm_log_sync_global(MemoryListener *l)
1526 {
1527     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1528     KVMState *s = kvm_state;
1529     KVMSlot *mem;
1530     int i;
1531 
1532     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1533     kvm_dirty_ring_flush();
1534 
1535     /*
1536      * TODO: make this faster when nr_slots is big while there are
1537      * only a few used slots (small VMs).
1538      */
1539     kvm_slots_lock();
1540     for (i = 0; i < s->nr_slots; i++) {
1541         mem = &kml->slots[i];
1542         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1543             kvm_slot_sync_dirty_pages(mem);
1544             /*
1545              * This is not needed by KVM_GET_DIRTY_LOG because the
1546              * ioctl will unconditionally overwrite the whole region.
1547              * However kvm dirty ring has no such side effect.
1548              */
1549             kvm_slot_reset_dirty_pages(mem);
1550         }
1551     }
1552     kvm_slots_unlock();
1553 }
1554 
1555 static void kvm_log_clear(MemoryListener *listener,
1556                           MemoryRegionSection *section)
1557 {
1558     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1559     int r;
1560 
1561     r = kvm_physical_log_clear(kml, section);
1562     if (r < 0) {
1563         error_report_once("%s: kvm log clear failed: mr=%s "
1564                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1565                           section->mr->name, section->offset_within_region,
1566                           int128_get64(section->size));
1567         abort();
1568     }
1569 }
1570 
1571 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1572                                   MemoryRegionSection *section,
1573                                   bool match_data, uint64_t data,
1574                                   EventNotifier *e)
1575 {
1576     int fd = event_notifier_get_fd(e);
1577     int r;
1578 
1579     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1580                                data, true, int128_get64(section->size),
1581                                match_data);
1582     if (r < 0) {
1583         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1584                 __func__, strerror(-r), -r);
1585         abort();
1586     }
1587 }
1588 
1589 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1590                                   MemoryRegionSection *section,
1591                                   bool match_data, uint64_t data,
1592                                   EventNotifier *e)
1593 {
1594     int fd = event_notifier_get_fd(e);
1595     int r;
1596 
1597     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1598                                data, false, int128_get64(section->size),
1599                                match_data);
1600     if (r < 0) {
1601         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1602                 __func__, strerror(-r), -r);
1603         abort();
1604     }
1605 }
1606 
1607 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1608                                  MemoryRegionSection *section,
1609                                  bool match_data, uint64_t data,
1610                                  EventNotifier *e)
1611 {
1612     int fd = event_notifier_get_fd(e);
1613     int r;
1614 
1615     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1616                               data, true, int128_get64(section->size),
1617                               match_data);
1618     if (r < 0) {
1619         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1620                 __func__, strerror(-r), -r);
1621         abort();
1622     }
1623 }
1624 
1625 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1626                                  MemoryRegionSection *section,
1627                                  bool match_data, uint64_t data,
1628                                  EventNotifier *e)
1629 
1630 {
1631     int fd = event_notifier_get_fd(e);
1632     int r;
1633 
1634     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1635                               data, false, int128_get64(section->size),
1636                               match_data);
1637     if (r < 0) {
1638         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1639                 __func__, strerror(-r), -r);
1640         abort();
1641     }
1642 }
1643 
1644 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1645                                   AddressSpace *as, int as_id, const char *name)
1646 {
1647     int i;
1648 
1649     kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1650     kml->as_id = as_id;
1651 
1652     for (i = 0; i < s->nr_slots; i++) {
1653         kml->slots[i].slot = i;
1654     }
1655 
1656     kml->listener.region_add = kvm_region_add;
1657     kml->listener.region_del = kvm_region_del;
1658     kml->listener.log_start = kvm_log_start;
1659     kml->listener.log_stop = kvm_log_stop;
1660     kml->listener.priority = 10;
1661     kml->listener.name = name;
1662 
1663     if (s->kvm_dirty_ring_size) {
1664         kml->listener.log_sync_global = kvm_log_sync_global;
1665     } else {
1666         kml->listener.log_sync = kvm_log_sync;
1667         kml->listener.log_clear = kvm_log_clear;
1668     }
1669 
1670     memory_listener_register(&kml->listener, as);
1671 
1672     for (i = 0; i < s->nr_as; ++i) {
1673         if (!s->as[i].as) {
1674             s->as[i].as = as;
1675             s->as[i].ml = kml;
1676             break;
1677         }
1678     }
1679 }
1680 
1681 static MemoryListener kvm_io_listener = {
1682     .name = "kvm-io",
1683     .eventfd_add = kvm_io_ioeventfd_add,
1684     .eventfd_del = kvm_io_ioeventfd_del,
1685     .priority = 10,
1686 };
1687 
1688 int kvm_set_irq(KVMState *s, int irq, int level)
1689 {
1690     struct kvm_irq_level event;
1691     int ret;
1692 
1693     assert(kvm_async_interrupts_enabled());
1694 
1695     event.level = level;
1696     event.irq = irq;
1697     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1698     if (ret < 0) {
1699         perror("kvm_set_irq");
1700         abort();
1701     }
1702 
1703     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1704 }
1705 
1706 #ifdef KVM_CAP_IRQ_ROUTING
1707 typedef struct KVMMSIRoute {
1708     struct kvm_irq_routing_entry kroute;
1709     QTAILQ_ENTRY(KVMMSIRoute) entry;
1710 } KVMMSIRoute;
1711 
1712 static void set_gsi(KVMState *s, unsigned int gsi)
1713 {
1714     set_bit(gsi, s->used_gsi_bitmap);
1715 }
1716 
1717 static void clear_gsi(KVMState *s, unsigned int gsi)
1718 {
1719     clear_bit(gsi, s->used_gsi_bitmap);
1720 }
1721 
1722 void kvm_init_irq_routing(KVMState *s)
1723 {
1724     int gsi_count, i;
1725 
1726     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1727     if (gsi_count > 0) {
1728         /* Round up so we can search ints using ffs */
1729         s->used_gsi_bitmap = bitmap_new(gsi_count);
1730         s->gsi_count = gsi_count;
1731     }
1732 
1733     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1734     s->nr_allocated_irq_routes = 0;
1735 
1736     if (!kvm_direct_msi_allowed) {
1737         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1738             QTAILQ_INIT(&s->msi_hashtab[i]);
1739         }
1740     }
1741 
1742     kvm_arch_init_irq_routing(s);
1743 }
1744 
1745 void kvm_irqchip_commit_routes(KVMState *s)
1746 {
1747     int ret;
1748 
1749     if (kvm_gsi_direct_mapping()) {
1750         return;
1751     }
1752 
1753     if (!kvm_gsi_routing_enabled()) {
1754         return;
1755     }
1756 
1757     s->irq_routes->flags = 0;
1758     trace_kvm_irqchip_commit_routes();
1759     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1760     assert(ret == 0);
1761 }
1762 
1763 static void kvm_add_routing_entry(KVMState *s,
1764                                   struct kvm_irq_routing_entry *entry)
1765 {
1766     struct kvm_irq_routing_entry *new;
1767     int n, size;
1768 
1769     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1770         n = s->nr_allocated_irq_routes * 2;
1771         if (n < 64) {
1772             n = 64;
1773         }
1774         size = sizeof(struct kvm_irq_routing);
1775         size += n * sizeof(*new);
1776         s->irq_routes = g_realloc(s->irq_routes, size);
1777         s->nr_allocated_irq_routes = n;
1778     }
1779     n = s->irq_routes->nr++;
1780     new = &s->irq_routes->entries[n];
1781 
1782     *new = *entry;
1783 
1784     set_gsi(s, entry->gsi);
1785 }
1786 
1787 static int kvm_update_routing_entry(KVMState *s,
1788                                     struct kvm_irq_routing_entry *new_entry)
1789 {
1790     struct kvm_irq_routing_entry *entry;
1791     int n;
1792 
1793     for (n = 0; n < s->irq_routes->nr; n++) {
1794         entry = &s->irq_routes->entries[n];
1795         if (entry->gsi != new_entry->gsi) {
1796             continue;
1797         }
1798 
1799         if(!memcmp(entry, new_entry, sizeof *entry)) {
1800             return 0;
1801         }
1802 
1803         *entry = *new_entry;
1804 
1805         return 0;
1806     }
1807 
1808     return -ESRCH;
1809 }
1810 
1811 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1812 {
1813     struct kvm_irq_routing_entry e = {};
1814 
1815     assert(pin < s->gsi_count);
1816 
1817     e.gsi = irq;
1818     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1819     e.flags = 0;
1820     e.u.irqchip.irqchip = irqchip;
1821     e.u.irqchip.pin = pin;
1822     kvm_add_routing_entry(s, &e);
1823 }
1824 
1825 void kvm_irqchip_release_virq(KVMState *s, int virq)
1826 {
1827     struct kvm_irq_routing_entry *e;
1828     int i;
1829 
1830     if (kvm_gsi_direct_mapping()) {
1831         return;
1832     }
1833 
1834     for (i = 0; i < s->irq_routes->nr; i++) {
1835         e = &s->irq_routes->entries[i];
1836         if (e->gsi == virq) {
1837             s->irq_routes->nr--;
1838             *e = s->irq_routes->entries[s->irq_routes->nr];
1839         }
1840     }
1841     clear_gsi(s, virq);
1842     kvm_arch_release_virq_post(virq);
1843     trace_kvm_irqchip_release_virq(virq);
1844 }
1845 
1846 void kvm_irqchip_add_change_notifier(Notifier *n)
1847 {
1848     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1849 }
1850 
1851 void kvm_irqchip_remove_change_notifier(Notifier *n)
1852 {
1853     notifier_remove(n);
1854 }
1855 
1856 void kvm_irqchip_change_notify(void)
1857 {
1858     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1859 }
1860 
1861 static unsigned int kvm_hash_msi(uint32_t data)
1862 {
1863     /* This is optimized for IA32 MSI layout. However, no other arch shall
1864      * repeat the mistake of not providing a direct MSI injection API. */
1865     return data & 0xff;
1866 }
1867 
1868 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1869 {
1870     KVMMSIRoute *route, *next;
1871     unsigned int hash;
1872 
1873     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1874         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1875             kvm_irqchip_release_virq(s, route->kroute.gsi);
1876             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1877             g_free(route);
1878         }
1879     }
1880 }
1881 
1882 static int kvm_irqchip_get_virq(KVMState *s)
1883 {
1884     int next_virq;
1885 
1886     /*
1887      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1888      * GSI numbers are more than the number of IRQ route. Allocating a GSI
1889      * number can succeed even though a new route entry cannot be added.
1890      * When this happens, flush dynamic MSI entries to free IRQ route entries.
1891      */
1892     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1893         kvm_flush_dynamic_msi_routes(s);
1894     }
1895 
1896     /* Return the lowest unused GSI in the bitmap */
1897     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1898     if (next_virq >= s->gsi_count) {
1899         return -ENOSPC;
1900     } else {
1901         return next_virq;
1902     }
1903 }
1904 
1905 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1906 {
1907     unsigned int hash = kvm_hash_msi(msg.data);
1908     KVMMSIRoute *route;
1909 
1910     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1911         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1912             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1913             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1914             return route;
1915         }
1916     }
1917     return NULL;
1918 }
1919 
1920 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1921 {
1922     struct kvm_msi msi;
1923     KVMMSIRoute *route;
1924 
1925     if (kvm_direct_msi_allowed) {
1926         msi.address_lo = (uint32_t)msg.address;
1927         msi.address_hi = msg.address >> 32;
1928         msi.data = le32_to_cpu(msg.data);
1929         msi.flags = 0;
1930         memset(msi.pad, 0, sizeof(msi.pad));
1931 
1932         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1933     }
1934 
1935     route = kvm_lookup_msi_route(s, msg);
1936     if (!route) {
1937         int virq;
1938 
1939         virq = kvm_irqchip_get_virq(s);
1940         if (virq < 0) {
1941             return virq;
1942         }
1943 
1944         route = g_malloc0(sizeof(KVMMSIRoute));
1945         route->kroute.gsi = virq;
1946         route->kroute.type = KVM_IRQ_ROUTING_MSI;
1947         route->kroute.flags = 0;
1948         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1949         route->kroute.u.msi.address_hi = msg.address >> 32;
1950         route->kroute.u.msi.data = le32_to_cpu(msg.data);
1951 
1952         kvm_add_routing_entry(s, &route->kroute);
1953         kvm_irqchip_commit_routes(s);
1954 
1955         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1956                            entry);
1957     }
1958 
1959     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1960 
1961     return kvm_set_irq(s, route->kroute.gsi, 1);
1962 }
1963 
1964 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1965 {
1966     struct kvm_irq_routing_entry kroute = {};
1967     int virq;
1968     MSIMessage msg = {0, 0};
1969 
1970     if (pci_available && dev) {
1971         msg = pci_get_msi_message(dev, vector);
1972     }
1973 
1974     if (kvm_gsi_direct_mapping()) {
1975         return kvm_arch_msi_data_to_gsi(msg.data);
1976     }
1977 
1978     if (!kvm_gsi_routing_enabled()) {
1979         return -ENOSYS;
1980     }
1981 
1982     virq = kvm_irqchip_get_virq(s);
1983     if (virq < 0) {
1984         return virq;
1985     }
1986 
1987     kroute.gsi = virq;
1988     kroute.type = KVM_IRQ_ROUTING_MSI;
1989     kroute.flags = 0;
1990     kroute.u.msi.address_lo = (uint32_t)msg.address;
1991     kroute.u.msi.address_hi = msg.address >> 32;
1992     kroute.u.msi.data = le32_to_cpu(msg.data);
1993     if (pci_available && kvm_msi_devid_required()) {
1994         kroute.flags = KVM_MSI_VALID_DEVID;
1995         kroute.u.msi.devid = pci_requester_id(dev);
1996     }
1997     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1998         kvm_irqchip_release_virq(s, virq);
1999         return -EINVAL;
2000     }
2001 
2002     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2003                                     vector, virq);
2004 
2005     kvm_add_routing_entry(s, &kroute);
2006     kvm_arch_add_msi_route_post(&kroute, vector, dev);
2007     kvm_irqchip_commit_routes(s);
2008 
2009     return virq;
2010 }
2011 
2012 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2013                                  PCIDevice *dev)
2014 {
2015     struct kvm_irq_routing_entry kroute = {};
2016 
2017     if (kvm_gsi_direct_mapping()) {
2018         return 0;
2019     }
2020 
2021     if (!kvm_irqchip_in_kernel()) {
2022         return -ENOSYS;
2023     }
2024 
2025     kroute.gsi = virq;
2026     kroute.type = KVM_IRQ_ROUTING_MSI;
2027     kroute.flags = 0;
2028     kroute.u.msi.address_lo = (uint32_t)msg.address;
2029     kroute.u.msi.address_hi = msg.address >> 32;
2030     kroute.u.msi.data = le32_to_cpu(msg.data);
2031     if (pci_available && kvm_msi_devid_required()) {
2032         kroute.flags = KVM_MSI_VALID_DEVID;
2033         kroute.u.msi.devid = pci_requester_id(dev);
2034     }
2035     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2036         return -EINVAL;
2037     }
2038 
2039     trace_kvm_irqchip_update_msi_route(virq);
2040 
2041     return kvm_update_routing_entry(s, &kroute);
2042 }
2043 
2044 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2045                                     EventNotifier *resample, int virq,
2046                                     bool assign)
2047 {
2048     int fd = event_notifier_get_fd(event);
2049     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2050 
2051     struct kvm_irqfd irqfd = {
2052         .fd = fd,
2053         .gsi = virq,
2054         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2055     };
2056 
2057     if (rfd != -1) {
2058         assert(assign);
2059         if (kvm_irqchip_is_split()) {
2060             /*
2061              * When the slow irqchip (e.g. IOAPIC) is in the
2062              * userspace, KVM kernel resamplefd will not work because
2063              * the EOI of the interrupt will be delivered to userspace
2064              * instead, so the KVM kernel resamplefd kick will be
2065              * skipped.  The userspace here mimics what the kernel
2066              * provides with resamplefd, remember the resamplefd and
2067              * kick it when we receive EOI of this IRQ.
2068              *
2069              * This is hackery because IOAPIC is mostly bypassed
2070              * (except EOI broadcasts) when irqfd is used.  However
2071              * this can bring much performance back for split irqchip
2072              * with INTx IRQs (for VFIO, this gives 93% perf of the
2073              * full fast path, which is 46% perf boost comparing to
2074              * the INTx slow path).
2075              */
2076             kvm_resample_fd_insert(virq, resample);
2077         } else {
2078             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2079             irqfd.resamplefd = rfd;
2080         }
2081     } else if (!assign) {
2082         if (kvm_irqchip_is_split()) {
2083             kvm_resample_fd_remove(virq);
2084         }
2085     }
2086 
2087     if (!kvm_irqfds_enabled()) {
2088         return -ENOSYS;
2089     }
2090 
2091     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2092 }
2093 
2094 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2095 {
2096     struct kvm_irq_routing_entry kroute = {};
2097     int virq;
2098 
2099     if (!kvm_gsi_routing_enabled()) {
2100         return -ENOSYS;
2101     }
2102 
2103     virq = kvm_irqchip_get_virq(s);
2104     if (virq < 0) {
2105         return virq;
2106     }
2107 
2108     kroute.gsi = virq;
2109     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2110     kroute.flags = 0;
2111     kroute.u.adapter.summary_addr = adapter->summary_addr;
2112     kroute.u.adapter.ind_addr = adapter->ind_addr;
2113     kroute.u.adapter.summary_offset = adapter->summary_offset;
2114     kroute.u.adapter.ind_offset = adapter->ind_offset;
2115     kroute.u.adapter.adapter_id = adapter->adapter_id;
2116 
2117     kvm_add_routing_entry(s, &kroute);
2118 
2119     return virq;
2120 }
2121 
2122 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2123 {
2124     struct kvm_irq_routing_entry kroute = {};
2125     int virq;
2126 
2127     if (!kvm_gsi_routing_enabled()) {
2128         return -ENOSYS;
2129     }
2130     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2131         return -ENOSYS;
2132     }
2133     virq = kvm_irqchip_get_virq(s);
2134     if (virq < 0) {
2135         return virq;
2136     }
2137 
2138     kroute.gsi = virq;
2139     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2140     kroute.flags = 0;
2141     kroute.u.hv_sint.vcpu = vcpu;
2142     kroute.u.hv_sint.sint = sint;
2143 
2144     kvm_add_routing_entry(s, &kroute);
2145     kvm_irqchip_commit_routes(s);
2146 
2147     return virq;
2148 }
2149 
2150 #else /* !KVM_CAP_IRQ_ROUTING */
2151 
2152 void kvm_init_irq_routing(KVMState *s)
2153 {
2154 }
2155 
2156 void kvm_irqchip_release_virq(KVMState *s, int virq)
2157 {
2158 }
2159 
2160 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2161 {
2162     abort();
2163 }
2164 
2165 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
2166 {
2167     return -ENOSYS;
2168 }
2169 
2170 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2171 {
2172     return -ENOSYS;
2173 }
2174 
2175 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2176 {
2177     return -ENOSYS;
2178 }
2179 
2180 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2181                                     EventNotifier *resample, int virq,
2182                                     bool assign)
2183 {
2184     abort();
2185 }
2186 
2187 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2188 {
2189     return -ENOSYS;
2190 }
2191 #endif /* !KVM_CAP_IRQ_ROUTING */
2192 
2193 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2194                                        EventNotifier *rn, int virq)
2195 {
2196     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2197 }
2198 
2199 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2200                                           int virq)
2201 {
2202     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2203 }
2204 
2205 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2206                                    EventNotifier *rn, qemu_irq irq)
2207 {
2208     gpointer key, gsi;
2209     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2210 
2211     if (!found) {
2212         return -ENXIO;
2213     }
2214     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2215 }
2216 
2217 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2218                                       qemu_irq irq)
2219 {
2220     gpointer key, gsi;
2221     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2222 
2223     if (!found) {
2224         return -ENXIO;
2225     }
2226     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2227 }
2228 
2229 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2230 {
2231     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2232 }
2233 
2234 static void kvm_irqchip_create(KVMState *s)
2235 {
2236     int ret;
2237 
2238     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2239     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2240         ;
2241     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2242         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2243         if (ret < 0) {
2244             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2245             exit(1);
2246         }
2247     } else {
2248         return;
2249     }
2250 
2251     /* First probe and see if there's a arch-specific hook to create the
2252      * in-kernel irqchip for us */
2253     ret = kvm_arch_irqchip_create(s);
2254     if (ret == 0) {
2255         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2256             perror("Split IRQ chip mode not supported.");
2257             exit(1);
2258         } else {
2259             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2260         }
2261     }
2262     if (ret < 0) {
2263         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2264         exit(1);
2265     }
2266 
2267     kvm_kernel_irqchip = true;
2268     /* If we have an in-kernel IRQ chip then we must have asynchronous
2269      * interrupt delivery (though the reverse is not necessarily true)
2270      */
2271     kvm_async_interrupts_allowed = true;
2272     kvm_halt_in_kernel_allowed = true;
2273 
2274     kvm_init_irq_routing(s);
2275 
2276     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2277 }
2278 
2279 /* Find number of supported CPUs using the recommended
2280  * procedure from the kernel API documentation to cope with
2281  * older kernels that may be missing capabilities.
2282  */
2283 static int kvm_recommended_vcpus(KVMState *s)
2284 {
2285     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2286     return (ret) ? ret : 4;
2287 }
2288 
2289 static int kvm_max_vcpus(KVMState *s)
2290 {
2291     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2292     return (ret) ? ret : kvm_recommended_vcpus(s);
2293 }
2294 
2295 static int kvm_max_vcpu_id(KVMState *s)
2296 {
2297     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2298     return (ret) ? ret : kvm_max_vcpus(s);
2299 }
2300 
2301 bool kvm_vcpu_id_is_valid(int vcpu_id)
2302 {
2303     KVMState *s = KVM_STATE(current_accel());
2304     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2305 }
2306 
2307 bool kvm_dirty_ring_enabled(void)
2308 {
2309     return kvm_state->kvm_dirty_ring_size ? true : false;
2310 }
2311 
2312 static int kvm_init(MachineState *ms)
2313 {
2314     MachineClass *mc = MACHINE_GET_CLASS(ms);
2315     static const char upgrade_note[] =
2316         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2317         "(see http://sourceforge.net/projects/kvm).\n";
2318     struct {
2319         const char *name;
2320         int num;
2321     } num_cpus[] = {
2322         { "SMP",          ms->smp.cpus },
2323         { "hotpluggable", ms->smp.max_cpus },
2324         { NULL, }
2325     }, *nc = num_cpus;
2326     int soft_vcpus_limit, hard_vcpus_limit;
2327     KVMState *s;
2328     const KVMCapabilityInfo *missing_cap;
2329     int ret;
2330     int type = 0;
2331     uint64_t dirty_log_manual_caps;
2332 
2333     qemu_mutex_init(&kml_slots_lock);
2334 
2335     s = KVM_STATE(ms->accelerator);
2336 
2337     /*
2338      * On systems where the kernel can support different base page
2339      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2340      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2341      * page size for the system though.
2342      */
2343     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2344 
2345     s->sigmask_len = 8;
2346 
2347 #ifdef KVM_CAP_SET_GUEST_DEBUG
2348     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2349 #endif
2350     QLIST_INIT(&s->kvm_parked_vcpus);
2351     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2352     if (s->fd == -1) {
2353         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2354         ret = -errno;
2355         goto err;
2356     }
2357 
2358     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2359     if (ret < KVM_API_VERSION) {
2360         if (ret >= 0) {
2361             ret = -EINVAL;
2362         }
2363         fprintf(stderr, "kvm version too old\n");
2364         goto err;
2365     }
2366 
2367     if (ret > KVM_API_VERSION) {
2368         ret = -EINVAL;
2369         fprintf(stderr, "kvm version not supported\n");
2370         goto err;
2371     }
2372 
2373     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2374     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2375 
2376     /* If unspecified, use the default value */
2377     if (!s->nr_slots) {
2378         s->nr_slots = 32;
2379     }
2380 
2381     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2382     if (s->nr_as <= 1) {
2383         s->nr_as = 1;
2384     }
2385     s->as = g_new0(struct KVMAs, s->nr_as);
2386 
2387     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2388         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2389                                                             "kvm-type",
2390                                                             &error_abort);
2391         type = mc->kvm_type(ms, kvm_type);
2392     } else if (mc->kvm_type) {
2393         type = mc->kvm_type(ms, NULL);
2394     }
2395 
2396     do {
2397         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2398     } while (ret == -EINTR);
2399 
2400     if (ret < 0) {
2401         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2402                 strerror(-ret));
2403 
2404 #ifdef TARGET_S390X
2405         if (ret == -EINVAL) {
2406             fprintf(stderr,
2407                     "Host kernel setup problem detected. Please verify:\n");
2408             fprintf(stderr, "- for kernels supporting the switch_amode or"
2409                     " user_mode parameters, whether\n");
2410             fprintf(stderr,
2411                     "  user space is running in primary address space\n");
2412             fprintf(stderr,
2413                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2414                     "whether it is enabled\n");
2415         }
2416 #elif defined(TARGET_PPC)
2417         if (ret == -EINVAL) {
2418             fprintf(stderr,
2419                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2420                     (type == 2) ? "pr" : "hv");
2421         }
2422 #endif
2423         goto err;
2424     }
2425 
2426     s->vmfd = ret;
2427 
2428     /* check the vcpu limits */
2429     soft_vcpus_limit = kvm_recommended_vcpus(s);
2430     hard_vcpus_limit = kvm_max_vcpus(s);
2431 
2432     while (nc->name) {
2433         if (nc->num > soft_vcpus_limit) {
2434             warn_report("Number of %s cpus requested (%d) exceeds "
2435                         "the recommended cpus supported by KVM (%d)",
2436                         nc->name, nc->num, soft_vcpus_limit);
2437 
2438             if (nc->num > hard_vcpus_limit) {
2439                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2440                         "the maximum cpus supported by KVM (%d)\n",
2441                         nc->name, nc->num, hard_vcpus_limit);
2442                 exit(1);
2443             }
2444         }
2445         nc++;
2446     }
2447 
2448     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2449     if (!missing_cap) {
2450         missing_cap =
2451             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2452     }
2453     if (missing_cap) {
2454         ret = -EINVAL;
2455         fprintf(stderr, "kvm does not support %s\n%s",
2456                 missing_cap->name, upgrade_note);
2457         goto err;
2458     }
2459 
2460     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2461     s->coalesced_pio = s->coalesced_mmio &&
2462                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2463 
2464     /*
2465      * Enable KVM dirty ring if supported, otherwise fall back to
2466      * dirty logging mode
2467      */
2468     if (s->kvm_dirty_ring_size > 0) {
2469         uint64_t ring_bytes;
2470 
2471         ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2472 
2473         /* Read the max supported pages */
2474         ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2475         if (ret > 0) {
2476             if (ring_bytes > ret) {
2477                 error_report("KVM dirty ring size %" PRIu32 " too big "
2478                              "(maximum is %ld).  Please use a smaller value.",
2479                              s->kvm_dirty_ring_size,
2480                              (long)ret / sizeof(struct kvm_dirty_gfn));
2481                 ret = -EINVAL;
2482                 goto err;
2483             }
2484 
2485             ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2486             if (ret) {
2487                 error_report("Enabling of KVM dirty ring failed: %s. "
2488                              "Suggested minimum value is 1024.", strerror(-ret));
2489                 goto err;
2490             }
2491 
2492             s->kvm_dirty_ring_bytes = ring_bytes;
2493          } else {
2494              warn_report("KVM dirty ring not available, using bitmap method");
2495              s->kvm_dirty_ring_size = 0;
2496         }
2497     }
2498 
2499     /*
2500      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2501      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2502      * page is wr-protected initially, which is against how kvm dirty ring is
2503      * usage - kvm dirty ring requires all pages are wr-protected at the very
2504      * beginning.  Enabling this feature for dirty ring causes data corruption.
2505      *
2506      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2507      * we may expect a higher stall time when starting the migration.  In the
2508      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2509      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2510      * guest pages.
2511      */
2512     if (!s->kvm_dirty_ring_size) {
2513         dirty_log_manual_caps =
2514             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2515         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2516                                   KVM_DIRTY_LOG_INITIALLY_SET);
2517         s->manual_dirty_log_protect = dirty_log_manual_caps;
2518         if (dirty_log_manual_caps) {
2519             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2520                                     dirty_log_manual_caps);
2521             if (ret) {
2522                 warn_report("Trying to enable capability %"PRIu64" of "
2523                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2524                             "Falling back to the legacy mode. ",
2525                             dirty_log_manual_caps);
2526                 s->manual_dirty_log_protect = 0;
2527             }
2528         }
2529     }
2530 
2531 #ifdef KVM_CAP_VCPU_EVENTS
2532     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2533 #endif
2534 
2535     s->robust_singlestep =
2536         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2537 
2538 #ifdef KVM_CAP_DEBUGREGS
2539     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2540 #endif
2541 
2542     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2543 
2544 #ifdef KVM_CAP_IRQ_ROUTING
2545     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2546 #endif
2547 
2548     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2549 
2550     s->irq_set_ioctl = KVM_IRQ_LINE;
2551     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2552         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2553     }
2554 
2555     kvm_readonly_mem_allowed =
2556         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2557 
2558     kvm_eventfds_allowed =
2559         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2560 
2561     kvm_irqfds_allowed =
2562         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2563 
2564     kvm_resamplefds_allowed =
2565         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2566 
2567     kvm_vm_attributes_allowed =
2568         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2569 
2570     kvm_ioeventfd_any_length_allowed =
2571         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2572 
2573 #ifdef KVM_CAP_SET_GUEST_DEBUG
2574     kvm_has_guest_debug =
2575         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2576 #endif
2577 
2578     kvm_sstep_flags = 0;
2579     if (kvm_has_guest_debug) {
2580         kvm_sstep_flags = SSTEP_ENABLE;
2581 
2582 #if defined KVM_CAP_SET_GUEST_DEBUG2
2583         int guest_debug_flags =
2584             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2585 
2586         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2587             kvm_sstep_flags |= SSTEP_NOIRQ;
2588         }
2589 #endif
2590     }
2591 
2592     kvm_state = s;
2593 
2594     ret = kvm_arch_init(ms, s);
2595     if (ret < 0) {
2596         goto err;
2597     }
2598 
2599     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2600         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2601     }
2602 
2603     qemu_register_reset(kvm_unpoison_all, NULL);
2604 
2605     if (s->kernel_irqchip_allowed) {
2606         kvm_irqchip_create(s);
2607     }
2608 
2609     if (kvm_eventfds_allowed) {
2610         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2611         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2612     }
2613     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2614     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2615 
2616     kvm_memory_listener_register(s, &s->memory_listener,
2617                                  &address_space_memory, 0, "kvm-memory");
2618     if (kvm_eventfds_allowed) {
2619         memory_listener_register(&kvm_io_listener,
2620                                  &address_space_io);
2621     }
2622     memory_listener_register(&kvm_coalesced_pio_listener,
2623                              &address_space_io);
2624 
2625     s->many_ioeventfds = kvm_check_many_ioeventfds();
2626 
2627     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2628     if (!s->sync_mmu) {
2629         ret = ram_block_discard_disable(true);
2630         assert(!ret);
2631     }
2632 
2633     if (s->kvm_dirty_ring_size) {
2634         ret = kvm_dirty_ring_reaper_init(s);
2635         if (ret) {
2636             goto err;
2637         }
2638     }
2639 
2640     return 0;
2641 
2642 err:
2643     assert(ret < 0);
2644     if (s->vmfd >= 0) {
2645         close(s->vmfd);
2646     }
2647     if (s->fd != -1) {
2648         close(s->fd);
2649     }
2650     g_free(s->memory_listener.slots);
2651 
2652     return ret;
2653 }
2654 
2655 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2656 {
2657     s->sigmask_len = sigmask_len;
2658 }
2659 
2660 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2661                           int size, uint32_t count)
2662 {
2663     int i;
2664     uint8_t *ptr = data;
2665 
2666     for (i = 0; i < count; i++) {
2667         address_space_rw(&address_space_io, port, attrs,
2668                          ptr, size,
2669                          direction == KVM_EXIT_IO_OUT);
2670         ptr += size;
2671     }
2672 }
2673 
2674 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2675 {
2676     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2677             run->internal.suberror);
2678 
2679     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2680         int i;
2681 
2682         for (i = 0; i < run->internal.ndata; ++i) {
2683             fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2684                     i, (uint64_t)run->internal.data[i]);
2685         }
2686     }
2687     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2688         fprintf(stderr, "emulation failure\n");
2689         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2690             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2691             return EXCP_INTERRUPT;
2692         }
2693     }
2694     /* FIXME: Should trigger a qmp message to let management know
2695      * something went wrong.
2696      */
2697     return -1;
2698 }
2699 
2700 void kvm_flush_coalesced_mmio_buffer(void)
2701 {
2702     KVMState *s = kvm_state;
2703 
2704     if (s->coalesced_flush_in_progress) {
2705         return;
2706     }
2707 
2708     s->coalesced_flush_in_progress = true;
2709 
2710     if (s->coalesced_mmio_ring) {
2711         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2712         while (ring->first != ring->last) {
2713             struct kvm_coalesced_mmio *ent;
2714 
2715             ent = &ring->coalesced_mmio[ring->first];
2716 
2717             if (ent->pio == 1) {
2718                 address_space_write(&address_space_io, ent->phys_addr,
2719                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2720                                     ent->len);
2721             } else {
2722                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2723             }
2724             smp_wmb();
2725             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2726         }
2727     }
2728 
2729     s->coalesced_flush_in_progress = false;
2730 }
2731 
2732 bool kvm_cpu_check_are_resettable(void)
2733 {
2734     return kvm_arch_cpu_check_are_resettable();
2735 }
2736 
2737 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2738 {
2739     if (!cpu->vcpu_dirty) {
2740         kvm_arch_get_registers(cpu);
2741         cpu->vcpu_dirty = true;
2742     }
2743 }
2744 
2745 void kvm_cpu_synchronize_state(CPUState *cpu)
2746 {
2747     if (!cpu->vcpu_dirty) {
2748         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2749     }
2750 }
2751 
2752 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2753 {
2754     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2755     cpu->vcpu_dirty = false;
2756 }
2757 
2758 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2759 {
2760     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2761 }
2762 
2763 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2764 {
2765     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2766     cpu->vcpu_dirty = false;
2767 }
2768 
2769 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2770 {
2771     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2772 }
2773 
2774 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2775 {
2776     cpu->vcpu_dirty = true;
2777 }
2778 
2779 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2780 {
2781     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2782 }
2783 
2784 #ifdef KVM_HAVE_MCE_INJECTION
2785 static __thread void *pending_sigbus_addr;
2786 static __thread int pending_sigbus_code;
2787 static __thread bool have_sigbus_pending;
2788 #endif
2789 
2790 static void kvm_cpu_kick(CPUState *cpu)
2791 {
2792     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2793 }
2794 
2795 static void kvm_cpu_kick_self(void)
2796 {
2797     if (kvm_immediate_exit) {
2798         kvm_cpu_kick(current_cpu);
2799     } else {
2800         qemu_cpu_kick_self();
2801     }
2802 }
2803 
2804 static void kvm_eat_signals(CPUState *cpu)
2805 {
2806     struct timespec ts = { 0, 0 };
2807     siginfo_t siginfo;
2808     sigset_t waitset;
2809     sigset_t chkset;
2810     int r;
2811 
2812     if (kvm_immediate_exit) {
2813         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2814         /* Write kvm_run->immediate_exit before the cpu->exit_request
2815          * write in kvm_cpu_exec.
2816          */
2817         smp_wmb();
2818         return;
2819     }
2820 
2821     sigemptyset(&waitset);
2822     sigaddset(&waitset, SIG_IPI);
2823 
2824     do {
2825         r = sigtimedwait(&waitset, &siginfo, &ts);
2826         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2827             perror("sigtimedwait");
2828             exit(1);
2829         }
2830 
2831         r = sigpending(&chkset);
2832         if (r == -1) {
2833             perror("sigpending");
2834             exit(1);
2835         }
2836     } while (sigismember(&chkset, SIG_IPI));
2837 }
2838 
2839 int kvm_cpu_exec(CPUState *cpu)
2840 {
2841     struct kvm_run *run = cpu->kvm_run;
2842     int ret, run_ret;
2843 
2844     DPRINTF("kvm_cpu_exec()\n");
2845 
2846     if (kvm_arch_process_async_events(cpu)) {
2847         qatomic_set(&cpu->exit_request, 0);
2848         return EXCP_HLT;
2849     }
2850 
2851     qemu_mutex_unlock_iothread();
2852     cpu_exec_start(cpu);
2853 
2854     do {
2855         MemTxAttrs attrs;
2856 
2857         if (cpu->vcpu_dirty) {
2858             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2859             cpu->vcpu_dirty = false;
2860         }
2861 
2862         kvm_arch_pre_run(cpu, run);
2863         if (qatomic_read(&cpu->exit_request)) {
2864             DPRINTF("interrupt exit requested\n");
2865             /*
2866              * KVM requires us to reenter the kernel after IO exits to complete
2867              * instruction emulation. This self-signal will ensure that we
2868              * leave ASAP again.
2869              */
2870             kvm_cpu_kick_self();
2871         }
2872 
2873         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2874          * Matching barrier in kvm_eat_signals.
2875          */
2876         smp_rmb();
2877 
2878         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2879 
2880         attrs = kvm_arch_post_run(cpu, run);
2881 
2882 #ifdef KVM_HAVE_MCE_INJECTION
2883         if (unlikely(have_sigbus_pending)) {
2884             qemu_mutex_lock_iothread();
2885             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2886                                     pending_sigbus_addr);
2887             have_sigbus_pending = false;
2888             qemu_mutex_unlock_iothread();
2889         }
2890 #endif
2891 
2892         if (run_ret < 0) {
2893             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2894                 DPRINTF("io window exit\n");
2895                 kvm_eat_signals(cpu);
2896                 ret = EXCP_INTERRUPT;
2897                 break;
2898             }
2899             fprintf(stderr, "error: kvm run failed %s\n",
2900                     strerror(-run_ret));
2901 #ifdef TARGET_PPC
2902             if (run_ret == -EBUSY) {
2903                 fprintf(stderr,
2904                         "This is probably because your SMT is enabled.\n"
2905                         "VCPU can only run on primary threads with all "
2906                         "secondary threads offline.\n");
2907             }
2908 #endif
2909             ret = -1;
2910             break;
2911         }
2912 
2913         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2914         switch (run->exit_reason) {
2915         case KVM_EXIT_IO:
2916             DPRINTF("handle_io\n");
2917             /* Called outside BQL */
2918             kvm_handle_io(run->io.port, attrs,
2919                           (uint8_t *)run + run->io.data_offset,
2920                           run->io.direction,
2921                           run->io.size,
2922                           run->io.count);
2923             ret = 0;
2924             break;
2925         case KVM_EXIT_MMIO:
2926             DPRINTF("handle_mmio\n");
2927             /* Called outside BQL */
2928             address_space_rw(&address_space_memory,
2929                              run->mmio.phys_addr, attrs,
2930                              run->mmio.data,
2931                              run->mmio.len,
2932                              run->mmio.is_write);
2933             ret = 0;
2934             break;
2935         case KVM_EXIT_IRQ_WINDOW_OPEN:
2936             DPRINTF("irq_window_open\n");
2937             ret = EXCP_INTERRUPT;
2938             break;
2939         case KVM_EXIT_SHUTDOWN:
2940             DPRINTF("shutdown\n");
2941             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2942             ret = EXCP_INTERRUPT;
2943             break;
2944         case KVM_EXIT_UNKNOWN:
2945             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2946                     (uint64_t)run->hw.hardware_exit_reason);
2947             ret = -1;
2948             break;
2949         case KVM_EXIT_INTERNAL_ERROR:
2950             ret = kvm_handle_internal_error(cpu, run);
2951             break;
2952         case KVM_EXIT_DIRTY_RING_FULL:
2953             /*
2954              * We shouldn't continue if the dirty ring of this vcpu is
2955              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2956              */
2957             trace_kvm_dirty_ring_full(cpu->cpu_index);
2958             qemu_mutex_lock_iothread();
2959             kvm_dirty_ring_reap(kvm_state);
2960             qemu_mutex_unlock_iothread();
2961             ret = 0;
2962             break;
2963         case KVM_EXIT_SYSTEM_EVENT:
2964             switch (run->system_event.type) {
2965             case KVM_SYSTEM_EVENT_SHUTDOWN:
2966                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2967                 ret = EXCP_INTERRUPT;
2968                 break;
2969             case KVM_SYSTEM_EVENT_RESET:
2970                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2971                 ret = EXCP_INTERRUPT;
2972                 break;
2973             case KVM_SYSTEM_EVENT_CRASH:
2974                 kvm_cpu_synchronize_state(cpu);
2975                 qemu_mutex_lock_iothread();
2976                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2977                 qemu_mutex_unlock_iothread();
2978                 ret = 0;
2979                 break;
2980             default:
2981                 DPRINTF("kvm_arch_handle_exit\n");
2982                 ret = kvm_arch_handle_exit(cpu, run);
2983                 break;
2984             }
2985             break;
2986         default:
2987             DPRINTF("kvm_arch_handle_exit\n");
2988             ret = kvm_arch_handle_exit(cpu, run);
2989             break;
2990         }
2991     } while (ret == 0);
2992 
2993     cpu_exec_end(cpu);
2994     qemu_mutex_lock_iothread();
2995 
2996     if (ret < 0) {
2997         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2998         vm_stop(RUN_STATE_INTERNAL_ERROR);
2999     }
3000 
3001     qatomic_set(&cpu->exit_request, 0);
3002     return ret;
3003 }
3004 
3005 int kvm_ioctl(KVMState *s, int type, ...)
3006 {
3007     int ret;
3008     void *arg;
3009     va_list ap;
3010 
3011     va_start(ap, type);
3012     arg = va_arg(ap, void *);
3013     va_end(ap);
3014 
3015     trace_kvm_ioctl(type, arg);
3016     ret = ioctl(s->fd, type, arg);
3017     if (ret == -1) {
3018         ret = -errno;
3019     }
3020     return ret;
3021 }
3022 
3023 int kvm_vm_ioctl(KVMState *s, int type, ...)
3024 {
3025     int ret;
3026     void *arg;
3027     va_list ap;
3028 
3029     va_start(ap, type);
3030     arg = va_arg(ap, void *);
3031     va_end(ap);
3032 
3033     trace_kvm_vm_ioctl(type, arg);
3034     ret = ioctl(s->vmfd, type, arg);
3035     if (ret == -1) {
3036         ret = -errno;
3037     }
3038     return ret;
3039 }
3040 
3041 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3042 {
3043     int ret;
3044     void *arg;
3045     va_list ap;
3046 
3047     va_start(ap, type);
3048     arg = va_arg(ap, void *);
3049     va_end(ap);
3050 
3051     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3052     ret = ioctl(cpu->kvm_fd, type, arg);
3053     if (ret == -1) {
3054         ret = -errno;
3055     }
3056     return ret;
3057 }
3058 
3059 int kvm_device_ioctl(int fd, int type, ...)
3060 {
3061     int ret;
3062     void *arg;
3063     va_list ap;
3064 
3065     va_start(ap, type);
3066     arg = va_arg(ap, void *);
3067     va_end(ap);
3068 
3069     trace_kvm_device_ioctl(fd, type, arg);
3070     ret = ioctl(fd, type, arg);
3071     if (ret == -1) {
3072         ret = -errno;
3073     }
3074     return ret;
3075 }
3076 
3077 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3078 {
3079     int ret;
3080     struct kvm_device_attr attribute = {
3081         .group = group,
3082         .attr = attr,
3083     };
3084 
3085     if (!kvm_vm_attributes_allowed) {
3086         return 0;
3087     }
3088 
3089     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3090     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3091     return ret ? 0 : 1;
3092 }
3093 
3094 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3095 {
3096     struct kvm_device_attr attribute = {
3097         .group = group,
3098         .attr = attr,
3099         .flags = 0,
3100     };
3101 
3102     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3103 }
3104 
3105 int kvm_device_access(int fd, int group, uint64_t attr,
3106                       void *val, bool write, Error **errp)
3107 {
3108     struct kvm_device_attr kvmattr;
3109     int err;
3110 
3111     kvmattr.flags = 0;
3112     kvmattr.group = group;
3113     kvmattr.attr = attr;
3114     kvmattr.addr = (uintptr_t)val;
3115 
3116     err = kvm_device_ioctl(fd,
3117                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3118                            &kvmattr);
3119     if (err < 0) {
3120         error_setg_errno(errp, -err,
3121                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3122                          "attr 0x%016" PRIx64,
3123                          write ? "SET" : "GET", group, attr);
3124     }
3125     return err;
3126 }
3127 
3128 bool kvm_has_sync_mmu(void)
3129 {
3130     return kvm_state->sync_mmu;
3131 }
3132 
3133 int kvm_has_vcpu_events(void)
3134 {
3135     return kvm_state->vcpu_events;
3136 }
3137 
3138 int kvm_has_robust_singlestep(void)
3139 {
3140     return kvm_state->robust_singlestep;
3141 }
3142 
3143 int kvm_has_debugregs(void)
3144 {
3145     return kvm_state->debugregs;
3146 }
3147 
3148 int kvm_max_nested_state_length(void)
3149 {
3150     return kvm_state->max_nested_state_len;
3151 }
3152 
3153 int kvm_has_many_ioeventfds(void)
3154 {
3155     if (!kvm_enabled()) {
3156         return 0;
3157     }
3158     return kvm_state->many_ioeventfds;
3159 }
3160 
3161 int kvm_has_gsi_routing(void)
3162 {
3163 #ifdef KVM_CAP_IRQ_ROUTING
3164     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3165 #else
3166     return false;
3167 #endif
3168 }
3169 
3170 int kvm_has_intx_set_mask(void)
3171 {
3172     return kvm_state->intx_set_mask;
3173 }
3174 
3175 bool kvm_arm_supports_user_irq(void)
3176 {
3177     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3178 }
3179 
3180 #ifdef KVM_CAP_SET_GUEST_DEBUG
3181 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3182                                                  target_ulong pc)
3183 {
3184     struct kvm_sw_breakpoint *bp;
3185 
3186     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3187         if (bp->pc == pc) {
3188             return bp;
3189         }
3190     }
3191     return NULL;
3192 }
3193 
3194 int kvm_sw_breakpoints_active(CPUState *cpu)
3195 {
3196     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3197 }
3198 
3199 struct kvm_set_guest_debug_data {
3200     struct kvm_guest_debug dbg;
3201     int err;
3202 };
3203 
3204 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3205 {
3206     struct kvm_set_guest_debug_data *dbg_data =
3207         (struct kvm_set_guest_debug_data *) data.host_ptr;
3208 
3209     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3210                                    &dbg_data->dbg);
3211 }
3212 
3213 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3214 {
3215     struct kvm_set_guest_debug_data data;
3216 
3217     data.dbg.control = reinject_trap;
3218 
3219     if (cpu->singlestep_enabled) {
3220         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3221 
3222         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3223             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3224         }
3225     }
3226     kvm_arch_update_guest_debug(cpu, &data.dbg);
3227 
3228     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3229                RUN_ON_CPU_HOST_PTR(&data));
3230     return data.err;
3231 }
3232 
3233 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3234                           target_ulong len, int type)
3235 {
3236     struct kvm_sw_breakpoint *bp;
3237     int err;
3238 
3239     if (type == GDB_BREAKPOINT_SW) {
3240         bp = kvm_find_sw_breakpoint(cpu, addr);
3241         if (bp) {
3242             bp->use_count++;
3243             return 0;
3244         }
3245 
3246         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
3247         bp->pc = addr;
3248         bp->use_count = 1;
3249         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3250         if (err) {
3251             g_free(bp);
3252             return err;
3253         }
3254 
3255         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3256     } else {
3257         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3258         if (err) {
3259             return err;
3260         }
3261     }
3262 
3263     CPU_FOREACH(cpu) {
3264         err = kvm_update_guest_debug(cpu, 0);
3265         if (err) {
3266             return err;
3267         }
3268     }
3269     return 0;
3270 }
3271 
3272 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3273                           target_ulong len, int type)
3274 {
3275     struct kvm_sw_breakpoint *bp;
3276     int err;
3277 
3278     if (type == GDB_BREAKPOINT_SW) {
3279         bp = kvm_find_sw_breakpoint(cpu, addr);
3280         if (!bp) {
3281             return -ENOENT;
3282         }
3283 
3284         if (bp->use_count > 1) {
3285             bp->use_count--;
3286             return 0;
3287         }
3288 
3289         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3290         if (err) {
3291             return err;
3292         }
3293 
3294         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3295         g_free(bp);
3296     } else {
3297         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3298         if (err) {
3299             return err;
3300         }
3301     }
3302 
3303     CPU_FOREACH(cpu) {
3304         err = kvm_update_guest_debug(cpu, 0);
3305         if (err) {
3306             return err;
3307         }
3308     }
3309     return 0;
3310 }
3311 
3312 void kvm_remove_all_breakpoints(CPUState *cpu)
3313 {
3314     struct kvm_sw_breakpoint *bp, *next;
3315     KVMState *s = cpu->kvm_state;
3316     CPUState *tmpcpu;
3317 
3318     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3319         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3320             /* Try harder to find a CPU that currently sees the breakpoint. */
3321             CPU_FOREACH(tmpcpu) {
3322                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3323                     break;
3324                 }
3325             }
3326         }
3327         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3328         g_free(bp);
3329     }
3330     kvm_arch_remove_all_hw_breakpoints();
3331 
3332     CPU_FOREACH(cpu) {
3333         kvm_update_guest_debug(cpu, 0);
3334     }
3335 }
3336 
3337 #else /* !KVM_CAP_SET_GUEST_DEBUG */
3338 
3339 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3340 {
3341     return -EINVAL;
3342 }
3343 
3344 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3345                           target_ulong len, int type)
3346 {
3347     return -EINVAL;
3348 }
3349 
3350 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3351                           target_ulong len, int type)
3352 {
3353     return -EINVAL;
3354 }
3355 
3356 void kvm_remove_all_breakpoints(CPUState *cpu)
3357 {
3358 }
3359 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3360 
3361 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3362 {
3363     KVMState *s = kvm_state;
3364     struct kvm_signal_mask *sigmask;
3365     int r;
3366 
3367     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3368 
3369     sigmask->len = s->sigmask_len;
3370     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3371     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3372     g_free(sigmask);
3373 
3374     return r;
3375 }
3376 
3377 static void kvm_ipi_signal(int sig)
3378 {
3379     if (current_cpu) {
3380         assert(kvm_immediate_exit);
3381         kvm_cpu_kick(current_cpu);
3382     }
3383 }
3384 
3385 void kvm_init_cpu_signals(CPUState *cpu)
3386 {
3387     int r;
3388     sigset_t set;
3389     struct sigaction sigact;
3390 
3391     memset(&sigact, 0, sizeof(sigact));
3392     sigact.sa_handler = kvm_ipi_signal;
3393     sigaction(SIG_IPI, &sigact, NULL);
3394 
3395     pthread_sigmask(SIG_BLOCK, NULL, &set);
3396 #if defined KVM_HAVE_MCE_INJECTION
3397     sigdelset(&set, SIGBUS);
3398     pthread_sigmask(SIG_SETMASK, &set, NULL);
3399 #endif
3400     sigdelset(&set, SIG_IPI);
3401     if (kvm_immediate_exit) {
3402         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3403     } else {
3404         r = kvm_set_signal_mask(cpu, &set);
3405     }
3406     if (r) {
3407         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3408         exit(1);
3409     }
3410 }
3411 
3412 /* Called asynchronously in VCPU thread.  */
3413 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3414 {
3415 #ifdef KVM_HAVE_MCE_INJECTION
3416     if (have_sigbus_pending) {
3417         return 1;
3418     }
3419     have_sigbus_pending = true;
3420     pending_sigbus_addr = addr;
3421     pending_sigbus_code = code;
3422     qatomic_set(&cpu->exit_request, 1);
3423     return 0;
3424 #else
3425     return 1;
3426 #endif
3427 }
3428 
3429 /* Called synchronously (via signalfd) in main thread.  */
3430 int kvm_on_sigbus(int code, void *addr)
3431 {
3432 #ifdef KVM_HAVE_MCE_INJECTION
3433     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3434      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3435      * we can only get action optional here.
3436      */
3437     assert(code != BUS_MCEERR_AR);
3438     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3439     return 0;
3440 #else
3441     return 1;
3442 #endif
3443 }
3444 
3445 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3446 {
3447     int ret;
3448     struct kvm_create_device create_dev;
3449 
3450     create_dev.type = type;
3451     create_dev.fd = -1;
3452     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3453 
3454     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3455         return -ENOTSUP;
3456     }
3457 
3458     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3459     if (ret) {
3460         return ret;
3461     }
3462 
3463     return test ? 0 : create_dev.fd;
3464 }
3465 
3466 bool kvm_device_supported(int vmfd, uint64_t type)
3467 {
3468     struct kvm_create_device create_dev = {
3469         .type = type,
3470         .fd = -1,
3471         .flags = KVM_CREATE_DEVICE_TEST,
3472     };
3473 
3474     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3475         return false;
3476     }
3477 
3478     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3479 }
3480 
3481 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3482 {
3483     struct kvm_one_reg reg;
3484     int r;
3485 
3486     reg.id = id;
3487     reg.addr = (uintptr_t) source;
3488     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3489     if (r) {
3490         trace_kvm_failed_reg_set(id, strerror(-r));
3491     }
3492     return r;
3493 }
3494 
3495 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3496 {
3497     struct kvm_one_reg reg;
3498     int r;
3499 
3500     reg.id = id;
3501     reg.addr = (uintptr_t) target;
3502     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3503     if (r) {
3504         trace_kvm_failed_reg_get(id, strerror(-r));
3505     }
3506     return r;
3507 }
3508 
3509 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3510                                  hwaddr start_addr, hwaddr size)
3511 {
3512     KVMState *kvm = KVM_STATE(ms->accelerator);
3513     int i;
3514 
3515     for (i = 0; i < kvm->nr_as; ++i) {
3516         if (kvm->as[i].as == as && kvm->as[i].ml) {
3517             size = MIN(kvm_max_slot_size, size);
3518             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3519                                                     start_addr, size);
3520         }
3521     }
3522 
3523     return false;
3524 }
3525 
3526 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3527                                    const char *name, void *opaque,
3528                                    Error **errp)
3529 {
3530     KVMState *s = KVM_STATE(obj);
3531     int64_t value = s->kvm_shadow_mem;
3532 
3533     visit_type_int(v, name, &value, errp);
3534 }
3535 
3536 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3537                                    const char *name, void *opaque,
3538                                    Error **errp)
3539 {
3540     KVMState *s = KVM_STATE(obj);
3541     int64_t value;
3542 
3543     if (s->fd != -1) {
3544         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3545         return;
3546     }
3547 
3548     if (!visit_type_int(v, name, &value, errp)) {
3549         return;
3550     }
3551 
3552     s->kvm_shadow_mem = value;
3553 }
3554 
3555 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3556                                    const char *name, void *opaque,
3557                                    Error **errp)
3558 {
3559     KVMState *s = KVM_STATE(obj);
3560     OnOffSplit mode;
3561 
3562     if (s->fd != -1) {
3563         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3564         return;
3565     }
3566 
3567     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3568         return;
3569     }
3570     switch (mode) {
3571     case ON_OFF_SPLIT_ON:
3572         s->kernel_irqchip_allowed = true;
3573         s->kernel_irqchip_required = true;
3574         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3575         break;
3576     case ON_OFF_SPLIT_OFF:
3577         s->kernel_irqchip_allowed = false;
3578         s->kernel_irqchip_required = false;
3579         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3580         break;
3581     case ON_OFF_SPLIT_SPLIT:
3582         s->kernel_irqchip_allowed = true;
3583         s->kernel_irqchip_required = true;
3584         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3585         break;
3586     default:
3587         /* The value was checked in visit_type_OnOffSplit() above. If
3588          * we get here, then something is wrong in QEMU.
3589          */
3590         abort();
3591     }
3592 }
3593 
3594 bool kvm_kernel_irqchip_allowed(void)
3595 {
3596     return kvm_state->kernel_irqchip_allowed;
3597 }
3598 
3599 bool kvm_kernel_irqchip_required(void)
3600 {
3601     return kvm_state->kernel_irqchip_required;
3602 }
3603 
3604 bool kvm_kernel_irqchip_split(void)
3605 {
3606     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3607 }
3608 
3609 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3610                                     const char *name, void *opaque,
3611                                     Error **errp)
3612 {
3613     KVMState *s = KVM_STATE(obj);
3614     uint32_t value = s->kvm_dirty_ring_size;
3615 
3616     visit_type_uint32(v, name, &value, errp);
3617 }
3618 
3619 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3620                                     const char *name, void *opaque,
3621                                     Error **errp)
3622 {
3623     KVMState *s = KVM_STATE(obj);
3624     Error *error = NULL;
3625     uint32_t value;
3626 
3627     if (s->fd != -1) {
3628         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3629         return;
3630     }
3631 
3632     visit_type_uint32(v, name, &value, &error);
3633     if (error) {
3634         error_propagate(errp, error);
3635         return;
3636     }
3637     if (value & (value - 1)) {
3638         error_setg(errp, "dirty-ring-size must be a power of two.");
3639         return;
3640     }
3641 
3642     s->kvm_dirty_ring_size = value;
3643 }
3644 
3645 static void kvm_accel_instance_init(Object *obj)
3646 {
3647     KVMState *s = KVM_STATE(obj);
3648 
3649     s->fd = -1;
3650     s->vmfd = -1;
3651     s->kvm_shadow_mem = -1;
3652     s->kernel_irqchip_allowed = true;
3653     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3654     /* KVM dirty ring is by default off */
3655     s->kvm_dirty_ring_size = 0;
3656 }
3657 
3658 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3659 {
3660     AccelClass *ac = ACCEL_CLASS(oc);
3661     ac->name = "KVM";
3662     ac->init_machine = kvm_init;
3663     ac->has_memory = kvm_accel_has_memory;
3664     ac->allowed = &kvm_allowed;
3665 
3666     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3667         NULL, kvm_set_kernel_irqchip,
3668         NULL, NULL);
3669     object_class_property_set_description(oc, "kernel-irqchip",
3670         "Configure KVM in-kernel irqchip");
3671 
3672     object_class_property_add(oc, "kvm-shadow-mem", "int",
3673         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3674         NULL, NULL);
3675     object_class_property_set_description(oc, "kvm-shadow-mem",
3676         "KVM shadow MMU size");
3677 
3678     object_class_property_add(oc, "dirty-ring-size", "uint32",
3679         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3680         NULL, NULL);
3681     object_class_property_set_description(oc, "dirty-ring-size",
3682         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3683 }
3684 
3685 static const TypeInfo kvm_accel_type = {
3686     .name = TYPE_KVM_ACCEL,
3687     .parent = TYPE_ACCEL,
3688     .instance_init = kvm_accel_instance_init,
3689     .class_init = kvm_accel_class_init,
3690     .instance_size = sizeof(KVMState),
3691 };
3692 
3693 static void kvm_type_init(void)
3694 {
3695     type_register_static(&kvm_accel_type);
3696 }
3697 
3698 type_init(kvm_type_init);
3699