1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/main-loop.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "qapi/visitor.h" 42 #include "qapi/qapi-types-common.h" 43 #include "qapi/qapi-visit-common.h" 44 #include "sysemu/reset.h" 45 #include "qemu/guest-random.h" 46 #include "sysemu/hw_accel.h" 47 #include "kvm-cpus.h" 48 49 #include "hw/boards.h" 50 51 /* This check must be after config-host.h is included */ 52 #ifdef CONFIG_EVENTFD 53 #include <sys/eventfd.h> 54 #endif 55 56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 57 * need to use the real host PAGE_SIZE, as that's what KVM will use. 58 */ 59 #ifdef PAGE_SIZE 60 #undef PAGE_SIZE 61 #endif 62 #define PAGE_SIZE qemu_real_host_page_size 63 64 #ifndef KVM_GUESTDBG_BLOCKIRQ 65 #define KVM_GUESTDBG_BLOCKIRQ 0 66 #endif 67 68 //#define DEBUG_KVM 69 70 #ifdef DEBUG_KVM 71 #define DPRINTF(fmt, ...) \ 72 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 73 #else 74 #define DPRINTF(fmt, ...) \ 75 do { } while (0) 76 #endif 77 78 #define KVM_MSI_HASHTAB_SIZE 256 79 80 struct KVMParkedVcpu { 81 unsigned long vcpu_id; 82 int kvm_fd; 83 QLIST_ENTRY(KVMParkedVcpu) node; 84 }; 85 86 enum KVMDirtyRingReaperState { 87 KVM_DIRTY_RING_REAPER_NONE = 0, 88 /* The reaper is sleeping */ 89 KVM_DIRTY_RING_REAPER_WAIT, 90 /* The reaper is reaping for dirty pages */ 91 KVM_DIRTY_RING_REAPER_REAPING, 92 }; 93 94 /* 95 * KVM reaper instance, responsible for collecting the KVM dirty bits 96 * via the dirty ring. 97 */ 98 struct KVMDirtyRingReaper { 99 /* The reaper thread */ 100 QemuThread reaper_thr; 101 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */ 102 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */ 103 }; 104 105 struct KVMState 106 { 107 AccelState parent_obj; 108 109 int nr_slots; 110 int fd; 111 int vmfd; 112 int coalesced_mmio; 113 int coalesced_pio; 114 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 115 bool coalesced_flush_in_progress; 116 int vcpu_events; 117 int robust_singlestep; 118 int debugregs; 119 #ifdef KVM_CAP_SET_GUEST_DEBUG 120 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 121 #endif 122 int max_nested_state_len; 123 int many_ioeventfds; 124 int intx_set_mask; 125 int kvm_shadow_mem; 126 bool kernel_irqchip_allowed; 127 bool kernel_irqchip_required; 128 OnOffAuto kernel_irqchip_split; 129 bool sync_mmu; 130 uint64_t manual_dirty_log_protect; 131 /* The man page (and posix) say ioctl numbers are signed int, but 132 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 133 * unsigned, and treating them as signed here can break things */ 134 unsigned irq_set_ioctl; 135 unsigned int sigmask_len; 136 GHashTable *gsimap; 137 #ifdef KVM_CAP_IRQ_ROUTING 138 struct kvm_irq_routing *irq_routes; 139 int nr_allocated_irq_routes; 140 unsigned long *used_gsi_bitmap; 141 unsigned int gsi_count; 142 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 143 #endif 144 KVMMemoryListener memory_listener; 145 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 146 147 /* For "info mtree -f" to tell if an MR is registered in KVM */ 148 int nr_as; 149 struct KVMAs { 150 KVMMemoryListener *ml; 151 AddressSpace *as; 152 } *as; 153 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */ 154 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */ 155 struct KVMDirtyRingReaper reaper; 156 }; 157 158 KVMState *kvm_state; 159 bool kvm_kernel_irqchip; 160 bool kvm_split_irqchip; 161 bool kvm_async_interrupts_allowed; 162 bool kvm_halt_in_kernel_allowed; 163 bool kvm_eventfds_allowed; 164 bool kvm_irqfds_allowed; 165 bool kvm_resamplefds_allowed; 166 bool kvm_msi_via_irqfd_allowed; 167 bool kvm_gsi_routing_allowed; 168 bool kvm_gsi_direct_mapping; 169 bool kvm_allowed; 170 bool kvm_readonly_mem_allowed; 171 bool kvm_vm_attributes_allowed; 172 bool kvm_direct_msi_allowed; 173 bool kvm_ioeventfd_any_length_allowed; 174 bool kvm_msi_use_devid; 175 bool kvm_has_guest_debug; 176 int kvm_sstep_flags; 177 static bool kvm_immediate_exit; 178 static hwaddr kvm_max_slot_size = ~0; 179 180 static const KVMCapabilityInfo kvm_required_capabilites[] = { 181 KVM_CAP_INFO(USER_MEMORY), 182 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 183 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 184 KVM_CAP_LAST_INFO 185 }; 186 187 static NotifierList kvm_irqchip_change_notifiers = 188 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 189 190 struct KVMResampleFd { 191 int gsi; 192 EventNotifier *resample_event; 193 QLIST_ENTRY(KVMResampleFd) node; 194 }; 195 typedef struct KVMResampleFd KVMResampleFd; 196 197 /* 198 * Only used with split irqchip where we need to do the resample fd 199 * kick for the kernel from userspace. 200 */ 201 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 202 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 203 204 static QemuMutex kml_slots_lock; 205 206 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 207 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 208 209 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 210 211 static inline void kvm_resample_fd_remove(int gsi) 212 { 213 KVMResampleFd *rfd; 214 215 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 216 if (rfd->gsi == gsi) { 217 QLIST_REMOVE(rfd, node); 218 g_free(rfd); 219 break; 220 } 221 } 222 } 223 224 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 225 { 226 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 227 228 rfd->gsi = gsi; 229 rfd->resample_event = event; 230 231 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 232 } 233 234 void kvm_resample_fd_notify(int gsi) 235 { 236 KVMResampleFd *rfd; 237 238 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 239 if (rfd->gsi == gsi) { 240 event_notifier_set(rfd->resample_event); 241 trace_kvm_resample_fd_notify(gsi); 242 return; 243 } 244 } 245 } 246 247 int kvm_get_max_memslots(void) 248 { 249 KVMState *s = KVM_STATE(current_accel()); 250 251 return s->nr_slots; 252 } 253 254 /* Called with KVMMemoryListener.slots_lock held */ 255 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 256 { 257 KVMState *s = kvm_state; 258 int i; 259 260 for (i = 0; i < s->nr_slots; i++) { 261 if (kml->slots[i].memory_size == 0) { 262 return &kml->slots[i]; 263 } 264 } 265 266 return NULL; 267 } 268 269 bool kvm_has_free_slot(MachineState *ms) 270 { 271 KVMState *s = KVM_STATE(ms->accelerator); 272 bool result; 273 KVMMemoryListener *kml = &s->memory_listener; 274 275 kvm_slots_lock(); 276 result = !!kvm_get_free_slot(kml); 277 kvm_slots_unlock(); 278 279 return result; 280 } 281 282 /* Called with KVMMemoryListener.slots_lock held */ 283 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 284 { 285 KVMSlot *slot = kvm_get_free_slot(kml); 286 287 if (slot) { 288 return slot; 289 } 290 291 fprintf(stderr, "%s: no free slot available\n", __func__); 292 abort(); 293 } 294 295 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 296 hwaddr start_addr, 297 hwaddr size) 298 { 299 KVMState *s = kvm_state; 300 int i; 301 302 for (i = 0; i < s->nr_slots; i++) { 303 KVMSlot *mem = &kml->slots[i]; 304 305 if (start_addr == mem->start_addr && size == mem->memory_size) { 306 return mem; 307 } 308 } 309 310 return NULL; 311 } 312 313 /* 314 * Calculate and align the start address and the size of the section. 315 * Return the size. If the size is 0, the aligned section is empty. 316 */ 317 static hwaddr kvm_align_section(MemoryRegionSection *section, 318 hwaddr *start) 319 { 320 hwaddr size = int128_get64(section->size); 321 hwaddr delta, aligned; 322 323 /* kvm works in page size chunks, but the function may be called 324 with sub-page size and unaligned start address. Pad the start 325 address to next and truncate size to previous page boundary. */ 326 aligned = ROUND_UP(section->offset_within_address_space, 327 qemu_real_host_page_size); 328 delta = aligned - section->offset_within_address_space; 329 *start = aligned; 330 if (delta > size) { 331 return 0; 332 } 333 334 return (size - delta) & qemu_real_host_page_mask; 335 } 336 337 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 338 hwaddr *phys_addr) 339 { 340 KVMMemoryListener *kml = &s->memory_listener; 341 int i, ret = 0; 342 343 kvm_slots_lock(); 344 for (i = 0; i < s->nr_slots; i++) { 345 KVMSlot *mem = &kml->slots[i]; 346 347 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 348 *phys_addr = mem->start_addr + (ram - mem->ram); 349 ret = 1; 350 break; 351 } 352 } 353 kvm_slots_unlock(); 354 355 return ret; 356 } 357 358 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 359 { 360 KVMState *s = kvm_state; 361 struct kvm_userspace_memory_region mem; 362 int ret; 363 364 mem.slot = slot->slot | (kml->as_id << 16); 365 mem.guest_phys_addr = slot->start_addr; 366 mem.userspace_addr = (unsigned long)slot->ram; 367 mem.flags = slot->flags; 368 369 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 370 /* Set the slot size to 0 before setting the slot to the desired 371 * value. This is needed based on KVM commit 75d61fbc. */ 372 mem.memory_size = 0; 373 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 374 if (ret < 0) { 375 goto err; 376 } 377 } 378 mem.memory_size = slot->memory_size; 379 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 380 slot->old_flags = mem.flags; 381 err: 382 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 383 mem.memory_size, mem.userspace_addr, ret); 384 if (ret < 0) { 385 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 386 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 387 __func__, mem.slot, slot->start_addr, 388 (uint64_t)mem.memory_size, strerror(errno)); 389 } 390 return ret; 391 } 392 393 static int do_kvm_destroy_vcpu(CPUState *cpu) 394 { 395 KVMState *s = kvm_state; 396 long mmap_size; 397 struct KVMParkedVcpu *vcpu = NULL; 398 int ret = 0; 399 400 DPRINTF("kvm_destroy_vcpu\n"); 401 402 ret = kvm_arch_destroy_vcpu(cpu); 403 if (ret < 0) { 404 goto err; 405 } 406 407 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 408 if (mmap_size < 0) { 409 ret = mmap_size; 410 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 411 goto err; 412 } 413 414 ret = munmap(cpu->kvm_run, mmap_size); 415 if (ret < 0) { 416 goto err; 417 } 418 419 if (cpu->kvm_dirty_gfns) { 420 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 421 if (ret < 0) { 422 goto err; 423 } 424 } 425 426 vcpu = g_malloc0(sizeof(*vcpu)); 427 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 428 vcpu->kvm_fd = cpu->kvm_fd; 429 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 430 err: 431 return ret; 432 } 433 434 void kvm_destroy_vcpu(CPUState *cpu) 435 { 436 if (do_kvm_destroy_vcpu(cpu) < 0) { 437 error_report("kvm_destroy_vcpu failed"); 438 exit(EXIT_FAILURE); 439 } 440 } 441 442 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 443 { 444 struct KVMParkedVcpu *cpu; 445 446 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 447 if (cpu->vcpu_id == vcpu_id) { 448 int kvm_fd; 449 450 QLIST_REMOVE(cpu, node); 451 kvm_fd = cpu->kvm_fd; 452 g_free(cpu); 453 return kvm_fd; 454 } 455 } 456 457 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 458 } 459 460 int kvm_init_vcpu(CPUState *cpu, Error **errp) 461 { 462 KVMState *s = kvm_state; 463 long mmap_size; 464 int ret; 465 466 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 467 468 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 469 if (ret < 0) { 470 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 471 kvm_arch_vcpu_id(cpu)); 472 goto err; 473 } 474 475 cpu->kvm_fd = ret; 476 cpu->kvm_state = s; 477 cpu->vcpu_dirty = true; 478 cpu->dirty_pages = 0; 479 480 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 481 if (mmap_size < 0) { 482 ret = mmap_size; 483 error_setg_errno(errp, -mmap_size, 484 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 485 goto err; 486 } 487 488 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 489 cpu->kvm_fd, 0); 490 if (cpu->kvm_run == MAP_FAILED) { 491 ret = -errno; 492 error_setg_errno(errp, ret, 493 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 494 kvm_arch_vcpu_id(cpu)); 495 goto err; 496 } 497 498 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 499 s->coalesced_mmio_ring = 500 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 501 } 502 503 if (s->kvm_dirty_ring_size) { 504 /* Use MAP_SHARED to share pages with the kernel */ 505 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 506 PROT_READ | PROT_WRITE, MAP_SHARED, 507 cpu->kvm_fd, 508 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 509 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 510 ret = -errno; 511 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 512 goto err; 513 } 514 } 515 516 ret = kvm_arch_init_vcpu(cpu); 517 if (ret < 0) { 518 error_setg_errno(errp, -ret, 519 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 520 kvm_arch_vcpu_id(cpu)); 521 } 522 err: 523 return ret; 524 } 525 526 /* 527 * dirty pages logging control 528 */ 529 530 static int kvm_mem_flags(MemoryRegion *mr) 531 { 532 bool readonly = mr->readonly || memory_region_is_romd(mr); 533 int flags = 0; 534 535 if (memory_region_get_dirty_log_mask(mr) != 0) { 536 flags |= KVM_MEM_LOG_DIRTY_PAGES; 537 } 538 if (readonly && kvm_readonly_mem_allowed) { 539 flags |= KVM_MEM_READONLY; 540 } 541 return flags; 542 } 543 544 /* Called with KVMMemoryListener.slots_lock held */ 545 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 546 MemoryRegion *mr) 547 { 548 mem->flags = kvm_mem_flags(mr); 549 550 /* If nothing changed effectively, no need to issue ioctl */ 551 if (mem->flags == mem->old_flags) { 552 return 0; 553 } 554 555 kvm_slot_init_dirty_bitmap(mem); 556 return kvm_set_user_memory_region(kml, mem, false); 557 } 558 559 static int kvm_section_update_flags(KVMMemoryListener *kml, 560 MemoryRegionSection *section) 561 { 562 hwaddr start_addr, size, slot_size; 563 KVMSlot *mem; 564 int ret = 0; 565 566 size = kvm_align_section(section, &start_addr); 567 if (!size) { 568 return 0; 569 } 570 571 kvm_slots_lock(); 572 573 while (size && !ret) { 574 slot_size = MIN(kvm_max_slot_size, size); 575 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 576 if (!mem) { 577 /* We don't have a slot if we want to trap every access. */ 578 goto out; 579 } 580 581 ret = kvm_slot_update_flags(kml, mem, section->mr); 582 start_addr += slot_size; 583 size -= slot_size; 584 } 585 586 out: 587 kvm_slots_unlock(); 588 return ret; 589 } 590 591 static void kvm_log_start(MemoryListener *listener, 592 MemoryRegionSection *section, 593 int old, int new) 594 { 595 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 596 int r; 597 598 if (old != 0) { 599 return; 600 } 601 602 r = kvm_section_update_flags(kml, section); 603 if (r < 0) { 604 abort(); 605 } 606 } 607 608 static void kvm_log_stop(MemoryListener *listener, 609 MemoryRegionSection *section, 610 int old, int new) 611 { 612 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 613 int r; 614 615 if (new != 0) { 616 return; 617 } 618 619 r = kvm_section_update_flags(kml, section); 620 if (r < 0) { 621 abort(); 622 } 623 } 624 625 /* get kvm's dirty pages bitmap and update qemu's */ 626 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 627 { 628 ram_addr_t start = slot->ram_start_offset; 629 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size; 630 631 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 632 } 633 634 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 635 { 636 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 637 } 638 639 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 640 641 /* Allocate the dirty bitmap for a slot */ 642 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 643 { 644 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 645 return; 646 } 647 648 /* 649 * XXX bad kernel interface alert 650 * For dirty bitmap, kernel allocates array of size aligned to 651 * bits-per-long. But for case when the kernel is 64bits and 652 * the userspace is 32bits, userspace can't align to the same 653 * bits-per-long, since sizeof(long) is different between kernel 654 * and user space. This way, userspace will provide buffer which 655 * may be 4 bytes less than the kernel will use, resulting in 656 * userspace memory corruption (which is not detectable by valgrind 657 * too, in most cases). 658 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 659 * a hope that sizeof(long) won't become >8 any time soon. 660 * 661 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 662 * And mem->memory_size is aligned to it (otherwise this mem can't 663 * be registered to KVM). 664 */ 665 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size, 666 /*HOST_LONG_BITS*/ 64) / 8; 667 mem->dirty_bmap = g_malloc0(bitmap_size); 668 mem->dirty_bmap_size = bitmap_size; 669 } 670 671 /* 672 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 673 * succeeded, false otherwise 674 */ 675 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 676 { 677 struct kvm_dirty_log d = {}; 678 int ret; 679 680 d.dirty_bitmap = slot->dirty_bmap; 681 d.slot = slot->slot | (slot->as_id << 16); 682 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 683 684 if (ret == -ENOENT) { 685 /* kernel does not have dirty bitmap in this slot */ 686 ret = 0; 687 } 688 if (ret) { 689 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 690 __func__, ret); 691 } 692 return ret == 0; 693 } 694 695 /* Should be with all slots_lock held for the address spaces. */ 696 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 697 uint32_t slot_id, uint64_t offset) 698 { 699 KVMMemoryListener *kml; 700 KVMSlot *mem; 701 702 if (as_id >= s->nr_as) { 703 return; 704 } 705 706 kml = s->as[as_id].ml; 707 mem = &kml->slots[slot_id]; 708 709 if (!mem->memory_size || offset >= 710 (mem->memory_size / qemu_real_host_page_size)) { 711 return; 712 } 713 714 set_bit(offset, mem->dirty_bmap); 715 } 716 717 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 718 { 719 return gfn->flags == KVM_DIRTY_GFN_F_DIRTY; 720 } 721 722 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 723 { 724 gfn->flags = KVM_DIRTY_GFN_F_RESET; 725 } 726 727 /* 728 * Should be with all slots_lock held for the address spaces. It returns the 729 * dirty page we've collected on this dirty ring. 730 */ 731 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 732 { 733 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 734 uint32_t ring_size = s->kvm_dirty_ring_size; 735 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 736 737 assert(dirty_gfns && ring_size); 738 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 739 740 while (true) { 741 cur = &dirty_gfns[fetch % ring_size]; 742 if (!dirty_gfn_is_dirtied(cur)) { 743 break; 744 } 745 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 746 cur->offset); 747 dirty_gfn_set_collected(cur); 748 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 749 fetch++; 750 count++; 751 } 752 cpu->kvm_fetch_index = fetch; 753 cpu->dirty_pages += count; 754 755 return count; 756 } 757 758 /* Must be with slots_lock held */ 759 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s) 760 { 761 int ret; 762 CPUState *cpu; 763 uint64_t total = 0; 764 int64_t stamp; 765 766 stamp = get_clock(); 767 768 CPU_FOREACH(cpu) { 769 total += kvm_dirty_ring_reap_one(s, cpu); 770 } 771 772 if (total) { 773 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 774 assert(ret == total); 775 } 776 777 stamp = get_clock() - stamp; 778 779 if (total) { 780 trace_kvm_dirty_ring_reap(total, stamp / 1000); 781 } 782 783 return total; 784 } 785 786 /* 787 * Currently for simplicity, we must hold BQL before calling this. We can 788 * consider to drop the BQL if we're clear with all the race conditions. 789 */ 790 static uint64_t kvm_dirty_ring_reap(KVMState *s) 791 { 792 uint64_t total; 793 794 /* 795 * We need to lock all kvm slots for all address spaces here, 796 * because: 797 * 798 * (1) We need to mark dirty for dirty bitmaps in multiple slots 799 * and for tons of pages, so it's better to take the lock here 800 * once rather than once per page. And more importantly, 801 * 802 * (2) We must _NOT_ publish dirty bits to the other threads 803 * (e.g., the migration thread) via the kvm memory slot dirty 804 * bitmaps before correctly re-protect those dirtied pages. 805 * Otherwise we can have potential risk of data corruption if 806 * the page data is read in the other thread before we do 807 * reset below. 808 */ 809 kvm_slots_lock(); 810 total = kvm_dirty_ring_reap_locked(s); 811 kvm_slots_unlock(); 812 813 return total; 814 } 815 816 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 817 { 818 /* No need to do anything */ 819 } 820 821 /* 822 * Kick all vcpus out in a synchronized way. When returned, we 823 * guarantee that every vcpu has been kicked and at least returned to 824 * userspace once. 825 */ 826 static void kvm_cpu_synchronize_kick_all(void) 827 { 828 CPUState *cpu; 829 830 CPU_FOREACH(cpu) { 831 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 832 } 833 } 834 835 /* 836 * Flush all the existing dirty pages to the KVM slot buffers. When 837 * this call returns, we guarantee that all the touched dirty pages 838 * before calling this function have been put into the per-kvmslot 839 * dirty bitmap. 840 * 841 * This function must be called with BQL held. 842 */ 843 static void kvm_dirty_ring_flush(void) 844 { 845 trace_kvm_dirty_ring_flush(0); 846 /* 847 * The function needs to be serialized. Since this function 848 * should always be with BQL held, serialization is guaranteed. 849 * However, let's be sure of it. 850 */ 851 assert(qemu_mutex_iothread_locked()); 852 /* 853 * First make sure to flush the hardware buffers by kicking all 854 * vcpus out in a synchronous way. 855 */ 856 kvm_cpu_synchronize_kick_all(); 857 kvm_dirty_ring_reap(kvm_state); 858 trace_kvm_dirty_ring_flush(1); 859 } 860 861 /** 862 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 863 * 864 * This function will first try to fetch dirty bitmap from the kernel, 865 * and then updates qemu's dirty bitmap. 866 * 867 * NOTE: caller must be with kml->slots_lock held. 868 * 869 * @kml: the KVM memory listener object 870 * @section: the memory section to sync the dirty bitmap with 871 */ 872 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 873 MemoryRegionSection *section) 874 { 875 KVMState *s = kvm_state; 876 KVMSlot *mem; 877 hwaddr start_addr, size; 878 hwaddr slot_size; 879 880 size = kvm_align_section(section, &start_addr); 881 while (size) { 882 slot_size = MIN(kvm_max_slot_size, size); 883 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 884 if (!mem) { 885 /* We don't have a slot if we want to trap every access. */ 886 return; 887 } 888 if (kvm_slot_get_dirty_log(s, mem)) { 889 kvm_slot_sync_dirty_pages(mem); 890 } 891 start_addr += slot_size; 892 size -= slot_size; 893 } 894 } 895 896 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 897 #define KVM_CLEAR_LOG_SHIFT 6 898 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT) 899 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 900 901 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 902 uint64_t size) 903 { 904 KVMState *s = kvm_state; 905 uint64_t end, bmap_start, start_delta, bmap_npages; 906 struct kvm_clear_dirty_log d; 907 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size; 908 int ret; 909 910 /* 911 * We need to extend either the start or the size or both to 912 * satisfy the KVM interface requirement. Firstly, do the start 913 * page alignment on 64 host pages 914 */ 915 bmap_start = start & KVM_CLEAR_LOG_MASK; 916 start_delta = start - bmap_start; 917 bmap_start /= psize; 918 919 /* 920 * The kernel interface has restriction on the size too, that either: 921 * 922 * (1) the size is 64 host pages aligned (just like the start), or 923 * (2) the size fills up until the end of the KVM memslot. 924 */ 925 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 926 << KVM_CLEAR_LOG_SHIFT; 927 end = mem->memory_size / psize; 928 if (bmap_npages > end - bmap_start) { 929 bmap_npages = end - bmap_start; 930 } 931 start_delta /= psize; 932 933 /* 934 * Prepare the bitmap to clear dirty bits. Here we must guarantee 935 * that we won't clear any unknown dirty bits otherwise we might 936 * accidentally clear some set bits which are not yet synced from 937 * the kernel into QEMU's bitmap, then we'll lose track of the 938 * guest modifications upon those pages (which can directly lead 939 * to guest data loss or panic after migration). 940 * 941 * Layout of the KVMSlot.dirty_bmap: 942 * 943 * |<-------- bmap_npages -----------..>| 944 * [1] 945 * start_delta size 946 * |----------------|-------------|------------------|------------| 947 * ^ ^ ^ ^ 948 * | | | | 949 * start bmap_start (start) end 950 * of memslot of memslot 951 * 952 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 953 */ 954 955 assert(bmap_start % BITS_PER_LONG == 0); 956 /* We should never do log_clear before log_sync */ 957 assert(mem->dirty_bmap); 958 if (start_delta || bmap_npages - size / psize) { 959 /* Slow path - we need to manipulate a temp bitmap */ 960 bmap_clear = bitmap_new(bmap_npages); 961 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 962 bmap_start, start_delta + size / psize); 963 /* 964 * We need to fill the holes at start because that was not 965 * specified by the caller and we extended the bitmap only for 966 * 64 pages alignment 967 */ 968 bitmap_clear(bmap_clear, 0, start_delta); 969 d.dirty_bitmap = bmap_clear; 970 } else { 971 /* 972 * Fast path - both start and size align well with BITS_PER_LONG 973 * (or the end of memory slot) 974 */ 975 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 976 } 977 978 d.first_page = bmap_start; 979 /* It should never overflow. If it happens, say something */ 980 assert(bmap_npages <= UINT32_MAX); 981 d.num_pages = bmap_npages; 982 d.slot = mem->slot | (as_id << 16); 983 984 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 985 if (ret < 0 && ret != -ENOENT) { 986 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 987 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 988 __func__, d.slot, (uint64_t)d.first_page, 989 (uint32_t)d.num_pages, ret); 990 } else { 991 ret = 0; 992 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 993 } 994 995 /* 996 * After we have updated the remote dirty bitmap, we update the 997 * cached bitmap as well for the memslot, then if another user 998 * clears the same region we know we shouldn't clear it again on 999 * the remote otherwise it's data loss as well. 1000 */ 1001 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1002 size / psize); 1003 /* This handles the NULL case well */ 1004 g_free(bmap_clear); 1005 return ret; 1006 } 1007 1008 1009 /** 1010 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1011 * 1012 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1013 * protection in the host kernel because in that case this operation 1014 * will be done within log_sync(). 1015 * 1016 * @kml: the kvm memory listener 1017 * @section: the memory range to clear dirty bitmap 1018 */ 1019 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1020 MemoryRegionSection *section) 1021 { 1022 KVMState *s = kvm_state; 1023 uint64_t start, size, offset, count; 1024 KVMSlot *mem; 1025 int ret = 0, i; 1026 1027 if (!s->manual_dirty_log_protect) { 1028 /* No need to do explicit clear */ 1029 return ret; 1030 } 1031 1032 start = section->offset_within_address_space; 1033 size = int128_get64(section->size); 1034 1035 if (!size) { 1036 /* Nothing more we can do... */ 1037 return ret; 1038 } 1039 1040 kvm_slots_lock(); 1041 1042 for (i = 0; i < s->nr_slots; i++) { 1043 mem = &kml->slots[i]; 1044 /* Discard slots that are empty or do not overlap the section */ 1045 if (!mem->memory_size || 1046 mem->start_addr > start + size - 1 || 1047 start > mem->start_addr + mem->memory_size - 1) { 1048 continue; 1049 } 1050 1051 if (start >= mem->start_addr) { 1052 /* The slot starts before section or is aligned to it. */ 1053 offset = start - mem->start_addr; 1054 count = MIN(mem->memory_size - offset, size); 1055 } else { 1056 /* The slot starts after section. */ 1057 offset = 0; 1058 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1059 } 1060 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1061 if (ret < 0) { 1062 break; 1063 } 1064 } 1065 1066 kvm_slots_unlock(); 1067 1068 return ret; 1069 } 1070 1071 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1072 MemoryRegionSection *secion, 1073 hwaddr start, hwaddr size) 1074 { 1075 KVMState *s = kvm_state; 1076 1077 if (s->coalesced_mmio) { 1078 struct kvm_coalesced_mmio_zone zone; 1079 1080 zone.addr = start; 1081 zone.size = size; 1082 zone.pad = 0; 1083 1084 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1085 } 1086 } 1087 1088 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1089 MemoryRegionSection *secion, 1090 hwaddr start, hwaddr size) 1091 { 1092 KVMState *s = kvm_state; 1093 1094 if (s->coalesced_mmio) { 1095 struct kvm_coalesced_mmio_zone zone; 1096 1097 zone.addr = start; 1098 zone.size = size; 1099 zone.pad = 0; 1100 1101 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1102 } 1103 } 1104 1105 static void kvm_coalesce_pio_add(MemoryListener *listener, 1106 MemoryRegionSection *section, 1107 hwaddr start, hwaddr size) 1108 { 1109 KVMState *s = kvm_state; 1110 1111 if (s->coalesced_pio) { 1112 struct kvm_coalesced_mmio_zone zone; 1113 1114 zone.addr = start; 1115 zone.size = size; 1116 zone.pio = 1; 1117 1118 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1119 } 1120 } 1121 1122 static void kvm_coalesce_pio_del(MemoryListener *listener, 1123 MemoryRegionSection *section, 1124 hwaddr start, hwaddr size) 1125 { 1126 KVMState *s = kvm_state; 1127 1128 if (s->coalesced_pio) { 1129 struct kvm_coalesced_mmio_zone zone; 1130 1131 zone.addr = start; 1132 zone.size = size; 1133 zone.pio = 1; 1134 1135 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1136 } 1137 } 1138 1139 static MemoryListener kvm_coalesced_pio_listener = { 1140 .name = "kvm-coalesced-pio", 1141 .coalesced_io_add = kvm_coalesce_pio_add, 1142 .coalesced_io_del = kvm_coalesce_pio_del, 1143 }; 1144 1145 int kvm_check_extension(KVMState *s, unsigned int extension) 1146 { 1147 int ret; 1148 1149 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1150 if (ret < 0) { 1151 ret = 0; 1152 } 1153 1154 return ret; 1155 } 1156 1157 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1158 { 1159 int ret; 1160 1161 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1162 if (ret < 0) { 1163 /* VM wide version not implemented, use global one instead */ 1164 ret = kvm_check_extension(s, extension); 1165 } 1166 1167 return ret; 1168 } 1169 1170 typedef struct HWPoisonPage { 1171 ram_addr_t ram_addr; 1172 QLIST_ENTRY(HWPoisonPage) list; 1173 } HWPoisonPage; 1174 1175 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1176 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1177 1178 static void kvm_unpoison_all(void *param) 1179 { 1180 HWPoisonPage *page, *next_page; 1181 1182 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1183 QLIST_REMOVE(page, list); 1184 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1185 g_free(page); 1186 } 1187 } 1188 1189 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1190 { 1191 HWPoisonPage *page; 1192 1193 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1194 if (page->ram_addr == ram_addr) { 1195 return; 1196 } 1197 } 1198 page = g_new(HWPoisonPage, 1); 1199 page->ram_addr = ram_addr; 1200 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1201 } 1202 1203 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1204 { 1205 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) 1206 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN 1207 * endianness, but the memory core hands them in target endianness. 1208 * For example, PPC is always treated as big-endian even if running 1209 * on KVM and on PPC64LE. Correct here. 1210 */ 1211 switch (size) { 1212 case 2: 1213 val = bswap16(val); 1214 break; 1215 case 4: 1216 val = bswap32(val); 1217 break; 1218 } 1219 #endif 1220 return val; 1221 } 1222 1223 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1224 bool assign, uint32_t size, bool datamatch) 1225 { 1226 int ret; 1227 struct kvm_ioeventfd iofd = { 1228 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1229 .addr = addr, 1230 .len = size, 1231 .flags = 0, 1232 .fd = fd, 1233 }; 1234 1235 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1236 datamatch); 1237 if (!kvm_enabled()) { 1238 return -ENOSYS; 1239 } 1240 1241 if (datamatch) { 1242 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1243 } 1244 if (!assign) { 1245 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1246 } 1247 1248 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1249 1250 if (ret < 0) { 1251 return -errno; 1252 } 1253 1254 return 0; 1255 } 1256 1257 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1258 bool assign, uint32_t size, bool datamatch) 1259 { 1260 struct kvm_ioeventfd kick = { 1261 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1262 .addr = addr, 1263 .flags = KVM_IOEVENTFD_FLAG_PIO, 1264 .len = size, 1265 .fd = fd, 1266 }; 1267 int r; 1268 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1269 if (!kvm_enabled()) { 1270 return -ENOSYS; 1271 } 1272 if (datamatch) { 1273 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1274 } 1275 if (!assign) { 1276 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1277 } 1278 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1279 if (r < 0) { 1280 return r; 1281 } 1282 return 0; 1283 } 1284 1285 1286 static int kvm_check_many_ioeventfds(void) 1287 { 1288 /* Userspace can use ioeventfd for io notification. This requires a host 1289 * that supports eventfd(2) and an I/O thread; since eventfd does not 1290 * support SIGIO it cannot interrupt the vcpu. 1291 * 1292 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1293 * can avoid creating too many ioeventfds. 1294 */ 1295 #if defined(CONFIG_EVENTFD) 1296 int ioeventfds[7]; 1297 int i, ret = 0; 1298 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1299 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1300 if (ioeventfds[i] < 0) { 1301 break; 1302 } 1303 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1304 if (ret < 0) { 1305 close(ioeventfds[i]); 1306 break; 1307 } 1308 } 1309 1310 /* Decide whether many devices are supported or not */ 1311 ret = i == ARRAY_SIZE(ioeventfds); 1312 1313 while (i-- > 0) { 1314 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1315 close(ioeventfds[i]); 1316 } 1317 return ret; 1318 #else 1319 return 0; 1320 #endif 1321 } 1322 1323 static const KVMCapabilityInfo * 1324 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1325 { 1326 while (list->name) { 1327 if (!kvm_check_extension(s, list->value)) { 1328 return list; 1329 } 1330 list++; 1331 } 1332 return NULL; 1333 } 1334 1335 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1336 { 1337 g_assert( 1338 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size 1339 ); 1340 kvm_max_slot_size = max_slot_size; 1341 } 1342 1343 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1344 MemoryRegionSection *section, bool add) 1345 { 1346 KVMSlot *mem; 1347 int err; 1348 MemoryRegion *mr = section->mr; 1349 bool writeable = !mr->readonly && !mr->rom_device; 1350 hwaddr start_addr, size, slot_size, mr_offset; 1351 ram_addr_t ram_start_offset; 1352 void *ram; 1353 1354 if (!memory_region_is_ram(mr)) { 1355 if (writeable || !kvm_readonly_mem_allowed) { 1356 return; 1357 } else if (!mr->romd_mode) { 1358 /* If the memory device is not in romd_mode, then we actually want 1359 * to remove the kvm memory slot so all accesses will trap. */ 1360 add = false; 1361 } 1362 } 1363 1364 size = kvm_align_section(section, &start_addr); 1365 if (!size) { 1366 return; 1367 } 1368 1369 /* The offset of the kvmslot within the memory region */ 1370 mr_offset = section->offset_within_region + start_addr - 1371 section->offset_within_address_space; 1372 1373 /* use aligned delta to align the ram address and offset */ 1374 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1375 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1376 1377 kvm_slots_lock(); 1378 1379 if (!add) { 1380 do { 1381 slot_size = MIN(kvm_max_slot_size, size); 1382 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1383 if (!mem) { 1384 goto out; 1385 } 1386 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1387 /* 1388 * NOTE: We should be aware of the fact that here we're only 1389 * doing a best effort to sync dirty bits. No matter whether 1390 * we're using dirty log or dirty ring, we ignored two facts: 1391 * 1392 * (1) dirty bits can reside in hardware buffers (PML) 1393 * 1394 * (2) after we collected dirty bits here, pages can be dirtied 1395 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1396 * remove the slot. 1397 * 1398 * Not easy. Let's cross the fingers until it's fixed. 1399 */ 1400 if (kvm_state->kvm_dirty_ring_size) { 1401 kvm_dirty_ring_reap_locked(kvm_state); 1402 } else { 1403 kvm_slot_get_dirty_log(kvm_state, mem); 1404 } 1405 kvm_slot_sync_dirty_pages(mem); 1406 } 1407 1408 /* unregister the slot */ 1409 g_free(mem->dirty_bmap); 1410 mem->dirty_bmap = NULL; 1411 mem->memory_size = 0; 1412 mem->flags = 0; 1413 err = kvm_set_user_memory_region(kml, mem, false); 1414 if (err) { 1415 fprintf(stderr, "%s: error unregistering slot: %s\n", 1416 __func__, strerror(-err)); 1417 abort(); 1418 } 1419 start_addr += slot_size; 1420 size -= slot_size; 1421 } while (size); 1422 goto out; 1423 } 1424 1425 /* register the new slot */ 1426 do { 1427 slot_size = MIN(kvm_max_slot_size, size); 1428 mem = kvm_alloc_slot(kml); 1429 mem->as_id = kml->as_id; 1430 mem->memory_size = slot_size; 1431 mem->start_addr = start_addr; 1432 mem->ram_start_offset = ram_start_offset; 1433 mem->ram = ram; 1434 mem->flags = kvm_mem_flags(mr); 1435 kvm_slot_init_dirty_bitmap(mem); 1436 err = kvm_set_user_memory_region(kml, mem, true); 1437 if (err) { 1438 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1439 strerror(-err)); 1440 abort(); 1441 } 1442 start_addr += slot_size; 1443 ram_start_offset += slot_size; 1444 ram += slot_size; 1445 size -= slot_size; 1446 } while (size); 1447 1448 out: 1449 kvm_slots_unlock(); 1450 } 1451 1452 static void *kvm_dirty_ring_reaper_thread(void *data) 1453 { 1454 KVMState *s = data; 1455 struct KVMDirtyRingReaper *r = &s->reaper; 1456 1457 rcu_register_thread(); 1458 1459 trace_kvm_dirty_ring_reaper("init"); 1460 1461 while (true) { 1462 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1463 trace_kvm_dirty_ring_reaper("wait"); 1464 /* 1465 * TODO: provide a smarter timeout rather than a constant? 1466 */ 1467 sleep(1); 1468 1469 trace_kvm_dirty_ring_reaper("wakeup"); 1470 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1471 1472 qemu_mutex_lock_iothread(); 1473 kvm_dirty_ring_reap(s); 1474 qemu_mutex_unlock_iothread(); 1475 1476 r->reaper_iteration++; 1477 } 1478 1479 trace_kvm_dirty_ring_reaper("exit"); 1480 1481 rcu_unregister_thread(); 1482 1483 return NULL; 1484 } 1485 1486 static int kvm_dirty_ring_reaper_init(KVMState *s) 1487 { 1488 struct KVMDirtyRingReaper *r = &s->reaper; 1489 1490 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1491 kvm_dirty_ring_reaper_thread, 1492 s, QEMU_THREAD_JOINABLE); 1493 1494 return 0; 1495 } 1496 1497 static void kvm_region_add(MemoryListener *listener, 1498 MemoryRegionSection *section) 1499 { 1500 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1501 1502 memory_region_ref(section->mr); 1503 kvm_set_phys_mem(kml, section, true); 1504 } 1505 1506 static void kvm_region_del(MemoryListener *listener, 1507 MemoryRegionSection *section) 1508 { 1509 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1510 1511 kvm_set_phys_mem(kml, section, false); 1512 memory_region_unref(section->mr); 1513 } 1514 1515 static void kvm_log_sync(MemoryListener *listener, 1516 MemoryRegionSection *section) 1517 { 1518 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1519 1520 kvm_slots_lock(); 1521 kvm_physical_sync_dirty_bitmap(kml, section); 1522 kvm_slots_unlock(); 1523 } 1524 1525 static void kvm_log_sync_global(MemoryListener *l) 1526 { 1527 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1528 KVMState *s = kvm_state; 1529 KVMSlot *mem; 1530 int i; 1531 1532 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1533 kvm_dirty_ring_flush(); 1534 1535 /* 1536 * TODO: make this faster when nr_slots is big while there are 1537 * only a few used slots (small VMs). 1538 */ 1539 kvm_slots_lock(); 1540 for (i = 0; i < s->nr_slots; i++) { 1541 mem = &kml->slots[i]; 1542 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1543 kvm_slot_sync_dirty_pages(mem); 1544 /* 1545 * This is not needed by KVM_GET_DIRTY_LOG because the 1546 * ioctl will unconditionally overwrite the whole region. 1547 * However kvm dirty ring has no such side effect. 1548 */ 1549 kvm_slot_reset_dirty_pages(mem); 1550 } 1551 } 1552 kvm_slots_unlock(); 1553 } 1554 1555 static void kvm_log_clear(MemoryListener *listener, 1556 MemoryRegionSection *section) 1557 { 1558 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1559 int r; 1560 1561 r = kvm_physical_log_clear(kml, section); 1562 if (r < 0) { 1563 error_report_once("%s: kvm log clear failed: mr=%s " 1564 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1565 section->mr->name, section->offset_within_region, 1566 int128_get64(section->size)); 1567 abort(); 1568 } 1569 } 1570 1571 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1572 MemoryRegionSection *section, 1573 bool match_data, uint64_t data, 1574 EventNotifier *e) 1575 { 1576 int fd = event_notifier_get_fd(e); 1577 int r; 1578 1579 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1580 data, true, int128_get64(section->size), 1581 match_data); 1582 if (r < 0) { 1583 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1584 __func__, strerror(-r), -r); 1585 abort(); 1586 } 1587 } 1588 1589 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1590 MemoryRegionSection *section, 1591 bool match_data, uint64_t data, 1592 EventNotifier *e) 1593 { 1594 int fd = event_notifier_get_fd(e); 1595 int r; 1596 1597 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1598 data, false, int128_get64(section->size), 1599 match_data); 1600 if (r < 0) { 1601 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1602 __func__, strerror(-r), -r); 1603 abort(); 1604 } 1605 } 1606 1607 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1608 MemoryRegionSection *section, 1609 bool match_data, uint64_t data, 1610 EventNotifier *e) 1611 { 1612 int fd = event_notifier_get_fd(e); 1613 int r; 1614 1615 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1616 data, true, int128_get64(section->size), 1617 match_data); 1618 if (r < 0) { 1619 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1620 __func__, strerror(-r), -r); 1621 abort(); 1622 } 1623 } 1624 1625 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1626 MemoryRegionSection *section, 1627 bool match_data, uint64_t data, 1628 EventNotifier *e) 1629 1630 { 1631 int fd = event_notifier_get_fd(e); 1632 int r; 1633 1634 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1635 data, false, int128_get64(section->size), 1636 match_data); 1637 if (r < 0) { 1638 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1639 __func__, strerror(-r), -r); 1640 abort(); 1641 } 1642 } 1643 1644 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1645 AddressSpace *as, int as_id, const char *name) 1646 { 1647 int i; 1648 1649 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); 1650 kml->as_id = as_id; 1651 1652 for (i = 0; i < s->nr_slots; i++) { 1653 kml->slots[i].slot = i; 1654 } 1655 1656 kml->listener.region_add = kvm_region_add; 1657 kml->listener.region_del = kvm_region_del; 1658 kml->listener.log_start = kvm_log_start; 1659 kml->listener.log_stop = kvm_log_stop; 1660 kml->listener.priority = 10; 1661 kml->listener.name = name; 1662 1663 if (s->kvm_dirty_ring_size) { 1664 kml->listener.log_sync_global = kvm_log_sync_global; 1665 } else { 1666 kml->listener.log_sync = kvm_log_sync; 1667 kml->listener.log_clear = kvm_log_clear; 1668 } 1669 1670 memory_listener_register(&kml->listener, as); 1671 1672 for (i = 0; i < s->nr_as; ++i) { 1673 if (!s->as[i].as) { 1674 s->as[i].as = as; 1675 s->as[i].ml = kml; 1676 break; 1677 } 1678 } 1679 } 1680 1681 static MemoryListener kvm_io_listener = { 1682 .name = "kvm-io", 1683 .eventfd_add = kvm_io_ioeventfd_add, 1684 .eventfd_del = kvm_io_ioeventfd_del, 1685 .priority = 10, 1686 }; 1687 1688 int kvm_set_irq(KVMState *s, int irq, int level) 1689 { 1690 struct kvm_irq_level event; 1691 int ret; 1692 1693 assert(kvm_async_interrupts_enabled()); 1694 1695 event.level = level; 1696 event.irq = irq; 1697 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1698 if (ret < 0) { 1699 perror("kvm_set_irq"); 1700 abort(); 1701 } 1702 1703 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1704 } 1705 1706 #ifdef KVM_CAP_IRQ_ROUTING 1707 typedef struct KVMMSIRoute { 1708 struct kvm_irq_routing_entry kroute; 1709 QTAILQ_ENTRY(KVMMSIRoute) entry; 1710 } KVMMSIRoute; 1711 1712 static void set_gsi(KVMState *s, unsigned int gsi) 1713 { 1714 set_bit(gsi, s->used_gsi_bitmap); 1715 } 1716 1717 static void clear_gsi(KVMState *s, unsigned int gsi) 1718 { 1719 clear_bit(gsi, s->used_gsi_bitmap); 1720 } 1721 1722 void kvm_init_irq_routing(KVMState *s) 1723 { 1724 int gsi_count, i; 1725 1726 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1727 if (gsi_count > 0) { 1728 /* Round up so we can search ints using ffs */ 1729 s->used_gsi_bitmap = bitmap_new(gsi_count); 1730 s->gsi_count = gsi_count; 1731 } 1732 1733 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1734 s->nr_allocated_irq_routes = 0; 1735 1736 if (!kvm_direct_msi_allowed) { 1737 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1738 QTAILQ_INIT(&s->msi_hashtab[i]); 1739 } 1740 } 1741 1742 kvm_arch_init_irq_routing(s); 1743 } 1744 1745 void kvm_irqchip_commit_routes(KVMState *s) 1746 { 1747 int ret; 1748 1749 if (kvm_gsi_direct_mapping()) { 1750 return; 1751 } 1752 1753 if (!kvm_gsi_routing_enabled()) { 1754 return; 1755 } 1756 1757 s->irq_routes->flags = 0; 1758 trace_kvm_irqchip_commit_routes(); 1759 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1760 assert(ret == 0); 1761 } 1762 1763 static void kvm_add_routing_entry(KVMState *s, 1764 struct kvm_irq_routing_entry *entry) 1765 { 1766 struct kvm_irq_routing_entry *new; 1767 int n, size; 1768 1769 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1770 n = s->nr_allocated_irq_routes * 2; 1771 if (n < 64) { 1772 n = 64; 1773 } 1774 size = sizeof(struct kvm_irq_routing); 1775 size += n * sizeof(*new); 1776 s->irq_routes = g_realloc(s->irq_routes, size); 1777 s->nr_allocated_irq_routes = n; 1778 } 1779 n = s->irq_routes->nr++; 1780 new = &s->irq_routes->entries[n]; 1781 1782 *new = *entry; 1783 1784 set_gsi(s, entry->gsi); 1785 } 1786 1787 static int kvm_update_routing_entry(KVMState *s, 1788 struct kvm_irq_routing_entry *new_entry) 1789 { 1790 struct kvm_irq_routing_entry *entry; 1791 int n; 1792 1793 for (n = 0; n < s->irq_routes->nr; n++) { 1794 entry = &s->irq_routes->entries[n]; 1795 if (entry->gsi != new_entry->gsi) { 1796 continue; 1797 } 1798 1799 if(!memcmp(entry, new_entry, sizeof *entry)) { 1800 return 0; 1801 } 1802 1803 *entry = *new_entry; 1804 1805 return 0; 1806 } 1807 1808 return -ESRCH; 1809 } 1810 1811 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1812 { 1813 struct kvm_irq_routing_entry e = {}; 1814 1815 assert(pin < s->gsi_count); 1816 1817 e.gsi = irq; 1818 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1819 e.flags = 0; 1820 e.u.irqchip.irqchip = irqchip; 1821 e.u.irqchip.pin = pin; 1822 kvm_add_routing_entry(s, &e); 1823 } 1824 1825 void kvm_irqchip_release_virq(KVMState *s, int virq) 1826 { 1827 struct kvm_irq_routing_entry *e; 1828 int i; 1829 1830 if (kvm_gsi_direct_mapping()) { 1831 return; 1832 } 1833 1834 for (i = 0; i < s->irq_routes->nr; i++) { 1835 e = &s->irq_routes->entries[i]; 1836 if (e->gsi == virq) { 1837 s->irq_routes->nr--; 1838 *e = s->irq_routes->entries[s->irq_routes->nr]; 1839 } 1840 } 1841 clear_gsi(s, virq); 1842 kvm_arch_release_virq_post(virq); 1843 trace_kvm_irqchip_release_virq(virq); 1844 } 1845 1846 void kvm_irqchip_add_change_notifier(Notifier *n) 1847 { 1848 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1849 } 1850 1851 void kvm_irqchip_remove_change_notifier(Notifier *n) 1852 { 1853 notifier_remove(n); 1854 } 1855 1856 void kvm_irqchip_change_notify(void) 1857 { 1858 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1859 } 1860 1861 static unsigned int kvm_hash_msi(uint32_t data) 1862 { 1863 /* This is optimized for IA32 MSI layout. However, no other arch shall 1864 * repeat the mistake of not providing a direct MSI injection API. */ 1865 return data & 0xff; 1866 } 1867 1868 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1869 { 1870 KVMMSIRoute *route, *next; 1871 unsigned int hash; 1872 1873 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1874 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1875 kvm_irqchip_release_virq(s, route->kroute.gsi); 1876 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1877 g_free(route); 1878 } 1879 } 1880 } 1881 1882 static int kvm_irqchip_get_virq(KVMState *s) 1883 { 1884 int next_virq; 1885 1886 /* 1887 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1888 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1889 * number can succeed even though a new route entry cannot be added. 1890 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1891 */ 1892 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1893 kvm_flush_dynamic_msi_routes(s); 1894 } 1895 1896 /* Return the lowest unused GSI in the bitmap */ 1897 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1898 if (next_virq >= s->gsi_count) { 1899 return -ENOSPC; 1900 } else { 1901 return next_virq; 1902 } 1903 } 1904 1905 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1906 { 1907 unsigned int hash = kvm_hash_msi(msg.data); 1908 KVMMSIRoute *route; 1909 1910 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1911 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1912 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1913 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1914 return route; 1915 } 1916 } 1917 return NULL; 1918 } 1919 1920 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1921 { 1922 struct kvm_msi msi; 1923 KVMMSIRoute *route; 1924 1925 if (kvm_direct_msi_allowed) { 1926 msi.address_lo = (uint32_t)msg.address; 1927 msi.address_hi = msg.address >> 32; 1928 msi.data = le32_to_cpu(msg.data); 1929 msi.flags = 0; 1930 memset(msi.pad, 0, sizeof(msi.pad)); 1931 1932 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1933 } 1934 1935 route = kvm_lookup_msi_route(s, msg); 1936 if (!route) { 1937 int virq; 1938 1939 virq = kvm_irqchip_get_virq(s); 1940 if (virq < 0) { 1941 return virq; 1942 } 1943 1944 route = g_malloc0(sizeof(KVMMSIRoute)); 1945 route->kroute.gsi = virq; 1946 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1947 route->kroute.flags = 0; 1948 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1949 route->kroute.u.msi.address_hi = msg.address >> 32; 1950 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1951 1952 kvm_add_routing_entry(s, &route->kroute); 1953 kvm_irqchip_commit_routes(s); 1954 1955 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1956 entry); 1957 } 1958 1959 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1960 1961 return kvm_set_irq(s, route->kroute.gsi, 1); 1962 } 1963 1964 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 1965 { 1966 struct kvm_irq_routing_entry kroute = {}; 1967 int virq; 1968 MSIMessage msg = {0, 0}; 1969 1970 if (pci_available && dev) { 1971 msg = pci_get_msi_message(dev, vector); 1972 } 1973 1974 if (kvm_gsi_direct_mapping()) { 1975 return kvm_arch_msi_data_to_gsi(msg.data); 1976 } 1977 1978 if (!kvm_gsi_routing_enabled()) { 1979 return -ENOSYS; 1980 } 1981 1982 virq = kvm_irqchip_get_virq(s); 1983 if (virq < 0) { 1984 return virq; 1985 } 1986 1987 kroute.gsi = virq; 1988 kroute.type = KVM_IRQ_ROUTING_MSI; 1989 kroute.flags = 0; 1990 kroute.u.msi.address_lo = (uint32_t)msg.address; 1991 kroute.u.msi.address_hi = msg.address >> 32; 1992 kroute.u.msi.data = le32_to_cpu(msg.data); 1993 if (pci_available && kvm_msi_devid_required()) { 1994 kroute.flags = KVM_MSI_VALID_DEVID; 1995 kroute.u.msi.devid = pci_requester_id(dev); 1996 } 1997 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 1998 kvm_irqchip_release_virq(s, virq); 1999 return -EINVAL; 2000 } 2001 2002 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2003 vector, virq); 2004 2005 kvm_add_routing_entry(s, &kroute); 2006 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2007 kvm_irqchip_commit_routes(s); 2008 2009 return virq; 2010 } 2011 2012 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2013 PCIDevice *dev) 2014 { 2015 struct kvm_irq_routing_entry kroute = {}; 2016 2017 if (kvm_gsi_direct_mapping()) { 2018 return 0; 2019 } 2020 2021 if (!kvm_irqchip_in_kernel()) { 2022 return -ENOSYS; 2023 } 2024 2025 kroute.gsi = virq; 2026 kroute.type = KVM_IRQ_ROUTING_MSI; 2027 kroute.flags = 0; 2028 kroute.u.msi.address_lo = (uint32_t)msg.address; 2029 kroute.u.msi.address_hi = msg.address >> 32; 2030 kroute.u.msi.data = le32_to_cpu(msg.data); 2031 if (pci_available && kvm_msi_devid_required()) { 2032 kroute.flags = KVM_MSI_VALID_DEVID; 2033 kroute.u.msi.devid = pci_requester_id(dev); 2034 } 2035 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2036 return -EINVAL; 2037 } 2038 2039 trace_kvm_irqchip_update_msi_route(virq); 2040 2041 return kvm_update_routing_entry(s, &kroute); 2042 } 2043 2044 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2045 EventNotifier *resample, int virq, 2046 bool assign) 2047 { 2048 int fd = event_notifier_get_fd(event); 2049 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2050 2051 struct kvm_irqfd irqfd = { 2052 .fd = fd, 2053 .gsi = virq, 2054 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2055 }; 2056 2057 if (rfd != -1) { 2058 assert(assign); 2059 if (kvm_irqchip_is_split()) { 2060 /* 2061 * When the slow irqchip (e.g. IOAPIC) is in the 2062 * userspace, KVM kernel resamplefd will not work because 2063 * the EOI of the interrupt will be delivered to userspace 2064 * instead, so the KVM kernel resamplefd kick will be 2065 * skipped. The userspace here mimics what the kernel 2066 * provides with resamplefd, remember the resamplefd and 2067 * kick it when we receive EOI of this IRQ. 2068 * 2069 * This is hackery because IOAPIC is mostly bypassed 2070 * (except EOI broadcasts) when irqfd is used. However 2071 * this can bring much performance back for split irqchip 2072 * with INTx IRQs (for VFIO, this gives 93% perf of the 2073 * full fast path, which is 46% perf boost comparing to 2074 * the INTx slow path). 2075 */ 2076 kvm_resample_fd_insert(virq, resample); 2077 } else { 2078 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2079 irqfd.resamplefd = rfd; 2080 } 2081 } else if (!assign) { 2082 if (kvm_irqchip_is_split()) { 2083 kvm_resample_fd_remove(virq); 2084 } 2085 } 2086 2087 if (!kvm_irqfds_enabled()) { 2088 return -ENOSYS; 2089 } 2090 2091 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2092 } 2093 2094 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2095 { 2096 struct kvm_irq_routing_entry kroute = {}; 2097 int virq; 2098 2099 if (!kvm_gsi_routing_enabled()) { 2100 return -ENOSYS; 2101 } 2102 2103 virq = kvm_irqchip_get_virq(s); 2104 if (virq < 0) { 2105 return virq; 2106 } 2107 2108 kroute.gsi = virq; 2109 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2110 kroute.flags = 0; 2111 kroute.u.adapter.summary_addr = adapter->summary_addr; 2112 kroute.u.adapter.ind_addr = adapter->ind_addr; 2113 kroute.u.adapter.summary_offset = adapter->summary_offset; 2114 kroute.u.adapter.ind_offset = adapter->ind_offset; 2115 kroute.u.adapter.adapter_id = adapter->adapter_id; 2116 2117 kvm_add_routing_entry(s, &kroute); 2118 2119 return virq; 2120 } 2121 2122 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2123 { 2124 struct kvm_irq_routing_entry kroute = {}; 2125 int virq; 2126 2127 if (!kvm_gsi_routing_enabled()) { 2128 return -ENOSYS; 2129 } 2130 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2131 return -ENOSYS; 2132 } 2133 virq = kvm_irqchip_get_virq(s); 2134 if (virq < 0) { 2135 return virq; 2136 } 2137 2138 kroute.gsi = virq; 2139 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2140 kroute.flags = 0; 2141 kroute.u.hv_sint.vcpu = vcpu; 2142 kroute.u.hv_sint.sint = sint; 2143 2144 kvm_add_routing_entry(s, &kroute); 2145 kvm_irqchip_commit_routes(s); 2146 2147 return virq; 2148 } 2149 2150 #else /* !KVM_CAP_IRQ_ROUTING */ 2151 2152 void kvm_init_irq_routing(KVMState *s) 2153 { 2154 } 2155 2156 void kvm_irqchip_release_virq(KVMState *s, int virq) 2157 { 2158 } 2159 2160 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2161 { 2162 abort(); 2163 } 2164 2165 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev) 2166 { 2167 return -ENOSYS; 2168 } 2169 2170 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2171 { 2172 return -ENOSYS; 2173 } 2174 2175 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2176 { 2177 return -ENOSYS; 2178 } 2179 2180 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2181 EventNotifier *resample, int virq, 2182 bool assign) 2183 { 2184 abort(); 2185 } 2186 2187 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2188 { 2189 return -ENOSYS; 2190 } 2191 #endif /* !KVM_CAP_IRQ_ROUTING */ 2192 2193 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2194 EventNotifier *rn, int virq) 2195 { 2196 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2197 } 2198 2199 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2200 int virq) 2201 { 2202 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2203 } 2204 2205 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2206 EventNotifier *rn, qemu_irq irq) 2207 { 2208 gpointer key, gsi; 2209 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2210 2211 if (!found) { 2212 return -ENXIO; 2213 } 2214 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2215 } 2216 2217 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2218 qemu_irq irq) 2219 { 2220 gpointer key, gsi; 2221 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2222 2223 if (!found) { 2224 return -ENXIO; 2225 } 2226 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2227 } 2228 2229 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2230 { 2231 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2232 } 2233 2234 static void kvm_irqchip_create(KVMState *s) 2235 { 2236 int ret; 2237 2238 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2239 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2240 ; 2241 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2242 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2243 if (ret < 0) { 2244 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2245 exit(1); 2246 } 2247 } else { 2248 return; 2249 } 2250 2251 /* First probe and see if there's a arch-specific hook to create the 2252 * in-kernel irqchip for us */ 2253 ret = kvm_arch_irqchip_create(s); 2254 if (ret == 0) { 2255 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2256 perror("Split IRQ chip mode not supported."); 2257 exit(1); 2258 } else { 2259 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2260 } 2261 } 2262 if (ret < 0) { 2263 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2264 exit(1); 2265 } 2266 2267 kvm_kernel_irqchip = true; 2268 /* If we have an in-kernel IRQ chip then we must have asynchronous 2269 * interrupt delivery (though the reverse is not necessarily true) 2270 */ 2271 kvm_async_interrupts_allowed = true; 2272 kvm_halt_in_kernel_allowed = true; 2273 2274 kvm_init_irq_routing(s); 2275 2276 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2277 } 2278 2279 /* Find number of supported CPUs using the recommended 2280 * procedure from the kernel API documentation to cope with 2281 * older kernels that may be missing capabilities. 2282 */ 2283 static int kvm_recommended_vcpus(KVMState *s) 2284 { 2285 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2286 return (ret) ? ret : 4; 2287 } 2288 2289 static int kvm_max_vcpus(KVMState *s) 2290 { 2291 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2292 return (ret) ? ret : kvm_recommended_vcpus(s); 2293 } 2294 2295 static int kvm_max_vcpu_id(KVMState *s) 2296 { 2297 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2298 return (ret) ? ret : kvm_max_vcpus(s); 2299 } 2300 2301 bool kvm_vcpu_id_is_valid(int vcpu_id) 2302 { 2303 KVMState *s = KVM_STATE(current_accel()); 2304 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2305 } 2306 2307 bool kvm_dirty_ring_enabled(void) 2308 { 2309 return kvm_state->kvm_dirty_ring_size ? true : false; 2310 } 2311 2312 static int kvm_init(MachineState *ms) 2313 { 2314 MachineClass *mc = MACHINE_GET_CLASS(ms); 2315 static const char upgrade_note[] = 2316 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2317 "(see http://sourceforge.net/projects/kvm).\n"; 2318 struct { 2319 const char *name; 2320 int num; 2321 } num_cpus[] = { 2322 { "SMP", ms->smp.cpus }, 2323 { "hotpluggable", ms->smp.max_cpus }, 2324 { NULL, } 2325 }, *nc = num_cpus; 2326 int soft_vcpus_limit, hard_vcpus_limit; 2327 KVMState *s; 2328 const KVMCapabilityInfo *missing_cap; 2329 int ret; 2330 int type = 0; 2331 uint64_t dirty_log_manual_caps; 2332 2333 qemu_mutex_init(&kml_slots_lock); 2334 2335 s = KVM_STATE(ms->accelerator); 2336 2337 /* 2338 * On systems where the kernel can support different base page 2339 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2340 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2341 * page size for the system though. 2342 */ 2343 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size); 2344 2345 s->sigmask_len = 8; 2346 2347 #ifdef KVM_CAP_SET_GUEST_DEBUG 2348 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2349 #endif 2350 QLIST_INIT(&s->kvm_parked_vcpus); 2351 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2352 if (s->fd == -1) { 2353 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2354 ret = -errno; 2355 goto err; 2356 } 2357 2358 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2359 if (ret < KVM_API_VERSION) { 2360 if (ret >= 0) { 2361 ret = -EINVAL; 2362 } 2363 fprintf(stderr, "kvm version too old\n"); 2364 goto err; 2365 } 2366 2367 if (ret > KVM_API_VERSION) { 2368 ret = -EINVAL; 2369 fprintf(stderr, "kvm version not supported\n"); 2370 goto err; 2371 } 2372 2373 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2374 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2375 2376 /* If unspecified, use the default value */ 2377 if (!s->nr_slots) { 2378 s->nr_slots = 32; 2379 } 2380 2381 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2382 if (s->nr_as <= 1) { 2383 s->nr_as = 1; 2384 } 2385 s->as = g_new0(struct KVMAs, s->nr_as); 2386 2387 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2388 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2389 "kvm-type", 2390 &error_abort); 2391 type = mc->kvm_type(ms, kvm_type); 2392 } else if (mc->kvm_type) { 2393 type = mc->kvm_type(ms, NULL); 2394 } 2395 2396 do { 2397 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2398 } while (ret == -EINTR); 2399 2400 if (ret < 0) { 2401 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2402 strerror(-ret)); 2403 2404 #ifdef TARGET_S390X 2405 if (ret == -EINVAL) { 2406 fprintf(stderr, 2407 "Host kernel setup problem detected. Please verify:\n"); 2408 fprintf(stderr, "- for kernels supporting the switch_amode or" 2409 " user_mode parameters, whether\n"); 2410 fprintf(stderr, 2411 " user space is running in primary address space\n"); 2412 fprintf(stderr, 2413 "- for kernels supporting the vm.allocate_pgste sysctl, " 2414 "whether it is enabled\n"); 2415 } 2416 #elif defined(TARGET_PPC) 2417 if (ret == -EINVAL) { 2418 fprintf(stderr, 2419 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2420 (type == 2) ? "pr" : "hv"); 2421 } 2422 #endif 2423 goto err; 2424 } 2425 2426 s->vmfd = ret; 2427 2428 /* check the vcpu limits */ 2429 soft_vcpus_limit = kvm_recommended_vcpus(s); 2430 hard_vcpus_limit = kvm_max_vcpus(s); 2431 2432 while (nc->name) { 2433 if (nc->num > soft_vcpus_limit) { 2434 warn_report("Number of %s cpus requested (%d) exceeds " 2435 "the recommended cpus supported by KVM (%d)", 2436 nc->name, nc->num, soft_vcpus_limit); 2437 2438 if (nc->num > hard_vcpus_limit) { 2439 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2440 "the maximum cpus supported by KVM (%d)\n", 2441 nc->name, nc->num, hard_vcpus_limit); 2442 exit(1); 2443 } 2444 } 2445 nc++; 2446 } 2447 2448 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2449 if (!missing_cap) { 2450 missing_cap = 2451 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2452 } 2453 if (missing_cap) { 2454 ret = -EINVAL; 2455 fprintf(stderr, "kvm does not support %s\n%s", 2456 missing_cap->name, upgrade_note); 2457 goto err; 2458 } 2459 2460 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2461 s->coalesced_pio = s->coalesced_mmio && 2462 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2463 2464 /* 2465 * Enable KVM dirty ring if supported, otherwise fall back to 2466 * dirty logging mode 2467 */ 2468 if (s->kvm_dirty_ring_size > 0) { 2469 uint64_t ring_bytes; 2470 2471 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn); 2472 2473 /* Read the max supported pages */ 2474 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING); 2475 if (ret > 0) { 2476 if (ring_bytes > ret) { 2477 error_report("KVM dirty ring size %" PRIu32 " too big " 2478 "(maximum is %ld). Please use a smaller value.", 2479 s->kvm_dirty_ring_size, 2480 (long)ret / sizeof(struct kvm_dirty_gfn)); 2481 ret = -EINVAL; 2482 goto err; 2483 } 2484 2485 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes); 2486 if (ret) { 2487 error_report("Enabling of KVM dirty ring failed: %s. " 2488 "Suggested minimum value is 1024.", strerror(-ret)); 2489 goto err; 2490 } 2491 2492 s->kvm_dirty_ring_bytes = ring_bytes; 2493 } else { 2494 warn_report("KVM dirty ring not available, using bitmap method"); 2495 s->kvm_dirty_ring_size = 0; 2496 } 2497 } 2498 2499 /* 2500 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2501 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2502 * page is wr-protected initially, which is against how kvm dirty ring is 2503 * usage - kvm dirty ring requires all pages are wr-protected at the very 2504 * beginning. Enabling this feature for dirty ring causes data corruption. 2505 * 2506 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2507 * we may expect a higher stall time when starting the migration. In the 2508 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2509 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2510 * guest pages. 2511 */ 2512 if (!s->kvm_dirty_ring_size) { 2513 dirty_log_manual_caps = 2514 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2515 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2516 KVM_DIRTY_LOG_INITIALLY_SET); 2517 s->manual_dirty_log_protect = dirty_log_manual_caps; 2518 if (dirty_log_manual_caps) { 2519 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2520 dirty_log_manual_caps); 2521 if (ret) { 2522 warn_report("Trying to enable capability %"PRIu64" of " 2523 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2524 "Falling back to the legacy mode. ", 2525 dirty_log_manual_caps); 2526 s->manual_dirty_log_protect = 0; 2527 } 2528 } 2529 } 2530 2531 #ifdef KVM_CAP_VCPU_EVENTS 2532 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2533 #endif 2534 2535 s->robust_singlestep = 2536 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2537 2538 #ifdef KVM_CAP_DEBUGREGS 2539 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2540 #endif 2541 2542 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2543 2544 #ifdef KVM_CAP_IRQ_ROUTING 2545 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2546 #endif 2547 2548 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2549 2550 s->irq_set_ioctl = KVM_IRQ_LINE; 2551 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2552 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2553 } 2554 2555 kvm_readonly_mem_allowed = 2556 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2557 2558 kvm_eventfds_allowed = 2559 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2560 2561 kvm_irqfds_allowed = 2562 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2563 2564 kvm_resamplefds_allowed = 2565 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2566 2567 kvm_vm_attributes_allowed = 2568 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2569 2570 kvm_ioeventfd_any_length_allowed = 2571 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2572 2573 #ifdef KVM_CAP_SET_GUEST_DEBUG 2574 kvm_has_guest_debug = 2575 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2576 #endif 2577 2578 kvm_sstep_flags = 0; 2579 if (kvm_has_guest_debug) { 2580 kvm_sstep_flags = SSTEP_ENABLE; 2581 2582 #if defined KVM_CAP_SET_GUEST_DEBUG2 2583 int guest_debug_flags = 2584 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2585 2586 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2587 kvm_sstep_flags |= SSTEP_NOIRQ; 2588 } 2589 #endif 2590 } 2591 2592 kvm_state = s; 2593 2594 ret = kvm_arch_init(ms, s); 2595 if (ret < 0) { 2596 goto err; 2597 } 2598 2599 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2600 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2601 } 2602 2603 qemu_register_reset(kvm_unpoison_all, NULL); 2604 2605 if (s->kernel_irqchip_allowed) { 2606 kvm_irqchip_create(s); 2607 } 2608 2609 if (kvm_eventfds_allowed) { 2610 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2611 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2612 } 2613 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2614 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2615 2616 kvm_memory_listener_register(s, &s->memory_listener, 2617 &address_space_memory, 0, "kvm-memory"); 2618 if (kvm_eventfds_allowed) { 2619 memory_listener_register(&kvm_io_listener, 2620 &address_space_io); 2621 } 2622 memory_listener_register(&kvm_coalesced_pio_listener, 2623 &address_space_io); 2624 2625 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2626 2627 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2628 if (!s->sync_mmu) { 2629 ret = ram_block_discard_disable(true); 2630 assert(!ret); 2631 } 2632 2633 if (s->kvm_dirty_ring_size) { 2634 ret = kvm_dirty_ring_reaper_init(s); 2635 if (ret) { 2636 goto err; 2637 } 2638 } 2639 2640 return 0; 2641 2642 err: 2643 assert(ret < 0); 2644 if (s->vmfd >= 0) { 2645 close(s->vmfd); 2646 } 2647 if (s->fd != -1) { 2648 close(s->fd); 2649 } 2650 g_free(s->memory_listener.slots); 2651 2652 return ret; 2653 } 2654 2655 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2656 { 2657 s->sigmask_len = sigmask_len; 2658 } 2659 2660 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2661 int size, uint32_t count) 2662 { 2663 int i; 2664 uint8_t *ptr = data; 2665 2666 for (i = 0; i < count; i++) { 2667 address_space_rw(&address_space_io, port, attrs, 2668 ptr, size, 2669 direction == KVM_EXIT_IO_OUT); 2670 ptr += size; 2671 } 2672 } 2673 2674 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2675 { 2676 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2677 run->internal.suberror); 2678 2679 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2680 int i; 2681 2682 for (i = 0; i < run->internal.ndata; ++i) { 2683 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2684 i, (uint64_t)run->internal.data[i]); 2685 } 2686 } 2687 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2688 fprintf(stderr, "emulation failure\n"); 2689 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2690 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2691 return EXCP_INTERRUPT; 2692 } 2693 } 2694 /* FIXME: Should trigger a qmp message to let management know 2695 * something went wrong. 2696 */ 2697 return -1; 2698 } 2699 2700 void kvm_flush_coalesced_mmio_buffer(void) 2701 { 2702 KVMState *s = kvm_state; 2703 2704 if (s->coalesced_flush_in_progress) { 2705 return; 2706 } 2707 2708 s->coalesced_flush_in_progress = true; 2709 2710 if (s->coalesced_mmio_ring) { 2711 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2712 while (ring->first != ring->last) { 2713 struct kvm_coalesced_mmio *ent; 2714 2715 ent = &ring->coalesced_mmio[ring->first]; 2716 2717 if (ent->pio == 1) { 2718 address_space_write(&address_space_io, ent->phys_addr, 2719 MEMTXATTRS_UNSPECIFIED, ent->data, 2720 ent->len); 2721 } else { 2722 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2723 } 2724 smp_wmb(); 2725 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2726 } 2727 } 2728 2729 s->coalesced_flush_in_progress = false; 2730 } 2731 2732 bool kvm_cpu_check_are_resettable(void) 2733 { 2734 return kvm_arch_cpu_check_are_resettable(); 2735 } 2736 2737 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2738 { 2739 if (!cpu->vcpu_dirty) { 2740 kvm_arch_get_registers(cpu); 2741 cpu->vcpu_dirty = true; 2742 } 2743 } 2744 2745 void kvm_cpu_synchronize_state(CPUState *cpu) 2746 { 2747 if (!cpu->vcpu_dirty) { 2748 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2749 } 2750 } 2751 2752 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2753 { 2754 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2755 cpu->vcpu_dirty = false; 2756 } 2757 2758 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2759 { 2760 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2761 } 2762 2763 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2764 { 2765 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2766 cpu->vcpu_dirty = false; 2767 } 2768 2769 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2770 { 2771 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2772 } 2773 2774 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2775 { 2776 cpu->vcpu_dirty = true; 2777 } 2778 2779 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2780 { 2781 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2782 } 2783 2784 #ifdef KVM_HAVE_MCE_INJECTION 2785 static __thread void *pending_sigbus_addr; 2786 static __thread int pending_sigbus_code; 2787 static __thread bool have_sigbus_pending; 2788 #endif 2789 2790 static void kvm_cpu_kick(CPUState *cpu) 2791 { 2792 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2793 } 2794 2795 static void kvm_cpu_kick_self(void) 2796 { 2797 if (kvm_immediate_exit) { 2798 kvm_cpu_kick(current_cpu); 2799 } else { 2800 qemu_cpu_kick_self(); 2801 } 2802 } 2803 2804 static void kvm_eat_signals(CPUState *cpu) 2805 { 2806 struct timespec ts = { 0, 0 }; 2807 siginfo_t siginfo; 2808 sigset_t waitset; 2809 sigset_t chkset; 2810 int r; 2811 2812 if (kvm_immediate_exit) { 2813 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2814 /* Write kvm_run->immediate_exit before the cpu->exit_request 2815 * write in kvm_cpu_exec. 2816 */ 2817 smp_wmb(); 2818 return; 2819 } 2820 2821 sigemptyset(&waitset); 2822 sigaddset(&waitset, SIG_IPI); 2823 2824 do { 2825 r = sigtimedwait(&waitset, &siginfo, &ts); 2826 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2827 perror("sigtimedwait"); 2828 exit(1); 2829 } 2830 2831 r = sigpending(&chkset); 2832 if (r == -1) { 2833 perror("sigpending"); 2834 exit(1); 2835 } 2836 } while (sigismember(&chkset, SIG_IPI)); 2837 } 2838 2839 int kvm_cpu_exec(CPUState *cpu) 2840 { 2841 struct kvm_run *run = cpu->kvm_run; 2842 int ret, run_ret; 2843 2844 DPRINTF("kvm_cpu_exec()\n"); 2845 2846 if (kvm_arch_process_async_events(cpu)) { 2847 qatomic_set(&cpu->exit_request, 0); 2848 return EXCP_HLT; 2849 } 2850 2851 qemu_mutex_unlock_iothread(); 2852 cpu_exec_start(cpu); 2853 2854 do { 2855 MemTxAttrs attrs; 2856 2857 if (cpu->vcpu_dirty) { 2858 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2859 cpu->vcpu_dirty = false; 2860 } 2861 2862 kvm_arch_pre_run(cpu, run); 2863 if (qatomic_read(&cpu->exit_request)) { 2864 DPRINTF("interrupt exit requested\n"); 2865 /* 2866 * KVM requires us to reenter the kernel after IO exits to complete 2867 * instruction emulation. This self-signal will ensure that we 2868 * leave ASAP again. 2869 */ 2870 kvm_cpu_kick_self(); 2871 } 2872 2873 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2874 * Matching barrier in kvm_eat_signals. 2875 */ 2876 smp_rmb(); 2877 2878 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2879 2880 attrs = kvm_arch_post_run(cpu, run); 2881 2882 #ifdef KVM_HAVE_MCE_INJECTION 2883 if (unlikely(have_sigbus_pending)) { 2884 qemu_mutex_lock_iothread(); 2885 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2886 pending_sigbus_addr); 2887 have_sigbus_pending = false; 2888 qemu_mutex_unlock_iothread(); 2889 } 2890 #endif 2891 2892 if (run_ret < 0) { 2893 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2894 DPRINTF("io window exit\n"); 2895 kvm_eat_signals(cpu); 2896 ret = EXCP_INTERRUPT; 2897 break; 2898 } 2899 fprintf(stderr, "error: kvm run failed %s\n", 2900 strerror(-run_ret)); 2901 #ifdef TARGET_PPC 2902 if (run_ret == -EBUSY) { 2903 fprintf(stderr, 2904 "This is probably because your SMT is enabled.\n" 2905 "VCPU can only run on primary threads with all " 2906 "secondary threads offline.\n"); 2907 } 2908 #endif 2909 ret = -1; 2910 break; 2911 } 2912 2913 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2914 switch (run->exit_reason) { 2915 case KVM_EXIT_IO: 2916 DPRINTF("handle_io\n"); 2917 /* Called outside BQL */ 2918 kvm_handle_io(run->io.port, attrs, 2919 (uint8_t *)run + run->io.data_offset, 2920 run->io.direction, 2921 run->io.size, 2922 run->io.count); 2923 ret = 0; 2924 break; 2925 case KVM_EXIT_MMIO: 2926 DPRINTF("handle_mmio\n"); 2927 /* Called outside BQL */ 2928 address_space_rw(&address_space_memory, 2929 run->mmio.phys_addr, attrs, 2930 run->mmio.data, 2931 run->mmio.len, 2932 run->mmio.is_write); 2933 ret = 0; 2934 break; 2935 case KVM_EXIT_IRQ_WINDOW_OPEN: 2936 DPRINTF("irq_window_open\n"); 2937 ret = EXCP_INTERRUPT; 2938 break; 2939 case KVM_EXIT_SHUTDOWN: 2940 DPRINTF("shutdown\n"); 2941 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2942 ret = EXCP_INTERRUPT; 2943 break; 2944 case KVM_EXIT_UNKNOWN: 2945 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2946 (uint64_t)run->hw.hardware_exit_reason); 2947 ret = -1; 2948 break; 2949 case KVM_EXIT_INTERNAL_ERROR: 2950 ret = kvm_handle_internal_error(cpu, run); 2951 break; 2952 case KVM_EXIT_DIRTY_RING_FULL: 2953 /* 2954 * We shouldn't continue if the dirty ring of this vcpu is 2955 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2956 */ 2957 trace_kvm_dirty_ring_full(cpu->cpu_index); 2958 qemu_mutex_lock_iothread(); 2959 kvm_dirty_ring_reap(kvm_state); 2960 qemu_mutex_unlock_iothread(); 2961 ret = 0; 2962 break; 2963 case KVM_EXIT_SYSTEM_EVENT: 2964 switch (run->system_event.type) { 2965 case KVM_SYSTEM_EVENT_SHUTDOWN: 2966 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2967 ret = EXCP_INTERRUPT; 2968 break; 2969 case KVM_SYSTEM_EVENT_RESET: 2970 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2971 ret = EXCP_INTERRUPT; 2972 break; 2973 case KVM_SYSTEM_EVENT_CRASH: 2974 kvm_cpu_synchronize_state(cpu); 2975 qemu_mutex_lock_iothread(); 2976 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 2977 qemu_mutex_unlock_iothread(); 2978 ret = 0; 2979 break; 2980 default: 2981 DPRINTF("kvm_arch_handle_exit\n"); 2982 ret = kvm_arch_handle_exit(cpu, run); 2983 break; 2984 } 2985 break; 2986 default: 2987 DPRINTF("kvm_arch_handle_exit\n"); 2988 ret = kvm_arch_handle_exit(cpu, run); 2989 break; 2990 } 2991 } while (ret == 0); 2992 2993 cpu_exec_end(cpu); 2994 qemu_mutex_lock_iothread(); 2995 2996 if (ret < 0) { 2997 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2998 vm_stop(RUN_STATE_INTERNAL_ERROR); 2999 } 3000 3001 qatomic_set(&cpu->exit_request, 0); 3002 return ret; 3003 } 3004 3005 int kvm_ioctl(KVMState *s, int type, ...) 3006 { 3007 int ret; 3008 void *arg; 3009 va_list ap; 3010 3011 va_start(ap, type); 3012 arg = va_arg(ap, void *); 3013 va_end(ap); 3014 3015 trace_kvm_ioctl(type, arg); 3016 ret = ioctl(s->fd, type, arg); 3017 if (ret == -1) { 3018 ret = -errno; 3019 } 3020 return ret; 3021 } 3022 3023 int kvm_vm_ioctl(KVMState *s, int type, ...) 3024 { 3025 int ret; 3026 void *arg; 3027 va_list ap; 3028 3029 va_start(ap, type); 3030 arg = va_arg(ap, void *); 3031 va_end(ap); 3032 3033 trace_kvm_vm_ioctl(type, arg); 3034 ret = ioctl(s->vmfd, type, arg); 3035 if (ret == -1) { 3036 ret = -errno; 3037 } 3038 return ret; 3039 } 3040 3041 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3042 { 3043 int ret; 3044 void *arg; 3045 va_list ap; 3046 3047 va_start(ap, type); 3048 arg = va_arg(ap, void *); 3049 va_end(ap); 3050 3051 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3052 ret = ioctl(cpu->kvm_fd, type, arg); 3053 if (ret == -1) { 3054 ret = -errno; 3055 } 3056 return ret; 3057 } 3058 3059 int kvm_device_ioctl(int fd, int type, ...) 3060 { 3061 int ret; 3062 void *arg; 3063 va_list ap; 3064 3065 va_start(ap, type); 3066 arg = va_arg(ap, void *); 3067 va_end(ap); 3068 3069 trace_kvm_device_ioctl(fd, type, arg); 3070 ret = ioctl(fd, type, arg); 3071 if (ret == -1) { 3072 ret = -errno; 3073 } 3074 return ret; 3075 } 3076 3077 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3078 { 3079 int ret; 3080 struct kvm_device_attr attribute = { 3081 .group = group, 3082 .attr = attr, 3083 }; 3084 3085 if (!kvm_vm_attributes_allowed) { 3086 return 0; 3087 } 3088 3089 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3090 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3091 return ret ? 0 : 1; 3092 } 3093 3094 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3095 { 3096 struct kvm_device_attr attribute = { 3097 .group = group, 3098 .attr = attr, 3099 .flags = 0, 3100 }; 3101 3102 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3103 } 3104 3105 int kvm_device_access(int fd, int group, uint64_t attr, 3106 void *val, bool write, Error **errp) 3107 { 3108 struct kvm_device_attr kvmattr; 3109 int err; 3110 3111 kvmattr.flags = 0; 3112 kvmattr.group = group; 3113 kvmattr.attr = attr; 3114 kvmattr.addr = (uintptr_t)val; 3115 3116 err = kvm_device_ioctl(fd, 3117 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3118 &kvmattr); 3119 if (err < 0) { 3120 error_setg_errno(errp, -err, 3121 "KVM_%s_DEVICE_ATTR failed: Group %d " 3122 "attr 0x%016" PRIx64, 3123 write ? "SET" : "GET", group, attr); 3124 } 3125 return err; 3126 } 3127 3128 bool kvm_has_sync_mmu(void) 3129 { 3130 return kvm_state->sync_mmu; 3131 } 3132 3133 int kvm_has_vcpu_events(void) 3134 { 3135 return kvm_state->vcpu_events; 3136 } 3137 3138 int kvm_has_robust_singlestep(void) 3139 { 3140 return kvm_state->robust_singlestep; 3141 } 3142 3143 int kvm_has_debugregs(void) 3144 { 3145 return kvm_state->debugregs; 3146 } 3147 3148 int kvm_max_nested_state_length(void) 3149 { 3150 return kvm_state->max_nested_state_len; 3151 } 3152 3153 int kvm_has_many_ioeventfds(void) 3154 { 3155 if (!kvm_enabled()) { 3156 return 0; 3157 } 3158 return kvm_state->many_ioeventfds; 3159 } 3160 3161 int kvm_has_gsi_routing(void) 3162 { 3163 #ifdef KVM_CAP_IRQ_ROUTING 3164 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3165 #else 3166 return false; 3167 #endif 3168 } 3169 3170 int kvm_has_intx_set_mask(void) 3171 { 3172 return kvm_state->intx_set_mask; 3173 } 3174 3175 bool kvm_arm_supports_user_irq(void) 3176 { 3177 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3178 } 3179 3180 #ifdef KVM_CAP_SET_GUEST_DEBUG 3181 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3182 target_ulong pc) 3183 { 3184 struct kvm_sw_breakpoint *bp; 3185 3186 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3187 if (bp->pc == pc) { 3188 return bp; 3189 } 3190 } 3191 return NULL; 3192 } 3193 3194 int kvm_sw_breakpoints_active(CPUState *cpu) 3195 { 3196 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3197 } 3198 3199 struct kvm_set_guest_debug_data { 3200 struct kvm_guest_debug dbg; 3201 int err; 3202 }; 3203 3204 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3205 { 3206 struct kvm_set_guest_debug_data *dbg_data = 3207 (struct kvm_set_guest_debug_data *) data.host_ptr; 3208 3209 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3210 &dbg_data->dbg); 3211 } 3212 3213 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3214 { 3215 struct kvm_set_guest_debug_data data; 3216 3217 data.dbg.control = reinject_trap; 3218 3219 if (cpu->singlestep_enabled) { 3220 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3221 3222 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3223 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3224 } 3225 } 3226 kvm_arch_update_guest_debug(cpu, &data.dbg); 3227 3228 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3229 RUN_ON_CPU_HOST_PTR(&data)); 3230 return data.err; 3231 } 3232 3233 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 3234 target_ulong len, int type) 3235 { 3236 struct kvm_sw_breakpoint *bp; 3237 int err; 3238 3239 if (type == GDB_BREAKPOINT_SW) { 3240 bp = kvm_find_sw_breakpoint(cpu, addr); 3241 if (bp) { 3242 bp->use_count++; 3243 return 0; 3244 } 3245 3246 bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); 3247 bp->pc = addr; 3248 bp->use_count = 1; 3249 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3250 if (err) { 3251 g_free(bp); 3252 return err; 3253 } 3254 3255 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3256 } else { 3257 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3258 if (err) { 3259 return err; 3260 } 3261 } 3262 3263 CPU_FOREACH(cpu) { 3264 err = kvm_update_guest_debug(cpu, 0); 3265 if (err) { 3266 return err; 3267 } 3268 } 3269 return 0; 3270 } 3271 3272 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 3273 target_ulong len, int type) 3274 { 3275 struct kvm_sw_breakpoint *bp; 3276 int err; 3277 3278 if (type == GDB_BREAKPOINT_SW) { 3279 bp = kvm_find_sw_breakpoint(cpu, addr); 3280 if (!bp) { 3281 return -ENOENT; 3282 } 3283 3284 if (bp->use_count > 1) { 3285 bp->use_count--; 3286 return 0; 3287 } 3288 3289 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3290 if (err) { 3291 return err; 3292 } 3293 3294 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3295 g_free(bp); 3296 } else { 3297 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3298 if (err) { 3299 return err; 3300 } 3301 } 3302 3303 CPU_FOREACH(cpu) { 3304 err = kvm_update_guest_debug(cpu, 0); 3305 if (err) { 3306 return err; 3307 } 3308 } 3309 return 0; 3310 } 3311 3312 void kvm_remove_all_breakpoints(CPUState *cpu) 3313 { 3314 struct kvm_sw_breakpoint *bp, *next; 3315 KVMState *s = cpu->kvm_state; 3316 CPUState *tmpcpu; 3317 3318 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3319 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3320 /* Try harder to find a CPU that currently sees the breakpoint. */ 3321 CPU_FOREACH(tmpcpu) { 3322 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3323 break; 3324 } 3325 } 3326 } 3327 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3328 g_free(bp); 3329 } 3330 kvm_arch_remove_all_hw_breakpoints(); 3331 3332 CPU_FOREACH(cpu) { 3333 kvm_update_guest_debug(cpu, 0); 3334 } 3335 } 3336 3337 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 3338 3339 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3340 { 3341 return -EINVAL; 3342 } 3343 3344 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, 3345 target_ulong len, int type) 3346 { 3347 return -EINVAL; 3348 } 3349 3350 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, 3351 target_ulong len, int type) 3352 { 3353 return -EINVAL; 3354 } 3355 3356 void kvm_remove_all_breakpoints(CPUState *cpu) 3357 { 3358 } 3359 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3360 3361 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3362 { 3363 KVMState *s = kvm_state; 3364 struct kvm_signal_mask *sigmask; 3365 int r; 3366 3367 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3368 3369 sigmask->len = s->sigmask_len; 3370 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3371 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3372 g_free(sigmask); 3373 3374 return r; 3375 } 3376 3377 static void kvm_ipi_signal(int sig) 3378 { 3379 if (current_cpu) { 3380 assert(kvm_immediate_exit); 3381 kvm_cpu_kick(current_cpu); 3382 } 3383 } 3384 3385 void kvm_init_cpu_signals(CPUState *cpu) 3386 { 3387 int r; 3388 sigset_t set; 3389 struct sigaction sigact; 3390 3391 memset(&sigact, 0, sizeof(sigact)); 3392 sigact.sa_handler = kvm_ipi_signal; 3393 sigaction(SIG_IPI, &sigact, NULL); 3394 3395 pthread_sigmask(SIG_BLOCK, NULL, &set); 3396 #if defined KVM_HAVE_MCE_INJECTION 3397 sigdelset(&set, SIGBUS); 3398 pthread_sigmask(SIG_SETMASK, &set, NULL); 3399 #endif 3400 sigdelset(&set, SIG_IPI); 3401 if (kvm_immediate_exit) { 3402 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3403 } else { 3404 r = kvm_set_signal_mask(cpu, &set); 3405 } 3406 if (r) { 3407 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3408 exit(1); 3409 } 3410 } 3411 3412 /* Called asynchronously in VCPU thread. */ 3413 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3414 { 3415 #ifdef KVM_HAVE_MCE_INJECTION 3416 if (have_sigbus_pending) { 3417 return 1; 3418 } 3419 have_sigbus_pending = true; 3420 pending_sigbus_addr = addr; 3421 pending_sigbus_code = code; 3422 qatomic_set(&cpu->exit_request, 1); 3423 return 0; 3424 #else 3425 return 1; 3426 #endif 3427 } 3428 3429 /* Called synchronously (via signalfd) in main thread. */ 3430 int kvm_on_sigbus(int code, void *addr) 3431 { 3432 #ifdef KVM_HAVE_MCE_INJECTION 3433 /* Action required MCE kills the process if SIGBUS is blocked. Because 3434 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3435 * we can only get action optional here. 3436 */ 3437 assert(code != BUS_MCEERR_AR); 3438 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3439 return 0; 3440 #else 3441 return 1; 3442 #endif 3443 } 3444 3445 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3446 { 3447 int ret; 3448 struct kvm_create_device create_dev; 3449 3450 create_dev.type = type; 3451 create_dev.fd = -1; 3452 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3453 3454 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3455 return -ENOTSUP; 3456 } 3457 3458 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3459 if (ret) { 3460 return ret; 3461 } 3462 3463 return test ? 0 : create_dev.fd; 3464 } 3465 3466 bool kvm_device_supported(int vmfd, uint64_t type) 3467 { 3468 struct kvm_create_device create_dev = { 3469 .type = type, 3470 .fd = -1, 3471 .flags = KVM_CREATE_DEVICE_TEST, 3472 }; 3473 3474 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3475 return false; 3476 } 3477 3478 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3479 } 3480 3481 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3482 { 3483 struct kvm_one_reg reg; 3484 int r; 3485 3486 reg.id = id; 3487 reg.addr = (uintptr_t) source; 3488 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3489 if (r) { 3490 trace_kvm_failed_reg_set(id, strerror(-r)); 3491 } 3492 return r; 3493 } 3494 3495 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3496 { 3497 struct kvm_one_reg reg; 3498 int r; 3499 3500 reg.id = id; 3501 reg.addr = (uintptr_t) target; 3502 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3503 if (r) { 3504 trace_kvm_failed_reg_get(id, strerror(-r)); 3505 } 3506 return r; 3507 } 3508 3509 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3510 hwaddr start_addr, hwaddr size) 3511 { 3512 KVMState *kvm = KVM_STATE(ms->accelerator); 3513 int i; 3514 3515 for (i = 0; i < kvm->nr_as; ++i) { 3516 if (kvm->as[i].as == as && kvm->as[i].ml) { 3517 size = MIN(kvm_max_slot_size, size); 3518 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3519 start_addr, size); 3520 } 3521 } 3522 3523 return false; 3524 } 3525 3526 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3527 const char *name, void *opaque, 3528 Error **errp) 3529 { 3530 KVMState *s = KVM_STATE(obj); 3531 int64_t value = s->kvm_shadow_mem; 3532 3533 visit_type_int(v, name, &value, errp); 3534 } 3535 3536 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3537 const char *name, void *opaque, 3538 Error **errp) 3539 { 3540 KVMState *s = KVM_STATE(obj); 3541 int64_t value; 3542 3543 if (s->fd != -1) { 3544 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3545 return; 3546 } 3547 3548 if (!visit_type_int(v, name, &value, errp)) { 3549 return; 3550 } 3551 3552 s->kvm_shadow_mem = value; 3553 } 3554 3555 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3556 const char *name, void *opaque, 3557 Error **errp) 3558 { 3559 KVMState *s = KVM_STATE(obj); 3560 OnOffSplit mode; 3561 3562 if (s->fd != -1) { 3563 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3564 return; 3565 } 3566 3567 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3568 return; 3569 } 3570 switch (mode) { 3571 case ON_OFF_SPLIT_ON: 3572 s->kernel_irqchip_allowed = true; 3573 s->kernel_irqchip_required = true; 3574 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3575 break; 3576 case ON_OFF_SPLIT_OFF: 3577 s->kernel_irqchip_allowed = false; 3578 s->kernel_irqchip_required = false; 3579 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3580 break; 3581 case ON_OFF_SPLIT_SPLIT: 3582 s->kernel_irqchip_allowed = true; 3583 s->kernel_irqchip_required = true; 3584 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3585 break; 3586 default: 3587 /* The value was checked in visit_type_OnOffSplit() above. If 3588 * we get here, then something is wrong in QEMU. 3589 */ 3590 abort(); 3591 } 3592 } 3593 3594 bool kvm_kernel_irqchip_allowed(void) 3595 { 3596 return kvm_state->kernel_irqchip_allowed; 3597 } 3598 3599 bool kvm_kernel_irqchip_required(void) 3600 { 3601 return kvm_state->kernel_irqchip_required; 3602 } 3603 3604 bool kvm_kernel_irqchip_split(void) 3605 { 3606 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3607 } 3608 3609 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3610 const char *name, void *opaque, 3611 Error **errp) 3612 { 3613 KVMState *s = KVM_STATE(obj); 3614 uint32_t value = s->kvm_dirty_ring_size; 3615 3616 visit_type_uint32(v, name, &value, errp); 3617 } 3618 3619 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3620 const char *name, void *opaque, 3621 Error **errp) 3622 { 3623 KVMState *s = KVM_STATE(obj); 3624 Error *error = NULL; 3625 uint32_t value; 3626 3627 if (s->fd != -1) { 3628 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3629 return; 3630 } 3631 3632 visit_type_uint32(v, name, &value, &error); 3633 if (error) { 3634 error_propagate(errp, error); 3635 return; 3636 } 3637 if (value & (value - 1)) { 3638 error_setg(errp, "dirty-ring-size must be a power of two."); 3639 return; 3640 } 3641 3642 s->kvm_dirty_ring_size = value; 3643 } 3644 3645 static void kvm_accel_instance_init(Object *obj) 3646 { 3647 KVMState *s = KVM_STATE(obj); 3648 3649 s->fd = -1; 3650 s->vmfd = -1; 3651 s->kvm_shadow_mem = -1; 3652 s->kernel_irqchip_allowed = true; 3653 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3654 /* KVM dirty ring is by default off */ 3655 s->kvm_dirty_ring_size = 0; 3656 } 3657 3658 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3659 { 3660 AccelClass *ac = ACCEL_CLASS(oc); 3661 ac->name = "KVM"; 3662 ac->init_machine = kvm_init; 3663 ac->has_memory = kvm_accel_has_memory; 3664 ac->allowed = &kvm_allowed; 3665 3666 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3667 NULL, kvm_set_kernel_irqchip, 3668 NULL, NULL); 3669 object_class_property_set_description(oc, "kernel-irqchip", 3670 "Configure KVM in-kernel irqchip"); 3671 3672 object_class_property_add(oc, "kvm-shadow-mem", "int", 3673 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3674 NULL, NULL); 3675 object_class_property_set_description(oc, "kvm-shadow-mem", 3676 "KVM shadow MMU size"); 3677 3678 object_class_property_add(oc, "dirty-ring-size", "uint32", 3679 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3680 NULL, NULL); 3681 object_class_property_set_description(oc, "dirty-ring-size", 3682 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3683 } 3684 3685 static const TypeInfo kvm_accel_type = { 3686 .name = TYPE_KVM_ACCEL, 3687 .parent = TYPE_ACCEL, 3688 .instance_init = kvm_accel_instance_init, 3689 .class_init = kvm_accel_class_init, 3690 .instance_size = sizeof(KVMState), 3691 }; 3692 3693 static void kvm_type_init(void) 3694 { 3695 type_register_static(&kvm_accel_type); 3696 } 3697 3698 type_init(kvm_type_init); 3699